1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcalls.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/EHPersonalities.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsAMDGPU.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/Metadata.h" 84 #include "llvm/IR/Module.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Statepoint.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/User.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/MC/MCContext.h" 92 #include "llvm/Support/AtomicOrdering.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/InstructionCost.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Target/TargetIntrinsicInfo.h" 101 #include "llvm/Target/TargetMachine.h" 102 #include "llvm/Target/TargetOptions.h" 103 #include "llvm/TargetParser/Triple.h" 104 #include "llvm/Transforms/Utils/Local.h" 105 #include <cstddef> 106 #include <iterator> 107 #include <limits> 108 #include <optional> 109 #include <tuple> 110 111 using namespace llvm; 112 using namespace PatternMatch; 113 using namespace SwitchCG; 114 115 #define DEBUG_TYPE "isel" 116 117 /// LimitFloatPrecision - Generate low-precision inline sequences for 118 /// some float libcalls (6, 8 or 12 bits). 119 static unsigned LimitFloatPrecision; 120 121 static cl::opt<bool> 122 InsertAssertAlign("insert-assert-align", cl::init(true), 123 cl::desc("Insert the experimental `assertalign` node."), 124 cl::ReallyHidden); 125 126 static cl::opt<unsigned, true> 127 LimitFPPrecision("limit-float-precision", 128 cl::desc("Generate low-precision inline sequences " 129 "for some float libcalls"), 130 cl::location(LimitFloatPrecision), cl::Hidden, 131 cl::init(0)); 132 133 static cl::opt<unsigned> SwitchPeelThreshold( 134 "switch-peel-threshold", cl::Hidden, cl::init(66), 135 cl::desc("Set the case probability threshold for peeling the case from a " 136 "switch statement. A value greater than 100 will void this " 137 "optimization")); 138 139 // Limit the width of DAG chains. This is important in general to prevent 140 // DAG-based analysis from blowing up. For example, alias analysis and 141 // load clustering may not complete in reasonable time. It is difficult to 142 // recognize and avoid this situation within each individual analysis, and 143 // future analyses are likely to have the same behavior. Limiting DAG width is 144 // the safe approach and will be especially important with global DAGs. 145 // 146 // MaxParallelChains default is arbitrarily high to avoid affecting 147 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 148 // sequence over this should have been converted to llvm.memcpy by the 149 // frontend. It is easy to induce this behavior with .ll code such as: 150 // %buffer = alloca [4096 x i8] 151 // %data = load [4096 x i8]* %argPtr 152 // store [4096 x i8] %data, [4096 x i8]* %buffer 153 static const unsigned MaxParallelChains = 64; 154 155 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 156 const SDValue *Parts, unsigned NumParts, 157 MVT PartVT, EVT ValueVT, const Value *V, 158 SDValue InChain, 159 std::optional<CallingConv::ID> CC); 160 161 /// getCopyFromParts - Create a value that contains the specified legal parts 162 /// combined into the value they represent. If the parts combine to a type 163 /// larger than ValueVT then AssertOp can be used to specify whether the extra 164 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 165 /// (ISD::AssertSext). 166 static SDValue 167 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 168 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 169 SDValue InChain, 170 std::optional<CallingConv::ID> CC = std::nullopt, 171 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 172 // Let the target assemble the parts if it wants to 173 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 174 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 175 PartVT, ValueVT, CC)) 176 return Val; 177 178 if (ValueVT.isVector()) 179 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 180 InChain, CC); 181 182 assert(NumParts > 0 && "No parts to assemble!"); 183 SDValue Val = Parts[0]; 184 185 if (NumParts > 1) { 186 // Assemble the value from multiple parts. 187 if (ValueVT.isInteger()) { 188 unsigned PartBits = PartVT.getSizeInBits(); 189 unsigned ValueBits = ValueVT.getSizeInBits(); 190 191 // Assemble the power of 2 part. 192 unsigned RoundParts = llvm::bit_floor(NumParts); 193 unsigned RoundBits = PartBits * RoundParts; 194 EVT RoundVT = RoundBits == ValueBits ? 195 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 196 SDValue Lo, Hi; 197 198 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 199 200 if (RoundParts > 2) { 201 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 202 InChain); 203 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 204 PartVT, HalfVT, V, InChain); 205 } else { 206 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 207 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 208 } 209 210 if (DAG.getDataLayout().isBigEndian()) 211 std::swap(Lo, Hi); 212 213 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 214 215 if (RoundParts < NumParts) { 216 // Assemble the trailing non-power-of-2 part. 217 unsigned OddParts = NumParts - RoundParts; 218 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 219 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 220 OddVT, V, InChain, CC); 221 222 // Combine the round and odd parts. 223 Lo = Val; 224 if (DAG.getDataLayout().isBigEndian()) 225 std::swap(Lo, Hi); 226 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 227 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 228 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 229 DAG.getConstant(Lo.getValueSizeInBits(), DL, 230 TLI.getShiftAmountTy( 231 TotalVT, DAG.getDataLayout()))); 232 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 233 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 234 } 235 } else if (PartVT.isFloatingPoint()) { 236 // FP split into multiple FP parts (for ppcf128) 237 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 238 "Unexpected split"); 239 SDValue Lo, Hi; 240 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 241 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 242 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 243 std::swap(Lo, Hi); 244 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 245 } else { 246 // FP split into integer parts (soft fp) 247 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 248 !PartVT.isVector() && "Unexpected split"); 249 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 250 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 251 InChain, CC); 252 } 253 } 254 255 // There is now one part, held in Val. Correct it to match ValueVT. 256 // PartEVT is the type of the register class that holds the value. 257 // ValueVT is the type of the inline asm operation. 258 EVT PartEVT = Val.getValueType(); 259 260 if (PartEVT == ValueVT) 261 return Val; 262 263 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 264 ValueVT.bitsLT(PartEVT)) { 265 // For an FP value in an integer part, we need to truncate to the right 266 // width first. 267 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 268 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 269 } 270 271 // Handle types that have the same size. 272 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 273 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 274 275 // Handle types with different sizes. 276 if (PartEVT.isInteger() && ValueVT.isInteger()) { 277 if (ValueVT.bitsLT(PartEVT)) { 278 // For a truncate, see if we have any information to 279 // indicate whether the truncated bits will always be 280 // zero or sign-extension. 281 if (AssertOp) 282 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 283 DAG.getValueType(ValueVT)); 284 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 285 } 286 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 287 } 288 289 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 290 // FP_ROUND's are always exact here. 291 if (ValueVT.bitsLT(Val.getValueType())) { 292 293 SDValue NoChange = 294 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 295 296 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 297 llvm::Attribute::StrictFP)) { 298 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 299 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 300 NoChange); 301 } 302 303 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 304 } 305 306 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 307 } 308 309 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 310 // then truncating. 311 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 312 ValueVT.bitsLT(PartEVT)) { 313 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 314 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 315 } 316 317 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 318 } 319 320 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 321 const Twine &ErrMsg) { 322 const Instruction *I = dyn_cast_or_null<Instruction>(V); 323 if (!V) 324 return Ctx.emitError(ErrMsg); 325 326 const char *AsmError = ", possible invalid constraint for vector type"; 327 if (const CallInst *CI = dyn_cast<CallInst>(I)) 328 if (CI->isInlineAsm()) 329 return Ctx.emitError(I, ErrMsg + AsmError); 330 331 return Ctx.emitError(I, ErrMsg); 332 } 333 334 /// getCopyFromPartsVector - Create a value that contains the specified legal 335 /// parts combined into the value they represent. If the parts combine to a 336 /// type larger than ValueVT then AssertOp can be used to specify whether the 337 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 338 /// ValueVT (ISD::AssertSext). 339 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 340 const SDValue *Parts, unsigned NumParts, 341 MVT PartVT, EVT ValueVT, const Value *V, 342 SDValue InChain, 343 std::optional<CallingConv::ID> CallConv) { 344 assert(ValueVT.isVector() && "Not a vector value"); 345 assert(NumParts > 0 && "No parts to assemble!"); 346 const bool IsABIRegCopy = CallConv.has_value(); 347 348 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 349 SDValue Val = Parts[0]; 350 351 // Handle a multi-element vector. 352 if (NumParts > 1) { 353 EVT IntermediateVT; 354 MVT RegisterVT; 355 unsigned NumIntermediates; 356 unsigned NumRegs; 357 358 if (IsABIRegCopy) { 359 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 360 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 361 NumIntermediates, RegisterVT); 362 } else { 363 NumRegs = 364 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 365 NumIntermediates, RegisterVT); 366 } 367 368 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 369 NumParts = NumRegs; // Silence a compiler warning. 370 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 371 assert(RegisterVT.getSizeInBits() == 372 Parts[0].getSimpleValueType().getSizeInBits() && 373 "Part type sizes don't match!"); 374 375 // Assemble the parts into intermediate operands. 376 SmallVector<SDValue, 8> Ops(NumIntermediates); 377 if (NumIntermediates == NumParts) { 378 // If the register was not expanded, truncate or copy the value, 379 // as appropriate. 380 for (unsigned i = 0; i != NumParts; ++i) 381 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 382 V, InChain, CallConv); 383 } else if (NumParts > 0) { 384 // If the intermediate type was expanded, build the intermediate 385 // operands from the parts. 386 assert(NumParts % NumIntermediates == 0 && 387 "Must expand into a divisible number of parts!"); 388 unsigned Factor = NumParts / NumIntermediates; 389 for (unsigned i = 0; i != NumIntermediates; ++i) 390 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 391 IntermediateVT, V, InChain, CallConv); 392 } 393 394 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 395 // intermediate operands. 396 EVT BuiltVectorTy = 397 IntermediateVT.isVector() 398 ? EVT::getVectorVT( 399 *DAG.getContext(), IntermediateVT.getScalarType(), 400 IntermediateVT.getVectorElementCount() * NumParts) 401 : EVT::getVectorVT(*DAG.getContext(), 402 IntermediateVT.getScalarType(), 403 NumIntermediates); 404 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 405 : ISD::BUILD_VECTOR, 406 DL, BuiltVectorTy, Ops); 407 } 408 409 // There is now one part, held in Val. Correct it to match ValueVT. 410 EVT PartEVT = Val.getValueType(); 411 412 if (PartEVT == ValueVT) 413 return Val; 414 415 if (PartEVT.isVector()) { 416 // Vector/Vector bitcast. 417 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 420 // If the parts vector has more elements than the value vector, then we 421 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 422 // Extract the elements we want. 423 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 424 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 425 ValueVT.getVectorElementCount().getKnownMinValue()) && 426 (PartEVT.getVectorElementCount().isScalable() == 427 ValueVT.getVectorElementCount().isScalable()) && 428 "Cannot narrow, it would be a lossy transformation"); 429 PartEVT = 430 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 431 ValueVT.getVectorElementCount()); 432 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 433 DAG.getVectorIdxConstant(0, DL)); 434 if (PartEVT == ValueVT) 435 return Val; 436 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 439 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 440 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 441 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 442 } 443 444 // Promoted vector extract 445 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 446 } 447 448 // Trivial bitcast if the types are the same size and the destination 449 // vector type is legal. 450 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 451 TLI.isTypeLegal(ValueVT)) 452 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 453 454 if (ValueVT.getVectorNumElements() != 1) { 455 // Certain ABIs require that vectors are passed as integers. For vectors 456 // are the same size, this is an obvious bitcast. 457 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 458 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 459 } else if (ValueVT.bitsLT(PartEVT)) { 460 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 461 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 462 // Drop the extra bits. 463 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 464 return DAG.getBitcast(ValueVT, Val); 465 } 466 467 diagnosePossiblyInvalidConstraint( 468 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 469 return DAG.getUNDEF(ValueVT); 470 } 471 472 // Handle cases such as i8 -> <1 x i1> 473 EVT ValueSVT = ValueVT.getVectorElementType(); 474 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 475 unsigned ValueSize = ValueSVT.getSizeInBits(); 476 if (ValueSize == PartEVT.getSizeInBits()) { 477 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 478 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 479 // It's possible a scalar floating point type gets softened to integer and 480 // then promoted to a larger integer. If PartEVT is the larger integer 481 // we need to truncate it and then bitcast to the FP type. 482 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 483 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 484 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 485 Val = DAG.getBitcast(ValueSVT, Val); 486 } else { 487 Val = ValueVT.isFloatingPoint() 488 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 489 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 490 } 491 } 492 493 return DAG.getBuildVector(ValueVT, DL, Val); 494 } 495 496 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 497 SDValue Val, SDValue *Parts, unsigned NumParts, 498 MVT PartVT, const Value *V, 499 std::optional<CallingConv::ID> CallConv); 500 501 /// getCopyToParts - Create a series of nodes that contain the specified value 502 /// split into legal parts. If the parts contain more bits than Val, then, for 503 /// integers, ExtendKind can be used to specify how to generate the extra bits. 504 static void 505 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 506 unsigned NumParts, MVT PartVT, const Value *V, 507 std::optional<CallingConv::ID> CallConv = std::nullopt, 508 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 509 // Let the target split the parts if it wants to 510 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 511 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 512 CallConv)) 513 return; 514 EVT ValueVT = Val.getValueType(); 515 516 // Handle the vector case separately. 517 if (ValueVT.isVector()) 518 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 519 CallConv); 520 521 unsigned OrigNumParts = NumParts; 522 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 523 "Copying to an illegal type!"); 524 525 if (NumParts == 0) 526 return; 527 528 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 529 EVT PartEVT = PartVT; 530 if (PartEVT == ValueVT) { 531 assert(NumParts == 1 && "No-op copy with multiple parts!"); 532 Parts[0] = Val; 533 return; 534 } 535 536 unsigned PartBits = PartVT.getSizeInBits(); 537 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 538 // If the parts cover more bits than the value has, promote the value. 539 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 540 assert(NumParts == 1 && "Do not know what to promote to!"); 541 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 542 } else { 543 if (ValueVT.isFloatingPoint()) { 544 // FP values need to be bitcast, then extended if they are being put 545 // into a larger container. 546 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 547 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 548 } 549 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 550 ValueVT.isInteger() && 551 "Unknown mismatch!"); 552 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 553 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 554 if (PartVT == MVT::x86mmx) 555 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 556 } 557 } else if (PartBits == ValueVT.getSizeInBits()) { 558 // Different types of the same size. 559 assert(NumParts == 1 && PartEVT != ValueVT); 560 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 561 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 562 // If the parts cover less bits than value has, truncate the value. 563 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 564 ValueVT.isInteger() && 565 "Unknown mismatch!"); 566 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 567 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 568 if (PartVT == MVT::x86mmx) 569 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 570 } 571 572 // The value may have changed - recompute ValueVT. 573 ValueVT = Val.getValueType(); 574 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 575 "Failed to tile the value with PartVT!"); 576 577 if (NumParts == 1) { 578 if (PartEVT != ValueVT) { 579 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 580 "scalar-to-vector conversion failed"); 581 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 582 } 583 584 Parts[0] = Val; 585 return; 586 } 587 588 // Expand the value into multiple parts. 589 if (NumParts & (NumParts - 1)) { 590 // The number of parts is not a power of 2. Split off and copy the tail. 591 assert(PartVT.isInteger() && ValueVT.isInteger() && 592 "Do not know what to expand to!"); 593 unsigned RoundParts = llvm::bit_floor(NumParts); 594 unsigned RoundBits = RoundParts * PartBits; 595 unsigned OddParts = NumParts - RoundParts; 596 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 597 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 598 599 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 600 CallConv); 601 602 if (DAG.getDataLayout().isBigEndian()) 603 // The odd parts were reversed by getCopyToParts - unreverse them. 604 std::reverse(Parts + RoundParts, Parts + NumParts); 605 606 NumParts = RoundParts; 607 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 608 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 609 } 610 611 // The number of parts is a power of 2. Repeatedly bisect the value using 612 // EXTRACT_ELEMENT. 613 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 614 EVT::getIntegerVT(*DAG.getContext(), 615 ValueVT.getSizeInBits()), 616 Val); 617 618 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 619 for (unsigned i = 0; i < NumParts; i += StepSize) { 620 unsigned ThisBits = StepSize * PartBits / 2; 621 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 622 SDValue &Part0 = Parts[i]; 623 SDValue &Part1 = Parts[i+StepSize/2]; 624 625 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 626 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 627 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 628 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 629 630 if (ThisBits == PartBits && ThisVT != PartVT) { 631 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 632 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 633 } 634 } 635 } 636 637 if (DAG.getDataLayout().isBigEndian()) 638 std::reverse(Parts, Parts + OrigNumParts); 639 } 640 641 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 642 const SDLoc &DL, EVT PartVT) { 643 if (!PartVT.isVector()) 644 return SDValue(); 645 646 EVT ValueVT = Val.getValueType(); 647 EVT PartEVT = PartVT.getVectorElementType(); 648 EVT ValueEVT = ValueVT.getVectorElementType(); 649 ElementCount PartNumElts = PartVT.getVectorElementCount(); 650 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 651 652 // We only support widening vectors with equivalent element types and 653 // fixed/scalable properties. If a target needs to widen a fixed-length type 654 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 655 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 656 PartNumElts.isScalable() != ValueNumElts.isScalable()) 657 return SDValue(); 658 659 // Have a try for bf16 because some targets share its ABI with fp16. 660 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 661 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 662 "Cannot widen to illegal type"); 663 Val = DAG.getNode(ISD::BITCAST, DL, 664 ValueVT.changeVectorElementType(MVT::f16), Val); 665 } else if (PartEVT != ValueEVT) { 666 return SDValue(); 667 } 668 669 // Widening a scalable vector to another scalable vector is done by inserting 670 // the vector into a larger undef one. 671 if (PartNumElts.isScalable()) 672 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 673 Val, DAG.getVectorIdxConstant(0, DL)); 674 675 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 676 // undef elements. 677 SmallVector<SDValue, 16> Ops; 678 DAG.ExtractVectorElements(Val, Ops); 679 SDValue EltUndef = DAG.getUNDEF(PartEVT); 680 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 681 682 // FIXME: Use CONCAT for 2x -> 4x. 683 return DAG.getBuildVector(PartVT, DL, Ops); 684 } 685 686 /// getCopyToPartsVector - Create a series of nodes that contain the specified 687 /// value split into legal parts. 688 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 689 SDValue Val, SDValue *Parts, unsigned NumParts, 690 MVT PartVT, const Value *V, 691 std::optional<CallingConv::ID> CallConv) { 692 EVT ValueVT = Val.getValueType(); 693 assert(ValueVT.isVector() && "Not a vector"); 694 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 695 const bool IsABIRegCopy = CallConv.has_value(); 696 697 if (NumParts == 1) { 698 EVT PartEVT = PartVT; 699 if (PartEVT == ValueVT) { 700 // Nothing to do. 701 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 702 // Bitconvert vector->vector case. 703 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 704 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 705 Val = Widened; 706 } else if (PartVT.isVector() && 707 PartEVT.getVectorElementType().bitsGE( 708 ValueVT.getVectorElementType()) && 709 PartEVT.getVectorElementCount() == 710 ValueVT.getVectorElementCount()) { 711 712 // Promoted vector extract 713 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 714 } else if (PartEVT.isVector() && 715 PartEVT.getVectorElementType() != 716 ValueVT.getVectorElementType() && 717 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 718 TargetLowering::TypeWidenVector) { 719 // Combination of widening and promotion. 720 EVT WidenVT = 721 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 722 PartVT.getVectorElementCount()); 723 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 724 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 725 } else { 726 // Don't extract an integer from a float vector. This can happen if the 727 // FP type gets softened to integer and then promoted. The promotion 728 // prevents it from being picked up by the earlier bitcast case. 729 if (ValueVT.getVectorElementCount().isScalar() && 730 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 731 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 732 DAG.getVectorIdxConstant(0, DL)); 733 } else { 734 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 735 assert(PartVT.getFixedSizeInBits() > ValueSize && 736 "lossy conversion of vector to scalar type"); 737 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 738 Val = DAG.getBitcast(IntermediateType, Val); 739 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 740 } 741 } 742 743 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 744 Parts[0] = Val; 745 return; 746 } 747 748 // Handle a multi-element vector. 749 EVT IntermediateVT; 750 MVT RegisterVT; 751 unsigned NumIntermediates; 752 unsigned NumRegs; 753 if (IsABIRegCopy) { 754 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 755 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 756 RegisterVT); 757 } else { 758 NumRegs = 759 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 760 NumIntermediates, RegisterVT); 761 } 762 763 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 764 NumParts = NumRegs; // Silence a compiler warning. 765 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 766 767 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 768 "Mixing scalable and fixed vectors when copying in parts"); 769 770 std::optional<ElementCount> DestEltCnt; 771 772 if (IntermediateVT.isVector()) 773 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 774 else 775 DestEltCnt = ElementCount::getFixed(NumIntermediates); 776 777 EVT BuiltVectorTy = EVT::getVectorVT( 778 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 779 780 if (ValueVT == BuiltVectorTy) { 781 // Nothing to do. 782 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 783 // Bitconvert vector->vector case. 784 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 785 } else { 786 if (BuiltVectorTy.getVectorElementType().bitsGT( 787 ValueVT.getVectorElementType())) { 788 // Integer promotion. 789 ValueVT = EVT::getVectorVT(*DAG.getContext(), 790 BuiltVectorTy.getVectorElementType(), 791 ValueVT.getVectorElementCount()); 792 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 793 } 794 795 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 796 Val = Widened; 797 } 798 } 799 800 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 801 802 // Split the vector into intermediate operands. 803 SmallVector<SDValue, 8> Ops(NumIntermediates); 804 for (unsigned i = 0; i != NumIntermediates; ++i) { 805 if (IntermediateVT.isVector()) { 806 // This does something sensible for scalable vectors - see the 807 // definition of EXTRACT_SUBVECTOR for further details. 808 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 809 Ops[i] = 810 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 811 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 812 } else { 813 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 814 DAG.getVectorIdxConstant(i, DL)); 815 } 816 } 817 818 // Split the intermediate operands into legal parts. 819 if (NumParts == NumIntermediates) { 820 // If the register was not expanded, promote or copy the value, 821 // as appropriate. 822 for (unsigned i = 0; i != NumParts; ++i) 823 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 824 } else if (NumParts > 0) { 825 // If the intermediate type was expanded, split each the value into 826 // legal parts. 827 assert(NumIntermediates != 0 && "division by zero"); 828 assert(NumParts % NumIntermediates == 0 && 829 "Must expand into a divisible number of parts!"); 830 unsigned Factor = NumParts / NumIntermediates; 831 for (unsigned i = 0; i != NumIntermediates; ++i) 832 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 833 CallConv); 834 } 835 } 836 837 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 838 EVT valuevt, std::optional<CallingConv::ID> CC) 839 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 840 RegCount(1, regs.size()), CallConv(CC) {} 841 842 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 843 const DataLayout &DL, unsigned Reg, Type *Ty, 844 std::optional<CallingConv::ID> CC) { 845 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 846 847 CallConv = CC; 848 849 for (EVT ValueVT : ValueVTs) { 850 unsigned NumRegs = 851 isABIMangled() 852 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 853 : TLI.getNumRegisters(Context, ValueVT); 854 MVT RegisterVT = 855 isABIMangled() 856 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 857 : TLI.getRegisterType(Context, ValueVT); 858 for (unsigned i = 0; i != NumRegs; ++i) 859 Regs.push_back(Reg + i); 860 RegVTs.push_back(RegisterVT); 861 RegCount.push_back(NumRegs); 862 Reg += NumRegs; 863 } 864 } 865 866 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 867 FunctionLoweringInfo &FuncInfo, 868 const SDLoc &dl, SDValue &Chain, 869 SDValue *Glue, const Value *V) const { 870 // A Value with type {} or [0 x %t] needs no registers. 871 if (ValueVTs.empty()) 872 return SDValue(); 873 874 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 875 876 // Assemble the legal parts into the final values. 877 SmallVector<SDValue, 4> Values(ValueVTs.size()); 878 SmallVector<SDValue, 8> Parts; 879 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 880 // Copy the legal parts from the registers. 881 EVT ValueVT = ValueVTs[Value]; 882 unsigned NumRegs = RegCount[Value]; 883 MVT RegisterVT = isABIMangled() 884 ? TLI.getRegisterTypeForCallingConv( 885 *DAG.getContext(), *CallConv, RegVTs[Value]) 886 : RegVTs[Value]; 887 888 Parts.resize(NumRegs); 889 for (unsigned i = 0; i != NumRegs; ++i) { 890 SDValue P; 891 if (!Glue) { 892 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 893 } else { 894 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 895 *Glue = P.getValue(2); 896 } 897 898 Chain = P.getValue(1); 899 Parts[i] = P; 900 901 // If the source register was virtual and if we know something about it, 902 // add an assert node. 903 if (!Register::isVirtualRegister(Regs[Part + i]) || 904 !RegisterVT.isInteger()) 905 continue; 906 907 const FunctionLoweringInfo::LiveOutInfo *LOI = 908 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 909 if (!LOI) 910 continue; 911 912 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 913 unsigned NumSignBits = LOI->NumSignBits; 914 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 915 916 if (NumZeroBits == RegSize) { 917 // The current value is a zero. 918 // Explicitly express that as it would be easier for 919 // optimizations to kick in. 920 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 921 continue; 922 } 923 924 // FIXME: We capture more information than the dag can represent. For 925 // now, just use the tightest assertzext/assertsext possible. 926 bool isSExt; 927 EVT FromVT(MVT::Other); 928 if (NumZeroBits) { 929 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 930 isSExt = false; 931 } else if (NumSignBits > 1) { 932 FromVT = 933 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 934 isSExt = true; 935 } else { 936 continue; 937 } 938 // Add an assertion node. 939 assert(FromVT != MVT::Other); 940 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 941 RegisterVT, P, DAG.getValueType(FromVT)); 942 } 943 944 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 945 RegisterVT, ValueVT, V, Chain, CallConv); 946 Part += NumRegs; 947 Parts.clear(); 948 } 949 950 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 951 } 952 953 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 954 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 955 const Value *V, 956 ISD::NodeType PreferredExtendType) const { 957 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 958 ISD::NodeType ExtendKind = PreferredExtendType; 959 960 // Get the list of the values's legal parts. 961 unsigned NumRegs = Regs.size(); 962 SmallVector<SDValue, 8> Parts(NumRegs); 963 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 964 unsigned NumParts = RegCount[Value]; 965 966 MVT RegisterVT = isABIMangled() 967 ? TLI.getRegisterTypeForCallingConv( 968 *DAG.getContext(), *CallConv, RegVTs[Value]) 969 : RegVTs[Value]; 970 971 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 972 ExtendKind = ISD::ZERO_EXTEND; 973 974 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 975 NumParts, RegisterVT, V, CallConv, ExtendKind); 976 Part += NumParts; 977 } 978 979 // Copy the parts into the registers. 980 SmallVector<SDValue, 8> Chains(NumRegs); 981 for (unsigned i = 0; i != NumRegs; ++i) { 982 SDValue Part; 983 if (!Glue) { 984 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 985 } else { 986 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 987 *Glue = Part.getValue(1); 988 } 989 990 Chains[i] = Part.getValue(0); 991 } 992 993 if (NumRegs == 1 || Glue) 994 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 995 // flagged to it. That is the CopyToReg nodes and the user are considered 996 // a single scheduling unit. If we create a TokenFactor and return it as 997 // chain, then the TokenFactor is both a predecessor (operand) of the 998 // user as well as a successor (the TF operands are flagged to the user). 999 // c1, f1 = CopyToReg 1000 // c2, f2 = CopyToReg 1001 // c3 = TokenFactor c1, c2 1002 // ... 1003 // = op c3, ..., f2 1004 Chain = Chains[NumRegs-1]; 1005 else 1006 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1007 } 1008 1009 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1010 unsigned MatchingIdx, const SDLoc &dl, 1011 SelectionDAG &DAG, 1012 std::vector<SDValue> &Ops) const { 1013 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1014 1015 InlineAsm::Flag Flag(Code, Regs.size()); 1016 if (HasMatching) 1017 Flag.setMatchingOp(MatchingIdx); 1018 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1019 // Put the register class of the virtual registers in the flag word. That 1020 // way, later passes can recompute register class constraints for inline 1021 // assembly as well as normal instructions. 1022 // Don't do this for tied operands that can use the regclass information 1023 // from the def. 1024 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1025 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1026 Flag.setRegClass(RC->getID()); 1027 } 1028 1029 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1030 Ops.push_back(Res); 1031 1032 if (Code == InlineAsm::Kind::Clobber) { 1033 // Clobbers should always have a 1:1 mapping with registers, and may 1034 // reference registers that have illegal (e.g. vector) types. Hence, we 1035 // shouldn't try to apply any sort of splitting logic to them. 1036 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1037 "No 1:1 mapping from clobbers to regs?"); 1038 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1039 (void)SP; 1040 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1041 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1042 assert( 1043 (Regs[I] != SP || 1044 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1045 "If we clobbered the stack pointer, MFI should know about it."); 1046 } 1047 return; 1048 } 1049 1050 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1051 MVT RegisterVT = RegVTs[Value]; 1052 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1053 RegisterVT); 1054 for (unsigned i = 0; i != NumRegs; ++i) { 1055 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1056 unsigned TheReg = Regs[Reg++]; 1057 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1058 } 1059 } 1060 } 1061 1062 SmallVector<std::pair<unsigned, TypeSize>, 4> 1063 RegsForValue::getRegsAndSizes() const { 1064 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1065 unsigned I = 0; 1066 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1067 unsigned RegCount = std::get<0>(CountAndVT); 1068 MVT RegisterVT = std::get<1>(CountAndVT); 1069 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1070 for (unsigned E = I + RegCount; I != E; ++I) 1071 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1072 } 1073 return OutVec; 1074 } 1075 1076 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1077 AssumptionCache *ac, 1078 const TargetLibraryInfo *li) { 1079 AA = aa; 1080 AC = ac; 1081 GFI = gfi; 1082 LibInfo = li; 1083 Context = DAG.getContext(); 1084 LPadToCallSiteMap.clear(); 1085 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1086 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1087 *DAG.getMachineFunction().getFunction().getParent()); 1088 } 1089 1090 void SelectionDAGBuilder::clear() { 1091 NodeMap.clear(); 1092 UnusedArgNodeMap.clear(); 1093 PendingLoads.clear(); 1094 PendingExports.clear(); 1095 PendingConstrainedFP.clear(); 1096 PendingConstrainedFPStrict.clear(); 1097 CurInst = nullptr; 1098 HasTailCall = false; 1099 SDNodeOrder = LowestSDNodeOrder; 1100 StatepointLowering.clear(); 1101 } 1102 1103 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1104 DanglingDebugInfoMap.clear(); 1105 } 1106 1107 // Update DAG root to include dependencies on Pending chains. 1108 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1109 SDValue Root = DAG.getRoot(); 1110 1111 if (Pending.empty()) 1112 return Root; 1113 1114 // Add current root to PendingChains, unless we already indirectly 1115 // depend on it. 1116 if (Root.getOpcode() != ISD::EntryToken) { 1117 unsigned i = 0, e = Pending.size(); 1118 for (; i != e; ++i) { 1119 assert(Pending[i].getNode()->getNumOperands() > 1); 1120 if (Pending[i].getNode()->getOperand(0) == Root) 1121 break; // Don't add the root if we already indirectly depend on it. 1122 } 1123 1124 if (i == e) 1125 Pending.push_back(Root); 1126 } 1127 1128 if (Pending.size() == 1) 1129 Root = Pending[0]; 1130 else 1131 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1132 1133 DAG.setRoot(Root); 1134 Pending.clear(); 1135 return Root; 1136 } 1137 1138 SDValue SelectionDAGBuilder::getMemoryRoot() { 1139 return updateRoot(PendingLoads); 1140 } 1141 1142 SDValue SelectionDAGBuilder::getRoot() { 1143 // Chain up all pending constrained intrinsics together with all 1144 // pending loads, by simply appending them to PendingLoads and 1145 // then calling getMemoryRoot(). 1146 PendingLoads.reserve(PendingLoads.size() + 1147 PendingConstrainedFP.size() + 1148 PendingConstrainedFPStrict.size()); 1149 PendingLoads.append(PendingConstrainedFP.begin(), 1150 PendingConstrainedFP.end()); 1151 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1152 PendingConstrainedFPStrict.end()); 1153 PendingConstrainedFP.clear(); 1154 PendingConstrainedFPStrict.clear(); 1155 return getMemoryRoot(); 1156 } 1157 1158 SDValue SelectionDAGBuilder::getControlRoot() { 1159 // We need to emit pending fpexcept.strict constrained intrinsics, 1160 // so append them to the PendingExports list. 1161 PendingExports.append(PendingConstrainedFPStrict.begin(), 1162 PendingConstrainedFPStrict.end()); 1163 PendingConstrainedFPStrict.clear(); 1164 return updateRoot(PendingExports); 1165 } 1166 1167 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1168 DILocalVariable *Variable, 1169 DIExpression *Expression, 1170 DebugLoc DL) { 1171 assert(Variable && "Missing variable"); 1172 1173 // Check if address has undef value. 1174 if (!Address || isa<UndefValue>(Address) || 1175 (Address->use_empty() && !isa<Argument>(Address))) { 1176 LLVM_DEBUG( 1177 dbgs() 1178 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1179 return; 1180 } 1181 1182 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1183 1184 SDValue &N = NodeMap[Address]; 1185 if (!N.getNode() && isa<Argument>(Address)) 1186 // Check unused arguments map. 1187 N = UnusedArgNodeMap[Address]; 1188 SDDbgValue *SDV; 1189 if (N.getNode()) { 1190 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1191 Address = BCI->getOperand(0); 1192 // Parameters are handled specially. 1193 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1194 if (IsParameter && FINode) { 1195 // Byval parameter. We have a frame index at this point. 1196 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1197 /*IsIndirect*/ true, DL, SDNodeOrder); 1198 } else if (isa<Argument>(Address)) { 1199 // Address is an argument, so try to emit its dbg value using 1200 // virtual register info from the FuncInfo.ValueMap. 1201 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1202 FuncArgumentDbgValueKind::Declare, N); 1203 return; 1204 } else { 1205 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1206 true, DL, SDNodeOrder); 1207 } 1208 DAG.AddDbgValue(SDV, IsParameter); 1209 } else { 1210 // If Address is an argument then try to emit its dbg value using 1211 // virtual register info from the FuncInfo.ValueMap. 1212 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1213 FuncArgumentDbgValueKind::Declare, N)) { 1214 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1215 << " (could not emit func-arg dbg_value)\n"); 1216 } 1217 } 1218 return; 1219 } 1220 1221 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1222 // Add SDDbgValue nodes for any var locs here. Do so before updating 1223 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1224 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1225 // Add SDDbgValue nodes for any var locs here. Do so before updating 1226 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1227 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1228 It != End; ++It) { 1229 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1230 dropDanglingDebugInfo(Var, It->Expr); 1231 if (It->Values.isKillLocation(It->Expr)) { 1232 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1233 continue; 1234 } 1235 SmallVector<Value *> Values(It->Values.location_ops()); 1236 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1237 It->Values.hasArgList())) { 1238 SmallVector<Value *, 4> Vals; 1239 for (Value *V : It->Values.location_ops()) 1240 Vals.push_back(V); 1241 addDanglingDebugInfo(Vals, 1242 FnVarLocs->getDILocalVariable(It->VariableID), 1243 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1244 } 1245 } 1246 } 1247 1248 // We must skip DPValues if they've already been processed above as we 1249 // have just emitted the debug values resulting from assignment tracking 1250 // analysis, making any existing DPValues redundant (and probably less 1251 // correct). We still need to process DPLabels. This does sink DPLabels 1252 // to the bottom of the group of debug records. That sholdn't be important 1253 // as it does so deterministcally and ordering between DPLabels and DPValues 1254 // is immaterial (other than for MIR/IR printing). 1255 bool SkipDPValues = DAG.getFunctionVarLocs(); 1256 // Is there is any debug-info attached to this instruction, in the form of 1257 // DbgRecord non-instruction debug-info records. 1258 for (DbgRecord &DR : I.getDbgValueRange()) { 1259 if (DPLabel *DPL = dyn_cast<DPLabel>(&DR)) { 1260 assert(DPL->getLabel() && "Missing label"); 1261 SDDbgLabel *SDV = 1262 DAG.getDbgLabel(DPL->getLabel(), DPL->getDebugLoc(), SDNodeOrder); 1263 DAG.AddDbgLabel(SDV); 1264 continue; 1265 } 1266 1267 if (SkipDPValues) 1268 continue; 1269 DPValue &DPV = cast<DPValue>(DR); 1270 DILocalVariable *Variable = DPV.getVariable(); 1271 DIExpression *Expression = DPV.getExpression(); 1272 dropDanglingDebugInfo(Variable, Expression); 1273 1274 if (DPV.getType() == DPValue::LocationType::Declare) { 1275 if (FuncInfo.PreprocessedDPVDeclares.contains(&DPV)) 1276 continue; 1277 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DPV 1278 << "\n"); 1279 handleDebugDeclare(DPV.getVariableLocationOp(0), Variable, Expression, 1280 DPV.getDebugLoc()); 1281 continue; 1282 } 1283 1284 // A DPValue with no locations is a kill location. 1285 SmallVector<Value *, 4> Values(DPV.location_ops()); 1286 if (Values.empty()) { 1287 handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(), 1288 SDNodeOrder); 1289 continue; 1290 } 1291 1292 // A DPValue with an undef or absent location is also a kill location. 1293 if (llvm::any_of(Values, 1294 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1295 handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(), 1296 SDNodeOrder); 1297 continue; 1298 } 1299 1300 bool IsVariadic = DPV.hasArgList(); 1301 if (!handleDebugValue(Values, Variable, Expression, DPV.getDebugLoc(), 1302 SDNodeOrder, IsVariadic)) { 1303 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1304 DPV.getDebugLoc(), SDNodeOrder); 1305 } 1306 } 1307 } 1308 1309 void SelectionDAGBuilder::visit(const Instruction &I) { 1310 visitDbgInfo(I); 1311 1312 // Set up outgoing PHI node register values before emitting the terminator. 1313 if (I.isTerminator()) { 1314 HandlePHINodesInSuccessorBlocks(I.getParent()); 1315 } 1316 1317 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1318 if (!isa<DbgInfoIntrinsic>(I)) 1319 ++SDNodeOrder; 1320 1321 CurInst = &I; 1322 1323 // Set inserted listener only if required. 1324 bool NodeInserted = false; 1325 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1326 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1327 if (PCSectionsMD) { 1328 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1329 DAG, [&](SDNode *) { NodeInserted = true; }); 1330 } 1331 1332 visit(I.getOpcode(), I); 1333 1334 if (!I.isTerminator() && !HasTailCall && 1335 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1336 CopyToExportRegsIfNeeded(&I); 1337 1338 // Handle metadata. 1339 if (PCSectionsMD) { 1340 auto It = NodeMap.find(&I); 1341 if (It != NodeMap.end()) { 1342 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1343 } else if (NodeInserted) { 1344 // This should not happen; if it does, don't let it go unnoticed so we can 1345 // fix it. Relevant visit*() function is probably missing a setValue(). 1346 errs() << "warning: loosing !pcsections metadata [" 1347 << I.getModule()->getName() << "]\n"; 1348 LLVM_DEBUG(I.dump()); 1349 assert(false); 1350 } 1351 } 1352 1353 CurInst = nullptr; 1354 } 1355 1356 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1357 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1358 } 1359 1360 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1361 // Note: this doesn't use InstVisitor, because it has to work with 1362 // ConstantExpr's in addition to instructions. 1363 switch (Opcode) { 1364 default: llvm_unreachable("Unknown instruction type encountered!"); 1365 // Build the switch statement using the Instruction.def file. 1366 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1367 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1368 #include "llvm/IR/Instruction.def" 1369 } 1370 } 1371 1372 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1373 DILocalVariable *Variable, 1374 DebugLoc DL, unsigned Order, 1375 SmallVectorImpl<Value *> &Values, 1376 DIExpression *Expression) { 1377 // For variadic dbg_values we will now insert an undef. 1378 // FIXME: We can potentially recover these! 1379 SmallVector<SDDbgOperand, 2> Locs; 1380 for (const Value *V : Values) { 1381 auto *Undef = UndefValue::get(V->getType()); 1382 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1383 } 1384 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1385 /*IsIndirect=*/false, DL, Order, 1386 /*IsVariadic=*/true); 1387 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1388 return true; 1389 } 1390 1391 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1392 DILocalVariable *Var, 1393 DIExpression *Expr, 1394 bool IsVariadic, DebugLoc DL, 1395 unsigned Order) { 1396 if (IsVariadic) { 1397 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1398 return; 1399 } 1400 // TODO: Dangling debug info will eventually either be resolved or produce 1401 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1402 // between the original dbg.value location and its resolved DBG_VALUE, 1403 // which we should ideally fill with an extra Undef DBG_VALUE. 1404 assert(Values.size() == 1); 1405 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1406 } 1407 1408 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1409 const DIExpression *Expr) { 1410 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1411 DIVariable *DanglingVariable = DDI.getVariable(); 1412 DIExpression *DanglingExpr = DDI.getExpression(); 1413 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1414 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1415 << printDDI(nullptr, DDI) << "\n"); 1416 return true; 1417 } 1418 return false; 1419 }; 1420 1421 for (auto &DDIMI : DanglingDebugInfoMap) { 1422 DanglingDebugInfoVector &DDIV = DDIMI.second; 1423 1424 // If debug info is to be dropped, run it through final checks to see 1425 // whether it can be salvaged. 1426 for (auto &DDI : DDIV) 1427 if (isMatchingDbgValue(DDI)) 1428 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1429 1430 erase_if(DDIV, isMatchingDbgValue); 1431 } 1432 } 1433 1434 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1435 // generate the debug data structures now that we've seen its definition. 1436 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1437 SDValue Val) { 1438 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1439 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1440 return; 1441 1442 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1443 for (auto &DDI : DDIV) { 1444 DebugLoc DL = DDI.getDebugLoc(); 1445 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1446 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1447 DILocalVariable *Variable = DDI.getVariable(); 1448 DIExpression *Expr = DDI.getExpression(); 1449 assert(Variable->isValidLocationForIntrinsic(DL) && 1450 "Expected inlined-at fields to agree"); 1451 SDDbgValue *SDV; 1452 if (Val.getNode()) { 1453 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1454 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1455 // we couldn't resolve it directly when examining the DbgValue intrinsic 1456 // in the first place we should not be more successful here). Unless we 1457 // have some test case that prove this to be correct we should avoid 1458 // calling EmitFuncArgumentDbgValue here. 1459 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1460 FuncArgumentDbgValueKind::Value, Val)) { 1461 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1462 << printDDI(V, DDI) << "\n"); 1463 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1464 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1465 // inserted after the definition of Val when emitting the instructions 1466 // after ISel. An alternative could be to teach 1467 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1468 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1469 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1470 << ValSDNodeOrder << "\n"); 1471 SDV = getDbgValue(Val, Variable, Expr, DL, 1472 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1473 DAG.AddDbgValue(SDV, false); 1474 } else 1475 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1476 << printDDI(V, DDI) 1477 << " in EmitFuncArgumentDbgValue\n"); 1478 } else { 1479 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1480 << "\n"); 1481 auto Undef = UndefValue::get(V->getType()); 1482 auto SDV = 1483 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1484 DAG.AddDbgValue(SDV, false); 1485 } 1486 } 1487 DDIV.clear(); 1488 } 1489 1490 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1491 DanglingDebugInfo &DDI) { 1492 // TODO: For the variadic implementation, instead of only checking the fail 1493 // state of `handleDebugValue`, we need know specifically which values were 1494 // invalid, so that we attempt to salvage only those values when processing 1495 // a DIArgList. 1496 const Value *OrigV = V; 1497 DILocalVariable *Var = DDI.getVariable(); 1498 DIExpression *Expr = DDI.getExpression(); 1499 DebugLoc DL = DDI.getDebugLoc(); 1500 unsigned SDOrder = DDI.getSDNodeOrder(); 1501 1502 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1503 // that DW_OP_stack_value is desired. 1504 bool StackValue = true; 1505 1506 // Can this Value can be encoded without any further work? 1507 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1508 return; 1509 1510 // Attempt to salvage back through as many instructions as possible. Bail if 1511 // a non-instruction is seen, such as a constant expression or global 1512 // variable. FIXME: Further work could recover those too. 1513 while (isa<Instruction>(V)) { 1514 const Instruction &VAsInst = *cast<const Instruction>(V); 1515 // Temporary "0", awaiting real implementation. 1516 SmallVector<uint64_t, 16> Ops; 1517 SmallVector<Value *, 4> AdditionalValues; 1518 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1519 Expr->getNumLocationOperands(), Ops, 1520 AdditionalValues); 1521 // If we cannot salvage any further, and haven't yet found a suitable debug 1522 // expression, bail out. 1523 if (!V) 1524 break; 1525 1526 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1527 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1528 // here for variadic dbg_values, remove that condition. 1529 if (!AdditionalValues.empty()) 1530 break; 1531 1532 // New value and expr now represent this debuginfo. 1533 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1534 1535 // Some kind of simplification occurred: check whether the operand of the 1536 // salvaged debug expression can be encoded in this DAG. 1537 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1538 LLVM_DEBUG( 1539 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1540 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1541 return; 1542 } 1543 } 1544 1545 // This was the final opportunity to salvage this debug information, and it 1546 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1547 // any earlier variable location. 1548 assert(OrigV && "V shouldn't be null"); 1549 auto *Undef = UndefValue::get(OrigV->getType()); 1550 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1551 DAG.AddDbgValue(SDV, false); 1552 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1553 << printDDI(OrigV, DDI) << "\n"); 1554 } 1555 1556 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1557 DIExpression *Expr, 1558 DebugLoc DbgLoc, 1559 unsigned Order) { 1560 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1561 DIExpression *NewExpr = 1562 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1563 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1564 /*IsVariadic*/ false); 1565 } 1566 1567 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1568 DILocalVariable *Var, 1569 DIExpression *Expr, DebugLoc DbgLoc, 1570 unsigned Order, bool IsVariadic) { 1571 if (Values.empty()) 1572 return true; 1573 1574 // Filter EntryValue locations out early. 1575 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1576 return true; 1577 1578 SmallVector<SDDbgOperand> LocationOps; 1579 SmallVector<SDNode *> Dependencies; 1580 for (const Value *V : Values) { 1581 // Constant value. 1582 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1583 isa<ConstantPointerNull>(V)) { 1584 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1585 continue; 1586 } 1587 1588 // Look through IntToPtr constants. 1589 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1590 if (CE->getOpcode() == Instruction::IntToPtr) { 1591 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1592 continue; 1593 } 1594 1595 // If the Value is a frame index, we can create a FrameIndex debug value 1596 // without relying on the DAG at all. 1597 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1598 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1599 if (SI != FuncInfo.StaticAllocaMap.end()) { 1600 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1601 continue; 1602 } 1603 } 1604 1605 // Do not use getValue() in here; we don't want to generate code at 1606 // this point if it hasn't been done yet. 1607 SDValue N = NodeMap[V]; 1608 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1609 N = UnusedArgNodeMap[V]; 1610 if (N.getNode()) { 1611 // Only emit func arg dbg value for non-variadic dbg.values for now. 1612 if (!IsVariadic && 1613 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1614 FuncArgumentDbgValueKind::Value, N)) 1615 return true; 1616 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1617 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1618 // describe stack slot locations. 