xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision ae9312c487c6178a538e9123700b15558e10ad79)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/FastISel.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/GCMetadata.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/SelectionDAG.h"
39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
40 #include "llvm/CodeGen/StackMaps.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/ConstantRange.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfo.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GetElementPtrTypeIterator.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/InlineAsm.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/Statepoint.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetFrameLowering.h"
65 #include "llvm/Target/TargetInstrInfo.h"
66 #include "llvm/Target/TargetIntrinsicInfo.h"
67 #include "llvm/Target/TargetLowering.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Target/TargetSubtargetInfo.h"
70 #include <algorithm>
71 #include <utility>
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "isel"
75 
76 /// LimitFloatPrecision - Generate low-precision inline sequences for
77 /// some float libcalls (6, 8 or 12 bits).
78 static unsigned LimitFloatPrecision;
79 
80 static cl::opt<unsigned, true>
81 LimitFPPrecision("limit-float-precision",
82                  cl::desc("Generate low-precision inline sequences "
83                           "for some float libcalls"),
84                  cl::location(LimitFloatPrecision),
85                  cl::init(0));
86 // Limit the width of DAG chains. This is important in general to prevent
87 // DAG-based analysis from blowing up. For example, alias analysis and
88 // load clustering may not complete in reasonable time. It is difficult to
89 // recognize and avoid this situation within each individual analysis, and
90 // future analyses are likely to have the same behavior. Limiting DAG width is
91 // the safe approach and will be especially important with global DAGs.
92 //
93 // MaxParallelChains default is arbitrarily high to avoid affecting
94 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
95 // sequence over this should have been converted to llvm.memcpy by the
96 // frontend. It is easy to induce this behavior with .ll code such as:
97 // %buffer = alloca [4096 x i8]
98 // %data = load [4096 x i8]* %argPtr
99 // store [4096 x i8] %data, [4096 x i8]* %buffer
100 static const unsigned MaxParallelChains = 64;
101 
102 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
103                                       const SDValue *Parts, unsigned NumParts,
104                                       MVT PartVT, EVT ValueVT, const Value *V,
105                                       bool IsABIRegCopy);
106 
107 /// getCopyFromParts - Create a value that contains the specified legal parts
108 /// combined into the value they represent.  If the parts combine to a type
109 /// larger than ValueVT then AssertOp can be used to specify whether the extra
110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
111 /// (ISD::AssertSext).
112 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
113                                 const SDValue *Parts, unsigned NumParts,
114                                 MVT PartVT, EVT ValueVT, const Value *V,
115                                 Optional<ISD::NodeType> AssertOp = None,
116                                 bool IsABIRegCopy = false) {
117   if (ValueVT.isVector())
118     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
119                                   PartVT, ValueVT, V, IsABIRegCopy);
120 
121   assert(NumParts > 0 && "No parts to assemble!");
122   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
123   SDValue Val = Parts[0];
124 
125   if (NumParts > 1) {
126     // Assemble the value from multiple parts.
127     if (ValueVT.isInteger()) {
128       unsigned PartBits = PartVT.getSizeInBits();
129       unsigned ValueBits = ValueVT.getSizeInBits();
130 
131       // Assemble the power of 2 part.
132       unsigned RoundParts = NumParts & (NumParts - 1) ?
133         1 << Log2_32(NumParts) : NumParts;
134       unsigned RoundBits = PartBits * RoundParts;
135       EVT RoundVT = RoundBits == ValueBits ?
136         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
137       SDValue Lo, Hi;
138 
139       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
140 
141       if (RoundParts > 2) {
142         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
143                               PartVT, HalfVT, V);
144         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
145                               RoundParts / 2, PartVT, HalfVT, V);
146       } else {
147         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
148         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
149       }
150 
151       if (DAG.getDataLayout().isBigEndian())
152         std::swap(Lo, Hi);
153 
154       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
155 
156       if (RoundParts < NumParts) {
157         // Assemble the trailing non-power-of-2 part.
158         unsigned OddParts = NumParts - RoundParts;
159         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
160         Hi = getCopyFromParts(DAG, DL,
161                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
162 
163         // Combine the round and odd parts.
164         Lo = Val;
165         if (DAG.getDataLayout().isBigEndian())
166           std::swap(Lo, Hi);
167         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
168         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
169         Hi =
170             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
171                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
172                                         TLI.getPointerTy(DAG.getDataLayout())));
173         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
174         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
175       }
176     } else if (PartVT.isFloatingPoint()) {
177       // FP split into multiple FP parts (for ppcf128)
178       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
179              "Unexpected split");
180       SDValue Lo, Hi;
181       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
182       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
183       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
184         std::swap(Lo, Hi);
185       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
186     } else {
187       // FP split into integer parts (soft fp)
188       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
189              !PartVT.isVector() && "Unexpected split");
190       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
191       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
192     }
193   }
194 
195   // There is now one part, held in Val.  Correct it to match ValueVT.
196   // PartEVT is the type of the register class that holds the value.
197   // ValueVT is the type of the inline asm operation.
198   EVT PartEVT = Val.getValueType();
199 
200   if (PartEVT == ValueVT)
201     return Val;
202 
203   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
204       ValueVT.bitsLT(PartEVT)) {
205     // For an FP value in an integer part, we need to truncate to the right
206     // width first.
207     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
208     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
209   }
210 
211   // Handle types that have the same size.
212   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
213     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
214 
215   // Handle types with different sizes.
216   if (PartEVT.isInteger() && ValueVT.isInteger()) {
217     if (ValueVT.bitsLT(PartEVT)) {
218       // For a truncate, see if we have any information to
219       // indicate whether the truncated bits will always be
220       // zero or sign-extension.
221       if (AssertOp.hasValue())
222         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
223                           DAG.getValueType(ValueVT));
224       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
225     }
226     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
227   }
228 
229   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
230     // FP_ROUND's are always exact here.
231     if (ValueVT.bitsLT(Val.getValueType()))
232       return DAG.getNode(
233           ISD::FP_ROUND, DL, ValueVT, Val,
234           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
235 
236     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
237   }
238 
239   llvm_unreachable("Unknown mismatch!");
240 }
241 
242 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
243                                               const Twine &ErrMsg) {
244   const Instruction *I = dyn_cast_or_null<Instruction>(V);
245   if (!V)
246     return Ctx.emitError(ErrMsg);
247 
248   const char *AsmError = ", possible invalid constraint for vector type";
249   if (const CallInst *CI = dyn_cast<CallInst>(I))
250     if (isa<InlineAsm>(CI->getCalledValue()))
251       return Ctx.emitError(I, ErrMsg + AsmError);
252 
253   return Ctx.emitError(I, ErrMsg);
254 }
255 
256 /// getCopyFromPartsVector - Create a value that contains the specified legal
257 /// parts combined into the value they represent.  If the parts combine to a
258 /// type larger than ValueVT then AssertOp can be used to specify whether the
259 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
260 /// ValueVT (ISD::AssertSext).
261 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
262                                       const SDValue *Parts, unsigned NumParts,
263                                       MVT PartVT, EVT ValueVT, const Value *V,
264                                       bool IsABIRegCopy) {
265   assert(ValueVT.isVector() && "Not a vector value");
266   assert(NumParts > 0 && "No parts to assemble!");
267   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
268   SDValue Val = Parts[0];
269 
270   // Handle a multi-element vector.
271   if (NumParts > 1) {
272     EVT IntermediateVT;
273     MVT RegisterVT;
274     unsigned NumIntermediates;
275     unsigned NumRegs;
276 
277     if (IsABIRegCopy) {
278       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
279           *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
280           RegisterVT);
281     } else {
282       NumRegs =
283           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
284                                      NumIntermediates, RegisterVT);
285     }
286 
287     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
288     NumParts = NumRegs; // Silence a compiler warning.
289     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
290     assert(RegisterVT.getSizeInBits() ==
291            Parts[0].getSimpleValueType().getSizeInBits() &&
292            "Part type sizes don't match!");
293 
294     // Assemble the parts into intermediate operands.
295     SmallVector<SDValue, 8> Ops(NumIntermediates);
296     if (NumIntermediates == NumParts) {
297       // If the register was not expanded, truncate or copy the value,
298       // as appropriate.
299       for (unsigned i = 0; i != NumParts; ++i)
300         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
301                                   PartVT, IntermediateVT, V);
302     } else if (NumParts > 0) {
303       // If the intermediate type was expanded, build the intermediate
304       // operands from the parts.
305       assert(NumParts % NumIntermediates == 0 &&
306              "Must expand into a divisible number of parts!");
307       unsigned Factor = NumParts / NumIntermediates;
308       for (unsigned i = 0; i != NumIntermediates; ++i)
309         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
310                                   PartVT, IntermediateVT, V);
311     }
312 
313     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
314     // intermediate operands.
315     EVT BuiltVectorTy =
316         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
317                          (IntermediateVT.isVector()
318                               ? IntermediateVT.getVectorNumElements() * NumParts
319                               : NumIntermediates));
320     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
321                                                 : ISD::BUILD_VECTOR,
322                       DL, BuiltVectorTy, Ops);
323   }
324 
325   // There is now one part, held in Val.  Correct it to match ValueVT.
326   EVT PartEVT = Val.getValueType();
327 
328   if (PartEVT == ValueVT)
329     return Val;
330 
331   if (PartEVT.isVector()) {
332     // If the element type of the source/dest vectors are the same, but the
333     // parts vector has more elements than the value vector, then we have a
334     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
335     // elements we want.
336     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
337       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
338              "Cannot narrow, it would be a lossy transformation");
339       return DAG.getNode(
340           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
341           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
342     }
343 
344     // Vector/Vector bitcast.
345     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
346       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
347 
348     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
349       "Cannot handle this kind of promotion");
350     // Promoted vector extract
351     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
352 
353   }
354 
355   // Trivial bitcast if the types are the same size and the destination
356   // vector type is legal.
357   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
358       TLI.isTypeLegal(ValueVT))
359     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
360 
361   if (ValueVT.getVectorNumElements() != 1) {
362      // Certain ABIs require that vectors are passed as integers. For vectors
363      // are the same size, this is an obvious bitcast.
364      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
365        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
366      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
367        // Bitcast Val back the original type and extract the corresponding
368        // vector we want.
369        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
370        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
371                                            ValueVT.getVectorElementType(), Elts);
372        Val = DAG.getBitcast(WiderVecType, Val);
373        return DAG.getNode(
374            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
375            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
376      }
377 
378      diagnosePossiblyInvalidConstraint(
379          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
380      return DAG.getUNDEF(ValueVT);
381   }
382 
383   // Handle cases such as i8 -> <1 x i1>
384   EVT ValueSVT = ValueVT.getVectorElementType();
385   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
386     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
387                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
388 
389   return DAG.getBuildVector(ValueVT, DL, Val);
390 }
391 
392 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
393                                  SDValue Val, SDValue *Parts, unsigned NumParts,
394                                  MVT PartVT, const Value *V, bool IsABIRegCopy);
395 
396 /// getCopyToParts - Create a series of nodes that contain the specified value
397 /// split into legal parts.  If the parts contain more bits than Val, then, for
398 /// integers, ExtendKind can be used to specify how to generate the extra bits.
399 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
400                            SDValue *Parts, unsigned NumParts, MVT PartVT,
401                            const Value *V,
402                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND,
403                            bool IsABIRegCopy = false) {
404   EVT ValueVT = Val.getValueType();
405 
406   // Handle the vector case separately.
407   if (ValueVT.isVector())
408     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
409                                 IsABIRegCopy);
410 
411   unsigned PartBits = PartVT.getSizeInBits();
412   unsigned OrigNumParts = NumParts;
413   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
414          "Copying to an illegal type!");
415 
416   if (NumParts == 0)
417     return;
418 
419   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
420   EVT PartEVT = PartVT;
421   if (PartEVT == ValueVT) {
422     assert(NumParts == 1 && "No-op copy with multiple parts!");
423     Parts[0] = Val;
424     return;
425   }
426 
427   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
428     // If the parts cover more bits than the value has, promote the value.
429     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
430       assert(NumParts == 1 && "Do not know what to promote to!");
431       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
432     } else {
433       if (ValueVT.isFloatingPoint()) {
434         // FP values need to be bitcast, then extended if they are being put
435         // into a larger container.
436         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
437         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438       }
439       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
440              ValueVT.isInteger() &&
441              "Unknown mismatch!");
442       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
443       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
444       if (PartVT == MVT::x86mmx)
445         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
446     }
447   } else if (PartBits == ValueVT.getSizeInBits()) {
448     // Different types of the same size.
449     assert(NumParts == 1 && PartEVT != ValueVT);
450     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
452     // If the parts cover less bits than value has, truncate the value.
453     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
454            ValueVT.isInteger() &&
455            "Unknown mismatch!");
456     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
457     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
458     if (PartVT == MVT::x86mmx)
459       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
460   }
461 
462   // The value may have changed - recompute ValueVT.
463   ValueVT = Val.getValueType();
464   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
465          "Failed to tile the value with PartVT!");
466 
467   if (NumParts == 1) {
468     if (PartEVT != ValueVT) {
469       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
470                                         "scalar-to-vector conversion failed");
471       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
472     }
473 
474     Parts[0] = Val;
475     return;
476   }
477 
478   // Expand the value into multiple parts.
479   if (NumParts & (NumParts - 1)) {
480     // The number of parts is not a power of 2.  Split off and copy the tail.
481     assert(PartVT.isInteger() && ValueVT.isInteger() &&
482            "Do not know what to expand to!");
483     unsigned RoundParts = 1 << Log2_32(NumParts);
484     unsigned RoundBits = RoundParts * PartBits;
485     unsigned OddParts = NumParts - RoundParts;
486     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
487                                  DAG.getIntPtrConstant(RoundBits, DL));
488     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
489 
490     if (DAG.getDataLayout().isBigEndian())
491       // The odd parts were reversed by getCopyToParts - unreverse them.
492       std::reverse(Parts + RoundParts, Parts + NumParts);
493 
494     NumParts = RoundParts;
495     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
496     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
497   }
498 
499   // The number of parts is a power of 2.  Repeatedly bisect the value using
500   // EXTRACT_ELEMENT.
501   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
502                          EVT::getIntegerVT(*DAG.getContext(),
503                                            ValueVT.getSizeInBits()),
504                          Val);
505 
506   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
507     for (unsigned i = 0; i < NumParts; i += StepSize) {
508       unsigned ThisBits = StepSize * PartBits / 2;
509       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
510       SDValue &Part0 = Parts[i];
511       SDValue &Part1 = Parts[i+StepSize/2];
512 
513       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
514                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
515       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
516                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
517 
518       if (ThisBits == PartBits && ThisVT != PartVT) {
519         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
520         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
521       }
522     }
523   }
524 
525   if (DAG.getDataLayout().isBigEndian())
526     std::reverse(Parts, Parts + OrigNumParts);
527 }
528 
529 
530 /// getCopyToPartsVector - Create a series of nodes that contain the specified
531 /// value split into legal parts.
532 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
533                                  SDValue Val, SDValue *Parts, unsigned NumParts,
534                                  MVT PartVT, const Value *V,
535                                  bool IsABIRegCopy) {
536 
537   EVT ValueVT = Val.getValueType();
538   assert(ValueVT.isVector() && "Not a vector");
539   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
540 
541   if (NumParts == 1) {
542     EVT PartEVT = PartVT;
543     if (PartEVT == ValueVT) {
544       // Nothing to do.
545     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
546       // Bitconvert vector->vector case.
547       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
548     } else if (PartVT.isVector() &&
549                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
550                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
551       EVT ElementVT = PartVT.getVectorElementType();
552       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
553       // undef elements.
554       SmallVector<SDValue, 16> Ops;
555       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
556         Ops.push_back(DAG.getNode(
557             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
558             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
559 
560       for (unsigned i = ValueVT.getVectorNumElements(),
561            e = PartVT.getVectorNumElements(); i != e; ++i)
562         Ops.push_back(DAG.getUNDEF(ElementVT));
563 
564       Val = DAG.getBuildVector(PartVT, DL, Ops);
565 
566       // FIXME: Use CONCAT for 2x -> 4x.
567 
568       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
569       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
570     } else if (PartVT.isVector() &&
571                PartEVT.getVectorElementType().bitsGE(
572                  ValueVT.getVectorElementType()) &&
573                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
574 
575       // Promoted vector extract
576       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
577     } else {
578       if (ValueVT.getVectorNumElements() == 1) {
579         Val = DAG.getNode(
580             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
581             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
582 
583       } else {
584         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
585                "lossy conversion of vector to scalar type");
586         EVT IntermediateType =
587             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
588         Val = DAG.getBitcast(IntermediateType, Val);
589         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
590       }
591     }
592 
593     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
594     Parts[0] = Val;
595     return;
596   }
597 
598   // Handle a multi-element vector.
599   EVT IntermediateVT;
600   MVT RegisterVT;
601   unsigned NumIntermediates;
602   unsigned NumRegs;
603   if (IsABIRegCopy) {
604     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
605         *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
606         RegisterVT);
607   } else {
608     NumRegs =
609         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
610                                    NumIntermediates, RegisterVT);
611   }
612   unsigned NumElements = ValueVT.getVectorNumElements();
613 
614   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
615   NumParts = NumRegs; // Silence a compiler warning.
616   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
617 
618   // Convert the vector to the appropiate type if necessary.
619   unsigned DestVectorNoElts =
620       NumIntermediates *
621       (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1);
622   EVT BuiltVectorTy = EVT::getVectorVT(
623       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
624   if (Val.getValueType() != BuiltVectorTy)
625     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
626 
627   // Split the vector into intermediate operands.
628   SmallVector<SDValue, 8> Ops(NumIntermediates);
629   for (unsigned i = 0; i != NumIntermediates; ++i) {
630     if (IntermediateVT.isVector())
631       Ops[i] =
632           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
633                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
634                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
635     else
636       Ops[i] = DAG.getNode(
637           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
638           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
639   }
640 
641   // Split the intermediate operands into legal parts.
642   if (NumParts == NumIntermediates) {
643     // If the register was not expanded, promote or copy the value,
644     // as appropriate.
645     for (unsigned i = 0; i != NumParts; ++i)
646       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
647   } else if (NumParts > 0) {
648     // If the intermediate type was expanded, split each the value into
649     // legal parts.
650     assert(NumIntermediates != 0 && "division by zero");
651     assert(NumParts % NumIntermediates == 0 &&
652            "Must expand into a divisible number of parts!");
653     unsigned Factor = NumParts / NumIntermediates;
654     for (unsigned i = 0; i != NumIntermediates; ++i)
655       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
656   }
657 }
658 
659 RegsForValue::RegsForValue() { IsABIMangled = false; }
660 
661 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
662                            EVT valuevt, bool IsABIMangledValue)
663     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
664       RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {}
665 
666 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
667                            const DataLayout &DL, unsigned Reg, Type *Ty,
668                            bool IsABIMangledValue) {
669   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
670 
671   IsABIMangled = IsABIMangledValue;
672 
673   for (EVT ValueVT : ValueVTs) {
674     unsigned NumRegs = IsABIMangledValue
675                            ? TLI.getNumRegistersForCallingConv(Context, ValueVT)
676                            : TLI.getNumRegisters(Context, ValueVT);
677     MVT RegisterVT = IsABIMangledValue
678                          ? TLI.getRegisterTypeForCallingConv(Context, ValueVT)
679                          : TLI.getRegisterType(Context, ValueVT);
680     for (unsigned i = 0; i != NumRegs; ++i)
681       Regs.push_back(Reg + i);
682     RegVTs.push_back(RegisterVT);
683     RegCount.push_back(NumRegs);
684     Reg += NumRegs;
685   }
686 }
687 
688 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
689                                       FunctionLoweringInfo &FuncInfo,
690                                       const SDLoc &dl, SDValue &Chain,
691                                       SDValue *Flag, const Value *V) const {
692   // A Value with type {} or [0 x %t] needs no registers.
693   if (ValueVTs.empty())
694     return SDValue();
695 
696   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
697 
698   // Assemble the legal parts into the final values.
699   SmallVector<SDValue, 4> Values(ValueVTs.size());
700   SmallVector<SDValue, 8> Parts;
701   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
702     // Copy the legal parts from the registers.
703     EVT ValueVT = ValueVTs[Value];
704     unsigned NumRegs = RegCount[Value];
705     MVT RegisterVT = IsABIMangled
706                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
707                          : RegVTs[Value];
708 
709     Parts.resize(NumRegs);
710     for (unsigned i = 0; i != NumRegs; ++i) {
711       SDValue P;
712       if (!Flag) {
713         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
714       } else {
715         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
716         *Flag = P.getValue(2);
717       }
718 
719       Chain = P.getValue(1);
720       Parts[i] = P;
721 
722       // If the source register was virtual and if we know something about it,
723       // add an assert node.
724       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
725           !RegisterVT.isInteger() || RegisterVT.isVector())
726         continue;
727 
728       const FunctionLoweringInfo::LiveOutInfo *LOI =
729         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
730       if (!LOI)
731         continue;
732 
733       unsigned RegSize = RegisterVT.getSizeInBits();
734       unsigned NumSignBits = LOI->NumSignBits;
735       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
736 
737       if (NumZeroBits == RegSize) {
738         // The current value is a zero.
739         // Explicitly express that as it would be easier for
740         // optimizations to kick in.
741         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
742         continue;
743       }
744 
745       // FIXME: We capture more information than the dag can represent.  For
746       // now, just use the tightest assertzext/assertsext possible.
747       bool isSExt = true;
748       EVT FromVT(MVT::Other);
749       if (NumSignBits == RegSize) {
750         isSExt = true;   // ASSERT SEXT 1
751         FromVT = MVT::i1;
752       } else if (NumZeroBits >= RegSize - 1) {
753         isSExt = false;  // ASSERT ZEXT 1
754         FromVT = MVT::i1;
755       } else if (NumSignBits > RegSize - 8) {
756         isSExt = true;   // ASSERT SEXT 8
757         FromVT = MVT::i8;
758       } else if (NumZeroBits >= RegSize - 8) {
759         isSExt = false;  // ASSERT ZEXT 8
760         FromVT = MVT::i8;
761       } else if (NumSignBits > RegSize - 16) {
762         isSExt = true;   // ASSERT SEXT 16
763         FromVT = MVT::i16;
764       } else if (NumZeroBits >= RegSize - 16) {
765         isSExt = false;  // ASSERT ZEXT 16
766         FromVT = MVT::i16;
767       } else if (NumSignBits > RegSize - 32) {
768         isSExt = true;   // ASSERT SEXT 32
769         FromVT = MVT::i32;
770       } else if (NumZeroBits >= RegSize - 32) {
771         isSExt = false;  // ASSERT ZEXT 32
772         FromVT = MVT::i32;
773       } else {
774         continue;
775       }
776       // Add an assertion node.
777       assert(FromVT != MVT::Other);
778       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
779                              RegisterVT, P, DAG.getValueType(FromVT));
780     }
781 
782     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
783                                      NumRegs, RegisterVT, ValueVT, V);
784     Part += NumRegs;
785     Parts.clear();
786   }
787 
788   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
789 }
790 
791 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
792                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
793                                  const Value *V,
794                                  ISD::NodeType PreferredExtendType) const {
795   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
796   ISD::NodeType ExtendKind = PreferredExtendType;
797 
798   // Get the list of the values's legal parts.
799   unsigned NumRegs = Regs.size();
800   SmallVector<SDValue, 8> Parts(NumRegs);
801   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
802     unsigned NumParts = RegCount[Value];
803 
804     MVT RegisterVT = IsABIMangled
805                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
806                          : RegVTs[Value];
807 
808     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
809       ExtendKind = ISD::ZERO_EXTEND;
810 
811     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
812                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
813     Part += NumParts;
814   }
815 
816   // Copy the parts into the registers.
817   SmallVector<SDValue, 8> Chains(NumRegs);
818   for (unsigned i = 0; i != NumRegs; ++i) {
819     SDValue Part;
820     if (!Flag) {
821       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
822     } else {
823       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
824       *Flag = Part.getValue(1);
825     }
826 
827     Chains[i] = Part.getValue(0);
828   }
829 
830   if (NumRegs == 1 || Flag)
831     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
832     // flagged to it. That is the CopyToReg nodes and the user are considered
833     // a single scheduling unit. If we create a TokenFactor and return it as
834     // chain, then the TokenFactor is both a predecessor (operand) of the
835     // user as well as a successor (the TF operands are flagged to the user).
836     // c1, f1 = CopyToReg
837     // c2, f2 = CopyToReg
838     // c3     = TokenFactor c1, c2
839     // ...
840     //        = op c3, ..., f2
841     Chain = Chains[NumRegs-1];
842   else
843     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
844 }
845 
846 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
847                                         unsigned MatchingIdx, const SDLoc &dl,
848                                         SelectionDAG &DAG,
849                                         std::vector<SDValue> &Ops) const {
850   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
851 
852   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
853   if (HasMatching)
854     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
855   else if (!Regs.empty() &&
856            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
857     // Put the register class of the virtual registers in the flag word.  That
858     // way, later passes can recompute register class constraints for inline
859     // assembly as well as normal instructions.
860     // Don't do this for tied operands that can use the regclass information
861     // from the def.
862     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
863     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
864     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
865   }
866 
867   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
868   Ops.push_back(Res);
869 
870   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
871   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
872     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
873     MVT RegisterVT = RegVTs[Value];
874     for (unsigned i = 0; i != NumRegs; ++i) {
875       assert(Reg < Regs.size() && "Mismatch in # registers expected");
876       unsigned TheReg = Regs[Reg++];
877       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
878 
879       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
880         // If we clobbered the stack pointer, MFI should know about it.
881         assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment());
882       }
883     }
884   }
885 }
886 
887 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
888                                const TargetLibraryInfo *li) {
889   AA = aa;
890   GFI = gfi;
891   LibInfo = li;
892   DL = &DAG.getDataLayout();
893   Context = DAG.getContext();
894   LPadToCallSiteMap.clear();
895 }
896 
897 void SelectionDAGBuilder::clear() {
898   NodeMap.clear();
899   UnusedArgNodeMap.clear();
900   PendingLoads.clear();
901   PendingExports.clear();
902   CurInst = nullptr;
903   HasTailCall = false;
904   SDNodeOrder = LowestSDNodeOrder;
905   StatepointLowering.clear();
906 }
907 
908 void SelectionDAGBuilder::clearDanglingDebugInfo() {
909   DanglingDebugInfoMap.clear();
910 }
911 
912 SDValue SelectionDAGBuilder::getRoot() {
913   if (PendingLoads.empty())
914     return DAG.getRoot();
915 
916   if (PendingLoads.size() == 1) {
917     SDValue Root = PendingLoads[0];
918     DAG.setRoot(Root);
919     PendingLoads.clear();
920     return Root;
921   }
922 
923   // Otherwise, we have to make a token factor node.
924   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
925                              PendingLoads);
926   PendingLoads.clear();
927   DAG.setRoot(Root);
928   return Root;
929 }
930 
931 SDValue SelectionDAGBuilder::getControlRoot() {
932   SDValue Root = DAG.getRoot();
933 
934   if (PendingExports.empty())
935     return Root;
936 
937   // Turn all of the CopyToReg chains into one factored node.
938   if (Root.getOpcode() != ISD::EntryToken) {
939     unsigned i = 0, e = PendingExports.size();
940     for (; i != e; ++i) {
941       assert(PendingExports[i].getNode()->getNumOperands() > 1);
942       if (PendingExports[i].getNode()->getOperand(0) == Root)
943         break;  // Don't add the root if we already indirectly depend on it.
944     }
945 
946     if (i == e)
947       PendingExports.push_back(Root);
948   }
949 
950   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
951                      PendingExports);
952   PendingExports.clear();
953   DAG.setRoot(Root);
954   return Root;
955 }
956 
957 void SelectionDAGBuilder::visit(const Instruction &I) {
958   // Set up outgoing PHI node register values before emitting the terminator.
959   if (isa<TerminatorInst>(&I)) {
960     HandlePHINodesInSuccessorBlocks(I.getParent());
961   }
962 
963   // Increase the SDNodeOrder if dealing with a non-debug instruction.
964   if (!isa<DbgInfoIntrinsic>(I))
965     ++SDNodeOrder;
966 
967   CurInst = &I;
968 
969   visit(I.getOpcode(), I);
970 
971   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
972       !isStatepoint(&I)) // statepoints handle their exports internally
973     CopyToExportRegsIfNeeded(&I);
974 
975   CurInst = nullptr;
976 }
977 
978 void SelectionDAGBuilder::visitPHI(const PHINode &) {
979   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
980 }
981 
982 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
983   // Note: this doesn't use InstVisitor, because it has to work with
984   // ConstantExpr's in addition to instructions.
985   switch (Opcode) {
986   default: llvm_unreachable("Unknown instruction type encountered!");
987     // Build the switch statement using the Instruction.def file.
988 #define HANDLE_INST(NUM, OPCODE, CLASS) \
989     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
990 #include "llvm/IR/Instruction.def"
991   }
992 }
993 
994 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
995 // generate the debug data structures now that we've seen its definition.
996 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
997                                                    SDValue Val) {
998   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
999   if (DDI.getDI()) {
1000     const DbgValueInst *DI = DDI.getDI();
1001     DebugLoc dl = DDI.getdl();
1002     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1003     DILocalVariable *Variable = DI->getVariable();
1004     DIExpression *Expr = DI->getExpression();
1005     assert(Variable->isValidLocationForIntrinsic(dl) &&
1006            "Expected inlined-at fields to agree");
1007     uint64_t Offset = DI->getOffset();
1008     SDDbgValue *SDV;
1009     if (Val.getNode()) {
1010       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
1011                                     Val)) {
1012         SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder);
1013         DAG.AddDbgValue(SDV, Val.getNode(), false);
1014       }
1015     } else
1016       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1017     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1018   }
1019 }
1020 
1021 /// getCopyFromRegs - If there was virtual register allocated for the value V
1022 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1023 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1024   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1025   SDValue Result;
1026 
1027   if (It != FuncInfo.ValueMap.end()) {
1028     unsigned InReg = It->second;
1029     bool IsABIRegCopy =
1030         V && ((isa<CallInst>(V) &&
1031                !(static_cast<const CallInst *>(V))->isInlineAsm()) ||
1032               isa<ReturnInst>(V));
1033 
1034     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1035                      DAG.getDataLayout(), InReg, Ty, IsABIRegCopy);
1036     SDValue Chain = DAG.getEntryNode();
1037     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1038                                  V);
1039     resolveDanglingDebugInfo(V, Result);
1040   }
1041 
1042   return Result;
1043 }
1044 
1045 /// getValue - Return an SDValue for the given Value.
1046 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1047   // If we already have an SDValue for this value, use it. It's important
1048   // to do this first, so that we don't create a CopyFromReg if we already
1049   // have a regular SDValue.
1050   SDValue &N = NodeMap[V];
1051   if (N.getNode()) return N;
1052 
1053   // If there's a virtual register allocated and initialized for this
1054   // value, use it.
1055   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1056     return copyFromReg;
1057 
1058   // Otherwise create a new SDValue and remember it.
1059   SDValue Val = getValueImpl(V);
1060   NodeMap[V] = Val;
1061   resolveDanglingDebugInfo(V, Val);
1062   return Val;
1063 }
1064 
1065 // Return true if SDValue exists for the given Value
1066 bool SelectionDAGBuilder::findValue(const Value *V) const {
1067   return (NodeMap.find(V) != NodeMap.end()) ||
1068     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1069 }
1070 
1071 /// getNonRegisterValue - Return an SDValue for the given Value, but
1072 /// don't look in FuncInfo.ValueMap for a virtual register.
1073 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1074   // If we already have an SDValue for this value, use it.
1075   SDValue &N = NodeMap[V];
1076   if (N.getNode()) {
1077     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1078       // Remove the debug location from the node as the node is about to be used
1079       // in a location which may differ from the original debug location.  This
1080       // is relevant to Constant and ConstantFP nodes because they can appear
1081       // as constant expressions inside PHI nodes.
1082       N->setDebugLoc(DebugLoc());
1083     }
1084     return N;
1085   }
1086 
1087   // Otherwise create a new SDValue and remember it.
1088   SDValue Val = getValueImpl(V);
1089   NodeMap[V] = Val;
1090   resolveDanglingDebugInfo(V, Val);
1091   return Val;
1092 }
1093 
1094 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1095 /// Create an SDValue for the given value.
1096 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1097   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1098 
1099   if (const Constant *C = dyn_cast<Constant>(V)) {
1100     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1101 
1102     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1103       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1104 
1105     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1106       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1107 
1108     if (isa<ConstantPointerNull>(C)) {
1109       unsigned AS = V->getType()->getPointerAddressSpace();
1110       return DAG.getConstant(0, getCurSDLoc(),
1111                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1112     }
1113 
1114     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1115       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1116 
1117     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1118       return DAG.getUNDEF(VT);
1119 
1120     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1121       visit(CE->getOpcode(), *CE);
1122       SDValue N1 = NodeMap[V];
1123       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1124       return N1;
1125     }
1126 
1127     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1128       SmallVector<SDValue, 4> Constants;
1129       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1130            OI != OE; ++OI) {
1131         SDNode *Val = getValue(*OI).getNode();
1132         // If the operand is an empty aggregate, there are no values.
1133         if (!Val) continue;
1134         // Add each leaf value from the operand to the Constants list
1135         // to form a flattened list of all the values.
1136         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1137           Constants.push_back(SDValue(Val, i));
1138       }
1139 
1140       return DAG.getMergeValues(Constants, getCurSDLoc());
1141     }
1142 
1143     if (const ConstantDataSequential *CDS =
1144           dyn_cast<ConstantDataSequential>(C)) {
1145       SmallVector<SDValue, 4> Ops;
1146       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1147         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1148         // Add each leaf value from the operand to the Constants list
1149         // to form a flattened list of all the values.
1150         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1151           Ops.push_back(SDValue(Val, i));
1152       }
1153 
1154       if (isa<ArrayType>(CDS->getType()))
1155         return DAG.getMergeValues(Ops, getCurSDLoc());
1156       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1157     }
1158 
1159     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1160       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1161              "Unknown struct or array constant!");
1162 
1163       SmallVector<EVT, 4> ValueVTs;
1164       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1165       unsigned NumElts = ValueVTs.size();
1166       if (NumElts == 0)
1167         return SDValue(); // empty struct
1168       SmallVector<SDValue, 4> Constants(NumElts);
1169       for (unsigned i = 0; i != NumElts; ++i) {
1170         EVT EltVT = ValueVTs[i];
1171         if (isa<UndefValue>(C))
1172           Constants[i] = DAG.getUNDEF(EltVT);
1173         else if (EltVT.isFloatingPoint())
1174           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1175         else
1176           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1177       }
1178 
1179       return DAG.getMergeValues(Constants, getCurSDLoc());
1180     }
1181 
1182     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1183       return DAG.getBlockAddress(BA, VT);
1184 
1185     VectorType *VecTy = cast<VectorType>(V->getType());
1186     unsigned NumElements = VecTy->getNumElements();
1187 
1188     // Now that we know the number and type of the elements, get that number of
1189     // elements into the Ops array based on what kind of constant it is.
1190     SmallVector<SDValue, 16> Ops;
1191     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1192       for (unsigned i = 0; i != NumElements; ++i)
1193         Ops.push_back(getValue(CV->getOperand(i)));
1194     } else {
1195       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1196       EVT EltVT =
1197           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1198 
1199       SDValue Op;
1200       if (EltVT.isFloatingPoint())
1201         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1202       else
1203         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1204       Ops.assign(NumElements, Op);
1205     }
1206 
1207     // Create a BUILD_VECTOR node.
1208     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1209   }
1210 
1211   // If this is a static alloca, generate it as the frameindex instead of
1212   // computation.
1213   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1214     DenseMap<const AllocaInst*, int>::iterator SI =
1215       FuncInfo.StaticAllocaMap.find(AI);
1216     if (SI != FuncInfo.StaticAllocaMap.end())
1217       return DAG.getFrameIndex(SI->second,
1218                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1219   }
1220 
1221   // If this is an instruction which fast-isel has deferred, select it now.
1222   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1223     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1224     bool IsABIRegCopy =
1225         V && ((isa<CallInst>(V) &&
1226                !(static_cast<const CallInst *>(V))->isInlineAsm()) ||
1227               isa<ReturnInst>(V));
1228 
1229     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1230                      Inst->getType(), IsABIRegCopy);
1231     SDValue Chain = DAG.getEntryNode();
1232     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1233   }
1234 
1235   llvm_unreachable("Can't get register for value!");
1236 }
1237 
1238 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1239   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1240   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1241   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1242   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1243   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1244   if (IsMSVCCXX || IsCoreCLR)
1245     CatchPadMBB->setIsEHFuncletEntry();
1246 
1247   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1248 }
1249 
1250 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1251   // Update machine-CFG edge.
1252   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1253   FuncInfo.MBB->addSuccessor(TargetMBB);
1254 
1255   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1256   bool IsSEH = isAsynchronousEHPersonality(Pers);
1257   if (IsSEH) {
1258     // If this is not a fall-through branch or optimizations are switched off,
1259     // emit the branch.
1260     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1261         TM.getOptLevel() == CodeGenOpt::None)
1262       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1263                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1264     return;
1265   }
1266 
1267   // Figure out the funclet membership for the catchret's successor.
1268   // This will be used by the FuncletLayout pass to determine how to order the
1269   // BB's.
1270   // A 'catchret' returns to the outer scope's color.
1271   Value *ParentPad = I.getCatchSwitchParentPad();
1272   const BasicBlock *SuccessorColor;
1273   if (isa<ConstantTokenNone>(ParentPad))
1274     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1275   else
1276     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1277   assert(SuccessorColor && "No parent funclet for catchret!");
1278   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1279   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1280 
1281   // Create the terminator node.
1282   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1283                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1284                             DAG.getBasicBlock(SuccessorColorMBB));
1285   DAG.setRoot(Ret);
1286 }
1287 
1288 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1289   // Don't emit any special code for the cleanuppad instruction. It just marks
1290   // the start of a funclet.
1291   FuncInfo.MBB->setIsEHFuncletEntry();
1292   FuncInfo.MBB->setIsCleanupFuncletEntry();
1293 }
1294 
1295 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1296 /// many places it could ultimately go. In the IR, we have a single unwind
1297 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1298 /// This function skips over imaginary basic blocks that hold catchswitch
1299 /// instructions, and finds all the "real" machine
1300 /// basic block destinations. As those destinations may not be successors of
1301 /// EHPadBB, here we also calculate the edge probability to those destinations.
