xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision ad088e6724246d37fe4dfb3d2ac6f19d6d5095e9)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCStrategy.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/PseudoSourceValue.h"
45 #include "llvm/CodeGen/SelectionDAG.h"
46 #include "llvm/Analysis/DebugInfo.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetIntrinsicInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 using namespace llvm;
60 
61 /// LimitFloatPrecision - Generate low-precision inline sequences for
62 /// some float libcalls (6, 8 or 12 bits).
63 static unsigned LimitFloatPrecision;
64 
65 static cl::opt<unsigned, true>
66 LimitFPPrecision("limit-float-precision",
67                  cl::desc("Generate low-precision inline sequences "
68                           "for some float libcalls"),
69                  cl::location(LimitFloatPrecision),
70                  cl::init(0));
71 
72 // Limit the width of DAG chains. This is important in general to prevent
73 // prevent DAG-based analysis from blowing up. For example, alias analysis and
74 // load clustering may not complete in reasonable time. It is difficult to
75 // recognize and avoid this situation within each individual analysis, and
76 // future analyses are likely to have the same behavior. Limiting DAG width is
77 // the safe approach, and will be especially important with global DAGs.
78 //
79 // MaxParallelChains default is arbitrarily high to avoid affecting
80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81 // sequence over this should have been converted to llvm.memcpy by the
82 // frontend. It easy to induce this behavior with .ll code such as:
83 // %buffer = alloca [4096 x i8]
84 // %data = load [4096 x i8]* %argPtr
85 // store [4096 x i8] %data, [4096 x i8]* %buffer
86 static const unsigned MaxParallelChains = 64;
87 
88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                       const SDValue *Parts, unsigned NumParts,
90                                       EVT PartVT, EVT ValueVT);
91 
92 /// getCopyFromParts - Create a value that contains the specified legal parts
93 /// combined into the value they represent.  If the parts combine to a type
94 /// larger then ValueVT then AssertOp can be used to specify whether the extra
95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96 /// (ISD::AssertSext).
97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                 const SDValue *Parts,
99                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101   if (ValueVT.isVector())
102     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103 
104   assert(NumParts > 0 && "No parts to assemble!");
105   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106   SDValue Val = Parts[0];
107 
108   if (NumParts > 1) {
109     // Assemble the value from multiple parts.
110     if (ValueVT.isInteger()) {
111       unsigned PartBits = PartVT.getSizeInBits();
112       unsigned ValueBits = ValueVT.getSizeInBits();
113 
114       // Assemble the power of 2 part.
115       unsigned RoundParts = NumParts & (NumParts - 1) ?
116         1 << Log2_32(NumParts) : NumParts;
117       unsigned RoundBits = PartBits * RoundParts;
118       EVT RoundVT = RoundBits == ValueBits ?
119         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120       SDValue Lo, Hi;
121 
122       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123 
124       if (RoundParts > 2) {
125         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                               PartVT, HalfVT);
127         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                               RoundParts / 2, PartVT, HalfVT);
129       } else {
130         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132       }
133 
134       if (TLI.isBigEndian())
135         std::swap(Lo, Hi);
136 
137       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138 
139       if (RoundParts < NumParts) {
140         // Assemble the trailing non-power-of-2 part.
141         unsigned OddParts = NumParts - RoundParts;
142         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143         Hi = getCopyFromParts(DAG, DL,
144                               Parts + RoundParts, OddParts, PartVT, OddVT);
145 
146         // Combine the round and odd parts.
147         Lo = Val;
148         if (TLI.isBigEndian())
149           std::swap(Lo, Hi);
150         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                          TLI.getPointerTy()));
155         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157       }
158     } else if (PartVT.isFloatingPoint()) {
159       // FP split into multiple FP parts (for ppcf128)
160       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161              "Unexpected split");
162       SDValue Lo, Hi;
163       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165       if (TLI.isBigEndian())
166         std::swap(Lo, Hi);
167       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168     } else {
169       // FP split into integer parts (soft fp)
170       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171              !PartVT.isVector() && "Unexpected split");
172       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174     }
175   }
176 
177   // There is now one part, held in Val.  Correct it to match ValueVT.
178   PartVT = Val.getValueType();
179 
180   if (PartVT == ValueVT)
181     return Val;
182 
183   if (PartVT.isInteger() && ValueVT.isInteger()) {
184     if (ValueVT.bitsLT(PartVT)) {
185       // For a truncate, see if we have any information to
186       // indicate whether the truncated bits will always be
187       // zero or sign-extension.
188       if (AssertOp != ISD::DELETED_NODE)
189         Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                           DAG.getValueType(ValueVT));
191       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192     }
193     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194   }
195 
196   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197     // FP_ROUND's are always exact here.
198     if (ValueVT.bitsLT(Val.getValueType()))
199       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                          DAG.getIntPtrConstant(1));
201 
202     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203   }
204 
205   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207 
208   llvm_unreachable("Unknown mismatch!");
209   return SDValue();
210 }
211 
212 /// getCopyFromParts - Create a value that contains the specified legal parts
213 /// combined into the value they represent.  If the parts combine to a type
214 /// larger then ValueVT then AssertOp can be used to specify whether the extra
215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216 /// (ISD::AssertSext).
217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                       const SDValue *Parts, unsigned NumParts,
219                                       EVT PartVT, EVT ValueVT) {
220   assert(ValueVT.isVector() && "Not a vector value");
221   assert(NumParts > 0 && "No parts to assemble!");
222   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223   SDValue Val = Parts[0];
224 
225   // Handle a multi-element vector.