1619 // 1620 // Consider "int x = 0; int *px = &x;". There are two kinds of 1621 // interesting debug values here after optimization: 1622 // 1623 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1624 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1625 // 1626 // Both describe the direct values of their associated variables. 1627 Dependencies.push_back(N.getNode()); 1628 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1629 continue; 1630 } 1631 LocationOps.emplace_back( 1632 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1633 continue; 1634 } 1635 1636 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1637 // Special rules apply for the first dbg.values of parameter variables in a 1638 // function. Identify them by the fact they reference Argument Values, that 1639 // they're parameters, and they are parameters of the current function. We 1640 // need to let them dangle until they get an SDNode. 1641 bool IsParamOfFunc = 1642 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1643 if (IsParamOfFunc) 1644 return false; 1645 1646 // The value is not used in this block yet (or it would have an SDNode). 1647 // We still want the value to appear for the user if possible -- if it has 1648 // an associated VReg, we can refer to that instead. 1649 auto VMI = FuncInfo.ValueMap.find(V); 1650 if (VMI != FuncInfo.ValueMap.end()) { 1651 unsigned Reg = VMI->second; 1652 // If this is a PHI node, it may be split up into several MI PHI nodes 1653 // (in FunctionLoweringInfo::set). 1654 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1655 V->getType(), std::nullopt); 1656 if (RFV.occupiesMultipleRegs()) { 1657 // FIXME: We could potentially support variadic dbg_values here. 1658 if (IsVariadic) 1659 return false; 1660 unsigned Offset = 0; 1661 unsigned BitsToDescribe = 0; 1662 if (auto VarSize = Var->getSizeInBits()) 1663 BitsToDescribe = *VarSize; 1664 if (auto Fragment = Expr->getFragmentInfo()) 1665 BitsToDescribe = Fragment->SizeInBits; 1666 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1667 // Bail out if all bits are described already. 1668 if (Offset >= BitsToDescribe) 1669 break; 1670 // TODO: handle scalable vectors. 1671 unsigned RegisterSize = RegAndSize.second; 1672 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1673 ? BitsToDescribe - Offset 1674 : RegisterSize; 1675 auto FragmentExpr = DIExpression::createFragmentExpression( 1676 Expr, Offset, FragmentSize); 1677 if (!FragmentExpr) 1678 continue; 1679 SDDbgValue *SDV = DAG.getVRegDbgValue( 1680 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1681 DAG.AddDbgValue(SDV, false); 1682 Offset += RegisterSize; 1683 } 1684 return true; 1685 } 1686 // We can use simple vreg locations for variadic dbg_values as well. 1687 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1688 continue; 1689 } 1690 // We failed to create a SDDbgOperand for V. 1691 return false; 1692 } 1693 1694 // We have created a SDDbgOperand for each Value in Values. 1695 // Should use Order instead of SDNodeOrder? 1696 assert(!LocationOps.empty()); 1697 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1698 /*IsIndirect=*/false, DbgLoc, 1699 SDNodeOrder, IsVariadic); 1700 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1701 return true; 1702 } 1703 1704 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1705 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1706 for (auto &Pair : DanglingDebugInfoMap) 1707 for (auto &DDI : Pair.second) 1708 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1709 clearDanglingDebugInfo(); 1710 } 1711 1712 /// getCopyFromRegs - If there was virtual register allocated for the value V 1713 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1714 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1715 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1716 SDValue Result; 1717 1718 if (It != FuncInfo.ValueMap.end()) { 1719 Register InReg = It->second; 1720 1721 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1722 DAG.getDataLayout(), InReg, Ty, 1723 std::nullopt); // This is not an ABI copy. 1724 SDValue Chain = DAG.getEntryNode(); 1725 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1726 V); 1727 resolveDanglingDebugInfo(V, Result); 1728 } 1729 1730 return Result; 1731 } 1732 1733 /// getValue - Return an SDValue for the given Value. 1734 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1735 // If we already have an SDValue for this value, use it. It's important 1736 // to do this first, so that we don't create a CopyFromReg if we already 1737 // have a regular SDValue. 1738 SDValue &N = NodeMap[V]; 1739 if (N.getNode()) return N; 1740 1741 // If there's a virtual register allocated and initialized for this 1742 // value, use it. 1743 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1744 return copyFromReg; 1745 1746 // Otherwise create a new SDValue and remember it. 1747 SDValue Val = getValueImpl(V); 1748 NodeMap[V] = Val; 1749 resolveDanglingDebugInfo(V, Val); 1750 return Val; 1751 } 1752 1753 /// getNonRegisterValue - Return an SDValue for the given Value, but 1754 /// don't look in FuncInfo.ValueMap for a virtual register. 1755 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1756 // If we already have an SDValue for this value, use it. 1757 SDValue &N = NodeMap[V]; 1758 if (N.getNode()) { 1759 if (isIntOrFPConstant(N)) { 1760 // Remove the debug location from the node as the node is about to be used 1761 // in a location which may differ from the original debug location. This 1762 // is relevant to Constant and ConstantFP nodes because they can appear 1763 // as constant expressions inside PHI nodes. 1764 N->setDebugLoc(DebugLoc()); 1765 } 1766 return N; 1767 } 1768 1769 // Otherwise create a new SDValue and remember it. 1770 SDValue Val = getValueImpl(V); 1771 NodeMap[V] = Val; 1772 resolveDanglingDebugInfo(V, Val); 1773 return Val; 1774 } 1775 1776 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1777 /// Create an SDValue for the given value. 1778 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1779 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1780 1781 if (const Constant *C = dyn_cast<Constant>(V)) { 1782 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1783 1784 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1785 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1786 1787 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1788 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1789 1790 if (isa<ConstantPointerNull>(C)) { 1791 unsigned AS = V->getType()->getPointerAddressSpace(); 1792 return DAG.getConstant(0, getCurSDLoc(), 1793 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1794 } 1795 1796 if (match(C, m_VScale())) 1797 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1798 1799 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1800 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1801 1802 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1803 return DAG.getUNDEF(VT); 1804 1805 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1806 visit(CE->getOpcode(), *CE); 1807 SDValue N1 = NodeMap[V]; 1808 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1809 return N1; 1810 } 1811 1812 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1813 SmallVector<SDValue, 4> Constants; 1814 for (const Use &U : C->operands()) { 1815 SDNode *Val = getValue(U).getNode(); 1816 // If the operand is an empty aggregate, there are no values. 1817 if (!Val) continue; 1818 // Add each leaf value from the operand to the Constants list 1819 // to form a flattened list of all the values. 1820 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1821 Constants.push_back(SDValue(Val, i)); 1822 } 1823 1824 return DAG.getMergeValues(Constants, getCurSDLoc()); 1825 } 1826 1827 if (const ConstantDataSequential *CDS = 1828 dyn_cast<ConstantDataSequential>(C)) { 1829 SmallVector<SDValue, 4> Ops; 1830 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1831 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1832 // Add each leaf value from the operand to the Constants list 1833 // to form a flattened list of all the values. 1834 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1835 Ops.push_back(SDValue(Val, i)); 1836 } 1837 1838 if (isa<ArrayType>(CDS->getType())) 1839 return DAG.getMergeValues(Ops, getCurSDLoc()); 1840 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1841 } 1842 1843 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1844 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1845 "Unknown struct or array constant!"); 1846 1847 SmallVector<EVT, 4> ValueVTs; 1848 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1849 unsigned NumElts = ValueVTs.size(); 1850 if (NumElts == 0) 1851 return SDValue(); // empty struct 1852 SmallVector<SDValue, 4> Constants(NumElts); 1853 for (unsigned i = 0; i != NumElts; ++i) { 1854 EVT EltVT = ValueVTs[i]; 1855 if (isa<UndefValue>(C)) 1856 Constants[i] = DAG.getUNDEF(EltVT); 1857 else if (EltVT.isFloatingPoint()) 1858 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1859 else 1860 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1861 } 1862 1863 return DAG.getMergeValues(Constants, getCurSDLoc()); 1864 } 1865 1866 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1867 return DAG.getBlockAddress(BA, VT); 1868 1869 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1870 return getValue(Equiv->getGlobalValue()); 1871 1872 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1873 return getValue(NC->getGlobalValue()); 1874 1875 if (VT == MVT::aarch64svcount) { 1876 assert(C->isNullValue() && "Can only zero this target type!"); 1877 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1878 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1879 } 1880 1881 VectorType *VecTy = cast<VectorType>(V->getType()); 1882 1883 // Now that we know the number and type of the elements, get that number of 1884 // elements into the Ops array based on what kind of constant it is. 1885 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1886 SmallVector<SDValue, 16> Ops; 1887 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1888 for (unsigned i = 0; i != NumElements; ++i) 1889 Ops.push_back(getValue(CV->getOperand(i))); 1890 1891 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1892 } 1893 1894 if (isa<ConstantAggregateZero>(C)) { 1895 EVT EltVT = 1896 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1897 1898 SDValue Op; 1899 if (EltVT.isFloatingPoint()) 1900 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1901 else 1902 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1903 1904 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1905 } 1906 1907 llvm_unreachable("Unknown vector constant"); 1908 } 1909 1910 // If this is a static alloca, generate it as the frameindex instead of 1911 // computation. 1912 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1913 DenseMap<const AllocaInst*, int>::iterator SI = 1914 FuncInfo.StaticAllocaMap.find(AI); 1915 if (SI != FuncInfo.StaticAllocaMap.end()) 1916 return DAG.getFrameIndex( 1917 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1918 } 1919 1920 // If this is an instruction which fast-isel has deferred, select it now. 1921 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1922 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1923 1924 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1925 Inst->getType(), std::nullopt); 1926 SDValue Chain = DAG.getEntryNode(); 1927 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1928 } 1929 1930 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1931 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1932 1933 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1934 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1935 1936 llvm_unreachable("Can't get register for value!"); 1937 } 1938 1939 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1940 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1941 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1942 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1943 bool IsSEH = isAsynchronousEHPersonality(Pers); 1944 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1945 if (!IsSEH) 1946 CatchPadMBB->setIsEHScopeEntry(); 1947 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1948 if (IsMSVCCXX || IsCoreCLR) 1949 CatchPadMBB->setIsEHFuncletEntry(); 1950 } 1951 1952 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1953 // Update machine-CFG edge. 1954 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1955 FuncInfo.MBB->addSuccessor(TargetMBB); 1956 TargetMBB->setIsEHCatchretTarget(true); 1957 DAG.getMachineFunction().setHasEHCatchret(true); 1958 1959 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1960 bool IsSEH = isAsynchronousEHPersonality(Pers); 1961 if (IsSEH) { 1962 // If this is not a fall-through branch or optimizations are switched off, 1963 // emit the branch. 1964 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1965 TM.getOptLevel() == CodeGenOptLevel::None) 1966 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1967 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1968 return; 1969 } 1970 1971 // Figure out the funclet membership for the catchret's successor. 1972 // This will be used by the FuncletLayout pass to determine how to order the 1973 // BB's. 1974 // A 'catchret' returns to the outer scope's color. 1975 Value *ParentPad = I.getCatchSwitchParentPad(); 1976 const BasicBlock *SuccessorColor; 1977 if (isa<ConstantTokenNone>(ParentPad)) 1978 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1979 else 1980 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1981 assert(SuccessorColor && "No parent funclet for catchret!"); 1982 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1983 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1984 1985 // Create the terminator node. 1986 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1987 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1988 DAG.getBasicBlock(SuccessorColorMBB)); 1989 DAG.setRoot(Ret); 1990 } 1991 1992 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1993 // Don't emit any special code for the cleanuppad instruction. It just marks 1994 // the start of an EH scope/funclet. 1995 FuncInfo.MBB->setIsEHScopeEntry(); 1996 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1997 if (Pers != EHPersonality::Wasm_CXX) { 1998 FuncInfo.MBB->setIsEHFuncletEntry(); 1999 FuncInfo.MBB->setIsCleanupFuncletEntry(); 2000 } 2001 } 2002 2003 // In wasm EH, even though a catchpad may not catch an exception if a tag does 2004 // not match, it is OK to add only the first unwind destination catchpad to the 2005 // successors, because there will be at least one invoke instruction within the 2006 // catch scope that points to the next unwind destination, if one exists, so 2007 // CFGSort cannot mess up with BB sorting order. 2008 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 2009 // call within them, and catchpads only consisting of 'catch (...)' have a 2010 // '__cxa_end_catch' call within them, both of which generate invokes in case 2011 // the next unwind destination exists, i.e., the next unwind destination is not 2012 // the caller.) 2013 // 2014 // Having at most one EH pad successor is also simpler and helps later 2015 // transformations. 2016 // 2017 // For example, 2018 // current: 2019 // invoke void @foo to ... unwind label %catch.dispatch 2020 // catch.dispatch: 2021 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2022 // catch.start: 2023 // ... 2024 // ... in this BB or some other child BB dominated by this BB there will be an 2025 // invoke that points to 'next' BB as an unwind destination 2026 // 2027 // next: ; We don't need to add this to 'current' BB's successor 2028 // ... 2029 static void findWasmUnwindDestinations( 2030 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2031 BranchProbability Prob, 2032 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2033 &UnwindDests) { 2034 while (EHPadBB) { 2035 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2036 if (isa<CleanupPadInst>(Pad)) { 2037 // Stop on cleanup pads. 2038 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2039 UnwindDests.back().first->setIsEHScopeEntry(); 2040 break; 2041 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2042 // Add the catchpad handlers to the possible destinations. We don't 2043 // continue to the unwind destination of the catchswitch for wasm. 2044 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2045 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2046 UnwindDests.back().first->setIsEHScopeEntry(); 2047 } 2048 break; 2049 } else { 2050 continue; 2051 } 2052 } 2053 } 2054 2055 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2056 /// many places it could ultimately go. In the IR, we have a single unwind 2057 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2058 /// This function skips over imaginary basic blocks that hold catchswitch 2059 /// instructions, and finds all the "real" machine 2060 /// basic block destinations. As those destinations may not be successors of 2061 /// EHPadBB, here we also calculate the edge probability to those destinations. 2062 /// The passed-in Prob is the edge probability to EHPadBB. 2063 static void findUnwindDestinations( 2064 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2065 BranchProbability Prob, 2066 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2067 &UnwindDests) { 2068 EHPersonality Personality = 2069 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2070 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2071 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2072 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2073 bool IsSEH = isAsynchronousEHPersonality(Personality); 2074 2075 if (IsWasmCXX) { 2076 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2077 assert(UnwindDests.size() <= 1 && 2078 "There should be at most one unwind destination for wasm"); 2079 return; 2080 } 2081 2082 while (EHPadBB) { 2083 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2084 BasicBlock *NewEHPadBB = nullptr; 2085 if (isa<LandingPadInst>(Pad)) { 2086 // Stop on landingpads. They are not funclets. 2087 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2088 break; 2089 } else if (isa<CleanupPadInst>(Pad)) { 2090 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2091 // personalities. 2092 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2093 UnwindDests.back().first->setIsEHScopeEntry(); 2094 UnwindDests.back().first->setIsEHFuncletEntry(); 2095 break; 2096 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2097 // Add the catchpad handlers to the possible destinations. 2098 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2099 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2100 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2101 if (IsMSVCCXX || IsCoreCLR) 2102 UnwindDests.back().first->setIsEHFuncletEntry(); 2103 if (!IsSEH) 2104 UnwindDests.back().first->setIsEHScopeEntry(); 2105 } 2106 NewEHPadBB = CatchSwitch->getUnwindDest(); 2107 } else { 2108 continue; 2109 } 2110 2111 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2112 if (BPI && NewEHPadBB) 2113 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2114 EHPadBB = NewEHPadBB; 2115 } 2116 } 2117 2118 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2119 // Update successor info. 2120 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2121 auto UnwindDest = I.getUnwindDest(); 2122 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2123 BranchProbability UnwindDestProb = 2124 (BPI && UnwindDest) 2125 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2126 : BranchProbability::getZero(); 2127 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2128 for (auto &UnwindDest : UnwindDests) { 2129 UnwindDest.first->setIsEHPad(); 2130 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2131 } 2132 FuncInfo.MBB->normalizeSuccProbs(); 2133 2134 // Create the terminator node. 2135 SDValue Ret = 2136 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2137 DAG.setRoot(Ret); 2138 } 2139 2140 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2141 report_fatal_error("visitCatchSwitch not yet implemented!"); 2142 } 2143 2144 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2145 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2146 auto &DL = DAG.getDataLayout(); 2147 SDValue Chain = getControlRoot(); 2148 SmallVector<ISD::OutputArg, 8> Outs; 2149 SmallVector<SDValue, 8> OutVals; 2150 2151 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2152 // lower 2153 // 2154 // %val = call <ty> @llvm.experimental.deoptimize() 2155 // ret <ty> %val 2156 // 2157 // differently. 2158 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2159 LowerDeoptimizingReturn(); 2160 return; 2161 } 2162 2163 if (!FuncInfo.CanLowerReturn) { 2164 unsigned DemoteReg = FuncInfo.DemoteRegister; 2165 const Function *F = I.getParent()->getParent(); 2166 2167 // Emit a store of the return value through the virtual register. 2168 // Leave Outs empty so that LowerReturn won't try to load return 2169 // registers the usual way. 2170 SmallVector<EVT, 1> PtrValueVTs; 2171 ComputeValueVTs(TLI, DL, 2172 PointerType::get(F->getContext(), 2173 DAG.getDataLayout().getAllocaAddrSpace()), 2174 PtrValueVTs); 2175 2176 SDValue RetPtr = 2177 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2178 SDValue RetOp = getValue(I.getOperand(0)); 2179 2180 SmallVector<EVT, 4> ValueVTs, MemVTs; 2181 SmallVector<uint64_t, 4> Offsets; 2182 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2183 &Offsets, 0); 2184 unsigned NumValues = ValueVTs.size(); 2185 2186 SmallVector<SDValue, 4> Chains(NumValues); 2187 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2188 for (unsigned i = 0; i != NumValues; ++i) { 2189 // An aggregate return value cannot wrap around the address space, so 2190 // offsets to its parts don't wrap either. 2191 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2192 TypeSize::getFixed(Offsets[i])); 2193 2194 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2195 if (MemVTs[i] != ValueVTs[i]) 2196 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2197 Chains[i] = DAG.getStore( 2198 Chain, getCurSDLoc(), Val, 2199 // FIXME: better loc info would be nice. 2200 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2201 commonAlignment(BaseAlign, Offsets[i])); 2202 } 2203 2204 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2205 MVT::Other, Chains); 2206 } else if (I.getNumOperands() != 0) { 2207 SmallVector<EVT, 4> ValueVTs; 2208 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2209 unsigned NumValues = ValueVTs.size(); 2210 if (NumValues) { 2211 SDValue RetOp = getValue(I.getOperand(0)); 2212 2213 const Function *F = I.getParent()->getParent(); 2214 2215 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2216 I.getOperand(0)->getType(), F->getCallingConv(), 2217 /*IsVarArg*/ false, DL); 2218 2219 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2220 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2221 ExtendKind = ISD::SIGN_EXTEND; 2222 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2223 ExtendKind = ISD::ZERO_EXTEND; 2224 2225 LLVMContext &Context = F->getContext(); 2226 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2227 2228 for (unsigned j = 0; j != NumValues; ++j) { 2229 EVT VT = ValueVTs[j]; 2230 2231 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2232 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2233 2234 CallingConv::ID CC = F->getCallingConv(); 2235 2236 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2237 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2238 SmallVector<SDValue, 4> Parts(NumParts); 2239 getCopyToParts(DAG, getCurSDLoc(), 2240 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2241 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2242 2243 // 'inreg' on function refers to return value 2244 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2245 if (RetInReg) 2246 Flags.setInReg(); 2247 2248 if (I.getOperand(0)->getType()->isPointerTy()) { 2249 Flags.setPointer(); 2250 Flags.setPointerAddrSpace( 2251 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2252 } 2253 2254 if (NeedsRegBlock) { 2255 Flags.setInConsecutiveRegs(); 2256 if (j == NumValues - 1) 2257 Flags.setInConsecutiveRegsLast(); 2258 } 2259 2260 // Propagate extension type if any 2261 if (ExtendKind == ISD::SIGN_EXTEND) 2262 Flags.setSExt(); 2263 else if (ExtendKind == ISD::ZERO_EXTEND) 2264 Flags.setZExt(); 2265 2266 for (unsigned i = 0; i < NumParts; ++i) { 2267 Outs.push_back(ISD::OutputArg(Flags, 2268 Parts[i].getValueType().getSimpleVT(), 2269 VT, /*isfixed=*/true, 0, 0)); 2270 OutVals.push_back(Parts[i]); 2271 } 2272 } 2273 } 2274 } 2275 2276 // Push in swifterror virtual register as the last element of Outs. This makes 2277 // sure swifterror virtual register will be returned in the swifterror 2278 // physical register. 2279 const Function *F = I.getParent()->getParent(); 2280 if (TLI.supportSwiftError() && 2281 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2282 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2283 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2284 Flags.setSwiftError(); 2285 Outs.push_back(ISD::OutputArg( 2286 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2287 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2288 // Create SDNode for the swifterror virtual register. 2289 OutVals.push_back( 2290 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2291 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2292 EVT(TLI.getPointerTy(DL)))); 2293 } 2294 2295 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2296 CallingConv::ID CallConv = 2297 DAG.getMachineFunction().getFunction().getCallingConv(); 2298 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2299 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2300 2301 // Verify that the target's LowerReturn behaved as expected. 2302 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2303 "LowerReturn didn't return a valid chain!"); 2304 2305 // Update the DAG with the new chain value resulting from return lowering. 2306 DAG.setRoot(Chain); 2307 } 2308 2309 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2310 /// created for it, emit nodes to copy the value into the virtual 2311 /// registers. 2312 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2313 // Skip empty types 2314 if (V->getType()->isEmptyTy()) 2315 return; 2316 2317 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2318 if (VMI != FuncInfo.ValueMap.end()) { 2319 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2320 "Unused value assigned virtual registers!"); 2321 CopyValueToVirtualRegister(V, VMI->second); 2322 } 2323 } 2324 2325 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2326 /// the current basic block, add it to ValueMap now so that we'll get a 2327 /// CopyTo/FromReg. 2328 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2329 // No need to export constants. 2330 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2331 2332 // Already exported? 2333 if (FuncInfo.isExportedInst(V)) return; 2334 2335 Register Reg = FuncInfo.InitializeRegForValue(V); 2336 CopyValueToVirtualRegister(V, Reg); 2337 } 2338 2339 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2340 const BasicBlock *FromBB) { 2341 // The operands of the setcc have to be in this block. We don't know 2342 // how to export them from some other block. 2343 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2344 // Can export from current BB. 2345 if (VI->getParent() == FromBB) 2346 return true; 2347 2348 // Is already exported, noop. 2349 return FuncInfo.isExportedInst(V); 2350 } 2351 2352 // If this is an argument, we can export it if the BB is the entry block or 2353 // if it is already exported. 2354 if (isa<Argument>(V)) { 2355 if (FromBB->isEntryBlock()) 2356 return true; 2357 2358 // Otherwise, can only export this if it is already exported. 2359 return FuncInfo.isExportedInst(V); 2360 } 2361 2362 // Otherwise, constants can always be exported. 2363 return true; 2364 } 2365 2366 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2367 BranchProbability 2368 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2369 const MachineBasicBlock *Dst) const { 2370 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2371 const BasicBlock *SrcBB = Src->getBasicBlock(); 2372 const BasicBlock *DstBB = Dst->getBasicBlock(); 2373 if (!BPI) { 2374 // If BPI is not available, set the default probability as 1 / N, where N is 2375 // the number of successors. 2376 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2377 return BranchProbability(1, SuccSize); 2378 } 2379 return BPI->getEdgeProbability(SrcBB, DstBB); 2380 } 2381 2382 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2383 MachineBasicBlock *Dst, 2384 BranchProbability Prob) { 2385 if (!FuncInfo.BPI) 2386 Src->addSuccessorWithoutProb(Dst); 2387 else { 2388 if (Prob.isUnknown()) 2389 Prob = getEdgeProbability(Src, Dst); 2390 Src->addSuccessor(Dst, Prob); 2391 } 2392 } 2393 2394 static bool InBlock(const Value *V, const BasicBlock *BB) { 2395 if (const Instruction *I = dyn_cast<Instruction>(V)) 2396 return I->getParent() == BB; 2397 return true; 2398 } 2399 2400 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2401 /// This function emits a branch and is used at the leaves of an OR or an 2402 /// AND operator tree. 2403 void 2404 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2405 MachineBasicBlock *TBB, 2406 MachineBasicBlock *FBB, 2407 MachineBasicBlock *CurBB, 2408 MachineBasicBlock *SwitchBB, 2409 BranchProbability TProb, 2410 BranchProbability FProb, 2411 bool InvertCond) { 2412 const BasicBlock *BB = CurBB->getBasicBlock(); 2413 2414 // If the leaf of the tree is a comparison, merge the condition into 2415 // the caseblock. 2416 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2417 // The operands of the cmp have to be in this block. We don't know 2418 // how to export them from some other block. If this is the first block 2419 // of the sequence, no exporting is needed. 2420 if (CurBB == SwitchBB || 2421 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2422 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2423 ISD::CondCode Condition; 2424 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2425 ICmpInst::Predicate Pred = 2426 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2427 Condition = getICmpCondCode(Pred); 2428 } else { 2429 const FCmpInst *FC = cast<FCmpInst>(Cond); 2430 FCmpInst::Predicate Pred = 2431 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2432 Condition = getFCmpCondCode(Pred); 2433 if (TM.Options.NoNaNsFPMath) 2434 Condition = getFCmpCodeWithoutNaN(Condition); 2435 } 2436 2437 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2438 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2439 SL->SwitchCases.push_back(CB); 2440 return; 2441 } 2442 } 2443 2444 // Create a CaseBlock record representing this branch. 2445 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2446 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2447 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2448 SL->SwitchCases.push_back(CB); 2449 } 2450 2451 // Collect dependencies on V recursively. This is used for the cost analysis in 2452 // `shouldKeepJumpConditionsTogether`. 2453 static bool 2454 collectInstructionDeps(SmallPtrSet<const Instruction *, 8> *Deps, 2455 const Value *V, 2456 SmallPtrSet<const Instruction *, 8> *Necessary = nullptr, 2457 unsigned Depth = 0) { 2458 // Return false if we have an incomplete count. 2459 if (Depth >= SelectionDAG::MaxRecursionDepth) 2460 return false; 2461 2462 auto *I = dyn_cast<Instruction>(V); 2463 if (I == nullptr) 2464 return true; 2465 2466 if (Necessary != nullptr) { 2467 // This instruction is necessary for the other side of the condition so 2468 // don't count it. 2469 if (Necessary->contains(I)) 2470 return true; 2471 } 2472 2473 // Already added this dep. 2474 if (!Deps->insert(I).second) 2475 return true; 2476 2477 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx) 2478 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary, 2479 Depth + 1)) 2480 return false; 2481 return true; 2482 } 2483 2484 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether( 2485 const FunctionLoweringInfo &FuncInfo, const BranchInst &I, 2486 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, 2487 TargetLoweringBase::CondMergingParams Params) const { 2488 if (I.getNumSuccessors() != 2) 2489 return false; 2490 2491 if (Params.BaseCost < 0) 2492 return false; 2493 2494 // Baseline cost. 2495 InstructionCost CostThresh = Params.BaseCost; 2496 2497 BranchProbabilityInfo *BPI = nullptr; 2498 if (Params.LikelyBias || Params.UnlikelyBias) 2499 BPI = FuncInfo.BPI; 2500 if (BPI != nullptr) { 2501 // See if we are either likely to get an early out or compute both lhs/rhs 2502 // of the condition. 2503 BasicBlock *IfFalse = I.getSuccessor(0); 2504 BasicBlock *IfTrue = I.getSuccessor(1); 2505 2506 std::optional<bool> Likely; 2507 if (BPI->isEdgeHot(I.getParent(), IfTrue)) 2508 Likely = true; 2509 else if (BPI->isEdgeHot(I.getParent(), IfFalse)) 2510 Likely = false; 2511 2512 if (Likely) { 2513 if (Opc == (*Likely ? Instruction::And : Instruction::Or)) 2514 // Its likely we will have to compute both lhs and rhs of condition 2515 CostThresh += Params.LikelyBias; 2516 else { 2517 if (Params.UnlikelyBias < 0) 2518 return false; 2519 // Its likely we will get an early out. 2520 CostThresh -= Params.UnlikelyBias; 2521 } 2522 } 2523 } 2524 2525 if (CostThresh <= 0) 2526 return false; 2527 2528 // Collect "all" instructions that lhs condition is dependent on. 2529 SmallPtrSet<const Instruction *, 8> LhsDeps, RhsDeps; 2530 collectInstructionDeps(&LhsDeps, Lhs); 2531 // Collect "all" instructions that rhs condition is dependent on AND are 2532 // dependencies of lhs. This gives us an estimate on which instructions we 2533 // stand to save by splitting the condition. 2534 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps)) 2535 return false; 2536 // Add the compare instruction itself unless its a dependency on the LHS. 2537 if (const auto *RhsI = dyn_cast<Instruction>(Rhs)) 2538 if (!LhsDeps.contains(RhsI)) 2539 RhsDeps.insert(RhsI); 2540 2541 const auto &TLI = DAG.getTargetLoweringInfo(); 2542 const auto &TTI = 2543 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 2544 2545 InstructionCost CostOfIncluding = 0; 2546 // See if this instruction will need to computed independently of whether RHS 2547 // is. 2548 auto ShouldCountInsn = [&RhsDeps](const Instruction *Ins) { 2549 for (const auto *U : Ins->users()) { 2550 // If user is independent of RHS calculation we don't need to count it. 2551 if (auto *UIns = dyn_cast<Instruction>(U)) 2552 if (!RhsDeps.contains(UIns)) 2553 return false; 2554 } 2555 return true; 2556 }; 2557 2558 // Prune instructions from RHS Deps that are dependencies of unrelated 2559 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly 2560 // arbitrary and just meant to cap the how much time we spend in the pruning 2561 // loop. Its highly unlikely to come into affect. 2562 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth; 2563 // Stop after a certain point. No incorrectness from including too many 2564 // instructions. 2565 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) { 2566 const Instruction *ToDrop = nullptr; 2567 for (const auto *Ins : RhsDeps) { 2568 if (!ShouldCountInsn(Ins)) { 2569 ToDrop = Ins; 2570 break; 2571 } 2572 } 2573 if (ToDrop == nullptr) 2574 break; 2575 RhsDeps.erase(ToDrop); 2576 } 2577 2578 for (const auto *Ins : RhsDeps) { 2579 // Finally accumulate latency that we can only attribute to computing the 2580 // RHS condition. Use latency because we are essentially trying to calculate 2581 // the cost of the dependency chain. 2582 // Possible TODO: We could try to estimate ILP and make this more precise. 2583 CostOfIncluding += 2584 TTI.getInstructionCost(Ins, TargetTransformInfo::TCK_Latency); 2585 2586 if (CostOfIncluding > CostThresh) 2587 return false; 2588 } 2589 return true; 2590 } 2591 2592 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2593 MachineBasicBlock *TBB, 2594 MachineBasicBlock *FBB, 2595 MachineBasicBlock *CurBB, 2596 MachineBasicBlock *SwitchBB, 2597 Instruction::BinaryOps Opc, 2598 BranchProbability TProb, 2599 BranchProbability FProb, 2600 bool InvertCond) { 2601 // Skip over not part of the tree and remember to invert op and operands at 2602 // next level. 2603 Value *NotCond; 2604 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2605 InBlock(NotCond, CurBB->getBasicBlock())) { 2606 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2607 !InvertCond); 2608 return; 2609 } 2610 2611 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2612 const Value *BOpOp0, *BOpOp1; 2613 // Compute the effective opcode for Cond, taking into account whether it needs 2614 // to be inverted, e.g. 2615 // and (not (or A, B)), C 2616 // gets lowered as 2617 // and (and (not A, not B), C) 2618 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2619 if (BOp) { 2620 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2621 ? Instruction::And 2622 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2623 ? Instruction::Or 2624 : (Instruction::BinaryOps)0); 2625 if (InvertCond) { 2626 if (BOpc == Instruction::And) 2627 BOpc = Instruction::Or; 2628 else if (BOpc == Instruction::Or) 2629 BOpc = Instruction::And; 2630 } 2631 } 2632 2633 // If this node is not part of the or/and tree, emit it as a branch. 2634 // Note that all nodes in the tree should have same opcode. 2635 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2636 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2637 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2638 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2639 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2640 TProb, FProb, InvertCond); 2641 return; 2642 } 2643 2644 // Create TmpBB after CurBB. 2645 MachineFunction::iterator BBI(CurBB); 2646 MachineFunction &MF = DAG.getMachineFunction(); 2647 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2648 CurBB->getParent()->insert(++BBI, TmpBB); 2649 2650 if (Opc == Instruction::Or) { 2651 // Codegen X | Y as: 2652 // BB1: 2653 // jmp_if_X TBB 2654 // jmp TmpBB 2655 // TmpBB: 2656 // jmp_if_Y TBB 2657 // jmp FBB 2658 // 2659 2660 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2661 // The requirement is that 2662 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2663 // = TrueProb for original BB. 2664 // Assuming the original probabilities are A and B, one choice is to set 2665 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2666 // A/(1+B) and 2B/(1+B). This choice assumes that 2667 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2668 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2669 // TmpBB, but the math is more complicated. 2670 2671 auto NewTrueProb = TProb / 2; 2672 auto NewFalseProb = TProb / 2 + FProb; 2673 // Emit the LHS condition. 2674 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2675 NewFalseProb, InvertCond); 2676 2677 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2678 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2679 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2680 // Emit the RHS condition into TmpBB. 2681 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2682 Probs[1], InvertCond); 2683 } else { 2684 assert(Opc == Instruction::And && "Unknown merge op!"); 2685 // Codegen X & Y as: 2686 // BB1: 2687 // jmp_if_X TmpBB 2688 // jmp FBB 2689 // TmpBB: 2690 // jmp_if_Y TBB 2691 // jmp FBB 2692 // 2693 // This requires creation of TmpBB after CurBB. 2694 2695 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2696 // The requirement is that 2697 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2698 // = FalseProb for original BB. 2699 // Assuming the original probabilities are A and B, one choice is to set 2700 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2701 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2702 // TrueProb for BB1 * FalseProb for TmpBB. 2703 2704 auto NewTrueProb = TProb + FProb / 2; 2705 auto NewFalseProb = FProb / 2; 2706 // Emit the LHS condition. 2707 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2708 NewFalseProb, InvertCond); 2709 2710 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2711 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2712 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2713 // Emit the RHS condition into TmpBB. 2714 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2715 Probs[1], InvertCond); 2716 } 2717 } 2718 2719 /// If the set of cases should be emitted as a series of branches, return true. 2720 /// If we should emit this as a bunch of and/or'd together conditions, return 2721 /// false. 2722 bool 2723 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2724 if (Cases.size() != 2) return true; 2725 2726 // If this is two comparisons of the same values or'd or and'd together, they 2727 // will get folded into a single comparison, so don't emit two blocks. 2728 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2729 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2730 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2731 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2732 return false; 2733 } 2734 2735 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2736 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2737 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2738 Cases[0].CC == Cases[1].CC && 2739 isa<Constant>(Cases[0].CmpRHS) && 2740 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2741 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2742 return false; 2743 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2744 return false; 2745 } 2746 2747 return true; 2748 } 2749 2750 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2751 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2752 2753 // Update machine-CFG edges. 2754 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2755 2756 if (I.isUnconditional()) { 2757 // Update machine-CFG edges. 2758 BrMBB->addSuccessor(Succ0MBB); 2759 2760 // If this is not a fall-through branch or optimizations are switched off, 2761 // emit the branch. 2762 if (Succ0MBB != NextBlock(BrMBB) || 2763 TM.getOptLevel() == CodeGenOptLevel::None) { 2764 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2765 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2766 setValue(&I, Br); 2767 DAG.setRoot(Br); 2768 } 2769 2770 return; 2771 } 2772 2773 // If this condition is one of the special cases we handle, do special stuff 2774 // now. 2775 const Value *CondVal = I.getCondition(); 2776 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2777 2778 // If this is a series of conditions that are or'd or and'd together, emit 2779 // this as a sequence of branches instead of setcc's with and/or operations. 2780 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2781 // unpredictable branches, and vector extracts because those jumps are likely 2782 // expensive for any target), this should improve performance. 2783 // For example, instead of something like: 2784 // cmp A, B 2785 // C = seteq 2786 // cmp D, E 2787 // F = setle 2788 // or C, F 2789 // jnz foo 2790 // Emit: 2791 // cmp A, B 2792 // je foo 2793 // cmp D, E 2794 // jle foo 2795 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2796 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2797 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2798 Value *Vec; 2799 const Value *BOp0, *BOp1; 2800 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2801 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2802 Opcode = Instruction::And; 2803 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2804 Opcode = Instruction::Or; 2805 2806 if (Opcode && 2807 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2808 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) && 2809 !shouldKeepJumpConditionsTogether( 2810 FuncInfo, I, Opcode, BOp0, BOp1, 2811 DAG.getTargetLoweringInfo().getJumpConditionMergingParams( 2812 Opcode, BOp0, BOp1))) { 2813 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2814 getEdgeProbability(BrMBB, Succ0MBB), 2815 getEdgeProbability(BrMBB, Succ1MBB), 2816 /*InvertCond=*/false); 2817 // If the compares in later blocks need to use values not currently 2818 // exported from this block, export them now. This block should always 2819 // be the first entry. 2820 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2821 2822 // Allow some cases to be rejected. 2823 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2824 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2825 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2826 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2827 } 2828 2829 // Emit the branch for this block. 2830 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2831 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2832 return; 2833 } 2834 2835 // Okay, we decided not to do this, remove any inserted MBB's and clear 2836 // SwitchCases. 2837 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2838 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2839 2840 SL->SwitchCases.clear(); 2841 } 2842 } 2843 2844 // Create a CaseBlock record representing this branch. 2845 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2846 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2847 2848 // Use visitSwitchCase to actually insert the fast branch sequence for this 2849 // cond branch. 2850 visitSwitchCase(CB, BrMBB); 2851 } 2852 2853 /// visitSwitchCase - Emits the necessary code to represent a single node in 2854 /// the binary search tree resulting from lowering a switch instruction. 2855 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2856 MachineBasicBlock *SwitchBB) { 2857 SDValue Cond; 2858 SDValue CondLHS = getValue(CB.CmpLHS); 2859 SDLoc dl = CB.DL; 2860 2861 if (CB.CC == ISD::SETTRUE) { 2862 // Branch or fall through to TrueBB. 2863 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2864 SwitchBB->normalizeSuccProbs(); 2865 if (CB.TrueBB != NextBlock(SwitchBB)) { 2866 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2867 DAG.getBasicBlock(CB.TrueBB))); 2868 } 2869 return; 2870 } 2871 2872 auto &TLI = DAG.getTargetLoweringInfo(); 2873 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2874 2875 // Build the setcc now. 2876 if (!CB.CmpMHS) { 2877 // Fold "(X == true)" to X and "(X == false)" to !X to 2878 // handle common cases produced by branch lowering. 2879 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2880 CB.CC == ISD::SETEQ) 2881 Cond = CondLHS; 2882 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2883 CB.CC == ISD::SETEQ) { 2884 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2885 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2886 } else { 2887 SDValue CondRHS = getValue(CB.CmpRHS); 2888 2889 // If a pointer's DAG type is larger than its memory type then the DAG 2890 // values are zero-extended. This breaks signed comparisons so truncate 2891 // back to the underlying type before doing the compare. 2892 if (CondLHS.getValueType() != MemVT) { 2893 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2894 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2895 } 2896 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2897 } 2898 } else { 2899 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2900 2901 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2902 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2903 2904 SDValue CmpOp = getValue(CB.CmpMHS); 2905 EVT VT = CmpOp.getValueType(); 2906 2907 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2908 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2909 ISD::SETLE); 2910 } else { 2911 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2912 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2913 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2914 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2915 } 2916 } 2917 2918 // Update successor info 2919 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2920 // TrueBB and FalseBB are always different unless the incoming IR is 2921 // degenerate. This only happens when running llc on weird IR. 2922 if (CB.TrueBB != CB.FalseBB) 2923 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2924 SwitchBB->normalizeSuccProbs(); 2925 2926 // If the lhs block is the next block, invert the condition so that we can 2927 // fall through to the lhs instead of the rhs block. 2928 if (CB.TrueBB == NextBlock(SwitchBB)) { 2929 std::swap(CB.TrueBB, CB.FalseBB); 2930 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2931 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2932 } 2933 2934 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2935 MVT::Other, getControlRoot(), Cond, 2936 DAG.getBasicBlock(CB.TrueBB)); 2937 2938 setValue(CurInst, BrCond); 2939 2940 // Insert the false branch. Do this even if it's a fall through branch, 2941 // this makes it easier to do DAG optimizations which require inverting 2942 // the branch condition. 2943 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2944 DAG.getBasicBlock(CB.FalseBB)); 2945 2946 DAG.setRoot(BrCond); 2947 } 2948 2949 /// visitJumpTable - Emit JumpTable node in the current MBB 2950 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2951 // Emit the code for the jump table 2952 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2953 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2954 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2955 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2956 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2957 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2958 Index.getValue(1), Table, Index); 2959 DAG.setRoot(BrJumpTable); 2960 } 2961 2962 /// visitJumpTableHeader - This function emits necessary code to produce index 2963 /// in the JumpTable from switch case. 2964 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2965 JumpTableHeader &JTH, 2966 MachineBasicBlock *SwitchBB) { 2967 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2968 const SDLoc &dl = *JT.SL; 2969 2970 // Subtract the lowest switch case value from the value being switched on. 2971 SDValue SwitchOp = getValue(JTH.SValue); 2972 EVT VT = SwitchOp.getValueType(); 2973 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2974 DAG.getConstant(JTH.First, dl, VT)); 2975 2976 // The SDNode we just created, which holds the value being switched on minus 2977 // the smallest case value, needs to be copied to a virtual register so it 2978 // can be used as an index into the jump table in a subsequent basic block. 2979 // This value may be smaller or larger than the target's pointer type, and 2980 // therefore require extension or truncating. 2981 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2982 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2983 2984 unsigned JumpTableReg = 2985 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2986 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2987 JumpTableReg, SwitchOp); 2988 JT.Reg = JumpTableReg; 2989 2990 if (!JTH.FallthroughUnreachable) { 2991 // Emit the range check for the jump table, and branch to the default block 2992 // for the switch statement if the value being switched on exceeds the 2993 // largest case in the switch. 2994 SDValue CMP = DAG.getSetCC( 2995 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2996 Sub.getValueType()), 2997 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2998 2999 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3000 MVT::Other, CopyTo, CMP, 3001 DAG.getBasicBlock(JT.Default)); 3002 3003 // Avoid emitting unnecessary branches to the next block. 3004 if (JT.MBB != NextBlock(SwitchBB)) 3005 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 3006 DAG.getBasicBlock(JT.MBB)); 3007 3008 DAG.setRoot(BrCond); 3009 } else { 3010 // Avoid emitting unnecessary branches to the next block. 3011 if (JT.MBB != NextBlock(SwitchBB)) 3012 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 3013 DAG.getBasicBlock(JT.MBB))); 3014 else 3015 DAG.setRoot(CopyTo); 3016 } 3017 } 3018 3019 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 3020 /// variable if there exists one. 3021 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 3022 SDValue &Chain) { 3023 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3024 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3025 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3026 MachineFunction &MF = DAG.getMachineFunction(); 3027 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 3028 MachineSDNode *Node = 3029 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 3030 if (Global) { 3031 MachinePointerInfo MPInfo(Global); 3032 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 3033 MachineMemOperand::MODereferenceable; 3034 MachineMemOperand *MemRef = MF.getMachineMemOperand( 3035 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 3036 DAG.setNodeMemRefs(Node, {MemRef}); 3037 } 3038 if (PtrTy != PtrMemTy) 3039 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 3040 return SDValue(Node, 0); 3041 } 3042 3043 /// Codegen a new tail for a stack protector check ParentMBB which has had its 3044 /// tail spliced into a stack protector check success bb. 3045 /// 3046 /// For a high level explanation of how this fits into the stack protector 3047 /// generation see the comment on the declaration of class 3048 /// StackProtectorDescriptor. 3049 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 3050 MachineBasicBlock *ParentBB) { 3051 3052 // First create the loads to the guard/stack slot for the comparison. 3053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3054 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3055 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3056 3057 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3058 int FI = MFI.getStackProtectorIndex(); 3059 3060 SDValue Guard; 3061 SDLoc dl = getCurSDLoc(); 3062 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 3063 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3064 Align Align = 3065 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 3066 3067 // Generate code to load the content of the guard slot. 3068 SDValue GuardVal = DAG.getLoad( 3069 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 3070 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 3071 MachineMemOperand::MOVolatile); 3072 3073 if (TLI.useStackGuardXorFP()) 3074 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 3075 3076 // Retrieve guard check function, nullptr if instrumentation is inlined. 3077 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3078 // The target provides a guard check function to validate the guard value. 3079 // Generate a call to that function with the content of the guard slot as 3080 // argument. 3081 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3082 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3083 3084 TargetLowering::ArgListTy Args; 3085 TargetLowering::ArgListEntry Entry; 3086 Entry.Node = GuardVal; 3087 Entry.Ty = FnTy->getParamType(0); 3088 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 3089 Entry.IsInReg = true; 3090 Args.push_back(Entry); 3091 3092 TargetLowering::CallLoweringInfo CLI(DAG); 3093 CLI.setDebugLoc(getCurSDLoc()) 3094 .setChain(DAG.getEntryNode()) 3095 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 3096 getValue(GuardCheckFn), std::move(Args)); 3097 3098 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 3099 DAG.setRoot(Result.second); 3100 return; 3101 } 3102 3103 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3104 // Otherwise, emit a volatile load to retrieve the stack guard value. 3105 SDValue Chain = DAG.getEntryNode(); 3106 if (TLI.useLoadStackGuardNode()) { 3107 Guard = getLoadStackGuard(DAG, dl, Chain); 3108 } else { 3109 const Value *IRGuard = TLI.getSDagStackGuard(M); 3110 SDValue GuardPtr = getValue(IRGuard); 3111 3112 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 3113 MachinePointerInfo(IRGuard, 0), Align, 3114 MachineMemOperand::MOVolatile); 3115 } 3116 3117 // Perform the comparison via a getsetcc. 3118 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 3119 *DAG.getContext(), 3120 Guard.getValueType()), 3121 Guard, GuardVal, ISD::SETNE); 3122 3123 // If the guard/stackslot do not equal, branch to failure MBB. 3124 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3125 MVT::Other, GuardVal.getOperand(0), 3126 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 3127 // Otherwise branch to success MBB. 3128 SDValue Br = DAG.getNode(ISD::BR, dl, 3129 MVT::Other, BrCond, 3130 DAG.getBasicBlock(SPD.getSuccessMBB())); 3131 3132 DAG.setRoot(Br); 3133 } 3134 3135 /// Codegen the failure basic block for a stack protector check. 3136 /// 3137 /// A failure stack protector machine basic block consists simply of a call to 3138 /// __stack_chk_fail(). 3139 /// 3140 /// For a high level explanation of how this fits into the stack protector 3141 /// generation see the comment on the declaration of class 3142 /// StackProtectorDescriptor. 