1302 /// The passed-in Prob is the edge probability to EHPadBB.
1303 static void findUnwindDestinations(
1304     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1305     BranchProbability Prob,
1306     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1307         &UnwindDests) {
1308   EHPersonality Personality =
1309     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1310   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1311   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1312 
1313   while (EHPadBB) {
1314     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1315     BasicBlock *NewEHPadBB = nullptr;
1316     if (isa<LandingPadInst>(Pad)) {
1317       // Stop on landingpads. They are not funclets.
1318       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1319       break;
1320     } else if (isa<CleanupPadInst>(Pad)) {
1321       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1322       // personalities.
1323       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1324       UnwindDests.back().first->setIsEHFuncletEntry();
1325       break;
1326     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1327       // Add the catchpad handlers to the possible destinations.
1328       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1329         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1330         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1331         if (IsMSVCCXX || IsCoreCLR)
1332           UnwindDests.back().first->setIsEHFuncletEntry();
1333       }
1334       NewEHPadBB = CatchSwitch->getUnwindDest();
1335     } else {
1336       continue;
1337     }
1338 
1339     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1340     if (BPI && NewEHPadBB)
1341       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1342     EHPadBB = NewEHPadBB;
1343   }
1344 }
1345 
1346 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1347   // Update successor info.
1348   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1349   auto UnwindDest = I.getUnwindDest();
1350   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1351   BranchProbability UnwindDestProb =
1352       (BPI && UnwindDest)
1353           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1354           : BranchProbability::getZero();
1355   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1356   for (auto &UnwindDest : UnwindDests) {
1357     UnwindDest.first->setIsEHPad();
1358     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1359   }
1360   FuncInfo.MBB->normalizeSuccProbs();
1361 
1362   // Create the terminator node.
1363   SDValue Ret =
1364       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1365   DAG.setRoot(Ret);
1366 }
1367 
1368 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1369   report_fatal_error("visitCatchSwitch not yet implemented!");
1370 }
1371 
1372 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1373   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1374   auto &DL = DAG.getDataLayout();
1375   SDValue Chain = getControlRoot();
1376   SmallVector<ISD::OutputArg, 8> Outs;
1377   SmallVector<SDValue, 8> OutVals;
1378 
1379   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1380   // lower
1381   //
1382   //   %val = call <ty> @llvm.experimental.deoptimize()
1383   //   ret <ty> %val
1384   //
1385   // differently.
1386   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1387     LowerDeoptimizingReturn();
1388     return;
1389   }
1390 
1391   if (!FuncInfo.CanLowerReturn) {
1392     unsigned DemoteReg = FuncInfo.DemoteRegister;
1393     const Function *F = I.getParent()->getParent();
1394 
1395     // Emit a store of the return value through the virtual register.
1396     // Leave Outs empty so that LowerReturn won't try to load return
1397     // registers the usual way.
1398     SmallVector<EVT, 1> PtrValueVTs;
1399     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1400                     PtrValueVTs);
1401 
1402     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1403                                         DemoteReg, PtrValueVTs[0]);
1404     SDValue RetOp = getValue(I.getOperand(0));
1405 
1406     SmallVector<EVT, 4> ValueVTs;
1407     SmallVector<uint64_t, 4> Offsets;
1408     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1409     unsigned NumValues = ValueVTs.size();
1410 
1411     // An aggregate return value cannot wrap around the address space, so
1412     // offsets to its parts don't wrap either.
1413     SDNodeFlags Flags;
1414     Flags.setNoUnsignedWrap(true);
1415 
1416     SmallVector<SDValue, 4> Chains(NumValues);
1417     for (unsigned i = 0; i != NumValues; ++i) {
1418       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1419                                 RetPtr.getValueType(), RetPtr,
1420                                 DAG.getIntPtrConstant(Offsets[i],
1421                                                       getCurSDLoc()),
1422                                 Flags);
1423       Chains[i] = DAG.getStore(Chain, getCurSDLoc(),
1424                                SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1425                                // FIXME: better loc info would be nice.
1426                                Add, MachinePointerInfo());
1427     }
1428 
1429     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1430                         MVT::Other, Chains);
1431   } else if (I.getNumOperands() != 0) {
1432     SmallVector<EVT, 4> ValueVTs;
1433     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1434     unsigned NumValues = ValueVTs.size();
1435     if (NumValues) {
1436       SDValue RetOp = getValue(I.getOperand(0));
1437 
1438       const Function *F = I.getParent()->getParent();
1439 
1440       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1441       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1442                                           Attribute::SExt))
1443         ExtendKind = ISD::SIGN_EXTEND;
1444       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1445                                                Attribute::ZExt))
1446         ExtendKind = ISD::ZERO_EXTEND;
1447 
1448       LLVMContext &Context = F->getContext();
1449       bool RetInReg = F->getAttributes().hasAttribute(
1450           AttributeList::ReturnIndex, Attribute::InReg);
1451 
1452       for (unsigned j = 0; j != NumValues; ++j) {
1453         EVT VT = ValueVTs[j];
1454 
1455         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1456           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1457 
1458         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT);
1459         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT);
1460         SmallVector<SDValue, 4> Parts(NumParts);
1461         getCopyToParts(DAG, getCurSDLoc(),
1462                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1463                        &Parts[0], NumParts, PartVT, &I, ExtendKind, true);
1464 
1465         // 'inreg' on function refers to return value
1466         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1467         if (RetInReg)
1468           Flags.setInReg();
1469 
1470         // Propagate extension type if any
1471         if (ExtendKind == ISD::SIGN_EXTEND)
1472           Flags.setSExt();
1473         else if (ExtendKind == ISD::ZERO_EXTEND)
1474           Flags.setZExt();
1475 
1476         for (unsigned i = 0; i < NumParts; ++i) {
1477           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1478                                         VT, /*isfixed=*/true, 0, 0));
1479           OutVals.push_back(Parts[i]);
1480         }
1481       }
1482     }
1483   }
1484 
1485   // Push in swifterror virtual register as the last element of Outs. This makes
1486   // sure swifterror virtual register will be returned in the swifterror
1487   // physical register.
1488   const Function *F = I.getParent()->getParent();
1489   if (TLI.supportSwiftError() &&
1490       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1491     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1492     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1493     Flags.setSwiftError();
1494     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1495                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1496                                   true /*isfixed*/, 1 /*origidx*/,
1497                                   0 /*partOffs*/));
1498     // Create SDNode for the swifterror virtual register.
1499     OutVals.push_back(
1500         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1501                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1502                         EVT(TLI.getPointerTy(DL))));
1503   }
1504 
1505   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1506   CallingConv::ID CallConv =
1507     DAG.getMachineFunction().getFunction()->getCallingConv();
1508   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1509       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1510 
1511   // Verify that the target's LowerReturn behaved as expected.
1512   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1513          "LowerReturn didn't return a valid chain!");
1514 
1515   // Update the DAG with the new chain value resulting from return lowering.
1516   DAG.setRoot(Chain);
1517 }
1518 
1519 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1520 /// created for it, emit nodes to copy the value into the virtual
1521 /// registers.
1522 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1523   // Skip empty types
1524   if (V->getType()->isEmptyTy())
1525     return;
1526 
1527   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1528   if (VMI != FuncInfo.ValueMap.end()) {
1529     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1530     CopyValueToVirtualRegister(V, VMI->second);
1531   }
1532 }
1533 
1534 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1535 /// the current basic block, add it to ValueMap now so that we'll get a
1536 /// CopyTo/FromReg.
1537 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1538   // No need to export constants.
1539   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1540 
1541   // Already exported?
1542   if (FuncInfo.isExportedInst(V)) return;
1543 
1544   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1545   CopyValueToVirtualRegister(V, Reg);
1546 }
1547 
1548 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1549                                                      const BasicBlock *FromBB) {
1550   // The operands of the setcc have to be in this block.  We don't know
1551   // how to export them from some other block.
1552   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1553     // Can export from current BB.
1554     if (VI->getParent() == FromBB)
1555       return true;
1556 
1557     // Is already exported, noop.
1558     return FuncInfo.isExportedInst(V);
1559   }
1560 
1561   // If this is an argument, we can export it if the BB is the entry block or
1562   // if it is already exported.
1563   if (isa<Argument>(V)) {
1564     if (FromBB == &FromBB->getParent()->getEntryBlock())
1565       return true;
1566 
1567     // Otherwise, can only export this if it is already exported.
1568     return FuncInfo.isExportedInst(V);
1569   }
1570 
1571   // Otherwise, constants can always be exported.
1572   return true;
1573 }
1574 
1575 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1576 BranchProbability
1577 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1578                                         const MachineBasicBlock *Dst) const {
1579   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1580   const BasicBlock *SrcBB = Src->getBasicBlock();
1581   const BasicBlock *DstBB = Dst->getBasicBlock();
1582   if (!BPI) {
1583     // If BPI is not available, set the default probability as 1 / N, where N is
1584     // the number of successors.
1585     auto SuccSize = std::max<uint32_t>(
1586         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1587     return BranchProbability(1, SuccSize);
1588   }
1589   return BPI->getEdgeProbability(SrcBB, DstBB);
1590 }
1591 
1592 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1593                                                MachineBasicBlock *Dst,
1594                                                BranchProbability Prob) {
1595   if (!FuncInfo.BPI)
1596     Src->addSuccessorWithoutProb(Dst);
1597   else {
1598     if (Prob.isUnknown())
1599       Prob = getEdgeProbability(Src, Dst);
1600     Src->addSuccessor(Dst, Prob);
1601   }
1602 }
1603 
1604 static bool InBlock(const Value *V, const BasicBlock *BB) {
1605   if (const Instruction *I = dyn_cast<Instruction>(V))
1606     return I->getParent() == BB;
1607   return true;
1608 }
1609 
1610 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1611 /// This function emits a branch and is used at the leaves of an OR or an
1612 /// AND operator tree.
1613 ///
1614 void
1615 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1616                                                   MachineBasicBlock *TBB,
1617                                                   MachineBasicBlock *FBB,
1618                                                   MachineBasicBlock *CurBB,
1619                                                   MachineBasicBlock *SwitchBB,
1620                                                   BranchProbability TProb,
1621                                                   BranchProbability FProb,
1622                                                   bool InvertCond) {
1623   const BasicBlock *BB = CurBB->getBasicBlock();
1624 
1625   // If the leaf of the tree is a comparison, merge the condition into
1626   // the caseblock.
1627   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1628     // The operands of the cmp have to be in this block.  We don't know
1629     // how to export them from some other block.  If this is the first block
1630     // of the sequence, no exporting is needed.
1631     if (CurBB == SwitchBB ||
1632         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1633          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1634       ISD::CondCode Condition;
1635       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1636         ICmpInst::Predicate Pred =
1637             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1638         Condition = getICmpCondCode(Pred);
1639       } else {
1640         const FCmpInst *FC = cast<FCmpInst>(Cond);
1641         FCmpInst::Predicate Pred =
1642             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1643         Condition = getFCmpCondCode(Pred);
1644         if (TM.Options.NoNaNsFPMath)
1645           Condition = getFCmpCodeWithoutNaN(Condition);
1646       }
1647 
1648       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1649                    TBB, FBB, CurBB, TProb, FProb);
1650       SwitchCases.push_back(CB);
1651       return;
1652     }
1653   }
1654 
1655   // Create a CaseBlock record representing this branch.
1656   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1657   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1658                nullptr, TBB, FBB, CurBB, TProb, FProb);
1659   SwitchCases.push_back(CB);
1660 }
1661 
1662 /// FindMergedConditions - If Cond is an expression like
1663 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1664                                                MachineBasicBlock *TBB,
1665                                                MachineBasicBlock *FBB,
1666                                                MachineBasicBlock *CurBB,
1667                                                MachineBasicBlock *SwitchBB,
1668                                                Instruction::BinaryOps Opc,
1669                                                BranchProbability TProb,
1670                                                BranchProbability FProb,
1671                                                bool InvertCond) {
1672   // Skip over not part of the tree and remember to invert op and operands at
1673   // next level.
1674   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1675     const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1676     if (InBlock(CondOp, CurBB->getBasicBlock())) {
1677       FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1678                            !InvertCond);
1679       return;
1680     }
1681   }
1682 
1683   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1684   // Compute the effective opcode for Cond, taking into account whether it needs
1685   // to be inverted, e.g.
1686   //   and (not (or A, B)), C
1687   // gets lowered as
1688   //   and (and (not A, not B), C)
1689   unsigned BOpc = 0;
1690   if (BOp) {
1691     BOpc = BOp->getOpcode();
1692     if (InvertCond) {
1693       if (BOpc == Instruction::And)
1694         BOpc = Instruction::Or;
1695       else if (BOpc == Instruction::Or)
1696         BOpc = Instruction::And;
1697     }
1698   }
1699 
1700   // If this node is not part of the or/and tree, emit it as a branch.
1701   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1702       BOpc != Opc || !BOp->hasOneUse() ||
1703       BOp->getParent() != CurBB->getBasicBlock() ||
1704       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1705       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1706     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1707                                  TProb, FProb, InvertCond);
1708     return;
1709   }
1710 
1711   //  Create TmpBB after CurBB.
1712   MachineFunction::iterator BBI(CurBB);
1713   MachineFunction &MF = DAG.getMachineFunction();
1714   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1715   CurBB->getParent()->insert(++BBI, TmpBB);
1716 
1717   if (Opc == Instruction::Or) {
1718     // Codegen X | Y as:
1719     // BB1:
1720     //   jmp_if_X TBB
1721     //   jmp TmpBB
1722     // TmpBB:
1723     //   jmp_if_Y TBB
1724     //   jmp FBB
1725     //
1726 
1727     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1728     // The requirement is that
1729     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1730     //     = TrueProb for original BB.
1731     // Assuming the original probabilities are A and B, one choice is to set
1732     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1733     // A/(1+B) and 2B/(1+B). This choice assumes that
1734     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1735     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1736     // TmpBB, but the math is more complicated.
1737 
1738     auto NewTrueProb = TProb / 2;
1739     auto NewFalseProb = TProb / 2 + FProb;
1740     // Emit the LHS condition.
1741     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1742                          NewTrueProb, NewFalseProb, InvertCond);
1743 
1744     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1745     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1746     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1747     // Emit the RHS condition into TmpBB.
1748     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1749                          Probs[0], Probs[1], InvertCond);
1750   } else {
1751     assert(Opc == Instruction::And && "Unknown merge op!");
1752     // Codegen X & Y as:
1753     // BB1:
1754     //   jmp_if_X TmpBB
1755     //   jmp FBB
1756     // TmpBB:
1757     //   jmp_if_Y TBB
1758     //   jmp FBB
1759     //
1760     //  This requires creation of TmpBB after CurBB.
1761 
1762     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1763     // The requirement is that
1764     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1765     //     = FalseProb for original BB.
1766     // Assuming the original probabilities are A and B, one choice is to set
1767     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1768     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1769     // TrueProb for BB1 * FalseProb for TmpBB.
1770 
1771     auto NewTrueProb = TProb + FProb / 2;
1772     auto NewFalseProb = FProb / 2;
1773     // Emit the LHS condition.
1774     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1775                          NewTrueProb, NewFalseProb, InvertCond);
1776 
1777     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1778     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1779     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1780     // Emit the RHS condition into TmpBB.
1781     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1782                          Probs[0], Probs[1], InvertCond);
1783   }
1784 }
1785 
1786 /// If the set of cases should be emitted as a series of branches, return true.
1787 /// If we should emit this as a bunch of and/or'd together conditions, return
1788 /// false.
1789 bool
1790 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1791   if (Cases.size() != 2) return true;
1792 
1793   // If this is two comparisons of the same values or'd or and'd together, they
1794   // will get folded into a single comparison, so don't emit two blocks.
1795   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1796        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1797       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1798        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1799     return false;
1800   }
1801 
1802   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1803   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1804   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1805       Cases[0].CC == Cases[1].CC &&
1806       isa<Constant>(Cases[0].CmpRHS) &&
1807       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1808     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1809       return false;
1810     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1811       return false;
1812   }
1813 
1814   return true;
1815 }
1816 
1817 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1818   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1819 
1820   // Update machine-CFG edges.
1821   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1822 
1823   if (I.isUnconditional()) {
1824     // Update machine-CFG edges.
1825     BrMBB->addSuccessor(Succ0MBB);
1826 
1827     // If this is not a fall-through branch or optimizations are switched off,
1828     // emit the branch.
1829     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1830       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1831                               MVT::Other, getControlRoot(),
1832                               DAG.getBasicBlock(Succ0MBB)));
1833 
1834     return;
1835   }
1836 
1837   // If this condition is one of the special cases we handle, do special stuff
1838   // now.
1839   const Value *CondVal = I.getCondition();
1840   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1841 
1842   // If this is a series of conditions that are or'd or and'd together, emit
1843   // this as a sequence of branches instead of setcc's with and/or operations.
1844   // As long as jumps are not expensive, this should improve performance.
1845   // For example, instead of something like:
1846   //     cmp A, B
1847   //     C = seteq
1848   //     cmp D, E
1849   //     F = setle
1850   //     or C, F
1851   //     jnz foo
1852   // Emit:
1853   //     cmp A, B
1854   //     je foo
1855   //     cmp D, E
1856   //     jle foo
1857   //
1858   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1859     Instruction::BinaryOps Opcode = BOp->getOpcode();
1860     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1861         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1862         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1863       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1864                            Opcode,
1865                            getEdgeProbability(BrMBB, Succ0MBB),
1866                            getEdgeProbability(BrMBB, Succ1MBB),
1867                            /*InvertCond=*/false);
1868       // If the compares in later blocks need to use values not currently
1869       // exported from this block, export them now.  This block should always
1870       // be the first entry.
1871       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1872 
1873       // Allow some cases to be rejected.
1874       if (ShouldEmitAsBranches(SwitchCases)) {
1875         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1876           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1877           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1878         }
1879 
1880         // Emit the branch for this block.
1881         visitSwitchCase(SwitchCases[0], BrMBB);
1882         SwitchCases.erase(SwitchCases.begin());
1883         return;
1884       }
1885 
1886       // Okay, we decided not to do this, remove any inserted MBB's and clear
1887       // SwitchCases.
1888       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1889         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1890 
1891       SwitchCases.clear();
1892     }
1893   }
1894 
1895   // Create a CaseBlock record representing this branch.
1896   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1897                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1898 
1899   // Use visitSwitchCase to actually insert the fast branch sequence for this
1900   // cond branch.
1901   visitSwitchCase(CB, BrMBB);
1902 }
1903 
1904 /// visitSwitchCase - Emits the necessary code to represent a single node in
1905 /// the binary search tree resulting from lowering a switch instruction.
1906 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1907                                           MachineBasicBlock *SwitchBB) {
1908   SDValue Cond;
1909   SDValue CondLHS = getValue(CB.CmpLHS);
1910   SDLoc dl = getCurSDLoc();
1911 
1912   // Build the setcc now.
1913   if (!CB.CmpMHS) {
1914     // Fold "(X == true)" to X and "(X == false)" to !X to
1915     // handle common cases produced by branch lowering.
1916     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1917         CB.CC == ISD::SETEQ)
1918       Cond = CondLHS;
1919     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1920              CB.CC == ISD::SETEQ) {
1921       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1922       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1923     } else
1924       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1925   } else {
1926     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1927 
1928     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1929     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1930 
1931     SDValue CmpOp = getValue(CB.CmpMHS);
1932     EVT VT = CmpOp.getValueType();
1933 
1934     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1935       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1936                           ISD::SETLE);
1937     } else {
1938       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1939                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1940       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1941                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1942     }
1943   }
1944 
1945   // Update successor info
1946   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1947   // TrueBB and FalseBB are always different unless the incoming IR is
1948   // degenerate. This only happens when running llc on weird IR.
1949   if (CB.TrueBB != CB.FalseBB)
1950     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1951   SwitchBB->normalizeSuccProbs();
1952 
1953   // If the lhs block is the next block, invert the condition so that we can
1954   // fall through to the lhs instead of the rhs block.
1955   if (CB.TrueBB == NextBlock(SwitchBB)) {
1956     std::swap(CB.TrueBB, CB.FalseBB);
1957     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1958     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1959   }
1960 
1961   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1962                                MVT::Other, getControlRoot(), Cond,
1963                                DAG.getBasicBlock(CB.TrueBB));
1964 
1965   // Insert the false branch. Do this even if it's a fall through branch,
1966   // this makes it easier to do DAG optimizations which require inverting
1967   // the branch condition.
1968   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1969                        DAG.getBasicBlock(CB.FalseBB));
1970 
1971   DAG.setRoot(BrCond);
1972 }
1973 
1974 /// visitJumpTable - Emit JumpTable node in the current MBB
1975 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1976   // Emit the code for the jump table
1977   assert(JT.Reg != -1U && "Should lower JT Header first!");
1978   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1979   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1980                                      JT.Reg, PTy);
1981   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1982   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1983                                     MVT::Other, Index.getValue(1),
1984                                     Table, Index);
1985   DAG.setRoot(BrJumpTable);
1986 }
1987 
1988 /// visitJumpTableHeader - This function emits necessary code to produce index
1989 /// in the JumpTable from switch case.
1990 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1991                                                JumpTableHeader &JTH,
1992                                                MachineBasicBlock *SwitchBB) {
1993   SDLoc dl = getCurSDLoc();
1994 
1995   // Subtract the lowest switch case value from the value being switched on and
1996   // conditional branch to default mbb if the result is greater than the
1997   // difference between smallest and largest cases.
1998   SDValue SwitchOp = getValue(JTH.SValue);
1999   EVT VT = SwitchOp.getValueType();
2000   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2001                             DAG.getConstant(JTH.First, dl, VT));
2002 
2003   // The SDNode we just created, which holds the value being switched on minus
2004   // the smallest case value, needs to be copied to a virtual register so it
2005   // can be used as an index into the jump table in a subsequent basic block.
2006   // This value may be smaller or larger than the target's pointer type, and
2007   // therefore require extension or truncating.
2008   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2009   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2010 
2011   unsigned JumpTableReg =
2012       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2013   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2014                                     JumpTableReg, SwitchOp);
2015   JT.Reg = JumpTableReg;
2016 
2017   // Emit the range check for the jump table, and branch to the default block
2018   // for the switch statement if the value being switched on exceeds the largest
2019   // case in the switch.
2020   SDValue CMP = DAG.getSetCC(
2021       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2022                                  Sub.getValueType()),
2023       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2024 
2025   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2026                                MVT::Other, CopyTo, CMP,
2027                                DAG.getBasicBlock(JT.Default));
2028 
2029   // Avoid emitting unnecessary branches to the next block.
2030   if (JT.MBB != NextBlock(SwitchBB))
2031     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2032                          DAG.getBasicBlock(JT.MBB));
2033 
2034   DAG.setRoot(BrCond);
2035 }
2036 
2037 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2038 /// variable if there exists one.
2039 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2040                                  SDValue &Chain) {
2041   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2042   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2043   MachineFunction &MF = DAG.getMachineFunction();
2044   Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
2045   MachineSDNode *Node =
2046       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2047   if (Global) {
2048     MachinePointerInfo MPInfo(Global);
2049     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2050     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2051                  MachineMemOperand::MODereferenceable;
2052     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2053                                        DAG.getEVTAlignment(PtrTy));
2054     Node->setMemRefs(MemRefs, MemRefs + 1);
2055   }
2056   return SDValue(Node, 0);
2057 }
2058 
2059 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2060 /// tail spliced into a stack protector check success bb.
2061 ///
2062 /// For a high level explanation of how this fits into the stack protector
2063 /// generation see the comment on the declaration of class
2064 /// StackProtectorDescriptor.
2065 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2066                                                   MachineBasicBlock *ParentBB) {
2067 
2068   // First create the loads to the guard/stack slot for the comparison.
2069   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2070   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2071 
2072   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2073   int FI = MFI.getStackProtectorIndex();
2074 
2075   SDValue Guard;
2076   SDLoc dl = getCurSDLoc();
2077   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2078   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2079   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2080 
2081   // Generate code to load the content of the guard slot.
2082   SDValue StackSlot = DAG.getLoad(
2083       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2084       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2085       MachineMemOperand::MOVolatile);
2086 
2087   // Retrieve guard check function, nullptr if instrumentation is inlined.
2088   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2089     // The target provides a guard check function to validate the guard value.
2090     // Generate a call to that function with the content of the guard slot as
2091     // argument.
2092     auto *Fn = cast<Function>(GuardCheck);
2093     FunctionType *FnTy = Fn->getFunctionType();
2094     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2095 
2096     TargetLowering::ArgListTy Args;
2097     TargetLowering::ArgListEntry Entry;
2098     Entry.Node = StackSlot;
2099     Entry.Ty = FnTy->getParamType(0);
2100     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2101       Entry.IsInReg = true;
2102     Args.push_back(Entry);
2103 
2104     TargetLowering::CallLoweringInfo CLI(DAG);
2105     CLI.setDebugLoc(getCurSDLoc())
2106       .setChain(DAG.getEntryNode())
2107       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2108                  getValue(GuardCheck), std::move(Args));
2109 
2110     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2111     DAG.setRoot(Result.second);
2112     return;
2113   }
2114 
2115   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2116   // Otherwise, emit a volatile load to retrieve the stack guard value.
2117   SDValue Chain = DAG.getEntryNode();
2118   if (TLI.useLoadStackGuardNode()) {
2119     Guard = getLoadStackGuard(DAG, dl, Chain);
2120   } else {
2121     const Value *IRGuard = TLI.getSDagStackGuard(M);
2122     SDValue GuardPtr = getValue(IRGuard);
2123 
2124     Guard =
2125         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2126                     Align, MachineMemOperand::MOVolatile);
2127   }
2128 
2129   // Perform the comparison via a subtract/getsetcc.
2130   EVT VT = Guard.getValueType();
2131   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2132 
2133   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2134                                                         *DAG.getContext(),
2135                                                         Sub.getValueType()),
2136                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2137 
2138   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2139   // branch to failure MBB.
2140   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2141                                MVT::Other, StackSlot.getOperand(0),
2142                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2143   // Otherwise branch to success MBB.
2144   SDValue Br = DAG.getNode(ISD::BR, dl,
2145                            MVT::Other, BrCond,
2146                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2147 
2148   DAG.setRoot(Br);
2149 }
2150 
2151 /// Codegen the failure basic block for a stack protector check.
2152 ///
2153 /// A failure stack protector machine basic block consists simply of a call to
2154 /// __stack_chk_fail().
2155 ///
2156 /// For a high level explanation of how this fits into the stack protector
2157 /// generation see the comment on the declaration of class
2158 /// StackProtectorDescriptor.
2159 void
2160 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2161   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2162   SDValue Chain =
2163       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2164                       None, false, getCurSDLoc(), false, false).second;
2165   DAG.setRoot(Chain);
2166 }
2167 
2168 /// visitBitTestHeader - This function emits necessary code to produce value
2169 /// suitable for "bit tests"
2170 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2171                                              MachineBasicBlock *SwitchBB) {
2172   SDLoc dl = getCurSDLoc();
2173 
2174   // Subtract the minimum value
2175   SDValue SwitchOp = getValue(B.SValue);
2176   EVT VT = SwitchOp.getValueType();
2177   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2178                             DAG.getConstant(B.First, dl, VT));
2179 
2180   // Check range
2181   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2182   SDValue RangeCmp = DAG.getSetCC(
2183       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2184                                  Sub.getValueType()),
2185       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2186 
2187   // Determine the type of the test operands.
2188   bool UsePtrType = false;
2189   if (!TLI.isTypeLegal(VT))
2190     UsePtrType = true;
2191   else {
2192     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2193       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2194         // Switch table case range are encoded into series of masks.
2195         // Just use pointer type, it's guaranteed to fit.
2196         UsePtrType = true;
2197         break;
2198       }
2199   }
2200   if (UsePtrType) {
2201     VT = TLI.getPointerTy(DAG.getDataLayout());
2202     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2203   }
2204 
2205   B.RegVT = VT.getSimpleVT();
2206   B.Reg = FuncInfo.CreateReg(B.RegVT);
2207   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2208 
2209   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2210 
2211   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2212   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2213   SwitchBB->normalizeSuccProbs();
2214 
2215   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2216                                 MVT::Other, CopyTo, RangeCmp,
2217                                 DAG.getBasicBlock(B.Default));
2218 
2219   // Avoid emitting unnecessary branches to the next block.
2220   if (MBB != NextBlock(SwitchBB))
2221     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2222                           DAG.getBasicBlock(MBB));
2223 
2224   DAG.setRoot(BrRange);
2225 }
2226 
2227 /// visitBitTestCase - this function produces one "bit test"
2228 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2229                                            MachineBasicBlock* NextMBB,
2230                                            BranchProbability BranchProbToNext,
2231                                            unsigned Reg,
2232                                            BitTestCase &B,
2233                                            MachineBasicBlock *SwitchBB) {
2234   SDLoc dl = getCurSDLoc();
2235   MVT VT = BB.RegVT;
2236   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2237   SDValue Cmp;
2238   unsigned PopCount = countPopulation(B.Mask);
2239   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2240   if (PopCount == 1) {
2241     // Testing for a single bit; just compare the shift count with what it
2242     // would need to be to shift a 1 bit in that position.
2243     Cmp = DAG.getSetCC(
2244         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2245         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2246         ISD::SETEQ);
2247   } else if (PopCount == BB.Range) {
2248     // There is only one zero bit in the range, test for it directly.
2249     Cmp = DAG.getSetCC(
2250         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2251         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2252         ISD::SETNE);
2253   } else {
2254     // Make desired shift
2255     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2256                                     DAG.getConstant(1, dl, VT), ShiftOp);
2257 
2258     // Emit bit tests and jumps
2259     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2260                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2261     Cmp = DAG.getSetCC(
2262         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2263         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2264   }
2265 
2266   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2267   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2268   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2269   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2270   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2271   // one as they are relative probabilities (and thus work more like weights),
2272   // and hence we need to normalize them to let the sum of them become one.
2273   SwitchBB->normalizeSuccProbs();
2274 
2275   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2276                               MVT::Other, getControlRoot(),
2277                               Cmp, DAG.getBasicBlock(B.TargetBB));
2278 
2279   // Avoid emitting unnecessary branches to the next block.
2280   if (NextMBB != NextBlock(SwitchBB))
2281     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2282                         DAG.getBasicBlock(NextMBB));
2283 
2284   DAG.setRoot(BrAnd);
2285 }
2286 
2287 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2288   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2289 
2290   // Retrieve successors. Look through artificial IR level blocks like
2291   // catchswitch for successors.
2292   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2293   const BasicBlock *EHPadBB = I.getSuccessor(1);
2294 
2295   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2296   // have to do anything here to lower funclet bundles.
2297   assert(!I.hasOperandBundlesOtherThan(
2298              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2299          "Cannot lower invokes with arbitrary operand bundles yet!");
2300 
2301   const Value *Callee(I.getCalledValue());
2302   const Function *Fn = dyn_cast<Function>(Callee);
2303   if (isa<InlineAsm>(Callee))
2304     visitInlineAsm(&I);
2305   else if (Fn && Fn->isIntrinsic()) {
2306     switch (Fn->getIntrinsicID()) {
2307     default:
2308       llvm_unreachable("Cannot invoke this intrinsic");
2309     case Intrinsic::donothing:
2310       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2311       break;
2312     case Intrinsic::experimental_patchpoint_void:
2313     case Intrinsic::experimental_patchpoint_i64:
2314       visitPatchpoint(&I, EHPadBB);
2315       break;
2316     case Intrinsic::experimental_gc_statepoint:
2317       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2318       break;
2319     }
2320   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2321     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2322     // Eventually we will support lowering the @llvm.experimental.deoptimize
2323     // intrinsic, and right now there are no plans to support other intrinsics
2324     // with deopt state.
2325     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2326   } else {
2327     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2328   }
2329 
2330   // If the value of the invoke is used outside of its defining block, make it
2331   // available as a virtual register.
2332   // We already took care of the exported value for the statepoint instruction
2333   // during call to the LowerStatepoint.
2334   if (!isStatepoint(I)) {
2335     CopyToExportRegsIfNeeded(&I);
2336   }
2337 
2338   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2339   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2340   BranchProbability EHPadBBProb =
2341       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2342           : BranchProbability::getZero();
2343   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2344 
2345   // Update successor info.
2346   addSuccessorWithProb(InvokeMBB, Return);
2347   for (auto &UnwindDest : UnwindDests) {
2348     UnwindDest.first->setIsEHPad();
2349     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2350   }
2351   InvokeMBB->normalizeSuccProbs();
2352 
2353   // Drop into normal successor.
2354   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2355                           MVT::Other, getControlRoot(),
2356                           DAG.getBasicBlock(Return)));
2357 }
2358 
2359 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2360   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2361 }
2362 
2363 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2364   assert(FuncInfo.MBB->isEHPad() &&
2365          "Call to landingpad not in landing pad!");
2366 
2367   MachineBasicBlock *MBB = FuncInfo.MBB;
2368   addLandingPadInfo(LP, *MBB);
2369 
2370   // If there aren't registers to copy the values into (e.g., during SjLj
2371   // exceptions), then don't bother to create these DAG nodes.
2372   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2373   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2374   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2375       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2376     return;
2377 
2378   // If landingpad's return type is token type, we don't create DAG nodes
2379   // for its exception pointer and selector value. The extraction of exception
2380   // pointer or selector value from token type landingpads is not currently
2381   // supported.
2382   if (LP.getType()->isTokenTy())
2383     return;
2384 
2385   SmallVector<EVT, 2> ValueVTs;
2386   SDLoc dl = getCurSDLoc();
2387   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2388   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2389 
2390   // Get the two live-in registers as SDValues. The physregs have already been
2391   // copied into virtual registers.
2392   SDValue Ops[2];
2393   if (FuncInfo.ExceptionPointerVirtReg) {
2394     Ops[0] = DAG.getZExtOrTrunc(
2395         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2396                            FuncInfo.ExceptionPointerVirtReg,
2397                            TLI.getPointerTy(DAG.getDataLayout())),
2398         dl, ValueVTs[0]);
2399   } else {
2400     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2401   }
2402   Ops[1] = DAG.getZExtOrTrunc(
2403       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2404                          FuncInfo.ExceptionSelectorVirtReg,
2405                          TLI.getPointerTy(DAG.getDataLayout())),
2406       dl, ValueVTs[1]);
2407 
2408   // Merge into one.
2409   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2410                             DAG.getVTList(ValueVTs), Ops);
2411   setValue(&LP, Res);
2412 }
2413 
2414 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2415 #ifndef NDEBUG
2416   for (const CaseCluster &CC : Clusters)
2417     assert(CC.Low == CC.High && "Input clusters must be single-case");
2418 #endif
2419 
2420   std::sort(Clusters.begin(), Clusters.end(),
2421             [](const CaseCluster &a, const CaseCluster &b) {
2422     return a.Low->getValue().slt(b.Low->getValue());
2423   });
2424 
2425   // Merge adjacent clusters with the same destination.
2426   const unsigned N = Clusters.size();
2427   unsigned DstIndex = 0;
2428   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2429     CaseCluster &CC = Clusters[SrcIndex];
2430     const ConstantInt *CaseVal = CC.Low;
2431     MachineBasicBlock *Succ = CC.MBB;
2432 
2433     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2434         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2435       // If this case has the same successor and is a neighbour, merge it into
2436       // the previous cluster.
2437       Clusters[DstIndex - 1].High = CaseVal;
2438       Clusters[DstIndex - 1].Prob += CC.Prob;
2439     } else {
2440       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2441                    sizeof(Clusters[SrcIndex]));
2442     }
2443   }
2444   Clusters.resize(DstIndex);
2445 }
2446 
2447 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2448                                            MachineBasicBlock *Last) {
2449   // Update JTCases.
2450   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2451     if (JTCases[i].first.HeaderBB == First)
2452       JTCases[i].first.HeaderBB = Last;
2453 
2454   // Update BitTestCases.
2455   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2456     if (BitTestCases[i].Parent == First)
2457       BitTestCases[i].Parent = Last;
2458 }
2459 
2460 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2461   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2462 
2463   // Update machine-CFG edges with unique successors.
2464   SmallSet<BasicBlock*, 32> Done;
2465   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2466     BasicBlock *BB = I.getSuccessor(i);
2467     bool Inserted = Done.insert(BB).second;
2468     if (!Inserted)
2469         continue;
2470 
2471     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2472     addSuccessorWithProb(IndirectBrMBB, Succ);
2473   }
2474   IndirectBrMBB->normalizeSuccProbs();
2475 
2476   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2477                           MVT::Other, getControlRoot(),
2478                           getValue(I.getAddress())));
2479 }
2480 
2481 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2482   if (DAG.getTarget().Options.TrapUnreachable)
2483     DAG.setRoot(
2484         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2485 }
2486 
2487 void SelectionDAGBuilder::visitFSub(const User &I) {
2488   // -0.0 - X --> fneg
2489   Type *Ty = I.getType();
2490   if (isa<Constant>(I.getOperand(0)) &&
2491       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2492     SDValue Op2 = getValue(I.getOperand(1));
2493     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2494                              Op2.getValueType(), Op2));
2495     return;
2496   }
2497 
2498   visitBinary(I, ISD::FSUB);
2499 }
2500 
2501 /// Checks if the given instruction performs a vector reduction, in which case
2502 /// we have the freedom to alter the elements in the result as long as the
2503 /// reduction of them stays unchanged.
2504 static bool isVectorReductionOp(const User *I) {
2505   const Instruction *Inst = dyn_cast<Instruction>(I);
2506   if (!Inst || !Inst->getType()->isVectorTy())
2507     return false;
2508 
2509   auto OpCode = Inst->getOpcode();
2510   switch (OpCode) {
2511   case Instruction::Add:
2512   case Instruction::Mul:
2513   case Instruction::And:
2514   case Instruction::Or:
2515   case Instruction::Xor:
2516     break;
2517   case Instruction::FAdd:
2518   case Instruction::FMul:
2519     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2520       if (FPOp->getFastMathFlags().unsafeAlgebra())
2521         break;
2522     LLVM_FALLTHROUGH;
2523   default:
2524     return false;
2525   }
2526 
2527   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2528   unsigned ElemNumToReduce = ElemNum;
2529 
2530   // Do DFS search on the def-use chain from the given instruction. We only
2531   // allow four kinds of operations during the search until we reach the
2532   // instruction that extracts the first element from the vector:
2533   //
2534   //   1. The reduction operation of the same opcode as the given instruction.
2535   //
2536   //   2. PHI node.
2537   //
2538   //   3. ShuffleVector instruction together with a reduction operation that
2539   //      does a partial reduction.
2540   //
2541   //   4. ExtractElement that extracts the first element from the vector, and we
2542   //      stop searching the def-use chain here.
2543   //
2544   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2545   // from 1-3 to the stack to continue the DFS. The given instruction is not
2546   // a reduction operation if we meet any other instructions other than those
2547   // listed above.
2548 
2549   SmallVector<const User *, 16> UsersToVisit{Inst};
2550   SmallPtrSet<const User *, 16> Visited;
2551   bool ReduxExtracted = false;
2552 
2553   while (!UsersToVisit.empty()) {
2554     auto User = UsersToVisit.back();
2555     UsersToVisit.pop_back();
2556     if (!Visited.insert(User).second)
2557       continue;
2558 
2559     for (const auto &U : User->users()) {
2560       auto Inst = dyn_cast<Instruction>(U);
2561       if (!Inst)
2562         return false;
2563 
2564       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2565         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2566           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2567             return false;
2568         UsersToVisit.push_back(U);
2569       } else if (const ShuffleVectorInst *ShufInst =
2570                      dyn_cast<ShuffleVectorInst>(U)) {
2571         // Detect the following pattern: A ShuffleVector instruction together
2572         // with a reduction that do partial reduction on the first and second
2573         // ElemNumToReduce / 2 elements, and store the result in
2574         // ElemNumToReduce / 2 elements in another vector.
2575 
2576         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2577         if (ResultElements < ElemNum)
2578           return false;
2579 
2580         if (ElemNumToReduce == 1)
2581           return false;
2582         if (!isa<UndefValue>(U->getOperand(1)))
2583           return false;
2584         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2585           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2586             return false;
2587         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2588           if (ShufInst->getMaskValue(i) != -1)
2589             return false;
2590 
2591         // There is only one user of this ShuffleVector instruction, which
2592         // must be a reduction operation.
2593         if (!U->hasOneUse())
2594           return false;
2595 
2596         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2597         if (!U2 || U2->getOpcode() != OpCode)
2598           return false;
2599 
2600         // Check operands of the reduction operation.
2601         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2602             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2603           UsersToVisit.push_back(U2);
2604           ElemNumToReduce /= 2;
2605         } else
2606           return false;
2607       } else if (isa<ExtractElementInst>(U)) {
2608         // At this moment we should have reduced all elements in the vector.
2609         if (ElemNumToReduce != 1)
2610           return false;
2611 
2612         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2613         if (!Val || Val->getZExtValue() != 0)
2614           return false;
2615 
2616         ReduxExtracted = true;
2617       } else
2618         return false;
2619     }
2620   }
2621   return ReduxExtracted;
2622 }
2623 
2624 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2625   SDValue Op1 = getValue(I.getOperand(0));
2626   SDValue Op2 = getValue(I.getOperand(1));
2627 
2628   bool nuw = false;
2629   bool nsw = false;
2630   bool exact = false;
2631   bool vec_redux = false;
2632   FastMathFlags FMF;
2633 
2634   if (const OverflowingBinaryOperator *OFBinOp =
2635           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2636     nuw = OFBinOp->hasNoUnsignedWrap();
2637     nsw = OFBinOp->hasNoSignedWrap();
2638   }
2639   if (const PossiblyExactOperator *ExactOp =
2640           dyn_cast<const PossiblyExactOperator>(&I))
2641     exact = ExactOp->isExact();
2642   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2643     FMF = FPOp->getFastMathFlags();
2644 
2645   if (isVectorReductionOp(&I)) {
2646     vec_redux = true;
2647     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2648   }
2649 
2650   SDNodeFlags Flags;
2651   Flags.setExact(exact);
2652   Flags.setNoSignedWrap(nsw);
2653   Flags.setNoUnsignedWrap(nuw);
2654   Flags.setVectorReduction(vec_redux);
2655   Flags.setAllowReciprocal(FMF.allowReciprocal());
2656   Flags.setAllowContract(FMF.allowContract());
2657   Flags.setNoInfs(FMF.noInfs());
2658   Flags.setNoNaNs(FMF.noNaNs());
2659   Flags.setNoSignedZeros(FMF.noSignedZeros());
2660   Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2661 
2662   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2663                                      Op1, Op2, Flags);
2664   setValue(&I, BinNodeValue);
2665 }
2666 
2667 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2668   SDValue Op1 = getValue(I.getOperand(0));
2669   SDValue Op2 = getValue(I.getOperand(1));
2670 
2671   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2672       Op2.getValueType(), DAG.getDataLayout());
2673 
2674   // Coerce the shift amount to the right type if we can.
2675   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2676     unsigned ShiftSize = ShiftTy.getSizeInBits();
2677     unsigned Op2Size = Op2.getValueSizeInBits();
2678     SDLoc DL = getCurSDLoc();
2679 
2680     // If the operand is smaller than the shift count type, promote it.
2681     if (ShiftSize > Op2Size)
2682       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2683 
2684     // If the operand is larger than the shift count type but the shift
2685     // count type has enough bits to represent any shift value, truncate
2686     // it now. This is a common case and it exposes the truncate to
2687     // optimization early.
2688     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2689       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2690     // Otherwise we'll need to temporarily settle for some other convenient
2691     // type.  Type legalization will make adjustments once the shiftee is split.
2692     else
2693       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2694   }
2695 
2696   bool nuw = false;
2697   bool nsw = false;
2698   bool exact = false;
2699 
2700   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2701 
2702     if (const OverflowingBinaryOperator *OFBinOp =
2703             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2704       nuw = OFBinOp->hasNoUnsignedWrap();
2705       nsw = OFBinOp->hasNoSignedWrap();
2706     }
2707     if (const PossiblyExactOperator *ExactOp =
2708             dyn_cast<const PossiblyExactOperator>(&I))
2709       exact = ExactOp->isExact();
2710   }
2711   SDNodeFlags Flags;
2712   Flags.setExact(exact);
2713   Flags.setNoSignedWrap(nsw);
2714   Flags.setNoUnsignedWrap(nuw);
2715   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2716                             Flags);
2717   setValue(&I, Res);
2718 }
2719 
2720 void SelectionDAGBuilder::visitSDiv(const User &I) {
2721   SDValue Op1 = getValue(I.getOperand(0));
2722   SDValue Op2 = getValue(I.getOperand(1));
2723 
2724   SDNodeFlags Flags;
2725   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2726                  cast<PossiblyExactOperator>(&I)->isExact());
2727   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2728                            Op2, Flags));
2729 }
2730 
2731 void SelectionDAGBuilder::visitICmp(const User &I) {
2732   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2733   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2734     predicate = IC->getPredicate();
2735   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2736     predicate = ICmpInst::Predicate(IC->getPredicate());
2737   SDValue Op1 = getValue(I.getOperand(0));
2738   SDValue Op2 = getValue(I.getOperand(1));
2739   ISD::CondCode Opcode = getICmpCondCode(predicate);
2740 
2741   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2742                                                         I.getType());
2743   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2744 }
2745 
2746 void SelectionDAGBuilder::visitFCmp(const User &I) {
2747   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2748   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2749     predicate = FC->getPredicate();
2750   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2751     predicate = FCmpInst::Predicate(FC->getPredicate());
2752   SDValue Op1 = getValue(I.getOperand(0));
2753   SDValue Op2 = getValue(I.getOperand(1));
2754   ISD::CondCode Condition = getFCmpCondCode(predicate);
2755 
2756   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2757   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2758   // further optimization, but currently FMF is only applicable to binary nodes.
2759   if (TM.Options.NoNaNsFPMath)
2760     Condition = getFCmpCodeWithoutNaN(Condition);
2761   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2762                                                         I.getType());
2763   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2764 }
2765 
2766 // Check if the condition of the select has one use or two users that are both
2767 // selects with the same condition.
2768 static bool hasOnlySelectUsers(const Value *Cond) {
2769   return all_of(Cond->users(), [](const Value *V) {
2770     return isa<SelectInst>(V);
2771   });
2772 }
2773 
2774 void SelectionDAGBuilder::visitSelect(const User &I) {
2775   SmallVector<EVT, 4> ValueVTs;
2776   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2777                   ValueVTs);
2778   unsigned NumValues = ValueVTs.size();
2779   if (NumValues == 0) return;
2780 
2781   SmallVector<SDValue, 4> Values(NumValues);
2782   SDValue Cond     = getValue(I.getOperand(0));
2783   SDValue LHSVal   = getValue(I.getOperand(1));
2784   SDValue RHSVal   = getValue(I.getOperand(2));
2785   auto BaseOps = {Cond};
2786   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2787     ISD::VSELECT : ISD::SELECT;
2788 
2789   // Min/max matching is only viable if all output VTs are the same.
2790   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2791     EVT VT = ValueVTs[0];
2792     LLVMContext &Ctx = *DAG.getContext();
2793     auto &TLI = DAG.getTargetLoweringInfo();
2794 
2795     // We care about the legality of the operation after it has been type
2796     // legalized.
2797     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2798            VT != TLI.getTypeToTransformTo(Ctx, VT))
2799       VT = TLI.getTypeToTransformTo(Ctx, VT);
2800 
2801     // If the vselect is legal, assume we want to leave this as a vector setcc +
2802     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2803     // min/max is legal on the scalar type.
2804     bool UseScalarMinMax = VT.isVector() &&
2805       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2806 
2807     Value *LHS, *RHS;
2808     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2809     ISD::NodeType Opc = ISD::DELETED_NODE;
2810     switch (SPR.Flavor) {
2811     case SPF_UMAX:    Opc = ISD::UMAX; break;
2812     case SPF_UMIN:    Opc = ISD::UMIN; break;
2813     case SPF_SMAX:    Opc = ISD::SMAX; break;
2814     case SPF_SMIN:    Opc = ISD::SMIN; break;
2815     case SPF_FMINNUM:
2816       switch (SPR.NaNBehavior) {
2817       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2818       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2819       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2820       case SPNB_RETURNS_ANY: {
2821         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2822           Opc = ISD::FMINNUM;
2823         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2824           Opc = ISD::FMINNAN;
2825         else if (UseScalarMinMax)
2826           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2827             ISD::FMINNUM : ISD::FMINNAN;
2828         break;
2829       }
2830       }
2831       break;
2832     case SPF_FMAXNUM:
2833       switch (SPR.NaNBehavior) {
2834       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2835       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2836       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2837       case SPNB_RETURNS_ANY:
2838 
2839         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2840           Opc = ISD::FMAXNUM;
2841         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2842           Opc = ISD::FMAXNAN;
2843         else if (UseScalarMinMax)
2844           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2845             ISD::FMAXNUM : ISD::FMAXNAN;
2846         break;
2847       }
2848       break;
2849     default: break;
2850     }
2851 
2852     if (Opc != ISD::DELETED_NODE &&
2853         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2854          (UseScalarMinMax &&
2855           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2856         // If the underlying comparison instruction is used by any other
2857         // instruction, the consumed instructions won't be destroyed, so it is
2858         // not profitable to convert to a min/max.
2859         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2860       OpCode = Opc;
2861       LHSVal = getValue(LHS);
2862       RHSVal = getValue(RHS);
2863       BaseOps = {};
2864     }
2865   }
2866 
2867   for (unsigned i = 0; i != NumValues; ++i) {
2868     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2869     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2870     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2871     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2872                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2873                             Ops);
2874   }
2875 
2876   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2877                            DAG.getVTList(ValueVTs), Values));
2878 }
2879 
2880 void SelectionDAGBuilder::visitTrunc(const User &I) {
2881   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2882   SDValue N = getValue(I.getOperand(0));
2883   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2884                                                         I.getType());
2885   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2886 }
2887 
2888 void SelectionDAGBuilder::visitZExt(const User &I) {
2889   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2890   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2891   SDValue N = getValue(I.getOperand(0));
2892   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2893                                                         I.getType());
2894   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2895 }
2896 
2897 void SelectionDAGBuilder::visitSExt(const User &I) {
2898   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2899   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2900   SDValue N = getValue(I.getOperand(0));
2901   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2902                                                         I.getType());
2903   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2904 }
2905 
2906 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2907   // FPTrunc is never a no-op cast, no need to check
2908   SDValue N = getValue(I.getOperand(0));
2909   SDLoc dl = getCurSDLoc();
2910   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2911   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2912   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2913                            DAG.getTargetConstant(
2914                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2915 }
2916 
2917 void SelectionDAGBuilder::visitFPExt(const User &I) {
2918   // FPExt is never a no-op cast, no need to check
2919   SDValue N = getValue(I.getOperand(0));
2920   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2921                                                         I.getType());
2922   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2923 }
2924 
2925 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2926   // FPToUI is never a no-op cast, no need to check
2927   SDValue N = getValue(I.getOperand(0));
2928   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2929                                                         I.getType());
2930   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2931 }
2932 
2933 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2934   // FPToSI is never a no-op cast, no need to check
2935   SDValue N = getValue(I.getOperand(0));
2936   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2937                                                         I.getType());
2938   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2939 }
2940 
2941 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2942   // UIToFP is never a no-op cast, no need to check
2943   SDValue N = getValue(I.getOperand(0));
2944   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2945                                                         I.getType());
2946   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2947 }
2948 
2949 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2950   // SIToFP is never a no-op cast, no need to check
2951   SDValue N = getValue(I.getOperand(0));
2952   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2953                                                         I.getType());
2954   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2955 }
2956 
2957 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2958   // What to do depends on the size of the integer and the size of the pointer.
2959   // We can either truncate, zero extend, or no-op, accordingly.
2960   SDValue N = getValue(I.getOperand(0));
2961   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2962                                                         I.getType());
2963   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2964 }
2965 
2966 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2967   // What to do depends on the size of the integer and the size of the pointer.
2968   // We can either truncate, zero extend, or no-op, accordingly.
2969   SDValue N = getValue(I.getOperand(0));
2970   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2971                                                         I.getType());
2972   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2973 }
2974 
2975 void SelectionDAGBuilder::visitBitCast(const User &I) {
2976   SDValue N = getValue(I.getOperand(0));
2977   SDLoc dl = getCurSDLoc();
2978   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2979                                                         I.getType());
2980 
2981   // BitCast assures us that source and destination are the same size so this is
2982   // either a BITCAST or a no-op.
2983   if (DestVT != N.getValueType())
2984     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2985                              DestVT, N)); // convert types.
2986   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2987   // might fold any kind of constant expression to an integer constant and that
2988   // is not what we are looking for. Only recognize a bitcast of a genuine
2989   // constant integer as an opaque constant.
2990   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2991     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2992                                  /*isOpaque*/true));
2993   else
2994     setValue(&I, N);            // noop cast.
2995 }
2996 
2997 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2998   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2999   const Value *SV = I.getOperand(0);
3000   SDValue N = getValue(SV);
3001   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3002 
3003   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3004   unsigned DestAS = I.getType()->getPointerAddressSpace();
3005 
3006   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3007     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3008 
3009   setValue(&I, N);
3010 }
3011 
3012 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3013   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3014   SDValue InVec = getValue(I.getOperand(0));
3015   SDValue InVal = getValue(I.getOperand(1));
3016   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3017                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3018   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3019                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3020                            InVec, InVal, InIdx));
3021 }
3022 
3023 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3024   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3025   SDValue InVec = getValue(I.getOperand(0));
3026   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3027                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3028   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3029                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3030                            InVec, InIdx));
3031 }
3032 
3033 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3034   SDValue Src1 = getValue(I.getOperand(0));
3035   SDValue Src2 = getValue(I.getOperand(1));
3036   SDLoc DL = getCurSDLoc();
3037 
3038   SmallVector<int, 8> Mask;
3039   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3040   unsigned MaskNumElts = Mask.size();
3041 
3042   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3043   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3044   EVT SrcVT = Src1.getValueType();
3045   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3046 
3047   if (SrcNumElts == MaskNumElts) {
3048     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3049     return;
3050   }
3051 
3052   // Normalize the shuffle vector since mask and vector length don't match.
3053   if (SrcNumElts < MaskNumElts) {
3054     // Mask is longer than the source vectors. We can use concatenate vector to
3055     // make the mask and vectors lengths match.
3056 
3057     if (MaskNumElts % SrcNumElts == 0) {
3058       // Mask length is a multiple of the source vector length.
3059       // Check if the shuffle is some kind of concatenation of the input
3060       // vectors.
3061       unsigned NumConcat = MaskNumElts / SrcNumElts;
3062       bool IsConcat = true;
3063       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3064       for (unsigned i = 0; i != MaskNumElts; ++i) {
3065         int Idx = Mask[i];
3066         if (Idx < 0)
3067           continue;
3068         // Ensure the indices in each SrcVT sized piece are sequential and that
3069         // the same source is used for the whole piece.
3070         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3071             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3072              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3073           IsConcat = false;
3074           break;
3075         }
3076         // Remember which source this index came from.
3077         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3078       }
3079 
3080       // The shuffle is concatenating multiple vectors together. Just emit
3081       // a CONCAT_VECTORS operation.
3082       if (IsConcat) {
3083         SmallVector<SDValue, 8> ConcatOps;
3084         for (auto Src : ConcatSrcs) {
3085           if (Src < 0)
3086             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3087           else if (Src == 0)
3088             ConcatOps.push_back(Src1);
3089           else
3090             ConcatOps.push_back(Src2);
3091         }
3092         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3093         return;
3094       }
3095     }
3096 
3097     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3098     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3099     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3100                                     PaddedMaskNumElts);
3101 
3102     // Pad both vectors with undefs to make them the same length as the mask.
3103     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3104 
3105     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3106     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3107     MOps1[0] = Src1;
3108     MOps2[0] = Src2;
3109 
3110     Src1 = Src1.isUndef()
3111                ? DAG.getUNDEF(PaddedVT)
3112                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3113     Src2 = Src2.isUndef()
3114                ? DAG.getUNDEF(PaddedVT)
3115                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3116 
3117     // Readjust mask for new input vector length.
3118     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3119     for (unsigned i = 0; i != MaskNumElts; ++i) {
3120       int Idx = Mask[i];
3121       if (Idx >= (int)SrcNumElts)
3122         Idx -= SrcNumElts - PaddedMaskNumElts;
3123       MappedOps[i] = Idx;
3124     }
3125 
3126     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3127 
3128     // If the concatenated vector was padded, extract a subvector with the
3129     // correct number of elements.
3130     if (MaskNumElts != PaddedMaskNumElts)
3131       Result = DAG.getNode(
3132           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3133           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3134 
3135     setValue(&I, Result);
3136     return;
3137   }
3138 
3139   if (SrcNumElts > MaskNumElts) {
3140     // Analyze the access pattern of the vector to see if we can extract
3141     // two subvectors and do the shuffle.
3142     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3143     bool CanExtract = true;
3144     for (int Idx : Mask) {
3145       unsigned Input = 0;
3146       if (Idx < 0)
3147         continue;
3148 
3149       if (Idx >= (int)SrcNumElts) {
3150         Input = 1;
3151         Idx -= SrcNumElts;
3152       }
3153 
3154       // If all the indices come from the same MaskNumElts sized portion of
3155       // the sources we can use extract. Also make sure the extract wouldn't
3156       // extract past the end of the source.
3157       int NewStartIdx = alignDown(Idx, MaskNumElts);
3158       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3159           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3160         CanExtract = false;
3161       // Make sure we always update StartIdx as we use it to track if all
3162       // elements are undef.
3163       StartIdx[Input] = NewStartIdx;
3164     }
3165 
3166     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3167       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3168       return;
3169     }
3170     if (CanExtract) {
3171       // Extract appropriate subvector and generate a vector shuffle
3172       for (unsigned Input = 0; Input < 2; ++Input) {
3173         SDValue &Src = Input == 0 ? Src1 : Src2;
3174         if (StartIdx[Input] < 0)
3175           Src = DAG.getUNDEF(VT);
3176         else {
3177           Src = DAG.getNode(
3178               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3179               DAG.getConstant(StartIdx[Input], DL,
3180                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3181         }
3182       }
3183 
3184       // Calculate new mask.
3185       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3186       for (int &Idx : MappedOps) {
3187         if (Idx >= (int)SrcNumElts)
3188           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3189         else if (Idx >= 0)
3190           Idx -= StartIdx[0];
3191       }
3192 
3193       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3194       return;
3195     }
3196   }
3197 
3198   // We can't use either concat vectors or extract subvectors so fall back to
3199   // replacing the shuffle with extract and build vector.
3200   // to insert and build vector.
3201   EVT EltVT = VT.getVectorElementType();
3202   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3203   SmallVector<SDValue,8> Ops;
3204   for (int Idx : Mask) {
3205     SDValue Res;
3206 
3207     if (Idx < 0) {
3208       Res = DAG.getUNDEF(EltVT);
3209     } else {
3210       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3211       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3212 
3213       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3214                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3215     }
3216 
3217     Ops.push_back(Res);
3218   }
3219 
3220   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3221 }
3222 
3223 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3224   const Value *Op0 = I.getOperand(0);
3225   const Value *Op1 = I.getOperand(1);
3226   Type *AggTy = I.getType();
3227   Type *ValTy = Op1->getType();
3228   bool IntoUndef = isa<UndefValue>(Op0);
3229   bool FromUndef = isa<UndefValue>(Op1);
3230 
3231   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3232 
3233   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3234   SmallVector<EVT, 4> AggValueVTs;
3235   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3236   SmallVector<EVT, 4> ValValueVTs;
3237   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3238 
3239   unsigned NumAggValues = AggValueVTs.size();
3240   unsigned NumValValues = ValValueVTs.size();
3241   SmallVector<SDValue, 4> Values(NumAggValues);
3242 
3243   // Ignore an insertvalue that produces an empty object
3244   if (!NumAggValues) {
3245     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3246     return;
3247   }
3248 
3249   SDValue Agg = getValue(Op0);
3250   unsigned i = 0;
3251   // Copy the beginning value(s) from the original aggregate.
3252   for (; i != LinearIndex; ++i)
3253     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3254                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3255   // Copy values from the inserted value(s).
3256   if (NumValValues) {
3257     SDValue Val = getValue(Op1);
3258     for (; i != LinearIndex + NumValValues; ++i)
3259       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3260                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3261   }
3262   // Copy remaining value(s) from the original aggregate.
3263   for (; i != NumAggValues; ++i)
3264     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3265                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3266 
3267   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3268                            DAG.getVTList(AggValueVTs), Values));
3269 }
3270 
3271 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3272   const Value *Op0 = I.getOperand(0);
3273   Type *AggTy = Op0->getType();
3274   Type *ValTy = I.getType();
3275   bool OutOfUndef = isa<UndefValue>(Op0);
3276 
3277   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3278 
3279   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3280   SmallVector<EVT, 4> ValValueVTs;
3281   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3282 
3283   unsigned NumValValues = ValValueVTs.size();
3284 
3285   // Ignore a extractvalue that produces an empty object
3286   if (!NumValValues) {
3287     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3288     return;
3289   }
3290 
3291   SmallVector<SDValue, 4> Values(NumValValues);
3292 
3293   SDValue Agg = getValue(Op0);
3294   // Copy out the selected value(s).
3295   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3296     Values[i - LinearIndex] =
3297       OutOfUndef ?
3298         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3299         SDValue(Agg.getNode(), Agg.getResNo() + i);
3300 
3301   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3302                            DAG.getVTList(ValValueVTs), Values));
3303 }
3304 
3305 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3306   Value *Op0 = I.getOperand(0);
3307   // Note that the pointer operand may be a vector of pointers. Take the scalar
3308   // element which holds a pointer.
3309   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3310   SDValue N = getValue(Op0);
3311   SDLoc dl = getCurSDLoc();
3312 
3313   // Normalize Vector GEP - all scalar operands should be converted to the
3314   // splat vector.
3315   unsigned VectorWidth = I.getType()->isVectorTy() ?
3316     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3317 
3318   if (VectorWidth && !N.getValueType().isVector()) {
3319     LLVMContext &Context = *DAG.getContext();
3320     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3321     N = DAG.getSplatBuildVector(VT, dl, N);
3322   }
3323 
3324   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3325        GTI != E; ++GTI) {
3326     const Value *Idx = GTI.getOperand();
3327     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3328       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3329       if (Field) {
3330         // N = N + Offset
3331         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3332 
3333         // In an inbounds GEP with an offset that is nonnegative even when
3334         // interpreted as signed, assume there is no unsigned overflow.
3335         SDNodeFlags Flags;
3336         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3337           Flags.setNoUnsignedWrap(true);
3338 
3339         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3340                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3341       }
3342     } else {
3343       MVT PtrTy =
3344           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3345       unsigned PtrSize = PtrTy.getSizeInBits();
3346       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3347 
3348       // If this is a scalar constant or a splat vector of constants,
3349       // handle it quickly.
3350       const auto *CI = dyn_cast<ConstantInt>(Idx);
3351       if (!CI && isa<ConstantDataVector>(Idx) &&
3352           cast<ConstantDataVector>(Idx)->getSplatValue())
3353         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3354 
3355       if (CI) {
3356         if (CI->isZero())
3357           continue;
3358         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3359         LLVMContext &Context = *DAG.getContext();
3360         SDValue OffsVal = VectorWidth ?
3361           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) :
3362           DAG.getConstant(Offs, dl, PtrTy);
3363 
3364         // In an inbouds GEP with an offset that is nonnegative even when
3365         // interpreted as signed, assume there is no unsigned overflow.
3366         SDNodeFlags Flags;
3367         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3368           Flags.setNoUnsignedWrap(true);
3369 
3370         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3371         continue;
3372       }
3373 
3374       // N = N + Idx * ElementSize;
3375       SDValue IdxN = getValue(Idx);
3376 
3377       if (!IdxN.getValueType().isVector() && VectorWidth) {
3378         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3379         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3380       }
3381 
3382       // If the index is smaller or larger than intptr_t, truncate or extend
3383       // it.
3384       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3385 
3386       // If this is a multiply by a power of two, turn it into a shl
3387       // immediately.  This is a very common case.
3388       if (ElementSize != 1) {
3389         if (ElementSize.isPowerOf2()) {
3390           unsigned Amt = ElementSize.logBase2();
3391           IdxN = DAG.getNode(ISD::SHL, dl,
3392                              N.getValueType(), IdxN,
3393                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3394         } else {
3395           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3396           IdxN = DAG.getNode(ISD::MUL, dl,
3397                              N.getValueType(), IdxN, Scale);
3398         }
3399       }
3400 
3401       N = DAG.getNode(ISD::ADD, dl,
3402                       N.getValueType(), N, IdxN);
3403     }
3404   }
3405 
3406   setValue(&I, N);
3407 }
3408 
3409 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3410   // If this is a fixed sized alloca in the entry block of the function,
3411   // allocate it statically on the stack.
3412   if (FuncInfo.StaticAllocaMap.count(&I))
3413     return;   // getValue will auto-populate this.
3414 
3415   SDLoc dl = getCurSDLoc();
3416   Type *Ty = I.getAllocatedType();
3417   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3418   auto &DL = DAG.getDataLayout();
3419   uint64_t TySize = DL.getTypeAllocSize(Ty);
3420   unsigned Align =
3421       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3422 
3423   SDValue AllocSize = getValue(I.getArraySize());
3424 
3425   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3426   if (AllocSize.getValueType() != IntPtr)
3427     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3428 
3429   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3430                           AllocSize,
3431                           DAG.getConstant(TySize, dl, IntPtr));
3432 
3433   // Handle alignment.  If the requested alignment is less than or equal to
3434   // the stack alignment, ignore it.  If the size is greater than or equal to
3435   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3436   unsigned StackAlign =
3437       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3438   if (Align <= StackAlign)
3439     Align = 0;
3440 
3441   // Round the size of the allocation up to the stack alignment size
3442   // by add SA-1 to the size. This doesn't overflow because we're computing
3443   // an address inside an alloca.
3444   SDNodeFlags Flags;
3445   Flags.setNoUnsignedWrap(true);
3446   AllocSize = DAG.getNode(ISD::ADD, dl,
3447                           AllocSize.getValueType(), AllocSize,
3448                           DAG.getIntPtrConstant(StackAlign - 1, dl), Flags);
3449 
3450   // Mask out the low bits for alignment purposes.
3451   AllocSize = DAG.getNode(ISD::AND, dl,
3452                           AllocSize.getValueType(), AllocSize,
3453                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3454                                                 dl));
3455 
3456   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3457   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3458   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3459   setValue(&I, DSA);
3460   DAG.setRoot(DSA.getValue(1));
3461 
3462   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3463 }
3464 
3465 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3466   if (I.isAtomic())
3467     return visitAtomicLoad(I);
3468 
3469   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3470   const Value *SV = I.getOperand(0);
3471   if (TLI.supportSwiftError()) {
3472     // Swifterror values can come from either a function parameter with
3473     // swifterror attribute or an alloca with swifterror attribute.
3474     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3475       if (Arg->hasSwiftErrorAttr())
3476         return visitLoadFromSwiftError(I);
3477     }
3478 
3479     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3480       if (Alloca->isSwiftError())
3481         return visitLoadFromSwiftError(I);
3482     }
3483   }
3484 
3485   SDValue Ptr = getValue(SV);
3486 
3487   Type *Ty = I.getType();
3488 
3489   bool isVolatile = I.isVolatile();
3490   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3491   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3492   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3493   unsigned Alignment = I.getAlignment();
3494 
3495   AAMDNodes AAInfo;
3496   I.getAAMetadata(AAInfo);
3497   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3498 
3499   SmallVector<EVT, 4> ValueVTs;
3500   SmallVector<uint64_t, 4> Offsets;
3501   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3502   unsigned NumValues = ValueVTs.size();
3503   if (NumValues == 0)
3504     return;
3505 
3506   SDValue Root;
3507   bool ConstantMemory = false;
3508   if (isVolatile || NumValues > MaxParallelChains)
3509     // Serialize volatile loads with other side effects.
3510     Root = getRoot();
3511   else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3512                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3513     // Do not serialize (non-volatile) loads of constant memory with anything.
3514     Root = DAG.getEntryNode();
3515     ConstantMemory = true;
3516   } else {
3517     // Do not serialize non-volatile loads against each other.
3518     Root = DAG.getRoot();
3519   }
3520 
3521   SDLoc dl = getCurSDLoc();
3522 
3523   if (isVolatile)
3524     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3525 
3526   // An aggregate load cannot wrap around the address space, so offsets to its
3527   // parts don't wrap either.
3528   SDNodeFlags Flags;
3529   Flags.setNoUnsignedWrap(true);
3530 
3531   SmallVector<SDValue, 4> Values(NumValues);
3532   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3533   EVT PtrVT = Ptr.getValueType();
3534   unsigned ChainI = 0;
3535   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3536     // Serializing loads here may result in excessive register pressure, and
3537     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3538     // could recover a bit by hoisting nodes upward in the chain by recognizing
3539     // they are side-effect free or do not alias. The optimizer should really
3540     // avoid this case by converting large object/array copies to llvm.memcpy
3541     // (MaxParallelChains should always remain as failsafe).
3542     if (ChainI == MaxParallelChains) {
3543       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3544       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3545                                   makeArrayRef(Chains.data(), ChainI));
3546       Root = Chain;
3547       ChainI = 0;
3548     }
3549     SDValue A = DAG.getNode(ISD::ADD, dl,
3550                             PtrVT, Ptr,
3551                             DAG.getConstant(Offsets[i], dl, PtrVT),
3552                             Flags);
3553     auto MMOFlags = MachineMemOperand::MONone;
3554     if (isVolatile)
3555       MMOFlags |= MachineMemOperand::MOVolatile;
3556     if (isNonTemporal)
3557       MMOFlags |= MachineMemOperand::MONonTemporal;
3558     if (isInvariant)
3559       MMOFlags |= MachineMemOperand::MOInvariant;
3560     if (isDereferenceable)
3561       MMOFlags |= MachineMemOperand::MODereferenceable;
3562 
3563     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3564                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3565                             MMOFlags, AAInfo, Ranges);
3566 
3567     Values[i] = L;
3568     Chains[ChainI] = L.getValue(1);
3569   }
3570 
3571   if (!ConstantMemory) {
3572     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3573                                 makeArrayRef(Chains.data(), ChainI));
3574     if (isVolatile)
3575       DAG.setRoot(Chain);
3576     else
3577       PendingLoads.push_back(Chain);
3578   }
3579 
3580   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3581                            DAG.getVTList(ValueVTs), Values));
3582 }
3583 
3584 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3585   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3586   assert(TLI.supportSwiftError() &&
3587          "call visitStoreToSwiftError when backend supports swifterror");
3588 
3589   SmallVector<EVT, 4> ValueVTs;
3590   SmallVector<uint64_t, 4> Offsets;
3591   const Value *SrcV = I.getOperand(0);
3592   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3593                   SrcV->getType(), ValueVTs, &Offsets);
3594   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3595          "expect a single EVT for swifterror");
3596 
3597   SDValue Src = getValue(SrcV);
3598   // Create a virtual register, then update the virtual register.
3599   unsigned VReg; bool CreatedVReg;
3600   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3601   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3602   // Chain can be getRoot or getControlRoot.
3603   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3604                                       SDValue(Src.getNode(), Src.getResNo()));
3605   DAG.setRoot(CopyNode);
3606   if (CreatedVReg)
3607     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3608 }
3609 
3610 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3611   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3612          "call visitLoadFromSwiftError when backend supports swifterror");
3613 
3614   assert(!I.isVolatile() &&
3615          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3616          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3617          "Support volatile, non temporal, invariant for load_from_swift_error");
3618 
3619   const Value *SV = I.getOperand(0);
3620   Type *Ty = I.getType();
3621   AAMDNodes AAInfo;
3622   I.getAAMetadata(AAInfo);
3623   assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3624              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3625          "load_from_swift_error should not be constant memory");
3626 
3627   SmallVector<EVT, 4> ValueVTs;
3628   SmallVector<uint64_t, 4> Offsets;
3629   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3630                   ValueVTs, &Offsets);
3631   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3632          "expect a single EVT for swifterror");
3633 
3634   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3635   SDValue L = DAG.getCopyFromReg(
3636       getRoot(), getCurSDLoc(),
3637       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3638       ValueVTs[0]);
3639 
3640   setValue(&I, L);
3641 }
3642 
3643 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3644   if (I.isAtomic())
3645     return visitAtomicStore(I);
3646 
3647   const Value *SrcV = I.getOperand(0);
3648   const Value *PtrV = I.getOperand(1);
3649 
3650   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3651   if (TLI.supportSwiftError()) {
3652     // Swifterror values can come from either a function parameter with
3653     // swifterror attribute or an alloca with swifterror attribute.
3654     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3655       if (Arg->hasSwiftErrorAttr())
3656         return visitStoreToSwiftError(I);
3657     }
3658 
3659     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3660       if (Alloca->isSwiftError())
3661         return visitStoreToSwiftError(I);
3662     }
3663   }
3664 
3665   SmallVector<EVT, 4> ValueVTs;
3666   SmallVector<uint64_t, 4> Offsets;
3667   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3668                   SrcV->getType(), ValueVTs, &Offsets);
3669   unsigned NumValues = ValueVTs.size();
3670   if (NumValues == 0)
3671     return;
3672 
3673   // Get the lowered operands. Note that we do this after
3674   // checking if NumResults is zero, because with zero results
3675   // the operands won't have values in the map.
3676   SDValue Src = getValue(SrcV);
3677   SDValue Ptr = getValue(PtrV);
3678 
3679   SDValue Root = getRoot();
3680   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3681   SDLoc dl = getCurSDLoc();
3682   EVT PtrVT = Ptr.getValueType();
3683   unsigned Alignment = I.getAlignment();
3684   AAMDNodes AAInfo;
3685   I.getAAMetadata(AAInfo);
3686 
3687   auto MMOFlags = MachineMemOperand::MONone;
3688   if (I.isVolatile())
3689     MMOFlags |= MachineMemOperand::MOVolatile;
3690   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3691     MMOFlags |= MachineMemOperand::MONonTemporal;
3692 
3693   // An aggregate load cannot wrap around the address space, so offsets to its
3694   // parts don't wrap either.
3695   SDNodeFlags Flags;
3696   Flags.setNoUnsignedWrap(true);
3697 
3698   unsigned ChainI = 0;
3699   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3700     // See visitLoad comments.
3701     if (ChainI == MaxParallelChains) {
3702       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3703                                   makeArrayRef(Chains.data(), ChainI));
3704       Root = Chain;
3705       ChainI = 0;
3706     }
3707     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3708                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3709     SDValue St = DAG.getStore(
3710         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3711         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3712     Chains[ChainI] = St;
3713   }
3714 
3715   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3716                                   makeArrayRef(Chains.data(), ChainI));
3717   DAG.setRoot(StoreNode);
3718 }
3719 
3720 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3721                                            bool IsCompressing) {
3722   SDLoc sdl = getCurSDLoc();
3723 
3724   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3725                            unsigned& Alignment) {
3726     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3727     Src0 = I.getArgOperand(0);
3728     Ptr = I.getArgOperand(1);
3729     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3730     Mask = I.getArgOperand(3);
3731   };
3732   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3733                            unsigned& Alignment) {
3734     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3735     Src0 = I.getArgOperand(0);
3736     Ptr = I.getArgOperand(1);
3737     Mask = I.getArgOperand(2);
3738     Alignment = 0;
3739   };
3740 
3741   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3742   unsigned Alignment;
3743   if (IsCompressing)
3744     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3745   else
3746     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3747 
3748   SDValue Ptr = getValue(PtrOperand);
3749   SDValue Src0 = getValue(Src0Operand);
3750   SDValue Mask = getValue(MaskOperand);
3751 
3752   EVT VT = Src0.getValueType();
3753   if (!Alignment)
3754     Alignment = DAG.getEVTAlignment(VT);
3755 
3756   AAMDNodes AAInfo;
3757   I.getAAMetadata(AAInfo);
3758 
3759   MachineMemOperand *MMO =
3760     DAG.getMachineFunction().
3761     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3762                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3763                           Alignment, AAInfo);
3764   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3765                                          MMO, false /* Truncating */,
3766                                          IsCompressing);
3767   DAG.setRoot(StoreNode);
3768   setValue(&I, StoreNode);
3769 }
3770 
3771 // Get a uniform base for the Gather/Scatter intrinsic.