3143 void 3144 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 3145 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3146 TargetLowering::MakeLibCallOptions CallOptions; 3147 CallOptions.setDiscardResult(true); 3148 SDValue Chain = 3149 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 3150 std::nullopt, CallOptions, getCurSDLoc()) 3151 .second; 3152 // On PS4/PS5, the "return address" must still be within the calling 3153 // function, even if it's at the very end, so emit an explicit TRAP here. 3154 // Passing 'true' for doesNotReturn above won't generate the trap for us. 3155 if (TM.getTargetTriple().isPS()) 3156 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3157 // WebAssembly needs an unreachable instruction after a non-returning call, 3158 // because the function return type can be different from __stack_chk_fail's 3159 // return type (void). 3160 if (TM.getTargetTriple().isWasm()) 3161 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3162 3163 DAG.setRoot(Chain); 3164 } 3165 3166 /// visitBitTestHeader - This function emits necessary code to produce value 3167 /// suitable for "bit tests" 3168 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3169 MachineBasicBlock *SwitchBB) { 3170 SDLoc dl = getCurSDLoc(); 3171 3172 // Subtract the minimum value. 3173 SDValue SwitchOp = getValue(B.SValue); 3174 EVT VT = SwitchOp.getValueType(); 3175 SDValue RangeSub = 3176 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3177 3178 // Determine the type of the test operands. 3179 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3180 bool UsePtrType = false; 3181 if (!TLI.isTypeLegal(VT)) { 3182 UsePtrType = true; 3183 } else { 3184 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3185 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3186 // Switch table case range are encoded into series of masks. 3187 // Just use pointer type, it's guaranteed to fit. 3188 UsePtrType = true; 3189 break; 3190 } 3191 } 3192 SDValue Sub = RangeSub; 3193 if (UsePtrType) { 3194 VT = TLI.getPointerTy(DAG.getDataLayout()); 3195 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3196 } 3197 3198 B.RegVT = VT.getSimpleVT(); 3199 B.Reg = FuncInfo.CreateReg(B.RegVT); 3200 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3201 3202 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3203 3204 if (!B.FallthroughUnreachable) 3205 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3206 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3207 SwitchBB->normalizeSuccProbs(); 3208 3209 SDValue Root = CopyTo; 3210 if (!B.FallthroughUnreachable) { 3211 // Conditional branch to the default block. 3212 SDValue RangeCmp = DAG.getSetCC(dl, 3213 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3214 RangeSub.getValueType()), 3215 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3216 ISD::SETUGT); 3217 3218 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3219 DAG.getBasicBlock(B.Default)); 3220 } 3221 3222 // Avoid emitting unnecessary branches to the next block. 3223 if (MBB != NextBlock(SwitchBB)) 3224 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3225 3226 DAG.setRoot(Root); 3227 } 3228 3229 /// visitBitTestCase - this function produces one "bit test" 3230 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3231 MachineBasicBlock* NextMBB, 3232 BranchProbability BranchProbToNext, 3233 unsigned Reg, 3234 BitTestCase &B, 3235 MachineBasicBlock *SwitchBB) { 3236 SDLoc dl = getCurSDLoc(); 3237 MVT VT = BB.RegVT; 3238 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3239 SDValue Cmp; 3240 unsigned PopCount = llvm::popcount(B.Mask); 3241 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3242 if (PopCount == 1) { 3243 // Testing for a single bit; just compare the shift count with what it 3244 // would need to be to shift a 1 bit in that position. 3245 Cmp = DAG.getSetCC( 3246 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3247 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3248 ISD::SETEQ); 3249 } else if (PopCount == BB.Range) { 3250 // There is only one zero bit in the range, test for it directly. 3251 Cmp = DAG.getSetCC( 3252 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3253 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3254 } else { 3255 // Make desired shift 3256 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3257 DAG.getConstant(1, dl, VT), ShiftOp); 3258 3259 // Emit bit tests and jumps 3260 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3261 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3262 Cmp = DAG.getSetCC( 3263 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3264 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3265 } 3266 3267 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3268 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3269 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3270 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3271 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3272 // one as they are relative probabilities (and thus work more like weights), 3273 // and hence we need to normalize them to let the sum of them become one. 3274 SwitchBB->normalizeSuccProbs(); 3275 3276 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3277 MVT::Other, getControlRoot(), 3278 Cmp, DAG.getBasicBlock(B.TargetBB)); 3279 3280 // Avoid emitting unnecessary branches to the next block. 3281 if (NextMBB != NextBlock(SwitchBB)) 3282 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3283 DAG.getBasicBlock(NextMBB)); 3284 3285 DAG.setRoot(BrAnd); 3286 } 3287 3288 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3289 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3290 3291 // Retrieve successors. Look through artificial IR level blocks like 3292 // catchswitch for successors. 3293 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3294 const BasicBlock *EHPadBB = I.getSuccessor(1); 3295 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3296 3297 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3298 // have to do anything here to lower funclet bundles. 3299 assert(!I.hasOperandBundlesOtherThan( 3300 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3301 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3302 LLVMContext::OB_cfguardtarget, 3303 LLVMContext::OB_clang_arc_attachedcall}) && 3304 "Cannot lower invokes with arbitrary operand bundles yet!"); 3305 3306 const Value *Callee(I.getCalledOperand()); 3307 const Function *Fn = dyn_cast<Function>(Callee); 3308 if (isa<InlineAsm>(Callee)) 3309 visitInlineAsm(I, EHPadBB); 3310 else if (Fn && Fn->isIntrinsic()) { 3311 switch (Fn->getIntrinsicID()) { 3312 default: 3313 llvm_unreachable("Cannot invoke this intrinsic"); 3314 case Intrinsic::donothing: 3315 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3316 case Intrinsic::seh_try_begin: 3317 case Intrinsic::seh_scope_begin: 3318 case Intrinsic::seh_try_end: 3319 case Intrinsic::seh_scope_end: 3320 if (EHPadMBB) 3321 // a block referenced by EH table 3322 // so dtor-funclet not removed by opts 3323 EHPadMBB->setMachineBlockAddressTaken(); 3324 break; 3325 case Intrinsic::experimental_patchpoint_void: 3326 case Intrinsic::experimental_patchpoint_i64: 3327 visitPatchpoint(I, EHPadBB); 3328 break; 3329 case Intrinsic::experimental_gc_statepoint: 3330 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3331 break; 3332 case Intrinsic::wasm_rethrow: { 3333 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3334 // special because it can be invoked, so we manually lower it to a DAG 3335 // node here. 3336 SmallVector<SDValue, 8> Ops; 3337 Ops.push_back(getRoot()); // inchain 3338 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3339 Ops.push_back( 3340 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3341 TLI.getPointerTy(DAG.getDataLayout()))); 3342 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3343 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3344 break; 3345 } 3346 } 3347 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 3348 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3349 // Eventually we will support lowering the @llvm.experimental.deoptimize 3350 // intrinsic, and right now there are no plans to support other intrinsics 3351 // with deopt state. 3352 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3353 } else { 3354 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3355 } 3356 3357 // If the value of the invoke is used outside of its defining block, make it 3358 // available as a virtual register. 3359 // We already took care of the exported value for the statepoint instruction 3360 // during call to the LowerStatepoint. 3361 if (!isa<GCStatepointInst>(I)) { 3362 CopyToExportRegsIfNeeded(&I); 3363 } 3364 3365 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3366 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3367 BranchProbability EHPadBBProb = 3368 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3369 : BranchProbability::getZero(); 3370 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3371 3372 // Update successor info. 3373 addSuccessorWithProb(InvokeMBB, Return); 3374 for (auto &UnwindDest : UnwindDests) { 3375 UnwindDest.first->setIsEHPad(); 3376 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3377 } 3378 InvokeMBB->normalizeSuccProbs(); 3379 3380 // Drop into normal successor. 3381 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3382 DAG.getBasicBlock(Return))); 3383 } 3384 3385 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3386 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3387 3388 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3389 // have to do anything here to lower funclet bundles. 3390 assert(!I.hasOperandBundlesOtherThan( 3391 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3392 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3393 3394 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3395 visitInlineAsm(I); 3396 CopyToExportRegsIfNeeded(&I); 3397 3398 // Retrieve successors. 3399 SmallPtrSet<BasicBlock *, 8> Dests; 3400 Dests.insert(I.getDefaultDest()); 3401 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3402 3403 // Update successor info. 3404 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3405 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3406 BasicBlock *Dest = I.getIndirectDest(i); 3407 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3408 Target->setIsInlineAsmBrIndirectTarget(); 3409 Target->setMachineBlockAddressTaken(); 3410 Target->setLabelMustBeEmitted(); 3411 // Don't add duplicate machine successors. 3412 if (Dests.insert(Dest).second) 3413 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3414 } 3415 CallBrMBB->normalizeSuccProbs(); 3416 3417 // Drop into default successor. 3418 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3419 MVT::Other, getControlRoot(), 3420 DAG.getBasicBlock(Return))); 3421 } 3422 3423 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3424 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3425 } 3426 3427 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3428 assert(FuncInfo.MBB->isEHPad() && 3429 "Call to landingpad not in landing pad!"); 3430 3431 // If there aren't registers to copy the values into (e.g., during SjLj 3432 // exceptions), then don't bother to create these DAG nodes. 3433 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3434 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3435 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3436 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3437 return; 3438 3439 // If landingpad's return type is token type, we don't create DAG nodes 3440 // for its exception pointer and selector value. The extraction of exception 3441 // pointer or selector value from token type landingpads is not currently 3442 // supported. 3443 if (LP.getType()->isTokenTy()) 3444 return; 3445 3446 SmallVector<EVT, 2> ValueVTs; 3447 SDLoc dl = getCurSDLoc(); 3448 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3449 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3450 3451 // Get the two live-in registers as SDValues. The physregs have already been 3452 // copied into virtual registers. 3453 SDValue Ops[2]; 3454 if (FuncInfo.ExceptionPointerVirtReg) { 3455 Ops[0] = DAG.getZExtOrTrunc( 3456 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3457 FuncInfo.ExceptionPointerVirtReg, 3458 TLI.getPointerTy(DAG.getDataLayout())), 3459 dl, ValueVTs[0]); 3460 } else { 3461 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3462 } 3463 Ops[1] = DAG.getZExtOrTrunc( 3464 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3465 FuncInfo.ExceptionSelectorVirtReg, 3466 TLI.getPointerTy(DAG.getDataLayout())), 3467 dl, ValueVTs[1]); 3468 3469 // Merge into one. 3470 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3471 DAG.getVTList(ValueVTs), Ops); 3472 setValue(&LP, Res); 3473 } 3474 3475 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3476 MachineBasicBlock *Last) { 3477 // Update JTCases. 3478 for (JumpTableBlock &JTB : SL->JTCases) 3479 if (JTB.first.HeaderBB == First) 3480 JTB.first.HeaderBB = Last; 3481 3482 // Update BitTestCases. 3483 for (BitTestBlock &BTB : SL->BitTestCases) 3484 if (BTB.Parent == First) 3485 BTB.Parent = Last; 3486 } 3487 3488 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3489 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3490 3491 // Update machine-CFG edges with unique successors. 3492 SmallSet<BasicBlock*, 32> Done; 3493 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3494 BasicBlock *BB = I.getSuccessor(i); 3495 bool Inserted = Done.insert(BB).second; 3496 if (!Inserted) 3497 continue; 3498 3499 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3500 addSuccessorWithProb(IndirectBrMBB, Succ); 3501 } 3502 IndirectBrMBB->normalizeSuccProbs(); 3503 3504 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3505 MVT::Other, getControlRoot(), 3506 getValue(I.getAddress()))); 3507 } 3508 3509 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3510 if (!DAG.getTarget().Options.TrapUnreachable) 3511 return; 3512 3513 // We may be able to ignore unreachable behind a noreturn call. 3514 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3515 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) { 3516 if (Call->doesNotReturn()) 3517 return; 3518 } 3519 } 3520 3521 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3522 } 3523 3524 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3525 SDNodeFlags Flags; 3526 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3527 Flags.copyFMF(*FPOp); 3528 3529 SDValue Op = getValue(I.getOperand(0)); 3530 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3531 Op, Flags); 3532 setValue(&I, UnNodeValue); 3533 } 3534 3535 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3536 SDNodeFlags Flags; 3537 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3538 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3539 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3540 } 3541 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3542 Flags.setExact(ExactOp->isExact()); 3543 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3544 Flags.setDisjoint(DisjointOp->isDisjoint()); 3545 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3546 Flags.copyFMF(*FPOp); 3547 3548 SDValue Op1 = getValue(I.getOperand(0)); 3549 SDValue Op2 = getValue(I.getOperand(1)); 3550 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3551 Op1, Op2, Flags); 3552 setValue(&I, BinNodeValue); 3553 } 3554 3555 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3556 SDValue Op1 = getValue(I.getOperand(0)); 3557 SDValue Op2 = getValue(I.getOperand(1)); 3558 3559 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3560 Op1.getValueType(), DAG.getDataLayout()); 3561 3562 // Coerce the shift amount to the right type if we can. This exposes the 3563 // truncate or zext to optimization early. 3564 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3565 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3566 "Unexpected shift type"); 3567 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3568 } 3569 3570 bool nuw = false; 3571 bool nsw = false; 3572 bool exact = false; 3573 3574 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3575 3576 if (const OverflowingBinaryOperator *OFBinOp = 3577 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3578 nuw = OFBinOp->hasNoUnsignedWrap(); 3579 nsw = OFBinOp->hasNoSignedWrap(); 3580 } 3581 if (const PossiblyExactOperator *ExactOp = 3582 dyn_cast<const PossiblyExactOperator>(&I)) 3583 exact = ExactOp->isExact(); 3584 } 3585 SDNodeFlags Flags; 3586 Flags.setExact(exact); 3587 Flags.setNoSignedWrap(nsw); 3588 Flags.setNoUnsignedWrap(nuw); 3589 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3590 Flags); 3591 setValue(&I, Res); 3592 } 3593 3594 void SelectionDAGBuilder::visitSDiv(const User &I) { 3595 SDValue Op1 = getValue(I.getOperand(0)); 3596 SDValue Op2 = getValue(I.getOperand(1)); 3597 3598 SDNodeFlags Flags; 3599 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3600 cast<PossiblyExactOperator>(&I)->isExact()); 3601 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3602 Op2, Flags)); 3603 } 3604 3605 void SelectionDAGBuilder::visitICmp(const User &I) { 3606 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3607 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3608 predicate = IC->getPredicate(); 3609 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3610 predicate = ICmpInst::Predicate(IC->getPredicate()); 3611 SDValue Op1 = getValue(I.getOperand(0)); 3612 SDValue Op2 = getValue(I.getOperand(1)); 3613 ISD::CondCode Opcode = getICmpCondCode(predicate); 3614 3615 auto &TLI = DAG.getTargetLoweringInfo(); 3616 EVT MemVT = 3617 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3618 3619 // If a pointer's DAG type is larger than its memory type then the DAG values 3620 // are zero-extended. This breaks signed comparisons so truncate back to the 3621 // underlying type before doing the compare. 3622 if (Op1.getValueType() != MemVT) { 3623 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3624 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3625 } 3626 3627 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3628 I.getType()); 3629 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3630 } 3631 3632 void SelectionDAGBuilder::visitFCmp(const User &I) { 3633 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3634 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3635 predicate = FC->getPredicate(); 3636 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3637 predicate = FCmpInst::Predicate(FC->getPredicate()); 3638 SDValue Op1 = getValue(I.getOperand(0)); 3639 SDValue Op2 = getValue(I.getOperand(1)); 3640 3641 ISD::CondCode Condition = getFCmpCondCode(predicate); 3642 auto *FPMO = cast<FPMathOperator>(&I); 3643 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3644 Condition = getFCmpCodeWithoutNaN(Condition); 3645 3646 SDNodeFlags Flags; 3647 Flags.copyFMF(*FPMO); 3648 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3649 3650 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3651 I.getType()); 3652 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3653 } 3654 3655 // Check if the condition of the select has one use or two users that are both 3656 // selects with the same condition. 3657 static bool hasOnlySelectUsers(const Value *Cond) { 3658 return llvm::all_of(Cond->users(), [](const Value *V) { 3659 return isa<SelectInst>(V); 3660 }); 3661 } 3662 3663 void SelectionDAGBuilder::visitSelect(const User &I) { 3664 SmallVector<EVT, 4> ValueVTs; 3665 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3666 ValueVTs); 3667 unsigned NumValues = ValueVTs.size(); 3668 if (NumValues == 0) return; 3669 3670 SmallVector<SDValue, 4> Values(NumValues); 3671 SDValue Cond = getValue(I.getOperand(0)); 3672 SDValue LHSVal = getValue(I.getOperand(1)); 3673 SDValue RHSVal = getValue(I.getOperand(2)); 3674 SmallVector<SDValue, 1> BaseOps(1, Cond); 3675 ISD::NodeType OpCode = 3676 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3677 3678 bool IsUnaryAbs = false; 3679 bool Negate = false; 3680 3681 SDNodeFlags Flags; 3682 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3683 Flags.copyFMF(*FPOp); 3684 3685 Flags.setUnpredictable( 3686 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3687 3688 // Min/max matching is only viable if all output VTs are the same. 3689 if (all_equal(ValueVTs)) { 3690 EVT VT = ValueVTs[0]; 3691 LLVMContext &Ctx = *DAG.getContext(); 3692 auto &TLI = DAG.getTargetLoweringInfo(); 3693 3694 // We care about the legality of the operation after it has been type 3695 // legalized. 3696 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3697 VT = TLI.getTypeToTransformTo(Ctx, VT); 3698 3699 // If the vselect is legal, assume we want to leave this as a vector setcc + 3700 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3701 // min/max is legal on the scalar type. 3702 bool UseScalarMinMax = VT.isVector() && 3703 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3704 3705 // ValueTracking's select pattern matching does not account for -0.0, 3706 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3707 // -0.0 is less than +0.0. 3708 Value *LHS, *RHS; 3709 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3710 ISD::NodeType Opc = ISD::DELETED_NODE; 3711 switch (SPR.Flavor) { 3712 case SPF_UMAX: Opc = ISD::UMAX; break; 3713 case SPF_UMIN: Opc = ISD::UMIN; break; 3714 case SPF_SMAX: Opc = ISD::SMAX; break; 3715 case SPF_SMIN: Opc = ISD::SMIN; break; 3716 case SPF_FMINNUM: 3717 switch (SPR.NaNBehavior) { 3718 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3719 case SPNB_RETURNS_NAN: break; 3720 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3721 case SPNB_RETURNS_ANY: 3722 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3723 (UseScalarMinMax && 3724 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3725 Opc = ISD::FMINNUM; 3726 break; 3727 } 3728 break; 3729 case SPF_FMAXNUM: 3730 switch (SPR.NaNBehavior) { 3731 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3732 case SPNB_RETURNS_NAN: break; 3733 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3734 case SPNB_RETURNS_ANY: 3735 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3736 (UseScalarMinMax && 3737 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3738 Opc = ISD::FMAXNUM; 3739 break; 3740 } 3741 break; 3742 case SPF_NABS: 3743 Negate = true; 3744 [[fallthrough]]; 3745 case SPF_ABS: 3746 IsUnaryAbs = true; 3747 Opc = ISD::ABS; 3748 break; 3749 default: break; 3750 } 3751 3752 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3753 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3754 (UseScalarMinMax && 3755 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3756 // If the underlying comparison instruction is used by any other 3757 // instruction, the consumed instructions won't be destroyed, so it is 3758 // not profitable to convert to a min/max. 3759 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3760 OpCode = Opc; 3761 LHSVal = getValue(LHS); 3762 RHSVal = getValue(RHS); 3763 BaseOps.clear(); 3764 } 3765 3766 if (IsUnaryAbs) { 3767 OpCode = Opc; 3768 LHSVal = getValue(LHS); 3769 BaseOps.clear(); 3770 } 3771 } 3772 3773 if (IsUnaryAbs) { 3774 for (unsigned i = 0; i != NumValues; ++i) { 3775 SDLoc dl = getCurSDLoc(); 3776 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3777 Values[i] = 3778 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3779 if (Negate) 3780 Values[i] = DAG.getNegative(Values[i], dl, VT); 3781 } 3782 } else { 3783 for (unsigned i = 0; i != NumValues; ++i) { 3784 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3785 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3786 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3787 Values[i] = DAG.getNode( 3788 OpCode, getCurSDLoc(), 3789 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3790 } 3791 } 3792 3793 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3794 DAG.getVTList(ValueVTs), Values)); 3795 } 3796 3797 void SelectionDAGBuilder::visitTrunc(const User &I) { 3798 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3799 SDValue N = getValue(I.getOperand(0)); 3800 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3801 I.getType()); 3802 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3803 } 3804 3805 void SelectionDAGBuilder::visitZExt(const User &I) { 3806 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3807 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3808 SDValue N = getValue(I.getOperand(0)); 3809 auto &TLI = DAG.getTargetLoweringInfo(); 3810 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3811 3812 SDNodeFlags Flags; 3813 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3814 Flags.setNonNeg(PNI->hasNonNeg()); 3815 3816 // Eagerly use nonneg information to canonicalize towards sign_extend if 3817 // that is the target's preference. 3818 // TODO: Let the target do this later. 3819 if (Flags.hasNonNeg() && 3820 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3821 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3822 return; 3823 } 3824 3825 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3826 } 3827 3828 void SelectionDAGBuilder::visitSExt(const User &I) { 3829 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3830 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3831 SDValue N = getValue(I.getOperand(0)); 3832 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3833 I.getType()); 3834 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3835 } 3836 3837 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3838 // FPTrunc is never a no-op cast, no need to check 3839 SDValue N = getValue(I.getOperand(0)); 3840 SDLoc dl = getCurSDLoc(); 3841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3842 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3843 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3844 DAG.getTargetConstant( 3845 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3846 } 3847 3848 void SelectionDAGBuilder::visitFPExt(const User &I) { 3849 // FPExt is never a no-op cast, no need to check 3850 SDValue N = getValue(I.getOperand(0)); 3851 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3852 I.getType()); 3853 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3854 } 3855 3856 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3857 // FPToUI is never a no-op cast, no need to check 3858 SDValue N = getValue(I.getOperand(0)); 3859 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3860 I.getType()); 3861 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3862 } 3863 3864 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3865 // FPToSI is never a no-op cast, no need to check 3866 SDValue N = getValue(I.getOperand(0)); 3867 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3868 I.getType()); 3869 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3870 } 3871 3872 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3873 // UIToFP is never a no-op cast, no need to check 3874 SDValue N = getValue(I.getOperand(0)); 3875 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3876 I.getType()); 3877 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3878 } 3879 3880 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3881 // SIToFP is never a no-op cast, no need to check 3882 SDValue N = getValue(I.getOperand(0)); 3883 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3884 I.getType()); 3885 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3886 } 3887 3888 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3889 // What to do depends on the size of the integer and the size of the pointer. 3890 // We can either truncate, zero extend, or no-op, accordingly. 3891 SDValue N = getValue(I.getOperand(0)); 3892 auto &TLI = DAG.getTargetLoweringInfo(); 3893 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3894 I.getType()); 3895 EVT PtrMemVT = 3896 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3897 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3898 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3899 setValue(&I, N); 3900 } 3901 3902 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3903 // What to do depends on the size of the integer and the size of the pointer. 3904 // We can either truncate, zero extend, or no-op, accordingly. 3905 SDValue N = getValue(I.getOperand(0)); 3906 auto &TLI = DAG.getTargetLoweringInfo(); 3907 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3908 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3909 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3910 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3911 setValue(&I, N); 3912 } 3913 3914 void SelectionDAGBuilder::visitBitCast(const User &I) { 3915 SDValue N = getValue(I.getOperand(0)); 3916 SDLoc dl = getCurSDLoc(); 3917 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3918 I.getType()); 3919 3920 // BitCast assures us that source and destination are the same size so this is 3921 // either a BITCAST or a no-op. 3922 if (DestVT != N.getValueType()) 3923 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3924 DestVT, N)); // convert types. 3925 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3926 // might fold any kind of constant expression to an integer constant and that 3927 // is not what we are looking for. Only recognize a bitcast of a genuine 3928 // constant integer as an opaque constant. 3929 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3930 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3931 /*isOpaque*/true)); 3932 else 3933 setValue(&I, N); // noop cast. 3934 } 3935 3936 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3937 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3938 const Value *SV = I.getOperand(0); 3939 SDValue N = getValue(SV); 3940 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3941 3942 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3943 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3944 3945 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3946 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3947 3948 setValue(&I, N); 3949 } 3950 3951 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3952 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3953 SDValue InVec = getValue(I.getOperand(0)); 3954 SDValue InVal = getValue(I.getOperand(1)); 3955 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3956 TLI.getVectorIdxTy(DAG.getDataLayout())); 3957 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3958 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3959 InVec, InVal, InIdx)); 3960 } 3961 3962 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3963 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3964 SDValue InVec = getValue(I.getOperand(0)); 3965 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3966 TLI.getVectorIdxTy(DAG.getDataLayout())); 3967 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3968 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3969 InVec, InIdx)); 3970 } 3971 3972 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3973 SDValue Src1 = getValue(I.getOperand(0)); 3974 SDValue Src2 = getValue(I.getOperand(1)); 3975 ArrayRef<int> Mask; 3976 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3977 Mask = SVI->getShuffleMask(); 3978 else 3979 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3980 SDLoc DL = getCurSDLoc(); 3981 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3982 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3983 EVT SrcVT = Src1.getValueType(); 3984 3985 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3986 VT.isScalableVector()) { 3987 // Canonical splat form of first element of first input vector. 3988 SDValue FirstElt = 3989 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3990 DAG.getVectorIdxConstant(0, DL)); 3991 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3992 return; 3993 } 3994 3995 // For now, we only handle splats for scalable vectors. 3996 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3997 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3998 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3999 4000 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 4001 unsigned MaskNumElts = Mask.size(); 4002 4003 if (SrcNumElts == MaskNumElts) { 4004 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 4005 return; 4006 } 4007 4008 // Normalize the shuffle vector since mask and vector length don't match. 4009 if (SrcNumElts < MaskNumElts) { 4010 // Mask is longer than the source vectors. We can use concatenate vector to 4011 // make the mask and vectors lengths match. 4012 4013 if (MaskNumElts % SrcNumElts == 0) { 4014 // Mask length is a multiple of the source vector length. 4015 // Check if the shuffle is some kind of concatenation of the input 4016 // vectors. 4017 unsigned NumConcat = MaskNumElts / SrcNumElts; 4018 bool IsConcat = true; 4019 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 4020 for (unsigned i = 0; i != MaskNumElts; ++i) { 4021 int Idx = Mask[i]; 4022 if (Idx < 0) 4023 continue; 4024 // Ensure the indices in each SrcVT sized piece are sequential and that 4025 // the same source is used for the whole piece. 4026 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 4027 (ConcatSrcs[i / SrcNumElts] >= 0 && 4028 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 4029 IsConcat = false; 4030 break; 4031 } 4032 // Remember which source this index came from. 4033 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 4034 } 4035 4036 // The shuffle is concatenating multiple vectors together. Just emit 4037 // a CONCAT_VECTORS operation. 4038 if (IsConcat) { 4039 SmallVector<SDValue, 8> ConcatOps; 4040 for (auto Src : ConcatSrcs) { 4041 if (Src < 0) 4042 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 4043 else if (Src == 0) 4044 ConcatOps.push_back(Src1); 4045 else 4046 ConcatOps.push_back(Src2); 4047 } 4048 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 4049 return; 4050 } 4051 } 4052 4053 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 4054 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 4055 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 4056 PaddedMaskNumElts); 4057 4058 // Pad both vectors with undefs to make them the same length as the mask. 4059 SDValue UndefVal = DAG.getUNDEF(SrcVT); 4060 4061 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 4062 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 4063 MOps1[0] = Src1; 4064 MOps2[0] = Src2; 4065 4066 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 4067 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 4068 4069 // Readjust mask for new input vector length. 4070 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 4071 for (unsigned i = 0; i != MaskNumElts; ++i) { 4072 int Idx = Mask[i]; 4073 if (Idx >= (int)SrcNumElts) 4074 Idx -= SrcNumElts - PaddedMaskNumElts; 4075 MappedOps[i] = Idx; 4076 } 4077 4078 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 4079 4080 // If the concatenated vector was padded, extract a subvector with the 4081 // correct number of elements. 4082 if (MaskNumElts != PaddedMaskNumElts) 4083 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 4084 DAG.getVectorIdxConstant(0, DL)); 4085 4086 setValue(&I, Result); 4087 return; 4088 } 4089 4090 if (SrcNumElts > MaskNumElts) { 4091 // Analyze the access pattern of the vector to see if we can extract 4092 // two subvectors and do the shuffle. 4093 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 4094 bool CanExtract = true; 4095 for (int Idx : Mask) { 4096 unsigned Input = 0; 4097 if (Idx < 0) 4098 continue; 4099 4100 if (Idx >= (int)SrcNumElts) { 4101 Input = 1; 4102 Idx -= SrcNumElts; 4103 } 4104 4105 // If all the indices come from the same MaskNumElts sized portion of 4106 // the sources we can use extract. Also make sure the extract wouldn't 4107 // extract past the end of the source. 4108 int NewStartIdx = alignDown(Idx, MaskNumElts); 4109 if (NewStartIdx + MaskNumElts > SrcNumElts || 4110 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 4111 CanExtract = false; 4112 // Make sure we always update StartIdx as we use it to track if all 4113 // elements are undef. 4114 StartIdx[Input] = NewStartIdx; 4115 } 4116 4117 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 4118 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 4119 return; 4120 } 4121 if (CanExtract) { 4122 // Extract appropriate subvector and generate a vector shuffle 4123 for (unsigned Input = 0; Input < 2; ++Input) { 4124 SDValue &Src = Input == 0 ? Src1 : Src2; 4125 if (StartIdx[Input] < 0) 4126 Src = DAG.getUNDEF(VT); 4127 else { 4128 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 4129 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 4130 } 4131 } 4132 4133 // Calculate new mask. 4134 SmallVector<int, 8> MappedOps(Mask); 4135 for (int &Idx : MappedOps) { 4136 if (Idx >= (int)SrcNumElts) 4137 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 4138 else if (Idx >= 0) 4139 Idx -= StartIdx[0]; 4140 } 4141 4142 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 4143 return; 4144 } 4145 } 4146 4147 // We can't use either concat vectors or extract subvectors so fall back to 4148 // replacing the shuffle with extract and build vector. 4149 // to insert and build vector. 4150 EVT EltVT = VT.getVectorElementType(); 4151 SmallVector<SDValue,8> Ops; 4152 for (int Idx : Mask) { 4153 SDValue Res; 4154 4155 if (Idx < 0) { 4156 Res = DAG.getUNDEF(EltVT); 4157 } else { 4158 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 4159 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 4160 4161 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4162 DAG.getVectorIdxConstant(Idx, DL)); 4163 } 4164 4165 Ops.push_back(Res); 4166 } 4167 4168 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4169 } 4170 4171 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4172 ArrayRef<unsigned> Indices = I.getIndices(); 4173 const Value *Op0 = I.getOperand(0); 4174 const Value *Op1 = I.getOperand(1); 4175 Type *AggTy = I.getType(); 4176 Type *ValTy = Op1->getType(); 4177 bool IntoUndef = isa<UndefValue>(Op0); 4178 bool FromUndef = isa<UndefValue>(Op1); 4179 4180 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4181 4182 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4183 SmallVector<EVT, 4> AggValueVTs; 4184 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4185 SmallVector<EVT, 4> ValValueVTs; 4186 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4187 4188 unsigned NumAggValues = AggValueVTs.size(); 4189 unsigned NumValValues = ValValueVTs.size(); 4190 SmallVector<SDValue, 4> Values(NumAggValues); 4191 4192 // Ignore an insertvalue that produces an empty object 4193 if (!NumAggValues) { 4194 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4195 return; 4196 } 4197 4198 SDValue Agg = getValue(Op0); 4199 unsigned i = 0; 4200 // Copy the beginning value(s) from the original aggregate. 4201 for (; i != LinearIndex; ++i) 4202 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4203 SDValue(Agg.getNode(), Agg.getResNo() + i); 4204 // Copy values from the inserted value(s). 4205 if (NumValValues) { 4206 SDValue Val = getValue(Op1); 4207 for (; i != LinearIndex + NumValValues; ++i) 4208 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4209 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4210 } 4211 // Copy remaining value(s) from the original aggregate. 4212 for (; i != NumAggValues; ++i) 4213 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4214 SDValue(Agg.getNode(), Agg.getResNo() + i); 4215 4216 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4217 DAG.getVTList(AggValueVTs), Values)); 4218 } 4219 4220 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4221 ArrayRef<unsigned> Indices = I.getIndices(); 4222 const Value *Op0 = I.getOperand(0); 4223 Type *AggTy = Op0->getType(); 4224 Type *ValTy = I.getType(); 4225 bool OutOfUndef = isa<UndefValue>(Op0); 4226 4227 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4228 4229 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4230 SmallVector<EVT, 4> ValValueVTs; 4231 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4232 4233 unsigned NumValValues = ValValueVTs.size(); 4234 4235 // Ignore a extractvalue that produces an empty object 4236 if (!NumValValues) { 4237 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4238 return; 4239 } 4240 4241 SmallVector<SDValue, 4> Values(NumValValues); 4242 4243 SDValue Agg = getValue(Op0); 4244 // Copy out the selected value(s). 4245 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4246 Values[i - LinearIndex] = 4247 OutOfUndef ? 4248 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4249 SDValue(Agg.getNode(), Agg.getResNo() + i); 4250 4251 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4252 DAG.getVTList(ValValueVTs), Values)); 4253 } 4254 4255 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4256 Value *Op0 = I.getOperand(0); 4257 // Note that the pointer operand may be a vector of pointers. Take the scalar 4258 // element which holds a pointer. 4259 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4260 SDValue N = getValue(Op0); 4261 SDLoc dl = getCurSDLoc(); 4262 auto &TLI = DAG.getTargetLoweringInfo(); 4263 4264 // Normalize Vector GEP - all scalar operands should be converted to the 4265 // splat vector. 4266 bool IsVectorGEP = I.getType()->isVectorTy(); 4267 ElementCount VectorElementCount = 4268 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4269 : ElementCount::getFixed(0); 4270 4271 if (IsVectorGEP && !N.getValueType().isVector()) { 4272 LLVMContext &Context = *DAG.getContext(); 4273 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4274 N = DAG.getSplat(VT, dl, N); 4275 } 4276 4277 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4278 GTI != E; ++GTI) { 4279 const Value *Idx = GTI.getOperand(); 4280 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4281 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4282 if (Field) { 4283 // N = N + Offset 4284 uint64_t Offset = 4285 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4286 4287 // In an inbounds GEP with an offset that is nonnegative even when 4288 // interpreted as signed, assume there is no unsigned overflow. 4289 SDNodeFlags Flags; 4290 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 4291 Flags.setNoUnsignedWrap(true); 4292 4293 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4294 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4295 } 4296 } else { 4297 // IdxSize is the width of the arithmetic according to IR semantics. 4298 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4299 // (and fix up the result later). 4300 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4301 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4302 TypeSize ElementSize = 4303 GTI.getSequentialElementStride(DAG.getDataLayout()); 4304 // We intentionally mask away the high bits here; ElementSize may not 4305 // fit in IdxTy. 4306 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4307 bool ElementScalable = ElementSize.isScalable(); 4308 4309 // If this is a scalar constant or a splat vector of constants, 4310 // handle it quickly. 4311 const auto *C = dyn_cast<Constant>(Idx); 4312 if (C && isa<VectorType>(C->getType())) 4313 C = C->getSplatValue(); 4314 4315 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4316 if (CI && CI->isZero()) 4317 continue; 4318 if (CI && !ElementScalable) { 4319 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4320 LLVMContext &Context = *DAG.getContext(); 4321 SDValue OffsVal; 4322 if (IsVectorGEP) 4323 OffsVal = DAG.getConstant( 4324 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4325 else 4326 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4327 4328 // In an inbounds GEP with an offset that is nonnegative even when 4329 // interpreted as signed, assume there is no unsigned overflow. 4330 SDNodeFlags Flags; 4331 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4332 Flags.setNoUnsignedWrap(true); 4333 4334 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4335 4336 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4337 continue; 4338 } 4339 4340 // N = N + Idx * ElementMul; 4341 SDValue IdxN = getValue(Idx); 4342 4343 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4344 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4345 VectorElementCount); 4346 IdxN = DAG.getSplat(VT, dl, IdxN); 4347 } 4348 4349 // If the index is smaller or larger than intptr_t, truncate or extend 4350 // it. 4351 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4352 4353 if (ElementScalable) { 4354 EVT VScaleTy = N.getValueType().getScalarType(); 4355 SDValue VScale = DAG.getNode( 4356 ISD::VSCALE, dl, VScaleTy, 4357 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4358 if (IsVectorGEP) 4359 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4360 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4361 } else { 4362 // If this is a multiply by a power of two, turn it into a shl 4363 // immediately. This is a very common case. 4364 if (ElementMul != 1) { 4365 if (ElementMul.isPowerOf2()) { 4366 unsigned Amt = ElementMul.logBase2(); 4367 IdxN = DAG.getNode(ISD::SHL, dl, 4368 N.getValueType(), IdxN, 4369 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4370 } else { 4371 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4372 IdxN.getValueType()); 4373 IdxN = DAG.getNode(ISD::MUL, dl, 4374 N.getValueType(), IdxN, Scale); 4375 } 4376 } 4377 } 4378 4379 N = DAG.getNode(ISD::ADD, dl, 4380 N.getValueType(), N, IdxN); 4381 } 4382 } 4383 4384 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4385 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4386 if (IsVectorGEP) { 4387 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4388 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4389 } 4390 4391 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4392 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4393 4394 setValue(&I, N); 4395 } 4396 4397 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4398 // If this is a fixed sized alloca in the entry block of the function, 4399 // allocate it statically on the stack. 4400 if (FuncInfo.StaticAllocaMap.count(&I)) 4401 return; // getValue will auto-populate this. 4402 4403 SDLoc dl = getCurSDLoc(); 4404 Type *Ty = I.getAllocatedType(); 4405 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4406 auto &DL = DAG.getDataLayout(); 4407 TypeSize TySize = DL.getTypeAllocSize(Ty); 4408 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4409 4410 SDValue AllocSize = getValue(I.getArraySize()); 4411 4412 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4413 if (AllocSize.getValueType() != IntPtr) 4414 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4415 4416 if (TySize.isScalable()) 4417 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4418 DAG.getVScale(dl, IntPtr, 4419 APInt(IntPtr.getScalarSizeInBits(), 4420 TySize.getKnownMinValue()))); 4421 else { 4422 SDValue TySizeValue = 4423 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4424 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4425 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4426 } 4427 4428 // Handle alignment. If the requested alignment is less than or equal to 4429 // the stack alignment, ignore it. If the size is greater than or equal to 4430 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4431 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4432 if (*Alignment <= StackAlign) 4433 Alignment = std::nullopt; 4434 4435 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4436 // Round the size of the allocation up to the stack alignment size 4437 // by add SA-1 to the size. This doesn't overflow because we're computing 4438 // an address inside an alloca. 4439 SDNodeFlags Flags; 4440 Flags.setNoUnsignedWrap(true); 4441 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4442 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4443 4444 // Mask out the low bits for alignment purposes. 4445 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4446 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4447 4448 SDValue Ops[] = { 4449 getRoot(), AllocSize, 4450 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4451 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4452 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4453 setValue(&I, DSA); 4454 DAG.setRoot(DSA.getValue(1)); 4455 4456 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4457 } 4458 4459 static const MDNode *getRangeMetadata(const Instruction &I) { 4460 // If !noundef is not present, then !range violation results in a poison 4461 // value rather than immediate undefined behavior. In theory, transferring 4462 // these annotations to SDAG is fine, but in practice there are key SDAG 4463 // transforms that are known not to be poison-safe, such as folding logical 4464 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4465 // also present. 4466 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4467 return nullptr; 4468 return I.getMetadata(LLVMContext::MD_range); 4469 } 4470 4471 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4472 if (I.isAtomic()) 4473 return visitAtomicLoad(I); 4474 4475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4476 const Value *SV = I.getOperand(0); 4477 if (TLI.supportSwiftError()) { 4478 // Swifterror values can come from either a function parameter with 4479 // swifterror attribute or an alloca with swifterror attribute. 4480 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4481 if (Arg->hasSwiftErrorAttr()) 4482 return visitLoadFromSwiftError(I); 4483 } 4484 4485 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4486 if (Alloca->isSwiftError()) 4487 return visitLoadFromSwiftError(I); 4488 } 4489 } 4490 4491 SDValue Ptr = getValue(SV); 4492 4493 Type *Ty = I.getType(); 4494 SmallVector<EVT, 4> ValueVTs, MemVTs; 4495 SmallVector<TypeSize, 4> Offsets; 4496 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4497 unsigned NumValues = ValueVTs.size(); 4498 if (NumValues == 0) 4499 return; 4500 4501 Align Alignment = I.getAlign(); 4502 AAMDNodes AAInfo = I.getAAMetadata(); 4503 const MDNode *Ranges = getRangeMetadata(I); 4504 bool isVolatile = I.isVolatile(); 4505 MachineMemOperand::Flags MMOFlags = 4506 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4507 4508 SDValue Root; 4509 bool ConstantMemory = false; 4510 if (isVolatile) 4511 // Serialize volatile loads with other side effects. 4512 Root = getRoot(); 4513 else if (NumValues > MaxParallelChains) 4514 Root = getMemoryRoot(); 4515 else if (AA && 4516 AA->pointsToConstantMemory(MemoryLocation( 4517 SV, 4518 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4519 AAInfo))) { 4520 // Do not serialize (non-volatile) loads of constant memory with anything. 4521 Root = DAG.getEntryNode(); 4522 ConstantMemory = true; 4523 MMOFlags |= MachineMemOperand::MOInvariant; 4524 } else { 4525 // Do not serialize non-volatile loads against each other. 4526 Root = DAG.getRoot(); 4527 } 4528 4529 SDLoc dl = getCurSDLoc(); 4530 4531 if (isVolatile) 4532 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4533 4534 SmallVector<SDValue, 4> Values(NumValues); 4535 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4536 4537 unsigned ChainI = 0; 4538 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4539 // Serializing loads here may result in excessive register pressure, and 4540 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4541 // could recover a bit by hoisting nodes upward in the chain by recognizing 4542 // they are side-effect free or do not alias. The optimizer should really 4543 // avoid this case by converting large object/array copies to llvm.memcpy 4544 // (MaxParallelChains should always remain as failsafe). 4545 if (ChainI == MaxParallelChains) { 4546 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4547 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4548 ArrayRef(Chains.data(), ChainI)); 4549 Root = Chain; 4550 ChainI = 0; 4551 } 4552 4553 // TODO: MachinePointerInfo only supports a fixed length offset. 4554 MachinePointerInfo PtrInfo = 4555 !Offsets[i].isScalable() || Offsets[i].isZero() 4556 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4557 : MachinePointerInfo(); 4558 4559 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4560 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4561 MMOFlags, AAInfo, Ranges); 4562 Chains[ChainI] = L.getValue(1); 4563 4564 if (MemVTs[i] != ValueVTs[i]) 4565 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4566 4567 Values[i] = L; 4568 } 4569 4570 if (!ConstantMemory) { 4571 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4572 ArrayRef(Chains.data(), ChainI)); 4573 if (isVolatile) 4574 DAG.setRoot(Chain); 4575 else 4576 PendingLoads.push_back(Chain); 4577 } 4578 4579 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4580 DAG.getVTList(ValueVTs), Values)); 4581 } 4582 4583 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4584 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4585 "call visitStoreToSwiftError when backend supports swifterror"); 4586 4587 SmallVector<EVT, 4> ValueVTs; 4588 SmallVector<uint64_t, 4> Offsets; 4589 const Value *SrcV = I.getOperand(0); 4590 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4591 SrcV->getType(), ValueVTs, &Offsets, 0); 4592 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4593 "expect a single EVT for swifterror"); 4594 4595 SDValue Src = getValue(SrcV); 4596 // Create a virtual register, then update the virtual register. 4597 Register VReg = 4598 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4599 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4600 // Chain can be getRoot or getControlRoot. 4601 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4602 SDValue(Src.getNode(), Src.getResNo())); 4603 DAG.setRoot(CopyNode); 4604 } 4605 4606 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4607 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4608 "call visitLoadFromSwiftError when backend supports swifterror"); 4609 4610 assert(!I.isVolatile() && 4611 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4612 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4613 "Support volatile, non temporal, invariant for load_from_swift_error"); 4614 4615 const Value *SV = I.getOperand(0); 4616 Type *Ty = I.getType(); 4617 assert( 4618 (!AA || 4619 !AA->pointsToConstantMemory(MemoryLocation( 4620 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4621 I.getAAMetadata()))) && 4622 "load_from_swift_error should not be constant memory"); 4623 4624 SmallVector<EVT, 4> ValueVTs; 4625 SmallVector<uint64_t, 4> Offsets; 4626 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4627 ValueVTs, &Offsets, 0); 4628 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4629 "expect a single EVT for swifterror"); 4630 4631 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4632 SDValue L = DAG.getCopyFromReg( 4633 getRoot(), getCurSDLoc(), 4634 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4635 4636 setValue(&I, L); 4637 } 4638 4639 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4640 if (I.isAtomic()) 4641 return visitAtomicStore(I); 4642 4643 const Value *SrcV = I.getOperand(0); 4644 const Value *PtrV = I.getOperand(1); 4645 4646 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4647 if (TLI.supportSwiftError()) { 4648 // Swifterror values can come from either a function parameter with 4649 // swifterror attribute or an alloca with swifterror attribute. 4650 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4651 if (Arg->hasSwiftErrorAttr()) 4652 return visitStoreToSwiftError(I); 4653 } 4654 4655 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4656 if (Alloca->isSwiftError()) 4657 return visitStoreToSwiftError(I); 4658 } 4659 } 4660 4661 SmallVector<EVT, 4> ValueVTs, MemVTs; 4662 SmallVector<TypeSize, 4> Offsets; 4663 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4664 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4665 unsigned NumValues = ValueVTs.size(); 4666 if (NumValues == 0) 4667 return; 4668 4669 // Get the lowered operands. Note that we do this after 4670 // checking if NumResults is zero, because with zero results 4671 // the operands won't have values in the map. 4672 SDValue Src = getValue(SrcV); 4673 SDValue Ptr = getValue(PtrV); 4674 4675 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4676 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4677 SDLoc dl = getCurSDLoc(); 4678 Align Alignment = I.getAlign(); 4679 AAMDNodes AAInfo = I.getAAMetadata(); 4680 4681 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4682 4683 unsigned ChainI = 0; 4684 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4685 // See visitLoad comments. 4686 if (ChainI == MaxParallelChains) { 4687 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4688 ArrayRef(Chains.data(), ChainI)); 4689 Root = Chain; 4690 ChainI = 0; 4691 } 4692 4693 // TODO: MachinePointerInfo only supports a fixed length offset. 4694 MachinePointerInfo PtrInfo = 4695 !Offsets[i].isScalable() || Offsets[i].isZero() 4696 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4697 : MachinePointerInfo(); 4698 4699 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4700 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4701 if (MemVTs[i] != ValueVTs[i]) 4702 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4703 SDValue St = 4704 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4705 Chains[ChainI] = St; 4706 } 4707 4708 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4709 ArrayRef(Chains.data(), ChainI)); 4710 setValue(&I, StoreNode); 4711 DAG.setRoot(StoreNode); 4712 } 4713 4714 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4715 bool IsCompressing) { 4716 SDLoc sdl = getCurSDLoc(); 4717 4718 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4719 MaybeAlign &Alignment) { 4720 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4721 Src0 = I.getArgOperand(0); 4722 Ptr = I.getArgOperand(1); 4723 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4724 Mask = I.getArgOperand(3); 4725 }; 4726 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4727 MaybeAlign &Alignment) { 4728 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4729 Src0 = I.getArgOperand(0); 4730 Ptr = I.getArgOperand(1); 4731 Mask = I.getArgOperand(2); 4732 Alignment = std::nullopt; 4733 }; 4734 4735 Value *PtrOperand, *MaskOperand, *Src0Operand; 4736 MaybeAlign Alignment; 4737 if (IsCompressing) 4738 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4739 else 4740 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4741 4742 SDValue Ptr = getValue(PtrOperand); 4743 SDValue Src0 = getValue(Src0Operand); 4744 SDValue Mask = getValue(MaskOperand); 4745 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4746 4747 EVT VT = Src0.getValueType(); 4748 if (!Alignment) 4749 Alignment = DAG.getEVTAlign(VT); 4750 4751 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4752 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4753 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4754 SDValue StoreNode = 4755 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4756 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4757 DAG.setRoot(StoreNode); 4758 setValue(&I, StoreNode); 4759 } 4760 4761 // Get a uniform base for the Gather/Scatter intrinsic. 4762 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4763 // We try to represent it as a base pointer + vector of indices. 4764 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4765 // The first operand of the GEP may be a single pointer or a vector of pointers 4766 // Example: 4767 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4768 // or 4769 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4770 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4771 // 4772 // When the first GEP operand is a single pointer - it is the uniform base we 4773 // are looking for. If first operand of the GEP is a splat vector - we 4774 // extract the splat value and use it as a uniform base. 4775 // In all other cases the function returns 'false'. 4776 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4777 ISD::MemIndexType &IndexType, SDValue &Scale, 4778 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4779 uint64_t ElemSize) { 4780 SelectionDAG& DAG = SDB->DAG; 4781 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4782 const DataLayout &DL = DAG.getDataLayout(); 4783 4784 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4785 4786 // Handle splat constant pointer. 4787 if (auto *C = dyn_cast<Constant>(Ptr)) { 4788 C = C->getSplatValue(); 4789 if (!C) 4790 return false; 4791 4792 Base = SDB->getValue(C); 4793 4794 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4795 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4796 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4797 IndexType = ISD::SIGNED_SCALED; 4798 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4799 return true; 4800 } 4801 4802 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4803 if (!GEP || GEP->getParent() != CurBB) 4804 return false; 4805 4806 if (GEP->getNumOperands() != 2) 4807 return false; 4808 4809 const Value *BasePtr = GEP->getPointerOperand(); 4810 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4811 4812 // Make sure the base is scalar and the index is a vector. 4813 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4814 return false; 4815 4816 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4817 if (ScaleVal.isScalable()) 4818 return false; 4819 4820 // Target may not support the required addressing mode. 4821 if (ScaleVal != 1 && 4822 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4823 return false; 4824 4825 Base = SDB->getValue(BasePtr); 4826 Index = SDB->getValue(IndexVal); 4827 IndexType = ISD::SIGNED_SCALED; 4828 4829 Scale = 4830 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4831 return true; 4832 } 4833 4834 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4835 SDLoc sdl = getCurSDLoc(); 4836 4837 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4838 const Value *Ptr = I.getArgOperand(1); 4839 SDValue Src0 = getValue(I.getArgOperand(0)); 4840 SDValue Mask = getValue(I.getArgOperand(3)); 4841 EVT VT = Src0.getValueType(); 4842 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4843 ->getMaybeAlignValue() 4844 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4845 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4846 4847 SDValue Base; 4848 SDValue Index; 4849 ISD::MemIndexType IndexType; 4850 SDValue Scale; 4851 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4852 I.getParent(), VT.getScalarStoreSize()); 4853 4854 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4855 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4856 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4857 // TODO: Make MachineMemOperands aware of scalable 4858 // vectors. 4859 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4860 if (!UniformBase) { 4861 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4862 Index = getValue(Ptr); 4863 IndexType = ISD::SIGNED_SCALED; 4864 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4865 } 4866 4867 EVT IdxVT = Index.getValueType(); 4868 EVT EltTy = IdxVT.getVectorElementType(); 4869 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4870 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4871 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4872 } 4873 4874 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4875 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4876 Ops, MMO, IndexType, false); 4877 DAG.setRoot(Scatter); 4878 setValue(&I, Scatter); 4879 } 4880 4881 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4882 SDLoc sdl = getCurSDLoc(); 4883 4884 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4885 MaybeAlign &Alignment) { 4886 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4887 Ptr = I.getArgOperand(0); 4888 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4889 Mask = I.getArgOperand(2); 4890 Src0 = I.getArgOperand(3); 4891 }; 4892 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4893 MaybeAlign &Alignment) { 4894 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4895 Ptr = I.getArgOperand(0); 4896 Alignment = std::nullopt; 4897 Mask = I.getArgOperand(1); 4898 Src0 = I.getArgOperand(2); 4899 }; 4900 4901 Value *PtrOperand, *MaskOperand, *Src0Operand; 4902 MaybeAlign Alignment; 4903 if (IsExpanding) 4904 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4905 else 4906 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4907 4908 SDValue Ptr = getValue(PtrOperand); 4909 SDValue Src0 = getValue(Src0Operand); 4910 SDValue Mask = getValue(MaskOperand); 4911 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4912 4913 EVT VT = Src0.getValueType(); 4914 if (!Alignment) 4915 Alignment = DAG.getEVTAlign(VT); 4916 4917 AAMDNodes AAInfo = I.getAAMetadata(); 4918 const MDNode *Ranges = getRangeMetadata(I); 4919 4920 // Do not serialize masked loads of constant memory with anything. 4921 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4922 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4923 4924 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4925 4926 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4927 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4928 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4929 4930 SDValue Load = 4931 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4932 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4933 if (AddToChain) 4934 PendingLoads.push_back(Load.getValue(1)); 4935 setValue(&I, Load); 4936 } 4937 4938 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4939 SDLoc sdl = getCurSDLoc(); 4940 4941 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4942 const Value *Ptr = I.getArgOperand(0); 4943 SDValue Src0 = getValue(I.getArgOperand(3)); 4944 SDValue Mask = getValue(I.getArgOperand(2)); 4945 4946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4947 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4948 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4949 ->getMaybeAlignValue() 4950 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4951 4952 const MDNode *Ranges = getRangeMetadata(I); 4953 4954 SDValue Root = DAG.getRoot(); 4955 SDValue Base; 4956 SDValue Index; 4957 ISD::MemIndexType IndexType; 4958 SDValue Scale; 4959 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4960 I.getParent(), VT.getScalarStoreSize()); 4961 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4962 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4963 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4964 // TODO: Make MachineMemOperands aware of scalable 4965 // vectors. 4966 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4967 4968 if (!UniformBase) { 4969 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4970 Index = getValue(Ptr); 4971 IndexType = ISD::SIGNED_SCALED; 4972 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4973 } 4974 4975 EVT IdxVT = Index.getValueType(); 4976 EVT EltTy = IdxVT.getVectorElementType(); 4977 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4978 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4979 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4980 } 4981 4982 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4983 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4984 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4985 4986 PendingLoads.push_back(Gather.getValue(1)); 4987 setValue(&I, Gather); 4988 } 4989 4990 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4991 SDLoc dl = getCurSDLoc(); 4992 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4993 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4994 SyncScope::ID SSID = I.getSyncScopeID(); 4995 4996 SDValue InChain = getRoot(); 4997 4998 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4999 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 5000 5001 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5002 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5003 5004 MachineFunction &MF = DAG.getMachineFunction(); 5005 MachineMemOperand *MMO = MF.getMachineMemOperand( 5006 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 5007 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 5008 FailureOrdering); 5009 5010 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 5011 dl, MemVT, VTs, InChain, 5012 getValue(I.getPointerOperand()), 5013 getValue(I.getCompareOperand()), 5014 getValue(I.getNewValOperand()), MMO); 5015 5016 SDValue OutChain = L.getValue(2); 5017 5018 setValue(&I, L); 5019 DAG.setRoot(OutChain); 5020 } 5021 5022 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 5023 SDLoc dl = getCurSDLoc(); 5024 ISD::NodeType NT; 5025 switch (I.getOperation()) { 5026 default: llvm_unreachable("Unknown atomicrmw operation"); 5027 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 5028 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 5029 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 5030 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 5031 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 5032 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 5033 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 5034 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 5035 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 5036 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 5037 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 5038 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 5039 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 5040 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 5041 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 5042 case AtomicRMWInst::UIncWrap: 5043 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 5044 break; 5045 case AtomicRMWInst::UDecWrap: 5046 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 5047 break; 5048 } 5049 AtomicOrdering Ordering = I.getOrdering(); 5050 SyncScope::ID SSID = I.getSyncScopeID(); 5051 5052 SDValue InChain = getRoot(); 5053 5054 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 5055 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5056 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5057 5058 MachineFunction &MF = DAG.getMachineFunction(); 5059 MachineMemOperand *MMO = MF.getMachineMemOperand( 5060 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 5061 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 5062 5063 SDValue L = 5064 DAG.getAtomic(NT, dl, MemVT, InChain, 5065 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 5066 MMO); 5067 5068 SDValue OutChain = L.getValue(1); 5069 5070 setValue(&I, L); 5071 DAG.setRoot(OutChain); 5072 } 5073 5074 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 5075 SDLoc dl = getCurSDLoc(); 5076 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5077 SDValue Ops[3]; 5078 Ops[0] = getRoot(); 5079 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 5080 TLI.getFenceOperandTy(DAG.getDataLayout())); 5081 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 5082 TLI.getFenceOperandTy(DAG.getDataLayout())); 5083 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 5084 setValue(&I, N); 5085 DAG.setRoot(N); 5086 } 5087 5088 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 5089 SDLoc dl = getCurSDLoc(); 5090 AtomicOrdering Order = I.getOrdering(); 5091 SyncScope::ID SSID = I.getSyncScopeID(); 5092 5093 SDValue InChain = getRoot(); 5094 5095 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5096 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5097 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 5098 5099 if (!TLI.supportsUnalignedAtomics() && 5100 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5101 report_fatal_error("Cannot generate unaligned atomic load"); 5102 5103 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 5104 5105 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5106 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 5107 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 5108 5109 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 5110 5111 SDValue Ptr = getValue(I.getPointerOperand()); 5112 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 5113 Ptr, MMO); 5114 5115 SDValue OutChain = L.getValue(1); 5116 if (MemVT != VT) 5117 L = DAG.getPtrExtOrTrunc(L, dl, VT); 5118 5119 setValue(&I, L); 5120 DAG.setRoot(OutChain); 5121 } 5122 5123 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 5124 SDLoc dl = getCurSDLoc(); 5125 5126 AtomicOrdering Ordering = I.getOrdering(); 5127 SyncScope::ID SSID = I.getSyncScopeID(); 5128 5129 SDValue InChain = getRoot(); 5130 5131 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5132 EVT MemVT = 5133 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 5134 5135 if (!TLI.supportsUnalignedAtomics() && 5136 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5137 report_fatal_error("Cannot generate unaligned atomic store"); 5138 5139 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 5140 5141 MachineFunction &MF = DAG.getMachineFunction(); 5142 MachineMemOperand *MMO = MF.getMachineMemOperand( 5143 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 5144 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 5145 5146 SDValue Val = getValue(I.getValueOperand()); 5147 if (Val.getValueType() != MemVT) 5148 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 5149 SDValue Ptr = getValue(I.getPointerOperand()); 5150 5151 SDValue OutChain = 5152 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 5153 5154 setValue(&I, OutChain); 5155 DAG.setRoot(OutChain); 5156 } 5157 5158 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 5159 /// node. 5160 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 5161 unsigned Intrinsic) { 5162 // Ignore the callsite's attributes. A specific call site may be marked with 5163 // readnone, but the lowering code will expect the chain based on the 5164 // definition. 5165 const Function *F = I.getCalledFunction(); 5166 bool HasChain = !F->doesNotAccessMemory(); 5167 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 5168 5169 // Build the operand list. 5170 SmallVector<SDValue, 8> Ops; 5171 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5172 if (OnlyLoad) { 5173 // We don't need to serialize loads against other loads. 5174 Ops.push_back(DAG.getRoot()); 5175 } else { 5176 Ops.push_back(getRoot()); 5177 } 5178 } 5179 5180 // Info is set by getTgtMemIntrinsic 5181 TargetLowering::IntrinsicInfo Info; 5182 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5183 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5184 DAG.getMachineFunction(), 5185 Intrinsic); 5186 5187 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5188 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5189 Info.opc == ISD::INTRINSIC_W_CHAIN) 5190 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5191 TLI.getPointerTy(DAG.getDataLayout()))); 5192 5193 // Add all operands of the call to the operand list. 5194 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5195 const Value *Arg = I.getArgOperand(i); 5196 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5197 Ops.push_back(getValue(Arg)); 5198 continue; 5199 } 5200 5201 // Use TargetConstant instead of a regular constant for immarg. 5202 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5203 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5204 assert(CI->getBitWidth() <= 64 && 5205 "large intrinsic immediates not handled"); 5206 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5207 } else { 5208 Ops.push_back( 5209 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5210 } 5211 } 5212 5213 SmallVector<EVT, 4> ValueVTs; 5214 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5215 5216 if (HasChain) 5217 ValueVTs.push_back(MVT::Other); 5218 5219 SDVTList VTs = DAG.getVTList(ValueVTs); 5220 5221 // Propagate fast-math-flags from IR to node(s). 5222 SDNodeFlags Flags; 5223 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5224 Flags.copyFMF(*FPMO); 5225 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5226 5227 // Create the node. 5228 SDValue Result; 5229 // In some cases, custom collection of operands from CallInst I may be needed. 5230 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5231 if (IsTgtIntrinsic) { 5232 // This is target intrinsic that touches memory 5233 // 5234 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5235 // didn't yield anything useful. 5236 MachinePointerInfo MPI; 5237 if (Info.ptrVal) 5238 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5239 else if (Info.fallbackAddressSpace) 5240 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5241 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5242 Info.memVT, MPI, Info.align, Info.flags, 5243 Info.size, I.getAAMetadata()); 5244 } else if (!HasChain) { 5245 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5246 } else if (!I.getType()->isVoidTy()) { 5247 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5248 } else { 5249 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5250 } 5251 5252 if (HasChain) { 5253 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5254 if (OnlyLoad) 5255 PendingLoads.push_back(Chain); 5256 else 5257 DAG.setRoot(Chain); 5258 } 5259 5260 if (!I.getType()->isVoidTy()) { 5261 if (!isa<VectorType>(I.getType())) 5262 Result = lowerRangeToAssertZExt(DAG, I, Result); 5263 5264 MaybeAlign Alignment = I.getRetAlign(); 5265 5266 // Insert `assertalign` node if there's an alignment. 5267 if (InsertAssertAlign && Alignment) { 5268 Result = 5269 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5270 } 5271 5272 setValue(&I, Result); 5273 } 5274 } 5275 5276 /// GetSignificand - Get the significand and build it into a floating-point 5277 /// number with exponent of 1: 5278 /// 5279 /// Op = (Op & 0x007fffff) | 0x3f800000; 5280 /// 5281 /// where Op is the hexadecimal representation of floating point value. 5282 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5283 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5284 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5285 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5286 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5287 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5288 } 5289 5290 /// GetExponent - Get the exponent: 5291 /// 5292 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5293 /// 5294 /// where Op is the hexadecimal representation of floating point value. 5295 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5296 const TargetLowering &TLI, const SDLoc &dl) { 5297 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5298 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5299 SDValue t1 = DAG.getNode( 5300 ISD::SRL, dl, MVT::i32, t0, 5301 DAG.getConstant(23, dl, 5302 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5303 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5304 DAG.getConstant(127, dl, MVT::i32)); 5305 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5306 } 5307 5308 /// getF32Constant - Get 32-bit floating point constant. 5309 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5310 const SDLoc &dl) { 5311 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5312 MVT::f32); 5313 } 5314 5315 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5316 SelectionDAG &DAG) { 5317 // TODO: What fast-math-flags should be set on the floating-point nodes? 5318 5319 // IntegerPartOfX = ((int32_t)(t0); 5320 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5321 5322 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5323 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5324 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5325 5326 // IntegerPartOfX <<= 23; 5327 IntegerPartOfX = 5328 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5329 DAG.getConstant(23, dl, 5330 DAG.getTargetLoweringInfo().getShiftAmountTy( 5331 MVT::i32, DAG.getDataLayout()))); 5332 5333 SDValue TwoToFractionalPartOfX; 5334 if (LimitFloatPrecision <= 6) { 5335 // For floating-point precision of 6: 5336 // 5337 // TwoToFractionalPartOfX = 5338 // 0.997535578f + 5339 // (0.735607626f + 0.252464424f * x) * x; 5340 // 5341 // error 0.0144103317, which is 6 bits 5342 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5343 getF32Constant(DAG, 0x3e814304, dl)); 5344 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5345 getF32Constant(DAG, 0x3f3c50c8, dl)); 5346 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5347 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5348 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5349 } else if (LimitFloatPrecision <= 12) { 5350 // For floating-point precision of 12: 5351 // 5352 // TwoToFractionalPartOfX = 5353 // 0.999892986f + 5354 // (0.696457318f + 5355 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5356 // 5357 // error 0.000107046256, which is 13 to 14 bits 5358 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5359 getF32Constant(DAG, 0x3da235e3, dl)); 5360 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5361 getF32Constant(DAG, 0x3e65b8f3, dl)); 5362 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5363 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5364 getF32Constant(DAG, 0x3f324b07, dl)); 5365 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5366 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5367 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5368 } else { // LimitFloatPrecision <= 18 5369 // For floating-point precision of 18: 5370 // 5371 // TwoToFractionalPartOfX = 5372 // 0.999999982f + 5373 // (0.693148872f + 5374 // (0.240227044f + 5375 // (0.554906021e-1f + 5376 // (0.961591928e-2f + 5377 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5378 // error 2.47208000*10^(-7), which is better than 18 bits 5379 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5380 getF32Constant(DAG, 0x3924b03e, dl)); 5381 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5382 getF32Constant(DAG, 0x3ab24b87, dl)); 5383 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5384 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5385 getF32Constant(DAG, 0x3c1d8c17, dl)); 5386 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5387 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5388 getF32Constant(DAG, 0x3d634a1d, dl)); 5389 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5390 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5391 getF32Constant(DAG, 0x3e75fe14, dl)); 5392 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5393 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5394 getF32Constant(DAG, 0x3f317234, dl)); 5395 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5396 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5397 getF32Constant(DAG, 0x3f800000, dl)); 5398 } 5399 5400 // Add the exponent into the result in integer domain. 5401 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5402 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5403 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5404 } 5405 5406 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5407 /// limited-precision mode. 5408 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5409 const TargetLowering &TLI, SDNodeFlags Flags) { 5410 if (Op.getValueType() == MVT::f32 && 5411 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5412 5413 // Put the exponent in the right bit position for later addition to the 5414 // final result: 5415 // 5416 // t0 = Op * log2(e) 5417 5418 // TODO: What fast-math-flags should be set here? 5419 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5420 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5421 return getLimitedPrecisionExp2(t0, dl, DAG); 5422 } 5423 5424 // No special expansion. 5425 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5426 } 5427 5428 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5429 /// limited-precision mode. 5430 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5431 const TargetLowering &TLI, SDNodeFlags Flags) { 5432 // TODO: What fast-math-flags should be set on the floating-point nodes? 5433 5434 if (Op.getValueType() == MVT::f32 && 5435 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5436 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5437 5438 // Scale the exponent by log(2). 5439 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5440 SDValue LogOfExponent = 5441 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5442 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5443 5444 // Get the significand and build it into a floating-point number with 5445 // exponent of 1. 5446 SDValue X = GetSignificand(DAG, Op1, dl); 5447 5448 SDValue LogOfMantissa; 5449 if (LimitFloatPrecision <= 6) { 5450 // For floating-point precision of 6: 5451 // 5452 // LogofMantissa = 5453 // -1.1609546f + 5454 // (1.4034025f - 0.23903021f * x) * x; 5455 // 5456 // error 0.0034276066, which is better than 8 bits 5457 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5458 getF32Constant(DAG, 0xbe74c456, dl)); 5459 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5460 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5461 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5462 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5463 getF32Constant(DAG, 0x3f949a29, dl)); 5464 } else if (LimitFloatPrecision <= 12) { 5465 // For floating-point precision of 12: 5466 // 5467 // LogOfMantissa = 5468 // -1.7417939f + 5469 // (2.8212026f + 5470 // (-1.4699568f + 5471 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5472 // 5473 // error 0.000061011436, which is 14 bits 5474 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5475 getF32Constant(DAG, 0xbd67b6d6, dl)); 5476 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5477 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5478 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5479 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5480 getF32Constant(DAG, 0x3fbc278b, dl)); 5481 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5482 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5483 getF32Constant(DAG, 0x40348e95, dl)); 5484 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5485 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5486 getF32Constant(DAG, 0x3fdef31a, dl)); 5487 } else { // LimitFloatPrecision <= 18 5488 // For floating-point precision of 18: 5489 // 5490 // LogOfMantissa = 5491 // -2.1072184f + 5492 // (4.2372794f + 5493 // (-3.7029485f + 5494 // (2.2781945f + 5495 // (-0.87823314f + 5496 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5497 // 5498 // error 0.0000023660568, which is better than 18 bits 5499 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5500 getF32Constant(DAG, 0xbc91e5ac, dl)); 5501 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5502 getF32Constant(DAG, 0x3e4350aa, dl)); 5503 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5504 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5505 getF32Constant(DAG, 0x3f60d3e3, dl)); 5506 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5507 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5508 getF32Constant(DAG, 0x4011cdf0, dl)); 5509 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5510 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5511 getF32Constant(DAG, 0x406cfd1c, dl)); 5512 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5513 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5514 getF32Constant(DAG, 0x408797cb, dl)); 5515 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5516 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5517 getF32Constant(DAG, 0x4006dcab, dl)); 5518 } 5519 5520 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5521 } 5522 5523 // No special expansion. 5524 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5525 } 5526 5527 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5528 /// limited-precision mode. 5529 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5530 const TargetLowering &TLI, SDNodeFlags Flags) { 5531 // TODO: What fast-math-flags should be set on the floating-point nodes? 5532 5533 if (Op.getValueType() == MVT::f32 && 5534 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5535 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5536 5537 // Get the exponent. 5538 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5539 5540 // Get the significand and build it into a floating-point number with 5541 // exponent of 1. 5542 SDValue X = GetSignificand(DAG, Op1, dl); 5543 5544 // Different possible minimax approximations of significand in 5545 // floating-point for various degrees of accuracy over [1,2]. 5546 SDValue Log2ofMantissa; 5547 if (LimitFloatPrecision <= 6) { 5548 // For floating-point precision of 6: 5549 // 5550 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5551 // 5552 // error 0.0049451742, which is more than 7 bits 5553 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5554 getF32Constant(DAG, 0xbeb08fe0, dl)); 5555 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5556 getF32Constant(DAG, 0x40019463, dl)); 5557 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5558 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5559 getF32Constant(DAG, 0x3fd6633d, dl)); 5560 } else if (LimitFloatPrecision <= 12) { 5561 // For floating-point precision of 12: 5562 // 5563 // Log2ofMantissa = 5564 // -2.51285454f + 5565 // (4.07009056f + 5566 // (-2.12067489f + 5567 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5568 // 5569 // error 0.0000876136000, which is better than 13 bits 5570 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5571 getF32Constant(DAG, 0xbda7262e, dl)); 5572 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5573 getF32Constant(DAG, 0x3f25280b, dl)); 5574 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5575 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5576 getF32Constant(DAG, 0x4007b923, dl)); 5577 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5578 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5579 getF32Constant(DAG, 0x40823e2f, dl)); 5580 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5581 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5582 getF32Constant(DAG, 0x4020d29c, dl)); 5583 } else { // LimitFloatPrecision <= 18 5584 // For floating-point precision of 18: 5585 // 5586 // Log2ofMantissa = 5587 // -3.0400495f + 5588 // (6.1129976f + 5589 // (-5.3420409f + 5590 // (3.2865683f + 5591 // (-1.2669343f + 5592 // (0.27515199f - 5593 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5594 // 5595 // error 0.0000018516, which is better than 18 bits 5596 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5597 getF32Constant(DAG, 0xbcd2769e, dl)); 5598 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5599 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5600 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5601 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5602 getF32Constant(DAG, 0x3fa22ae7, dl)); 5603 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5604 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5605 getF32Constant(DAG, 0x40525723, dl)); 5606 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5607 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5608 getF32Constant(DAG, 0x40aaf200, dl)); 5609 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5610 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5611 getF32Constant(DAG, 0x40c39dad, dl)); 5612 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5613 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5614 getF32Constant(DAG, 0x4042902c, dl)); 5615 } 5616 5617 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5618 } 5619 5620 // No special expansion. 5621 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5622 } 5623 5624 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5625 /// limited-precision mode. 5626 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5627 const TargetLowering &TLI, SDNodeFlags Flags) { 5628 // TODO: What fast-math-flags should be set on the floating-point nodes? 5629 5630 if (Op.getValueType() == MVT::f32 && 5631 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5632 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5633 5634 // Scale the exponent by log10(2) [0.30102999f]. 5635 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5636 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5637 getF32Constant(DAG, 0x3e9a209a, dl)); 5638 5639 // Get the significand and build it into a floating-point number with 5640 // exponent of 1. 5641 SDValue X = GetSignificand(DAG, Op1, dl); 5642 5643 SDValue Log10ofMantissa; 5644 if (LimitFloatPrecision <= 6) { 5645 // For floating-point precision of 6: 5646 // 5647 // Log10ofMantissa = 5648 // -0.50419619f + 5649 // (0.60948995f - 0.10380950f * x) * x; 5650 // 5651 // error 0.0014886165, which is 6 bits 5652 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5653 getF32Constant(DAG, 0xbdd49a13, dl)); 5654 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5655 getF32Constant(DAG, 0x3f1c0789, dl)); 5656 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5657 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5658 getF32Constant(DAG, 0x3f011300, dl)); 5659 } else if (LimitFloatPrecision <= 12) { 5660 // For floating-point precision of 12: 5661 // 5662 // Log10ofMantissa = 5663 // -0.64831180f + 5664 // (0.91751397f + 5665 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5666 // 5667 // error 0.00019228036, which is better than 12 bits 5668 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5669 getF32Constant(DAG, 0x3d431f31, dl)); 5670 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5671 getF32Constant(DAG, 0x3ea21fb2, dl)); 5672 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5673 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5674 getF32Constant(DAG, 0x3f6ae232, dl)); 5675 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5676 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5677 getF32Constant(DAG, 0x3f25f7c3, dl)); 5678 } else { // LimitFloatPrecision <= 18 5679 // For floating-point precision of 18: 5680 // 5681 // Log10ofMantissa = 5682 // -0.84299375f + 5683 // (1.5327582f + 5684 // (-1.0688956f + 5685 // (0.49102474f + 5686 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5687 // 5688 // error 0.0000037995730, which is better than 18 bits 5689 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5690 getF32Constant(DAG, 0x3c5d51ce, dl)); 5691 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5692 getF32Constant(DAG, 0x3e00685a, dl)); 5693 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5694 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5695 getF32Constant(DAG, 0x3efb6798, dl)); 5696 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5697 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5698 getF32Constant(DAG, 0x3f88d192, dl)); 5699 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5700 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5701 getF32Constant(DAG, 0x3fc4316c, dl)); 5702 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5703 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5704 getF32Constant(DAG, 0x3f57ce70, dl)); 5705 } 5706 5707 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5708 } 5709 5710 // No special expansion. 5711 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5712 } 5713 5714 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5715 /// limited-precision mode. 5716 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5717 const TargetLowering &TLI, SDNodeFlags Flags) { 5718 if (Op.getValueType() == MVT::f32 && 5719 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5720 return getLimitedPrecisionExp2(Op, dl, DAG); 5721 5722 // No special expansion. 5723 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5724 } 5725 5726 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5727 /// limited-precision mode with x == 10.0f. 5728 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5729 SelectionDAG &DAG, const TargetLowering &TLI, 5730 SDNodeFlags Flags) { 5731 bool IsExp10 = false; 5732 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5733 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5734 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5735 APFloat Ten(10.0f); 5736 IsExp10 = LHSC->isExactlyValue(Ten); 5737 } 5738 } 5739 5740 // TODO: What fast-math-flags should be set on the FMUL node? 5741 if (IsExp10) { 5742 // Put the exponent in the right bit position for later addition to the 5743 // final result: 5744 // 5745 // #define LOG2OF10 3.3219281f 5746 // t0 = Op * LOG2OF10; 5747 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5748 getF32Constant(DAG, 0x40549a78, dl)); 5749 return getLimitedPrecisionExp2(t0, dl, DAG); 5750 } 5751 5752 // No special expansion. 5753 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5754 } 5755 5756 /// ExpandPowI - Expand a llvm.powi intrinsic. 5757 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5758 SelectionDAG &DAG) { 5759 // If RHS is a constant, we can expand this out to a multiplication tree if 5760 // it's beneficial on the target, otherwise we end up lowering to a call to 5761 // __powidf2 (for example). 5762 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5763 unsigned Val = RHSC->getSExtValue(); 5764 5765 // powi(x, 0) -> 1.0 5766 if (Val == 0) 5767 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5768 5769 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5770 Val, DAG.shouldOptForSize())) { 5771 // Get the exponent as a positive value. 5772 if ((int)Val < 0) 5773 Val = -Val; 5774 // We use the simple binary decomposition method to generate the multiply 5775 // sequence. There are more optimal ways to do this (for example, 5776 // powi(x,15) generates one more multiply than it should), but this has 5777 // the benefit of being both really simple and much better than a libcall. 5778 SDValue Res; // Logically starts equal to 1.0 5779 SDValue CurSquare = LHS; 5780 // TODO: Intrinsics should have fast-math-flags that propagate to these 5781 // nodes. 5782 while (Val) { 5783 if (Val & 1) { 5784 if (Res.getNode()) 5785 Res = 5786 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5787 else 5788 Res = CurSquare; // 1.0*CurSquare. 5789 } 5790 5791 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5792 CurSquare, CurSquare); 5793 Val >>= 1; 5794 } 5795 5796 // If the original was negative, invert the result, producing 1/(x*x*x). 5797 if (RHSC->getSExtValue() < 0) 5798 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5799 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5800 return Res; 5801 } 5802 } 5803 5804 // Otherwise, expand to a libcall. 5805 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5806 } 5807 5808 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5809 SDValue LHS, SDValue RHS, SDValue Scale, 5810 SelectionDAG &DAG, const TargetLowering &TLI) { 5811 EVT VT = LHS.getValueType(); 5812 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5813 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5814 LLVMContext &Ctx = *DAG.getContext(); 5815 5816 // If the type is legal but the operation isn't, this node might survive all 5817 // the way to operation legalization. If we end up there and we do not have 5818 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5819 // node. 5820 5821 // Coax the legalizer into expanding the node during type legalization instead 5822 // by bumping the size by one bit. This will force it to Promote, enabling the 5823 // early expansion and avoiding the need to expand later. 5824 5825 // We don't have to do this if Scale is 0; that can always be expanded, unless 5826 // it's a saturating signed operation. Those can experience true integer 5827 // division overflow, a case which we must avoid. 5828 5829 // FIXME: We wouldn't have to do this (or any of the early 5830 // expansion/promotion) if it was possible to expand a libcall of an 5831 // illegal type during operation legalization. But it's not, so things 5832 // get a bit hacky. 5833 unsigned ScaleInt = Scale->getAsZExtVal(); 5834 if ((ScaleInt > 0 || (Saturating && Signed)) && 5835 (TLI.isTypeLegal(VT) || 5836 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5837 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5838 Opcode, VT, ScaleInt); 5839 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5840 EVT PromVT; 5841 if (VT.isScalarInteger()) 5842 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5843 else if (VT.isVector()) { 5844 PromVT = VT.getVectorElementType(); 5845 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5846 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5847 } else 5848 llvm_unreachable("Wrong VT for DIVFIX?"); 5849 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5850 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5851 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5852 // For saturating operations, we need to shift up the LHS to get the 5853 // proper saturation width, and then shift down again afterwards. 5854 if (Saturating) 5855 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5856 DAG.getConstant(1, DL, ShiftTy)); 5857 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5858 if (Saturating) 5859 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5860 DAG.getConstant(1, DL, ShiftTy)); 5861 return DAG.getZExtOrTrunc(Res, DL, VT); 5862 } 5863 } 5864 5865 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5866 } 5867 5868 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5869 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5870 static void 5871 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5872 const SDValue &N) { 5873 switch (N.getOpcode()) { 5874 case ISD::CopyFromReg: { 5875 SDValue Op = N.getOperand(1); 5876 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5877 Op.getValueType().getSizeInBits()); 5878 return; 5879 } 5880 case ISD::BITCAST: 5881 case ISD::AssertZext: 5882 case ISD::AssertSext: 5883 case ISD::TRUNCATE: 5884 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5885 return; 5886 case ISD::BUILD_PAIR: 5887 case ISD::BUILD_VECTOR: 5888 case ISD::CONCAT_VECTORS: 5889 for (SDValue Op : N->op_values()) 5890 getUnderlyingArgRegs(Regs, Op); 5891 return; 5892 default: 5893 return; 5894 } 5895 } 5896 5897 /// If the DbgValueInst is a dbg_value of a function argument, create the 5898 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5899 /// instruction selection, they will be inserted to the entry BB. 5900 /// We don't currently support this for variadic dbg_values, as they shouldn't 5901 /// appear for function arguments or in the prologue. 5902 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5903 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5904 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5905 const Argument *Arg = dyn_cast<Argument>(V); 5906 if (!Arg) 5907 return false; 5908 5909 MachineFunction &MF = DAG.getMachineFunction(); 5910 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5911 5912 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5913 // we've been asked to pursue. 5914 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5915 bool Indirect) { 5916 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5917 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5918 // pointing at the VReg, which will be patched up later. 5919 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5920 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5921 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5922 /* isKill */ false, /* isDead */ false, 5923 /* isUndef */ false, /* isEarlyClobber */ false, 5924 /* SubReg */ 0, /* isDebug */ true)}); 5925 5926 auto *NewDIExpr = FragExpr; 5927 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5928 // the DIExpression. 5929 if (Indirect) 5930 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5931 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5932 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5933 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5934 } else { 5935 // Create a completely standard DBG_VALUE. 5936 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5937 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5938 } 5939 }; 5940 5941 if (Kind == FuncArgumentDbgValueKind::Value) { 5942 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5943 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5944 // the entry block. 5945 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5946 if (!IsInEntryBlock) 5947 return false; 5948 5949 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5950 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5951 // variable that also is a param. 5952 // 5953 // Although, if we are at the top of the entry block already, we can still 5954 // emit using ArgDbgValue. This might catch some situations when the 5955 // dbg.value refers to an argument that isn't used in the entry block, so 5956 // any CopyToReg node would be optimized out and the only way to express 5957 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5958 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5959 // we should only emit as ArgDbgValue if the Variable is an argument to the 5960 // current function, and the dbg.value intrinsic is found in the entry 5961 // block. 5962 bool VariableIsFunctionInputArg = Variable->isParameter() && 5963 !DL->getInlinedAt(); 5964 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5965 if (!IsInPrologue && !VariableIsFunctionInputArg) 5966 return false; 5967 5968 // Here we assume that a function argument on IR level only can be used to 5969 // describe one input parameter on source level. If we for example have 5970 // source code like this 5971 // 5972 // struct A { long x, y; }; 5973 // void foo(struct A a, long b) { 5974 // ... 5975 // b = a.x; 5976 // ... 5977 // } 5978 // 5979 // and IR like this 5980 // 5981 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5982 // entry: 5983 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5984 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5985 // call void @llvm.dbg.value(metadata i32 %b, "b", 5986 // ... 5987 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5988 // ... 5989 // 5990 // then the last dbg.value is describing a parameter "b" using a value that 5991 // is an argument. But since we already has used %a1 to describe a parameter 5992 // we should not handle that last dbg.value here (that would result in an 5993 // incorrect hoisting of the DBG_VALUE to the function entry). 5994 // Notice that we allow one dbg.value per IR level argument, to accommodate 5995 // for the situation with fragments above. 5996 if (VariableIsFunctionInputArg) { 5997 unsigned ArgNo = Arg->getArgNo(); 5998 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5999 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 6000 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 6001 return false; 6002 FuncInfo.DescribedArgs.set(ArgNo); 6003 } 6004 } 6005 6006 bool IsIndirect = false; 6007 std::optional<MachineOperand> Op; 6008 // Some arguments' frame index is recorded during argument lowering. 6009 int FI = FuncInfo.getArgumentFrameIndex(Arg); 6010 if (FI != std::numeric_limits<int>::max()) 6011 Op = MachineOperand::CreateFI(FI); 6012 6013 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 6014 if (!Op && N.getNode()) { 6015 getUnderlyingArgRegs(ArgRegsAndSizes, N); 6016 Register Reg; 6017 if (ArgRegsAndSizes.size() == 1) 6018 Reg = ArgRegsAndSizes.front().first; 6019 6020 if (Reg && Reg.isVirtual()) { 6021 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6022 Register PR = RegInfo.getLiveInPhysReg(Reg); 6023 if (PR) 6024 Reg = PR; 6025 } 6026 if (Reg) { 6027 Op = MachineOperand::CreateReg(Reg, false); 6028 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6029 } 6030 } 6031 6032 if (!Op && N.getNode()) { 6033 // Check if frame index is available. 6034 SDValue LCandidate = peekThroughBitcasts(N); 6035 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 6036 if (FrameIndexSDNode *FINode = 6037 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6038 Op = MachineOperand::CreateFI(FINode->getIndex()); 6039 } 6040 6041 if (!Op) { 6042 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 6043 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 6044 SplitRegs) { 6045 unsigned Offset = 0; 6046 for (const auto &RegAndSize : SplitRegs) { 6047 // If the expression is already a fragment, the current register 6048 // offset+size might extend beyond the fragment. In this case, only 6049 // the register bits that are inside the fragment are relevant. 6050 int RegFragmentSizeInBits = RegAndSize.second; 6051 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 6052 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 6053 // The register is entirely outside the expression fragment, 6054 // so is irrelevant for debug info. 6055 if (Offset >= ExprFragmentSizeInBits) 6056 break; 6057 // The register is partially outside the expression fragment, only 6058 // the low bits within the fragment are relevant for debug info. 6059 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 6060 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 6061 } 6062 } 6063 6064 auto FragmentExpr = DIExpression::createFragmentExpression( 6065 Expr, Offset, RegFragmentSizeInBits); 6066 Offset += RegAndSize.second; 6067 // If a valid fragment expression cannot be created, the variable's 6068 // correct value cannot be determined and so it is set as Undef. 6069 if (!FragmentExpr) { 6070 SDDbgValue *SDV = DAG.getConstantDbgValue( 6071 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 6072 DAG.AddDbgValue(SDV, false); 6073 continue; 6074 } 6075 MachineInstr *NewMI = 6076 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 6077 Kind != FuncArgumentDbgValueKind::Value); 6078 FuncInfo.ArgDbgValues.push_back(NewMI); 6079 } 6080 }; 6081 6082 // Check if ValueMap has reg number. 6083 DenseMap<const Value *, Register>::const_iterator 6084 VMI = FuncInfo.ValueMap.find(V); 6085 if (VMI != FuncInfo.ValueMap.end()) { 6086 const auto &TLI = DAG.getTargetLoweringInfo(); 6087 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 6088 V->getType(), std::nullopt); 6089 if (RFV.occupiesMultipleRegs()) { 6090 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 6091 return true; 6092 } 6093 6094 Op = MachineOperand::CreateReg(VMI->second, false); 6095 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6096 } else if (ArgRegsAndSizes.size() > 1) { 6097 // This was split due to the calling convention, and no virtual register 6098 // mapping exists for the value. 6099 splitMultiRegDbgValue(ArgRegsAndSizes); 6100 return true; 6101 } 6102 } 6103 6104 if (!Op) 6105 return false; 6106 6107 assert(Variable->isValidLocationForIntrinsic(DL) && 6108 "Expected inlined-at fields to agree"); 6109 MachineInstr *NewMI = nullptr; 6110 6111 if (Op->isReg()) 6112 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 6113 else 6114 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 6115 Variable, Expr); 6116 6117 // Otherwise, use ArgDbgValues. 6118 FuncInfo.ArgDbgValues.push_back(NewMI); 6119 return true; 6120 } 6121 6122 /// Return the appropriate SDDbgValue based on N. 6123 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 6124 DILocalVariable *Variable, 6125 DIExpression *Expr, 6126 const DebugLoc &dl, 6127 unsigned DbgSDNodeOrder) { 6128 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 6129 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 6130 // stack slot locations. 6131 // 6132 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 6133 // debug values here after optimization: 6134 // 6135 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 6136 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 6137 // 6138 // Both describe the direct values of their associated variables. 6139 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 6140 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6141 } 6142 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 6143 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6144 } 6145 6146 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 6147 switch (Intrinsic) { 6148 case Intrinsic::smul_fix: 6149 return ISD::SMULFIX; 6150 case Intrinsic::umul_fix: 6151 return ISD::UMULFIX; 6152 case Intrinsic::smul_fix_sat: 6153 return ISD::SMULFIXSAT; 6154 case Intrinsic::umul_fix_sat: 6155 return ISD::UMULFIXSAT; 6156 case Intrinsic::sdiv_fix: 6157 return ISD::SDIVFIX; 6158 case Intrinsic::udiv_fix: 6159 return ISD::UDIVFIX; 6160 case Intrinsic::sdiv_fix_sat: 6161 return ISD::SDIVFIXSAT; 6162 case Intrinsic::udiv_fix_sat: 6163 return ISD::UDIVFIXSAT; 6164 default: 6165 llvm_unreachable("Unhandled fixed point intrinsic"); 6166 } 6167 } 6168 6169 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6170 const char *FunctionName) { 6171 assert(FunctionName && "FunctionName must not be nullptr"); 6172 SDValue Callee = DAG.getExternalSymbol( 6173 FunctionName, 6174 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6175 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6176 } 6177 6178 /// Given a @llvm.call.preallocated.setup, return the corresponding 6179 /// preallocated call. 6180 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6181 assert(cast<CallBase>(PreallocatedSetup) 6182 ->getCalledFunction() 6183 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6184 "expected call_preallocated_setup Value"); 6185 for (const auto *U : PreallocatedSetup->users()) { 6186 auto *UseCall = cast<CallBase>(U); 6187 const Function *Fn = UseCall->getCalledFunction(); 6188 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6189 return UseCall; 6190 } 6191 } 6192 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6193 } 6194 6195 /// If DI is a debug value with an EntryValue expression, lower it using the 6196 /// corresponding physical register of the associated Argument value 6197 /// (guaranteed to exist by the verifier). 