3772 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3773 // We try to represent it as a base pointer + vector of indices.
3774 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3775 // The first operand of the GEP may be a single pointer or a vector of pointers
3776 // Example:
3777 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3778 //  or
3779 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3780 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3781 //
3782 // When the first GEP operand is a single pointer - it is the uniform base we
3783 // are looking for. If first operand of the GEP is a splat vector - we
3784 // extract the spalt value and use it as a uniform base.
3785 // In all other cases the function returns 'false'.
3786 //
3787 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3788                            SelectionDAGBuilder* SDB) {
3789 
3790   SelectionDAG& DAG = SDB->DAG;
3791   LLVMContext &Context = *DAG.getContext();
3792 
3793   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3794   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3795   if (!GEP || GEP->getNumOperands() > 2)
3796     return false;
3797 
3798   const Value *GEPPtr = GEP->getPointerOperand();
3799   if (!GEPPtr->getType()->isVectorTy())
3800     Ptr = GEPPtr;
3801   else if (!(Ptr = getSplatValue(GEPPtr)))
3802     return false;
3803 
3804   Value *IndexVal = GEP->getOperand(1);
3805 
3806   // The operands of the GEP may be defined in another basic block.
3807   // In this case we'll not find nodes for the operands.
3808   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3809     return false;
3810 
3811   Base = SDB->getValue(Ptr);
3812   Index = SDB->getValue(IndexVal);
3813 
3814   // Suppress sign extension.
3815   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3816     if (SDB->findValue(Sext->getOperand(0))) {
3817       IndexVal = Sext->getOperand(0);
3818       Index = SDB->getValue(IndexVal);
3819     }
3820   }
3821   if (!Index.getValueType().isVector()) {
3822     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3823     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3824     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3825   }
3826   return true;
3827 }
3828 
3829 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3830   SDLoc sdl = getCurSDLoc();
3831 
3832   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3833   const Value *Ptr = I.getArgOperand(1);
3834   SDValue Src0 = getValue(I.getArgOperand(0));
3835   SDValue Mask = getValue(I.getArgOperand(3));
3836   EVT VT = Src0.getValueType();
3837   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3838   if (!Alignment)
3839     Alignment = DAG.getEVTAlignment(VT);
3840   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3841 
3842   AAMDNodes AAInfo;
3843   I.getAAMetadata(AAInfo);
3844 
3845   SDValue Base;
3846   SDValue Index;
3847   const Value *BasePtr = Ptr;
3848   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3849 
3850   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3851   MachineMemOperand *MMO = DAG.getMachineFunction().
3852     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3853                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3854                          Alignment, AAInfo);
3855   if (!UniformBase) {
3856     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3857     Index = getValue(Ptr);
3858   }
3859   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3860   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3861                                          Ops, MMO);
3862   DAG.setRoot(Scatter);
3863   setValue(&I, Scatter);
3864 }
3865 
3866 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
3867   SDLoc sdl = getCurSDLoc();
3868 
3869   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3870                            unsigned& Alignment) {
3871     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3872     Ptr = I.getArgOperand(0);
3873     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3874     Mask = I.getArgOperand(2);
3875     Src0 = I.getArgOperand(3);
3876   };
3877   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3878                            unsigned& Alignment) {
3879     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
3880     Ptr = I.getArgOperand(0);
3881     Alignment = 0;
3882     Mask = I.getArgOperand(1);
3883     Src0 = I.getArgOperand(2);
3884   };
3885 
3886   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3887   unsigned Alignment;
3888   if (IsExpanding)
3889     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3890   else
3891     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3892 
3893   SDValue Ptr = getValue(PtrOperand);
3894   SDValue Src0 = getValue(Src0Operand);
3895   SDValue Mask = getValue(MaskOperand);
3896 
3897   EVT VT = Src0.getValueType();
3898   if (!Alignment)
3899     Alignment = DAG.getEVTAlignment(VT);
3900 
3901   AAMDNodes AAInfo;
3902   I.getAAMetadata(AAInfo);
3903   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3904 
3905   // Do not serialize masked loads of constant memory with anything.
3906   bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
3907       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
3908   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
3909 
3910   MachineMemOperand *MMO =
3911     DAG.getMachineFunction().
3912     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3913                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3914                           Alignment, AAInfo, Ranges);
3915 
3916   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3917                                    ISD::NON_EXTLOAD, IsExpanding);
3918   if (AddToChain) {
3919     SDValue OutChain = Load.getValue(1);
3920     DAG.setRoot(OutChain);
3921   }
3922   setValue(&I, Load);
3923 }
3924 
3925 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3926   SDLoc sdl = getCurSDLoc();
3927 
3928   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3929   const Value *Ptr = I.getArgOperand(0);
3930   SDValue Src0 = getValue(I.getArgOperand(3));
3931   SDValue Mask = getValue(I.getArgOperand(2));
3932 
3933   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3934   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3935   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3936   if (!Alignment)
3937     Alignment = DAG.getEVTAlignment(VT);
3938 
3939   AAMDNodes AAInfo;
3940   I.getAAMetadata(AAInfo);
3941   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3942 
3943   SDValue Root = DAG.getRoot();
3944   SDValue Base;
3945   SDValue Index;
3946   const Value *BasePtr = Ptr;
3947   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3948   bool ConstantMemory = false;
3949   if (UniformBase &&
3950       AA && AA->pointsToConstantMemory(MemoryLocation(
3951           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3952           AAInfo))) {
3953     // Do not serialize (non-volatile) loads of constant memory with anything.
3954     Root = DAG.getEntryNode();
3955     ConstantMemory = true;
3956   }
3957 
3958   MachineMemOperand *MMO =
3959     DAG.getMachineFunction().
3960     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3961                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3962                          Alignment, AAInfo, Ranges);
3963 
3964   if (!UniformBase) {
3965     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3966     Index = getValue(Ptr);
3967   }
3968   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3969   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3970                                        Ops, MMO);
3971 
3972   SDValue OutChain = Gather.getValue(1);
3973   if (!ConstantMemory)
3974     PendingLoads.push_back(OutChain);
3975   setValue(&I, Gather);
3976 }
3977 
3978 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3979   SDLoc dl = getCurSDLoc();
3980   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3981   AtomicOrdering FailureOrder = I.getFailureOrdering();
3982   SynchronizationScope Scope = I.getSynchScope();
3983 
3984   SDValue InChain = getRoot();
3985 
3986   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3987   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3988   SDValue L = DAG.getAtomicCmpSwap(
3989       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3990       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3991       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3992       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3993 
3994   SDValue OutChain = L.getValue(2);
3995 
3996   setValue(&I, L);
3997   DAG.setRoot(OutChain);
3998 }
3999 
4000 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4001   SDLoc dl = getCurSDLoc();
4002   ISD::NodeType NT;
4003   switch (I.getOperation()) {
4004   default: llvm_unreachable("Unknown atomicrmw operation");
4005   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4006   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4007   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4008   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4009   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4010   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4011   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4012   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4013   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4014   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4015   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4016   }
4017   AtomicOrdering Order = I.getOrdering();
4018   SynchronizationScope Scope = I.getSynchScope();
4019 
4020   SDValue InChain = getRoot();
4021 
4022   SDValue L =
4023     DAG.getAtomic(NT, dl,
4024                   getValue(I.getValOperand()).getSimpleValueType(),
4025                   InChain,
4026                   getValue(I.getPointerOperand()),
4027                   getValue(I.getValOperand()),
4028                   I.getPointerOperand(),
4029                   /* Alignment=*/ 0, Order, Scope);
4030 
4031   SDValue OutChain = L.getValue(1);
4032 
4033   setValue(&I, L);
4034   DAG.setRoot(OutChain);
4035 }
4036 
4037 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4038   SDLoc dl = getCurSDLoc();
4039   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4040   SDValue Ops[3];
4041   Ops[0] = getRoot();
4042   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4043                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4044   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
4045                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4046   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4047 }
4048 
4049 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4050   SDLoc dl = getCurSDLoc();
4051   AtomicOrdering Order = I.getOrdering();
4052   SynchronizationScope Scope = I.getSynchScope();
4053 
4054   SDValue InChain = getRoot();
4055 
4056   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4057   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4058 
4059   if (I.getAlignment() < VT.getSizeInBits() / 8)
4060     report_fatal_error("Cannot generate unaligned atomic load");
4061 
4062   MachineMemOperand *MMO =
4063       DAG.getMachineFunction().
4064       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4065                            MachineMemOperand::MOVolatile |
4066                            MachineMemOperand::MOLoad,
4067                            VT.getStoreSize(),
4068                            I.getAlignment() ? I.getAlignment() :
4069                                               DAG.getEVTAlignment(VT),
4070                            AAMDNodes(), nullptr, Scope, Order);
4071 
4072   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4073   SDValue L =
4074       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4075                     getValue(I.getPointerOperand()), MMO);
4076 
4077   SDValue OutChain = L.getValue(1);
4078 
4079   setValue(&I, L);
4080   DAG.setRoot(OutChain);
4081 }
4082 
4083 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4084   SDLoc dl = getCurSDLoc();
4085 
4086   AtomicOrdering Order = I.getOrdering();
4087   SynchronizationScope Scope = I.getSynchScope();
4088 
4089   SDValue InChain = getRoot();
4090 
4091   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4092   EVT VT =
4093       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4094 
4095   if (I.getAlignment() < VT.getSizeInBits() / 8)
4096     report_fatal_error("Cannot generate unaligned atomic store");
4097 
4098   SDValue OutChain =
4099     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4100                   InChain,
4101                   getValue(I.getPointerOperand()),
4102                   getValue(I.getValueOperand()),
4103                   I.getPointerOperand(), I.getAlignment(),
4104                   Order, Scope);
4105 
4106   DAG.setRoot(OutChain);
4107 }
4108 
4109 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4110 /// node.
4111 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4112                                                unsigned Intrinsic) {
4113   // Ignore the callsite's attributes. A specific call site may be marked with
4114   // readnone, but the lowering code will expect the chain based on the
4115   // definition.
4116   const Function *F = I.getCalledFunction();
4117   bool HasChain = !F->doesNotAccessMemory();
4118   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4119 
4120   // Build the operand list.
4121   SmallVector<SDValue, 8> Ops;
4122   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4123     if (OnlyLoad) {
4124       // We don't need to serialize loads against other loads.
4125       Ops.push_back(DAG.getRoot());
4126     } else {
4127       Ops.push_back(getRoot());
4128     }
4129   }
4130 
4131   // Info is set by getTgtMemInstrinsic
4132   TargetLowering::IntrinsicInfo Info;
4133   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4134   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4135 
4136   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4137   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4138       Info.opc == ISD::INTRINSIC_W_CHAIN)
4139     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4140                                         TLI.getPointerTy(DAG.getDataLayout())));
4141 
4142   // Add all operands of the call to the operand list.
4143   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4144     SDValue Op = getValue(I.getArgOperand(i));
4145     Ops.push_back(Op);
4146   }
4147 
4148   SmallVector<EVT, 4> ValueVTs;
4149   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4150 
4151   if (HasChain)
4152     ValueVTs.push_back(MVT::Other);
4153 
4154   SDVTList VTs = DAG.getVTList(ValueVTs);
4155 
4156   // Create the node.
4157   SDValue Result;
4158   if (IsTgtIntrinsic) {
4159     // This is target intrinsic that touches memory
4160     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4161                                      VTs, Ops, Info.memVT,
4162                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4163                                      Info.align, Info.vol,
4164                                      Info.readMem, Info.writeMem, Info.size);
4165   } else if (!HasChain) {
4166     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4167   } else if (!I.getType()->isVoidTy()) {
4168     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4169   } else {
4170     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4171   }
4172 
4173   if (HasChain) {
4174     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4175     if (OnlyLoad)
4176       PendingLoads.push_back(Chain);
4177     else
4178       DAG.setRoot(Chain);
4179   }
4180 
4181   if (!I.getType()->isVoidTy()) {
4182     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4183       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4184       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4185     } else
4186       Result = lowerRangeToAssertZExt(DAG, I, Result);
4187 
4188     setValue(&I, Result);
4189   }
4190 }
4191 
4192 /// GetSignificand - Get the significand and build it into a floating-point
4193 /// number with exponent of 1:
4194 ///
4195 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4196 ///
4197 /// where Op is the hexadecimal representation of floating point value.
4198 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4199   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4200                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4201   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4202                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4203   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4204 }
4205 
4206 /// GetExponent - Get the exponent:
4207 ///
4208 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4209 ///
4210 /// where Op is the hexadecimal representation of floating point value.
4211 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4212                            const TargetLowering &TLI, const SDLoc &dl) {
4213   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4214                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4215   SDValue t1 = DAG.getNode(
4216       ISD::SRL, dl, MVT::i32, t0,
4217       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4218   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4219                            DAG.getConstant(127, dl, MVT::i32));
4220   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4221 }
4222 
4223 /// getF32Constant - Get 32-bit floating point constant.
4224 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4225                               const SDLoc &dl) {
4226   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4227                            MVT::f32);
4228 }
4229 
4230 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4231                                        SelectionDAG &DAG) {
4232   // TODO: What fast-math-flags should be set on the floating-point nodes?
4233 
4234   //   IntegerPartOfX = ((int32_t)(t0);
4235   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4236 
4237   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4238   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4239   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4240 
4241   //   IntegerPartOfX <<= 23;
4242   IntegerPartOfX = DAG.getNode(
4243       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4244       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4245                                   DAG.getDataLayout())));
4246 
4247   SDValue TwoToFractionalPartOfX;
4248   if (LimitFloatPrecision <= 6) {
4249     // For floating-point precision of 6:
4250     //
4251     //   TwoToFractionalPartOfX =
4252     //     0.997535578f +
4253     //       (0.735607626f + 0.252464424f * x) * x;
4254     //
4255     // error 0.0144103317, which is 6 bits
4256     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4257                              getF32Constant(DAG, 0x3e814304, dl));
4258     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4259                              getF32Constant(DAG, 0x3f3c50c8, dl));
4260     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4261     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4262                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4263   } else if (LimitFloatPrecision <= 12) {
4264     // For floating-point precision of 12:
4265     //
4266     //   TwoToFractionalPartOfX =
4267     //     0.999892986f +
4268     //       (0.696457318f +
4269     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4270     //
4271     // error 0.000107046256, which is 13 to 14 bits
4272     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4273                              getF32Constant(DAG, 0x3da235e3, dl));
4274     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4275                              getF32Constant(DAG, 0x3e65b8f3, dl));
4276     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4277     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4278                              getF32Constant(DAG, 0x3f324b07, dl));
4279     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4280     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4281                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4282   } else { // LimitFloatPrecision <= 18
4283     // For floating-point precision of 18:
4284     //
4285     //   TwoToFractionalPartOfX =
4286     //     0.999999982f +
4287     //       (0.693148872f +
4288     //         (0.240227044f +
4289     //           (0.554906021e-1f +
4290     //             (0.961591928e-2f +
4291     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4292     // error 2.47208000*10^(-7), which is better than 18 bits
4293     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4294                              getF32Constant(DAG, 0x3924b03e, dl));
4295     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4296                              getF32Constant(DAG, 0x3ab24b87, dl));
4297     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4298     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4299                              getF32Constant(DAG, 0x3c1d8c17, dl));
4300     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4301     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4302                              getF32Constant(DAG, 0x3d634a1d, dl));
4303     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4304     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4305                              getF32Constant(DAG, 0x3e75fe14, dl));
4306     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4307     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4308                               getF32Constant(DAG, 0x3f317234, dl));
4309     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4310     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4311                                          getF32Constant(DAG, 0x3f800000, dl));
4312   }
4313 
4314   // Add the exponent into the result in integer domain.
4315   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4316   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4317                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4318 }
4319 
4320 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4321 /// limited-precision mode.
4322 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4323                          const TargetLowering &TLI) {
4324   if (Op.getValueType() == MVT::f32 &&
4325       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4326 
4327     // Put the exponent in the right bit position for later addition to the
4328     // final result:
4329     //
4330     //   #define LOG2OFe 1.4426950f
4331     //   t0 = Op * LOG2OFe
4332 
4333     // TODO: What fast-math-flags should be set here?
4334     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4335                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4336     return getLimitedPrecisionExp2(t0, dl, DAG);
4337   }
4338 
4339   // No special expansion.
4340   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4341 }
4342 
4343 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4344 /// limited-precision mode.
4345 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4346                          const TargetLowering &TLI) {
4347 
4348   // TODO: What fast-math-flags should be set on the floating-point nodes?
4349 
4350   if (Op.getValueType() == MVT::f32 &&
4351       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4352     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4353 
4354     // Scale the exponent by log(2) [0.69314718f].
4355     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4356     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4357                                         getF32Constant(DAG, 0x3f317218, dl));
4358 
4359     // Get the significand and build it into a floating-point number with
4360     // exponent of 1.
4361     SDValue X = GetSignificand(DAG, Op1, dl);
4362 
4363     SDValue LogOfMantissa;
4364     if (LimitFloatPrecision <= 6) {
4365       // For floating-point precision of 6:
4366       //
4367       //   LogofMantissa =
4368       //     -1.1609546f +
4369       //       (1.4034025f - 0.23903021f * x) * x;
4370       //
4371       // error 0.0034276066, which is better than 8 bits
4372       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4373                                getF32Constant(DAG, 0xbe74c456, dl));
4374       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4375                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4376       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4377       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4378                                   getF32Constant(DAG, 0x3f949a29, dl));
4379     } else if (LimitFloatPrecision <= 12) {
4380       // For floating-point precision of 12:
4381       //
4382       //   LogOfMantissa =
4383       //     -1.7417939f +
4384       //       (2.8212026f +
4385       //         (-1.4699568f +
4386       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4387       //
4388       // error 0.000061011436, which is 14 bits
4389       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4390                                getF32Constant(DAG, 0xbd67b6d6, dl));
4391       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4392                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4393       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4394       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4395                                getF32Constant(DAG, 0x3fbc278b, dl));
4396       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4397       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4398                                getF32Constant(DAG, 0x40348e95, dl));
4399       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4400       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4401                                   getF32Constant(DAG, 0x3fdef31a, dl));
4402     } else { // LimitFloatPrecision <= 18
4403       // For floating-point precision of 18:
4404       //
4405       //   LogOfMantissa =
4406       //     -2.1072184f +
4407       //       (4.2372794f +
4408       //         (-3.7029485f +
4409       //           (2.2781945f +
4410       //             (-0.87823314f +
4411       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4412       //
4413       // error 0.0000023660568, which is better than 18 bits
4414       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4415                                getF32Constant(DAG, 0xbc91e5ac, dl));
4416       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4417                                getF32Constant(DAG, 0x3e4350aa, dl));
4418       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4419       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4420                                getF32Constant(DAG, 0x3f60d3e3, dl));
4421       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4422       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4423                                getF32Constant(DAG, 0x4011cdf0, dl));
4424       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4425       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4426                                getF32Constant(DAG, 0x406cfd1c, dl));
4427       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4428       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4429                                getF32Constant(DAG, 0x408797cb, dl));
4430       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4431       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4432                                   getF32Constant(DAG, 0x4006dcab, dl));
4433     }
4434 
4435     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4436   }
4437 
4438   // No special expansion.
4439   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4440 }
4441 
4442 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4443 /// limited-precision mode.
4444 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4445                           const TargetLowering &TLI) {
4446 
4447   // TODO: What fast-math-flags should be set on the floating-point nodes?
4448 
4449   if (Op.getValueType() == MVT::f32 &&
4450       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4451     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4452 
4453     // Get the exponent.
4454     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4455 
4456     // Get the significand and build it into a floating-point number with
4457     // exponent of 1.
4458     SDValue X = GetSignificand(DAG, Op1, dl);
4459 
4460     // Different possible minimax approximations of significand in
4461     // floating-point for various degrees of accuracy over [1,2].
4462     SDValue Log2ofMantissa;
4463     if (LimitFloatPrecision <= 6) {
4464       // For floating-point precision of 6:
4465       //
4466       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4467       //
4468       // error 0.0049451742, which is more than 7 bits
4469       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4470                                getF32Constant(DAG, 0xbeb08fe0, dl));
4471       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4472                                getF32Constant(DAG, 0x40019463, dl));
4473       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4474       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4475                                    getF32Constant(DAG, 0x3fd6633d, dl));
4476     } else if (LimitFloatPrecision <= 12) {
4477       // For floating-point precision of 12:
4478       //
4479       //   Log2ofMantissa =
4480       //     -2.51285454f +
4481       //       (4.07009056f +
4482       //         (-2.12067489f +
4483       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4484       //
4485       // error 0.0000876136000, which is better than 13 bits
4486       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4487                                getF32Constant(DAG, 0xbda7262e, dl));
4488       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4489                                getF32Constant(DAG, 0x3f25280b, dl));
4490       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4491       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4492                                getF32Constant(DAG, 0x4007b923, dl));
4493       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4494       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4495                                getF32Constant(DAG, 0x40823e2f, dl));
4496       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4497       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4498                                    getF32Constant(DAG, 0x4020d29c, dl));
4499     } else { // LimitFloatPrecision <= 18
4500       // For floating-point precision of 18:
4501       //
4502       //   Log2ofMantissa =
4503       //     -3.0400495f +
4504       //       (6.1129976f +
4505       //         (-5.3420409f +
4506       //           (3.2865683f +
4507       //             (-1.2669343f +
4508       //               (0.27515199f -
4509       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4510       //
4511       // error 0.0000018516, which is better than 18 bits
4512       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4513                                getF32Constant(DAG, 0xbcd2769e, dl));
4514       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4515                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4516       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4517       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4518                                getF32Constant(DAG, 0x3fa22ae7, dl));
4519       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4520       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4521                                getF32Constant(DAG, 0x40525723, dl));
4522       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4523       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4524                                getF32Constant(DAG, 0x40aaf200, dl));
4525       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4526       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4527                                getF32Constant(DAG, 0x40c39dad, dl));
4528       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4529       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4530                                    getF32Constant(DAG, 0x4042902c, dl));
4531     }
4532 
4533     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4534   }
4535 
4536   // No special expansion.
4537   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4538 }
4539 
4540 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4541 /// limited-precision mode.
4542 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4543                            const TargetLowering &TLI) {
4544 
4545   // TODO: What fast-math-flags should be set on the floating-point nodes?
4546 
4547   if (Op.getValueType() == MVT::f32 &&
4548       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4549     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4550 
4551     // Scale the exponent by log10(2) [0.30102999f].
4552     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4553     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4554                                         getF32Constant(DAG, 0x3e9a209a, dl));
4555 
4556     // Get the significand and build it into a floating-point number with
4557     // exponent of 1.
4558     SDValue X = GetSignificand(DAG, Op1, dl);
4559 
4560     SDValue Log10ofMantissa;
4561     if (LimitFloatPrecision <= 6) {
4562       // For floating-point precision of 6:
4563       //
4564       //   Log10ofMantissa =
4565       //     -0.50419619f +
4566       //       (0.60948995f - 0.10380950f * x) * x;
4567       //
4568       // error 0.0014886165, which is 6 bits
4569       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4570                                getF32Constant(DAG, 0xbdd49a13, dl));
4571       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4572                                getF32Constant(DAG, 0x3f1c0789, dl));
4573       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4574       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4575                                     getF32Constant(DAG, 0x3f011300, dl));
4576     } else if (LimitFloatPrecision <= 12) {
4577       // For floating-point precision of 12:
4578       //
4579       //   Log10ofMantissa =
4580       //     -0.64831180f +
4581       //       (0.91751397f +
4582       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4583       //
4584       // error 0.00019228036, which is better than 12 bits
4585       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4586                                getF32Constant(DAG, 0x3d431f31, dl));
4587       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4588                                getF32Constant(DAG, 0x3ea21fb2, dl));
4589       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4590       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4591                                getF32Constant(DAG, 0x3f6ae232, dl));
4592       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4593       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4594                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4595     } else { // LimitFloatPrecision <= 18
4596       // For floating-point precision of 18:
4597       //
4598       //   Log10ofMantissa =
4599       //     -0.84299375f +
4600       //       (1.5327582f +
4601       //         (-1.0688956f +
4602       //           (0.49102474f +
4603       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4604       //
4605       // error 0.0000037995730, which is better than 18 bits
4606       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4607                                getF32Constant(DAG, 0x3c5d51ce, dl));
4608       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4609                                getF32Constant(DAG, 0x3e00685a, dl));
4610       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4611       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4612                                getF32Constant(DAG, 0x3efb6798, dl));
4613       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4614       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4615                                getF32Constant(DAG, 0x3f88d192, dl));
4616       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4617       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4618                                getF32Constant(DAG, 0x3fc4316c, dl));
4619       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4620       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4621                                     getF32Constant(DAG, 0x3f57ce70, dl));
4622     }
4623 
4624     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4625   }
4626 
4627   // No special expansion.
4628   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4629 }
4630 
4631 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4632 /// limited-precision mode.
4633 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4634                           const TargetLowering &TLI) {
4635   if (Op.getValueType() == MVT::f32 &&
4636       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4637     return getLimitedPrecisionExp2(Op, dl, DAG);
4638 
4639   // No special expansion.
4640   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4641 }
4642 
4643 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4644 /// limited-precision mode with x == 10.0f.
4645 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4646                          SelectionDAG &DAG, const TargetLowering &TLI) {
4647   bool IsExp10 = false;
4648   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4649       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4650     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4651       APFloat Ten(10.0f);
4652       IsExp10 = LHSC->isExactlyValue(Ten);
4653     }
4654   }
4655 
4656   // TODO: What fast-math-flags should be set on the FMUL node?
4657   if (IsExp10) {
4658     // Put the exponent in the right bit position for later addition to the
4659     // final result:
4660     //
4661     //   #define LOG2OF10 3.3219281f
4662     //   t0 = Op * LOG2OF10;
4663     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4664                              getF32Constant(DAG, 0x40549a78, dl));
4665     return getLimitedPrecisionExp2(t0, dl, DAG);
4666   }
4667 
4668   // No special expansion.
4669   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4670 }
4671 
4672 
4673 /// ExpandPowI - Expand a llvm.powi intrinsic.
4674 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4675                           SelectionDAG &DAG) {
4676   // If RHS is a constant, we can expand this out to a multiplication tree,
4677   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4678   // optimizing for size, we only want to do this if the expansion would produce
4679   // a small number of multiplies, otherwise we do the full expansion.
4680   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4681     // Get the exponent as a positive value.
4682     unsigned Val = RHSC->getSExtValue();
4683     if ((int)Val < 0) Val = -Val;
4684 
4685     // powi(x, 0) -> 1.0
4686     if (Val == 0)
4687       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4688 
4689     const Function *F = DAG.getMachineFunction().getFunction();
4690     if (!F->optForSize() ||
4691         // If optimizing for size, don't insert too many multiplies.
4692         // This inserts up to 5 multiplies.
4693         countPopulation(Val) + Log2_32(Val) < 7) {
4694       // We use the simple binary decomposition method to generate the multiply
4695       // sequence.  There are more optimal ways to do this (for example,
4696       // powi(x,15) generates one more multiply than it should), but this has
4697       // the benefit of being both really simple and much better than a libcall.
4698       SDValue Res;  // Logically starts equal to 1.0
4699       SDValue CurSquare = LHS;
4700       // TODO: Intrinsics should have fast-math-flags that propagate to these
4701       // nodes.
4702       while (Val) {
4703         if (Val & 1) {
4704           if (Res.getNode())
4705             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4706           else
4707             Res = CurSquare;  // 1.0*CurSquare.
4708         }
4709 
4710         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4711                                 CurSquare, CurSquare);
4712         Val >>= 1;
4713       }
4714 
4715       // If the original was negative, invert the result, producing 1/(x*x*x).
4716       if (RHSC->getSExtValue() < 0)
4717         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4718                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4719       return Res;
4720     }
4721   }
4722 
4723   // Otherwise, expand to a libcall.
4724   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4725 }
4726 
4727 // getUnderlyingArgReg - Find underlying register used for a truncated or
4728 // bitcasted argument.
4729 static unsigned getUnderlyingArgReg(const SDValue &N) {
4730   switch (N.getOpcode()) {
4731   case ISD::CopyFromReg:
4732     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4733   case ISD::BITCAST:
4734   case ISD::AssertZext:
4735   case ISD::AssertSext:
4736   case ISD::TRUNCATE:
4737     return getUnderlyingArgReg(N.getOperand(0));
4738   default:
4739     return 0;
4740   }
4741 }
4742 
4743 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4744 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4745 /// At the end of instruction selection, they will be inserted to the entry BB.
4746 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4747     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4748     DILocation *DL, int64_t Offset, bool IsDbgDeclare, const SDValue &N) {
4749   const Argument *Arg = dyn_cast<Argument>(V);
4750   if (!Arg)
4751     return false;
4752 
4753   MachineFunction &MF = DAG.getMachineFunction();
4754   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4755 
4756   // Ignore inlined function arguments here.
4757   //
4758   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4759   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4760     return false;
4761 
4762   bool IsIndirect = false;
4763   Optional<MachineOperand> Op;
4764   // Some arguments' frame index is recorded during argument lowering.
4765   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4766   if (FI != INT_MAX)
4767     Op = MachineOperand::CreateFI(FI);
4768 
4769   if (!Op && N.getNode()) {
4770     unsigned Reg = getUnderlyingArgReg(N);
4771     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4772       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4773       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4774       if (PR)
4775         Reg = PR;
4776     }
4777     if (Reg) {
4778       Op = MachineOperand::CreateReg(Reg, false);
4779       IsIndirect = IsDbgDeclare;
4780     }
4781   }
4782 
4783   if (!Op) {
4784     // Check if ValueMap has reg number.
4785     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4786     if (VMI != FuncInfo.ValueMap.end()) {
4787       Op = MachineOperand::CreateReg(VMI->second, false);
4788       IsIndirect = IsDbgDeclare;
4789     }
4790   }
4791 
4792   if (!Op && N.getNode())
4793     // Check if frame index is available.
4794     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4795       if (FrameIndexSDNode *FINode =
4796           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4797         Op = MachineOperand::CreateFI(FINode->getIndex());
4798 
4799   if (!Op)
4800     return false;
4801 
4802   assert(Variable->isValidLocationForIntrinsic(DL) &&
4803          "Expected inlined-at fields to agree");
4804   if (Op->isReg())
4805     FuncInfo.ArgDbgValues.push_back(
4806         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4807                 Op->getReg(), Offset, Variable, Expr));
4808   else
4809     FuncInfo.ArgDbgValues.push_back(
4810         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4811             .add(*Op)
4812             .addImm(Offset)
4813             .addMetadata(Variable)
4814             .addMetadata(Expr));
4815 
4816   return true;
4817 }
4818 
4819 /// Return the appropriate SDDbgValue based on N.
4820 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4821                                              DILocalVariable *Variable,
4822                                              DIExpression *Expr, int64_t Offset,
4823                                              const DebugLoc &dl,
4824                                              unsigned DbgSDNodeOrder) {
4825   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
4826     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4827     // stack slot locations as such instead of as indirectly addressed
4828     // locations.
4829     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 0, dl,
4830                                      DbgSDNodeOrder);
4831   }
4832   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false,
4833                          Offset, dl, DbgSDNodeOrder);
4834 }
4835 
4836 // VisualStudio defines setjmp as _setjmp
4837 #if defined(_MSC_VER) && defined(setjmp) && \
4838                          !defined(setjmp_undefined_for_msvc)
4839 #  pragma push_macro("setjmp")
4840 #  undef setjmp
4841 #  define setjmp_undefined_for_msvc
4842 #endif
4843 
4844 /// Lower the call to the specified intrinsic function. If we want to emit this
4845 /// as a call to a named external function, return the name. Otherwise, lower it
4846 /// and return null.
4847 const char *
4848 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4849   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4850   SDLoc sdl = getCurSDLoc();
4851   DebugLoc dl = getCurDebugLoc();
4852   SDValue Res;
4853 
4854   switch (Intrinsic) {
4855   default:
4856     // By default, turn this into a target intrinsic node.
4857     visitTargetIntrinsic(I, Intrinsic);
4858     return nullptr;
4859   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4860   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4861   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4862   case Intrinsic::returnaddress:
4863     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4864                              TLI.getPointerTy(DAG.getDataLayout()),
4865                              getValue(I.getArgOperand(0))));
4866     return nullptr;
4867   case Intrinsic::addressofreturnaddress:
4868     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
4869                              TLI.getPointerTy(DAG.getDataLayout())));
4870     return nullptr;
4871   case Intrinsic::frameaddress:
4872     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4873                              TLI.getPointerTy(DAG.getDataLayout()),
4874                              getValue(I.getArgOperand(0))));
4875     return nullptr;
4876   case Intrinsic::read_register: {
4877     Value *Reg = I.getArgOperand(0);
4878     SDValue Chain = getRoot();
4879     SDValue RegName =
4880         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4881     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4882     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4883       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4884     setValue(&I, Res);
4885     DAG.setRoot(Res.getValue(1));
4886     return nullptr;
4887   }
4888   case Intrinsic::write_register: {
4889     Value *Reg = I.getArgOperand(0);
4890     Value *RegValue = I.getArgOperand(1);
4891     SDValue Chain = getRoot();
4892     SDValue RegName =
4893         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4894     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4895                             RegName, getValue(RegValue)));
4896     return nullptr;
4897   }
4898   case Intrinsic::setjmp:
4899     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4900   case Intrinsic::longjmp:
4901     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4902   case Intrinsic::memcpy: {
4903     SDValue Op1 = getValue(I.getArgOperand(0));
4904     SDValue Op2 = getValue(I.getArgOperand(1));
4905     SDValue Op3 = getValue(I.getArgOperand(2));
4906     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4907     if (!Align)
4908       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4909     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4910     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4911     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4912                                false, isTC,
4913                                MachinePointerInfo(I.getArgOperand(0)),
4914                                MachinePointerInfo(I.getArgOperand(1)));
4915     updateDAGForMaybeTailCall(MC);
4916     return nullptr;
4917   }
4918   case Intrinsic::memset: {
4919     SDValue Op1 = getValue(I.getArgOperand(0));
4920     SDValue Op2 = getValue(I.getArgOperand(1));
4921     SDValue Op3 = getValue(I.getArgOperand(2));
4922     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4923     if (!Align)
4924       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4925     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4926     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4927     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4928                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4929     updateDAGForMaybeTailCall(MS);
4930     return nullptr;
4931   }
4932   case Intrinsic::memmove: {
4933     SDValue Op1 = getValue(I.getArgOperand(0));
4934     SDValue Op2 = getValue(I.getArgOperand(1));
4935     SDValue Op3 = getValue(I.getArgOperand(2));
4936     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4937     if (!Align)
4938       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4939     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4940     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4941     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4942                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4943                                 MachinePointerInfo(I.getArgOperand(1)));
4944     updateDAGForMaybeTailCall(MM);
4945     return nullptr;
4946   }
4947   case Intrinsic::memcpy_element_atomic: {
4948     SDValue Dst = getValue(I.getArgOperand(0));
4949     SDValue Src = getValue(I.getArgOperand(1));
4950     SDValue NumElements = getValue(I.getArgOperand(2));
4951     SDValue ElementSize = getValue(I.getArgOperand(3));
4952 
4953     // Emit a library call.
4954     TargetLowering::ArgListTy Args;
4955     TargetLowering::ArgListEntry Entry;
4956     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
4957     Entry.Node = Dst;
4958     Args.push_back(Entry);
4959 
4960     Entry.Node = Src;
4961     Args.push_back(Entry);
4962 
4963     Entry.Ty = I.getArgOperand(2)->getType();
4964     Entry.Node = NumElements;
4965     Args.push_back(Entry);
4966 
4967     Entry.Ty = Type::getInt32Ty(*DAG.getContext());
4968     Entry.Node = ElementSize;
4969     Args.push_back(Entry);
4970 
4971     uint64_t ElementSizeConstant =
4972         cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4973     RTLIB::Libcall LibraryCall =
4974         RTLIB::getMEMCPY_ELEMENT_ATOMIC(ElementSizeConstant);
4975     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
4976       report_fatal_error("Unsupported element size");
4977 
4978     TargetLowering::CallLoweringInfo CLI(DAG);
4979     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
4980         TLI.getLibcallCallingConv(LibraryCall),
4981         Type::getVoidTy(*DAG.getContext()),
4982         DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall),
4983                               TLI.getPointerTy(DAG.getDataLayout())),
4984         std::move(Args));
4985 
4986     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
4987     DAG.setRoot(CallResult.second);
4988     return nullptr;
4989   }
4990   case Intrinsic::dbg_declare: {
4991     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4992     DILocalVariable *Variable = DI.getVariable();
4993     DIExpression *Expression = DI.getExpression();
4994     const Value *Address = DI.getAddress();
4995     assert(Variable && "Missing variable");
4996     if (!Address) {
4997       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4998       return nullptr;
4999     }
5000 
5001     // Check if address has undef value.
5002     if (isa<UndefValue>(Address) ||
5003         (Address->use_empty() && !isa<Argument>(Address))) {
5004       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5005       return nullptr;
5006     }
5007 
5008     // Byval arguments with frame indices were already handled after argument
5009     // lowering and before isel.
5010     const auto *Arg =
5011         dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
5012     if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
5013       return nullptr;
5014 
5015     SDValue &N = NodeMap[Address];
5016     if (!N.getNode() && isa<Argument>(Address))
5017       // Check unused arguments map.
5018       N = UnusedArgNodeMap[Address];
5019     SDDbgValue *SDV;
5020     if (N.getNode()) {
5021       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5022         Address = BCI->getOperand(0);
5023       // Parameters are handled specially.
5024       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5025       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5026       if (isParameter && FINode) {
5027         // Byval parameter. We have a frame index at this point.
5028         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5029                                         FINode->getIndex(), 0, dl, SDNodeOrder);
5030       } else if (isa<Argument>(Address)) {
5031         // Address is an argument, so try to emit its dbg value using
5032         // virtual register info from the FuncInfo.ValueMap.
5033         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, true, N);
5034         return nullptr;
5035       } else {
5036         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5037                               true, 0, dl, SDNodeOrder);
5038       }
5039       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5040     } else {
5041       // If Address is an argument then try to emit its dbg value using
5042       // virtual register info from the FuncInfo.ValueMap.
5043       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, true,
5044                                     N)) {
5045         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5046       }
5047     }
5048     return nullptr;
5049   }
5050   case Intrinsic::dbg_value: {
5051     const DbgValueInst &DI = cast<DbgValueInst>(I);
5052     assert(DI.getVariable() && "Missing variable");
5053 
5054     DILocalVariable *Variable = DI.getVariable();
5055     DIExpression *Expression = DI.getExpression();
5056     uint64_t Offset = DI.getOffset();
5057     const Value *V = DI.getValue();
5058     if (!V)
5059       return nullptr;
5060 
5061     SDDbgValue *SDV;
5062     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5063       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
5064                                     SDNodeOrder);
5065       DAG.AddDbgValue(SDV, nullptr, false);
5066       return nullptr;
5067     }
5068 
5069     // Do not use getValue() in here; we don't want to generate code at
5070     // this point if it hasn't been done yet.
5071     SDValue N = NodeMap[V];
5072     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5073       N = UnusedArgNodeMap[V];
5074     if (N.getNode()) {
5075       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, false,
5076                                    N))
5077         return nullptr;
5078       SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder);
5079       DAG.AddDbgValue(SDV, N.getNode(), false);
5080       return nullptr;
5081     }
5082 
5083     if (!V->use_empty() ) {
5084       // Do not call getValue(V) yet, as we don't want to generate code.
5085       // Remember it for later.
5086       DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
5087       DanglingDebugInfoMap[V] = DDI;
5088       return nullptr;
5089     }
5090 
5091     DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5092     DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5093     return nullptr;
5094   }
5095 
5096   case Intrinsic::eh_typeid_for: {
5097     // Find the type id for the given typeinfo.
5098     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5099     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5100     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5101     setValue(&I, Res);
5102     return nullptr;
5103   }
5104 
5105   case Intrinsic::eh_return_i32:
5106   case Intrinsic::eh_return_i64:
5107     DAG.getMachineFunction().setCallsEHReturn(true);
5108     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5109                             MVT::Other,
5110                             getControlRoot(),
5111                             getValue(I.getArgOperand(0)),
5112                             getValue(I.getArgOperand(1))));
5113     return nullptr;
5114   case Intrinsic::eh_unwind_init:
5115     DAG.getMachineFunction().setCallsUnwindInit(true);
5116     return nullptr;
5117   case Intrinsic::eh_dwarf_cfa: {
5118     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5119                              TLI.getPointerTy(DAG.getDataLayout()),
5120                              getValue(I.getArgOperand(0))));
5121     return nullptr;
5122   }
5123   case Intrinsic::eh_sjlj_callsite: {
5124     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5125     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5126     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5127     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5128 
5129     MMI.setCurrentCallSite(CI->getZExtValue());
5130     return nullptr;
5131   }
5132   case Intrinsic::eh_sjlj_functioncontext: {
5133     // Get and store the index of the function context.
5134     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5135     AllocaInst *FnCtx =
5136       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5137     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5138     MFI.setFunctionContextIndex(FI);
5139     return nullptr;
5140   }
5141   case Intrinsic::eh_sjlj_setjmp: {
5142     SDValue Ops[2];
5143     Ops[0] = getRoot();
5144     Ops[1] = getValue(I.getArgOperand(0));
5145     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5146                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5147     setValue(&I, Op.getValue(0));
5148     DAG.setRoot(Op.getValue(1));
5149     return nullptr;
5150   }
5151   case Intrinsic::eh_sjlj_longjmp: {
5152     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5153                             getRoot(), getValue(I.getArgOperand(0))));
5154     return nullptr;
5155   }
5156   case Intrinsic::eh_sjlj_setup_dispatch: {
5157     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5158                             getRoot()));
5159     return nullptr;
5160   }
5161 
5162   case Intrinsic::masked_gather:
5163     visitMaskedGather(I);
5164     return nullptr;
5165   case Intrinsic::masked_load:
5166     visitMaskedLoad(I);
5167     return nullptr;
5168   case Intrinsic::masked_scatter:
5169     visitMaskedScatter(I);
5170     return nullptr;
5171   case Intrinsic::masked_store:
5172     visitMaskedStore(I);
5173     return nullptr;
5174   case Intrinsic::masked_expandload:
5175     visitMaskedLoad(I, true /* IsExpanding */);
5176     return nullptr;
5177   case Intrinsic::masked_compressstore:
5178     visitMaskedStore(I, true /* IsCompressing */);
5179     return nullptr;
5180   case Intrinsic::x86_mmx_pslli_w:
5181   case Intrinsic::x86_mmx_pslli_d:
5182   case Intrinsic::x86_mmx_pslli_q:
5183   case Intrinsic::x86_mmx_psrli_w:
5184   case Intrinsic::x86_mmx_psrli_d:
5185   case Intrinsic::x86_mmx_psrli_q:
5186   case Intrinsic::x86_mmx_psrai_w:
5187   case Intrinsic::x86_mmx_psrai_d: {
5188     SDValue ShAmt = getValue(I.getArgOperand(1));
5189     if (isa<ConstantSDNode>(ShAmt)) {
5190       visitTargetIntrinsic(I, Intrinsic);
5191       return nullptr;
5192     }
5193     unsigned NewIntrinsic = 0;
5194     EVT ShAmtVT = MVT::v2i32;
5195     switch (Intrinsic) {
5196     case Intrinsic::x86_mmx_pslli_w:
5197       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5198       break;
5199     case Intrinsic::x86_mmx_pslli_d:
5200       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5201       break;
5202     case Intrinsic::x86_mmx_pslli_q:
5203       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5204       break;
5205     case Intrinsic::x86_mmx_psrli_w:
5206       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5207       break;
5208     case Intrinsic::x86_mmx_psrli_d:
5209       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5210       break;
5211     case Intrinsic::x86_mmx_psrli_q:
5212       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5213       break;
5214     case Intrinsic::x86_mmx_psrai_w:
5215       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5216       break;
5217     case Intrinsic::x86_mmx_psrai_d:
5218       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5219       break;
5220     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5221     }
5222 
5223     // The vector shift intrinsics with scalars uses 32b shift amounts but
5224     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5225     // to be zero.
5226     // We must do this early because v2i32 is not a legal type.
5227     SDValue ShOps[2];
5228     ShOps[0] = ShAmt;
5229     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5230     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5231     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5232     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5233     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5234                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5235                        getValue(I.getArgOperand(0)), ShAmt);
5236     setValue(&I, Res);
5237     return nullptr;
5238   }
5239   case Intrinsic::powi:
5240     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5241                             getValue(I.getArgOperand(1)), DAG));
5242     return nullptr;
5243   case Intrinsic::log:
5244     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5245     return nullptr;
5246   case Intrinsic::log2:
5247     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5248     return nullptr;
5249   case Intrinsic::log10:
5250     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5251     return nullptr;
5252   case Intrinsic::exp:
5253     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5254     return nullptr;
5255   case Intrinsic::exp2:
5256     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5257     return nullptr;
5258   case Intrinsic::pow:
5259     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5260                            getValue(I.getArgOperand(1)), DAG, TLI));
5261     return nullptr;
5262   case Intrinsic::sqrt:
5263   case Intrinsic::fabs:
5264   case Intrinsic::sin:
5265   case Intrinsic::cos:
5266   case Intrinsic::floor:
5267   case Intrinsic::ceil:
5268   case Intrinsic::trunc:
5269   case Intrinsic::rint:
5270   case Intrinsic::nearbyint:
5271   case Intrinsic::round:
5272   case Intrinsic::canonicalize: {
5273     unsigned Opcode;
5274     switch (Intrinsic) {
5275     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5276     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5277     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5278     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5279     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5280     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5281     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5282     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5283     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5284     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5285     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5286     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5287     }
5288 
5289     setValue(&I, DAG.getNode(Opcode, sdl,
5290                              getValue(I.getArgOperand(0)).getValueType(),
5291                              getValue(I.getArgOperand(0))));
5292     return nullptr;
5293   }
5294   case Intrinsic::minnum: {
5295     auto VT = getValue(I.getArgOperand(0)).getValueType();
5296     unsigned Opc =
5297         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5298             ? ISD::FMINNAN
5299             : ISD::FMINNUM;
5300     setValue(&I, DAG.getNode(Opc, sdl, VT,
5301                              getValue(I.getArgOperand(0)),
5302                              getValue(I.getArgOperand(1))));
5303     return nullptr;
5304   }
5305   case Intrinsic::maxnum: {
5306     auto VT = getValue(I.getArgOperand(0)).getValueType();
5307     unsigned Opc =
5308         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5309             ? ISD::FMAXNAN
5310             : ISD::FMAXNUM;
5311     setValue(&I, DAG.getNode(Opc, sdl, VT,
5312                              getValue(I.getArgOperand(0)),
5313                              getValue(I.getArgOperand(1))));
5314     return nullptr;
5315   }
5316   case Intrinsic::copysign:
5317     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5318                              getValue(I.getArgOperand(0)).getValueType(),
5319                              getValue(I.getArgOperand(0)),
5320                              getValue(I.getArgOperand(1))));
5321     return nullptr;
5322   case Intrinsic::fma:
5323     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5324                              getValue(I.getArgOperand(0)).getValueType(),
5325                              getValue(I.getArgOperand(0)),
5326                              getValue(I.getArgOperand(1)),
5327                              getValue(I.getArgOperand(2))));
5328     return nullptr;
5329   case Intrinsic::experimental_constrained_fadd:
5330   case Intrinsic::experimental_constrained_fsub:
5331   case Intrinsic::experimental_constrained_fmul:
5332   case Intrinsic::experimental_constrained_fdiv:
5333   case Intrinsic::experimental_constrained_frem:
5334   case Intrinsic::experimental_constrained_sqrt:
5335   case Intrinsic::experimental_constrained_pow:
5336   case Intrinsic::experimental_constrained_powi:
5337   case Intrinsic::experimental_constrained_sin:
5338   case Intrinsic::experimental_constrained_cos:
5339   case Intrinsic::experimental_constrained_exp:
5340   case Intrinsic::experimental_constrained_exp2:
5341   case Intrinsic::experimental_constrained_log:
5342   case Intrinsic::experimental_constrained_log10:
5343   case Intrinsic::experimental_constrained_log2:
5344   case Intrinsic::experimental_constrained_rint:
5345   case Intrinsic::experimental_constrained_nearbyint:
5346     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5347     return nullptr;
5348   case Intrinsic::fmuladd: {
5349     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5350     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5351         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5352       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5353                                getValue(I.getArgOperand(0)).getValueType(),
5354                                getValue(I.getArgOperand(0)),
5355                                getValue(I.getArgOperand(1)),
5356                                getValue(I.getArgOperand(2))));
5357     } else {
5358       // TODO: Intrinsic calls should have fast-math-flags.
5359       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5360                                 getValue(I.getArgOperand(0)).getValueType(),
5361                                 getValue(I.getArgOperand(0)),
5362                                 getValue(I.getArgOperand(1)));
5363       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5364                                 getValue(I.getArgOperand(0)).getValueType(),
5365                                 Mul,
5366                                 getValue(I.getArgOperand(2)));
5367       setValue(&I, Add);
5368     }
5369     return nullptr;
5370   }
5371   case Intrinsic::convert_to_fp16:
5372     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5373                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5374                                          getValue(I.getArgOperand(0)),
5375                                          DAG.getTargetConstant(0, sdl,
5376                                                                MVT::i32))));
5377     return nullptr;
5378   case Intrinsic::convert_from_fp16:
5379     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5380                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5381                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5382                                          getValue(I.getArgOperand(0)))));
5383     return nullptr;
5384   case Intrinsic::pcmarker: {
5385     SDValue Tmp = getValue(I.getArgOperand(0));
5386     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5387     return nullptr;
5388   }
5389   case Intrinsic::readcyclecounter: {
5390     SDValue Op = getRoot();
5391     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5392                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5393     setValue(&I, Res);
5394     DAG.setRoot(Res.getValue(1));
5395     return nullptr;
5396   }
5397   case Intrinsic::bitreverse:
5398     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5399                              getValue(I.getArgOperand(0)).getValueType(),
5400                              getValue(I.getArgOperand(0))));
5401     return nullptr;
5402   case Intrinsic::bswap:
5403     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5404                              getValue(I.getArgOperand(0)).getValueType(),
5405                              getValue(I.getArgOperand(0))));
5406     return nullptr;
5407   case Intrinsic::cttz: {
5408     SDValue Arg = getValue(I.getArgOperand(0));
5409     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5410     EVT Ty = Arg.getValueType();
5411     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5412                              sdl, Ty, Arg));
5413     return nullptr;
5414   }
5415   case Intrinsic::ctlz: {
5416     SDValue Arg = getValue(I.getArgOperand(0));
5417     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5418     EVT Ty = Arg.getValueType();
5419     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5420                              sdl, Ty, Arg));
5421     return nullptr;
5422   }
5423   case Intrinsic::ctpop: {
5424     SDValue Arg = getValue(I.getArgOperand(0));
5425     EVT Ty = Arg.getValueType();
5426     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5427     return nullptr;
5428   }
5429   case Intrinsic::stacksave: {
5430     SDValue Op = getRoot();
5431     Res = DAG.getNode(
5432         ISD::STACKSAVE, sdl,
5433         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5434     setValue(&I, Res);
5435     DAG.setRoot(Res.getValue(1));
5436     return nullptr;
5437   }
5438   case Intrinsic::stackrestore: {
5439     Res = getValue(I.getArgOperand(0));
5440     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5441     return nullptr;
5442   }
5443   case Intrinsic::get_dynamic_area_offset: {
5444     SDValue Op = getRoot();
5445     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5446     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5447     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5448     // target.
5449     if (PtrTy != ResTy)
5450       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5451                          " intrinsic!");
5452     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5453                       Op);
5454     DAG.setRoot(Op);
5455     setValue(&I, Res);
5456     return nullptr;
5457   }
5458   case Intrinsic::stackguard: {
5459     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5460     MachineFunction &MF = DAG.getMachineFunction();
5461     const Module &M = *MF.getFunction()->getParent();
5462     SDValue Chain = getRoot();
5463     if (TLI.useLoadStackGuardNode()) {
5464       Res = getLoadStackGuard(DAG, sdl, Chain);
5465     } else {
5466       const Value *Global = TLI.getSDagStackGuard(M);
5467       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5468       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5469                         MachinePointerInfo(Global, 0), Align,
5470                         MachineMemOperand::MOVolatile);
5471     }
5472     DAG.setRoot(Chain);
5473     setValue(&I, Res);
5474     return nullptr;
5475   }
5476   case Intrinsic::stackprotector: {
5477     // Emit code into the DAG to store the stack guard onto the stack.
5478     MachineFunction &MF = DAG.getMachineFunction();
5479     MachineFrameInfo &MFI = MF.getFrameInfo();
5480     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5481     SDValue Src, Chain = getRoot();
5482 
5483     if (TLI.useLoadStackGuardNode())
5484       Src = getLoadStackGuard(DAG, sdl, Chain);
5485     else
5486       Src = getValue(I.getArgOperand(0));   // The guard's value.
5487 
5488     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5489 
5490     int FI = FuncInfo.StaticAllocaMap[Slot];
5491     MFI.setStackProtectorIndex(FI);
5492 
5493     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5494 
5495     // Store the stack protector onto the stack.
5496     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5497                                                  DAG.getMachineFunction(), FI),
5498                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5499     setValue(&I, Res);
5500     DAG.setRoot(Res);
5501     return nullptr;
5502   }
5503   case Intrinsic::objectsize: {
5504     // If we don't know by now, we're never going to know.
5505     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5506 
5507     assert(CI && "Non-constant type in __builtin_object_size?");
5508 
5509     SDValue Arg = getValue(I.getCalledValue());
5510     EVT Ty = Arg.getValueType();
5511 
5512     if (CI->isZero())
5513       Res = DAG.getConstant(-1ULL, sdl, Ty);
5514     else
5515       Res = DAG.getConstant(0, sdl, Ty);
5516 
5517     setValue(&I, Res);
5518     return nullptr;
5519   }
5520   case Intrinsic::annotation:
5521   case Intrinsic::ptr_annotation:
5522   case Intrinsic::invariant_group_barrier:
5523     // Drop the intrinsic, but forward the value
5524     setValue(&I, getValue(I.getOperand(0)));
5525     return nullptr;
5526   case Intrinsic::assume:
5527   case Intrinsic::var_annotation:
5528     // Discard annotate attributes and assumptions
5529     return nullptr;
5530 
5531   case Intrinsic::init_trampoline: {
5532     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5533 
5534     SDValue Ops[6];
5535     Ops[0] = getRoot();
5536     Ops[1] = getValue(I.getArgOperand(0));
5537     Ops[2] = getValue(I.getArgOperand(1));
5538     Ops[3] = getValue(I.getArgOperand(2));
5539     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5540     Ops[5] = DAG.getSrcValue(F);
5541 
5542     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5543 
5544     DAG.setRoot(Res);
5545     return nullptr;
5546   }
5547   case Intrinsic::adjust_trampoline: {
5548     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5549                              TLI.getPointerTy(DAG.getDataLayout()),
5550                              getValue(I.getArgOperand(0))));
5551     return nullptr;
5552   }
5553   case Intrinsic::gcroot: {
5554     MachineFunction &MF = DAG.getMachineFunction();
5555     const Function *F = MF.getFunction();
5556     (void)F;
5557     assert(F->hasGC() &&
5558            "only valid in functions with gc specified, enforced by Verifier");
5559     assert(GFI && "implied by previous");
5560     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5561     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5562 
5563     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5564     GFI->addStackRoot(FI->getIndex(), TypeMap);
5565     return nullptr;
5566   }
5567   case Intrinsic::gcread:
5568   case Intrinsic::gcwrite:
5569     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5570   case Intrinsic::flt_rounds:
5571     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5572     return nullptr;
5573 
5574   case Intrinsic::expect: {
5575     // Just replace __builtin_expect(exp, c) with EXP.
5576     setValue(&I, getValue(I.getArgOperand(0)));
5577     return nullptr;
5578   }
5579 
5580   case Intrinsic::debugtrap:
5581   case Intrinsic::trap: {
5582     StringRef TrapFuncName =
5583         I.getAttributes()
5584             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5585             .getValueAsString();
5586     if (TrapFuncName.empty()) {
5587       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5588         ISD::TRAP : ISD::DEBUGTRAP;
5589       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5590       return nullptr;
5591     }
5592     TargetLowering::ArgListTy Args;
5593 
5594     TargetLowering::CallLoweringInfo CLI(DAG);
5595     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5596         CallingConv::C, I.getType(),
5597         DAG.getExternalSymbol(TrapFuncName.data(),
5598                               TLI.getPointerTy(DAG.getDataLayout())),
5599         std::move(Args));
5600 
5601     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5602     DAG.setRoot(Result.second);
5603     return nullptr;
5604   }
5605 
5606   case Intrinsic::uadd_with_overflow:
5607   case Intrinsic::sadd_with_overflow:
5608   case Intrinsic::usub_with_overflow:
5609   case Intrinsic::ssub_with_overflow:
5610   case Intrinsic::umul_with_overflow:
5611   case Intrinsic::smul_with_overflow: {
5612     ISD::NodeType Op;
5613     switch (Intrinsic) {
5614     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5615     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5616     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5617     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5618     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5619     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5620     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5621     }
5622     SDValue Op1 = getValue(I.getArgOperand(0));
5623     SDValue Op2 = getValue(I.getArgOperand(1));
5624 
5625     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5626     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5627     return nullptr;
5628   }
5629   case Intrinsic::prefetch: {
5630     SDValue Ops[5];
5631     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5632     Ops[0] = getRoot();
5633     Ops[1] = getValue(I.getArgOperand(0));
5634     Ops[2] = getValue(I.getArgOperand(1));
5635     Ops[3] = getValue(I.getArgOperand(2));
5636     Ops[4] = getValue(I.getArgOperand(3));
5637     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5638                                         DAG.getVTList(MVT::Other), Ops,
5639                                         EVT::getIntegerVT(*Context, 8),
5640                                         MachinePointerInfo(I.getArgOperand(0)),
5641                                         0, /* align */
5642                                         false, /* volatile */
5643                                         rw==0, /* read */
5644                                         rw==1)); /* write */
5645     return nullptr;
5646   }
5647   case Intrinsic::lifetime_start:
5648   case Intrinsic::lifetime_end: {
5649     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5650     // Stack coloring is not enabled in O0, discard region information.
5651     if (TM.getOptLevel() == CodeGenOpt::None)
5652       return nullptr;
5653 
5654     SmallVector<Value *, 4> Allocas;
5655     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5656 
5657     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5658            E = Allocas.end(); Object != E; ++Object) {
5659       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5660 
5661       // Could not find an Alloca.
5662       if (!LifetimeObject)
5663         continue;
5664 
5665       // First check that the Alloca is static, otherwise it won't have a
5666       // valid frame index.
5667       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5668       if (SI == FuncInfo.StaticAllocaMap.end())
5669         return nullptr;
5670 
5671       int FI = SI->second;
5672 
5673       SDValue Ops[2];
5674       Ops[0] = getRoot();
5675       Ops[1] =
5676           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
5677       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5678 
5679       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5680       DAG.setRoot(Res);
5681     }
5682     return nullptr;
5683   }
5684   case Intrinsic::invariant_start:
5685     // Discard region information.
5686     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5687     return nullptr;
5688   case Intrinsic::invariant_end:
5689     // Discard region information.
5690     return nullptr;
5691   case Intrinsic::clear_cache:
5692     return TLI.getClearCacheBuiltinName();
5693   case Intrinsic::donothing:
5694     // ignore
5695     return nullptr;
5696   case Intrinsic::experimental_stackmap: {
5697     visitStackmap(I);
5698     return nullptr;
5699   }
5700   case Intrinsic::experimental_patchpoint_void:
5701   case Intrinsic::experimental_patchpoint_i64: {
5702     visitPatchpoint(&I);
5703     return nullptr;
5704   }
5705   case Intrinsic::experimental_gc_statepoint: {
5706     LowerStatepoint(ImmutableStatepoint(&I));
5707     return nullptr;
5708   }
5709   case Intrinsic::experimental_gc_result: {
5710     visitGCResult(cast<GCResultInst>(I));
5711     return nullptr;
5712   }
5713   case Intrinsic::experimental_gc_relocate: {
5714     visitGCRelocate(cast<GCRelocateInst>(I));
5715     return nullptr;
5716   }
5717   case Intrinsic::instrprof_increment:
5718     llvm_unreachable("instrprof failed to lower an increment");
5719   case Intrinsic::instrprof_value_profile:
5720     llvm_unreachable("instrprof failed to lower a value profiling call");
5721   case Intrinsic::localescape: {
5722     MachineFunction &MF = DAG.getMachineFunction();
5723     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5724 
5725     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5726     // is the same on all targets.
5727     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5728       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5729       if (isa<ConstantPointerNull>(Arg))
5730         continue; // Skip null pointers. They represent a hole in index space.
5731       AllocaInst *Slot = cast<AllocaInst>(Arg);
5732       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5733              "can only escape static allocas");
5734       int FI = FuncInfo.StaticAllocaMap[Slot];
5735       MCSymbol *FrameAllocSym =
5736           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5737               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
5738       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5739               TII->get(TargetOpcode::LOCAL_ESCAPE))
5740           .addSym(FrameAllocSym)
5741           .addFrameIndex(FI);
5742     }
5743 
5744     return nullptr;
5745   }
5746 
5747   case Intrinsic::localrecover: {
5748     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5749     MachineFunction &MF = DAG.getMachineFunction();
5750     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5751 
5752     // Get the symbol that defines the frame offset.
5753     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5754     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5755     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5756     MCSymbol *FrameAllocSym =
5757         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5758             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
5759 
5760     // Create a MCSymbol for the label to avoid any target lowering
5761     // that would make this PC relative.
5762     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5763     SDValue OffsetVal =
5764         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5765 
5766     // Add the offset to the FP.
5767     Value *FP = I.getArgOperand(1);
5768     SDValue FPVal = getValue(FP);
5769     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5770     setValue(&I, Add);
5771 
5772     return nullptr;
5773   }
5774 
5775   case Intrinsic::eh_exceptionpointer:
5776   case Intrinsic::eh_exceptioncode: {
5777     // Get the exception pointer vreg, copy from it, and resize it to fit.
5778     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5779     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5780     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5781     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5782     SDValue N =
5783         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5784     if (Intrinsic == Intrinsic::eh_exceptioncode)
5785       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5786     setValue(&I, N);
5787     return nullptr;
5788   }
5789   case Intrinsic::xray_customevent: {
5790     // Here we want to make sure that the intrinsic behaves as if it has a
5791     // specific calling convention, and only for x86_64.
5792     // FIXME: Support other platforms later.
5793     const auto &Triple = DAG.getTarget().getTargetTriple();
5794     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
5795       return nullptr;
5796 
5797     SDLoc DL = getCurSDLoc();
5798     SmallVector<SDValue, 8> Ops;
5799 
5800     // We want to say that we always want the arguments in registers.
5801     SDValue LogEntryVal = getValue(I.getArgOperand(0));
5802     SDValue StrSizeVal = getValue(I.getArgOperand(1));
5803     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
5804     SDValue Chain = getRoot();
5805     Ops.push_back(LogEntryVal);
5806     Ops.push_back(StrSizeVal);
5807     Ops.push_back(Chain);
5808 
5809     // We need to enforce the calling convention for the callsite, so that
5810     // argument ordering is enforced correctly, and that register allocation can
5811     // see that some registers may be assumed clobbered and have to preserve
5812     // them across calls to the intrinsic.
5813     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
5814                                            DL, NodeTys, Ops);
5815     SDValue patchableNode = SDValue(MN, 0);
5816     DAG.setRoot(patchableNode);
5817     setValue(&I, patchableNode);
5818     return nullptr;
5819   }
5820   case Intrinsic::experimental_deoptimize:
5821     LowerDeoptimizeCall(&I);
5822     return nullptr;
5823 
5824   case Intrinsic::experimental_vector_reduce_fadd:
5825   case Intrinsic::experimental_vector_reduce_fmul:
5826   case Intrinsic::experimental_vector_reduce_add:
5827   case Intrinsic::experimental_vector_reduce_mul:
5828   case Intrinsic::experimental_vector_reduce_and:
5829   case Intrinsic::experimental_vector_reduce_or:
5830   case Intrinsic::experimental_vector_reduce_xor:
5831   case Intrinsic::experimental_vector_reduce_smax:
5832   case Intrinsic::experimental_vector_reduce_smin:
5833   case Intrinsic::experimental_vector_reduce_umax:
5834   case Intrinsic::experimental_vector_reduce_umin:
5835   case Intrinsic::experimental_vector_reduce_fmax:
5836   case Intrinsic::experimental_vector_reduce_fmin: {
5837     visitVectorReduce(I, Intrinsic);
5838     return nullptr;
5839   }
5840 
5841   }
5842 }
5843 
5844 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
5845     const ConstrainedFPIntrinsic &FPI) {
5846   SDLoc sdl = getCurSDLoc();
5847   unsigned Opcode;
5848   switch (FPI.getIntrinsicID()) {
5849   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5850   case Intrinsic::experimental_constrained_fadd:
5851     Opcode = ISD::STRICT_FADD;
5852     break;
5853   case Intrinsic::experimental_constrained_fsub:
5854     Opcode = ISD::STRICT_FSUB;
5855     break;
5856   case Intrinsic::experimental_constrained_fmul:
5857     Opcode = ISD::STRICT_FMUL;
5858     break;
5859   case Intrinsic::experimental_constrained_fdiv:
5860     Opcode = ISD::STRICT_FDIV;
5861     break;
5862   case Intrinsic::experimental_constrained_frem:
5863     Opcode = ISD::STRICT_FREM;
5864     break;
5865   case Intrinsic::experimental_constrained_sqrt:
5866     Opcode = ISD::STRICT_FSQRT;
5867     break;
5868   case Intrinsic::experimental_constrained_pow:
5869     Opcode = ISD::STRICT_FPOW;
5870     break;
5871   case Intrinsic::experimental_constrained_powi:
5872     Opcode = ISD::STRICT_FPOWI;
5873     break;
5874   case Intrinsic::experimental_constrained_sin:
5875     Opcode = ISD::STRICT_FSIN;
5876     break;
5877   case Intrinsic::experimental_constrained_cos:
5878     Opcode = ISD::STRICT_FCOS;
5879     break;
5880   case Intrinsic::experimental_constrained_exp:
5881     Opcode = ISD::STRICT_FEXP;
5882     break;
5883   case Intrinsic::experimental_constrained_exp2:
5884     Opcode = ISD::STRICT_FEXP2;
5885     break;
5886   case Intrinsic::experimental_constrained_log:
5887     Opcode = ISD::STRICT_FLOG;
5888     break;
5889   case Intrinsic::experimental_constrained_log10:
5890     Opcode = ISD::STRICT_FLOG10;
5891     break;
5892   case Intrinsic::experimental_constrained_log2:
5893     Opcode = ISD::STRICT_FLOG2;
5894     break;
5895   case Intrinsic::experimental_constrained_rint:
5896     Opcode = ISD::STRICT_FRINT;
5897     break;
5898   case Intrinsic::experimental_constrained_nearbyint:
5899     Opcode = ISD::STRICT_FNEARBYINT;
5900     break;
5901   }
5902   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5903   SDValue Chain = getRoot();
5904   SmallVector<EVT, 4> ValueVTs;
5905   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
5906   ValueVTs.push_back(MVT::Other); // Out chain
5907 
5908   SDVTList VTs = DAG.getVTList(ValueVTs);
5909   SDValue Result;
5910   if (FPI.isUnaryOp())
5911     Result = DAG.getNode(Opcode, sdl, VTs,
5912                          { Chain, getValue(FPI.getArgOperand(0)) });
5913   else
5914     Result = DAG.getNode(Opcode, sdl, VTs,
5915                          { Chain, getValue(FPI.getArgOperand(0)),
5916                            getValue(FPI.getArgOperand(1))  });
5917 
5918   assert(Result.getNode()->getNumValues() == 2);
5919   SDValue OutChain = Result.getValue(1);
5920   DAG.setRoot(OutChain);
5921   SDValue FPResult = Result.getValue(0);
5922   setValue(&FPI, FPResult);
5923 }
5924 
5925 std::pair<SDValue, SDValue>
5926 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5927                                     const BasicBlock *EHPadBB) {
5928   MachineFunction &MF = DAG.getMachineFunction();
5929   MachineModuleInfo &MMI = MF.getMMI();
5930   MCSymbol *BeginLabel = nullptr;
5931 
5932   if (EHPadBB) {
5933     // Insert a label before the invoke call to mark the try range.  This can be
5934     // used to detect deletion of the invoke via the MachineModuleInfo.
5935     BeginLabel = MMI.getContext().createTempSymbol();
5936 
5937     // For SjLj, keep track of which landing pads go with which invokes
5938     // so as to maintain the ordering of pads in the LSDA.
5939     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5940     if (CallSiteIndex) {
5941       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5942       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5943 
5944       // Now that the call site is handled, stop tracking it.
5945       MMI.setCurrentCallSite(0);
5946     }
5947 
5948     // Both PendingLoads and PendingExports must be flushed here;
5949     // this call might not return.
5950     (void)getRoot();
5951     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5952 
5953     CLI.setChain(getRoot());
5954   }
5955   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5956   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5957 
5958   assert((CLI.IsTailCall || Result.second.getNode()) &&
5959          "Non-null chain expected with non-tail call!");
5960   assert((Result.second.getNode() || !Result.first.getNode()) &&
5961          "Null value expected with tail call!");
5962 
5963   if (!Result.second.getNode()) {
5964     // As a special case, a null chain means that a tail call has been emitted
5965     // and the DAG root is already updated.
5966     HasTailCall = true;
5967 
5968     // Since there's no actual continuation from this block, nothing can be
5969     // relying on us setting vregs for them.
5970     PendingExports.clear();
5971   } else {
5972     DAG.setRoot(Result.second);
5973   }
5974 
5975   if (EHPadBB) {
5976     // Insert a label at the end of the invoke call to mark the try range.  This
5977     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5978     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5979     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5980 
5981     // Inform MachineModuleInfo of range.
5982     if (MF.hasEHFunclets()) {
5983       assert(CLI.CS);
5984       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5985       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5986                                 BeginLabel, EndLabel);
5987     } else {
5988       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5989     }
5990   }
5991 
5992   return Result;
5993 }
5994 
5995 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5996                                       bool isTailCall,
5997                                       const BasicBlock *EHPadBB) {
5998   auto &DL = DAG.getDataLayout();
5999   FunctionType *FTy = CS.getFunctionType();
6000   Type *RetTy = CS.getType();
6001 
6002   TargetLowering::ArgListTy Args;
6003   Args.reserve(CS.arg_size());
6004 
6005   const Value *SwiftErrorVal = nullptr;
6006   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6007 
6008   // We can't tail call inside a function with a swifterror argument. Lowering
6009   // does not support this yet. It would have to move into the swifterror
6010   // register before the call.
6011   auto *Caller = CS.getInstruction()->getParent()->getParent();
6012   if (TLI.supportSwiftError() &&
6013       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6014     isTailCall = false;
6015 
6016   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6017        i != e; ++i) {
6018     TargetLowering::ArgListEntry Entry;
6019     const Value *V = *i;
6020 
6021     // Skip empty types
6022     if (V->getType()->isEmptyTy())
6023       continue;
6024 
6025     SDValue ArgNode = getValue(V);
6026     Entry.Node = ArgNode; Entry.Ty = V->getType();
6027 
6028     Entry.setAttributes(&CS, i - CS.arg_begin());
6029 
6030     // Use swifterror virtual register as input to the call.
6031     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6032       SwiftErrorVal = V;
6033       // We find the virtual register for the actual swifterror argument.
6034       // Instead of using the Value, we use the virtual register instead.
6035       Entry.Node = DAG.getRegister(FuncInfo
6036                                        .getOrCreateSwiftErrorVRegUseAt(
6037                                            CS.getInstruction(), FuncInfo.MBB, V)
6038                                        .first,
6039                                    EVT(TLI.getPointerTy(DL)));
6040     }
6041 
6042     Args.push_back(Entry);
6043 
6044     // If we have an explicit sret argument that is an Instruction, (i.e., it
6045     // might point to function-local memory), we can't meaningfully tail-call.
6046     if (Entry.IsSRet && isa<Instruction>(V))
6047       isTailCall = false;
6048   }
6049 
6050   // Check if target-independent constraints permit a tail call here.
6051   // Target-dependent constraints are checked within TLI->LowerCallTo.
6052   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6053     isTailCall = false;
6054 
6055   // Disable tail calls if there is an swifterror argument. Targets have not
6056   // been updated to support tail calls.
6057   if (TLI.supportSwiftError() && SwiftErrorVal)
6058     isTailCall = false;
6059 
6060   TargetLowering::CallLoweringInfo CLI(DAG);
6061   CLI.setDebugLoc(getCurSDLoc())
6062       .setChain(getRoot())
6063       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6064       .setTailCall(isTailCall)
6065       .setConvergent(CS.isConvergent());
6066   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6067 
6068   if (Result.first.getNode()) {
6069     const Instruction *Inst = CS.getInstruction();
6070     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6071     setValue(Inst, Result.first);
6072   }
6073 
6074   // The last element of CLI.InVals has the SDValue for swifterror return.
6075   // Here we copy it to a virtual register and update SwiftErrorMap for
6076   // book-keeping.
6077   if (SwiftErrorVal && TLI.supportSwiftError()) {
6078     // Get the last element of InVals.
6079     SDValue Src = CLI.InVals.back();
6080     unsigned VReg; bool CreatedVReg;
6081     std::tie(VReg, CreatedVReg) =
6082         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6083     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6084     // We update the virtual register for the actual swifterror argument.
6085     if (CreatedVReg)
6086       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6087     DAG.setRoot(CopyNode);
6088   }
6089 }
6090 
6091 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6092                              SelectionDAGBuilder &Builder) {
6093 
6094   // Check to see if this load can be trivially constant folded, e.g. if the
6095   // input is from a string literal.
6096   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6097     // Cast pointer to the type we really want to load.
6098     Type *LoadTy =
6099         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6100     if (LoadVT.isVector())
6101       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6102 
6103     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6104                                          PointerType::getUnqual(LoadTy));
6105 
6106     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6107             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6108       return Builder.getValue(LoadCst);
6109   }
6110 
6111   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6112   // still constant memory, the input chain can be the entry node.
6113   SDValue Root;
6114   bool ConstantMemory = false;
6115 
6116   // Do not serialize (non-volatile) loads of constant memory with anything.
6117   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6118     Root = Builder.DAG.getEntryNode();
6119     ConstantMemory = true;
6120   } else {
6121     // Do not serialize non-volatile loads against each other.
6122     Root = Builder.DAG.getRoot();
6123   }
6124 
6125   SDValue Ptr = Builder.getValue(PtrVal);
6126   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6127                                         Ptr, MachinePointerInfo(PtrVal),
6128                                         /* Alignment = */ 1);
6129 
6130   if (!ConstantMemory)
6131     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6132   return LoadVal;
6133 }
6134 
6135 /// Record the value for an instruction that produces an integer result,
6136 /// converting the type where necessary.
6137 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6138                                                   SDValue Value,
6139                                                   bool IsSigned) {
6140   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6141                                                     I.getType(), true);
6142   if (IsSigned)
6143     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6144   else
6145     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6146   setValue(&I, Value);
6147 }
6148 
6149 /// See if we can lower a memcmp call into an optimized form. If so, return
6150 /// true and lower it. Otherwise return false, and it will be lowered like a
6151 /// normal call.
6152 /// The caller already checked that \p I calls the appropriate LibFunc with a
6153 /// correct prototype.
6154 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6155   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6156   const Value *Size = I.getArgOperand(2);
6157   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6158   if (CSize && CSize->getZExtValue() == 0) {
6159     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6160                                                           I.getType(), true);
6161     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6162     return true;
6163   }
6164 
6165   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6166   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6167       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6168       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6169   if (Res.first.getNode()) {
6170     processIntegerCallValue(I, Res.first, true);
6171     PendingLoads.push_back(Res.second);
6172     return true;
6173   }
6174 
6175   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6176   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6177   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6178     return false;
6179 
6180   // If the target has a fast compare for the given size, it will return a
6181   // preferred load type for that size. Require that the load VT is legal and
6182   // that the target supports unaligned loads of that type. Otherwise, return
6183   // INVALID.