6198 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6199 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6200 DIExpression *Expr, DebugLoc DbgLoc) { 6201 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6202 return false; 6203 6204 // These properties are guaranteed by the verifier. 6205 const Argument *Arg = cast<Argument>(Values[0]); 6206 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6207 6208 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6209 if (ArgIt == FuncInfo.ValueMap.end()) { 6210 LLVM_DEBUG( 6211 dbgs() << "Dropping dbg.value: expression is entry_value but " 6212 "couldn't find an associated register for the Argument\n"); 6213 return true; 6214 } 6215 Register ArgVReg = ArgIt->getSecond(); 6216 6217 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6218 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6219 SDDbgValue *SDV = DAG.getVRegDbgValue( 6220 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6221 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6222 return true; 6223 } 6224 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6225 "couldn't find a physical register\n"); 6226 return true; 6227 } 6228 6229 /// Lower the call to the specified intrinsic function. 6230 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6231 unsigned Intrinsic) { 6232 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6233 SDLoc sdl = getCurSDLoc(); 6234 DebugLoc dl = getCurDebugLoc(); 6235 SDValue Res; 6236 6237 SDNodeFlags Flags; 6238 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6239 Flags.copyFMF(*FPOp); 6240 6241 switch (Intrinsic) { 6242 default: 6243 // By default, turn this into a target intrinsic node. 6244 visitTargetIntrinsic(I, Intrinsic); 6245 return; 6246 case Intrinsic::vscale: { 6247 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6248 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6249 return; 6250 } 6251 case Intrinsic::vastart: visitVAStart(I); return; 6252 case Intrinsic::vaend: visitVAEnd(I); return; 6253 case Intrinsic::vacopy: visitVACopy(I); return; 6254 case Intrinsic::returnaddress: 6255 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6256 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6257 getValue(I.getArgOperand(0)))); 6258 return; 6259 case Intrinsic::addressofreturnaddress: 6260 setValue(&I, 6261 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6262 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6263 return; 6264 case Intrinsic::sponentry: 6265 setValue(&I, 6266 DAG.getNode(ISD::SPONENTRY, sdl, 6267 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6268 return; 6269 case Intrinsic::frameaddress: 6270 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6271 TLI.getFrameIndexTy(DAG.getDataLayout()), 6272 getValue(I.getArgOperand(0)))); 6273 return; 6274 case Intrinsic::read_volatile_register: 6275 case Intrinsic::read_register: { 6276 Value *Reg = I.getArgOperand(0); 6277 SDValue Chain = getRoot(); 6278 SDValue RegName = 6279 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6280 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6281 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6282 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6283 setValue(&I, Res); 6284 DAG.setRoot(Res.getValue(1)); 6285 return; 6286 } 6287 case Intrinsic::write_register: { 6288 Value *Reg = I.getArgOperand(0); 6289 Value *RegValue = I.getArgOperand(1); 6290 SDValue Chain = getRoot(); 6291 SDValue RegName = 6292 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6293 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6294 RegName, getValue(RegValue))); 6295 return; 6296 } 6297 case Intrinsic::memcpy: { 6298 const auto &MCI = cast<MemCpyInst>(I); 6299 SDValue Op1 = getValue(I.getArgOperand(0)); 6300 SDValue Op2 = getValue(I.getArgOperand(1)); 6301 SDValue Op3 = getValue(I.getArgOperand(2)); 6302 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6303 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6304 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6305 Align Alignment = std::min(DstAlign, SrcAlign); 6306 bool isVol = MCI.isVolatile(); 6307 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6308 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6309 // node. 6310 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6311 SDValue MC = DAG.getMemcpy( 6312 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6313 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6314 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6315 updateDAGForMaybeTailCall(MC); 6316 return; 6317 } 6318 case Intrinsic::memcpy_inline: { 6319 const auto &MCI = cast<MemCpyInlineInst>(I); 6320 SDValue Dst = getValue(I.getArgOperand(0)); 6321 SDValue Src = getValue(I.getArgOperand(1)); 6322 SDValue Size = getValue(I.getArgOperand(2)); 6323 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6324 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6325 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6326 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6327 Align Alignment = std::min(DstAlign, SrcAlign); 6328 bool isVol = MCI.isVolatile(); 6329 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6330 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6331 // node. 6332 SDValue MC = DAG.getMemcpy( 6333 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6334 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6335 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6336 updateDAGForMaybeTailCall(MC); 6337 return; 6338 } 6339 case Intrinsic::memset: { 6340 const auto &MSI = cast<MemSetInst>(I); 6341 SDValue Op1 = getValue(I.getArgOperand(0)); 6342 SDValue Op2 = getValue(I.getArgOperand(1)); 6343 SDValue Op3 = getValue(I.getArgOperand(2)); 6344 // @llvm.memset defines 0 and 1 to both mean no alignment. 6345 Align Alignment = MSI.getDestAlign().valueOrOne(); 6346 bool isVol = MSI.isVolatile(); 6347 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6348 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6349 SDValue MS = DAG.getMemset( 6350 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6351 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6352 updateDAGForMaybeTailCall(MS); 6353 return; 6354 } 6355 case Intrinsic::memset_inline: { 6356 const auto &MSII = cast<MemSetInlineInst>(I); 6357 SDValue Dst = getValue(I.getArgOperand(0)); 6358 SDValue Value = getValue(I.getArgOperand(1)); 6359 SDValue Size = getValue(I.getArgOperand(2)); 6360 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6361 // @llvm.memset defines 0 and 1 to both mean no alignment. 6362 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6363 bool isVol = MSII.isVolatile(); 6364 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6365 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6366 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6367 /* AlwaysInline */ true, isTC, 6368 MachinePointerInfo(I.getArgOperand(0)), 6369 I.getAAMetadata()); 6370 updateDAGForMaybeTailCall(MC); 6371 return; 6372 } 6373 case Intrinsic::memmove: { 6374 const auto &MMI = cast<MemMoveInst>(I); 6375 SDValue Op1 = getValue(I.getArgOperand(0)); 6376 SDValue Op2 = getValue(I.getArgOperand(1)); 6377 SDValue Op3 = getValue(I.getArgOperand(2)); 6378 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6379 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6380 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6381 Align Alignment = std::min(DstAlign, SrcAlign); 6382 bool isVol = MMI.isVolatile(); 6383 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6384 // FIXME: Support passing different dest/src alignments to the memmove DAG 6385 // node. 6386 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6387 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6388 isTC, MachinePointerInfo(I.getArgOperand(0)), 6389 MachinePointerInfo(I.getArgOperand(1)), 6390 I.getAAMetadata(), AA); 6391 updateDAGForMaybeTailCall(MM); 6392 return; 6393 } 6394 case Intrinsic::memcpy_element_unordered_atomic: { 6395 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6396 SDValue Dst = getValue(MI.getRawDest()); 6397 SDValue Src = getValue(MI.getRawSource()); 6398 SDValue Length = getValue(MI.getLength()); 6399 6400 Type *LengthTy = MI.getLength()->getType(); 6401 unsigned ElemSz = MI.getElementSizeInBytes(); 6402 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6403 SDValue MC = 6404 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6405 isTC, MachinePointerInfo(MI.getRawDest()), 6406 MachinePointerInfo(MI.getRawSource())); 6407 updateDAGForMaybeTailCall(MC); 6408 return; 6409 } 6410 case Intrinsic::memmove_element_unordered_atomic: { 6411 auto &MI = cast<AtomicMemMoveInst>(I); 6412 SDValue Dst = getValue(MI.getRawDest()); 6413 SDValue Src = getValue(MI.getRawSource()); 6414 SDValue Length = getValue(MI.getLength()); 6415 6416 Type *LengthTy = MI.getLength()->getType(); 6417 unsigned ElemSz = MI.getElementSizeInBytes(); 6418 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6419 SDValue MC = 6420 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6421 isTC, MachinePointerInfo(MI.getRawDest()), 6422 MachinePointerInfo(MI.getRawSource())); 6423 updateDAGForMaybeTailCall(MC); 6424 return; 6425 } 6426 case Intrinsic::memset_element_unordered_atomic: { 6427 auto &MI = cast<AtomicMemSetInst>(I); 6428 SDValue Dst = getValue(MI.getRawDest()); 6429 SDValue Val = getValue(MI.getValue()); 6430 SDValue Length = getValue(MI.getLength()); 6431 6432 Type *LengthTy = MI.getLength()->getType(); 6433 unsigned ElemSz = MI.getElementSizeInBytes(); 6434 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6435 SDValue MC = 6436 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6437 isTC, MachinePointerInfo(MI.getRawDest())); 6438 updateDAGForMaybeTailCall(MC); 6439 return; 6440 } 6441 case Intrinsic::call_preallocated_setup: { 6442 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6443 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6444 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6445 getRoot(), SrcValue); 6446 setValue(&I, Res); 6447 DAG.setRoot(Res); 6448 return; 6449 } 6450 case Intrinsic::call_preallocated_arg: { 6451 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6452 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6453 SDValue Ops[3]; 6454 Ops[0] = getRoot(); 6455 Ops[1] = SrcValue; 6456 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6457 MVT::i32); // arg index 6458 SDValue Res = DAG.getNode( 6459 ISD::PREALLOCATED_ARG, sdl, 6460 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6461 setValue(&I, Res); 6462 DAG.setRoot(Res.getValue(1)); 6463 return; 6464 } 6465 case Intrinsic::dbg_declare: { 6466 const auto &DI = cast<DbgDeclareInst>(I); 6467 // Debug intrinsics are handled separately in assignment tracking mode. 6468 // Some intrinsics are handled right after Argument lowering. 6469 if (AssignmentTrackingEnabled || 6470 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6471 return; 6472 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6473 DILocalVariable *Variable = DI.getVariable(); 6474 DIExpression *Expression = DI.getExpression(); 6475 dropDanglingDebugInfo(Variable, Expression); 6476 // Assume dbg.declare can not currently use DIArgList, i.e. 6477 // it is non-variadic. 6478 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6479 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6480 DI.getDebugLoc()); 6481 return; 6482 } 6483 case Intrinsic::dbg_label: { 6484 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6485 DILabel *Label = DI.getLabel(); 6486 assert(Label && "Missing label"); 6487 6488 SDDbgLabel *SDV; 6489 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6490 DAG.AddDbgLabel(SDV); 6491 return; 6492 } 6493 case Intrinsic::dbg_assign: { 6494 // Debug intrinsics are handled seperately in assignment tracking mode. 6495 if (AssignmentTrackingEnabled) 6496 return; 6497 // If assignment tracking hasn't been enabled then fall through and treat 6498 // the dbg.assign as a dbg.value. 6499 [[fallthrough]]; 6500 } 6501 case Intrinsic::dbg_value: { 6502 // Debug intrinsics are handled seperately in assignment tracking mode. 6503 if (AssignmentTrackingEnabled) 6504 return; 6505 const DbgValueInst &DI = cast<DbgValueInst>(I); 6506 assert(DI.getVariable() && "Missing variable"); 6507 6508 DILocalVariable *Variable = DI.getVariable(); 6509 DIExpression *Expression = DI.getExpression(); 6510 dropDanglingDebugInfo(Variable, Expression); 6511 6512 if (DI.isKillLocation()) { 6513 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6514 return; 6515 } 6516 6517 SmallVector<Value *, 4> Values(DI.getValues()); 6518 if (Values.empty()) 6519 return; 6520 6521 bool IsVariadic = DI.hasArgList(); 6522 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6523 SDNodeOrder, IsVariadic)) 6524 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6525 DI.getDebugLoc(), SDNodeOrder); 6526 return; 6527 } 6528 6529 case Intrinsic::eh_typeid_for: { 6530 // Find the type id for the given typeinfo. 6531 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6532 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6533 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6534 setValue(&I, Res); 6535 return; 6536 } 6537 6538 case Intrinsic::eh_return_i32: 6539 case Intrinsic::eh_return_i64: 6540 DAG.getMachineFunction().setCallsEHReturn(true); 6541 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6542 MVT::Other, 6543 getControlRoot(), 6544 getValue(I.getArgOperand(0)), 6545 getValue(I.getArgOperand(1)))); 6546 return; 6547 case Intrinsic::eh_unwind_init: 6548 DAG.getMachineFunction().setCallsUnwindInit(true); 6549 return; 6550 case Intrinsic::eh_dwarf_cfa: 6551 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6552 TLI.getPointerTy(DAG.getDataLayout()), 6553 getValue(I.getArgOperand(0)))); 6554 return; 6555 case Intrinsic::eh_sjlj_callsite: { 6556 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6557 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6558 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6559 6560 MMI.setCurrentCallSite(CI->getZExtValue()); 6561 return; 6562 } 6563 case Intrinsic::eh_sjlj_functioncontext: { 6564 // Get and store the index of the function context. 6565 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6566 AllocaInst *FnCtx = 6567 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6568 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6569 MFI.setFunctionContextIndex(FI); 6570 return; 6571 } 6572 case Intrinsic::eh_sjlj_setjmp: { 6573 SDValue Ops[2]; 6574 Ops[0] = getRoot(); 6575 Ops[1] = getValue(I.getArgOperand(0)); 6576 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6577 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6578 setValue(&I, Op.getValue(0)); 6579 DAG.setRoot(Op.getValue(1)); 6580 return; 6581 } 6582 case Intrinsic::eh_sjlj_longjmp: 6583 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6584 getRoot(), getValue(I.getArgOperand(0)))); 6585 return; 6586 case Intrinsic::eh_sjlj_setup_dispatch: 6587 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6588 getRoot())); 6589 return; 6590 case Intrinsic::masked_gather: 6591 visitMaskedGather(I); 6592 return; 6593 case Intrinsic::masked_load: 6594 visitMaskedLoad(I); 6595 return; 6596 case Intrinsic::masked_scatter: 6597 visitMaskedScatter(I); 6598 return; 6599 case Intrinsic::masked_store: 6600 visitMaskedStore(I); 6601 return; 6602 case Intrinsic::masked_expandload: 6603 visitMaskedLoad(I, true /* IsExpanding */); 6604 return; 6605 case Intrinsic::masked_compressstore: 6606 visitMaskedStore(I, true /* IsCompressing */); 6607 return; 6608 case Intrinsic::powi: 6609 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6610 getValue(I.getArgOperand(1)), DAG)); 6611 return; 6612 case Intrinsic::log: 6613 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6614 return; 6615 case Intrinsic::log2: 6616 setValue(&I, 6617 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6618 return; 6619 case Intrinsic::log10: 6620 setValue(&I, 6621 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6622 return; 6623 case Intrinsic::exp: 6624 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6625 return; 6626 case Intrinsic::exp2: 6627 setValue(&I, 6628 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6629 return; 6630 case Intrinsic::pow: 6631 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6632 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6633 return; 6634 case Intrinsic::sqrt: 6635 case Intrinsic::fabs: 6636 case Intrinsic::sin: 6637 case Intrinsic::cos: 6638 case Intrinsic::exp10: 6639 case Intrinsic::floor: 6640 case Intrinsic::ceil: 6641 case Intrinsic::trunc: 6642 case Intrinsic::rint: 6643 case Intrinsic::nearbyint: 6644 case Intrinsic::round: 6645 case Intrinsic::roundeven: 6646 case Intrinsic::canonicalize: { 6647 unsigned Opcode; 6648 switch (Intrinsic) { 6649 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6650 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6651 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6652 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6653 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6654 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6655 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6656 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6657 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6658 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6659 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6660 case Intrinsic::round: Opcode = ISD::FROUND; break; 6661 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6662 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6663 } 6664 6665 setValue(&I, DAG.getNode(Opcode, sdl, 6666 getValue(I.getArgOperand(0)).getValueType(), 6667 getValue(I.getArgOperand(0)), Flags)); 6668 return; 6669 } 6670 case Intrinsic::lround: 6671 case Intrinsic::llround: 6672 case Intrinsic::lrint: 6673 case Intrinsic::llrint: { 6674 unsigned Opcode; 6675 switch (Intrinsic) { 6676 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6677 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6678 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6679 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6680 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6681 } 6682 6683 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6684 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6685 getValue(I.getArgOperand(0)))); 6686 return; 6687 } 6688 case Intrinsic::minnum: 6689 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6690 getValue(I.getArgOperand(0)).getValueType(), 6691 getValue(I.getArgOperand(0)), 6692 getValue(I.getArgOperand(1)), Flags)); 6693 return; 6694 case Intrinsic::maxnum: 6695 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6696 getValue(I.getArgOperand(0)).getValueType(), 6697 getValue(I.getArgOperand(0)), 6698 getValue(I.getArgOperand(1)), Flags)); 6699 return; 6700 case Intrinsic::minimum: 6701 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6702 getValue(I.getArgOperand(0)).getValueType(), 6703 getValue(I.getArgOperand(0)), 6704 getValue(I.getArgOperand(1)), Flags)); 6705 return; 6706 case Intrinsic::maximum: 6707 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6708 getValue(I.getArgOperand(0)).getValueType(), 6709 getValue(I.getArgOperand(0)), 6710 getValue(I.getArgOperand(1)), Flags)); 6711 return; 6712 case Intrinsic::copysign: 6713 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6714 getValue(I.getArgOperand(0)).getValueType(), 6715 getValue(I.getArgOperand(0)), 6716 getValue(I.getArgOperand(1)), Flags)); 6717 return; 6718 case Intrinsic::ldexp: 6719 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6720 getValue(I.getArgOperand(0)).getValueType(), 6721 getValue(I.getArgOperand(0)), 6722 getValue(I.getArgOperand(1)), Flags)); 6723 return; 6724 case Intrinsic::frexp: { 6725 SmallVector<EVT, 2> ValueVTs; 6726 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6727 SDVTList VTs = DAG.getVTList(ValueVTs); 6728 setValue(&I, 6729 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6730 return; 6731 } 6732 case Intrinsic::arithmetic_fence: { 6733 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6734 getValue(I.getArgOperand(0)).getValueType(), 6735 getValue(I.getArgOperand(0)), Flags)); 6736 return; 6737 } 6738 case Intrinsic::fma: 6739 setValue(&I, DAG.getNode( 6740 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6741 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6742 getValue(I.getArgOperand(2)), Flags)); 6743 return; 6744 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6745 case Intrinsic::INTRINSIC: 6746 #include "llvm/IR/ConstrainedOps.def" 6747 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6748 return; 6749 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6750 #include "llvm/IR/VPIntrinsics.def" 6751 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6752 return; 6753 case Intrinsic::fptrunc_round: { 6754 // Get the last argument, the metadata and convert it to an integer in the 6755 // call 6756 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6757 std::optional<RoundingMode> RoundMode = 6758 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6759 6760 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6761 6762 // Propagate fast-math-flags from IR to node(s). 6763 SDNodeFlags Flags; 6764 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6765 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6766 6767 SDValue Result; 6768 Result = DAG.getNode( 6769 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6770 DAG.getTargetConstant((int)*RoundMode, sdl, 6771 TLI.getPointerTy(DAG.getDataLayout()))); 6772 setValue(&I, Result); 6773 6774 return; 6775 } 6776 case Intrinsic::fmuladd: { 6777 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6778 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6779 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6780 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6781 getValue(I.getArgOperand(0)).getValueType(), 6782 getValue(I.getArgOperand(0)), 6783 getValue(I.getArgOperand(1)), 6784 getValue(I.getArgOperand(2)), Flags)); 6785 } else { 6786 // TODO: Intrinsic calls should have fast-math-flags. 6787 SDValue Mul = DAG.getNode( 6788 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6789 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6790 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6791 getValue(I.getArgOperand(0)).getValueType(), 6792 Mul, getValue(I.getArgOperand(2)), Flags); 6793 setValue(&I, Add); 6794 } 6795 return; 6796 } 6797 case Intrinsic::convert_to_fp16: 6798 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6799 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6800 getValue(I.getArgOperand(0)), 6801 DAG.getTargetConstant(0, sdl, 6802 MVT::i32)))); 6803 return; 6804 case Intrinsic::convert_from_fp16: 6805 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6806 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6807 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6808 getValue(I.getArgOperand(0))))); 6809 return; 6810 case Intrinsic::fptosi_sat: { 6811 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6812 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6813 getValue(I.getArgOperand(0)), 6814 DAG.getValueType(VT.getScalarType()))); 6815 return; 6816 } 6817 case Intrinsic::fptoui_sat: { 6818 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6819 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6820 getValue(I.getArgOperand(0)), 6821 DAG.getValueType(VT.getScalarType()))); 6822 return; 6823 } 6824 case Intrinsic::set_rounding: 6825 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6826 {getRoot(), getValue(I.getArgOperand(0))}); 6827 setValue(&I, Res); 6828 DAG.setRoot(Res.getValue(0)); 6829 return; 6830 case Intrinsic::is_fpclass: { 6831 const DataLayout DLayout = DAG.getDataLayout(); 6832 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6833 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6834 FPClassTest Test = static_cast<FPClassTest>( 6835 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6836 MachineFunction &MF = DAG.getMachineFunction(); 6837 const Function &F = MF.getFunction(); 6838 SDValue Op = getValue(I.getArgOperand(0)); 6839 SDNodeFlags Flags; 6840 Flags.setNoFPExcept( 6841 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6842 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6843 // expansion can use illegal types. Making expansion early allows 6844 // legalizing these types prior to selection. 6845 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6846 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6847 setValue(&I, Result); 6848 return; 6849 } 6850 6851 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6852 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6853 setValue(&I, V); 6854 return; 6855 } 6856 case Intrinsic::get_fpenv: { 6857 const DataLayout DLayout = DAG.getDataLayout(); 6858 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 6859 Align TempAlign = DAG.getEVTAlign(EnvVT); 6860 SDValue Chain = getRoot(); 6861 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 6862 // and temporary storage in stack. 6863 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 6864 Res = DAG.getNode( 6865 ISD::GET_FPENV, sdl, 6866 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6867 MVT::Other), 6868 Chain); 6869 } else { 6870 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6871 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6872 auto MPI = 6873 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6874 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6875 MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize, 6876 TempAlign); 6877 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6878 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 6879 } 6880 setValue(&I, Res); 6881 DAG.setRoot(Res.getValue(1)); 6882 return; 6883 } 6884 case Intrinsic::set_fpenv: { 6885 const DataLayout DLayout = DAG.getDataLayout(); 6886 SDValue Env = getValue(I.getArgOperand(0)); 6887 EVT EnvVT = Env.getValueType(); 6888 Align TempAlign = DAG.getEVTAlign(EnvVT); 6889 SDValue Chain = getRoot(); 6890 // If SET_FPENV is custom or legal, use it. Otherwise use loading 6891 // environment from memory. 6892 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 6893 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 6894 } else { 6895 // Allocate space in stack, copy environment bits into it and use this 6896 // memory in SET_FPENV_MEM. 6897 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6898 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6899 auto MPI = 6900 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6901 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 6902 MachineMemOperand::MOStore); 6903 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6904 MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize, 6905 TempAlign); 6906 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6907 } 6908 DAG.setRoot(Chain); 6909 return; 6910 } 6911 case Intrinsic::reset_fpenv: 6912 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 6913 return; 6914 case Intrinsic::get_fpmode: 6915 Res = DAG.getNode( 6916 ISD::GET_FPMODE, sdl, 6917 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6918 MVT::Other), 6919 DAG.getRoot()); 6920 setValue(&I, Res); 6921 DAG.setRoot(Res.getValue(1)); 6922 return; 6923 case Intrinsic::set_fpmode: 6924 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 6925 getValue(I.getArgOperand(0))); 6926 DAG.setRoot(Res); 6927 return; 6928 case Intrinsic::reset_fpmode: { 6929 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 6930 DAG.setRoot(Res); 6931 return; 6932 } 6933 case Intrinsic::pcmarker: { 6934 SDValue Tmp = getValue(I.getArgOperand(0)); 6935 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6936 return; 6937 } 6938 case Intrinsic::readcyclecounter: { 6939 SDValue Op = getRoot(); 6940 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6941 DAG.getVTList(MVT::i64, MVT::Other), Op); 6942 setValue(&I, Res); 6943 DAG.setRoot(Res.getValue(1)); 6944 return; 6945 } 6946 case Intrinsic::readsteadycounter: { 6947 SDValue Op = getRoot(); 6948 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl, 6949 DAG.getVTList(MVT::i64, MVT::Other), Op); 6950 setValue(&I, Res); 6951 DAG.setRoot(Res.getValue(1)); 6952 return; 6953 } 6954 case Intrinsic::bitreverse: 6955 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6956 getValue(I.getArgOperand(0)).getValueType(), 6957 getValue(I.getArgOperand(0)))); 6958 return; 6959 case Intrinsic::bswap: 6960 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6961 getValue(I.getArgOperand(0)).getValueType(), 6962 getValue(I.getArgOperand(0)))); 6963 return; 6964 case Intrinsic::cttz: { 6965 SDValue Arg = getValue(I.getArgOperand(0)); 6966 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6967 EVT Ty = Arg.getValueType(); 6968 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6969 sdl, Ty, Arg)); 6970 return; 6971 } 6972 case Intrinsic::ctlz: { 6973 SDValue Arg = getValue(I.getArgOperand(0)); 6974 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6975 EVT Ty = Arg.getValueType(); 6976 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6977 sdl, Ty, Arg)); 6978 return; 6979 } 6980 case Intrinsic::ctpop: { 6981 SDValue Arg = getValue(I.getArgOperand(0)); 6982 EVT Ty = Arg.getValueType(); 6983 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6984 return; 6985 } 6986 case Intrinsic::fshl: 6987 case Intrinsic::fshr: { 6988 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6989 SDValue X = getValue(I.getArgOperand(0)); 6990 SDValue Y = getValue(I.getArgOperand(1)); 6991 SDValue Z = getValue(I.getArgOperand(2)); 6992 EVT VT = X.getValueType(); 6993 6994 if (X == Y) { 6995 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6996 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6997 } else { 6998 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6999 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 7000 } 7001 return; 7002 } 7003 case Intrinsic::sadd_sat: { 7004 SDValue Op1 = getValue(I.getArgOperand(0)); 7005 SDValue Op2 = getValue(I.getArgOperand(1)); 7006 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7007 return; 7008 } 7009 case Intrinsic::uadd_sat: { 7010 SDValue Op1 = getValue(I.getArgOperand(0)); 7011 SDValue Op2 = getValue(I.getArgOperand(1)); 7012 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7013 return; 7014 } 7015 case Intrinsic::ssub_sat: { 7016 SDValue Op1 = getValue(I.getArgOperand(0)); 7017 SDValue Op2 = getValue(I.getArgOperand(1)); 7018 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7019 return; 7020 } 7021 case Intrinsic::usub_sat: { 7022 SDValue Op1 = getValue(I.getArgOperand(0)); 7023 SDValue Op2 = getValue(I.getArgOperand(1)); 7024 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7025 return; 7026 } 7027 case Intrinsic::sshl_sat: { 7028 SDValue Op1 = getValue(I.getArgOperand(0)); 7029 SDValue Op2 = getValue(I.getArgOperand(1)); 7030 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7031 return; 7032 } 7033 case Intrinsic::ushl_sat: { 7034 SDValue Op1 = getValue(I.getArgOperand(0)); 7035 SDValue Op2 = getValue(I.getArgOperand(1)); 7036 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7037 return; 7038 } 7039 case Intrinsic::smul_fix: 7040 case Intrinsic::umul_fix: 7041 case Intrinsic::smul_fix_sat: 7042 case Intrinsic::umul_fix_sat: { 7043 SDValue Op1 = getValue(I.getArgOperand(0)); 7044 SDValue Op2 = getValue(I.getArgOperand(1)); 7045 SDValue Op3 = getValue(I.getArgOperand(2)); 7046 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7047 Op1.getValueType(), Op1, Op2, Op3)); 7048 return; 7049 } 7050 case Intrinsic::sdiv_fix: 7051 case Intrinsic::udiv_fix: 7052 case Intrinsic::sdiv_fix_sat: 7053 case Intrinsic::udiv_fix_sat: { 7054 SDValue Op1 = getValue(I.getArgOperand(0)); 7055 SDValue Op2 = getValue(I.getArgOperand(1)); 7056 SDValue Op3 = getValue(I.getArgOperand(2)); 7057 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7058 Op1, Op2, Op3, DAG, TLI)); 7059 return; 7060 } 7061 case Intrinsic::smax: { 7062 SDValue Op1 = getValue(I.getArgOperand(0)); 7063 SDValue Op2 = getValue(I.getArgOperand(1)); 7064 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 7065 return; 7066 } 7067 case Intrinsic::smin: { 7068 SDValue Op1 = getValue(I.getArgOperand(0)); 7069 SDValue Op2 = getValue(I.getArgOperand(1)); 7070 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 7071 return; 7072 } 7073 case Intrinsic::umax: { 7074 SDValue Op1 = getValue(I.getArgOperand(0)); 7075 SDValue Op2 = getValue(I.getArgOperand(1)); 7076 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 7077 return; 7078 } 7079 case Intrinsic::umin: { 7080 SDValue Op1 = getValue(I.getArgOperand(0)); 7081 SDValue Op2 = getValue(I.getArgOperand(1)); 7082 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 7083 return; 7084 } 7085 case Intrinsic::abs: { 7086 // TODO: Preserve "int min is poison" arg in SDAG? 7087 SDValue Op1 = getValue(I.getArgOperand(0)); 7088 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 7089 return; 7090 } 7091 case Intrinsic::stacksave: { 7092 SDValue Op = getRoot(); 7093 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7094 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 7095 setValue(&I, Res); 7096 DAG.setRoot(Res.getValue(1)); 7097 return; 7098 } 7099 case Intrinsic::stackrestore: 7100 Res = getValue(I.getArgOperand(0)); 7101 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 7102 return; 7103 case Intrinsic::get_dynamic_area_offset: { 7104 SDValue Op = getRoot(); 7105 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7106 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7107 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 7108 // target. 7109 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 7110 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 7111 " intrinsic!"); 7112 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 7113 Op); 7114 DAG.setRoot(Op); 7115 setValue(&I, Res); 7116 return; 7117 } 7118 case Intrinsic::stackguard: { 7119 MachineFunction &MF = DAG.getMachineFunction(); 7120 const Module &M = *MF.getFunction().getParent(); 7121 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7122 SDValue Chain = getRoot(); 7123 if (TLI.useLoadStackGuardNode()) { 7124 Res = getLoadStackGuard(DAG, sdl, Chain); 7125 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy); 7126 } else { 7127 const Value *Global = TLI.getSDagStackGuard(M); 7128 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 7129 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 7130 MachinePointerInfo(Global, 0), Align, 7131 MachineMemOperand::MOVolatile); 7132 } 7133 if (TLI.useStackGuardXorFP()) 7134 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 7135 DAG.setRoot(Chain); 7136 setValue(&I, Res); 7137 return; 7138 } 7139 case Intrinsic::stackprotector: { 7140 // Emit code into the DAG to store the stack guard onto the stack. 7141 MachineFunction &MF = DAG.getMachineFunction(); 7142 MachineFrameInfo &MFI = MF.getFrameInfo(); 7143 SDValue Src, Chain = getRoot(); 7144 7145 if (TLI.useLoadStackGuardNode()) 7146 Src = getLoadStackGuard(DAG, sdl, Chain); 7147 else 7148 Src = getValue(I.getArgOperand(0)); // The guard's value. 7149 7150 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 7151 7152 int FI = FuncInfo.StaticAllocaMap[Slot]; 7153 MFI.setStackProtectorIndex(FI); 7154 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7155 7156 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 7157 7158 // Store the stack protector onto the stack. 7159 Res = DAG.getStore( 7160 Chain, sdl, Src, FIN, 7161 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 7162 MaybeAlign(), MachineMemOperand::MOVolatile); 7163 setValue(&I, Res); 7164 DAG.setRoot(Res); 7165 return; 7166 } 7167 case Intrinsic::objectsize: 7168 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 7169 7170 case Intrinsic::is_constant: 7171 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7172 7173 case Intrinsic::annotation: 7174 case Intrinsic::ptr_annotation: 7175 case Intrinsic::launder_invariant_group: 7176 case Intrinsic::strip_invariant_group: 7177 // Drop the intrinsic, but forward the value 7178 setValue(&I, getValue(I.getOperand(0))); 7179 return; 7180 7181 case Intrinsic::assume: 7182 case Intrinsic::experimental_noalias_scope_decl: 7183 case Intrinsic::var_annotation: 7184 case Intrinsic::sideeffect: 7185 // Discard annotate attributes, noalias scope declarations, assumptions, and 7186 // artificial side-effects. 7187 return; 7188 7189 case Intrinsic::codeview_annotation: { 7190 // Emit a label associated with this metadata. 7191 MachineFunction &MF = DAG.getMachineFunction(); 7192 MCSymbol *Label = 7193 MF.getMMI().getContext().createTempSymbol("annotation", true); 7194 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7195 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7196 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7197 DAG.setRoot(Res); 7198 return; 7199 } 7200 7201 case Intrinsic::init_trampoline: { 7202 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7203 7204 SDValue Ops[6]; 7205 Ops[0] = getRoot(); 7206 Ops[1] = getValue(I.getArgOperand(0)); 7207 Ops[2] = getValue(I.getArgOperand(1)); 7208 Ops[3] = getValue(I.getArgOperand(2)); 7209 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7210 Ops[5] = DAG.getSrcValue(F); 7211 7212 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7213 7214 DAG.setRoot(Res); 7215 return; 7216 } 7217 case Intrinsic::adjust_trampoline: 7218 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7219 TLI.getPointerTy(DAG.getDataLayout()), 7220 getValue(I.getArgOperand(0)))); 7221 return; 7222 case Intrinsic::gcroot: { 7223 assert(DAG.getMachineFunction().getFunction().hasGC() && 7224 "only valid in functions with gc specified, enforced by Verifier"); 7225 assert(GFI && "implied by previous"); 7226 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7227 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7228 7229 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7230 GFI->addStackRoot(FI->getIndex(), TypeMap); 7231 return; 7232 } 7233 case Intrinsic::gcread: 7234 case Intrinsic::gcwrite: 7235 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7236 case Intrinsic::get_rounding: 7237 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7238 setValue(&I, Res); 7239 DAG.setRoot(Res.getValue(1)); 7240 return; 7241 7242 case Intrinsic::expect: 7243 // Just replace __builtin_expect(exp, c) with EXP. 7244 setValue(&I, getValue(I.getArgOperand(0))); 7245 return; 7246 7247 case Intrinsic::ubsantrap: 7248 case Intrinsic::debugtrap: 7249 case Intrinsic::trap: { 7250 StringRef TrapFuncName = 7251 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7252 if (TrapFuncName.empty()) { 7253 switch (Intrinsic) { 7254 case Intrinsic::trap: 7255 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7256 break; 7257 case Intrinsic::debugtrap: 7258 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7259 break; 7260 case Intrinsic::ubsantrap: 7261 DAG.setRoot(DAG.getNode( 7262 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7263 DAG.getTargetConstant( 7264 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7265 MVT::i32))); 7266 break; 7267 default: llvm_unreachable("unknown trap intrinsic"); 7268 } 7269 return; 7270 } 7271 TargetLowering::ArgListTy Args; 7272 if (Intrinsic == Intrinsic::ubsantrap) { 7273 Args.push_back(TargetLoweringBase::ArgListEntry()); 7274 Args[0].Val = I.getArgOperand(0); 7275 Args[0].Node = getValue(Args[0].Val); 7276 Args[0].Ty = Args[0].Val->getType(); 7277 } 7278 7279 TargetLowering::CallLoweringInfo CLI(DAG); 7280 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7281 CallingConv::C, I.getType(), 7282 DAG.getExternalSymbol(TrapFuncName.data(), 7283 TLI.getPointerTy(DAG.getDataLayout())), 7284 std::move(Args)); 7285 7286 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7287 DAG.setRoot(Result.second); 7288 return; 7289 } 7290 7291 case Intrinsic::uadd_with_overflow: 7292 case Intrinsic::sadd_with_overflow: 7293 case Intrinsic::usub_with_overflow: 7294 case Intrinsic::ssub_with_overflow: 7295 case Intrinsic::umul_with_overflow: 7296 case Intrinsic::smul_with_overflow: { 7297 ISD::NodeType Op; 7298 switch (Intrinsic) { 7299 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7300 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7301 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7302 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7303 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7304 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7305 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7306 } 7307 SDValue Op1 = getValue(I.getArgOperand(0)); 7308 SDValue Op2 = getValue(I.getArgOperand(1)); 7309 7310 EVT ResultVT = Op1.getValueType(); 7311 EVT OverflowVT = MVT::i1; 7312 if (ResultVT.isVector()) 7313 OverflowVT = EVT::getVectorVT( 7314 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7315 7316 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7317 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7318 return; 7319 } 7320 case Intrinsic::prefetch: { 7321 SDValue Ops[5]; 7322 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7323 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7324 Ops[0] = DAG.getRoot(); 7325 Ops[1] = getValue(I.getArgOperand(0)); 7326 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7327 MVT::i32); 7328 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7329 MVT::i32); 7330 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7331 MVT::i32); 7332 SDValue Result = DAG.getMemIntrinsicNode( 7333 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7334 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7335 /* align */ std::nullopt, Flags); 7336 7337 // Chain the prefetch in parallel with any pending loads, to stay out of 7338 // the way of later optimizations. 7339 PendingLoads.push_back(Result); 7340 Result = getRoot(); 7341 DAG.setRoot(Result); 7342 return; 7343 } 7344 case Intrinsic::lifetime_start: 7345 case Intrinsic::lifetime_end: { 7346 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7347 // Stack coloring is not enabled in O0, discard region information. 7348 if (TM.getOptLevel() == CodeGenOptLevel::None) 7349 return; 7350 7351 const int64_t ObjectSize = 7352 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7353 Value *const ObjectPtr = I.getArgOperand(1); 7354 SmallVector<const Value *, 4> Allocas; 7355 getUnderlyingObjects(ObjectPtr, Allocas); 7356 7357 for (const Value *Alloca : Allocas) { 7358 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7359 7360 // Could not find an Alloca. 7361 if (!LifetimeObject) 7362 continue; 7363 7364 // First check that the Alloca is static, otherwise it won't have a 7365 // valid frame index. 7366 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7367 if (SI == FuncInfo.StaticAllocaMap.end()) 7368 return; 7369 7370 const int FrameIndex = SI->second; 7371 int64_t Offset; 7372 if (GetPointerBaseWithConstantOffset( 7373 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7374 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7375 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7376 Offset); 7377 DAG.setRoot(Res); 7378 } 7379 return; 7380 } 7381 case Intrinsic::pseudoprobe: { 7382 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7383 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7384 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7385 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7386 DAG.setRoot(Res); 7387 return; 7388 } 7389 case Intrinsic::invariant_start: 7390 // Discard region information. 7391 setValue(&I, 7392 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7393 return; 7394 case Intrinsic::invariant_end: 7395 // Discard region information. 7396 return; 7397 case Intrinsic::clear_cache: 7398 /// FunctionName may be null. 7399 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 7400 lowerCallToExternalSymbol(I, FunctionName); 7401 return; 7402 case Intrinsic::donothing: 7403 case Intrinsic::seh_try_begin: 7404 case Intrinsic::seh_scope_begin: 7405 case Intrinsic::seh_try_end: 7406 case Intrinsic::seh_scope_end: 7407 // ignore 7408 return; 7409 case Intrinsic::experimental_stackmap: 7410 visitStackmap(I); 7411 return; 7412 case Intrinsic::experimental_patchpoint_void: 7413 case Intrinsic::experimental_patchpoint_i64: 7414 visitPatchpoint(I); 7415 return; 7416 case Intrinsic::experimental_gc_statepoint: 7417 LowerStatepoint(cast<GCStatepointInst>(I)); 7418 return; 7419 case Intrinsic::experimental_gc_result: 7420 visitGCResult(cast<GCResultInst>(I)); 7421 return; 7422 case Intrinsic::experimental_gc_relocate: 7423 visitGCRelocate(cast<GCRelocateInst>(I)); 7424 return; 7425 case Intrinsic::instrprof_cover: 7426 llvm_unreachable("instrprof failed to lower a cover"); 7427 case Intrinsic::instrprof_increment: 7428 llvm_unreachable("instrprof failed to lower an increment"); 7429 case Intrinsic::instrprof_timestamp: 7430 llvm_unreachable("instrprof failed to lower a timestamp"); 7431 case Intrinsic::instrprof_value_profile: 7432 llvm_unreachable("instrprof failed to lower a value profiling call"); 7433 case Intrinsic::instrprof_mcdc_parameters: 7434 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7435 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7436 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7437 case Intrinsic::instrprof_mcdc_condbitmap_update: 7438 llvm_unreachable("instrprof failed to lower an mcdc condbitmap update"); 7439 case Intrinsic::localescape: { 7440 MachineFunction &MF = DAG.getMachineFunction(); 7441 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7442 7443 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7444 // is the same on all targets. 7445 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7446 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7447 if (isa<ConstantPointerNull>(Arg)) 7448 continue; // Skip null pointers. They represent a hole in index space. 7449 AllocaInst *Slot = cast<AllocaInst>(Arg); 7450 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7451 "can only escape static allocas"); 7452 int FI = FuncInfo.StaticAllocaMap[Slot]; 7453 MCSymbol *FrameAllocSym = 7454 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7455 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7456 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7457 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7458 .addSym(FrameAllocSym) 7459 .addFrameIndex(FI); 7460 } 7461 7462 return; 7463 } 7464 7465 case Intrinsic::localrecover: { 7466 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7467 MachineFunction &MF = DAG.getMachineFunction(); 7468 7469 // Get the symbol that defines the frame offset. 7470 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7471 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7472 unsigned IdxVal = 7473 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7474 MCSymbol *FrameAllocSym = 7475 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7476 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7477 7478 Value *FP = I.getArgOperand(1); 7479 SDValue FPVal = getValue(FP); 7480 EVT PtrVT = FPVal.getValueType(); 7481 7482 // Create a MCSymbol for the label to avoid any target lowering 7483 // that would make this PC relative. 7484 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7485 SDValue OffsetVal = 7486 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7487 7488 // Add the offset to the FP. 7489 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7490 setValue(&I, Add); 7491 7492 return; 7493 } 7494 7495 case Intrinsic::eh_exceptionpointer: 7496 case Intrinsic::eh_exceptioncode: { 7497 // Get the exception pointer vreg, copy from it, and resize it to fit. 7498 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7499 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7500 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7501 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7502 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7503 if (Intrinsic == Intrinsic::eh_exceptioncode) 7504 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7505 setValue(&I, N); 7506 return; 7507 } 7508 case Intrinsic::xray_customevent: { 7509 // Here we want to make sure that the intrinsic behaves as if it has a 7510 // specific calling convention. 7511 const auto &Triple = DAG.getTarget().getTargetTriple(); 7512 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7513 return; 7514 7515 SmallVector<SDValue, 8> Ops; 7516 7517 // We want to say that we always want the arguments in registers. 7518 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7519 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7520 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7521 SDValue Chain = getRoot(); 7522 Ops.push_back(LogEntryVal); 7523 Ops.push_back(StrSizeVal); 7524 Ops.push_back(Chain); 7525 7526 // We need to enforce the calling convention for the callsite, so that 7527 // argument ordering is enforced correctly, and that register allocation can 7528 // see that some registers may be assumed clobbered and have to preserve 7529 // them across calls to the intrinsic. 7530 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7531 sdl, NodeTys, Ops); 7532 SDValue patchableNode = SDValue(MN, 0); 7533 DAG.setRoot(patchableNode); 7534 setValue(&I, patchableNode); 7535 return; 7536 } 7537 case Intrinsic::xray_typedevent: { 7538 // Here we want to make sure that the intrinsic behaves as if it has a 7539 // specific calling convention. 7540 const auto &Triple = DAG.getTarget().getTargetTriple(); 7541 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7542 return; 7543 7544 SmallVector<SDValue, 8> Ops; 7545 7546 // We want to say that we always want the arguments in registers. 7547 // It's unclear to me how manipulating the selection DAG here forces callers 7548 // to provide arguments in registers instead of on the stack. 7549 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7550 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7551 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7552 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7553 SDValue Chain = getRoot(); 7554 Ops.push_back(LogTypeId); 7555 Ops.push_back(LogEntryVal); 7556 Ops.push_back(StrSizeVal); 7557 Ops.push_back(Chain); 7558 7559 // We need to enforce the calling convention for the callsite, so that 7560 // argument ordering is enforced correctly, and that register allocation can 7561 // see that some registers may be assumed clobbered and have to preserve 7562 // them across calls to the intrinsic. 7563 MachineSDNode *MN = DAG.getMachineNode( 7564 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7565 SDValue patchableNode = SDValue(MN, 0); 7566 DAG.setRoot(patchableNode); 7567 setValue(&I, patchableNode); 7568 return; 7569 } 7570 case Intrinsic::experimental_deoptimize: 7571 LowerDeoptimizeCall(&I); 7572 return; 7573 case Intrinsic::experimental_stepvector: 7574 visitStepVector(I); 7575 return; 7576 case Intrinsic::vector_reduce_fadd: 7577 case Intrinsic::vector_reduce_fmul: 7578 case Intrinsic::vector_reduce_add: 7579 case Intrinsic::vector_reduce_mul: 7580 case Intrinsic::vector_reduce_and: 7581 case Intrinsic::vector_reduce_or: 7582 case Intrinsic::vector_reduce_xor: 7583 case Intrinsic::vector_reduce_smax: 7584 case Intrinsic::vector_reduce_smin: 7585 case Intrinsic::vector_reduce_umax: 7586 case Intrinsic::vector_reduce_umin: 7587 case Intrinsic::vector_reduce_fmax: 7588 case Intrinsic::vector_reduce_fmin: 7589 case Intrinsic::vector_reduce_fmaximum: 7590 case Intrinsic::vector_reduce_fminimum: 7591 visitVectorReduce(I, Intrinsic); 7592 return; 7593 7594 case Intrinsic::icall_branch_funnel: { 7595 SmallVector<SDValue, 16> Ops; 7596 Ops.push_back(getValue(I.getArgOperand(0))); 7597 7598 int64_t Offset; 7599 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7600 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7601 if (!Base) 7602 report_fatal_error( 7603 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7604 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7605 7606 struct BranchFunnelTarget { 7607 int64_t Offset; 7608 SDValue Target; 7609 }; 7610 SmallVector<BranchFunnelTarget, 8> Targets; 7611 7612 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7613 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7614 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7615 if (ElemBase != Base) 7616 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7617 "to the same GlobalValue"); 7618 7619 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7620 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7621 if (!GA) 7622 report_fatal_error( 7623 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7624 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7625 GA->getGlobal(), sdl, Val.getValueType(), 7626 GA->getOffset())}); 7627 } 7628 llvm::sort(Targets, 7629 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7630 return T1.Offset < T2.Offset; 7631 }); 7632 7633 for (auto &T : Targets) { 7634 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7635 Ops.push_back(T.Target); 7636 } 7637 7638 Ops.push_back(DAG.getRoot()); // Chain 7639 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7640 MVT::Other, Ops), 7641 0); 7642 DAG.setRoot(N); 7643 setValue(&I, N); 7644 HasTailCall = true; 7645 return; 7646 } 7647 7648 case Intrinsic::wasm_landingpad_index: 7649 // Information this intrinsic contained has been transferred to 7650 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7651 // delete it now. 7652 return; 7653 7654 case Intrinsic::aarch64_settag: 7655 case Intrinsic::aarch64_settag_zero: { 7656 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7657 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7658 SDValue Val = TSI.EmitTargetCodeForSetTag( 7659 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7660 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7661 ZeroMemory); 7662 DAG.setRoot(Val); 7663 setValue(&I, Val); 7664 return; 7665 } 7666 case Intrinsic::amdgcn_cs_chain: { 7667 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7668 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7669 "Non-zero flags not supported yet"); 7670 7671 // At this point we don't care if it's amdgpu_cs_chain or 7672 // amdgpu_cs_chain_preserve. 7673 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7674 7675 Type *RetTy = I.getType(); 7676 assert(RetTy->isVoidTy() && "Should not return"); 7677 7678 SDValue Callee = getValue(I.getOperand(0)); 7679 7680 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7681 // We'll also tack the value of the EXEC mask at the end. 7682 TargetLowering::ArgListTy Args; 7683 Args.reserve(3); 7684 7685 for (unsigned Idx : {2, 3, 1}) { 7686 TargetLowering::ArgListEntry Arg; 7687 Arg.Node = getValue(I.getOperand(Idx)); 7688 Arg.Ty = I.getOperand(Idx)->getType(); 7689 Arg.setAttributes(&I, Idx); 7690 Args.push_back(Arg); 7691 } 7692 7693 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7694 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7695 Args[2].IsInReg = true; // EXEC should be inreg 7696 7697 TargetLowering::CallLoweringInfo CLI(DAG); 7698 CLI.setDebugLoc(getCurSDLoc()) 7699 .setChain(getRoot()) 7700 .setCallee(CC, RetTy, Callee, std::move(Args)) 7701 .setNoReturn(true) 7702 .setTailCall(true) 7703 .setConvergent(I.isConvergent()); 7704 CLI.CB = &I; 7705 std::pair<SDValue, SDValue> Result = 7706 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7707 (void)Result; 7708 assert(!Result.first.getNode() && !Result.second.getNode() && 7709 "Should've lowered as tail call"); 7710 7711 HasTailCall = true; 7712 return; 7713 } 7714 case Intrinsic::ptrmask: { 7715 SDValue Ptr = getValue(I.getOperand(0)); 7716 SDValue Mask = getValue(I.getOperand(1)); 7717 7718 EVT PtrVT = Ptr.getValueType(); 7719 assert(PtrVT == Mask.getValueType() && 7720 "Pointers with different index type are not supported by SDAG"); 7721 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7722 return; 7723 } 7724 case Intrinsic::threadlocal_address: { 7725 setValue(&I, getValue(I.getOperand(0))); 7726 return; 7727 } 7728 case Intrinsic::get_active_lane_mask: { 7729 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7730 SDValue Index = getValue(I.getOperand(0)); 7731 EVT ElementVT = Index.getValueType(); 7732 7733 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7734 visitTargetIntrinsic(I, Intrinsic); 7735 return; 7736 } 7737 7738 SDValue TripCount = getValue(I.getOperand(1)); 7739 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7740 CCVT.getVectorElementCount()); 7741 7742 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7743 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7744 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7745 SDValue VectorInduction = DAG.getNode( 7746 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7747 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7748 VectorTripCount, ISD::CondCode::SETULT); 7749 setValue(&I, SetCC); 7750 return; 7751 } 7752 case Intrinsic::experimental_get_vector_length: { 7753 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7754 "Expected positive VF"); 7755 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7756 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7757 7758 SDValue Count = getValue(I.getOperand(0)); 7759 EVT CountVT = Count.getValueType(); 7760 7761 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7762 visitTargetIntrinsic(I, Intrinsic); 7763 return; 7764 } 7765 7766 // Expand to a umin between the trip count and the maximum elements the type 7767 // can hold. 7768 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7769 7770 // Extend the trip count to at least the result VT. 7771 if (CountVT.bitsLT(VT)) { 7772 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7773 CountVT = VT; 7774 } 7775 7776 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7777 ElementCount::get(VF, IsScalable)); 7778 7779 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7780 // Clip to the result type if needed. 