6184   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6185     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6186     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6187     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6188       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6189       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6190       // TODO: Check alignment of src and dest ptrs.
6191       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6192       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6193       if (!TLI.isTypeLegal(LVT) ||
6194           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6195           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6196         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6197     }
6198 
6199     return LVT;
6200   };
6201 
6202   // This turns into unaligned loads. We only do this if the target natively
6203   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6204   // we'll only produce a small number of byte loads.
6205   MVT LoadVT;
6206   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6207   switch (NumBitsToCompare) {
6208   default:
6209     return false;
6210   case 16:
6211     LoadVT = MVT::i16;
6212     break;
6213   case 32:
6214     LoadVT = MVT::i32;
6215     break;
6216   case 64:
6217   case 128:
6218   case 256:
6219     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6220     break;
6221   }
6222 
6223   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6224     return false;
6225 
6226   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6227   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6228 
6229   // Bitcast to a wide integer type if the loads are vectors.
6230   if (LoadVT.isVector()) {
6231     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6232     LoadL = DAG.getBitcast(CmpVT, LoadL);
6233     LoadR = DAG.getBitcast(CmpVT, LoadR);
6234   }
6235 
6236   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6237   processIntegerCallValue(I, Cmp, false);
6238   return true;
6239 }
6240 
6241 /// See if we can lower a memchr call into an optimized form. If so, return
6242 /// true and lower it. Otherwise return false, and it will be lowered like a
6243 /// normal call.
6244 /// The caller already checked that \p I calls the appropriate LibFunc with a
6245 /// correct prototype.
6246 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6247   const Value *Src = I.getArgOperand(0);
6248   const Value *Char = I.getArgOperand(1);
6249   const Value *Length = I.getArgOperand(2);
6250 
6251   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6252   std::pair<SDValue, SDValue> Res =
6253     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6254                                 getValue(Src), getValue(Char), getValue(Length),
6255                                 MachinePointerInfo(Src));
6256   if (Res.first.getNode()) {
6257     setValue(&I, Res.first);
6258     PendingLoads.push_back(Res.second);
6259     return true;
6260   }
6261 
6262   return false;
6263 }
6264 
6265 /// See if we can lower a mempcpy call into an optimized form. If so, return
6266 /// true and lower it. Otherwise return false, and it will be lowered like a
6267 /// normal call.
6268 /// The caller already checked that \p I calls the appropriate LibFunc with a
6269 /// correct prototype.
6270 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6271   SDValue Dst = getValue(I.getArgOperand(0));
6272   SDValue Src = getValue(I.getArgOperand(1));
6273   SDValue Size = getValue(I.getArgOperand(2));
6274 
6275   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6276   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6277   unsigned Align = std::min(DstAlign, SrcAlign);
6278   if (Align == 0) // Alignment of one or both could not be inferred.
6279     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6280 
6281   bool isVol = false;
6282   SDLoc sdl = getCurSDLoc();
6283 
6284   // In the mempcpy context we need to pass in a false value for isTailCall
6285   // because the return pointer needs to be adjusted by the size of
6286   // the copied memory.
6287   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6288                              false, /*isTailCall=*/false,
6289                              MachinePointerInfo(I.getArgOperand(0)),
6290                              MachinePointerInfo(I.getArgOperand(1)));
6291   assert(MC.getNode() != nullptr &&
6292          "** memcpy should not be lowered as TailCall in mempcpy context **");
6293   DAG.setRoot(MC);
6294 
6295   // Check if Size needs to be truncated or extended.
6296   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6297 
6298   // Adjust return pointer to point just past the last dst byte.
6299   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6300                                     Dst, Size);
6301   setValue(&I, DstPlusSize);
6302   return true;
6303 }
6304 
6305 /// See if we can lower a strcpy call into an optimized form.  If so, return
6306 /// true and lower it, otherwise return false and it will be lowered like a
6307 /// normal call.
6308 /// The caller already checked that \p I calls the appropriate LibFunc with a
6309 /// correct prototype.
6310 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6311   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6312 
6313   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6314   std::pair<SDValue, SDValue> Res =
6315     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6316                                 getValue(Arg0), getValue(Arg1),
6317                                 MachinePointerInfo(Arg0),
6318                                 MachinePointerInfo(Arg1), isStpcpy);
6319   if (Res.first.getNode()) {
6320     setValue(&I, Res.first);
6321     DAG.setRoot(Res.second);
6322     return true;
6323   }
6324 
6325   return false;
6326 }
6327 
6328 /// See if we can lower a strcmp call into an optimized form.  If so, return
6329 /// true and lower it, otherwise return false and it will be lowered like a
6330 /// normal call.
6331 /// The caller already checked that \p I calls the appropriate LibFunc with a
6332 /// correct prototype.
6333 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6334   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6335 
6336   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6337   std::pair<SDValue, SDValue> Res =
6338     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6339                                 getValue(Arg0), getValue(Arg1),
6340                                 MachinePointerInfo(Arg0),
6341                                 MachinePointerInfo(Arg1));
6342   if (Res.first.getNode()) {
6343     processIntegerCallValue(I, Res.first, true);
6344     PendingLoads.push_back(Res.second);
6345     return true;
6346   }
6347 
6348   return false;
6349 }
6350 
6351 /// See if we can lower a strlen call into an optimized form.  If so, return
6352 /// true and lower it, otherwise return false and it will be lowered like a
6353 /// normal call.
6354 /// The caller already checked that \p I calls the appropriate LibFunc with a
6355 /// correct prototype.
6356 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6357   const Value *Arg0 = I.getArgOperand(0);
6358 
6359   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6360   std::pair<SDValue, SDValue> Res =
6361     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6362                                 getValue(Arg0), MachinePointerInfo(Arg0));
6363   if (Res.first.getNode()) {
6364     processIntegerCallValue(I, Res.first, false);
6365     PendingLoads.push_back(Res.second);
6366     return true;
6367   }
6368 
6369   return false;
6370 }
6371 
6372 /// See if we can lower a strnlen call into an optimized form.  If so, return
6373 /// true and lower it, otherwise return false and it will be lowered like a
6374 /// normal call.
6375 /// The caller already checked that \p I calls the appropriate LibFunc with a
6376 /// correct prototype.
6377 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6378   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6379 
6380   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6381   std::pair<SDValue, SDValue> Res =
6382     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6383                                  getValue(Arg0), getValue(Arg1),
6384                                  MachinePointerInfo(Arg0));
6385   if (Res.first.getNode()) {
6386     processIntegerCallValue(I, Res.first, false);
6387     PendingLoads.push_back(Res.second);
6388     return true;
6389   }
6390 
6391   return false;
6392 }
6393 
6394 /// See if we can lower a unary floating-point operation into an SDNode with
6395 /// the specified Opcode.  If so, return true and lower it, otherwise return
6396 /// false and it will be lowered like a normal call.
6397 /// The caller already checked that \p I calls the appropriate LibFunc with a
6398 /// correct prototype.
6399 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6400                                               unsigned Opcode) {
6401   // We already checked this call's prototype; verify it doesn't modify errno.
6402   if (!I.onlyReadsMemory())
6403     return false;
6404 
6405   SDValue Tmp = getValue(I.getArgOperand(0));
6406   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6407   return true;
6408 }
6409 
6410 /// See if we can lower a binary floating-point operation into an SDNode with
6411 /// the specified Opcode. If so, return true and lower it. Otherwise return
6412 /// false, and it will be lowered like a normal call.
6413 /// The caller already checked that \p I calls the appropriate LibFunc with a
6414 /// correct prototype.
6415 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6416                                                unsigned Opcode) {
6417   // We already checked this call's prototype; verify it doesn't modify errno.
6418   if (!I.onlyReadsMemory())
6419     return false;
6420 
6421   SDValue Tmp0 = getValue(I.getArgOperand(0));
6422   SDValue Tmp1 = getValue(I.getArgOperand(1));
6423   EVT VT = Tmp0.getValueType();
6424   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6425   return true;
6426 }
6427 
6428 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6429   // Handle inline assembly differently.
6430   if (isa<InlineAsm>(I.getCalledValue())) {
6431     visitInlineAsm(&I);
6432     return;
6433   }
6434 
6435   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6436   computeUsesVAFloatArgument(I, MMI);
6437 
6438   const char *RenameFn = nullptr;
6439   if (Function *F = I.getCalledFunction()) {
6440     if (F->isDeclaration()) {
6441       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6442         if (unsigned IID = II->getIntrinsicID(F)) {
6443           RenameFn = visitIntrinsicCall(I, IID);
6444           if (!RenameFn)
6445             return;
6446         }
6447       }
6448       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6449         RenameFn = visitIntrinsicCall(I, IID);
6450         if (!RenameFn)
6451           return;
6452       }
6453     }
6454 
6455     // Check for well-known libc/libm calls.  If the function is internal, it
6456     // can't be a library call.  Don't do the check if marked as nobuiltin for
6457     // some reason.
6458     LibFunc Func;
6459     if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
6460         LibInfo->getLibFunc(*F, Func) &&
6461         LibInfo->hasOptimizedCodeGen(Func)) {
6462       switch (Func) {
6463       default: break;
6464       case LibFunc_copysign:
6465       case LibFunc_copysignf:
6466       case LibFunc_copysignl:
6467         // We already checked this call's prototype; verify it doesn't modify
6468         // errno.
6469         if (I.onlyReadsMemory()) {
6470           SDValue LHS = getValue(I.getArgOperand(0));
6471           SDValue RHS = getValue(I.getArgOperand(1));
6472           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6473                                    LHS.getValueType(), LHS, RHS));
6474           return;
6475         }
6476         break;
6477       case LibFunc_fabs:
6478       case LibFunc_fabsf:
6479       case LibFunc_fabsl:
6480         if (visitUnaryFloatCall(I, ISD::FABS))
6481           return;
6482         break;
6483       case LibFunc_fmin:
6484       case LibFunc_fminf:
6485       case LibFunc_fminl:
6486         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6487           return;
6488         break;
6489       case LibFunc_fmax:
6490       case LibFunc_fmaxf:
6491       case LibFunc_fmaxl:
6492         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6493           return;
6494         break;
6495       case LibFunc_sin:
6496       case LibFunc_sinf:
6497       case LibFunc_sinl:
6498         if (visitUnaryFloatCall(I, ISD::FSIN))
6499           return;
6500         break;
6501       case LibFunc_cos:
6502       case LibFunc_cosf:
6503       case LibFunc_cosl:
6504         if (visitUnaryFloatCall(I, ISD::FCOS))
6505           return;
6506         break;
6507       case LibFunc_sqrt:
6508       case LibFunc_sqrtf:
6509       case LibFunc_sqrtl:
6510       case LibFunc_sqrt_finite:
6511       case LibFunc_sqrtf_finite:
6512       case LibFunc_sqrtl_finite:
6513         if (visitUnaryFloatCall(I, ISD::FSQRT))
6514           return;
6515         break;
6516       case LibFunc_floor:
6517       case LibFunc_floorf:
6518       case LibFunc_floorl:
6519         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6520           return;
6521         break;
6522       case LibFunc_nearbyint:
6523       case LibFunc_nearbyintf:
6524       case LibFunc_nearbyintl:
6525         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6526           return;
6527         break;
6528       case LibFunc_ceil:
6529       case LibFunc_ceilf:
6530       case LibFunc_ceill:
6531         if (visitUnaryFloatCall(I, ISD::FCEIL))
6532           return;
6533         break;
6534       case LibFunc_rint:
6535       case LibFunc_rintf:
6536       case LibFunc_rintl:
6537         if (visitUnaryFloatCall(I, ISD::FRINT))
6538           return;
6539         break;
6540       case LibFunc_round:
6541       case LibFunc_roundf:
6542       case LibFunc_roundl:
6543         if (visitUnaryFloatCall(I, ISD::FROUND))
6544           return;
6545         break;
6546       case LibFunc_trunc:
6547       case LibFunc_truncf:
6548       case LibFunc_truncl:
6549         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6550           return;
6551         break;
6552       case LibFunc_log2:
6553       case LibFunc_log2f:
6554       case LibFunc_log2l:
6555         if (visitUnaryFloatCall(I, ISD::FLOG2))
6556           return;
6557         break;
6558       case LibFunc_exp2:
6559       case LibFunc_exp2f:
6560       case LibFunc_exp2l:
6561         if (visitUnaryFloatCall(I, ISD::FEXP2))
6562           return;
6563         break;
6564       case LibFunc_memcmp:
6565         if (visitMemCmpCall(I))
6566           return;
6567         break;
6568       case LibFunc_mempcpy:
6569         if (visitMemPCpyCall(I))
6570           return;
6571         break;
6572       case LibFunc_memchr:
6573         if (visitMemChrCall(I))
6574           return;
6575         break;
6576       case LibFunc_strcpy:
6577         if (visitStrCpyCall(I, false))
6578           return;
6579         break;
6580       case LibFunc_stpcpy:
6581         if (visitStrCpyCall(I, true))
6582           return;
6583         break;
6584       case LibFunc_strcmp:
6585         if (visitStrCmpCall(I))
6586           return;
6587         break;
6588       case LibFunc_strlen:
6589         if (visitStrLenCall(I))
6590           return;
6591         break;
6592       case LibFunc_strnlen:
6593         if (visitStrNLenCall(I))
6594           return;
6595         break;
6596       }
6597     }
6598   }
6599 
6600   SDValue Callee;
6601   if (!RenameFn)
6602     Callee = getValue(I.getCalledValue());
6603   else
6604     Callee = DAG.getExternalSymbol(
6605         RenameFn,
6606         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6607 
6608   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6609   // have to do anything here to lower funclet bundles.
6610   assert(!I.hasOperandBundlesOtherThan(
6611              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6612          "Cannot lower calls with arbitrary operand bundles!");
6613 
6614   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6615     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6616   else
6617     // Check if we can potentially perform a tail call. More detailed checking
6618     // is be done within LowerCallTo, after more information about the call is
6619     // known.
6620     LowerCallTo(&I, Callee, I.isTailCall());
6621 }
6622 
6623 namespace {
6624 
6625 /// AsmOperandInfo - This contains information for each constraint that we are
6626 /// lowering.
6627 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6628 public:
6629   /// CallOperand - If this is the result output operand or a clobber
6630   /// this is null, otherwise it is the incoming operand to the CallInst.
6631   /// This gets modified as the asm is processed.
6632   SDValue CallOperand;
6633 
6634   /// AssignedRegs - If this is a register or register class operand, this
6635   /// contains the set of register corresponding to the operand.
6636   RegsForValue AssignedRegs;
6637 
6638   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6639     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6640   }
6641 
6642   /// Whether or not this operand accesses memory
6643   bool hasMemory(const TargetLowering &TLI) const {
6644     // Indirect operand accesses access memory.
6645     if (isIndirect)
6646       return true;
6647 
6648     for (const auto &Code : Codes)
6649       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6650         return true;
6651 
6652     return false;
6653   }
6654 
6655   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6656   /// corresponds to.  If there is no Value* for this operand, it returns
6657   /// MVT::Other.
6658   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6659                            const DataLayout &DL) const {
6660     if (!CallOperandVal) return MVT::Other;
6661 
6662     if (isa<BasicBlock>(CallOperandVal))
6663       return TLI.getPointerTy(DL);
6664 
6665     llvm::Type *OpTy = CallOperandVal->getType();
6666 
6667     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6668     // If this is an indirect operand, the operand is a pointer to the
6669     // accessed type.
6670     if (isIndirect) {
6671       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6672       if (!PtrTy)
6673         report_fatal_error("Indirect operand for inline asm not a pointer!");
6674       OpTy = PtrTy->getElementType();
6675     }
6676 
6677     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6678     if (StructType *STy = dyn_cast<StructType>(OpTy))
6679       if (STy->getNumElements() == 1)
6680         OpTy = STy->getElementType(0);
6681 
6682     // If OpTy is not a single value, it may be a struct/union that we
6683     // can tile with integers.
6684     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6685       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6686       switch (BitSize) {
6687       default: break;
6688       case 1:
6689       case 8:
6690       case 16:
6691       case 32:
6692       case 64:
6693       case 128:
6694         OpTy = IntegerType::get(Context, BitSize);
6695         break;
6696       }
6697     }
6698 
6699     return TLI.getValueType(DL, OpTy, true);
6700   }
6701 };
6702 
6703 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6704 
6705 } // end anonymous namespace
6706 
6707 /// Make sure that the output operand \p OpInfo and its corresponding input
6708 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
6709 /// out).
6710 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
6711                                SDISelAsmOperandInfo &MatchingOpInfo,
6712                                SelectionDAG &DAG) {
6713   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
6714     return;
6715 
6716   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6717   const auto &TLI = DAG.getTargetLoweringInfo();
6718 
6719   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6720       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6721                                        OpInfo.ConstraintVT);
6722   std::pair<unsigned, const TargetRegisterClass *> InputRC =
6723       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
6724                                        MatchingOpInfo.ConstraintVT);
6725   if ((OpInfo.ConstraintVT.isInteger() !=
6726        MatchingOpInfo.ConstraintVT.isInteger()) ||
6727       (MatchRC.second != InputRC.second)) {
6728     // FIXME: error out in a more elegant fashion
6729     report_fatal_error("Unsupported asm: input constraint"
6730                        " with a matching output constraint of"
6731                        " incompatible type!");
6732   }
6733   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
6734 }
6735 
6736 /// Get a direct memory input to behave well as an indirect operand.
6737 /// This may introduce stores, hence the need for a \p Chain.
6738 /// \return The (possibly updated) chain.
6739 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
6740                                         SDISelAsmOperandInfo &OpInfo,
6741                                         SelectionDAG &DAG) {
6742   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6743 
6744   // If we don't have an indirect input, put it in the constpool if we can,
6745   // otherwise spill it to a stack slot.
6746   // TODO: This isn't quite right. We need to handle these according to
6747   // the addressing mode that the constraint wants. Also, this may take
6748   // an additional register for the computation and we don't want that
6749   // either.
6750 
6751   // If the operand is a float, integer, or vector constant, spill to a
6752   // constant pool entry to get its address.
6753   const Value *OpVal = OpInfo.CallOperandVal;
6754   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6755       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6756     OpInfo.CallOperand = DAG.getConstantPool(
6757         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6758     return Chain;
6759   }
6760 
6761   // Otherwise, create a stack slot and emit a store to it before the asm.
6762   Type *Ty = OpVal->getType();
6763   auto &DL = DAG.getDataLayout();
6764   uint64_t TySize = DL.getTypeAllocSize(Ty);
6765   unsigned Align = DL.getPrefTypeAlignment(Ty);
6766   MachineFunction &MF = DAG.getMachineFunction();
6767   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
6768   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
6769   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
6770                        MachinePointerInfo::getFixedStack(MF, SSFI));
6771   OpInfo.CallOperand = StackSlot;
6772 
6773   return Chain;
6774 }
6775 
6776 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6777 /// specified operand.  We prefer to assign virtual registers, to allow the
6778 /// register allocator to handle the assignment process.  However, if the asm
6779 /// uses features that we can't model on machineinstrs, we have SDISel do the
6780 /// allocation.  This produces generally horrible, but correct, code.
6781 ///
6782 ///   OpInfo describes the operand.
6783 ///
6784 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
6785                                  const SDLoc &DL,
6786                                  SDISelAsmOperandInfo &OpInfo) {
6787   LLVMContext &Context = *DAG.getContext();
6788 
6789   MachineFunction &MF = DAG.getMachineFunction();
6790   SmallVector<unsigned, 4> Regs;
6791   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6792 
6793   // If this is a constraint for a single physreg, or a constraint for a
6794   // register class, find it.
6795   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6796       TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode,
6797                                        OpInfo.ConstraintVT);
6798 
6799   unsigned NumRegs = 1;
6800   if (OpInfo.ConstraintVT != MVT::Other) {
6801     // If this is a FP input in an integer register (or visa versa) insert a bit
6802     // cast of the input value.  More generally, handle any case where the input
6803     // value disagrees with the register class we plan to stick this in.
6804     if (OpInfo.Type == InlineAsm::isInput && PhysReg.second &&
6805         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
6806       // Try to convert to the first EVT that the reg class contains.  If the
6807       // types are identical size, use a bitcast to convert (e.g. two differing
6808       // vector types).
6809       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
6810       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6811         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6812                                          RegVT, OpInfo.CallOperand);
6813         OpInfo.ConstraintVT = RegVT;
6814       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6815         // If the input is a FP value and we want it in FP registers, do a
6816         // bitcast to the corresponding integer type.  This turns an f64 value
6817         // into i64, which can be passed with two i32 values on a 32-bit
6818         // machine.
6819         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6820         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6821                                          RegVT, OpInfo.CallOperand);
6822         OpInfo.ConstraintVT = RegVT;
6823       }
6824     }
6825 
6826     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6827   }
6828 
6829   MVT RegVT;
6830   EVT ValueVT = OpInfo.ConstraintVT;
6831 
6832   // If this is a constraint for a specific physical register, like {r17},
6833   // assign it now.
6834   if (unsigned AssignedReg = PhysReg.first) {
6835     const TargetRegisterClass *RC = PhysReg.second;
6836     if (OpInfo.ConstraintVT == MVT::Other)
6837       ValueVT = *TRI.legalclasstypes_begin(*RC);
6838 
6839     // Get the actual register value type.  This is important, because the user
6840     // may have asked for (e.g.) the AX register in i32 type.  We need to
6841     // remember that AX is actually i16 to get the right extension.
6842     RegVT = *TRI.legalclasstypes_begin(*RC);
6843 
6844     // This is a explicit reference to a physical register.
6845     Regs.push_back(AssignedReg);
6846 
6847     // If this is an expanded reference, add the rest of the regs to Regs.
6848     if (NumRegs != 1) {
6849       TargetRegisterClass::iterator I = RC->begin();
6850       for (; *I != AssignedReg; ++I)
6851         assert(I != RC->end() && "Didn't find reg!");
6852 
6853       // Already added the first reg.
6854       --NumRegs; ++I;
6855       for (; NumRegs; --NumRegs, ++I) {
6856         assert(I != RC->end() && "Ran out of registers to allocate!");
6857         Regs.push_back(*I);
6858       }
6859     }
6860 
6861     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6862     return;
6863   }
6864 
6865   // Otherwise, if this was a reference to an LLVM register class, create vregs
6866   // for this reference.
6867   if (const TargetRegisterClass *RC = PhysReg.second) {
6868     RegVT = *TRI.legalclasstypes_begin(*RC);
6869     if (OpInfo.ConstraintVT == MVT::Other)
6870       ValueVT = RegVT;
6871 
6872     // Create the appropriate number of virtual registers.
6873     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6874     for (; NumRegs; --NumRegs)
6875       Regs.push_back(RegInfo.createVirtualRegister(RC));
6876 
6877     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6878     return;
6879   }
6880 
6881   // Otherwise, we couldn't allocate enough registers for this.
6882 }
6883 
6884 static unsigned
6885 findMatchingInlineAsmOperand(unsigned OperandNo,
6886                              const std::vector<SDValue> &AsmNodeOperands) {
6887   // Scan until we find the definition we already emitted of this operand.
6888   unsigned CurOp = InlineAsm::Op_FirstOperand;
6889   for (; OperandNo; --OperandNo) {
6890     // Advance to the next operand.
6891     unsigned OpFlag =
6892         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6893     assert((InlineAsm::isRegDefKind(OpFlag) ||
6894             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6895             InlineAsm::isMemKind(OpFlag)) &&
6896            "Skipped past definitions?");
6897     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
6898   }
6899   return CurOp;
6900 }
6901 
6902 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
6903 /// \return true if it has succeeded, false otherwise
6904 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
6905                               MVT RegVT, SelectionDAG &DAG) {
6906   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6907   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6908   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
6909     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6910       Regs.push_back(RegInfo.createVirtualRegister(RC));
6911     else
6912       return false;
6913   }
6914   return true;
6915 }
6916 
6917 class ExtraFlags {
6918   unsigned Flags = 0;
6919 
6920 public:
6921   explicit ExtraFlags(ImmutableCallSite CS) {
6922     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6923     if (IA->hasSideEffects())
6924       Flags |= InlineAsm::Extra_HasSideEffects;
6925     if (IA->isAlignStack())
6926       Flags |= InlineAsm::Extra_IsAlignStack;
6927     if (CS.isConvergent())
6928       Flags |= InlineAsm::Extra_IsConvergent;
6929     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6930   }
6931 
6932   void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) {
6933     // Ideally, we would only check against memory constraints.  However, the
6934     // meaning of an Other constraint can be target-specific and we can't easily
6935     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6936     // for Other constraints as well.
6937     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6938         OpInfo.ConstraintType == TargetLowering::C_Other) {
6939       if (OpInfo.Type == InlineAsm::isInput)
6940         Flags |= InlineAsm::Extra_MayLoad;
6941       else if (OpInfo.Type == InlineAsm::isOutput)
6942         Flags |= InlineAsm::Extra_MayStore;
6943       else if (OpInfo.Type == InlineAsm::isClobber)
6944         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6945     }
6946   }
6947 
6948   unsigned get() const { return Flags; }
6949 };
6950 
6951 /// visitInlineAsm - Handle a call to an InlineAsm object.
6952 ///
6953 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6954   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6955 
6956   /// ConstraintOperands - Information about all of the constraints.
6957   SDISelAsmOperandInfoVector ConstraintOperands;
6958 
6959   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6960   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6961       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6962 
6963   bool hasMemory = false;
6964 
6965   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6966   ExtraFlags ExtraInfo(CS);
6967 
6968   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6969   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6970   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6971     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6972     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6973 
6974     MVT OpVT = MVT::Other;
6975 
6976     // Compute the value type for each operand.
6977     if (OpInfo.Type == InlineAsm::isInput ||
6978         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
6979       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6980 
6981       // Process the call argument. BasicBlocks are labels, currently appearing
6982       // only in asm's.
6983       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6984         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6985       } else {
6986         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6987       }
6988 
6989       OpVT =
6990           OpInfo
6991               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
6992               .getSimpleVT();
6993     }
6994 
6995     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
6996       // The return value of the call is this value.  As such, there is no
6997       // corresponding argument.
6998       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6999       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7000         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
7001                                       STy->getElementType(ResNo));
7002       } else {
7003         assert(ResNo == 0 && "Asm only has one result!");
7004         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7005       }
7006       ++ResNo;
7007     }
7008 
7009     OpInfo.ConstraintVT = OpVT;
7010 
7011     if (!hasMemory)
7012       hasMemory = OpInfo.hasMemory(TLI);
7013 
7014     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7015     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7016     auto TargetConstraint = TargetConstraints[i];
7017 
7018     // Compute the constraint code and ConstraintType to use.
7019     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7020 
7021     ExtraInfo.update(TargetConstraint);
7022   }
7023 
7024   SDValue Chain, Flag;
7025 
7026   // We won't need to flush pending loads if this asm doesn't touch
7027   // memory and is nonvolatile.
7028   if (hasMemory || IA->hasSideEffects())
7029     Chain = getRoot();
7030   else
7031     Chain = DAG.getRoot();
7032 
7033   // Second pass over the constraints: compute which constraint option to use
7034   // and assign registers to constraints that want a specific physreg.
7035   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7036     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7037 
7038     // If this is an output operand with a matching input operand, look up the
7039     // matching input. If their types mismatch, e.g. one is an integer, the
7040     // other is floating point, or their sizes are different, flag it as an
7041     // error.
7042     if (OpInfo.hasMatchingInput()) {
7043       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7044       patchMatchingInput(OpInfo, Input, DAG);
7045     }
7046 
7047     // Compute the constraint code and ConstraintType to use.
7048     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7049 
7050     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7051         OpInfo.Type == InlineAsm::isClobber)
7052       continue;
7053 
7054     // If this is a memory input, and if the operand is not indirect, do what we
7055     // need to to provide an address for the memory input.
7056     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7057         !OpInfo.isIndirect) {
7058       assert((OpInfo.isMultipleAlternative ||
7059               (OpInfo.Type == InlineAsm::isInput)) &&
7060              "Can only indirectify direct input operands!");
7061 
7062       // Memory operands really want the address of the value.
7063       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7064 
7065       // There is no longer a Value* corresponding to this operand.
7066       OpInfo.CallOperandVal = nullptr;
7067 
7068       // It is now an indirect operand.
7069       OpInfo.isIndirect = true;
7070     }
7071 
7072     // If this constraint is for a specific register, allocate it before
7073     // anything else.
7074     if (OpInfo.ConstraintType == TargetLowering::C_Register)
7075       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7076   }
7077 
7078   // Third pass - Loop over all of the operands, assigning virtual or physregs
7079   // to register class operands.
7080   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7081     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7082 
7083     // C_Register operands have already been allocated, Other/Memory don't need
7084     // to be.
7085     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7086       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7087   }
7088 
7089   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7090   std::vector<SDValue> AsmNodeOperands;
7091   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7092   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7093       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7094 
7095   // If we have a !srcloc metadata node associated with it, we want to attach
7096   // this to the ultimately generated inline asm machineinstr.  To do this, we
7097   // pass in the third operand as this (potentially null) inline asm MDNode.
7098   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7099   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7100 
7101   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7102   // bits as operand 3.
7103   AsmNodeOperands.push_back(DAG.getTargetConstant(
7104       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7105 
7106   // Loop over all of the inputs, copying the operand values into the
7107   // appropriate registers and processing the output regs.
7108   RegsForValue RetValRegs;
7109 
7110   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7111   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
7112 
7113   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7114     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7115 
7116     switch (OpInfo.Type) {
7117     case InlineAsm::isOutput: {
7118       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7119           OpInfo.ConstraintType != TargetLowering::C_Register) {
7120         // Memory output, or 'other' output (e.g. 'X' constraint).
7121         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7122 
7123         unsigned ConstraintID =
7124             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7125         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7126                "Failed to convert memory constraint code to constraint id.");
7127 
7128         // Add information to the INLINEASM node to know about this output.
7129         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7130         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7131         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7132                                                         MVT::i32));
7133         AsmNodeOperands.push_back(OpInfo.CallOperand);
7134         break;
7135       }
7136 
7137       // Otherwise, this is a register or register class output.
7138 
7139       // Copy the output from the appropriate register.  Find a register that
7140       // we can use.
7141       if (OpInfo.AssignedRegs.Regs.empty()) {
7142         emitInlineAsmError(
7143             CS, "couldn't allocate output register for constraint '" +
7144                     Twine(OpInfo.ConstraintCode) + "'");
7145         return;
7146       }
7147 
7148       // If this is an indirect operand, store through the pointer after the
7149       // asm.
7150       if (OpInfo.isIndirect) {
7151         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7152                                                       OpInfo.CallOperandVal));
7153       } else {
7154         // This is the result value of the call.
7155         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7156         // Concatenate this output onto the outputs list.
7157         RetValRegs.append(OpInfo.AssignedRegs);
7158       }
7159 
7160       // Add information to the INLINEASM node to know that this register is
7161       // set.
7162       OpInfo.AssignedRegs
7163           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7164                                     ? InlineAsm::Kind_RegDefEarlyClobber
7165                                     : InlineAsm::Kind_RegDef,
7166                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7167       break;
7168     }
7169     case InlineAsm::isInput: {
7170       SDValue InOperandVal = OpInfo.CallOperand;
7171 
7172       if (OpInfo.isMatchingInputConstraint()) {
7173         // If this is required to match an output register we have already set,
7174         // just use its register.
7175         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7176                                                   AsmNodeOperands);
7177         unsigned OpFlag =
7178           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7179         if (InlineAsm::isRegDefKind(OpFlag) ||
7180             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7181           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7182           if (OpInfo.isIndirect) {
7183             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7184             emitInlineAsmError(CS, "inline asm not supported yet:"
7185                                    " don't know how to handle tied "
7186                                    "indirect register inputs");
7187             return;
7188           }
7189 
7190           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7191           SmallVector<unsigned, 4> Regs;
7192 
7193           if (!createVirtualRegs(Regs,
7194                                  InlineAsm::getNumOperandRegisters(OpFlag),
7195                                  RegVT, DAG)) {
7196             emitInlineAsmError(CS, "inline asm error: This value type register "
7197                                    "class is not natively supported!");
7198             return;
7199           }
7200 
7201           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7202 
7203           SDLoc dl = getCurSDLoc();
7204           // Use the produced MatchedRegs object to
7205           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7206                                     CS.getInstruction());
7207           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7208                                            true, OpInfo.getMatchedOperand(), dl,
7209                                            DAG, AsmNodeOperands);
7210           break;
7211         }
7212 
7213         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7214         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7215                "Unexpected number of operands");
7216         // Add information to the INLINEASM node to know about this input.
7217         // See InlineAsm.h isUseOperandTiedToDef.
7218         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7219         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7220                                                     OpInfo.getMatchedOperand());
7221         AsmNodeOperands.push_back(DAG.getTargetConstant(
7222             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7223         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7224         break;
7225       }
7226 
7227       // Treat indirect 'X' constraint as memory.
7228       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7229           OpInfo.isIndirect)
7230         OpInfo.ConstraintType = TargetLowering::C_Memory;
7231 
7232       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7233         std::vector<SDValue> Ops;
7234         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7235                                           Ops, DAG);
7236         if (Ops.empty()) {
7237           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7238                                      Twine(OpInfo.ConstraintCode) + "'");
7239           return;
7240         }
7241 
7242         // Add information to the INLINEASM node to know about this input.
7243         unsigned ResOpType =
7244           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7245         AsmNodeOperands.push_back(DAG.getTargetConstant(
7246             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7247         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7248         break;
7249       }
7250 
7251       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7252         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7253         assert(InOperandVal.getValueType() ==
7254                    TLI.getPointerTy(DAG.getDataLayout()) &&
7255                "Memory operands expect pointer values");
7256 
7257         unsigned ConstraintID =
7258             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7259         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7260                "Failed to convert memory constraint code to constraint id.");
7261 
7262         // Add information to the INLINEASM node to know about this input.
7263         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7264         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7265         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7266                                                         getCurSDLoc(),
7267                                                         MVT::i32));
7268         AsmNodeOperands.push_back(InOperandVal);
7269         break;
7270       }
7271 
7272       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7273               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7274              "Unknown constraint type!");
7275 
7276       // TODO: Support this.
7277       if (OpInfo.isIndirect) {
7278         emitInlineAsmError(
7279             CS, "Don't know how to handle indirect register inputs yet "
7280                 "for constraint '" +
7281                     Twine(OpInfo.ConstraintCode) + "'");
7282         return;
7283       }
7284 
7285       // Copy the input into the appropriate registers.
7286       if (OpInfo.AssignedRegs.Regs.empty()) {
7287         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7288                                    Twine(OpInfo.ConstraintCode) + "'");
7289         return;
7290       }
7291 
7292       SDLoc dl = getCurSDLoc();
7293 
7294       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7295                                         Chain, &Flag, CS.getInstruction());
7296 
7297       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7298                                                dl, DAG, AsmNodeOperands);
7299       break;
7300     }
7301     case InlineAsm::isClobber: {
7302       // Add the clobbered value to the operand list, so that the register
7303       // allocator is aware that the physreg got clobbered.
7304       if (!OpInfo.AssignedRegs.Regs.empty())
7305         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7306                                                  false, 0, getCurSDLoc(), DAG,
7307                                                  AsmNodeOperands);
7308       break;
7309     }
7310     }
7311   }
7312 
7313   // Finish up input operands.  Set the input chain and add the flag last.
7314   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7315   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7316 
7317   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7318                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7319   Flag = Chain.getValue(1);
7320 
7321   // If this asm returns a register value, copy the result from that register
7322   // and set it as the value of the call.
7323   if (!RetValRegs.Regs.empty()) {
7324     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7325                                              Chain, &Flag, CS.getInstruction());
7326 
7327     // FIXME: Why don't we do this for inline asms with MRVs?
7328     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7329       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7330 
7331       // If any of the results of the inline asm is a vector, it may have the
7332       // wrong width/num elts.  This can happen for register classes that can
7333       // contain multiple different value types.  The preg or vreg allocated may
7334       // not have the same VT as was expected.  Convert it to the right type
7335       // with bit_convert.
7336       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7337         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7338                           ResultType, Val);
7339 
7340       } else if (ResultType != Val.getValueType() &&
7341                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7342         // If a result value was tied to an input value, the computed result may
7343         // have a wider width than the expected result.  Extract the relevant
7344         // portion.
7345         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7346       }
7347 
7348       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7349     }
7350 
7351     setValue(CS.getInstruction(), Val);
7352     // Don't need to use this as a chain in this case.
7353     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7354       return;
7355   }
7356 
7357   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
7358 
7359   // Process indirect outputs, first output all of the flagged copies out of
7360   // physregs.
7361   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7362     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7363     const Value *Ptr = IndirectStoresToEmit[i].second;
7364     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7365                                              Chain, &Flag, IA);
7366     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7367   }
7368 
7369   // Emit the non-flagged stores from the physregs.
7370   SmallVector<SDValue, 8> OutChains;
7371   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7372     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7373                                getValue(StoresToEmit[i].second),
7374                                MachinePointerInfo(StoresToEmit[i].second));
7375     OutChains.push_back(Val);
7376   }
7377 
7378   if (!OutChains.empty())
7379     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7380 
7381   DAG.setRoot(Chain);
7382 }
7383 
7384 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7385                                              const Twine &Message) {
7386   LLVMContext &Ctx = *DAG.getContext();
7387   Ctx.emitError(CS.getInstruction(), Message);
7388 
7389   // Make sure we leave the DAG in a valid state
7390   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7391   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7392   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7393 }
7394 
7395 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7396   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7397                           MVT::Other, getRoot(),
7398                           getValue(I.getArgOperand(0)),
7399                           DAG.getSrcValue(I.getArgOperand(0))));
7400 }
7401 
7402 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7403   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7404   const DataLayout &DL = DAG.getDataLayout();
7405   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7406                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7407                            DAG.getSrcValue(I.getOperand(0)),
7408                            DL.getABITypeAlignment(I.getType()));
7409   setValue(&I, V);
7410   DAG.setRoot(V.getValue(1));
7411 }
7412 
7413 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7414   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7415                           MVT::Other, getRoot(),
7416                           getValue(I.getArgOperand(0)),
7417                           DAG.getSrcValue(I.getArgOperand(0))));
7418 }
7419 
7420 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7421   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7422                           MVT::Other, getRoot(),
7423                           getValue(I.getArgOperand(0)),
7424                           getValue(I.getArgOperand(1)),
7425                           DAG.getSrcValue(I.getArgOperand(0)),
7426                           DAG.getSrcValue(I.getArgOperand(1))));
7427 }
7428 
7429 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7430                                                     const Instruction &I,
7431                                                     SDValue Op) {
7432   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7433   if (!Range)
7434     return Op;
7435 
7436   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7437   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7438     return Op;
7439 
7440   APInt Lo = CR.getUnsignedMin();
7441   if (!Lo.isMinValue())
7442     return Op;
7443 
7444   APInt Hi = CR.getUnsignedMax();
7445   unsigned Bits = Hi.getActiveBits();
7446 
7447   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7448 
7449   SDLoc SL = getCurSDLoc();
7450 
7451   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7452                              DAG.getValueType(SmallVT));
7453   unsigned NumVals = Op.getNode()->getNumValues();
7454   if (NumVals == 1)
7455     return ZExt;
7456 
7457   SmallVector<SDValue, 4> Ops;
7458 
7459   Ops.push_back(ZExt);
7460   for (unsigned I = 1; I != NumVals; ++I)
7461     Ops.push_back(Op.getValue(I));
7462 
7463   return DAG.getMergeValues(Ops, SL);
7464 }
7465 
7466 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7467 /// the call being lowered.
7468 ///
7469 /// This is a helper for lowering intrinsics that follow a target calling
7470 /// convention or require stack pointer adjustment. Only a subset of the
7471 /// intrinsic's operands need to participate in the calling convention.
7472 void SelectionDAGBuilder::populateCallLoweringInfo(
7473     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7474     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7475     bool IsPatchPoint) {
7476   TargetLowering::ArgListTy Args;
7477   Args.reserve(NumArgs);
7478 
7479   // Populate the argument list.
7480   // Attributes for args start at offset 1, after the return attribute.
7481   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
7482        ArgI != ArgE; ++ArgI) {
7483     const Value *V = CS->getOperand(ArgI);
7484 
7485     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7486 
7487     TargetLowering::ArgListEntry Entry;
7488     Entry.Node = getValue(V);
7489     Entry.Ty = V->getType();
7490     Entry.setAttributes(&CS, ArgIdx);
7491     Args.push_back(Entry);
7492   }
7493 
7494   CLI.setDebugLoc(getCurSDLoc())
7495       .setChain(getRoot())
7496       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7497       .setDiscardResult(CS->use_empty())
7498       .setIsPatchPoint(IsPatchPoint);
7499 }
7500 
7501 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7502 /// or patchpoint target node's operand list.
7503 ///
7504 /// Constants are converted to TargetConstants purely as an optimization to
7505 /// avoid constant materialization and register allocation.
7506 ///
7507 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7508 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7509 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7510 /// address materialization and register allocation, but may also be required
7511 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7512 /// alloca in the entry block, then the runtime may assume that the alloca's
7513 /// StackMap location can be read immediately after compilation and that the
7514 /// location is valid at any point during execution (this is similar to the
7515 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7516 /// only available in a register, then the runtime would need to trap when
7517 /// execution reaches the StackMap in order to read the alloca's location.
7518 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7519                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7520                                 SelectionDAGBuilder &Builder) {
7521   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7522     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7523     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7524       Ops.push_back(
7525         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7526       Ops.push_back(
7527         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7528     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7529       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7530       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7531           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
7532     } else
7533       Ops.push_back(OpVal);
7534   }
7535 }
7536 
7537 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7538 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7539   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7540   //                                  [live variables...])
7541 
7542   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7543 
7544   SDValue Chain, InFlag, Callee, NullPtr;
7545   SmallVector<SDValue, 32> Ops;
7546 
7547   SDLoc DL = getCurSDLoc();
7548   Callee = getValue(CI.getCalledValue());
7549   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7550 
7551   // The stackmap intrinsic only records the live variables (the arguemnts
7552   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7553   // intrinsic, this won't be lowered to a function call. This means we don't
7554   // have to worry about calling conventions and target specific lowering code.
7555   // Instead we perform the call lowering right here.
7556   //
7557   // chain, flag = CALLSEQ_START(chain, 0, 0)
7558   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7559   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7560   //
7561   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
7562   InFlag = Chain.getValue(1);
7563 
7564   // Add the <id> and <numBytes> constants.
7565   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7566   Ops.push_back(DAG.getTargetConstant(
7567                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7568   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7569   Ops.push_back(DAG.getTargetConstant(
7570                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7571                   MVT::i32));
7572 
7573   // Push live variables for the stack map.
7574   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7575 
7576   // We are not pushing any register mask info here on the operands list,
7577   // because the stackmap doesn't clobber anything.
7578 
7579   // Push the chain and the glue flag.
7580   Ops.push_back(Chain);
7581   Ops.push_back(InFlag);
7582 
7583   // Create the STACKMAP node.
7584   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7585   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7586   Chain = SDValue(SM, 0);
7587   InFlag = Chain.getValue(1);
7588 
7589   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7590 
7591   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7592 
7593   // Set the root to the target-lowered call chain.
7594   DAG.setRoot(Chain);
7595 
7596   // Inform the Frame Information that we have a stackmap in this function.
7597   FuncInfo.MF->getFrameInfo().setHasStackMap();
7598 }
7599 
7600 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7601 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7602                                           const BasicBlock *EHPadBB) {
7603   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7604   //                                                 i32 <numBytes>,
7605   //                                                 i8* <target>,
7606   //                                                 i32 <numArgs>,
7607   //                                                 [Args...],
7608   //                                                 [live variables...])
7609 
7610   CallingConv::ID CC = CS.getCallingConv();
7611   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7612   bool HasDef = !CS->getType()->isVoidTy();
7613   SDLoc dl = getCurSDLoc();
7614   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7615 
7616   // Handle immediate and symbolic callees.
7617   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7618     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7619                                    /*isTarget=*/true);
7620   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7621     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7622                                          SDLoc(SymbolicCallee),
7623                                          SymbolicCallee->getValueType(0));
7624 
7625   // Get the real number of arguments participating in the call <numArgs>
7626   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7627   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7628 
7629   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7630   // Intrinsics include all meta-operands up to but not including CC.
7631   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7632   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7633          "Not enough arguments provided to the patchpoint intrinsic");
7634 
7635   // For AnyRegCC the arguments are lowered later on manually.
7636   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7637   Type *ReturnTy =
7638     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7639 
7640   TargetLowering::CallLoweringInfo CLI(DAG);
7641   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7642                            true);
7643   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7644 
7645   SDNode *CallEnd = Result.second.getNode();
7646   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7647     CallEnd = CallEnd->getOperand(0).getNode();
7648 
7649   /// Get a call instruction from the call sequence chain.
7650   /// Tail calls are not allowed.
7651   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7652          "Expected a callseq node.");
7653   SDNode *Call = CallEnd->getOperand(0).getNode();
7654   bool HasGlue = Call->getGluedNode();
7655 
7656   // Replace the target specific call node with the patchable intrinsic.
7657   SmallVector<SDValue, 8> Ops;
7658 
7659   // Add the <id> and <numBytes> constants.
7660   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7661   Ops.push_back(DAG.getTargetConstant(
7662                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7663   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7664   Ops.push_back(DAG.getTargetConstant(
7665                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7666                   MVT::i32));
7667 
7668   // Add the callee.
7669   Ops.push_back(Callee);
7670 
7671   // Adjust <numArgs> to account for any arguments that have been passed on the
7672   // stack instead.
7673   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7674   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7675   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7676   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7677 
7678   // Add the calling convention
7679   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7680 
7681   // Add the arguments we omitted previously. The register allocator should
7682   // place these in any free register.
7683   if (IsAnyRegCC)
7684     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7685       Ops.push_back(getValue(CS.getArgument(i)));
7686 
7687   // Push the arguments from the call instruction up to the register mask.
7688   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7689   Ops.append(Call->op_begin() + 2, e);
7690 
7691   // Push live variables for the stack map.
7692   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7693 
7694   // Push the register mask info.
7695   if (HasGlue)
7696     Ops.push_back(*(Call->op_end()-2));
7697   else
7698     Ops.push_back(*(Call->op_end()-1));
7699 
7700   // Push the chain (this is originally the first operand of the call, but
7701   // becomes now the last or second to last operand).
7702   Ops.push_back(*(Call->op_begin()));
7703 
7704   // Push the glue flag (last operand).
7705   if (HasGlue)
7706     Ops.push_back(*(Call->op_end()-1));
7707 
7708   SDVTList NodeTys;
7709   if (IsAnyRegCC && HasDef) {
7710     // Create the return types based on the intrinsic definition
7711     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7712     SmallVector<EVT, 3> ValueVTs;
7713     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7714     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7715 
7716     // There is always a chain and a glue type at the end
7717     ValueVTs.push_back(MVT::Other);
7718     ValueVTs.push_back(MVT::Glue);
7719     NodeTys = DAG.getVTList(ValueVTs);
7720   } else
7721     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7722 
7723   // Replace the target specific call node with a PATCHPOINT node.
7724   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7725                                          dl, NodeTys, Ops);
7726 
7727   // Update the NodeMap.
7728   if (HasDef) {
7729     if (IsAnyRegCC)
7730       setValue(CS.getInstruction(), SDValue(MN, 0));
7731     else
7732       setValue(CS.getInstruction(), Result.first);
7733   }
7734 
7735   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7736   // call sequence. Furthermore the location of the chain and glue can change
7737   // when the AnyReg calling convention is used and the intrinsic returns a
7738   // value.
7739   if (IsAnyRegCC && HasDef) {
7740     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7741     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7742     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7743   } else
7744     DAG.ReplaceAllUsesWith(Call, MN);
7745   DAG.DeleteNode(Call);
7746 
7747   // Inform the Frame Information that we have a patchpoint in this function.
7748   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
7749 }
7750 
7751 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
7752                                             unsigned Intrinsic) {
7753   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7754   SDValue Op1 = getValue(I.getArgOperand(0));
7755   SDValue Op2;
7756   if (I.getNumArgOperands() > 1)
7757     Op2 = getValue(I.getArgOperand(1));
7758   SDLoc dl = getCurSDLoc();
7759   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7760   SDValue Res;
7761   FastMathFlags FMF;
7762   if (isa<FPMathOperator>(I))
7763     FMF = I.getFastMathFlags();
7764   SDNodeFlags SDFlags;
7765   SDFlags.setNoNaNs(FMF.noNaNs());
7766 
7767   switch (Intrinsic) {
7768   case Intrinsic::experimental_vector_reduce_fadd:
7769     if (FMF.unsafeAlgebra())
7770       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
7771     else
7772       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
7773     break;
7774   case Intrinsic::experimental_vector_reduce_fmul:
7775     if (FMF.unsafeAlgebra())
7776       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
7777     else
7778       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
7779     break;
7780   case Intrinsic::experimental_vector_reduce_add:
7781     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
7782     break;
7783   case Intrinsic::experimental_vector_reduce_mul:
7784     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
7785     break;
7786   case Intrinsic::experimental_vector_reduce_and:
7787     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
7788     break;
7789   case Intrinsic::experimental_vector_reduce_or:
7790     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
7791     break;
7792   case Intrinsic::experimental_vector_reduce_xor:
7793     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
7794     break;
7795   case Intrinsic::experimental_vector_reduce_smax:
7796     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
7797     break;
7798   case Intrinsic::experimental_vector_reduce_smin:
7799     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
7800     break;
7801   case Intrinsic::experimental_vector_reduce_umax:
7802     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
7803     break;
7804   case Intrinsic::experimental_vector_reduce_umin:
7805     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
7806     break;
7807   case Intrinsic::experimental_vector_reduce_fmax: {
7808     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
7809     break;
7810   }
7811   case Intrinsic::experimental_vector_reduce_fmin: {
7812     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
7813     break;
7814   }
7815   default:
7816     llvm_unreachable("Unhandled vector reduce intrinsic");
7817   }
7818   setValue(&I, Res);
7819 }
7820 
7821 /// Returns an AttributeList representing the attributes applied to the return
7822 /// value of the given call.
7823 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7824   SmallVector<Attribute::AttrKind, 2> Attrs;
7825   if (CLI.RetSExt)
7826     Attrs.push_back(Attribute::SExt);
7827   if (CLI.RetZExt)
7828     Attrs.push_back(Attribute::ZExt);
7829   if (CLI.IsInReg)
7830     Attrs.push_back(Attribute::InReg);
7831 
7832   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
7833                             Attrs);
7834 }
7835 
7836 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7837 /// implementation, which just calls LowerCall.
7838 /// FIXME: When all targets are
7839 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7840 std::pair<SDValue, SDValue>
7841 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7842   // Handle the incoming return values from the call.
7843   CLI.Ins.clear();
7844   Type *OrigRetTy = CLI.RetTy;
7845   SmallVector<EVT, 4> RetTys;
7846   SmallVector<uint64_t, 4> Offsets;
7847   auto &DL = CLI.DAG.getDataLayout();
7848   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7849 
7850   SmallVector<ISD::OutputArg, 4> Outs;
7851   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7852 
7853   bool CanLowerReturn =
7854       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7855                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7856 
7857   SDValue DemoteStackSlot;
7858   int DemoteStackIdx = -100;
7859   if (!CanLowerReturn) {
7860     // FIXME: equivalent assert?
7861     // assert(!CS.hasInAllocaArgument() &&
7862     //        "sret demotion is incompatible with inalloca");
7863     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7864     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7865     MachineFunction &MF = CLI.DAG.getMachineFunction();
7866     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7867     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7868 
7869     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
7870     ArgListEntry Entry;
7871     Entry.Node = DemoteStackSlot;
7872     Entry.Ty = StackSlotPtrType;
7873     Entry.IsSExt = false;
7874     Entry.IsZExt = false;
7875     Entry.IsInReg = false;
7876     Entry.IsSRet = true;
7877     Entry.IsNest = false;
7878     Entry.IsByVal = false;
7879     Entry.IsReturned = false;
7880     Entry.IsSwiftSelf = false;
7881     Entry.IsSwiftError = false;
7882     Entry.Alignment = Align;
7883     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7884     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7885 
7886     // sret demotion isn't compatible with tail-calls, since the sret argument
7887     // points into the callers stack frame.
7888     CLI.IsTailCall = false;
7889   } else {
7890     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7891       EVT VT = RetTys[I];
7892       MVT RegisterVT =
7893           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
7894       unsigned NumRegs =
7895           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
7896       for (unsigned i = 0; i != NumRegs; ++i) {
7897         ISD::InputArg MyFlags;
7898         MyFlags.VT = RegisterVT;
7899         MyFlags.ArgVT = VT;
7900         MyFlags.Used = CLI.IsReturnValueUsed;
7901         if (CLI.RetSExt)
7902           MyFlags.Flags.setSExt();
7903         if (CLI.RetZExt)
7904           MyFlags.Flags.setZExt();
7905         if (CLI.IsInReg)
7906           MyFlags.Flags.setInReg();
7907         CLI.Ins.push_back(MyFlags);
7908       }
7909     }
7910   }
7911 
7912   // We push in swifterror return as the last element of CLI.Ins.
7913   ArgListTy &Args = CLI.getArgs();
7914   if (supportSwiftError()) {
7915     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7916       if (Args[i].IsSwiftError) {
7917         ISD::InputArg MyFlags;
7918         MyFlags.VT = getPointerTy(DL);
7919         MyFlags.ArgVT = EVT(getPointerTy(DL));
7920         MyFlags.Flags.setSwiftError();
7921         CLI.Ins.push_back(MyFlags);
7922       }
7923     }
7924   }
7925 
7926   // Handle all of the outgoing arguments.
7927   CLI.Outs.clear();
7928   CLI.OutVals.clear();
7929   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7930     SmallVector<EVT, 4> ValueVTs;
7931     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7932     Type *FinalType = Args[i].Ty;
7933     if (Args[i].IsByVal)
7934       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7935     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7936         FinalType, CLI.CallConv, CLI.IsVarArg);
7937     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7938          ++Value) {
7939       EVT VT = ValueVTs[Value];
7940       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7941       SDValue Op = SDValue(Args[i].Node.getNode(),
7942                            Args[i].Node.getResNo() + Value);
7943       ISD::ArgFlagsTy Flags;
7944 
7945       // Certain targets (such as MIPS), may have a different ABI alignment
7946       // for a type depending on the context. Give the target a chance to
7947       // specify the alignment it wants.
7948       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
7949 
7950       if (Args[i].IsZExt)
7951         Flags.setZExt();
7952       if (Args[i].IsSExt)
7953         Flags.setSExt();
7954       if (Args[i].IsInReg) {
7955         // If we are using vectorcall calling convention, a structure that is
7956         // passed InReg - is surely an HVA
7957         if (CLI.CallConv == CallingConv::X86_VectorCall &&
7958             isa<StructType>(FinalType)) {
7959           // The first value of a structure is marked
7960           if (0 == Value)
7961             Flags.setHvaStart();
7962           Flags.setHva();
7963         }
7964         // Set InReg Flag
7965         Flags.setInReg();
7966       }
7967       if (Args[i].IsSRet)
7968         Flags.setSRet();
7969       if (Args[i].IsSwiftSelf)
7970         Flags.setSwiftSelf();
7971       if (Args[i].IsSwiftError)
7972         Flags.setSwiftError();
7973       if (Args[i].IsByVal)
7974         Flags.setByVal();
7975       if (Args[i].IsInAlloca) {
7976         Flags.setInAlloca();
7977         // Set the byval flag for CCAssignFn callbacks that don't know about
7978         // inalloca.  This way we can know how many bytes we should've allocated
7979         // and how many bytes a callee cleanup function will pop.  If we port
7980         // inalloca to more targets, we'll have to add custom inalloca handling
7981         // in the various CC lowering callbacks.
7982         Flags.setByVal();
7983       }
7984       if (Args[i].IsByVal || Args[i].IsInAlloca) {
7985         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7986         Type *ElementTy = Ty->getElementType();
7987         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7988         // For ByVal, alignment should come from FE.  BE will guess if this
7989         // info is not there but there are cases it cannot get right.
7990         unsigned FrameAlign;
7991         if (Args[i].Alignment)
7992           FrameAlign = Args[i].Alignment;
7993         else
7994           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7995         Flags.setByValAlign(FrameAlign);
7996       }
7997       if (Args[i].IsNest)
7998         Flags.setNest();
7999       if (NeedsRegBlock)
8000         Flags.setInConsecutiveRegs();
8001       Flags.setOrigAlign(OriginalAlignment);
8002 
8003       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8004       unsigned NumParts =
8005           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8006       SmallVector<SDValue, 4> Parts(NumParts);
8007       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8008 
8009       if (Args[i].IsSExt)
8010         ExtendKind = ISD::SIGN_EXTEND;
8011       else if (Args[i].IsZExt)
8012         ExtendKind = ISD::ZERO_EXTEND;
8013 
8014       // Conservatively only handle 'returned' on non-vectors for now
8015       if (Args[i].IsReturned && !Op.getValueType().isVector()) {
8016         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8017                "unexpected use of 'returned'");
8018         // Before passing 'returned' to the target lowering code, ensure that
8019         // either the register MVT and the actual EVT are the same size or that
8020         // the return value and argument are extended in the same way; in these
8021         // cases it's safe to pass the argument register value unchanged as the
8022         // return register value (although it's at the target's option whether
8023         // to do so)
8024         // TODO: allow code generation to take advantage of partially preserved
8025         // registers rather than clobbering the entire register when the
8026         // parameter extension method is not compatible with the return
8027         // extension method
8028         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8029             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8030              CLI.RetZExt == Args[i].IsZExt))
8031           Flags.setReturned();
8032       }
8033 
8034       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8035                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind,
8036                      true);
8037 
8038       for (unsigned j = 0; j != NumParts; ++j) {
8039         // if it isn't first piece, alignment must be 1
8040         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8041                                i < CLI.NumFixedArgs,
8042                                i, j*Parts[j].getValueType().getStoreSize());
8043         if (NumParts > 1 && j == 0)
8044           MyFlags.Flags.setSplit();
8045         else if (j != 0) {
8046           MyFlags.Flags.setOrigAlign(1);
8047           if (j == NumParts - 1)
8048             MyFlags.Flags.setSplitEnd();
8049         }
8050 
8051         CLI.Outs.push_back(MyFlags);
8052         CLI.OutVals.push_back(Parts[j]);
8053       }
8054 
8055       if (NeedsRegBlock && Value == NumValues - 1)
8056         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8057     }
8058   }
8059 
8060   SmallVector<SDValue, 4> InVals;
8061   CLI.Chain = LowerCall(CLI, InVals);
8062 
8063   // Update CLI.InVals to use outside of this function.
8064   CLI.InVals = InVals;
8065 
8066   // Verify that the target's LowerCall behaved as expected.
8067   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8068          "LowerCall didn't return a valid chain!");
8069   assert((!CLI.IsTailCall || InVals.empty()) &&
8070          "LowerCall emitted a return value for a tail call!");
8071   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8072          "LowerCall didn't emit the correct number of values!");
8073 
8074   // For a tail call, the return value is merely live-out and there aren't
8075   // any nodes in the DAG representing it. Return a special value to
8076   // indicate that a tail call has been emitted and no more Instructions
8077   // should be processed in the current block.
8078   if (CLI.IsTailCall) {
8079     CLI.DAG.setRoot(CLI.Chain);
8080     return std::make_pair(SDValue(), SDValue());
8081   }
8082 
8083 #ifndef NDEBUG
8084   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8085     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8086     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8087            "LowerCall emitted a value with the wrong type!");
8088   }
8089 #endif
8090 
8091   SmallVector<SDValue, 4> ReturnValues;
8092   if (!CanLowerReturn) {
8093     // The instruction result is the result of loading from the
8094     // hidden sret parameter.
8095     SmallVector<EVT, 1> PVTs;
8096     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
8097 
8098     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8099     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8100     EVT PtrVT = PVTs[0];
8101 
8102     unsigned NumValues = RetTys.size();
8103     ReturnValues.resize(NumValues);
8104     SmallVector<SDValue, 4> Chains(NumValues);
8105 
8106     // An aggregate return value cannot wrap around the address space, so
8107     // offsets to its parts don't wrap either.
8108     SDNodeFlags Flags;
8109     Flags.setNoUnsignedWrap(true);
8110 
8111     for (unsigned i = 0; i < NumValues; ++i) {
8112       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8113                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8114                                                         PtrVT), Flags);
8115       SDValue L = CLI.DAG.getLoad(
8116           RetTys[i], CLI.DL, CLI.Chain, Add,
8117           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8118                                             DemoteStackIdx, Offsets[i]),
8119           /* Alignment = */ 1);
8120       ReturnValues[i] = L;
8121       Chains[i] = L.getValue(1);
8122     }
8123 
8124     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8125   } else {
8126     // Collect the legal value parts into potentially illegal values
8127     // that correspond to the original function's return values.
8128     Optional<ISD::NodeType> AssertOp;
8129     if (CLI.RetSExt)
8130       AssertOp = ISD::AssertSext;
8131     else if (CLI.RetZExt)
8132       AssertOp = ISD::AssertZext;
8133     unsigned CurReg = 0;
8134     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8135       EVT VT = RetTys[I];
8136       MVT RegisterVT =
8137           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8138       unsigned NumRegs =
8139           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8140 
8141       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8142                                               NumRegs, RegisterVT, VT, nullptr,
8143                                               AssertOp, true));
8144       CurReg += NumRegs;
8145     }
8146 
8147     // For a function returning void, there is no return value. We can't create
8148     // such a node, so we just return a null return value in that case. In
8149     // that case, nothing will actually look at the value.
8150     if (ReturnValues.empty())
8151       return std::make_pair(SDValue(), CLI.Chain);
8152   }
8153 
8154   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8155                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8156   return std::make_pair(Res, CLI.Chain);
8157 }
8158 
8159 void TargetLowering::LowerOperationWrapper(SDNode *N,
8160                                            SmallVectorImpl<SDValue> &Results,
8161                                            SelectionDAG &DAG) const {
8162   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8163     Results.push_back(Res);
8164 }
8165 
8166 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8167   llvm_unreachable("LowerOperation not implemented for this target!");
8168 }
8169 
8170 void
8171 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8172   SDValue Op = getNonRegisterValue(V);
8173   assert((Op.getOpcode() != ISD::CopyFromReg ||
8174           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8175          "Copy from a reg to the same reg!");
8176   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8177 
8178   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8179   // If this is an InlineAsm we have to match the registers required, not the
8180   // notional registers required by the type.
8181   bool IsABIRegCopy =
8182     V && ((isa<CallInst>(V) &&
8183            !(static_cast<const CallInst *>(V))->isInlineAsm()) ||
8184           isa<ReturnInst>(V));
8185 
8186   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
8187                    V->getType(), IsABIRegCopy);
8188   SDValue Chain = DAG.getEntryNode();
8189 
8190   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8191                               FuncInfo.PreferredExtendType.end())
8192                                  ? ISD::ANY_EXTEND
8193                                  : FuncInfo.PreferredExtendType[V];
8194   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8195   PendingExports.push_back(Chain);
8196 }
8197 
8198 #include "llvm/CodeGen/SelectionDAGISel.h"
8199 
8200 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8201 /// entry block, return true.  This includes arguments used by switches, since
8202 /// the switch may expand into multiple basic blocks.
8203 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8204   // With FastISel active, we may be splitting blocks, so force creation
8205   // of virtual registers for all non-dead arguments.
8206   if (FastISel)
8207     return A->use_empty();
8208 
8209   const BasicBlock &Entry = A->getParent()->front();
8210   for (const User *U : A->users())
8211     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8212       return false;  // Use not in entry block.
8213 
8214   return true;
8215 }
8216 
8217 typedef DenseMap<const Argument *,
8218                  std::pair<const AllocaInst *, const StoreInst *>>
8219     ArgCopyElisionMapTy;
8220 
8221 /// Scan the entry block of the function in FuncInfo for arguments that look
8222 /// like copies into a local alloca. Record any copied arguments in
8223 /// ArgCopyElisionCandidates.
8224 static void
8225 findArgumentCopyElisionCandidates(const DataLayout &DL,
8226                                   FunctionLoweringInfo *FuncInfo,
8227                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8228   // Record the state of every static alloca used in the entry block. Argument
8229   // allocas are all used in the entry block, so we need approximately as many
8230   // entries as we have arguments.
8231   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8232   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8233   unsigned NumArgs = FuncInfo->Fn->arg_size();
8234   StaticAllocas.reserve(NumArgs * 2);
8235 
8236   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8237     if (!V)
8238       return nullptr;
8239     V = V->stripPointerCasts();
8240     const auto *AI = dyn_cast<AllocaInst>(V);
8241     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8242       return nullptr;
8243     auto Iter = StaticAllocas.insert({AI, Unknown});
8244     return &Iter.first->second;
8245   };
8246 
8247   // Look for stores of arguments to static allocas. Look through bitcasts and
8248   // GEPs to handle type coercions, as long as the alloca is fully initialized
8249   // by the store. Any non-store use of an alloca escapes it and any subsequent
8250   // unanalyzed store might write it.
8251   // FIXME: Handle structs initialized with multiple stores.
8252   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8253     // Look for stores, and handle non-store uses conservatively.
8254     const auto *SI = dyn_cast<StoreInst>(&I);
8255     if (!SI) {
8256       // We will look through cast uses, so ignore them completely.
8257       if (I.isCast())
8258         continue;
8259       // Ignore debug info intrinsics, they don't escape or store to allocas.
8260       if (isa<DbgInfoIntrinsic>(I))
8261         continue;
8262       // This is an unknown instruction. Assume it escapes or writes to all
8263       // static alloca operands.
8264       for (const Use &U : I.operands()) {
8265         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8266           *Info = StaticAllocaInfo::Clobbered;
8267       }
8268       continue;
8269     }
8270 
8271     // If the stored value is a static alloca, mark it as escaped.
8272     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8273       *Info = StaticAllocaInfo::Clobbered;
8274 
8275     // Check if the destination is a static alloca.
8276     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8277     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8278     if (!Info)
8279       continue;
8280     const AllocaInst *AI = cast<AllocaInst>(Dst);
8281 
8282     // Skip allocas that have been initialized or clobbered.
8283     if (*Info != StaticAllocaInfo::Unknown)
8284       continue;
8285 
8286     // Check if the stored value is an argument, and that this store fully
8287     // initializes the alloca. Don't elide copies from the same argument twice.
8288     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8289     const auto *Arg = dyn_cast<Argument>(Val);
8290     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8291         Arg->getType()->isEmptyTy() ||
8292         DL.getTypeStoreSize(Arg->getType()) !=
8293             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8294         ArgCopyElisionCandidates.count(Arg)) {
8295       *Info = StaticAllocaInfo::Clobbered;
8296       continue;
8297     }
8298 
8299     DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n');
8300 
8301     // Mark this alloca and store for argument copy elision.
8302     *Info = StaticAllocaInfo::Elidable;
8303     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8304 
8305     // Stop scanning if we've seen all arguments. This will happen early in -O0
8306     // builds, which is useful, because -O0 builds have large entry blocks and
8307     // many allocas.
8308     if (ArgCopyElisionCandidates.size() == NumArgs)
8309       break;
8310   }
8311 }
8312 
8313 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8314 /// ArgVal is a load from a suitable fixed stack object.
8315 static void tryToElideArgumentCopy(
8316     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8317     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8318     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8319     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8320     SDValue ArgVal, bool &ArgHasUses) {
8321   // Check if this is a load from a fixed stack object.
8322   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8323   if (!LNode)
8324     return;
8325   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8326   if (!FINode)
8327     return;
8328 
8329   // Check that the fixed stack object is the right size and alignment.
8330   // Look at the alignment that the user wrote on the alloca instead of looking
8331   // at the stack object.
8332   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8333   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8334   const AllocaInst *AI = ArgCopyIter->second.first;
8335   int FixedIndex = FINode->getIndex();
8336   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8337   int OldIndex = AllocaIndex;
8338   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8339   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8340     DEBUG(dbgs() << "  argument copy elision failed due to bad fixed stack "
8341                     "object size\n");
8342     return;
8343   }
8344   unsigned RequiredAlignment = AI->getAlignment();
8345   if (!RequiredAlignment) {
8346     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8347         AI->getAllocatedType());
8348   }
8349   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8350     DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8351                     "greater than stack argument alignment ("
8352                  << RequiredAlignment << " vs "
8353                  << MFI.getObjectAlignment(FixedIndex) << ")\n");
8354     return;
8355   }
8356 
8357   // Perform the elision. Delete the old stack object and replace its only use
8358   // in the variable info map. Mark the stack object as mutable.
8359   DEBUG({
8360     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8361            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8362            << '\n';
8363   });
8364   MFI.RemoveStackObject(OldIndex);
8365   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8366   AllocaIndex = FixedIndex;
8367   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8368   Chains.push_back(ArgVal.getValue(1));
8369 
8370   // Avoid emitting code for the store implementing the copy.
8371   const StoreInst *SI = ArgCopyIter->second.second;
8372   ElidedArgCopyInstrs.insert(SI);
8373 
8374   // Check for uses of the argument again so that we can avoid exporting ArgVal
8375   // if it is't used by anything other than the store.
8376   for (const Value *U : Arg.users()) {
8377     if (U != SI) {
8378       ArgHasUses = true;
8379       break;
8380     }
8381   }
8382 }
8383 
8384 void SelectionDAGISel::LowerArguments(const Function &F) {
8385   SelectionDAG &DAG = SDB->DAG;
8386   SDLoc dl = SDB->getCurSDLoc();
8387   const DataLayout &DL = DAG.getDataLayout();
8388   SmallVector<ISD::InputArg, 16> Ins;
8389 
8390   if (!FuncInfo->CanLowerReturn) {
8391     // Put in an sret pointer parameter before all the other parameters.
8392     SmallVector<EVT, 1> ValueVTs;
8393     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8394                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8395 
8396     // NOTE: Assuming that a pointer will never break down to more than one VT
8397     // or one register.
8398     ISD::ArgFlagsTy Flags;
8399     Flags.setSRet();
8400     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8401     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8402                          ISD::InputArg::NoArgIndex, 0);
8403     Ins.push_back(RetArg);
8404   }
8405 
8406   // Look for stores of arguments to static allocas. Mark such arguments with a
8407   // flag to ask the target to give us the memory location of that argument if
8408   // available.
8409   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8410   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8411 
8412   // Set up the incoming argument description vector.
8413   for (const Argument &Arg : F.args()) {
8414     unsigned ArgNo = Arg.getArgNo();
8415     SmallVector<EVT, 4> ValueVTs;
8416     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8417     bool isArgValueUsed = !Arg.use_empty();
8418     unsigned PartBase = 0;
8419     Type *FinalType = Arg.getType();
8420     if (Arg.hasAttribute(Attribute::ByVal))
8421       FinalType = cast<PointerType>(FinalType)->getElementType();
8422     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8423         FinalType, F.getCallingConv(), F.isVarArg());
8424     for (unsigned Value = 0, NumValues = ValueVTs.size();
8425          Value != NumValues; ++Value) {
8426       EVT VT = ValueVTs[Value];
8427       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8428       ISD::ArgFlagsTy Flags;
8429 
8430       // Certain targets (such as MIPS), may have a different ABI alignment
8431       // for a type depending on the context. Give the target a chance to
8432       // specify the alignment it wants.
8433       unsigned OriginalAlignment =
8434           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
8435 
8436       if (Arg.hasAttribute(Attribute::ZExt))
8437         Flags.setZExt();
8438       if (Arg.hasAttribute(Attribute::SExt))
8439         Flags.setSExt();
8440       if (Arg.hasAttribute(Attribute::InReg)) {
8441         // If we are using vectorcall calling convention, a structure that is
8442         // passed InReg - is surely an HVA
8443         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8444             isa<StructType>(Arg.getType())) {
8445           // The first value of a structure is marked
8446           if (0 == Value)
8447             Flags.setHvaStart();
8448           Flags.setHva();
8449         }
8450         // Set InReg Flag
8451         Flags.setInReg();
8452       }
8453       if (Arg.hasAttribute(Attribute::StructRet))
8454         Flags.setSRet();
8455       if (Arg.hasAttribute(Attribute::SwiftSelf))
8456         Flags.setSwiftSelf();
8457       if (Arg.hasAttribute(Attribute::SwiftError))
8458         Flags.setSwiftError();
8459       if (Arg.hasAttribute(Attribute::ByVal))
8460         Flags.setByVal();
8461       if (Arg.hasAttribute(Attribute::InAlloca)) {
8462         Flags.setInAlloca();
8463         // Set the byval flag for CCAssignFn callbacks that don't know about
8464         // inalloca.  This way we can know how many bytes we should've allocated
8465         // and how many bytes a callee cleanup function will pop.  If we port
8466         // inalloca to more targets, we'll have to add custom inalloca handling
8467         // in the various CC lowering callbacks.
8468         Flags.setByVal();
8469       }
8470       if (F.getCallingConv() == CallingConv::X86_INTR) {
8471         // IA Interrupt passes frame (1st parameter) by value in the stack.
8472         if (ArgNo == 0)
8473           Flags.setByVal();
8474       }
8475       if (Flags.isByVal() || Flags.isInAlloca()) {
8476         PointerType *Ty = cast<PointerType>(Arg.getType());
8477         Type *ElementTy = Ty->getElementType();
8478         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8479         // For ByVal, alignment should be passed from FE.  BE will guess if
8480         // this info is not there but there are cases it cannot get right.
8481         unsigned FrameAlign;
8482         if (Arg.getParamAlignment())
8483           FrameAlign = Arg.getParamAlignment();
8484         else
8485           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8486         Flags.setByValAlign(FrameAlign);
8487       }
8488       if (Arg.hasAttribute(Attribute::Nest))
8489         Flags.setNest();
8490       if (NeedsRegBlock)
8491         Flags.setInConsecutiveRegs();
8492       Flags.setOrigAlign(OriginalAlignment);
8493       if (ArgCopyElisionCandidates.count(&Arg))
8494         Flags.setCopyElisionCandidate();
8495 
8496       MVT RegisterVT =
8497           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8498       unsigned NumRegs =
8499           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8500       for (unsigned i = 0; i != NumRegs; ++i) {
8501         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8502                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
8503         if (NumRegs > 1 && i == 0)
8504           MyFlags.Flags.setSplit();
8505         // if it isn't first piece, alignment must be 1
8506         else if (i > 0) {
8507           MyFlags.Flags.setOrigAlign(1);
8508           if (i == NumRegs - 1)
8509             MyFlags.Flags.setSplitEnd();
8510         }
8511         Ins.push_back(MyFlags);
8512       }
8513       if (NeedsRegBlock && Value == NumValues - 1)
8514         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8515       PartBase += VT.getStoreSize();
8516     }
8517   }
8518 
8519   // Call the target to set up the argument values.
8520   SmallVector<SDValue, 8> InVals;
8521   SDValue NewRoot = TLI->LowerFormalArguments(
8522       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8523 
8524   // Verify that the target's LowerFormalArguments behaved as expected.
8525   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8526          "LowerFormalArguments didn't return a valid chain!");
8527   assert(InVals.size() == Ins.size() &&
8528          "LowerFormalArguments didn't emit the correct number of values!");
8529   DEBUG({
8530       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8531         assert(InVals[i].getNode() &&
8532                "LowerFormalArguments emitted a null value!");
8533         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8534                "LowerFormalArguments emitted a value with the wrong type!");
8535       }
8536     });
8537 
8538   // Update the DAG with the new chain value resulting from argument lowering.
8539   DAG.setRoot(NewRoot);
8540 
8541   // Set up the argument values.
8542   unsigned i = 0;
8543   if (!FuncInfo->CanLowerReturn) {
8544     // Create a virtual register for the sret pointer, and put in a copy
8545     // from the sret argument into it.
8546     SmallVector<EVT, 1> ValueVTs;
8547     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8548                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8549     MVT VT = ValueVTs[0].getSimpleVT();
8550     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8551     Optional<ISD::NodeType> AssertOp = None;
8552     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8553                                         RegVT, VT, nullptr, AssertOp);
8554 
8555     MachineFunction& MF = SDB->DAG.getMachineFunction();
8556     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8557     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8558     FuncInfo->DemoteRegister = SRetReg;
8559     NewRoot =
8560         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8561     DAG.setRoot(NewRoot);
8562 
8563     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8564     ++i;
8565   }
8566 
8567   SmallVector<SDValue, 4> Chains;
8568   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
8569   for (const Argument &Arg : F.args()) {
8570     SmallVector<SDValue, 4> ArgValues;
8571     SmallVector<EVT, 4> ValueVTs;
8572     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8573     unsigned NumValues = ValueVTs.size();
8574     if (NumValues == 0)
8575       continue;
8576 
8577     bool ArgHasUses = !Arg.use_empty();
8578 
8579     // Elide the copying store if the target loaded this argument from a
8580     // suitable fixed stack object.