7781 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7782 7783 setValue(&I, Trunc); 7784 return; 7785 } 7786 case Intrinsic::experimental_cttz_elts: { 7787 auto DL = getCurSDLoc(); 7788 SDValue Op = getValue(I.getOperand(0)); 7789 EVT OpVT = Op.getValueType(); 7790 7791 if (!TLI.shouldExpandCttzElements(OpVT)) { 7792 visitTargetIntrinsic(I, Intrinsic); 7793 return; 7794 } 7795 7796 if (OpVT.getScalarType() != MVT::i1) { 7797 // Compare the input vector elements to zero & use to count trailing zeros 7798 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 7799 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 7800 OpVT.getVectorElementCount()); 7801 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 7802 } 7803 7804 // Find the smallest "sensible" element type to use for the expansion. 7805 ConstantRange CR( 7806 APInt(64, OpVT.getVectorElementCount().getKnownMinValue())); 7807 if (OpVT.isScalableVT()) 7808 CR = CR.umul_sat(getVScaleRange(I.getCaller(), 64)); 7809 7810 // If the zero-is-poison flag is set, we can assume the upper limit 7811 // of the result is VF-1. 7812 if (!cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero()) 7813 CR = CR.subtract(APInt(64, 1)); 7814 7815 unsigned EltWidth = I.getType()->getScalarSizeInBits(); 7816 EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits()); 7817 EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8); 7818 7819 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 7820 7821 // Create the new vector type & get the vector length 7822 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 7823 OpVT.getVectorElementCount()); 7824 7825 SDValue VL = 7826 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 7827 7828 SDValue StepVec = DAG.getStepVector(DL, NewVT); 7829 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 7830 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 7831 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 7832 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 7833 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 7834 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 7835 7836 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7837 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 7838 7839 setValue(&I, Ret); 7840 return; 7841 } 7842 case Intrinsic::vector_insert: { 7843 SDValue Vec = getValue(I.getOperand(0)); 7844 SDValue SubVec = getValue(I.getOperand(1)); 7845 SDValue Index = getValue(I.getOperand(2)); 7846 7847 // The intrinsic's index type is i64, but the SDNode requires an index type 7848 // suitable for the target. Convert the index as required. 7849 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7850 if (Index.getValueType() != VectorIdxTy) 7851 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 7852 7853 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7854 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7855 Index)); 7856 return; 7857 } 7858 case Intrinsic::vector_extract: { 7859 SDValue Vec = getValue(I.getOperand(0)); 7860 SDValue Index = getValue(I.getOperand(1)); 7861 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7862 7863 // The intrinsic's index type is i64, but the SDNode requires an index type 7864 // suitable for the target. Convert the index as required. 7865 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7866 if (Index.getValueType() != VectorIdxTy) 7867 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 7868 7869 setValue(&I, 7870 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7871 return; 7872 } 7873 case Intrinsic::experimental_vector_reverse: 7874 visitVectorReverse(I); 7875 return; 7876 case Intrinsic::experimental_vector_splice: 7877 visitVectorSplice(I); 7878 return; 7879 case Intrinsic::callbr_landingpad: 7880 visitCallBrLandingPad(I); 7881 return; 7882 case Intrinsic::experimental_vector_interleave2: 7883 visitVectorInterleave(I); 7884 return; 7885 case Intrinsic::experimental_vector_deinterleave2: 7886 visitVectorDeinterleave(I); 7887 return; 7888 } 7889 } 7890 7891 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7892 const ConstrainedFPIntrinsic &FPI) { 7893 SDLoc sdl = getCurSDLoc(); 7894 7895 // We do not need to serialize constrained FP intrinsics against 7896 // each other or against (nonvolatile) loads, so they can be 7897 // chained like loads. 7898 SDValue Chain = DAG.getRoot(); 7899 SmallVector<SDValue, 4> Opers; 7900 Opers.push_back(Chain); 7901 if (FPI.isUnaryOp()) { 7902 Opers.push_back(getValue(FPI.getArgOperand(0))); 7903 } else if (FPI.isTernaryOp()) { 7904 Opers.push_back(getValue(FPI.getArgOperand(0))); 7905 Opers.push_back(getValue(FPI.getArgOperand(1))); 7906 Opers.push_back(getValue(FPI.getArgOperand(2))); 7907 } else { 7908 Opers.push_back(getValue(FPI.getArgOperand(0))); 7909 Opers.push_back(getValue(FPI.getArgOperand(1))); 7910 } 7911 7912 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7913 assert(Result.getNode()->getNumValues() == 2); 7914 7915 // Push node to the appropriate list so that future instructions can be 7916 // chained up correctly. 7917 SDValue OutChain = Result.getValue(1); 7918 switch (EB) { 7919 case fp::ExceptionBehavior::ebIgnore: 7920 // The only reason why ebIgnore nodes still need to be chained is that 7921 // they might depend on the current rounding mode, and therefore must 7922 // not be moved across instruction that may change that mode. 7923 [[fallthrough]]; 7924 case fp::ExceptionBehavior::ebMayTrap: 7925 // These must not be moved across calls or instructions that may change 7926 // floating-point exception masks. 7927 PendingConstrainedFP.push_back(OutChain); 7928 break; 7929 case fp::ExceptionBehavior::ebStrict: 7930 // These must not be moved across calls or instructions that may change 7931 // floating-point exception masks or read floating-point exception flags. 7932 // In addition, they cannot be optimized out even if unused. 7933 PendingConstrainedFPStrict.push_back(OutChain); 7934 break; 7935 } 7936 }; 7937 7938 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7939 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7940 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7941 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7942 7943 SDNodeFlags Flags; 7944 if (EB == fp::ExceptionBehavior::ebIgnore) 7945 Flags.setNoFPExcept(true); 7946 7947 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7948 Flags.copyFMF(*FPOp); 7949 7950 unsigned Opcode; 7951 switch (FPI.getIntrinsicID()) { 7952 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7953 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7954 case Intrinsic::INTRINSIC: \ 7955 Opcode = ISD::STRICT_##DAGN; \ 7956 break; 7957 #include "llvm/IR/ConstrainedOps.def" 7958 case Intrinsic::experimental_constrained_fmuladd: { 7959 Opcode = ISD::STRICT_FMA; 7960 // Break fmuladd into fmul and fadd. 7961 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7962 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7963 Opers.pop_back(); 7964 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7965 pushOutChain(Mul, EB); 7966 Opcode = ISD::STRICT_FADD; 7967 Opers.clear(); 7968 Opers.push_back(Mul.getValue(1)); 7969 Opers.push_back(Mul.getValue(0)); 7970 Opers.push_back(getValue(FPI.getArgOperand(2))); 7971 } 7972 break; 7973 } 7974 } 7975 7976 // A few strict DAG nodes carry additional operands that are not 7977 // set up by the default code above. 7978 switch (Opcode) { 7979 default: break; 7980 case ISD::STRICT_FP_ROUND: 7981 Opers.push_back( 7982 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7983 break; 7984 case ISD::STRICT_FSETCC: 7985 case ISD::STRICT_FSETCCS: { 7986 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7987 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7988 if (TM.Options.NoNaNsFPMath) 7989 Condition = getFCmpCodeWithoutNaN(Condition); 7990 Opers.push_back(DAG.getCondCode(Condition)); 7991 break; 7992 } 7993 } 7994 7995 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7996 pushOutChain(Result, EB); 7997 7998 SDValue FPResult = Result.getValue(0); 7999 setValue(&FPI, FPResult); 8000 } 8001 8002 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 8003 std::optional<unsigned> ResOPC; 8004 switch (VPIntrin.getIntrinsicID()) { 8005 case Intrinsic::vp_ctlz: { 8006 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8007 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 8008 break; 8009 } 8010 case Intrinsic::vp_cttz: { 8011 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8012 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 8013 break; 8014 } 8015 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 8016 case Intrinsic::VPID: \ 8017 ResOPC = ISD::VPSD; \ 8018 break; 8019 #include "llvm/IR/VPIntrinsics.def" 8020 } 8021 8022 if (!ResOPC) 8023 llvm_unreachable( 8024 "Inconsistency: no SDNode available for this VPIntrinsic!"); 8025 8026 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 8027 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 8028 if (VPIntrin.getFastMathFlags().allowReassoc()) 8029 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 8030 : ISD::VP_REDUCE_FMUL; 8031 } 8032 8033 return *ResOPC; 8034 } 8035 8036 void SelectionDAGBuilder::visitVPLoad( 8037 const VPIntrinsic &VPIntrin, EVT VT, 8038 const SmallVectorImpl<SDValue> &OpValues) { 8039 SDLoc DL = getCurSDLoc(); 8040 Value *PtrOperand = VPIntrin.getArgOperand(0); 8041 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8042 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8043 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8044 SDValue LD; 8045 // Do not serialize variable-length loads of constant memory with 8046 // anything. 8047 if (!Alignment) 8048 Alignment = DAG.getEVTAlign(VT); 8049 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8050 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8051 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8052 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8053 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8054 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 8055 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 8056 MMO, false /*IsExpanding */); 8057 if (AddToChain) 8058 PendingLoads.push_back(LD.getValue(1)); 8059 setValue(&VPIntrin, LD); 8060 } 8061 8062 void SelectionDAGBuilder::visitVPGather( 8063 const VPIntrinsic &VPIntrin, EVT VT, 8064 const SmallVectorImpl<SDValue> &OpValues) { 8065 SDLoc DL = getCurSDLoc(); 8066 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8067 Value *PtrOperand = VPIntrin.getArgOperand(0); 8068 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8069 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8070 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8071 SDValue LD; 8072 if (!Alignment) 8073 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8074 unsigned AS = 8075 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8076 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8077 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8078 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 8079 SDValue Base, Index, Scale; 8080 ISD::MemIndexType IndexType; 8081 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8082 this, VPIntrin.getParent(), 8083 VT.getScalarStoreSize()); 8084 if (!UniformBase) { 8085 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8086 Index = getValue(PtrOperand); 8087 IndexType = ISD::SIGNED_SCALED; 8088 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8089 } 8090 EVT IdxVT = Index.getValueType(); 8091 EVT EltTy = IdxVT.getVectorElementType(); 8092 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8093 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8094 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8095 } 8096 LD = DAG.getGatherVP( 8097 DAG.getVTList(VT, MVT::Other), VT, DL, 8098 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 8099 IndexType); 8100 PendingLoads.push_back(LD.getValue(1)); 8101 setValue(&VPIntrin, LD); 8102 } 8103 8104 void SelectionDAGBuilder::visitVPStore( 8105 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8106 SDLoc DL = getCurSDLoc(); 8107 Value *PtrOperand = VPIntrin.getArgOperand(1); 8108 EVT VT = OpValues[0].getValueType(); 8109 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8110 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8111 SDValue ST; 8112 if (!Alignment) 8113 Alignment = DAG.getEVTAlign(VT); 8114 SDValue Ptr = OpValues[1]; 8115 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 8116 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8117 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8118 MemoryLocation::UnknownSize, *Alignment, AAInfo); 8119 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 8120 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 8121 /* IsTruncating */ false, /*IsCompressing*/ false); 8122 DAG.setRoot(ST); 8123 setValue(&VPIntrin, ST); 8124 } 8125 8126 void SelectionDAGBuilder::visitVPScatter( 8127 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8128 SDLoc DL = getCurSDLoc(); 8129 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8130 Value *PtrOperand = VPIntrin.getArgOperand(1); 8131 EVT VT = OpValues[0].getValueType(); 8132 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8133 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8134 SDValue ST; 8135 if (!Alignment) 8136 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8137 unsigned AS = 8138 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8139 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8140 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8141 MemoryLocation::UnknownSize, *Alignment, AAInfo); 8142 SDValue Base, Index, Scale; 8143 ISD::MemIndexType IndexType; 8144 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8145 this, VPIntrin.getParent(), 8146 VT.getScalarStoreSize()); 8147 if (!UniformBase) { 8148 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8149 Index = getValue(PtrOperand); 8150 IndexType = ISD::SIGNED_SCALED; 8151 Scale = 8152 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8153 } 8154 EVT IdxVT = Index.getValueType(); 8155 EVT EltTy = IdxVT.getVectorElementType(); 8156 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8157 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8158 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8159 } 8160 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 8161 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 8162 OpValues[2], OpValues[3]}, 8163 MMO, IndexType); 8164 DAG.setRoot(ST); 8165 setValue(&VPIntrin, ST); 8166 } 8167 8168 void SelectionDAGBuilder::visitVPStridedLoad( 8169 const VPIntrinsic &VPIntrin, EVT VT, 8170 const SmallVectorImpl<SDValue> &OpValues) { 8171 SDLoc DL = getCurSDLoc(); 8172 Value *PtrOperand = VPIntrin.getArgOperand(0); 8173 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8174 if (!Alignment) 8175 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8176 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8177 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8178 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8179 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8180 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8181 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8182 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8183 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8184 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 8185 8186 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8187 OpValues[2], OpValues[3], MMO, 8188 false /*IsExpanding*/); 8189 8190 if (AddToChain) 8191 PendingLoads.push_back(LD.getValue(1)); 8192 setValue(&VPIntrin, LD); 8193 } 8194 8195 void SelectionDAGBuilder::visitVPStridedStore( 8196 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8197 SDLoc DL = getCurSDLoc(); 8198 Value *PtrOperand = VPIntrin.getArgOperand(1); 8199 EVT VT = OpValues[0].getValueType(); 8200 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8201 if (!Alignment) 8202 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8203 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8204 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8205 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8206 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8207 MemoryLocation::UnknownSize, *Alignment, AAInfo); 8208 8209 SDValue ST = DAG.getStridedStoreVP( 8210 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8211 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8212 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8213 /*IsCompressing*/ false); 8214 8215 DAG.setRoot(ST); 8216 setValue(&VPIntrin, ST); 8217 } 8218 8219 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8220 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8221 SDLoc DL = getCurSDLoc(); 8222 8223 ISD::CondCode Condition; 8224 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8225 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8226 if (IsFP) { 8227 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8228 // flags, but calls that don't return floating-point types can't be 8229 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8230 Condition = getFCmpCondCode(CondCode); 8231 if (TM.Options.NoNaNsFPMath) 8232 Condition = getFCmpCodeWithoutNaN(Condition); 8233 } else { 8234 Condition = getICmpCondCode(CondCode); 8235 } 8236 8237 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8238 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8239 // #2 is the condition code 8240 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8241 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8242 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8243 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8244 "Unexpected target EVL type"); 8245 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8246 8247 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8248 VPIntrin.getType()); 8249 setValue(&VPIntrin, 8250 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8251 } 8252 8253 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8254 const VPIntrinsic &VPIntrin) { 8255 SDLoc DL = getCurSDLoc(); 8256 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8257 8258 auto IID = VPIntrin.getIntrinsicID(); 8259 8260 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8261 return visitVPCmp(*CmpI); 8262 8263 SmallVector<EVT, 4> ValueVTs; 8264 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8265 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8266 SDVTList VTs = DAG.getVTList(ValueVTs); 8267 8268 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8269 8270 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8271 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8272 "Unexpected target EVL type"); 8273 8274 // Request operands. 8275 SmallVector<SDValue, 7> OpValues; 8276 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8277 auto Op = getValue(VPIntrin.getArgOperand(I)); 8278 if (I == EVLParamPos) 8279 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8280 OpValues.push_back(Op); 8281 } 8282 8283 switch (Opcode) { 8284 default: { 8285 SDNodeFlags SDFlags; 8286 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8287 SDFlags.copyFMF(*FPMO); 8288 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8289 setValue(&VPIntrin, Result); 8290 break; 8291 } 8292 case ISD::VP_LOAD: 8293 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8294 break; 8295 case ISD::VP_GATHER: 8296 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8297 break; 8298 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8299 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8300 break; 8301 case ISD::VP_STORE: 8302 visitVPStore(VPIntrin, OpValues); 8303 break; 8304 case ISD::VP_SCATTER: 8305 visitVPScatter(VPIntrin, OpValues); 8306 break; 8307 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8308 visitVPStridedStore(VPIntrin, OpValues); 8309 break; 8310 case ISD::VP_FMULADD: { 8311 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8312 SDNodeFlags SDFlags; 8313 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8314 SDFlags.copyFMF(*FPMO); 8315 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8316 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8317 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8318 } else { 8319 SDValue Mul = DAG.getNode( 8320 ISD::VP_FMUL, DL, VTs, 8321 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8322 SDValue Add = 8323 DAG.getNode(ISD::VP_FADD, DL, VTs, 8324 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8325 setValue(&VPIntrin, Add); 8326 } 8327 break; 8328 } 8329 case ISD::VP_IS_FPCLASS: { 8330 const DataLayout DLayout = DAG.getDataLayout(); 8331 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8332 auto Constant = OpValues[1]->getAsZExtVal(); 8333 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8334 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8335 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8336 setValue(&VPIntrin, V); 8337 return; 8338 } 8339 case ISD::VP_INTTOPTR: { 8340 SDValue N = OpValues[0]; 8341 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8342 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8343 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8344 OpValues[2]); 8345 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8346 OpValues[2]); 8347 setValue(&VPIntrin, N); 8348 break; 8349 } 8350 case ISD::VP_PTRTOINT: { 8351 SDValue N = OpValues[0]; 8352 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8353 VPIntrin.getType()); 8354 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8355 VPIntrin.getOperand(0)->getType()); 8356 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8357 OpValues[2]); 8358 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8359 OpValues[2]); 8360 setValue(&VPIntrin, N); 8361 break; 8362 } 8363 case ISD::VP_ABS: 8364 case ISD::VP_CTLZ: 8365 case ISD::VP_CTLZ_ZERO_UNDEF: 8366 case ISD::VP_CTTZ: 8367 case ISD::VP_CTTZ_ZERO_UNDEF: { 8368 SDValue Result = 8369 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8370 setValue(&VPIntrin, Result); 8371 break; 8372 } 8373 } 8374 } 8375 8376 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8377 const BasicBlock *EHPadBB, 8378 MCSymbol *&BeginLabel) { 8379 MachineFunction &MF = DAG.getMachineFunction(); 8380 MachineModuleInfo &MMI = MF.getMMI(); 8381 8382 // Insert a label before the invoke call to mark the try range. This can be 8383 // used to detect deletion of the invoke via the MachineModuleInfo. 8384 BeginLabel = MMI.getContext().createTempSymbol(); 8385 8386 // For SjLj, keep track of which landing pads go with which invokes 8387 // so as to maintain the ordering of pads in the LSDA. 8388 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8389 if (CallSiteIndex) { 8390 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8391 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8392 8393 // Now that the call site is handled, stop tracking it. 8394 MMI.setCurrentCallSite(0); 8395 } 8396 8397 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8398 } 8399 8400 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8401 const BasicBlock *EHPadBB, 8402 MCSymbol *BeginLabel) { 8403 assert(BeginLabel && "BeginLabel should've been set"); 8404 8405 MachineFunction &MF = DAG.getMachineFunction(); 8406 MachineModuleInfo &MMI = MF.getMMI(); 8407 8408 // Insert a label at the end of the invoke call to mark the try range. This 8409 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8410 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8411 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8412 8413 // Inform MachineModuleInfo of range. 8414 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8415 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8416 // actually use outlined funclets and their LSDA info style. 8417 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8418 assert(II && "II should've been set"); 8419 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8420 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8421 } else if (!isScopedEHPersonality(Pers)) { 8422 assert(EHPadBB); 8423 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8424 } 8425 8426 return Chain; 8427 } 8428 8429 std::pair<SDValue, SDValue> 8430 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8431 const BasicBlock *EHPadBB) { 8432 MCSymbol *BeginLabel = nullptr; 8433 8434 if (EHPadBB) { 8435 // Both PendingLoads and PendingExports must be flushed here; 8436 // this call might not return. 8437 (void)getRoot(); 8438 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8439 CLI.setChain(getRoot()); 8440 } 8441 8442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8443 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8444 8445 assert((CLI.IsTailCall || Result.second.getNode()) && 8446 "Non-null chain expected with non-tail call!"); 8447 assert((Result.second.getNode() || !Result.first.getNode()) && 8448 "Null value expected with tail call!"); 8449 8450 if (!Result.second.getNode()) { 8451 // As a special case, a null chain means that a tail call has been emitted 8452 // and the DAG root is already updated. 8453 HasTailCall = true; 8454 8455 // Since there's no actual continuation from this block, nothing can be 8456 // relying on us setting vregs for them. 8457 PendingExports.clear(); 8458 } else { 8459 DAG.setRoot(Result.second); 8460 } 8461 8462 if (EHPadBB) { 8463 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8464 BeginLabel)); 8465 } 8466 8467 return Result; 8468 } 8469 8470 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8471 bool isTailCall, 8472 bool isMustTailCall, 8473 const BasicBlock *EHPadBB) { 8474 auto &DL = DAG.getDataLayout(); 8475 FunctionType *FTy = CB.getFunctionType(); 8476 Type *RetTy = CB.getType(); 8477 8478 TargetLowering::ArgListTy Args; 8479 Args.reserve(CB.arg_size()); 8480 8481 const Value *SwiftErrorVal = nullptr; 8482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8483 8484 if (isTailCall) { 8485 // Avoid emitting tail calls in functions with the disable-tail-calls 8486 // attribute. 8487 auto *Caller = CB.getParent()->getParent(); 8488 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8489 "true" && !isMustTailCall) 8490 isTailCall = false; 8491 8492 // We can't tail call inside a function with a swifterror argument. Lowering 8493 // does not support this yet. It would have to move into the swifterror 8494 // register before the call. 8495 if (TLI.supportSwiftError() && 8496 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8497 isTailCall = false; 8498 } 8499 8500 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8501 TargetLowering::ArgListEntry Entry; 8502 const Value *V = *I; 8503 8504 // Skip empty types 8505 if (V->getType()->isEmptyTy()) 8506 continue; 8507 8508 SDValue ArgNode = getValue(V); 8509 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8510 8511 Entry.setAttributes(&CB, I - CB.arg_begin()); 8512 8513 // Use swifterror virtual register as input to the call. 8514 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8515 SwiftErrorVal = V; 8516 // We find the virtual register for the actual swifterror argument. 8517 // Instead of using the Value, we use the virtual register instead. 8518 Entry.Node = 8519 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8520 EVT(TLI.getPointerTy(DL))); 8521 } 8522 8523 Args.push_back(Entry); 8524 8525 // If we have an explicit sret argument that is an Instruction, (i.e., it 8526 // might point to function-local memory), we can't meaningfully tail-call. 8527 if (Entry.IsSRet && isa<Instruction>(V)) 8528 isTailCall = false; 8529 } 8530 8531 // If call site has a cfguardtarget operand bundle, create and add an 8532 // additional ArgListEntry. 8533 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8534 TargetLowering::ArgListEntry Entry; 8535 Value *V = Bundle->Inputs[0]; 8536 SDValue ArgNode = getValue(V); 8537 Entry.Node = ArgNode; 8538 Entry.Ty = V->getType(); 8539 Entry.IsCFGuardTarget = true; 8540 Args.push_back(Entry); 8541 } 8542 8543 // Check if target-independent constraints permit a tail call here. 8544 // Target-dependent constraints are checked within TLI->LowerCallTo. 8545 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8546 isTailCall = false; 8547 8548 // Disable tail calls if there is an swifterror argument. Targets have not 8549 // been updated to support tail calls. 8550 if (TLI.supportSwiftError() && SwiftErrorVal) 8551 isTailCall = false; 8552 8553 ConstantInt *CFIType = nullptr; 8554 if (CB.isIndirectCall()) { 8555 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8556 if (!TLI.supportKCFIBundles()) 8557 report_fatal_error( 8558 "Target doesn't support calls with kcfi operand bundles."); 8559 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8560 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8561 } 8562 } 8563 8564 TargetLowering::CallLoweringInfo CLI(DAG); 8565 CLI.setDebugLoc(getCurSDLoc()) 8566 .setChain(getRoot()) 8567 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8568 .setTailCall(isTailCall) 8569 .setConvergent(CB.isConvergent()) 8570 .setIsPreallocated( 8571 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8572 .setCFIType(CFIType); 8573 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8574 8575 if (Result.first.getNode()) { 8576 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8577 setValue(&CB, Result.first); 8578 } 8579 8580 // The last element of CLI.InVals has the SDValue for swifterror return. 8581 // Here we copy it to a virtual register and update SwiftErrorMap for 8582 // book-keeping. 8583 if (SwiftErrorVal && TLI.supportSwiftError()) { 8584 // Get the last element of InVals. 8585 SDValue Src = CLI.InVals.back(); 8586 Register VReg = 8587 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8588 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8589 DAG.setRoot(CopyNode); 8590 } 8591 } 8592 8593 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8594 SelectionDAGBuilder &Builder) { 8595 // Check to see if this load can be trivially constant folded, e.g. if the 8596 // input is from a string literal. 8597 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8598 // Cast pointer to the type we really want to load. 8599 Type *LoadTy = 8600 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8601 if (LoadVT.isVector()) 8602 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8603 8604 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8605 PointerType::getUnqual(LoadTy)); 8606 8607 if (const Constant *LoadCst = 8608 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8609 LoadTy, Builder.DAG.getDataLayout())) 8610 return Builder.getValue(LoadCst); 8611 } 8612 8613 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8614 // still constant memory, the input chain can be the entry node. 8615 SDValue Root; 8616 bool ConstantMemory = false; 8617 8618 // Do not serialize (non-volatile) loads of constant memory with anything. 8619 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8620 Root = Builder.DAG.getEntryNode(); 8621 ConstantMemory = true; 8622 } else { 8623 // Do not serialize non-volatile loads against each other. 8624 Root = Builder.DAG.getRoot(); 8625 } 8626 8627 SDValue Ptr = Builder.getValue(PtrVal); 8628 SDValue LoadVal = 8629 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8630 MachinePointerInfo(PtrVal), Align(1)); 8631 8632 if (!ConstantMemory) 8633 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8634 return LoadVal; 8635 } 8636 8637 /// Record the value for an instruction that produces an integer result, 8638 /// converting the type where necessary. 8639 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8640 SDValue Value, 8641 bool IsSigned) { 8642 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8643 I.getType(), true); 8644 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8645 setValue(&I, Value); 8646 } 8647 8648 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8649 /// true and lower it. Otherwise return false, and it will be lowered like a 8650 /// normal call. 8651 /// The caller already checked that \p I calls the appropriate LibFunc with a 8652 /// correct prototype. 8653 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8654 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8655 const Value *Size = I.getArgOperand(2); 8656 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8657 if (CSize && CSize->getZExtValue() == 0) { 8658 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8659 I.getType(), true); 8660 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8661 return true; 8662 } 8663 8664 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8665 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8666 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8667 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8668 if (Res.first.getNode()) { 8669 processIntegerCallValue(I, Res.first, true); 8670 PendingLoads.push_back(Res.second); 8671 return true; 8672 } 8673 8674 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8675 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8676 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8677 return false; 8678 8679 // If the target has a fast compare for the given size, it will return a 8680 // preferred load type for that size. Require that the load VT is legal and 8681 // that the target supports unaligned loads of that type. Otherwise, return 8682 // INVALID. 8683 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8684 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8685 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8686 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8687 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8688 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8689 // TODO: Check alignment of src and dest ptrs. 8690 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8691 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8692 if (!TLI.isTypeLegal(LVT) || 8693 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8694 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8695 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8696 } 8697 8698 return LVT; 8699 }; 8700 8701 // This turns into unaligned loads. We only do this if the target natively 8702 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8703 // we'll only produce a small number of byte loads. 8704 MVT LoadVT; 8705 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8706 switch (NumBitsToCompare) { 8707 default: 8708 return false; 8709 case 16: 8710 LoadVT = MVT::i16; 8711 break; 8712 case 32: 8713 LoadVT = MVT::i32; 8714 break; 8715 case 64: 8716 case 128: 8717 case 256: 8718 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8719 break; 8720 } 8721 8722 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8723 return false; 8724 8725 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8726 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8727 8728 // Bitcast to a wide integer type if the loads are vectors. 8729 if (LoadVT.isVector()) { 8730 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8731 LoadL = DAG.getBitcast(CmpVT, LoadL); 8732 LoadR = DAG.getBitcast(CmpVT, LoadR); 8733 } 8734 8735 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8736 processIntegerCallValue(I, Cmp, false); 8737 return true; 8738 } 8739 8740 /// See if we can lower a memchr call into an optimized form. If so, return 8741 /// true and lower it. Otherwise return false, and it will be lowered like a 8742 /// normal call. 8743 /// The caller already checked that \p I calls the appropriate LibFunc with a 8744 /// correct prototype. 8745 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8746 const Value *Src = I.getArgOperand(0); 8747 const Value *Char = I.getArgOperand(1); 8748 const Value *Length = I.getArgOperand(2); 8749 8750 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8751 std::pair<SDValue, SDValue> Res = 8752 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8753 getValue(Src), getValue(Char), getValue(Length), 8754 MachinePointerInfo(Src)); 8755 if (Res.first.getNode()) { 8756 setValue(&I, Res.first); 8757 PendingLoads.push_back(Res.second); 8758 return true; 8759 } 8760 8761 return false; 8762 } 8763 8764 /// See if we can lower a mempcpy call into an optimized form. If so, return 8765 /// true and lower it. Otherwise return false, and it will be lowered like a 8766 /// normal call. 8767 /// The caller already checked that \p I calls the appropriate LibFunc with a 8768 /// correct prototype. 8769 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8770 SDValue Dst = getValue(I.getArgOperand(0)); 8771 SDValue Src = getValue(I.getArgOperand(1)); 8772 SDValue Size = getValue(I.getArgOperand(2)); 8773 8774 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8775 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8776 // DAG::getMemcpy needs Alignment to be defined. 8777 Align Alignment = std::min(DstAlign, SrcAlign); 8778 8779 SDLoc sdl = getCurSDLoc(); 8780 8781 // In the mempcpy context we need to pass in a false value for isTailCall 8782 // because the return pointer needs to be adjusted by the size of 8783 // the copied memory. 8784 SDValue Root = getMemoryRoot(); 8785 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8786 /*isTailCall=*/false, 8787 MachinePointerInfo(I.getArgOperand(0)), 8788 MachinePointerInfo(I.getArgOperand(1)), 8789 I.getAAMetadata()); 8790 assert(MC.getNode() != nullptr && 8791 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8792 DAG.setRoot(MC); 8793 8794 // Check if Size needs to be truncated or extended. 8795 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8796 8797 // Adjust return pointer to point just past the last dst byte. 8798 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8799 Dst, Size); 8800 setValue(&I, DstPlusSize); 8801 return true; 8802 } 8803 8804 /// See if we can lower a strcpy call into an optimized form. If so, return 8805 /// true and lower it, otherwise return false and it will be lowered like a 8806 /// normal call. 8807 /// The caller already checked that \p I calls the appropriate LibFunc with a 8808 /// correct prototype. 8809 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8810 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8811 8812 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8813 std::pair<SDValue, SDValue> Res = 8814 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8815 getValue(Arg0), getValue(Arg1), 8816 MachinePointerInfo(Arg0), 8817 MachinePointerInfo(Arg1), isStpcpy); 8818 if (Res.first.getNode()) { 8819 setValue(&I, Res.first); 8820 DAG.setRoot(Res.second); 8821 return true; 8822 } 8823 8824 return false; 8825 } 8826 8827 /// See if we can lower a strcmp call into an optimized form. If so, return 8828 /// true and lower it, otherwise return false and it will be lowered like a 8829 /// normal call. 8830 /// The caller already checked that \p I calls the appropriate LibFunc with a 8831 /// correct prototype. 8832 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8833 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8834 8835 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8836 std::pair<SDValue, SDValue> Res = 8837 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8838 getValue(Arg0), getValue(Arg1), 8839 MachinePointerInfo(Arg0), 8840 MachinePointerInfo(Arg1)); 8841 if (Res.first.getNode()) { 8842 processIntegerCallValue(I, Res.first, true); 8843 PendingLoads.push_back(Res.second); 8844 return true; 8845 } 8846 8847 return false; 8848 } 8849 8850 /// See if we can lower a strlen call into an optimized form. If so, return 8851 /// true and lower it, otherwise return false and it will be lowered like a 8852 /// normal call. 8853 /// The caller already checked that \p I calls the appropriate LibFunc with a 8854 /// correct prototype. 8855 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8856 const Value *Arg0 = I.getArgOperand(0); 8857 8858 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8859 std::pair<SDValue, SDValue> Res = 8860 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8861 getValue(Arg0), MachinePointerInfo(Arg0)); 8862 if (Res.first.getNode()) { 8863 processIntegerCallValue(I, Res.first, false); 8864 PendingLoads.push_back(Res.second); 8865 return true; 8866 } 8867 8868 return false; 8869 } 8870 8871 /// See if we can lower a strnlen call into an optimized form. If so, return 8872 /// true and lower it, otherwise return false and it will be lowered like a 8873 /// normal call. 8874 /// The caller already checked that \p I calls the appropriate LibFunc with a 8875 /// correct prototype. 8876 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8877 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8878 8879 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8880 std::pair<SDValue, SDValue> Res = 8881 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8882 getValue(Arg0), getValue(Arg1), 8883 MachinePointerInfo(Arg0)); 8884 if (Res.first.getNode()) { 8885 processIntegerCallValue(I, Res.first, false); 8886 PendingLoads.push_back(Res.second); 8887 return true; 8888 } 8889 8890 return false; 8891 } 8892 8893 /// See if we can lower a unary floating-point operation into an SDNode with 8894 /// the specified Opcode. If so, return true and lower it, otherwise return 8895 /// false and it will be lowered like a normal call. 8896 /// The caller already checked that \p I calls the appropriate LibFunc with a 8897 /// correct prototype. 8898 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8899 unsigned Opcode) { 8900 // We already checked this call's prototype; verify it doesn't modify errno. 8901 if (!I.onlyReadsMemory()) 8902 return false; 8903 8904 SDNodeFlags Flags; 8905 Flags.copyFMF(cast<FPMathOperator>(I)); 8906 8907 SDValue Tmp = getValue(I.getArgOperand(0)); 8908 setValue(&I, 8909 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8910 return true; 8911 } 8912 8913 /// See if we can lower a binary floating-point operation into an SDNode with 8914 /// the specified Opcode. If so, return true and lower it. Otherwise return 8915 /// false, and it will be lowered like a normal call. 8916 /// The caller already checked that \p I calls the appropriate LibFunc with a 8917 /// correct prototype. 8918 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8919 unsigned Opcode) { 8920 // We already checked this call's prototype; verify it doesn't modify errno. 8921 if (!I.onlyReadsMemory()) 8922 return false; 8923 8924 SDNodeFlags Flags; 8925 Flags.copyFMF(cast<FPMathOperator>(I)); 8926 8927 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8928 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8929 EVT VT = Tmp0.getValueType(); 8930 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8931 return true; 8932 } 8933 8934 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8935 // Handle inline assembly differently. 8936 if (I.isInlineAsm()) { 8937 visitInlineAsm(I); 8938 return; 8939 } 8940 8941 diagnoseDontCall(I); 8942 8943 if (Function *F = I.getCalledFunction()) { 8944 if (F->isDeclaration()) { 8945 // Is this an LLVM intrinsic or a target-specific intrinsic? 8946 unsigned IID = F->getIntrinsicID(); 8947 if (!IID) 8948 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8949 IID = II->getIntrinsicID(F); 8950 8951 if (IID) { 8952 visitIntrinsicCall(I, IID); 8953 return; 8954 } 8955 } 8956 8957 // Check for well-known libc/libm calls. If the function is internal, it 8958 // can't be a library call. Don't do the check if marked as nobuiltin for 8959 // some reason or the call site requires strict floating point semantics. 8960 LibFunc Func; 8961 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8962 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8963 LibInfo->hasOptimizedCodeGen(Func)) { 8964 switch (Func) { 8965 default: break; 8966 case LibFunc_bcmp: 8967 if (visitMemCmpBCmpCall(I)) 8968 return; 8969 break; 8970 case LibFunc_copysign: 8971 case LibFunc_copysignf: 8972 case LibFunc_copysignl: 8973 // We already checked this call's prototype; verify it doesn't modify 8974 // errno. 8975 if (I.onlyReadsMemory()) { 8976 SDValue LHS = getValue(I.getArgOperand(0)); 8977 SDValue RHS = getValue(I.getArgOperand(1)); 8978 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8979 LHS.getValueType(), LHS, RHS)); 8980 return; 8981 } 8982 break; 8983 case LibFunc_fabs: 8984 case LibFunc_fabsf: 8985 case LibFunc_fabsl: 8986 if (visitUnaryFloatCall(I, ISD::FABS)) 8987 return; 8988 break; 8989 case LibFunc_fmin: 8990 case LibFunc_fminf: 8991 case LibFunc_fminl: 8992 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8993 return; 8994 break; 8995 case LibFunc_fmax: 8996 case LibFunc_fmaxf: 8997 case LibFunc_fmaxl: 8998 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8999 return; 9000 break; 9001 case LibFunc_sin: 9002 case LibFunc_sinf: 9003 case LibFunc_sinl: 9004 if (visitUnaryFloatCall(I, ISD::FSIN)) 9005 return; 9006 break; 9007 case LibFunc_cos: 9008 case LibFunc_cosf: 9009 case LibFunc_cosl: 9010 if (visitUnaryFloatCall(I, ISD::FCOS)) 9011 return; 9012 break; 9013 case LibFunc_sqrt: 9014 case LibFunc_sqrtf: 9015 case LibFunc_sqrtl: 9016 case LibFunc_sqrt_finite: 9017 case LibFunc_sqrtf_finite: 9018 case LibFunc_sqrtl_finite: 9019 if (visitUnaryFloatCall(I, ISD::FSQRT)) 9020 return; 9021 break; 9022 case LibFunc_floor: 9023 case LibFunc_floorf: 9024 case LibFunc_floorl: 9025 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 9026 return; 9027 break; 9028 case LibFunc_nearbyint: 9029 case LibFunc_nearbyintf: 9030 case LibFunc_nearbyintl: 9031 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 9032 return; 9033 break; 9034 case LibFunc_ceil: 9035 case LibFunc_ceilf: 9036 case LibFunc_ceill: 9037 if (visitUnaryFloatCall(I, ISD::FCEIL)) 9038 return; 9039 break; 9040 case LibFunc_rint: 9041 case LibFunc_rintf: 9042 case LibFunc_rintl: 9043 if (visitUnaryFloatCall(I, ISD::FRINT)) 9044 return; 9045 break; 9046 case LibFunc_round: 9047 case LibFunc_roundf: 9048 case LibFunc_roundl: 9049 if (visitUnaryFloatCall(I, ISD::FROUND)) 9050 return; 9051 break; 9052 case LibFunc_trunc: 9053 case LibFunc_truncf: 9054 case LibFunc_truncl: 9055 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 9056 return; 9057 break; 9058 case LibFunc_log2: 9059 case LibFunc_log2f: 9060 case LibFunc_log2l: 9061 if (visitUnaryFloatCall(I, ISD::FLOG2)) 9062 return; 9063 break; 9064 case LibFunc_exp2: 9065 case LibFunc_exp2f: 9066 case LibFunc_exp2l: 9067 if (visitUnaryFloatCall(I, ISD::FEXP2)) 9068 return; 9069 break; 9070 case LibFunc_exp10: 9071 case LibFunc_exp10f: 9072 case LibFunc_exp10l: 9073 if (visitUnaryFloatCall(I, ISD::FEXP10)) 9074 return; 9075 break; 9076 case LibFunc_ldexp: 9077 case LibFunc_ldexpf: 9078 case LibFunc_ldexpl: 9079 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 9080 return; 9081 break; 9082 case LibFunc_memcmp: 9083 if (visitMemCmpBCmpCall(I)) 9084 return; 9085 break; 9086 case LibFunc_mempcpy: 9087 if (visitMemPCpyCall(I)) 9088 return; 9089 break; 9090 case LibFunc_memchr: 9091 if (visitMemChrCall(I)) 9092 return; 9093 break; 9094 case LibFunc_strcpy: 9095 if (visitStrCpyCall(I, false)) 9096 return; 9097 break; 9098 case LibFunc_stpcpy: 9099 if (visitStrCpyCall(I, true)) 9100 return; 9101 break; 9102 case LibFunc_strcmp: 9103 if (visitStrCmpCall(I)) 9104 return; 9105 break; 9106 case LibFunc_strlen: 9107 if (visitStrLenCall(I)) 9108 return; 9109 break; 9110 case LibFunc_strnlen: 9111 if (visitStrNLenCall(I)) 9112 return; 9113 break; 9114 } 9115 } 9116 } 9117 9118 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 9119 // have to do anything here to lower funclet bundles. 9120 // CFGuardTarget bundles are lowered in LowerCallTo. 9121 assert(!I.hasOperandBundlesOtherThan( 9122 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 9123 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 9124 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 9125 "Cannot lower calls with arbitrary operand bundles!"); 9126 9127 SDValue Callee = getValue(I.getCalledOperand()); 9128 9129 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 9130 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 9131 else 9132 // Check if we can potentially perform a tail call. More detailed checking 9133 // is be done within LowerCallTo, after more information about the call is 9134 // known. 9135 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 9136 } 9137 9138 namespace { 9139 9140 /// AsmOperandInfo - This contains information for each constraint that we are 9141 /// lowering. 9142 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 9143 public: 9144 /// CallOperand - If this is the result output operand or a clobber 9145 /// this is null, otherwise it is the incoming operand to the CallInst. 9146 /// This gets modified as the asm is processed. 9147 SDValue CallOperand; 9148 9149 /// AssignedRegs - If this is a register or register class operand, this 9150 /// contains the set of register corresponding to the operand. 9151 RegsForValue AssignedRegs; 9152 9153 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 9154 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 9155 } 9156 9157 /// Whether or not this operand accesses memory 9158 bool hasMemory(const TargetLowering &TLI) const { 9159 // Indirect operand accesses access memory. 9160 if (isIndirect) 9161 return true; 9162 9163 for (const auto &Code : Codes) 9164 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 9165 return true; 9166 9167 return false; 9168 } 9169 }; 9170 9171 9172 } // end anonymous namespace 9173 9174 /// Make sure that the output operand \p OpInfo and its corresponding input 9175 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9176 /// out). 9177 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9178 SDISelAsmOperandInfo &MatchingOpInfo, 9179 SelectionDAG &DAG) { 9180 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9181 return; 9182 9183 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9184 const auto &TLI = DAG.getTargetLoweringInfo(); 9185 9186 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9187 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9188 OpInfo.ConstraintVT); 9189 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9190 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9191 MatchingOpInfo.ConstraintVT); 9192 if ((OpInfo.ConstraintVT.isInteger() != 9193 MatchingOpInfo.ConstraintVT.isInteger()) || 9194 (MatchRC.second != InputRC.second)) { 9195 // FIXME: error out in a more elegant fashion 9196 report_fatal_error("Unsupported asm: input constraint" 9197 " with a matching output constraint of" 9198 " incompatible type!"); 9199 } 9200 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9201 } 9202 9203 /// Get a direct memory input to behave well as an indirect operand. 9204 /// This may introduce stores, hence the need for a \p Chain. 9205 /// \return The (possibly updated) chain. 9206 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9207 SDISelAsmOperandInfo &OpInfo, 9208 SelectionDAG &DAG) { 9209 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9210 9211 // If we don't have an indirect input, put it in the constpool if we can, 9212 // otherwise spill it to a stack slot. 9213 // TODO: This isn't quite right. We need to handle these according to 9214 // the addressing mode that the constraint wants. Also, this may take 9215 // an additional register for the computation and we don't want that 9216 // either. 9217 9218 // If the operand is a float, integer, or vector constant, spill to a 9219 // constant pool entry to get its address. 9220 const Value *OpVal = OpInfo.CallOperandVal; 9221 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9222 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9223 OpInfo.CallOperand = DAG.getConstantPool( 9224 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9225 return Chain; 9226 } 9227 9228 // Otherwise, create a stack slot and emit a store to it before the asm. 9229 Type *Ty = OpVal->getType(); 9230 auto &DL = DAG.getDataLayout(); 9231 uint64_t TySize = DL.getTypeAllocSize(Ty); 9232 MachineFunction &MF = DAG.getMachineFunction(); 9233 int SSFI = MF.getFrameInfo().CreateStackObject( 9234 TySize, DL.getPrefTypeAlign(Ty), false); 9235 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9236 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9237 MachinePointerInfo::getFixedStack(MF, SSFI), 9238 TLI.getMemValueType(DL, Ty)); 9239 OpInfo.CallOperand = StackSlot; 9240 9241 return Chain; 9242 } 9243 9244 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9245 /// specified operand. We prefer to assign virtual registers, to allow the 9246 /// register allocator to handle the assignment process. However, if the asm 9247 /// uses features that we can't model on machineinstrs, we have SDISel do the 9248 /// allocation. This produces generally horrible, but correct, code. 9249 /// 9250 /// OpInfo describes the operand 9251 /// RefOpInfo describes the matching operand if any, the operand otherwise 9252 static std::optional<unsigned> 9253 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9254 SDISelAsmOperandInfo &OpInfo, 9255 SDISelAsmOperandInfo &RefOpInfo) { 9256 LLVMContext &Context = *DAG.getContext(); 9257 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9258 9259 MachineFunction &MF = DAG.getMachineFunction(); 9260 SmallVector<unsigned, 4> Regs; 9261 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9262 9263 // No work to do for memory/address operands. 9264 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9265 OpInfo.ConstraintType == TargetLowering::C_Address) 9266 return std::nullopt; 9267 9268 // If this is a constraint for a single physreg, or a constraint for a 9269 // register class, find it. 9270 unsigned AssignedReg; 9271 const TargetRegisterClass *RC; 9272 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9273 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9274 // RC is unset only on failure. Return immediately. 9275 if (!RC) 9276 return std::nullopt; 9277 9278 // Get the actual register value type. This is important, because the user 9279 // may have asked for (e.g.) the AX register in i32 type. We need to 9280 // remember that AX is actually i16 to get the right extension. 9281 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9282 9283 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9284 // If this is an FP operand in an integer register (or visa versa), or more 9285 // generally if the operand value disagrees with the register class we plan 9286 // to stick it in, fix the operand type. 9287 // 9288 // If this is an input value, the bitcast to the new type is done now. 9289 // Bitcast for output value is done at the end of visitInlineAsm(). 9290 if ((OpInfo.Type == InlineAsm::isOutput || 9291 OpInfo.Type == InlineAsm::isInput) && 9292 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9293 // Try to convert to the first EVT that the reg class contains. If the 9294 // types are identical size, use a bitcast to convert (e.g. two differing 9295 // vector types). Note: output bitcast is done at the end of 9296 // visitInlineAsm(). 9297 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9298 // Exclude indirect inputs while they are unsupported because the code 9299 // to perform the load is missing and thus OpInfo.CallOperand still 9300 // refers to the input address rather than the pointed-to value. 9301 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9302 OpInfo.CallOperand = 9303 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9304 OpInfo.ConstraintVT = RegVT; 9305 // If the operand is an FP value and we want it in integer registers, 9306 // use the corresponding integer type. This turns an f64 value into 9307 // i64, which can be passed with two i32 values on a 32-bit machine. 9308 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9309 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9310 if (OpInfo.Type == InlineAsm::isInput) 9311 OpInfo.CallOperand = 9312 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9313 OpInfo.ConstraintVT = VT; 9314 } 9315 } 9316 } 9317 9318 // No need to allocate a matching input constraint since the constraint it's 9319 // matching to has already been allocated. 9320 if (OpInfo.isMatchingInputConstraint()) 9321 return std::nullopt; 9322 9323 EVT ValueVT = OpInfo.ConstraintVT; 9324 if (OpInfo.ConstraintVT == MVT::Other) 9325 ValueVT = RegVT; 9326 9327 // Initialize NumRegs. 9328 unsigned NumRegs = 1; 9329 if (OpInfo.ConstraintVT != MVT::Other) 9330 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9331 9332 // If this is a constraint for a specific physical register, like {r17}, 9333 // assign it now. 9334 9335 // If this associated to a specific register, initialize iterator to correct 9336 // place. If virtual, make sure we have enough registers 9337 9338 // Initialize iterator if necessary 9339 TargetRegisterClass::iterator I = RC->begin(); 9340 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9341 9342 // Do not check for single registers. 9343 if (AssignedReg) { 9344 I = std::find(I, RC->end(), AssignedReg); 9345 if (I == RC->end()) { 9346 // RC does not contain the selected register, which indicates a 9347 // mismatch between the register and the required type/bitwidth. 9348 return {AssignedReg}; 9349 } 9350 } 9351 9352 for (; NumRegs; --NumRegs, ++I) { 9353 assert(I != RC->end() && "Ran out of registers to allocate!"); 9354 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9355 Regs.push_back(R); 9356 } 9357 9358 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9359 return std::nullopt; 9360 } 9361 9362 static unsigned 9363 findMatchingInlineAsmOperand(unsigned OperandNo, 9364 const std::vector<SDValue> &AsmNodeOperands) { 9365 // Scan until we find the definition we already emitted of this operand. 9366 unsigned CurOp = InlineAsm::Op_FirstOperand; 9367 for (; OperandNo; --OperandNo) { 9368 // Advance to the next operand. 9369 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9370 const InlineAsm::Flag F(OpFlag); 9371 assert( 9372 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9373 "Skipped past definitions?"); 9374 CurOp += F.getNumOperandRegisters() + 1; 9375 } 9376 return CurOp; 9377 } 9378 9379 namespace { 9380 9381 class ExtraFlags { 9382 unsigned Flags = 0; 9383 9384 public: 9385 explicit ExtraFlags(const CallBase &Call) { 9386 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9387 if (IA->hasSideEffects()) 9388 Flags |= InlineAsm::Extra_HasSideEffects; 9389 if (IA->isAlignStack()) 9390 Flags |= InlineAsm::Extra_IsAlignStack; 9391 if (Call.isConvergent()) 9392 Flags |= InlineAsm::Extra_IsConvergent; 9393 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9394 } 9395 9396 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9397 // Ideally, we would only check against memory constraints. However, the 9398 // meaning of an Other constraint can be target-specific and we can't easily 9399 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9400 // for Other constraints as well. 9401 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9402 OpInfo.ConstraintType == TargetLowering::C_Other) { 9403 if (OpInfo.Type == InlineAsm::isInput) 9404 Flags |= InlineAsm::Extra_MayLoad; 9405 else if (OpInfo.Type == InlineAsm::isOutput) 9406 Flags |= InlineAsm::Extra_MayStore; 9407 else if (OpInfo.Type == InlineAsm::isClobber) 9408 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9409 } 9410 } 9411 9412 unsigned get() const { return Flags; } 9413 }; 9414 9415 } // end anonymous namespace 9416 9417 static bool isFunction(SDValue Op) { 9418 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9419 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9420 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9421 9422 // In normal "call dllimport func" instruction (non-inlineasm) it force 9423 // indirect access by specifing call opcode. And usually specially print 9424 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9425 // not do in this way now. (In fact, this is similar with "Data Access" 9426 // action). So here we ignore dllimport function. 9427 if (Fn && !Fn->hasDLLImportStorageClass()) 9428 return true; 9429 } 9430 } 9431 return false; 9432 } 9433 9434 /// visitInlineAsm - Handle a call to an InlineAsm object. 9435 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9436 const BasicBlock *EHPadBB) { 9437 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9438 9439 /// ConstraintOperands - Information about all of the constraints. 9440 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9441 9442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9443 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9444 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9445 9446 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9447 // AsmDialect, MayLoad, MayStore). 9448 bool HasSideEffect = IA->hasSideEffects(); 9449 ExtraFlags ExtraInfo(Call); 9450 9451 for (auto &T : TargetConstraints) { 9452 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9453 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9454 9455 if (OpInfo.CallOperandVal) 9456 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9457 9458 if (!HasSideEffect) 9459 HasSideEffect = OpInfo.hasMemory(TLI); 9460 9461 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9462 // FIXME: Could we compute this on OpInfo rather than T? 9463 9464 // Compute the constraint code and ConstraintType to use. 9465 TLI.ComputeConstraintToUse(T, SDValue()); 9466 9467 if (T.ConstraintType == TargetLowering::C_Immediate && 9468 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9469 // We've delayed emitting a diagnostic like the "n" constraint because 9470 // inlining could cause an integer showing up. 9471 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9472 "' expects an integer constant " 9473 "expression"); 9474 9475 ExtraInfo.update(T); 9476 } 9477 9478 // We won't need to flush pending loads if this asm doesn't touch 9479 // memory and is nonvolatile. 9480 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9481 9482 bool EmitEHLabels = isa<InvokeInst>(Call); 9483 if (EmitEHLabels) { 9484 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9485 } 9486 bool IsCallBr = isa<CallBrInst>(Call); 9487 9488 if (IsCallBr || EmitEHLabels) { 9489 // If this is a callbr or invoke we need to flush pending exports since 9490 // inlineasm_br and invoke are terminators. 9491 // We need to do this before nodes are glued to the inlineasm_br node. 9492 Chain = getControlRoot(); 9493 } 9494 9495 MCSymbol *BeginLabel = nullptr; 9496 if (EmitEHLabels) { 9497 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9498 } 9499 9500 int OpNo = -1; 9501 SmallVector<StringRef> AsmStrs; 9502 IA->collectAsmStrs(AsmStrs); 9503 9504 // Second pass over the constraints: compute which constraint option to use. 9505 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9506 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9507 OpNo++; 9508 9509 // If this is an output operand with a matching input operand, look up the 9510 // matching input. If their types mismatch, e.g. one is an integer, the 9511 // other is floating point, or their sizes are different, flag it as an 9512 // error. 9513 if (OpInfo.hasMatchingInput()) { 9514 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9515 patchMatchingInput(OpInfo, Input, DAG); 9516 } 9517 9518 // Compute the constraint code and ConstraintType to use. 9519 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9520 9521 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9522 OpInfo.Type == InlineAsm::isClobber) || 9523 OpInfo.ConstraintType == TargetLowering::C_Address) 9524 continue; 9525 9526 // In Linux PIC model, there are 4 cases about value/label addressing: 9527 // 9528 // 1: Function call or Label jmp inside the module. 9529 // 2: Data access (such as global variable, static variable) inside module. 9530 // 3: Function call or Label jmp outside the module. 9531 // 4: Data access (such as global variable) outside the module. 9532 // 9533 // Due to current llvm inline asm architecture designed to not "recognize" 9534 // the asm code, there are quite troubles for us to treat mem addressing 9535 // differently for same value/adress used in different instuctions. 9536 // For example, in pic model, call a func may in plt way or direclty 9537 // pc-related, but lea/mov a function adress may use got. 9538 // 9539 // Here we try to "recognize" function call for the case 1 and case 3 in 9540 // inline asm. And try to adjust the constraint for them. 9541 // 9542 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9543 // label, so here we don't handle jmp function label now, but we need to 9544 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9545 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9546 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9547 TM.getCodeModel() != CodeModel::Large) { 9548 OpInfo.isIndirect = false; 9549 OpInfo.ConstraintType = TargetLowering::C_Address; 9550 } 9551 9552 // If this is a memory input, and if the operand is not indirect, do what we 9553 // need to provide an address for the memory input. 9554 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9555 !OpInfo.isIndirect) { 9556 assert((OpInfo.isMultipleAlternative || 9557 (OpInfo.Type == InlineAsm::isInput)) && 9558 "Can only indirectify direct input operands!"); 9559 9560 // Memory operands really want the address of the value. 9561 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9562 9563 // There is no longer a Value* corresponding to this operand. 9564 OpInfo.CallOperandVal = nullptr; 9565 9566 // It is now an indirect operand. 9567 OpInfo.isIndirect = true; 9568 } 9569 9570 } 9571 9572 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9573 std::vector<SDValue> AsmNodeOperands; 9574 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9575 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9576 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9577 9578 // If we have a !srcloc metadata node associated with it, we want to attach 9579 // this to the ultimately generated inline asm machineinstr. To do this, we 9580 // pass in the third operand as this (potentially null) inline asm MDNode. 9581 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9582 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9583 9584 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9585 // bits as operand 3. 9586 AsmNodeOperands.push_back(DAG.getTargetConstant( 9587 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9588 9589 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9590 // this, assign virtual and physical registers for inputs and otput. 9591 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9592 // Assign Registers. 9593 SDISelAsmOperandInfo &RefOpInfo = 9594 OpInfo.isMatchingInputConstraint() 9595 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9596 : OpInfo; 9597 const auto RegError = 9598 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9599 if (RegError) { 9600 const MachineFunction &MF = DAG.getMachineFunction(); 9601 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9602 const char *RegName = TRI.getName(*RegError); 9603 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9604 "' allocated for constraint '" + 9605 Twine(OpInfo.ConstraintCode) + 9606 "' does not match required type"); 9607 return; 9608 } 9609 9610 auto DetectWriteToReservedRegister = [&]() { 9611 const MachineFunction &MF = DAG.getMachineFunction(); 9612 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9613 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9614 if (Register::isPhysicalRegister(Reg) && 9615 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9616 const char *RegName = TRI.getName(Reg); 9617 emitInlineAsmError(Call, "write to reserved register '" + 9618 Twine(RegName) + "'"); 9619 return true; 9620 } 9621 } 9622 return false; 9623 }; 9624 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9625 (OpInfo.Type == InlineAsm::isInput && 9626 !OpInfo.isMatchingInputConstraint())) && 9627 "Only address as input operand is allowed."); 9628 9629 switch (OpInfo.Type) { 9630 case InlineAsm::isOutput: 9631 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9632 const InlineAsm::ConstraintCode ConstraintID = 9633 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9634 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9635 "Failed to convert memory constraint code to constraint id."); 9636 9637 // Add information to the INLINEASM node to know about this output. 9638 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9639 OpFlags.setMemConstraint(ConstraintID); 9640 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9641 MVT::i32)); 9642 AsmNodeOperands.push_back(OpInfo.CallOperand); 9643 } else { 9644 // Otherwise, this outputs to a register (directly for C_Register / 9645 // C_RegisterClass, and a target-defined fashion for 9646 // C_Immediate/C_Other). Find a register that we can use. 9647 if (OpInfo.AssignedRegs.Regs.empty()) { 9648 emitInlineAsmError( 9649 Call, "couldn't allocate output register for constraint '" + 9650 Twine(OpInfo.ConstraintCode) + "'"); 9651 return; 9652 } 9653 9654 if (DetectWriteToReservedRegister()) 9655 return; 9656 9657 // Add information to the INLINEASM node to know that this register is 9658 // set. 9659 OpInfo.AssignedRegs.AddInlineAsmOperands( 9660 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9661 : InlineAsm::Kind::RegDef, 9662 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9663 } 9664 break; 9665 9666 case InlineAsm::isInput: 9667 case InlineAsm::isLabel: { 9668 SDValue InOperandVal = OpInfo.CallOperand; 9669 9670 if (OpInfo.isMatchingInputConstraint()) { 9671 // If this is required to match an output register we have already set, 9672 // just use its register. 9673 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9674 AsmNodeOperands); 9675 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 9676 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9677 if (OpInfo.isIndirect) { 9678 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9679 emitInlineAsmError(Call, "inline asm not supported yet: " 9680 "don't know how to handle tied " 9681 "indirect register inputs"); 9682 return; 9683 } 9684 9685 SmallVector<unsigned, 4> Regs; 9686 MachineFunction &MF = DAG.getMachineFunction(); 9687 MachineRegisterInfo &MRI = MF.getRegInfo(); 9688 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9689 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9690 Register TiedReg = R->getReg(); 9691 MVT RegVT = R->getSimpleValueType(0); 9692 const TargetRegisterClass *RC = 9693 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9694 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9695 : TRI.getMinimalPhysRegClass(TiedReg); 9696 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9697 Regs.push_back(MRI.createVirtualRegister(RC)); 9698 9699 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9700 9701 SDLoc dl = getCurSDLoc(); 9702 // Use the produced MatchedRegs object to 9703 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9704 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9705 OpInfo.getMatchedOperand(), dl, DAG, 9706 AsmNodeOperands); 9707 break; 9708 } 9709 9710 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9711 assert(Flag.getNumOperandRegisters() == 1 && 9712 "Unexpected number of operands"); 9713 // Add information to the INLINEASM node to know about this input. 9714 // See InlineAsm.h isUseOperandTiedToDef. 9715 Flag.clearMemConstraint(); 9716 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9717 AsmNodeOperands.push_back(DAG.getTargetConstant( 9718 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9719 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9720 break; 9721 } 9722 9723 // Treat indirect 'X' constraint as memory. 9724 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9725 OpInfo.isIndirect) 9726 OpInfo.ConstraintType = TargetLowering::C_Memory; 9727 9728 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9729 OpInfo.ConstraintType == TargetLowering::C_Other) { 9730 std::vector<SDValue> Ops; 9731 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9732 Ops, DAG); 9733 if (Ops.empty()) { 9734 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9735 if (isa<ConstantSDNode>(InOperandVal)) { 9736 emitInlineAsmError(Call, "value out of range for constraint '" + 9737 Twine(OpInfo.ConstraintCode) + "'"); 9738 return; 9739 } 9740 9741 emitInlineAsmError(Call, 9742 "invalid operand for inline asm constraint '" + 9743 Twine(OpInfo.ConstraintCode) + "'"); 9744 return; 9745 } 9746 9747 // Add information to the INLINEASM node to know about this input. 9748 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9749 AsmNodeOperands.push_back(DAG.getTargetConstant( 9750 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9751 llvm::append_range(AsmNodeOperands, Ops); 9752 break; 9753 } 9754 9755 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9756 assert((OpInfo.isIndirect || 9757 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9758 "Operand must be indirect to be a mem!"); 9759 assert(InOperandVal.getValueType() == 9760 TLI.getPointerTy(DAG.getDataLayout()) && 9761 "Memory operands expect pointer values"); 9762 9763 const InlineAsm::ConstraintCode ConstraintID = 9764 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9765 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9766 "Failed to convert memory constraint code to constraint id."); 9767 9768 // Add information to the INLINEASM node to know about this input. 9769 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9770 ResOpType.setMemConstraint(ConstraintID); 9771 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9772 getCurSDLoc(), 9773 MVT::i32)); 9774 AsmNodeOperands.push_back(InOperandVal); 9775 break; 9776 } 9777 9778 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9779 const InlineAsm::ConstraintCode ConstraintID = 9780 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9781 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9782 "Failed to convert memory constraint code to constraint id."); 9783 9784 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9785 9786 SDValue AsmOp = InOperandVal; 9787 if (isFunction(InOperandVal)) { 9788 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9789 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 9790 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9791 InOperandVal.getValueType(), 9792 GA->getOffset()); 9793 } 9794 9795 // Add information to the INLINEASM node to know about this input. 9796 ResOpType.setMemConstraint(ConstraintID); 9797 9798 AsmNodeOperands.push_back( 9799 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9800 9801 AsmNodeOperands.push_back(AsmOp); 9802 break; 9803 } 9804 9805 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9806 OpInfo.ConstraintType == TargetLowering::C_Register) && 9807 "Unknown constraint type!"); 9808 9809 // TODO: Support this. 9810 if (OpInfo.isIndirect) { 9811 emitInlineAsmError( 9812 Call, "Don't know how to handle indirect register inputs yet " 9813 "for constraint '" + 9814 Twine(OpInfo.ConstraintCode) + "'"); 9815 return; 9816 } 9817 9818 // Copy the input into the appropriate registers. 9819 if (OpInfo.AssignedRegs.Regs.empty()) { 9820 emitInlineAsmError(Call, 9821 "couldn't allocate input reg for constraint '" + 9822 Twine(OpInfo.ConstraintCode) + "'"); 9823 return; 9824 } 9825 9826 if (DetectWriteToReservedRegister()) 9827 return; 9828 9829 SDLoc dl = getCurSDLoc(); 9830 9831 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 9832 &Call); 9833 9834 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 9835 0, dl, DAG, AsmNodeOperands); 9836 break; 9837 } 9838 case InlineAsm::isClobber: 9839 // Add the clobbered value to the operand list, so that the register 9840 // allocator is aware that the physreg got clobbered. 9841 if (!OpInfo.AssignedRegs.Regs.empty()) 9842 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 9843 false, 0, getCurSDLoc(), DAG, 9844 AsmNodeOperands); 9845 break; 9846 } 9847 } 9848 9849 // Finish up input operands. Set the input chain and add the flag last. 9850 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9851 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 9852 9853 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9854 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9855 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9856 Glue = Chain.getValue(1); 9857 9858 // Do additional work to generate outputs. 9859 9860 SmallVector<EVT, 1> ResultVTs; 9861 SmallVector<SDValue, 1> ResultValues; 9862 SmallVector<SDValue, 8> OutChains; 9863 9864 llvm::Type *CallResultType = Call.getType(); 9865 ArrayRef<Type *> ResultTypes; 9866 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9867 ResultTypes = StructResult->elements(); 9868 else if (!CallResultType->isVoidTy()) 9869 ResultTypes = ArrayRef(CallResultType); 9870 9871 auto CurResultType = ResultTypes.begin(); 9872 auto handleRegAssign = [&](SDValue V) { 9873 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9874 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9875 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9876 ++CurResultType; 9877 // If the type of the inline asm call site return value is different but has 9878 // same size as the type of the asm output bitcast it. One example of this 9879 // is for vectors with different width / number of elements. This can 9880 // happen for register classes that can contain multiple different value 9881 // types. The preg or vreg allocated may not have the same VT as was 9882 // expected. 9883 // 9884 // This can also happen for a return value that disagrees with the register 9885 // class it is put in, eg. a double in a general-purpose register on a 9886 // 32-bit machine. 9887 if (ResultVT != V.getValueType() && 9888 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9889 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9890 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9891 V.getValueType().isInteger()) { 9892 // If a result value was tied to an input value, the computed result 9893 // may have a wider width than the expected result. Extract the 9894 // relevant portion. 9895 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9896 } 9897 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9898 ResultVTs.push_back(ResultVT); 9899 ResultValues.push_back(V); 9900 }; 9901 9902 // Deal with output operands. 9903 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9904 if (OpInfo.Type == InlineAsm::isOutput) { 9905 SDValue Val; 9906 // Skip trivial output operands. 9907 if (OpInfo.AssignedRegs.Regs.empty()) 9908 continue; 9909 9910 switch (OpInfo.ConstraintType) { 9911 case TargetLowering::C_Register: 9912 case TargetLowering::C_RegisterClass: 9913 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9914 Chain, &Glue, &Call); 9915 break; 9916 case TargetLowering::C_Immediate: 9917 case TargetLowering::C_Other: 9918 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 9919 OpInfo, DAG); 9920 break; 9921 case TargetLowering::C_Memory: 9922 break; // Already handled. 9923 case TargetLowering::C_Address: 9924 break; // Silence warning. 9925 case TargetLowering::C_Unknown: 9926 assert(false && "Unexpected unknown constraint"); 9927 } 9928 9929 // Indirect output manifest as stores. Record output chains. 9930 if (OpInfo.isIndirect) { 9931 const Value *Ptr = OpInfo.CallOperandVal; 9932 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9933 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9934 MachinePointerInfo(Ptr)); 9935 OutChains.push_back(Store); 9936 } else { 9937 // generate CopyFromRegs to associated registers. 9938 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9939 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9940 for (const SDValue &V : Val->op_values()) 9941 handleRegAssign(V); 9942 } else 9943 handleRegAssign(Val); 9944 } 9945 } 9946 } 9947 9948 // Set results. 9949 if (!ResultValues.empty()) { 9950 assert(CurResultType == ResultTypes.end() && 9951 "Mismatch in number of ResultTypes"); 9952 assert(ResultValues.size() == ResultTypes.size() && 9953 "Mismatch in number of output operands in asm result"); 9954 9955 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9956 DAG.getVTList(ResultVTs), ResultValues); 9957 setValue(&Call, V); 9958 } 9959 9960 // Collect store chains. 9961 if (!OutChains.empty()) 9962 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9963 9964 if (EmitEHLabels) { 9965 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9966 } 9967 9968 // Only Update Root if inline assembly has a memory effect. 9969 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9970 EmitEHLabels) 9971 DAG.setRoot(Chain); 9972 } 9973 9974 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9975 const Twine &Message) { 9976 LLVMContext &Ctx = *DAG.getContext(); 9977 Ctx.emitError(&Call, Message); 9978 9979 // Make sure we leave the DAG in a valid state 9980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9981 SmallVector<EVT, 1> ValueVTs; 9982 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9983 9984 if (ValueVTs.empty()) 9985 return; 9986 9987 SmallVector<SDValue, 1> Ops; 9988 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9989 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9990 9991 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9992 } 9993 9994 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9995 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9996 MVT::Other, getRoot(), 9997 getValue(I.getArgOperand(0)), 9998 DAG.getSrcValue(I.getArgOperand(0)))); 9999 } 10000 10001 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 10002 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10003 const DataLayout &DL = DAG.getDataLayout(); 10004 SDValue V = DAG.getVAArg( 10005 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 10006 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 10007 DL.getABITypeAlign(I.getType()).value()); 10008 DAG.setRoot(V.getValue(1)); 10009 10010 if (I.getType()->isPointerTy()) 10011 V = DAG.getPtrExtOrTrunc( 10012 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 10013 setValue(&I, V); 10014 } 10015 10016 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 10017 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 10018 MVT::Other, getRoot(), 10019 getValue(I.getArgOperand(0)), 10020 DAG.getSrcValue(I.getArgOperand(0)))); 10021 } 10022 10023 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 10024 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 10025 MVT::Other, getRoot(), 10026 getValue(I.getArgOperand(0)), 10027 getValue(I.getArgOperand(1)), 10028 DAG.getSrcValue(I.getArgOperand(0)), 10029 DAG.getSrcValue(I.getArgOperand(1)))); 10030 } 10031 10032 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 10033 const Instruction &I, 10034 SDValue Op) { 10035 const MDNode *Range = getRangeMetadata(I); 10036 if (!Range) 10037 return Op; 10038 10039 ConstantRange CR = getConstantRangeFromMetadata(*Range); 10040 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 10041 return Op; 10042 10043 APInt Lo = CR.getUnsignedMin(); 10044 if (!Lo.isMinValue()) 10045 return Op; 10046 10047 APInt Hi = CR.getUnsignedMax(); 10048 unsigned Bits = std::max(Hi.getActiveBits(), 10049 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 10050 10051 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 10052 10053 SDLoc SL = getCurSDLoc(); 10054 10055 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 10056 DAG.getValueType(SmallVT)); 10057 unsigned NumVals = Op.getNode()->getNumValues(); 10058 if (NumVals == 1) 10059 return ZExt; 10060 10061 SmallVector<SDValue, 4> Ops; 10062 10063 Ops.push_back(ZExt); 10064 for (unsigned I = 1; I != NumVals; ++I) 10065 Ops.push_back(Op.getValue(I)); 10066 10067 return DAG.getMergeValues(Ops, SL); 10068 } 10069 10070 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 10071 /// the call being lowered. 10072 /// 10073 /// This is a helper for lowering intrinsics that follow a target calling 10074 /// convention or require stack pointer adjustment. Only a subset of the 10075 /// intrinsic's operands need to participate in the calling convention. 10076 void SelectionDAGBuilder::populateCallLoweringInfo( 10077 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 10078 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 10079 AttributeSet RetAttrs, bool IsPatchPoint) { 10080 TargetLowering::ArgListTy Args; 10081 Args.reserve(NumArgs); 10082 10083 // Populate the argument list. 10084 // Attributes for args start at offset 1, after the return attribute. 10085 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 10086 ArgI != ArgE; ++ArgI) { 10087 const Value *V = Call->getOperand(ArgI); 10088 10089 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 10090 10091 TargetLowering::ArgListEntry Entry; 10092 Entry.Node = getValue(V); 10093 Entry.Ty = V->getType(); 10094 Entry.setAttributes(Call, ArgI); 10095 Args.push_back(Entry); 10096 } 10097 10098 CLI.setDebugLoc(getCurSDLoc()) 10099 .setChain(getRoot()) 10100 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 10101 RetAttrs) 10102 .setDiscardResult(Call->use_empty()) 10103 .setIsPatchPoint(IsPatchPoint) 10104 .setIsPreallocated( 10105 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 10106 } 10107 10108 /// Add a stack map intrinsic call's live variable operands to a stackmap 10109 /// or patchpoint target node's operand list. 10110 /// 10111 /// Constants are converted to TargetConstants purely as an optimization to 10112 /// avoid constant materialization and register allocation. 10113 /// 10114 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 10115 /// generate addess computation nodes, and so FinalizeISel can convert the 10116 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 10117 /// address materialization and register allocation, but may also be required 10118 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 10119 /// alloca in the entry block, then the runtime may assume that the alloca's 10120 /// StackMap location can be read immediately after compilation and that the 10121 /// location is valid at any point during execution (this is similar to the 10122 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 10123 /// only available in a register, then the runtime would need to trap when 10124 /// execution reaches the StackMap in order to read the alloca's location. 10125 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 10126 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 10127 SelectionDAGBuilder &Builder) { 10128 SelectionDAG &DAG = Builder.DAG; 10129 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 10130 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 10131 10132 // Things on the stack are pointer-typed, meaning that they are already 10133 // legal and can be emitted directly to target nodes. 10134 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 10135 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 10136 } else { 10137 // Otherwise emit a target independent node to be legalised. 10138 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 10139 } 10140 } 10141 } 10142 10143 /// Lower llvm.experimental.stackmap. 10144 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 10145 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 10146 // [live variables...]) 10147 10148 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 10149 10150 SDValue Chain, InGlue, Callee; 10151 SmallVector<SDValue, 32> Ops; 10152 10153 SDLoc DL = getCurSDLoc(); 10154 Callee = getValue(CI.getCalledOperand()); 10155 10156 // The stackmap intrinsic only records the live variables (the arguments 10157 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 10158 // intrinsic, this won't be lowered to a function call. This means we don't 10159 // have to worry about calling conventions and target specific lowering code. 10160 // Instead we perform the call lowering right here. 10161 // 10162 // chain, flag = CALLSEQ_START(chain, 0, 0) 10163 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 10164 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 10165 // 10166 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 10167 InGlue = Chain.getValue(1); 10168 10169 // Add the STACKMAP operands, starting with DAG house-keeping. 10170 Ops.push_back(Chain); 10171 Ops.push_back(InGlue); 10172 10173 // Add the <id>, <numShadowBytes> operands. 10174 // 10175 // These do not require legalisation, and can be emitted directly to target 10176 // constant nodes. 10177 SDValue ID = getValue(CI.getArgOperand(0)); 10178 assert(ID.getValueType() == MVT::i64); 10179 SDValue IDConst = 10180 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10181 Ops.push_back(IDConst); 10182 10183 SDValue Shad = getValue(CI.getArgOperand(1)); 10184 assert(Shad.getValueType() == MVT::i32); 10185 SDValue ShadConst = 10186 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10187 Ops.push_back(ShadConst); 10188 10189 // Add the live variables. 10190 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10191 10192 // Create the STACKMAP node. 10193 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10194 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10195 InGlue = Chain.getValue(1); 10196 10197 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10198 10199 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10200 10201 // Set the root to the target-lowered call chain. 10202 DAG.setRoot(Chain); 10203 10204 // Inform the Frame Information that we have a stackmap in this function. 10205 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10206 } 10207 10208 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10209 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10210 const BasicBlock *EHPadBB) { 10211 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 10212 // i32 <numBytes>, 10213 // i8* <target>, 10214 // i32 <numArgs>, 10215 // [Args...], 10216 // [live variables...]) 10217 10218 CallingConv::ID CC = CB.getCallingConv(); 10219 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10220 bool HasDef = !CB.getType()->isVoidTy(); 10221 SDLoc dl = getCurSDLoc(); 10222 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10223 10224 // Handle immediate and symbolic callees. 10225 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10226 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10227 /*isTarget=*/true); 10228 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10229 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10230 SDLoc(SymbolicCallee), 10231 SymbolicCallee->getValueType(0)); 10232 10233 // Get the real number of arguments participating in the call <numArgs> 10234 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10235 unsigned NumArgs = NArgVal->getAsZExtVal(); 10236 10237 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10238 // Intrinsics include all meta-operands up to but not including CC. 10239 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10240 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10241 "Not enough arguments provided to the patchpoint intrinsic"); 10242 10243 // For AnyRegCC the arguments are lowered later on manually. 10244 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10245 Type *ReturnTy = 10246 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10247 10248 TargetLowering::CallLoweringInfo CLI(DAG); 10249 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10250 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10251 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10252 10253 SDNode *CallEnd = Result.second.getNode(); 10254 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10255 CallEnd = CallEnd->getOperand(0).getNode(); 10256 10257 /// Get a call instruction from the call sequence chain. 10258 /// Tail calls are not allowed. 10259 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10260 "Expected a callseq node."); 10261 SDNode *Call = CallEnd->getOperand(0).getNode(); 10262 bool HasGlue = Call->getGluedNode(); 10263 10264 // Replace the target specific call node with the patchable intrinsic. 10265 SmallVector<SDValue, 8> Ops; 10266 10267 // Push the chain. 10268 Ops.push_back(*(Call->op_begin())); 10269 10270 // Optionally, push the glue (if any). 10271 if (HasGlue) 10272 Ops.push_back(*(Call->op_end() - 1)); 10273 10274 // Push the register mask info. 10275 if (HasGlue) 10276 Ops.push_back(*(Call->op_end() - 2)); 10277 else 10278 Ops.push_back(*(Call->op_end() - 1)); 10279 10280 // Add the <id> and <numBytes> constants. 10281 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10282 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10283 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10284 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10285 10286 // Add the callee. 10287 Ops.push_back(Callee); 10288 10289 // Adjust <numArgs> to account for any arguments that have been passed on the 10290 // stack instead. 10291 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10292 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10293 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10294 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10295 10296 // Add the calling convention 10297 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10298 10299 // Add the arguments we omitted previously. The register allocator should 10300 // place these in any free register. 10301 if (IsAnyRegCC) 10302 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10303 Ops.push_back(getValue(CB.getArgOperand(i))); 10304 10305 // Push the arguments from the call instruction. 10306 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10307 Ops.append(Call->op_begin() + 2, e); 10308 10309 // Push live variables for the stack map. 10310 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10311 10312 SDVTList NodeTys; 10313 if (IsAnyRegCC && HasDef) { 10314 // Create the return types based on the intrinsic definition 10315 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10316 SmallVector<EVT, 3> ValueVTs; 10317 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10318 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10319 10320 // There is always a chain and a glue type at the end 10321 ValueVTs.push_back(MVT::Other); 10322 ValueVTs.push_back(MVT::Glue); 10323 NodeTys = DAG.getVTList(ValueVTs); 10324 } else 10325 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10326 10327 // Replace the target specific call node with a PATCHPOINT node. 10328 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10329 10330 // Update the NodeMap. 10331 if (HasDef) { 10332 if (IsAnyRegCC) 10333 setValue(&CB, SDValue(PPV.getNode(), 0)); 10334 else 10335 setValue(&CB, Result.first); 10336 } 10337 10338 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10339 // call sequence. Furthermore the location of the chain and glue can change 10340 // when the AnyReg calling convention is used and the intrinsic returns a 10341 // value. 10342 if (IsAnyRegCC && HasDef) { 10343 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10344 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10345 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10346 } else 10347 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10348 DAG.DeleteNode(Call); 10349 10350 // Inform the Frame Information that we have a patchpoint in this function. 10351 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10352 } 10353 10354 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10355 unsigned Intrinsic) { 10356 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10357 SDValue Op1 = getValue(I.getArgOperand(0)); 10358 SDValue Op2; 10359 if (I.arg_size() > 1) 10360 Op2 = getValue(I.getArgOperand(1)); 10361 SDLoc dl = getCurSDLoc(); 10362 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10363 SDValue Res; 10364 SDNodeFlags SDFlags; 10365 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10366 SDFlags.copyFMF(*FPMO); 10367 10368 switch (Intrinsic) { 10369 case Intrinsic::vector_reduce_fadd: 10370 if (SDFlags.hasAllowReassociation()) 10371 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10372 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10373 SDFlags); 10374 else 10375 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10376 break; 10377 case Intrinsic::vector_reduce_fmul: 10378 if (SDFlags.hasAllowReassociation()) 10379 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10380 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10381 SDFlags); 10382 else 10383 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10384 break; 10385 case Intrinsic::vector_reduce_add: 10386 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10387 break; 10388 case Intrinsic::vector_reduce_mul: 10389 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10390 break; 10391 case Intrinsic::vector_reduce_and: 10392 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10393 break; 10394 case Intrinsic::vector_reduce_or: 10395 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10396 break; 10397 case Intrinsic::vector_reduce_xor: 10398 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10399 break; 10400 case Intrinsic::vector_reduce_smax: 10401 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10402 break; 10403 case Intrinsic::vector_reduce_smin: 10404 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10405 break; 10406 case Intrinsic::vector_reduce_umax: 10407 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10408 break; 10409 case Intrinsic::vector_reduce_umin: 10410 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10411 break; 10412 case Intrinsic::vector_reduce_fmax: 10413 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10414 break; 10415 case Intrinsic::vector_reduce_fmin: 10416 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10417 break; 10418 case Intrinsic::vector_reduce_fmaximum: 10419 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10420 break; 10421 case Intrinsic::vector_reduce_fminimum: 10422 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10423 break; 10424 default: 10425 llvm_unreachable("Unhandled vector reduce intrinsic"); 10426 } 10427 setValue(&I, Res); 10428 } 10429 10430 /// Returns an AttributeList representing the attributes applied to the return 10431 /// value of the given call. 10432 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10433 SmallVector<Attribute::AttrKind, 2> Attrs; 10434 if (CLI.RetSExt) 10435 Attrs.push_back(Attribute::SExt); 10436 if (CLI.RetZExt) 10437 Attrs.push_back(Attribute::ZExt); 10438 if (CLI.IsInReg) 10439 Attrs.push_back(Attribute::InReg); 10440 10441 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10442 Attrs); 10443 } 10444 10445 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10446 /// implementation, which just calls LowerCall. 10447 /// FIXME: When all targets are 10448 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10449 std::pair<SDValue, SDValue> 10450 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10451 // Handle the incoming return values from the call. 10452 CLI.Ins.clear(); 10453 Type *OrigRetTy = CLI.RetTy; 10454 SmallVector<EVT, 4> RetTys; 10455 SmallVector<uint64_t, 4> Offsets; 10456 auto &DL = CLI.DAG.getDataLayout(); 10457 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0); 10458 10459 if (CLI.IsPostTypeLegalization) { 10460 // If we are lowering a libcall after legalization, split the return type. 10461 SmallVector<EVT, 4> OldRetTys; 10462 SmallVector<uint64_t, 4> OldOffsets; 10463 RetTys.swap(OldRetTys); 10464 Offsets.swap(OldOffsets); 10465 10466 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10467 EVT RetVT = OldRetTys[i]; 10468 uint64_t Offset = OldOffsets[i]; 10469 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10470 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10471 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10472 RetTys.append(NumRegs, RegisterVT); 10473 for (unsigned j = 0; j != NumRegs; ++j) 10474 Offsets.push_back(Offset + j * RegisterVTByteSZ); 10475 } 10476 } 10477 10478 SmallVector<ISD::OutputArg, 4> Outs; 10479 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10480 10481 bool CanLowerReturn = 10482 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10483 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10484 10485 SDValue DemoteStackSlot; 10486 int DemoteStackIdx = -100; 10487 if (!CanLowerReturn) { 10488 // FIXME: equivalent assert? 10489 // assert(!CS.hasInAllocaArgument() && 10490 // "sret demotion is incompatible with inalloca"); 10491 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10492 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10493 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10494 DemoteStackIdx = 10495 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10496 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10497 DL.getAllocaAddrSpace()); 10498 10499 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10500 ArgListEntry Entry; 10501 Entry.Node = DemoteStackSlot; 10502 Entry.Ty = StackSlotPtrType; 10503 Entry.IsSExt = false; 10504 Entry.IsZExt = false; 10505 Entry.IsInReg = false; 10506 Entry.IsSRet = true; 10507 Entry.IsNest = false; 10508 Entry.IsByVal = false; 10509 Entry.IsByRef = false; 10510 Entry.IsReturned = false; 10511 Entry.IsSwiftSelf = false; 10512 Entry.IsSwiftAsync = false; 10513 Entry.IsSwiftError = false; 10514 Entry.IsCFGuardTarget = false; 10515 Entry.Alignment = Alignment; 10516 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10517 CLI.NumFixedArgs += 1; 10518 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10519 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10520 10521 // sret demotion isn't compatible with tail-calls, since the sret argument 10522 // points into the callers stack frame. 10523 CLI.IsTailCall = false; 10524 } else { 10525 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10526 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10527 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10528 ISD::ArgFlagsTy Flags; 10529 if (NeedsRegBlock) { 10530 Flags.setInConsecutiveRegs(); 10531 if (I == RetTys.size() - 1) 10532 Flags.setInConsecutiveRegsLast(); 10533 } 10534 EVT VT = RetTys[I]; 10535 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10536 CLI.CallConv, VT); 10537 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10538 CLI.CallConv, VT); 10539 for (unsigned i = 0; i != NumRegs; ++i) { 10540 ISD::InputArg MyFlags; 10541 MyFlags.Flags = Flags; 10542 MyFlags.VT = RegisterVT; 10543 MyFlags.ArgVT = VT; 10544 MyFlags.Used = CLI.IsReturnValueUsed; 10545 if (CLI.RetTy->isPointerTy()) { 10546 MyFlags.Flags.setPointer(); 10547 MyFlags.Flags.setPointerAddrSpace( 10548 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10549 } 10550 if (CLI.RetSExt) 10551 MyFlags.Flags.setSExt(); 10552 if (CLI.RetZExt) 10553 MyFlags.Flags.setZExt(); 10554 if (CLI.IsInReg) 10555 MyFlags.Flags.setInReg(); 10556 CLI.Ins.push_back(MyFlags); 10557 } 10558 } 10559 } 10560 10561 // We push in swifterror return as the last element of CLI.Ins. 10562 ArgListTy &Args = CLI.getArgs(); 10563 if (supportSwiftError()) { 10564 for (const ArgListEntry &Arg : Args) { 10565 if (Arg.IsSwiftError) { 10566 ISD::InputArg MyFlags; 10567 MyFlags.VT = getPointerTy(DL); 10568 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10569 MyFlags.Flags.setSwiftError(); 10570 CLI.Ins.push_back(MyFlags); 10571 } 10572 } 10573 } 10574 10575 // Handle all of the outgoing arguments. 10576 CLI.Outs.clear(); 10577 CLI.OutVals.clear(); 10578 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10579 SmallVector<EVT, 4> ValueVTs; 10580 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10581 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10582 Type *FinalType = Args[i].Ty; 10583 if (Args[i].IsByVal) 10584 FinalType = Args[i].IndirectType; 10585 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10586 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10587 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10588 ++Value) { 10589 EVT VT = ValueVTs[Value]; 10590 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10591 SDValue Op = SDValue(Args[i].Node.getNode(), 10592 Args[i].Node.getResNo() + Value); 10593 ISD::ArgFlagsTy Flags; 10594 10595 // Certain targets (such as MIPS), may have a different ABI alignment 10596 // for a type depending on the context. Give the target a chance to 10597 // specify the alignment it wants. 10598 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10599 Flags.setOrigAlign(OriginalAlignment); 10600 10601 if (Args[i].Ty->isPointerTy()) { 10602 Flags.setPointer(); 10603 Flags.setPointerAddrSpace( 10604 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10605 } 10606 if (Args[i].IsZExt) 10607 Flags.setZExt(); 10608 if (Args[i].IsSExt) 10609 Flags.setSExt(); 10610 if (Args[i].IsInReg) { 10611 // If we are using vectorcall calling convention, a structure that is 10612 // passed InReg - is surely an HVA 10613 if (CLI.CallConv == CallingConv::X86_VectorCall && 10614 isa<StructType>(FinalType)) { 10615 // The first value of a structure is marked 10616 if (0 == Value) 10617 Flags.setHvaStart(); 10618 Flags.setHva(); 10619 } 10620 // Set InReg Flag 10621 Flags.setInReg(); 10622 } 10623 if (Args[i].IsSRet) 10624 Flags.setSRet(); 10625 if (Args[i].IsSwiftSelf) 10626 Flags.setSwiftSelf(); 10627 if (Args[i].IsSwiftAsync) 10628 Flags.setSwiftAsync(); 10629 if (Args[i].IsSwiftError) 10630 Flags.setSwiftError(); 10631 if (Args[i].IsCFGuardTarget) 10632 Flags.setCFGuardTarget(); 10633 if (Args[i].IsByVal) 10634 Flags.setByVal(); 10635 if (Args[i].IsByRef) 10636 Flags.setByRef(); 10637 if (Args[i].IsPreallocated) { 10638 Flags.setPreallocated(); 10639 // Set the byval flag for CCAssignFn callbacks that don't know about 10640 // preallocated. This way we can know how many bytes we should've 10641 // allocated and how many bytes a callee cleanup function will pop. If 10642 // we port preallocated to more targets, we'll have to add custom 10643 // preallocated handling in the various CC lowering callbacks. 10644 Flags.setByVal(); 10645 } 10646 if (Args[i].IsInAlloca) { 10647 Flags.setInAlloca(); 10648 // Set the byval flag for CCAssignFn callbacks that don't know about 10649 // inalloca. This way we can know how many bytes we should've allocated 10650 // and how many bytes a callee cleanup function will pop. If we port 10651 // inalloca to more targets, we'll have to add custom inalloca handling 10652 // in the various CC lowering callbacks. 10653 Flags.setByVal(); 10654 } 10655 Align MemAlign; 10656 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10657 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10658 Flags.setByValSize(FrameSize); 10659 10660 // info is not there but there are cases it cannot get right. 10661 if (auto MA = Args[i].Alignment) 10662 MemAlign = *MA; 10663 else 10664 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10665 } else if (auto MA = Args[i].Alignment) { 10666 MemAlign = *MA; 10667 } else { 10668 MemAlign = OriginalAlignment; 10669 } 10670 Flags.setMemAlign(MemAlign); 10671 if (Args[i].IsNest) 10672 Flags.setNest(); 10673 if (NeedsRegBlock) 10674 Flags.setInConsecutiveRegs(); 10675 10676 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10677 CLI.CallConv, VT); 10678 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10679 CLI.CallConv, VT); 10680 SmallVector<SDValue, 4> Parts(NumParts); 10681 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10682 10683 if (Args[i].IsSExt) 10684 ExtendKind = ISD::SIGN_EXTEND; 10685 else if (Args[i].IsZExt) 10686 ExtendKind = ISD::ZERO_EXTEND; 10687 10688 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10689 // for now. 10690 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10691 CanLowerReturn) { 10692 assert((CLI.RetTy == Args[i].Ty || 10693 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10694 CLI.RetTy->getPointerAddressSpace() == 10695 Args[i].Ty->getPointerAddressSpace())) && 10696 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10697 // Before passing 'returned' to the target lowering code, ensure that 10698 // either the register MVT and the actual EVT are the same size or that 10699 // the return value and argument are extended in the same way; in these 10700 // cases it's safe to pass the argument register value unchanged as the 10701 // return register value (although it's at the target's option whether 10702 // to do so) 10703 // TODO: allow code generation to take advantage of partially preserved 10704 // registers rather than clobbering the entire register when the 10705 // parameter extension method is not compatible with the return 10706 // extension method 10707 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10708 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10709 CLI.RetZExt == Args[i].IsZExt)) 10710 Flags.setReturned(); 10711 } 10712 10713 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10714 CLI.CallConv, ExtendKind); 10715 10716 for (unsigned j = 0; j != NumParts; ++j) { 10717 // if it isn't first piece, alignment must be 1 10718 // For scalable vectors the scalable part is currently handled 10719 // by individual targets, so we just use the known minimum size here. 10720 ISD::OutputArg MyFlags( 10721 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10722 i < CLI.NumFixedArgs, i, 10723 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10724 if (NumParts > 1 && j == 0) 10725 MyFlags.Flags.setSplit(); 10726 else if (j != 0) { 10727 MyFlags.Flags.setOrigAlign(Align(1)); 10728 if (j == NumParts - 1) 10729 MyFlags.Flags.setSplitEnd(); 10730 } 10731 10732 CLI.Outs.push_back(MyFlags); 10733 CLI.OutVals.push_back(Parts[j]); 10734 } 10735 10736 if (NeedsRegBlock && Value == NumValues - 1) 10737 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10738 } 10739 } 10740 10741 SmallVector<SDValue, 4> InVals; 10742 CLI.Chain = LowerCall(CLI, InVals); 10743 10744 // Update CLI.InVals to use outside of this function. 10745 CLI.InVals = InVals; 10746 10747 // Verify that the target's LowerCall behaved as expected. 10748 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10749 "LowerCall didn't return a valid chain!"); 10750 assert((!CLI.IsTailCall || InVals.empty()) && 10751 "LowerCall emitted a return value for a tail call!"); 10752 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10753 "LowerCall didn't emit the correct number of values!"); 10754 10755 // For a tail call, the return value is merely live-out and there aren't 10756 // any nodes in the DAG representing it. Return a special value to 10757 // indicate that a tail call has been emitted and no more Instructions 10758 // should be processed in the current block. 10759 if (CLI.IsTailCall) { 10760 CLI.DAG.setRoot(CLI.Chain); 10761 return std::make_pair(SDValue(), SDValue()); 10762 } 10763 10764 #ifndef NDEBUG 10765 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10766 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10767 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10768 "LowerCall emitted a value with the wrong type!"); 10769 } 10770 #endif 10771 10772 SmallVector<SDValue, 4> ReturnValues; 10773 if (!CanLowerReturn) { 10774 // The instruction result is the result of loading from the 10775 // hidden sret parameter. 10776 SmallVector<EVT, 1> PVTs; 10777 Type *PtrRetTy = 10778 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 10779 10780 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10781 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10782 EVT PtrVT = PVTs[0]; 10783 10784 unsigned NumValues = RetTys.size(); 10785 ReturnValues.resize(NumValues); 10786 SmallVector<SDValue, 4> Chains(NumValues); 10787 10788 // An aggregate return value cannot wrap around the address space, so 10789 // offsets to its parts don't wrap either. 10790 SDNodeFlags Flags; 10791 Flags.setNoUnsignedWrap(true); 10792 10793 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10794 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10795 for (unsigned i = 0; i < NumValues; ++i) { 10796 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10797 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10798 PtrVT), Flags); 10799 SDValue L = CLI.DAG.getLoad( 10800 RetTys[i], CLI.DL, CLI.Chain, Add, 10801 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10802 DemoteStackIdx, Offsets[i]), 10803 HiddenSRetAlign); 10804 ReturnValues[i] = L; 10805 Chains[i] = L.getValue(1); 10806 } 10807 10808 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10809 } else { 10810 // Collect the legal value parts into potentially illegal values 10811 // that correspond to the original function's return values. 10812 std::optional<ISD::NodeType> AssertOp; 10813 if (CLI.RetSExt) 10814 AssertOp = ISD::AssertSext; 10815 else if (CLI.RetZExt) 10816 AssertOp = ISD::AssertZext; 10817 unsigned CurReg = 0; 10818 for (EVT VT : RetTys) { 10819 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10820 CLI.CallConv, VT); 10821 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10822 CLI.CallConv, VT); 10823 10824 ReturnValues.push_back(getCopyFromParts( 10825 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 10826 CLI.Chain, CLI.CallConv, AssertOp)); 10827 CurReg += NumRegs; 10828 } 10829 10830 // For a function returning void, there is no return value. We can't create 10831 // such a node, so we just return a null return value in that case. In 10832 // that case, nothing will actually look at the value. 