8581     if (Ins[i].Flags.isCopyElisionCandidate()) {
8582       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
8583                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
8584                              InVals[i], ArgHasUses);
8585     }
8586 
8587     // If this argument is unused then remember its value. It is used to generate
8588     // debugging information.
8589     bool isSwiftErrorArg =
8590         TLI->supportSwiftError() &&
8591         Arg.hasAttribute(Attribute::SwiftError);
8592     if (!ArgHasUses && !isSwiftErrorArg) {
8593       SDB->setUnusedArgValue(&Arg, InVals[i]);
8594 
8595       // Also remember any frame index for use in FastISel.
8596       if (FrameIndexSDNode *FI =
8597           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8598         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8599     }
8600 
8601     for (unsigned Val = 0; Val != NumValues; ++Val) {
8602       EVT VT = ValueVTs[Val];
8603       MVT PartVT =
8604           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8605       unsigned NumParts =
8606           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8607 
8608       // Even an apparant 'unused' swifterror argument needs to be returned. So
8609       // we do generate a copy for it that can be used on return from the
8610       // function.
8611       if (ArgHasUses || isSwiftErrorArg) {
8612         Optional<ISD::NodeType> AssertOp;
8613         if (Arg.hasAttribute(Attribute::SExt))
8614           AssertOp = ISD::AssertSext;
8615         else if (Arg.hasAttribute(Attribute::ZExt))
8616           AssertOp = ISD::AssertZext;
8617 
8618         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
8619                                              PartVT, VT, nullptr, AssertOp,
8620                                              true));
8621       }
8622 
8623       i += NumParts;
8624     }
8625 
8626     // We don't need to do anything else for unused arguments.
8627     if (ArgValues.empty())
8628       continue;
8629 
8630     // Note down frame index.
8631     if (FrameIndexSDNode *FI =
8632         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8633       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8634 
8635     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8636                                      SDB->getCurSDLoc());
8637 
8638     SDB->setValue(&Arg, Res);
8639     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8640       if (LoadSDNode *LNode =
8641           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
8642         if (FrameIndexSDNode *FI =
8643             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8644         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8645     }
8646 
8647     // Update the SwiftErrorVRegDefMap.
8648     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
8649       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8650       if (TargetRegisterInfo::isVirtualRegister(Reg))
8651         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
8652                                            FuncInfo->SwiftErrorArg, Reg);
8653     }
8654 
8655     // If this argument is live outside of the entry block, insert a copy from
8656     // wherever we got it to the vreg that other BB's will reference it as.
8657     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8658       // If we can, though, try to skip creating an unnecessary vreg.
8659       // FIXME: This isn't very clean... it would be nice to make this more
8660       // general.  It's also subtly incompatible with the hacks FastISel
8661       // uses with vregs.
8662       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8663       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8664         FuncInfo->ValueMap[&Arg] = Reg;
8665         continue;
8666       }
8667     }
8668     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
8669       FuncInfo->InitializeRegForValue(&Arg);
8670       SDB->CopyToExportRegsIfNeeded(&Arg);
8671     }
8672   }
8673 
8674   if (!Chains.empty()) {
8675     Chains.push_back(NewRoot);
8676     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
8677   }
8678 
8679   DAG.setRoot(NewRoot);
8680 
8681   assert(i == InVals.size() && "Argument register count mismatch!");
8682 
8683   // If any argument copy elisions occurred and we have debug info, update the
8684   // stale frame indices used in the dbg.declare variable info table.
8685   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
8686   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
8687     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
8688       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
8689       if (I != ArgCopyElisionFrameIndexMap.end())
8690         VI.Slot = I->second;
8691     }
8692   }
8693 
8694   // Finally, if the target has anything special to do, allow it to do so.
8695   EmitFunctionEntryCode();
8696 }
8697 
8698 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8699 /// ensure constants are generated when needed.  Remember the virtual registers
8700 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8701 /// directly add them, because expansion might result in multiple MBB's for one
8702 /// BB.  As such, the start of the BB might correspond to a different MBB than
8703 /// the end.
8704 ///
8705 void
8706 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8707   const TerminatorInst *TI = LLVMBB->getTerminator();
8708 
8709   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8710 
8711   // Check PHI nodes in successors that expect a value to be available from this
8712   // block.
8713   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8714     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8715     if (!isa<PHINode>(SuccBB->begin())) continue;
8716     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8717 
8718     // If this terminator has multiple identical successors (common for
8719     // switches), only handle each succ once.
8720     if (!SuccsHandled.insert(SuccMBB).second)
8721       continue;
8722 
8723     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8724 
8725     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8726     // nodes and Machine PHI nodes, but the incoming operands have not been
8727     // emitted yet.
8728     for (BasicBlock::const_iterator I = SuccBB->begin();
8729          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8730       // Ignore dead phi's.
8731       if (PN->use_empty()) continue;
8732 
8733       // Skip empty types
8734       if (PN->getType()->isEmptyTy())
8735         continue;
8736 
8737       unsigned Reg;
8738       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8739 
8740       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8741         unsigned &RegOut = ConstantsOut[C];
8742         if (RegOut == 0) {
8743           RegOut = FuncInfo.CreateRegs(C->getType());
8744           CopyValueToVirtualRegister(C, RegOut);
8745         }
8746         Reg = RegOut;
8747       } else {
8748         DenseMap<const Value *, unsigned>::iterator I =
8749           FuncInfo.ValueMap.find(PHIOp);
8750         if (I != FuncInfo.ValueMap.end())
8751           Reg = I->second;
8752         else {
8753           assert(isa<AllocaInst>(PHIOp) &&
8754                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8755                  "Didn't codegen value into a register!??");
8756           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8757           CopyValueToVirtualRegister(PHIOp, Reg);
8758         }
8759       }
8760 
8761       // Remember that this register needs to added to the machine PHI node as
8762       // the input for this MBB.
8763       SmallVector<EVT, 4> ValueVTs;
8764       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8765       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8766       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8767         EVT VT = ValueVTs[vti];
8768         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8769         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8770           FuncInfo.PHINodesToUpdate.push_back(
8771               std::make_pair(&*MBBI++, Reg + i));
8772         Reg += NumRegisters;
8773       }
8774     }
8775   }
8776 
8777   ConstantsOut.clear();
8778 }
8779 
8780 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8781 /// is 0.
8782 MachineBasicBlock *
8783 SelectionDAGBuilder::StackProtectorDescriptor::
8784 AddSuccessorMBB(const BasicBlock *BB,
8785                 MachineBasicBlock *ParentMBB,
8786                 bool IsLikely,
8787                 MachineBasicBlock *SuccMBB) {
8788   // If SuccBB has not been created yet, create it.
8789   if (!SuccMBB) {
8790     MachineFunction *MF = ParentMBB->getParent();
8791     MachineFunction::iterator BBI(ParentMBB);
8792     SuccMBB = MF->CreateMachineBasicBlock(BB);
8793     MF->insert(++BBI, SuccMBB);
8794   }
8795   // Add it as a successor of ParentMBB.
8796   ParentMBB->addSuccessor(
8797       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8798   return SuccMBB;
8799 }
8800 
8801 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
8802   MachineFunction::iterator I(MBB);
8803   if (++I == FuncInfo.MF->end())
8804     return nullptr;
8805   return &*I;
8806 }
8807 
8808 /// During lowering new call nodes can be created (such as memset, etc.).
8809 /// Those will become new roots of the current DAG, but complications arise
8810 /// when they are tail calls. In such cases, the call lowering will update
8811 /// the root, but the builder still needs to know that a tail call has been
8812 /// lowered in order to avoid generating an additional return.
8813 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
8814   // If the node is null, we do have a tail call.
8815   if (MaybeTC.getNode() != nullptr)
8816     DAG.setRoot(MaybeTC);
8817   else
8818     HasTailCall = true;
8819 }
8820 
8821 uint64_t
8822 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
8823                                        unsigned First, unsigned Last) const {
8824   assert(Last >= First);
8825   const APInt &LowCase = Clusters[First].Low->getValue();
8826   const APInt &HighCase = Clusters[Last].High->getValue();
8827   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
8828 
8829   // FIXME: A range of consecutive cases has 100% density, but only requires one
8830   // comparison to lower. We should discriminate against such consecutive ranges
8831   // in jump tables.
8832 
8833   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
8834 }
8835 
8836 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
8837     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
8838     unsigned Last) const {
8839   assert(Last >= First);
8840   assert(TotalCases[Last] >= TotalCases[First]);
8841   uint64_t NumCases =
8842       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
8843   return NumCases;
8844 }
8845 
8846 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
8847                                          unsigned First, unsigned Last,
8848                                          const SwitchInst *SI,
8849                                          MachineBasicBlock *DefaultMBB,
8850                                          CaseCluster &JTCluster) {
8851   assert(First <= Last);
8852 
8853   auto Prob = BranchProbability::getZero();
8854   unsigned NumCmps = 0;
8855   std::vector<MachineBasicBlock*> Table;
8856   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
8857 
8858   // Initialize probabilities in JTProbs.
8859   for (unsigned I = First; I <= Last; ++I)
8860     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
8861 
8862   for (unsigned I = First; I <= Last; ++I) {
8863     assert(Clusters[I].Kind == CC_Range);
8864     Prob += Clusters[I].Prob;
8865     const APInt &Low = Clusters[I].Low->getValue();
8866     const APInt &High = Clusters[I].High->getValue();
8867     NumCmps += (Low == High) ? 1 : 2;
8868     if (I != First) {
8869       // Fill the gap between this and the previous cluster.
8870       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
8871       assert(PreviousHigh.slt(Low));
8872       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
8873       for (uint64_t J = 0; J < Gap; J++)
8874         Table.push_back(DefaultMBB);
8875     }
8876     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
8877     for (uint64_t J = 0; J < ClusterSize; ++J)
8878       Table.push_back(Clusters[I].MBB);
8879     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
8880   }
8881 
8882   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8883   unsigned NumDests = JTProbs.size();
8884   if (TLI.isSuitableForBitTests(
8885           NumDests, NumCmps, Clusters[First].Low->getValue(),
8886           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
8887     // Clusters[First..Last] should be lowered as bit tests instead.
8888     return false;
8889   }
8890 
8891   // Create the MBB that will load from and jump through the table.
8892   // Note: We create it here, but it's not inserted into the function yet.
8893   MachineFunction *CurMF = FuncInfo.MF;
8894   MachineBasicBlock *JumpTableMBB =
8895       CurMF->CreateMachineBasicBlock(SI->getParent());
8896 
8897   // Add successors. Note: use table order for determinism.
8898   SmallPtrSet<MachineBasicBlock *, 8> Done;
8899   for (MachineBasicBlock *Succ : Table) {
8900     if (Done.count(Succ))
8901       continue;
8902     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
8903     Done.insert(Succ);
8904   }
8905   JumpTableMBB->normalizeSuccProbs();
8906 
8907   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
8908                      ->createJumpTableIndex(Table);
8909 
8910   // Set up the jump table info.
8911   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
8912   JumpTableHeader JTH(Clusters[First].Low->getValue(),
8913                       Clusters[Last].High->getValue(), SI->getCondition(),
8914                       nullptr, false);
8915   JTCases.emplace_back(std::move(JTH), std::move(JT));
8916 
8917   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
8918                                      JTCases.size() - 1, Prob);
8919   return true;
8920 }
8921 
8922 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8923                                          const SwitchInst *SI,
8924                                          MachineBasicBlock *DefaultMBB) {
8925 #ifndef NDEBUG
8926   // Clusters must be non-empty, sorted, and only contain Range clusters.
8927   assert(!Clusters.empty());
8928   for (CaseCluster &C : Clusters)
8929     assert(C.Kind == CC_Range);
8930   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8931     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8932 #endif
8933 
8934   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8935   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
8936     return;
8937 
8938   const int64_t N = Clusters.size();
8939   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
8940   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
8941 
8942   if (N < 2 || N < MinJumpTableEntries)
8943     return;
8944 
8945   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8946   SmallVector<unsigned, 8> TotalCases(N);
8947   for (unsigned i = 0; i < N; ++i) {
8948     const APInt &Hi = Clusters[i].High->getValue();
8949     const APInt &Lo = Clusters[i].Low->getValue();
8950     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8951     if (i != 0)
8952       TotalCases[i] += TotalCases[i - 1];
8953   }
8954 
8955   // Cheap case: the whole range may be suitable for jump table.
8956   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
8957   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
8958   assert(NumCases < UINT64_MAX / 100);
8959   assert(Range >= NumCases);
8960   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
8961     CaseCluster JTCluster;
8962     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8963       Clusters[0] = JTCluster;
8964       Clusters.resize(1);
8965       return;
8966     }
8967   }
8968 
8969   // The algorithm below is not suitable for -O0.
8970   if (TM.getOptLevel() == CodeGenOpt::None)
8971     return;
8972 
8973   // Split Clusters into minimum number of dense partitions. The algorithm uses
8974   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8975   // for the Case Statement'" (1994), but builds the MinPartitions array in
8976   // reverse order to make it easier to reconstruct the partitions in ascending
8977   // order. In the choice between two optimal partitionings, it picks the one
8978   // which yields more jump tables.
8979 
8980   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8981   SmallVector<unsigned, 8> MinPartitions(N);
8982   // LastElement[i] is the last element of the partition starting at i.
8983   SmallVector<unsigned, 8> LastElement(N);
8984   // PartitionsScore[i] is used to break ties when choosing between two
8985   // partitionings resulting in the same number of partitions.
8986   SmallVector<unsigned, 8> PartitionsScore(N);
8987   // For PartitionsScore, a small number of comparisons is considered as good as
8988   // a jump table and a single comparison is considered better than a jump
8989   // table.
8990   enum PartitionScores : unsigned {
8991     NoTable = 0,
8992     Table = 1,
8993     FewCases = 1,
8994     SingleCase = 2
8995   };
8996 
8997   // Base case: There is only one way to partition Clusters[N-1].
8998   MinPartitions[N - 1] = 1;
8999   LastElement[N - 1] = N - 1;
9000   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9001 
9002   // Note: loop indexes are signed to avoid underflow.
9003   for (int64_t i = N - 2; i >= 0; i--) {
9004     // Find optimal partitioning of Clusters[i..N-1].
9005     // Baseline: Put Clusters[i] into a partition on its own.
9006     MinPartitions[i] = MinPartitions[i + 1] + 1;
9007     LastElement[i] = i;
9008     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9009 
9010     // Search for a solution that results in fewer partitions.
9011     for (int64_t j = N - 1; j > i; j--) {
9012       // Try building a partition from Clusters[i..j].
9013       uint64_t Range = getJumpTableRange(Clusters, i, j);
9014       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9015       assert(NumCases < UINT64_MAX / 100);
9016       assert(Range >= NumCases);
9017       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9018         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9019         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9020         int64_t NumEntries = j - i + 1;
9021 
9022         if (NumEntries == 1)
9023           Score += PartitionScores::SingleCase;
9024         else if (NumEntries <= SmallNumberOfEntries)
9025           Score += PartitionScores::FewCases;
9026         else if (NumEntries >= MinJumpTableEntries)
9027           Score += PartitionScores::Table;
9028 
9029         // If this leads to fewer partitions, or to the same number of
9030         // partitions with better score, it is a better partitioning.
9031         if (NumPartitions < MinPartitions[i] ||
9032             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9033           MinPartitions[i] = NumPartitions;
9034           LastElement[i] = j;
9035           PartitionsScore[i] = Score;
9036         }
9037       }
9038     }
9039   }
9040 
9041   // Iterate over the partitions, replacing some with jump tables in-place.
9042   unsigned DstIndex = 0;
9043   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9044     Last = LastElement[First];
9045     assert(Last >= First);
9046     assert(DstIndex <= First);
9047     unsigned NumClusters = Last - First + 1;
9048 
9049     CaseCluster JTCluster;
9050     if (NumClusters >= MinJumpTableEntries &&
9051         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9052       Clusters[DstIndex++] = JTCluster;
9053     } else {
9054       for (unsigned I = First; I <= Last; ++I)
9055         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9056     }
9057   }
9058   Clusters.resize(DstIndex);
9059 }
9060 
9061 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9062                                         unsigned First, unsigned Last,
9063                                         const SwitchInst *SI,
9064                                         CaseCluster &BTCluster) {
9065   assert(First <= Last);
9066   if (First == Last)
9067     return false;
9068 
9069   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9070   unsigned NumCmps = 0;
9071   for (int64_t I = First; I <= Last; ++I) {
9072     assert(Clusters[I].Kind == CC_Range);
9073     Dests.set(Clusters[I].MBB->getNumber());
9074     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9075   }
9076   unsigned NumDests = Dests.count();
9077 
9078   APInt Low = Clusters[First].Low->getValue();
9079   APInt High = Clusters[Last].High->getValue();
9080   assert(Low.slt(High));
9081 
9082   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9083   const DataLayout &DL = DAG.getDataLayout();
9084   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9085     return false;
9086 
9087   APInt LowBound;
9088   APInt CmpRange;
9089 
9090   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9091   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9092          "Case range must fit in bit mask!");
9093 
9094   // Check if the clusters cover a contiguous range such that no value in the
9095   // range will jump to the default statement.
9096   bool ContiguousRange = true;
9097   for (int64_t I = First + 1; I <= Last; ++I) {
9098     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9099       ContiguousRange = false;
9100       break;
9101     }
9102   }
9103 
9104   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9105     // Optimize the case where all the case values fit in a word without having
9106     // to subtract minValue. In this case, we can optimize away the subtraction.
9107     LowBound = APInt::getNullValue(Low.getBitWidth());
9108     CmpRange = High;
9109     ContiguousRange = false;
9110   } else {
9111     LowBound = Low;
9112     CmpRange = High - Low;
9113   }
9114 
9115   CaseBitsVector CBV;
9116   auto TotalProb = BranchProbability::getZero();
9117   for (unsigned i = First; i <= Last; ++i) {
9118     // Find the CaseBits for this destination.
9119     unsigned j;
9120     for (j = 0; j < CBV.size(); ++j)
9121       if (CBV[j].BB == Clusters[i].MBB)
9122         break;
9123     if (j == CBV.size())
9124       CBV.push_back(
9125           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9126     CaseBits *CB = &CBV[j];
9127 
9128     // Update Mask, Bits and ExtraProb.
9129     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9130     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9131     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9132     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9133     CB->Bits += Hi - Lo + 1;
9134     CB->ExtraProb += Clusters[i].Prob;
9135     TotalProb += Clusters[i].Prob;
9136   }
9137 
9138   BitTestInfo BTI;
9139   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
9140     // Sort by probability first, number of bits second.
9141     if (a.ExtraProb != b.ExtraProb)
9142       return a.ExtraProb > b.ExtraProb;
9143     return a.Bits > b.Bits;
9144   });
9145 
9146   for (auto &CB : CBV) {
9147     MachineBasicBlock *BitTestBB =
9148         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9149     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9150   }
9151   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9152                             SI->getCondition(), -1U, MVT::Other, false,
9153                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9154                             TotalProb);
9155 
9156   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9157                                     BitTestCases.size() - 1, TotalProb);
9158   return true;
9159 }
9160 
9161 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9162                                               const SwitchInst *SI) {
9163 // Partition Clusters into as few subsets as possible, where each subset has a
9164 // range that fits in a machine word and has <= 3 unique destinations.
9165 
9166 #ifndef NDEBUG
9167   // Clusters must be sorted and contain Range or JumpTable clusters.
9168   assert(!Clusters.empty());
9169   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9170   for (const CaseCluster &C : Clusters)
9171     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9172   for (unsigned i = 1; i < Clusters.size(); ++i)
9173     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9174 #endif
9175 
9176   // The algorithm below is not suitable for -O0.
9177   if (TM.getOptLevel() == CodeGenOpt::None)
9178     return;
9179 
9180   // If target does not have legal shift left, do not emit bit tests at all.
9181   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9182   const DataLayout &DL = DAG.getDataLayout();
9183 
9184   EVT PTy = TLI.getPointerTy(DL);
9185   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9186     return;
9187 
9188   int BitWidth = PTy.getSizeInBits();
9189   const int64_t N = Clusters.size();
9190 
9191   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9192   SmallVector<unsigned, 8> MinPartitions(N);
9193   // LastElement[i] is the last element of the partition starting at i.
9194   SmallVector<unsigned, 8> LastElement(N);
9195 
9196   // FIXME: This might not be the best algorithm for finding bit test clusters.
9197 
9198   // Base case: There is only one way to partition Clusters[N-1].
9199   MinPartitions[N - 1] = 1;
9200   LastElement[N - 1] = N - 1;
9201 
9202   // Note: loop indexes are signed to avoid underflow.
9203   for (int64_t i = N - 2; i >= 0; --i) {
9204     // Find optimal partitioning of Clusters[i..N-1].
9205     // Baseline: Put Clusters[i] into a partition on its own.
9206     MinPartitions[i] = MinPartitions[i + 1] + 1;
9207     LastElement[i] = i;
9208 
9209     // Search for a solution that results in fewer partitions.
9210     // Note: the search is limited by BitWidth, reducing time complexity.
9211     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9212       // Try building a partition from Clusters[i..j].
9213 
9214       // Check the range.
9215       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9216                                Clusters[j].High->getValue(), DL))
9217         continue;
9218 
9219       // Check nbr of destinations and cluster types.
9220       // FIXME: This works, but doesn't seem very efficient.
9221       bool RangesOnly = true;
9222       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9223       for (int64_t k = i; k <= j; k++) {
9224         if (Clusters[k].Kind != CC_Range) {
9225           RangesOnly = false;
9226           break;
9227         }
9228         Dests.set(Clusters[k].MBB->getNumber());
9229       }
9230       if (!RangesOnly || Dests.count() > 3)
9231         break;
9232 
9233       // Check if it's a better partition.
9234       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9235       if (NumPartitions < MinPartitions[i]) {
9236         // Found a better partition.
9237         MinPartitions[i] = NumPartitions;
9238         LastElement[i] = j;
9239       }
9240     }
9241   }
9242 
9243   // Iterate over the partitions, replacing with bit-test clusters in-place.
9244   unsigned DstIndex = 0;
9245   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9246     Last = LastElement[First];
9247     assert(First <= Last);
9248     assert(DstIndex <= First);
9249 
9250     CaseCluster BitTestCluster;
9251     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9252       Clusters[DstIndex++] = BitTestCluster;
9253     } else {
9254       size_t NumClusters = Last - First + 1;
9255       std::memmove(&Clusters[DstIndex], &Clusters[First],
9256                    sizeof(Clusters[0]) * NumClusters);
9257       DstIndex += NumClusters;
9258     }
9259   }
9260   Clusters.resize(DstIndex);
9261 }
9262 
9263 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9264                                         MachineBasicBlock *SwitchMBB,
9265                                         MachineBasicBlock *DefaultMBB) {
9266   MachineFunction *CurMF = FuncInfo.MF;
9267   MachineBasicBlock *NextMBB = nullptr;
9268   MachineFunction::iterator BBI(W.MBB);
9269   if (++BBI != FuncInfo.MF->end())
9270     NextMBB = &*BBI;
9271 
9272   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9273 
9274   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9275 
9276   if (Size == 2 && W.MBB == SwitchMBB) {
9277     // If any two of the cases has the same destination, and if one value
9278     // is the same as the other, but has one bit unset that the other has set,
9279     // use bit manipulation to do two compares at once.  For example:
9280     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9281     // TODO: This could be extended to merge any 2 cases in switches with 3
9282     // cases.
9283     // TODO: Handle cases where W.CaseBB != SwitchBB.
9284     CaseCluster &Small = *W.FirstCluster;
9285     CaseCluster &Big = *W.LastCluster;
9286 
9287     if (Small.Low == Small.High && Big.Low == Big.High &&
9288         Small.MBB == Big.MBB) {
9289       const APInt &SmallValue = Small.Low->getValue();
9290       const APInt &BigValue = Big.Low->getValue();
9291 
9292       // Check that there is only one bit different.
9293       APInt CommonBit = BigValue ^ SmallValue;
9294       if (CommonBit.isPowerOf2()) {
9295         SDValue CondLHS = getValue(Cond);
9296         EVT VT = CondLHS.getValueType();
9297         SDLoc DL = getCurSDLoc();
9298 
9299         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9300                                  DAG.getConstant(CommonBit, DL, VT));
9301         SDValue Cond = DAG.getSetCC(
9302             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9303             ISD::SETEQ);
9304 
9305         // Update successor info.
9306         // Both Small and Big will jump to Small.BB, so we sum up the
9307         // probabilities.
9308         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9309         if (BPI)
9310           addSuccessorWithProb(
9311               SwitchMBB, DefaultMBB,
9312               // The default destination is the first successor in IR.
9313               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9314         else
9315           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9316 
9317         // Insert the true branch.
9318         SDValue BrCond =
9319             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9320                         DAG.getBasicBlock(Small.MBB));
9321         // Insert the false branch.
9322         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9323                              DAG.getBasicBlock(DefaultMBB));
9324 
9325         DAG.setRoot(BrCond);
9326         return;
9327       }
9328     }
9329   }
9330 
9331   if (TM.getOptLevel() != CodeGenOpt::None) {
9332     // Order cases by probability so the most likely case will be checked first.
9333     std::sort(W.FirstCluster, W.LastCluster + 1,
9334               [](const CaseCluster &a, const CaseCluster &b) {
9335       return a.Prob > b.Prob;
9336     });
9337 
9338     // Rearrange the case blocks so that the last one falls through if possible
9339     // without without changing the order of probabilities.
9340     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9341       --I;
9342       if (I->Prob > W.LastCluster->Prob)
9343         break;
9344       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9345         std::swap(*I, *W.LastCluster);
9346         break;
9347       }
9348     }
9349   }
9350 
9351   // Compute total probability.
9352   BranchProbability DefaultProb = W.DefaultProb;
9353   BranchProbability UnhandledProbs = DefaultProb;
9354   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9355     UnhandledProbs += I->Prob;
9356 
9357   MachineBasicBlock *CurMBB = W.MBB;
9358   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9359     MachineBasicBlock *Fallthrough;
9360     if (I == W.LastCluster) {
9361       // For the last cluster, fall through to the default destination.
9362       Fallthrough = DefaultMBB;
9363     } else {
9364       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9365       CurMF->insert(BBI, Fallthrough);
9366       // Put Cond in a virtual register to make it available from the new blocks.
9367       ExportFromCurrentBlock(Cond);
9368     }
9369     UnhandledProbs -= I->Prob;
9370 
9371     switch (I->Kind) {
9372       case CC_JumpTable: {
9373         // FIXME: Optimize away range check based on pivot comparisons.
9374         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9375         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9376 
9377         // The jump block hasn't been inserted yet; insert it here.
9378         MachineBasicBlock *JumpMBB = JT->MBB;
9379         CurMF->insert(BBI, JumpMBB);
9380 
9381         auto JumpProb = I->Prob;
9382         auto FallthroughProb = UnhandledProbs;
9383 
9384         // If the default statement is a target of the jump table, we evenly
9385         // distribute the default probability to successors of CurMBB. Also
9386         // update the probability on the edge from JumpMBB to Fallthrough.
9387         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9388                                               SE = JumpMBB->succ_end();
9389              SI != SE; ++SI) {
9390           if (*SI == DefaultMBB) {
9391             JumpProb += DefaultProb / 2;
9392             FallthroughProb -= DefaultProb / 2;
9393             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9394             JumpMBB->normalizeSuccProbs();
9395             break;
9396           }
9397         }
9398 
9399         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9400         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9401         CurMBB->normalizeSuccProbs();
9402 
9403         // The jump table header will be inserted in our current block, do the
9404         // range check, and fall through to our fallthrough block.
9405         JTH->HeaderBB = CurMBB;
9406         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9407 
9408         // If we're in the right place, emit the jump table header right now.
9409         if (CurMBB == SwitchMBB) {
9410           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9411           JTH->Emitted = true;
9412         }
9413         break;
9414       }
9415       case CC_BitTests: {
9416         // FIXME: Optimize away range check based on pivot comparisons.
9417         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9418 
9419         // The bit test blocks haven't been inserted yet; insert them here.
9420         for (BitTestCase &BTC : BTB->Cases)
9421           CurMF->insert(BBI, BTC.ThisBB);
9422 
9423         // Fill in fields of the BitTestBlock.
9424         BTB->Parent = CurMBB;
9425         BTB->Default = Fallthrough;
9426 
9427         BTB->DefaultProb = UnhandledProbs;
9428         // If the cases in bit test don't form a contiguous range, we evenly
9429         // distribute the probability on the edge to Fallthrough to two
9430         // successors of CurMBB.
9431         if (!BTB->ContiguousRange) {
9432           BTB->Prob += DefaultProb / 2;
9433           BTB->DefaultProb -= DefaultProb / 2;
9434         }
9435 
9436         // If we're in the right place, emit the bit test header right now.
9437         if (CurMBB == SwitchMBB) {
9438           visitBitTestHeader(*BTB, SwitchMBB);
9439           BTB->Emitted = true;
9440         }
9441         break;
9442       }
9443       case CC_Range: {
9444         const Value *RHS, *LHS, *MHS;
9445         ISD::CondCode CC;
9446         if (I->Low == I->High) {
9447           // Check Cond == I->Low.
9448           CC = ISD::SETEQ;
9449           LHS = Cond;
9450           RHS=I->Low;
9451           MHS = nullptr;
9452         } else {
9453           // Check I->Low <= Cond <= I->High.
9454           CC = ISD::SETLE;
9455           LHS = I->Low;
9456           MHS = Cond;
9457           RHS = I->High;
9458         }
9459 
9460         // The false probability is the sum of all unhandled cases.
9461         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
9462                      UnhandledProbs);
9463 
9464         if (CurMBB == SwitchMBB)
9465           visitSwitchCase(CB, SwitchMBB);
9466         else
9467           SwitchCases.push_back(CB);
9468 
9469         break;
9470       }
9471     }
9472     CurMBB = Fallthrough;
9473   }
9474 }
9475 
9476 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9477                                               CaseClusterIt First,
9478                                               CaseClusterIt Last) {
9479   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9480     if (X.Prob != CC.Prob)
9481       return X.Prob > CC.Prob;
9482 
9483     // Ties are broken by comparing the case value.
9484     return X.Low->getValue().slt(CC.Low->getValue());
9485   });
9486 }
9487 
9488 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9489                                         const SwitchWorkListItem &W,
9490                                         Value *Cond,
9491                                         MachineBasicBlock *SwitchMBB) {
9492   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9493          "Clusters not sorted?");
9494 
9495   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9496 
9497   // Balance the tree based on branch probabilities to create a near-optimal (in
9498   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9499   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9500   CaseClusterIt LastLeft = W.FirstCluster;
9501   CaseClusterIt FirstRight = W.LastCluster;
9502   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9503   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9504 
9505   // Move LastLeft and FirstRight towards each other from opposite directions to
9506   // find a partitioning of the clusters which balances the probability on both
9507   // sides. If LeftProb and RightProb are equal, alternate which side is
9508   // taken to ensure 0-probability nodes are distributed evenly.
9509   unsigned I = 0;
9510   while (LastLeft + 1 < FirstRight) {
9511     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9512       LeftProb += (++LastLeft)->Prob;
9513     else
9514       RightProb += (--FirstRight)->Prob;
9515     I++;
9516   }
9517 
9518   for (;;) {
9519     // Our binary search tree differs from a typical BST in that ours can have up
9520     // to three values in each leaf. The pivot selection above doesn't take that
9521     // into account, which means the tree might require more nodes and be less
9522     // efficient. We compensate for this here.
9523 
9524     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9525     unsigned NumRight = W.LastCluster - FirstRight + 1;
9526 
9527     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9528       // If one side has less than 3 clusters, and the other has more than 3,
9529       // consider taking a cluster from the other side.
9530 
9531       if (NumLeft < NumRight) {
9532         // Consider moving the first cluster on the right to the left side.
9533         CaseCluster &CC = *FirstRight;
9534         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9535         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9536         if (LeftSideRank <= RightSideRank) {
9537           // Moving the cluster to the left does not demote it.
9538           ++LastLeft;
9539           ++FirstRight;
9540           continue;
9541         }
9542       } else {
9543         assert(NumRight < NumLeft);
9544         // Consider moving the last element on the left to the right side.
9545         CaseCluster &CC = *LastLeft;
9546         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9547         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9548         if (RightSideRank <= LeftSideRank) {
9549           // Moving the cluster to the right does not demot it.
9550           --LastLeft;
9551           --FirstRight;
9552           continue;
9553         }
9554       }
9555     }
9556     break;
9557   }
9558 
9559   assert(LastLeft + 1 == FirstRight);
9560   assert(LastLeft >= W.FirstCluster);
9561   assert(FirstRight <= W.LastCluster);
9562 
9563   // Use the first element on the right as pivot since we will make less-than
9564   // comparisons against it.
9565   CaseClusterIt PivotCluster = FirstRight;
9566   assert(PivotCluster > W.FirstCluster);
9567   assert(PivotCluster <= W.LastCluster);
9568 
9569   CaseClusterIt FirstLeft = W.FirstCluster;
9570   CaseClusterIt LastRight = W.LastCluster;
9571 
9572   const ConstantInt *Pivot = PivotCluster->Low;
9573 
9574   // New blocks will be inserted immediately after the current one.
9575   MachineFunction::iterator BBI(W.MBB);
9576   ++BBI;
9577 
9578   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9579   // we can branch to its destination directly if it's squeezed exactly in
9580   // between the known lower bound and Pivot - 1.
9581   MachineBasicBlock *LeftMBB;
9582   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9583       FirstLeft->Low == W.GE &&
9584       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9585     LeftMBB = FirstLeft->MBB;
9586   } else {
9587     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9588     FuncInfo.MF->insert(BBI, LeftMBB);
9589     WorkList.push_back(
9590         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9591     // Put Cond in a virtual register to make it available from the new blocks.
9592     ExportFromCurrentBlock(Cond);
9593   }
9594 
9595   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9596   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9597   // directly if RHS.High equals the current upper bound.
9598   MachineBasicBlock *RightMBB;
9599   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9600       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9601     RightMBB = FirstRight->MBB;
9602   } else {
9603     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9604     FuncInfo.MF->insert(BBI, RightMBB);
9605     WorkList.push_back(
9606         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9607     // Put Cond in a virtual register to make it available from the new blocks.
9608     ExportFromCurrentBlock(Cond);
9609   }
9610 
9611   // Create the CaseBlock record that will be used to lower the branch.
9612   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9613                LeftProb, RightProb);
9614 
9615   if (W.MBB == SwitchMBB)
9616     visitSwitchCase(CB, SwitchMBB);
9617   else
9618     SwitchCases.push_back(CB);
9619 }
9620 
9621 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
9622   // Extract cases from the switch.
9623   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9624   CaseClusterVector Clusters;
9625   Clusters.reserve(SI.getNumCases());
9626   for (auto I : SI.cases()) {
9627     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
9628     const ConstantInt *CaseVal = I.getCaseValue();
9629     BranchProbability Prob =
9630         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
9631             : BranchProbability(1, SI.getNumCases() + 1);
9632     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
9633   }
9634 
9635   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
9636 
9637   // Cluster adjacent cases with the same destination. We do this at all
9638   // optimization levels because it's cheap to do and will make codegen faster
9639   // if there are many clusters.
9640   sortAndRangeify(Clusters);
9641 
9642   if (TM.getOptLevel() != CodeGenOpt::None) {
9643     // Replace an unreachable default with the most popular destination.
9644     // FIXME: Exploit unreachable default more aggressively.
9645     bool UnreachableDefault =
9646         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9647     if (UnreachableDefault && !Clusters.empty()) {
9648       DenseMap<const BasicBlock *, unsigned> Popularity;
9649       unsigned MaxPop = 0;
9650       const BasicBlock *MaxBB = nullptr;
9651       for (auto I : SI.cases()) {
9652         const BasicBlock *BB = I.getCaseSuccessor();
9653         if (++Popularity[BB] > MaxPop) {
9654           MaxPop = Popularity[BB];
9655           MaxBB = BB;
9656         }
9657       }
9658       // Set new default.
9659       assert(MaxPop > 0 && MaxBB);
9660       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9661 
9662       // Remove cases that were pointing to the destination that is now the
9663       // default.
9664       CaseClusterVector New;
9665       New.reserve(Clusters.size());
9666       for (CaseCluster &CC : Clusters) {
9667         if (CC.MBB != DefaultMBB)
9668           New.push_back(CC);
9669       }
9670       Clusters = std::move(New);
9671     }
9672   }
9673 
9674   // If there is only the default destination, jump there directly.
9675   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9676   if (Clusters.empty()) {
9677     SwitchMBB->addSuccessor(DefaultMBB);
9678     if (DefaultMBB != NextBlock(SwitchMBB)) {
9679       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9680                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9681     }
9682     return;
9683   }
9684 
9685   findJumpTables(Clusters, &SI, DefaultMBB);
9686   findBitTestClusters(Clusters, &SI);
9687 
9688   DEBUG({
9689     dbgs() << "Case clusters: ";
9690     for (const CaseCluster &C : Clusters) {
9691       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9692       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9693 
9694       C.Low->getValue().print(dbgs(), true);
9695       if (C.Low != C.High) {
9696         dbgs() << '-';
9697         C.High->getValue().print(dbgs(), true);
9698       }
9699       dbgs() << ' ';
9700     }
9701     dbgs() << '\n';
9702   });
9703 
9704   assert(!Clusters.empty());
9705   SwitchWorkList WorkList;
9706   CaseClusterIt First = Clusters.begin();
9707   CaseClusterIt Last = Clusters.end() - 1;
9708   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9709   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9710 
9711   while (!WorkList.empty()) {
9712     SwitchWorkListItem W = WorkList.back();
9713     WorkList.pop_back();
9714     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9715 
9716     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
9717         !DefaultMBB->getParent()->getFunction()->optForMinSize()) {
9718       // For optimized builds, lower large range as a balanced binary tree.
9719       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9720       continue;
9721     }
9722 
9723     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9724   }
9725 }
9726