10833 if (ReturnValues.empty()) 10834 return std::make_pair(SDValue(), CLI.Chain); 10835 } 10836 10837 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10838 CLI.DAG.getVTList(RetTys), ReturnValues); 10839 return std::make_pair(Res, CLI.Chain); 10840 } 10841 10842 /// Places new result values for the node in Results (their number 10843 /// and types must exactly match those of the original return values of 10844 /// the node), or leaves Results empty, which indicates that the node is not 10845 /// to be custom lowered after all. 10846 void TargetLowering::LowerOperationWrapper(SDNode *N, 10847 SmallVectorImpl<SDValue> &Results, 10848 SelectionDAG &DAG) const { 10849 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10850 10851 if (!Res.getNode()) 10852 return; 10853 10854 // If the original node has one result, take the return value from 10855 // LowerOperation as is. It might not be result number 0. 10856 if (N->getNumValues() == 1) { 10857 Results.push_back(Res); 10858 return; 10859 } 10860 10861 // If the original node has multiple results, then the return node should 10862 // have the same number of results. 10863 assert((N->getNumValues() == Res->getNumValues()) && 10864 "Lowering returned the wrong number of results!"); 10865 10866 // Places new result values base on N result number. 10867 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10868 Results.push_back(Res.getValue(I)); 10869 } 10870 10871 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10872 llvm_unreachable("LowerOperation not implemented for this target!"); 10873 } 10874 10875 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10876 unsigned Reg, 10877 ISD::NodeType ExtendType) { 10878 SDValue Op = getNonRegisterValue(V); 10879 assert((Op.getOpcode() != ISD::CopyFromReg || 10880 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10881 "Copy from a reg to the same reg!"); 10882 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10883 10884 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10885 // If this is an InlineAsm we have to match the registers required, not the 10886 // notional registers required by the type. 10887 10888 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10889 std::nullopt); // This is not an ABI copy. 10890 SDValue Chain = DAG.getEntryNode(); 10891 10892 if (ExtendType == ISD::ANY_EXTEND) { 10893 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10894 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10895 ExtendType = PreferredExtendIt->second; 10896 } 10897 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10898 PendingExports.push_back(Chain); 10899 } 10900 10901 #include "llvm/CodeGen/SelectionDAGISel.h" 10902 10903 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10904 /// entry block, return true. This includes arguments used by switches, since 10905 /// the switch may expand into multiple basic blocks. 10906 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10907 // With FastISel active, we may be splitting blocks, so force creation 10908 // of virtual registers for all non-dead arguments. 10909 if (FastISel) 10910 return A->use_empty(); 10911 10912 const BasicBlock &Entry = A->getParent()->front(); 10913 for (const User *U : A->users()) 10914 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10915 return false; // Use not in entry block. 10916 10917 return true; 10918 } 10919 10920 using ArgCopyElisionMapTy = 10921 DenseMap<const Argument *, 10922 std::pair<const AllocaInst *, const StoreInst *>>; 10923 10924 /// Scan the entry block of the function in FuncInfo for arguments that look 10925 /// like copies into a local alloca. Record any copied arguments in 10926 /// ArgCopyElisionCandidates. 10927 static void 10928 findArgumentCopyElisionCandidates(const DataLayout &DL, 10929 FunctionLoweringInfo *FuncInfo, 10930 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10931 // Record the state of every static alloca used in the entry block. Argument 10932 // allocas are all used in the entry block, so we need approximately as many 10933 // entries as we have arguments. 10934 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10935 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10936 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10937 StaticAllocas.reserve(NumArgs * 2); 10938 10939 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10940 if (!V) 10941 return nullptr; 10942 V = V->stripPointerCasts(); 10943 const auto *AI = dyn_cast<AllocaInst>(V); 10944 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10945 return nullptr; 10946 auto Iter = StaticAllocas.insert({AI, Unknown}); 10947 return &Iter.first->second; 10948 }; 10949 10950 // Look for stores of arguments to static allocas. Look through bitcasts and 10951 // GEPs to handle type coercions, as long as the alloca is fully initialized 10952 // by the store. Any non-store use of an alloca escapes it and any subsequent 10953 // unanalyzed store might write it. 10954 // FIXME: Handle structs initialized with multiple stores. 10955 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10956 // Look for stores, and handle non-store uses conservatively. 10957 const auto *SI = dyn_cast<StoreInst>(&I); 10958 if (!SI) { 10959 // We will look through cast uses, so ignore them completely. 10960 if (I.isCast()) 10961 continue; 10962 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10963 // to allocas. 10964 if (I.isDebugOrPseudoInst()) 10965 continue; 10966 // This is an unknown instruction. Assume it escapes or writes to all 10967 // static alloca operands. 10968 for (const Use &U : I.operands()) { 10969 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10970 *Info = StaticAllocaInfo::Clobbered; 10971 } 10972 continue; 10973 } 10974 10975 // If the stored value is a static alloca, mark it as escaped. 10976 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10977 *Info = StaticAllocaInfo::Clobbered; 10978 10979 // Check if the destination is a static alloca. 10980 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10981 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10982 if (!Info) 10983 continue; 10984 const AllocaInst *AI = cast<AllocaInst>(Dst); 10985 10986 // Skip allocas that have been initialized or clobbered. 10987 if (*Info != StaticAllocaInfo::Unknown) 10988 continue; 10989 10990 // Check if the stored value is an argument, and that this store fully 10991 // initializes the alloca. 10992 // If the argument type has padding bits we can't directly forward a pointer 10993 // as the upper bits may contain garbage. 10994 // Don't elide copies from the same argument twice. 10995 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10996 const auto *Arg = dyn_cast<Argument>(Val); 10997 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10998 Arg->getType()->isEmptyTy() || 10999 DL.getTypeStoreSize(Arg->getType()) != 11000 DL.getTypeAllocSize(AI->getAllocatedType()) || 11001 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 11002 ArgCopyElisionCandidates.count(Arg)) { 11003 *Info = StaticAllocaInfo::Clobbered; 11004 continue; 11005 } 11006 11007 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 11008 << '\n'); 11009 11010 // Mark this alloca and store for argument copy elision. 11011 *Info = StaticAllocaInfo::Elidable; 11012 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 11013 11014 // Stop scanning if we've seen all arguments. This will happen early in -O0 11015 // builds, which is useful, because -O0 builds have large entry blocks and 11016 // many allocas. 11017 if (ArgCopyElisionCandidates.size() == NumArgs) 11018 break; 11019 } 11020 } 11021 11022 /// Try to elide argument copies from memory into a local alloca. Succeeds if 11023 /// ArgVal is a load from a suitable fixed stack object. 11024 static void tryToElideArgumentCopy( 11025 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 11026 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 11027 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 11028 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 11029 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 11030 // Check if this is a load from a fixed stack object. 11031 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 11032 if (!LNode) 11033 return; 11034 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 11035 if (!FINode) 11036 return; 11037 11038 // Check that the fixed stack object is the right size and alignment. 11039 // Look at the alignment that the user wrote on the alloca instead of looking 11040 // at the stack object. 11041 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 11042 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 11043 const AllocaInst *AI = ArgCopyIter->second.first; 11044 int FixedIndex = FINode->getIndex(); 11045 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 11046 int OldIndex = AllocaIndex; 11047 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 11048 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 11049 LLVM_DEBUG( 11050 dbgs() << " argument copy elision failed due to bad fixed stack " 11051 "object size\n"); 11052 return; 11053 } 11054 Align RequiredAlignment = AI->getAlign(); 11055 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 11056 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 11057 "greater than stack argument alignment (" 11058 << DebugStr(RequiredAlignment) << " vs " 11059 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 11060 return; 11061 } 11062 11063 // Perform the elision. Delete the old stack object and replace its only use 11064 // in the variable info map. Mark the stack object as mutable. 11065 LLVM_DEBUG({ 11066 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 11067 << " Replacing frame index " << OldIndex << " with " << FixedIndex 11068 << '\n'; 11069 }); 11070 MFI.RemoveStackObject(OldIndex); 11071 MFI.setIsImmutableObjectIndex(FixedIndex, false); 11072 AllocaIndex = FixedIndex; 11073 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 11074 for (SDValue ArgVal : ArgVals) 11075 Chains.push_back(ArgVal.getValue(1)); 11076 11077 // Avoid emitting code for the store implementing the copy. 11078 const StoreInst *SI = ArgCopyIter->second.second; 11079 ElidedArgCopyInstrs.insert(SI); 11080 11081 // Check for uses of the argument again so that we can avoid exporting ArgVal 11082 // if it is't used by anything other than the store. 11083 for (const Value *U : Arg.users()) { 11084 if (U != SI) { 11085 ArgHasUses = true; 11086 break; 11087 } 11088 } 11089 } 11090 11091 void SelectionDAGISel::LowerArguments(const Function &F) { 11092 SelectionDAG &DAG = SDB->DAG; 11093 SDLoc dl = SDB->getCurSDLoc(); 11094 const DataLayout &DL = DAG.getDataLayout(); 11095 SmallVector<ISD::InputArg, 16> Ins; 11096 11097 // In Naked functions we aren't going to save any registers. 11098 if (F.hasFnAttribute(Attribute::Naked)) 11099 return; 11100 11101 if (!FuncInfo->CanLowerReturn) { 11102 // Put in an sret pointer parameter before all the other parameters. 11103 SmallVector<EVT, 1> ValueVTs; 11104 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11105 PointerType::get(F.getContext(), 11106 DAG.getDataLayout().getAllocaAddrSpace()), 11107 ValueVTs); 11108 11109 // NOTE: Assuming that a pointer will never break down to more than one VT 11110 // or one register. 11111 ISD::ArgFlagsTy Flags; 11112 Flags.setSRet(); 11113 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 11114 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 11115 ISD::InputArg::NoArgIndex, 0); 11116 Ins.push_back(RetArg); 11117 } 11118 11119 // Look for stores of arguments to static allocas. Mark such arguments with a 11120 // flag to ask the target to give us the memory location of that argument if 11121 // available. 11122 ArgCopyElisionMapTy ArgCopyElisionCandidates; 11123 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 11124 ArgCopyElisionCandidates); 11125 11126 // Set up the incoming argument description vector. 11127 for (const Argument &Arg : F.args()) { 11128 unsigned ArgNo = Arg.getArgNo(); 11129 SmallVector<EVT, 4> ValueVTs; 11130 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11131 bool isArgValueUsed = !Arg.use_empty(); 11132 unsigned PartBase = 0; 11133 Type *FinalType = Arg.getType(); 11134 if (Arg.hasAttribute(Attribute::ByVal)) 11135 FinalType = Arg.getParamByValType(); 11136 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 11137 FinalType, F.getCallingConv(), F.isVarArg(), DL); 11138 for (unsigned Value = 0, NumValues = ValueVTs.size(); 11139 Value != NumValues; ++Value) { 11140 EVT VT = ValueVTs[Value]; 11141 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 11142 ISD::ArgFlagsTy Flags; 11143 11144 11145 if (Arg.getType()->isPointerTy()) { 11146 Flags.setPointer(); 11147 Flags.setPointerAddrSpace( 11148 cast<PointerType>(Arg.getType())->getAddressSpace()); 11149 } 11150 if (Arg.hasAttribute(Attribute::ZExt)) 11151 Flags.setZExt(); 11152 if (Arg.hasAttribute(Attribute::SExt)) 11153 Flags.setSExt(); 11154 if (Arg.hasAttribute(Attribute::InReg)) { 11155 // If we are using vectorcall calling convention, a structure that is 11156 // passed InReg - is surely an HVA 11157 if (F.getCallingConv() == CallingConv::X86_VectorCall && 11158 isa<StructType>(Arg.getType())) { 11159 // The first value of a structure is marked 11160 if (0 == Value) 11161 Flags.setHvaStart(); 11162 Flags.setHva(); 11163 } 11164 // Set InReg Flag 11165 Flags.setInReg(); 11166 } 11167 if (Arg.hasAttribute(Attribute::StructRet)) 11168 Flags.setSRet(); 11169 if (Arg.hasAttribute(Attribute::SwiftSelf)) 11170 Flags.setSwiftSelf(); 11171 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11172 Flags.setSwiftAsync(); 11173 if (Arg.hasAttribute(Attribute::SwiftError)) 11174 Flags.setSwiftError(); 11175 if (Arg.hasAttribute(Attribute::ByVal)) 11176 Flags.setByVal(); 11177 if (Arg.hasAttribute(Attribute::ByRef)) 11178 Flags.setByRef(); 11179 if (Arg.hasAttribute(Attribute::InAlloca)) { 11180 Flags.setInAlloca(); 11181 // Set the byval flag for CCAssignFn callbacks that don't know about 11182 // inalloca. This way we can know how many bytes we should've allocated 11183 // and how many bytes a callee cleanup function will pop. If we port 11184 // inalloca to more targets, we'll have to add custom inalloca handling 11185 // in the various CC lowering callbacks. 11186 Flags.setByVal(); 11187 } 11188 if (Arg.hasAttribute(Attribute::Preallocated)) { 11189 Flags.setPreallocated(); 11190 // Set the byval flag for CCAssignFn callbacks that don't know about 11191 // preallocated. This way we can know how many bytes we should've 11192 // allocated and how many bytes a callee cleanup function will pop. If 11193 // we port preallocated to more targets, we'll have to add custom 11194 // preallocated handling in the various CC lowering callbacks. 11195 Flags.setByVal(); 11196 } 11197 11198 // Certain targets (such as MIPS), may have a different ABI alignment 11199 // for a type depending on the context. Give the target a chance to 11200 // specify the alignment it wants. 11201 const Align OriginalAlignment( 11202 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11203 Flags.setOrigAlign(OriginalAlignment); 11204 11205 Align MemAlign; 11206 Type *ArgMemTy = nullptr; 11207 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11208 Flags.isByRef()) { 11209 if (!ArgMemTy) 11210 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11211 11212 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11213 11214 // For in-memory arguments, size and alignment should be passed from FE. 11215 // BE will guess if this info is not there but there are cases it cannot 11216 // get right. 11217 if (auto ParamAlign = Arg.getParamStackAlign()) 11218 MemAlign = *ParamAlign; 11219 else if ((ParamAlign = Arg.getParamAlign())) 11220 MemAlign = *ParamAlign; 11221 else 11222 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11223 if (Flags.isByRef()) 11224 Flags.setByRefSize(MemSize); 11225 else 11226 Flags.setByValSize(MemSize); 11227 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11228 MemAlign = *ParamAlign; 11229 } else { 11230 MemAlign = OriginalAlignment; 11231 } 11232 Flags.setMemAlign(MemAlign); 11233 11234 if (Arg.hasAttribute(Attribute::Nest)) 11235 Flags.setNest(); 11236 if (NeedsRegBlock) 11237 Flags.setInConsecutiveRegs(); 11238 if (ArgCopyElisionCandidates.count(&Arg)) 11239 Flags.setCopyElisionCandidate(); 11240 if (Arg.hasAttribute(Attribute::Returned)) 11241 Flags.setReturned(); 11242 11243 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11244 *CurDAG->getContext(), F.getCallingConv(), VT); 11245 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11246 *CurDAG->getContext(), F.getCallingConv(), VT); 11247 for (unsigned i = 0; i != NumRegs; ++i) { 11248 // For scalable vectors, use the minimum size; individual targets 11249 // are responsible for handling scalable vector arguments and 11250 // return values. 11251 ISD::InputArg MyFlags( 11252 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11253 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11254 if (NumRegs > 1 && i == 0) 11255 MyFlags.Flags.setSplit(); 11256 // if it isn't first piece, alignment must be 1 11257 else if (i > 0) { 11258 MyFlags.Flags.setOrigAlign(Align(1)); 11259 if (i == NumRegs - 1) 11260 MyFlags.Flags.setSplitEnd(); 11261 } 11262 Ins.push_back(MyFlags); 11263 } 11264 if (NeedsRegBlock && Value == NumValues - 1) 11265 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11266 PartBase += VT.getStoreSize().getKnownMinValue(); 11267 } 11268 } 11269 11270 // Call the target to set up the argument values. 11271 SmallVector<SDValue, 8> InVals; 11272 SDValue NewRoot = TLI->LowerFormalArguments( 11273 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11274 11275 // Verify that the target's LowerFormalArguments behaved as expected. 11276 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11277 "LowerFormalArguments didn't return a valid chain!"); 11278 assert(InVals.size() == Ins.size() && 11279 "LowerFormalArguments didn't emit the correct number of values!"); 11280 LLVM_DEBUG({ 11281 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11282 assert(InVals[i].getNode() && 11283 "LowerFormalArguments emitted a null value!"); 11284 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11285 "LowerFormalArguments emitted a value with the wrong type!"); 11286 } 11287 }); 11288 11289 // Update the DAG with the new chain value resulting from argument lowering. 11290 DAG.setRoot(NewRoot); 11291 11292 // Set up the argument values. 11293 unsigned i = 0; 11294 if (!FuncInfo->CanLowerReturn) { 11295 // Create a virtual register for the sret pointer, and put in a copy 11296 // from the sret argument into it. 11297 SmallVector<EVT, 1> ValueVTs; 11298 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11299 PointerType::get(F.getContext(), 11300 DAG.getDataLayout().getAllocaAddrSpace()), 11301 ValueVTs); 11302 MVT VT = ValueVTs[0].getSimpleVT(); 11303 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11304 std::optional<ISD::NodeType> AssertOp; 11305 SDValue ArgValue = 11306 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11307 F.getCallingConv(), AssertOp); 11308 11309 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11310 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11311 Register SRetReg = 11312 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11313 FuncInfo->DemoteRegister = SRetReg; 11314 NewRoot = 11315 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11316 DAG.setRoot(NewRoot); 11317 11318 // i indexes lowered arguments. Bump it past the hidden sret argument. 11319 ++i; 11320 } 11321 11322 SmallVector<SDValue, 4> Chains; 11323 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11324 for (const Argument &Arg : F.args()) { 11325 SmallVector<SDValue, 4> ArgValues; 11326 SmallVector<EVT, 4> ValueVTs; 11327 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11328 unsigned NumValues = ValueVTs.size(); 11329 if (NumValues == 0) 11330 continue; 11331 11332 bool ArgHasUses = !Arg.use_empty(); 11333 11334 // Elide the copying store if the target loaded this argument from a 11335 // suitable fixed stack object. 11336 if (Ins[i].Flags.isCopyElisionCandidate()) { 11337 unsigned NumParts = 0; 11338 for (EVT VT : ValueVTs) 11339 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11340 F.getCallingConv(), VT); 11341 11342 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11343 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11344 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11345 } 11346 11347 // If this argument is unused then remember its value. It is used to generate 11348 // debugging information. 11349 bool isSwiftErrorArg = 11350 TLI->supportSwiftError() && 11351 Arg.hasAttribute(Attribute::SwiftError); 11352 if (!ArgHasUses && !isSwiftErrorArg) { 11353 SDB->setUnusedArgValue(&Arg, InVals[i]); 11354 11355 // Also remember any frame index for use in FastISel. 11356 if (FrameIndexSDNode *FI = 11357 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11358 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11359 } 11360 11361 for (unsigned Val = 0; Val != NumValues; ++Val) { 11362 EVT VT = ValueVTs[Val]; 11363 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11364 F.getCallingConv(), VT); 11365 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11366 *CurDAG->getContext(), F.getCallingConv(), VT); 11367 11368 // Even an apparent 'unused' swifterror argument needs to be returned. So 11369 // we do generate a copy for it that can be used on return from the 11370 // function. 11371 if (ArgHasUses || isSwiftErrorArg) { 11372 std::optional<ISD::NodeType> AssertOp; 11373 if (Arg.hasAttribute(Attribute::SExt)) 11374 AssertOp = ISD::AssertSext; 11375 else if (Arg.hasAttribute(Attribute::ZExt)) 11376 AssertOp = ISD::AssertZext; 11377 11378 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11379 PartVT, VT, nullptr, NewRoot, 11380 F.getCallingConv(), AssertOp)); 11381 } 11382 11383 i += NumParts; 11384 } 11385 11386 // We don't need to do anything else for unused arguments. 11387 if (ArgValues.empty()) 11388 continue; 11389 11390 // Note down frame index. 11391 if (FrameIndexSDNode *FI = 11392 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11393 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11394 11395 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11396 SDB->getCurSDLoc()); 11397 11398 SDB->setValue(&Arg, Res); 11399 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11400 // We want to associate the argument with the frame index, among 11401 // involved operands, that correspond to the lowest address. The 11402 // getCopyFromParts function, called earlier, is swapping the order of 11403 // the operands to BUILD_PAIR depending on endianness. The result of 11404 // that swapping is that the least significant bits of the argument will 11405 // be in the first operand of the BUILD_PAIR node, and the most 11406 // significant bits will be in the second operand. 11407 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11408 if (LoadSDNode *LNode = 11409 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11410 if (FrameIndexSDNode *FI = 11411 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11412 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11413 } 11414 11415 // Analyses past this point are naive and don't expect an assertion. 11416 if (Res.getOpcode() == ISD::AssertZext) 11417 Res = Res.getOperand(0); 11418 11419 // Update the SwiftErrorVRegDefMap. 11420 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11421 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11422 if (Register::isVirtualRegister(Reg)) 11423 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11424 Reg); 11425 } 11426 11427 // If this argument is live outside of the entry block, insert a copy from 11428 // wherever we got it to the vreg that other BB's will reference it as. 11429 if (Res.getOpcode() == ISD::CopyFromReg) { 11430 // If we can, though, try to skip creating an unnecessary vreg. 11431 // FIXME: This isn't very clean... it would be nice to make this more 11432 // general. 11433 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11434 if (Register::isVirtualRegister(Reg)) { 11435 FuncInfo->ValueMap[&Arg] = Reg; 11436 continue; 11437 } 11438 } 11439 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11440 FuncInfo->InitializeRegForValue(&Arg); 11441 SDB->CopyToExportRegsIfNeeded(&Arg); 11442 } 11443 } 11444 11445 if (!Chains.empty()) { 11446 Chains.push_back(NewRoot); 11447 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11448 } 11449 11450 DAG.setRoot(NewRoot); 11451 11452 assert(i == InVals.size() && "Argument register count mismatch!"); 11453 11454 // If any argument copy elisions occurred and we have debug info, update the 11455 // stale frame indices used in the dbg.declare variable info table. 11456 if (!ArgCopyElisionFrameIndexMap.empty()) { 11457 for (MachineFunction::VariableDbgInfo &VI : 11458 MF->getInStackSlotVariableDbgInfo()) { 11459 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11460 if (I != ArgCopyElisionFrameIndexMap.end()) 11461 VI.updateStackSlot(I->second); 11462 } 11463 } 11464 11465 // Finally, if the target has anything special to do, allow it to do so. 11466 emitFunctionEntryCode(); 11467 } 11468 11469 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11470 /// ensure constants are generated when needed. Remember the virtual registers 11471 /// that need to be added to the Machine PHI nodes as input. We cannot just 11472 /// directly add them, because expansion might result in multiple MBB's for one 11473 /// BB. As such, the start of the BB might correspond to a different MBB than 11474 /// the end. 11475 void 11476 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11477 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11478 11479 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11480 11481 // Check PHI nodes in successors that expect a value to be available from this 11482 // block. 11483 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11484 if (!isa<PHINode>(SuccBB->begin())) continue; 11485 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11486 11487 // If this terminator has multiple identical successors (common for 11488 // switches), only handle each succ once. 11489 if (!SuccsHandled.insert(SuccMBB).second) 11490 continue; 11491 11492 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11493 11494 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11495 // nodes and Machine PHI nodes, but the incoming operands have not been 11496 // emitted yet. 11497 for (const PHINode &PN : SuccBB->phis()) { 11498 // Ignore dead phi's. 11499 if (PN.use_empty()) 11500 continue; 11501 11502 // Skip empty types 11503 if (PN.getType()->isEmptyTy()) 11504 continue; 11505 11506 unsigned Reg; 11507 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11508 11509 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11510 unsigned &RegOut = ConstantsOut[C]; 11511 if (RegOut == 0) { 11512 RegOut = FuncInfo.CreateRegs(C); 11513 // We need to zero/sign extend ConstantInt phi operands to match 11514 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11515 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11516 if (auto *CI = dyn_cast<ConstantInt>(C)) 11517 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11518 : ISD::ZERO_EXTEND; 11519 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11520 } 11521 Reg = RegOut; 11522 } else { 11523 DenseMap<const Value *, Register>::iterator I = 11524 FuncInfo.ValueMap.find(PHIOp); 11525 if (I != FuncInfo.ValueMap.end()) 11526 Reg = I->second; 11527 else { 11528 assert(isa<AllocaInst>(PHIOp) && 11529 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11530 "Didn't codegen value into a register!??"); 11531 Reg = FuncInfo.CreateRegs(PHIOp); 11532 CopyValueToVirtualRegister(PHIOp, Reg); 11533 } 11534 } 11535 11536 // Remember that this register needs to added to the machine PHI node as 11537 // the input for this MBB. 11538 SmallVector<EVT, 4> ValueVTs; 11539 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11540 for (EVT VT : ValueVTs) { 11541 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11542 for (unsigned i = 0; i != NumRegisters; ++i) 11543 FuncInfo.PHINodesToUpdate.push_back( 11544 std::make_pair(&*MBBI++, Reg + i)); 11545 Reg += NumRegisters; 11546 } 11547 } 11548 } 11549 11550 ConstantsOut.clear(); 11551 } 11552 11553 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11554 MachineFunction::iterator I(MBB); 11555 if (++I == FuncInfo.MF->end()) 11556 return nullptr; 11557 return &*I; 11558 } 11559 11560 /// During lowering new call nodes can be created (such as memset, etc.). 11561 /// Those will become new roots of the current DAG, but complications arise 11562 /// when they are tail calls. In such cases, the call lowering will update 11563 /// the root, but the builder still needs to know that a tail call has been 11564 /// lowered in order to avoid generating an additional return. 11565 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11566 // If the node is null, we do have a tail call. 11567 if (MaybeTC.getNode() != nullptr) 11568 DAG.setRoot(MaybeTC); 11569 else 11570 HasTailCall = true; 11571 } 11572 11573 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11574 MachineBasicBlock *SwitchMBB, 11575 MachineBasicBlock *DefaultMBB) { 11576 MachineFunction *CurMF = FuncInfo.MF; 11577 MachineBasicBlock *NextMBB = nullptr; 11578 MachineFunction::iterator BBI(W.MBB); 11579 if (++BBI != FuncInfo.MF->end()) 11580 NextMBB = &*BBI; 11581 11582 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11583 11584 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11585 11586 if (Size == 2 && W.MBB == SwitchMBB) { 11587 // If any two of the cases has the same destination, and if one value 11588 // is the same as the other, but has one bit unset that the other has set, 11589 // use bit manipulation to do two compares at once. For example: 11590 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11591 // TODO: This could be extended to merge any 2 cases in switches with 3 11592 // cases. 11593 // TODO: Handle cases where W.CaseBB != SwitchBB. 11594 CaseCluster &Small = *W.FirstCluster; 11595 CaseCluster &Big = *W.LastCluster; 11596 11597 if (Small.Low == Small.High && Big.Low == Big.High && 11598 Small.MBB == Big.MBB) { 11599 const APInt &SmallValue = Small.Low->getValue(); 11600 const APInt &BigValue = Big.Low->getValue(); 11601 11602 // Check that there is only one bit different. 11603 APInt CommonBit = BigValue ^ SmallValue; 11604 if (CommonBit.isPowerOf2()) { 11605 SDValue CondLHS = getValue(Cond); 11606 EVT VT = CondLHS.getValueType(); 11607 SDLoc DL = getCurSDLoc(); 11608 11609 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11610 DAG.getConstant(CommonBit, DL, VT)); 11611 SDValue Cond = DAG.getSetCC( 11612 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11613 ISD::SETEQ); 11614 11615 // Update successor info. 11616 // Both Small and Big will jump to Small.BB, so we sum up the 11617 // probabilities. 11618 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11619 if (BPI) 11620 addSuccessorWithProb( 11621 SwitchMBB, DefaultMBB, 11622 // The default destination is the first successor in IR. 11623 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11624 else 11625 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11626 11627 // Insert the true branch. 11628 SDValue BrCond = 11629 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11630 DAG.getBasicBlock(Small.MBB)); 11631 // Insert the false branch. 11632 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11633 DAG.getBasicBlock(DefaultMBB)); 11634 11635 DAG.setRoot(BrCond); 11636 return; 11637 } 11638 } 11639 } 11640 11641 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11642 // Here, we order cases by probability so the most likely case will be 11643 // checked first. However, two clusters can have the same probability in 11644 // which case their relative ordering is non-deterministic. So we use Low 11645 // as a tie-breaker as clusters are guaranteed to never overlap. 11646 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11647 [](const CaseCluster &a, const CaseCluster &b) { 11648 return a.Prob != b.Prob ? 11649 a.Prob > b.Prob : 11650 a.Low->getValue().slt(b.Low->getValue()); 11651 }); 11652 11653 // Rearrange the case blocks so that the last one falls through if possible 11654 // without changing the order of probabilities. 11655 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11656 --I; 11657 if (I->Prob > W.LastCluster->Prob) 11658 break; 11659 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11660 std::swap(*I, *W.LastCluster); 11661 break; 11662 } 11663 } 11664 } 11665 11666 // Compute total probability. 11667 BranchProbability DefaultProb = W.DefaultProb; 11668 BranchProbability UnhandledProbs = DefaultProb; 11669 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11670 UnhandledProbs += I->Prob; 11671 11672 MachineBasicBlock *CurMBB = W.MBB; 11673 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11674 bool FallthroughUnreachable = false; 11675 MachineBasicBlock *Fallthrough; 11676 if (I == W.LastCluster) { 11677 // For the last cluster, fall through to the default destination. 11678 Fallthrough = DefaultMBB; 11679 FallthroughUnreachable = isa<UnreachableInst>( 11680 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11681 } else { 11682 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11683 CurMF->insert(BBI, Fallthrough); 11684 // Put Cond in a virtual register to make it available from the new blocks. 11685 ExportFromCurrentBlock(Cond); 11686 } 11687 UnhandledProbs -= I->Prob; 11688 11689 switch (I->Kind) { 11690 case CC_JumpTable: { 11691 // FIXME: Optimize away range check based on pivot comparisons. 11692 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11693 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11694 11695 // The jump block hasn't been inserted yet; insert it here. 11696 MachineBasicBlock *JumpMBB = JT->MBB; 11697 CurMF->insert(BBI, JumpMBB); 11698 11699 auto JumpProb = I->Prob; 11700 auto FallthroughProb = UnhandledProbs; 11701 11702 // If the default statement is a target of the jump table, we evenly 11703 // distribute the default probability to successors of CurMBB. Also 11704 // update the probability on the edge from JumpMBB to Fallthrough. 11705 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11706 SE = JumpMBB->succ_end(); 11707 SI != SE; ++SI) { 11708 if (*SI == DefaultMBB) { 11709 JumpProb += DefaultProb / 2; 11710 FallthroughProb -= DefaultProb / 2; 11711 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11712 JumpMBB->normalizeSuccProbs(); 11713 break; 11714 } 11715 } 11716 11717 // If the default clause is unreachable, propagate that knowledge into 11718 // JTH->FallthroughUnreachable which will use it to suppress the range 11719 // check. 11720 // 11721 // However, don't do this if we're doing branch target enforcement, 11722 // because a table branch _without_ a range check can be a tempting JOP 11723 // gadget - out-of-bounds inputs that are impossible in correct 11724 // execution become possible again if an attacker can influence the 11725 // control flow. So if an attacker doesn't already have a BTI bypass 11726 // available, we don't want them to be able to get one out of this 11727 // table branch. 11728 if (FallthroughUnreachable) { 11729 Function &CurFunc = CurMF->getFunction(); 11730 bool HasBranchTargetEnforcement = false; 11731 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11732 HasBranchTargetEnforcement = 11733 CurFunc.getFnAttribute("branch-target-enforcement") 11734 .getValueAsBool(); 11735 } else { 11736 HasBranchTargetEnforcement = 11737 CurMF->getMMI().getModule()->getModuleFlag( 11738 "branch-target-enforcement"); 11739 } 11740 if (!HasBranchTargetEnforcement) 11741 JTH->FallthroughUnreachable = true; 11742 } 11743 11744 if (!JTH->FallthroughUnreachable) 11745 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11746 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11747 CurMBB->normalizeSuccProbs(); 11748 11749 // The jump table header will be inserted in our current block, do the 11750 // range check, and fall through to our fallthrough block. 11751 JTH->HeaderBB = CurMBB; 11752 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11753 11754 // If we're in the right place, emit the jump table header right now. 11755 if (CurMBB == SwitchMBB) { 11756 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11757 JTH->Emitted = true; 11758 } 11759 break; 11760 } 11761 case CC_BitTests: { 11762 // FIXME: Optimize away range check based on pivot comparisons. 11763 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11764 11765 // The bit test blocks haven't been inserted yet; insert them here. 11766 for (BitTestCase &BTC : BTB->Cases) 11767 CurMF->insert(BBI, BTC.ThisBB); 11768 11769 // Fill in fields of the BitTestBlock. 11770 BTB->Parent = CurMBB; 11771 BTB->Default = Fallthrough; 11772 11773 BTB->DefaultProb = UnhandledProbs; 11774 // If the cases in bit test don't form a contiguous range, we evenly 11775 // distribute the probability on the edge to Fallthrough to two 11776 // successors of CurMBB. 11777 if (!BTB->ContiguousRange) { 11778 BTB->Prob += DefaultProb / 2; 11779 BTB->DefaultProb -= DefaultProb / 2; 11780 } 11781 11782 if (FallthroughUnreachable) 11783 BTB->FallthroughUnreachable = true; 11784 11785 // If we're in the right place, emit the bit test header right now. 11786 if (CurMBB == SwitchMBB) { 11787 visitBitTestHeader(*BTB, SwitchMBB); 11788 BTB->Emitted = true; 11789 } 11790 break; 11791 } 11792 case CC_Range: { 11793 const Value *RHS, *LHS, *MHS; 11794 ISD::CondCode CC; 11795 if (I->Low == I->High) { 11796 // Check Cond == I->Low. 11797 CC = ISD::SETEQ; 11798 LHS = Cond; 11799 RHS=I->Low; 11800 MHS = nullptr; 11801 } else { 11802 // Check I->Low <= Cond <= I->High. 11803 CC = ISD::SETLE; 11804 LHS = I->Low; 11805 MHS = Cond; 11806 RHS = I->High; 11807 } 11808 11809 // If Fallthrough is unreachable, fold away the comparison. 11810 if (FallthroughUnreachable) 11811 CC = ISD::SETTRUE; 11812 11813 // The false probability is the sum of all unhandled cases. 11814 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11815 getCurSDLoc(), I->Prob, UnhandledProbs); 11816 11817 if (CurMBB == SwitchMBB) 11818 visitSwitchCase(CB, SwitchMBB); 11819 else 11820 SL->SwitchCases.push_back(CB); 11821 11822 break; 11823 } 11824 } 11825 CurMBB = Fallthrough; 11826 } 11827 } 11828 11829 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11830 const SwitchWorkListItem &W, 11831 Value *Cond, 11832 MachineBasicBlock *SwitchMBB) { 11833 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11834 "Clusters not sorted?"); 11835 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11836 11837 auto [LastLeft, FirstRight, LeftProb, RightProb] = 11838 SL->computeSplitWorkItemInfo(W); 11839 11840 // Use the first element on the right as pivot since we will make less-than 11841 // comparisons against it. 11842 CaseClusterIt PivotCluster = FirstRight; 11843 assert(PivotCluster > W.FirstCluster); 11844 assert(PivotCluster <= W.LastCluster); 11845 11846 CaseClusterIt FirstLeft = W.FirstCluster; 11847 CaseClusterIt LastRight = W.LastCluster; 11848 11849 const ConstantInt *Pivot = PivotCluster->Low; 11850 11851 // New blocks will be inserted immediately after the current one. 11852 MachineFunction::iterator BBI(W.MBB); 11853 ++BBI; 11854 11855 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11856 // we can branch to its destination directly if it's squeezed exactly in 11857 // between the known lower bound and Pivot - 1. 11858 MachineBasicBlock *LeftMBB; 11859 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11860 FirstLeft->Low == W.GE && 11861 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11862 LeftMBB = FirstLeft->MBB; 11863 } else { 11864 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11865 FuncInfo.MF->insert(BBI, LeftMBB); 11866 WorkList.push_back( 11867 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11868 // Put Cond in a virtual register to make it available from the new blocks. 11869 ExportFromCurrentBlock(Cond); 11870 } 11871 11872 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11873 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11874 // directly if RHS.High equals the current upper bound. 11875 MachineBasicBlock *RightMBB; 11876 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11877 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11878 RightMBB = FirstRight->MBB; 11879 } else { 11880 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11881 FuncInfo.MF->insert(BBI, RightMBB); 11882 WorkList.push_back( 11883 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11884 // Put Cond in a virtual register to make it available from the new blocks. 11885 ExportFromCurrentBlock(Cond); 11886 } 11887 11888 // Create the CaseBlock record that will be used to lower the branch. 11889 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11890 getCurSDLoc(), LeftProb, RightProb); 11891 11892 if (W.MBB == SwitchMBB) 11893 visitSwitchCase(CB, SwitchMBB); 11894 else 11895 SL->SwitchCases.push_back(CB); 11896 } 11897 11898 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11899 // from the swith statement. 11900 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11901 BranchProbability PeeledCaseProb) { 11902 if (PeeledCaseProb == BranchProbability::getOne()) 11903 return BranchProbability::getZero(); 11904 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11905 11906 uint32_t Numerator = CaseProb.getNumerator(); 11907 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11908 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11909 } 11910 11911 // Try to peel the top probability case if it exceeds the threshold. 11912 // Return current MachineBasicBlock for the switch statement if the peeling 11913 // does not occur. 11914 // If the peeling is performed, return the newly created MachineBasicBlock 11915 // for the peeled switch statement. Also update Clusters to remove the peeled 11916 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11917 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11918 const SwitchInst &SI, CaseClusterVector &Clusters, 11919 BranchProbability &PeeledCaseProb) { 11920 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11921 // Don't perform if there is only one cluster or optimizing for size. 11922 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11923 TM.getOptLevel() == CodeGenOptLevel::None || 11924 SwitchMBB->getParent()->getFunction().hasMinSize()) 11925 return SwitchMBB; 11926 11927 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11928 unsigned PeeledCaseIndex = 0; 11929 bool SwitchPeeled = false; 11930 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11931 CaseCluster &CC = Clusters[Index]; 11932 if (CC.Prob < TopCaseProb) 11933 continue; 11934 TopCaseProb = CC.Prob; 11935 PeeledCaseIndex = Index; 11936 SwitchPeeled = true; 11937 } 11938 if (!SwitchPeeled) 11939 return SwitchMBB; 11940 11941 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11942 << TopCaseProb << "\n"); 11943 11944 // Record the MBB for the peeled switch statement. 11945 MachineFunction::iterator BBI(SwitchMBB); 11946 ++BBI; 11947 MachineBasicBlock *PeeledSwitchMBB = 11948 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11949 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11950 11951 ExportFromCurrentBlock(SI.getCondition()); 11952 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11953 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11954 nullptr, nullptr, TopCaseProb.getCompl()}; 11955 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11956 11957 Clusters.erase(PeeledCaseIt); 11958 for (CaseCluster &CC : Clusters) { 11959 LLVM_DEBUG( 11960 dbgs() << "Scale the probablity for one cluster, before scaling: " 11961 << CC.Prob << "\n"); 11962 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11963 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11964 } 11965 PeeledCaseProb = TopCaseProb; 11966 return PeeledSwitchMBB; 11967 } 11968 11969 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11970 // Extract cases from the switch. 11971 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11972 CaseClusterVector Clusters; 11973 Clusters.reserve(SI.getNumCases()); 11974 for (auto I : SI.cases()) { 11975 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11976 const ConstantInt *CaseVal = I.getCaseValue(); 11977 BranchProbability Prob = 11978 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11979 : BranchProbability(1, SI.getNumCases() + 1); 11980 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11981 } 11982 11983 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11984 11985 // Cluster adjacent cases with the same destination. We do this at all 11986 // optimization levels because it's cheap to do and will make codegen faster 11987 // if there are many clusters. 11988 sortAndRangeify(Clusters); 11989 11990 // The branch probablity of the peeled case. 11991 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11992 MachineBasicBlock *PeeledSwitchMBB = 11993 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11994 11995 // If there is only the default destination, jump there directly. 11996 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11997 if (Clusters.empty()) { 11998 assert(PeeledSwitchMBB == SwitchMBB); 11999 SwitchMBB->addSuccessor(DefaultMBB); 12000 if (DefaultMBB != NextBlock(SwitchMBB)) { 12001 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 12002 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 12003 } 12004 return; 12005 } 12006 12007 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 12008 DAG.getBFI()); 12009 SL->findBitTestClusters(Clusters, &SI); 12010 12011 LLVM_DEBUG({ 12012 dbgs() << "Case clusters: "; 12013 for (const CaseCluster &C : Clusters) { 12014 if (C.Kind == CC_JumpTable) 12015 dbgs() << "JT:"; 12016 if (C.Kind == CC_BitTests) 12017 dbgs() << "BT:"; 12018 12019 C.Low->getValue().print(dbgs(), true); 12020 if (C.Low != C.High) { 12021 dbgs() << '-'; 12022 C.High->getValue().print(dbgs(), true); 12023 } 12024 dbgs() << ' '; 12025 } 12026 dbgs() << '\n'; 12027 }); 12028 12029 assert(!Clusters.empty()); 12030 SwitchWorkList WorkList; 12031 CaseClusterIt First = Clusters.begin(); 12032 CaseClusterIt Last = Clusters.end() - 1; 12033 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 12034 // Scale the branchprobability for DefaultMBB if the peel occurs and 12035 // DefaultMBB is not replaced. 12036 if (PeeledCaseProb != BranchProbability::getZero() && 12037 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 12038 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 12039 WorkList.push_back( 12040 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 12041 12042 while (!WorkList.empty()) { 12043 SwitchWorkListItem W = WorkList.pop_back_val(); 12044 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 12045 12046 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 12047 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 12048 // For optimized builds, lower large range as a balanced binary tree. 12049 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 12050 continue; 12051 } 12052 12053 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 12054 } 12055 } 12056 12057 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 12058 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12059 auto DL = getCurSDLoc(); 12060 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12061 setValue(&I, DAG.getStepVector(DL, ResultVT)); 12062 } 12063 12064 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 12065 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12066 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12067 12068 SDLoc DL = getCurSDLoc(); 12069 SDValue V = getValue(I.getOperand(0)); 12070 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 12071 12072 if (VT.isScalableVector()) { 12073 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 12074 return; 12075 } 12076 12077 // Use VECTOR_SHUFFLE for the fixed-length vector 12078 // to maintain existing behavior. 12079 SmallVector<int, 8> Mask; 12080 unsigned NumElts = VT.getVectorMinNumElements(); 12081 for (unsigned i = 0; i != NumElts; ++i) 12082 Mask.push_back(NumElts - 1 - i); 12083 12084 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 12085 } 12086 12087 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 12088 auto DL = getCurSDLoc(); 12089 SDValue InVec = getValue(I.getOperand(0)); 12090 EVT OutVT = 12091 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 12092 12093 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 12094 12095 // ISD Node needs the input vectors split into two equal parts 12096 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12097 DAG.getVectorIdxConstant(0, DL)); 12098 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12099 DAG.getVectorIdxConstant(OutNumElts, DL)); 12100 12101 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12102 // legalisation and combines. 12103 if (OutVT.isFixedLengthVector()) { 12104 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12105 createStrideMask(0, 2, OutNumElts)); 12106 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12107 createStrideMask(1, 2, OutNumElts)); 12108 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 12109 setValue(&I, Res); 12110 return; 12111 } 12112 12113 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 12114 DAG.getVTList(OutVT, OutVT), Lo, Hi); 12115 setValue(&I, Res); 12116 } 12117 12118 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 12119 auto DL = getCurSDLoc(); 12120 EVT InVT = getValue(I.getOperand(0)).getValueType(); 12121 SDValue InVec0 = getValue(I.getOperand(0)); 12122 SDValue InVec1 = getValue(I.getOperand(1)); 12123 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12124 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12125 12126 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12127 // legalisation and combines. 12128 if (OutVT.isFixedLengthVector()) { 12129 unsigned NumElts = InVT.getVectorMinNumElements(); 12130 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 12131 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 12132 createInterleaveMask(NumElts, 2))); 12133 return; 12134 } 12135 12136 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12137 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12138 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12139 Res.getValue(1)); 12140 setValue(&I, Res); 12141 } 12142 12143 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12144 SmallVector<EVT, 4> ValueVTs; 12145 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12146 ValueVTs); 12147 unsigned NumValues = ValueVTs.size(); 12148 if (NumValues == 0) return; 12149 12150 SmallVector<SDValue, 4> Values(NumValues); 12151 SDValue Op = getValue(I.getOperand(0)); 12152 12153 for (unsigned i = 0; i != NumValues; ++i) 12154 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12155 SDValue(Op.getNode(), Op.getResNo() + i)); 12156 12157 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12158 DAG.getVTList(ValueVTs), Values)); 12159 } 12160 12161 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12162 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12163 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12164 12165 SDLoc DL = getCurSDLoc(); 12166 SDValue V1 = getValue(I.getOperand(0)); 12167 SDValue V2 = getValue(I.getOperand(1)); 12168 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12169 12170 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12171 if (VT.isScalableVector()) { 12172 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 12173 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12174 DAG.getConstant(Imm, DL, IdxVT))); 12175 return; 12176 } 12177 12178 unsigned NumElts = VT.getVectorNumElements(); 12179 12180 uint64_t Idx = (NumElts + Imm) % NumElts; 12181 12182 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12183 SmallVector<int, 8> Mask; 12184 for (unsigned i = 0; i < NumElts; ++i) 12185 Mask.push_back(Idx + i); 12186 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12187 } 12188 12189 // Consider the following MIR after SelectionDAG, which produces output in 12190 // phyregs in the first case or virtregs in the second case. 12191 // 12192 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12193 // %5:gr32 = COPY $ebx 12194 // %6:gr32 = COPY $edx 12195 // %1:gr32 = COPY %6:gr32 12196 // %0:gr32 = COPY %5:gr32 12197 // 12198 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12199 // %1:gr32 = COPY %6:gr32 12200 // %0:gr32 = COPY %5:gr32 12201 // 12202 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12203 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12204 // 12205 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12206 // to a single virtreg (such as %0). The remaining outputs monotonically 12207 // increase in virtreg number from there. If a callbr has no outputs, then it 12208 // should not have a corresponding callbr landingpad; in fact, the callbr 12209 // landingpad would not even be able to refer to such a callbr. 12210 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12211 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12212 // There is definitely at least one copy. 12213 assert(MI->getOpcode() == TargetOpcode::COPY && 12214 "start of copy chain MUST be COPY"); 12215 Reg = MI->getOperand(1).getReg(); 12216 MI = MRI.def_begin(Reg)->getParent(); 12217 // There may be an optional second copy. 12218 if (MI->getOpcode() == TargetOpcode::COPY) { 12219 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12220 Reg = MI->getOperand(1).getReg(); 12221 assert(Reg.isPhysical() && "expected COPY of physical register"); 12222 MI = MRI.def_begin(Reg)->getParent(); 12223 } 12224 // The start of the chain must be an INLINEASM_BR. 12225 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12226 "end of copy chain MUST be INLINEASM_BR"); 12227 return Reg; 12228 } 12229 12230 // We must do this walk rather than the simpler 12231 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12232 // otherwise we will end up with copies of virtregs only valid along direct 12233 // edges. 12234 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12235 SmallVector<EVT, 8> ResultVTs; 12236 SmallVector<SDValue, 8> ResultValues; 12237 const auto *CBR = 12238 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12239 12240 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12241 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12242 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12243 12244 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12245 SDValue Chain = DAG.getRoot(); 12246 12247 // Re-parse the asm constraints string. 12248 TargetLowering::AsmOperandInfoVector TargetConstraints = 12249 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12250 for (auto &T : TargetConstraints) { 12251 SDISelAsmOperandInfo OpInfo(T); 12252 if (OpInfo.Type != InlineAsm::isOutput) 12253 continue; 12254 12255 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12256 // individual constraint. 12257 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12258 12259 switch (OpInfo.ConstraintType) { 12260 case TargetLowering::C_Register: 12261 case TargetLowering::C_RegisterClass: { 12262 // Fill in OpInfo.AssignedRegs.Regs. 12263 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12264 12265 // getRegistersForValue may produce 1 to many registers based on whether 12266 // the OpInfo.ConstraintVT is legal on the target or not. 12267 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 12268 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12269 if (Register::isPhysicalRegister(OriginalDef)) 12270 FuncInfo.MBB->addLiveIn(OriginalDef); 12271 // Update the assigned registers to use the original defs. 12272 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12273 } 12274 12275 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12276 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12277 ResultValues.push_back(V); 12278 ResultVTs.push_back(OpInfo.ConstraintVT); 12279 break; 12280 } 12281 case TargetLowering::C_Other: { 12282 SDValue Flag; 12283 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12284 OpInfo, DAG); 12285 ++InitialDef; 12286 ResultValues.push_back(V); 12287 ResultVTs.push_back(OpInfo.ConstraintVT); 12288 break; 12289 } 12290 default: 12291 break; 12292 } 12293 } 12294 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12295 DAG.getVTList(ResultVTs), ResultValues); 12296 setValue(&I, V); 12297 } 12298