226   if (NumParts > 1) {
227     EVT IntermediateVT, RegisterVT;
228     unsigned NumIntermediates;
229     unsigned NumRegs =
230     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                                NumIntermediates, RegisterVT);
232     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233     NumParts = NumRegs; // Silence a compiler warning.
234     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235     assert(RegisterVT == Parts[0].getValueType() &&
236            "Part type doesn't match part!");
237 
238     // Assemble the parts into intermediate operands.
239     SmallVector<SDValue, 8> Ops(NumIntermediates);
240     if (NumIntermediates == NumParts) {
241       // If the register was not expanded, truncate or copy the value,
242       // as appropriate.
243       for (unsigned i = 0; i != NumParts; ++i)
244         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                   PartVT, IntermediateVT);
246     } else if (NumParts > 0) {
247       // If the intermediate type was expanded, build the intermediate
248       // operands from the parts.
249       assert(NumParts % NumIntermediates == 0 &&
250              "Must expand into a divisible number of parts!");
251       unsigned Factor = NumParts / NumIntermediates;
252       for (unsigned i = 0; i != NumIntermediates; ++i)
253         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                   PartVT, IntermediateVT);
255     }
256 
257     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258     // intermediate operands.
259     Val = DAG.getNode(IntermediateVT.isVector() ?
260                       ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                       ValueVT, &Ops[0], NumIntermediates);
262   }
263 
264   // There is now one part, held in Val.  Correct it to match ValueVT.
265   PartVT = Val.getValueType();
266 
267   if (PartVT == ValueVT)
268     return Val;
269 
270   if (PartVT.isVector()) {
271     // If the element type of the source/dest vectors are the same, but the
272     // parts vector has more elements than the value vector, then we have a
273     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274     // elements we want.
275     if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276       assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277              "Cannot narrow, it would be a lossy transformation");
278       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                          DAG.getIntPtrConstant(0));
280     }
281 
282     // Vector/Vector bitcast.
283     if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285 
286     assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287       "Cannot handle this kind of promotion");
288     // Promoted vector extract
289     bool Smaller = ValueVT.bitsLE(PartVT);
290     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                        DL, ValueVT, Val);
292 
293   }
294 
295   // Trivial bitcast if the types are the same size and the destination
296   // vector type is legal.
297   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298       TLI.isTypeLegal(ValueVT))
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle cases such as i8 -> <1 x i1>
302   assert(ValueVT.getVectorNumElements() == 1 &&
303          "Only trivial scalar-to-vector conversions should get here!");
304 
305   if (ValueVT.getVectorNumElements() == 1 &&
306       ValueVT.getVectorElementType() != PartVT) {
307     bool Smaller = ValueVT.bitsLE(PartVT);
308     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                        DL, ValueVT.getScalarType(), Val);
310   }
311 
312   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313 }
314 
315 
316 
317 
318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                  SDValue Val, SDValue *Parts, unsigned NumParts,
320                                  EVT PartVT);
321 
322 /// getCopyToParts - Create a series of nodes that contain the specified value
323 /// split into legal parts.  If the parts contain more bits than Val, then, for
324 /// integers, ExtendKind can be used to specify how to generate the extra bits.
325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                            SDValue Val, SDValue *Parts, unsigned NumParts,
327                            EVT PartVT,
328                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329   EVT ValueVT = Val.getValueType();
330 
331   // Handle the vector case separately.
332   if (ValueVT.isVector())
333     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334 
335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336   unsigned PartBits = PartVT.getSizeInBits();
337   unsigned OrigNumParts = NumParts;
338   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339 
340   if (NumParts == 0)
341     return;
342 
343   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344   if (PartVT == ValueVT) {
345     assert(NumParts == 1 && "No-op copy with multiple parts!");
346     Parts[0] = Val;
347     return;
348   }
349 
350   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351     // If the parts cover more bits than the value has, promote the value.
352     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353       assert(NumParts == 1 && "Do not know what to promote to!");
354       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355     } else {
356       assert(PartVT.isInteger() && ValueVT.isInteger() &&
357              "Unknown mismatch!");
358       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360     }
361   } else if (PartBits == ValueVT.getSizeInBits()) {
362     // Different types of the same size.
363     assert(NumParts == 1 && PartVT != ValueVT);
364     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366     // If the parts cover less bits than value has, truncate the value.
367     assert(PartVT.isInteger() && ValueVT.isInteger() &&
368            "Unknown mismatch!");
369     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371   }
372 
373   // The value may have changed - recompute ValueVT.
374   ValueVT = Val.getValueType();
375   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376          "Failed to tile the value with PartVT!");
377 
378   if (NumParts == 1) {
379     assert(PartVT == ValueVT && "Type conversion failed!");
380     Parts[0] = Val;
381     return;
382   }
383 
384   // Expand the value into multiple parts.
385   if (NumParts & (NumParts - 1)) {
386     // The number of parts is not a power of 2.  Split off and copy the tail.
387     assert(PartVT.isInteger() && ValueVT.isInteger() &&
388            "Do not know what to expand to!");
389     unsigned RoundParts = 1 << Log2_32(NumParts);
390     unsigned RoundBits = RoundParts * PartBits;
391     unsigned OddParts = NumParts - RoundParts;
392     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                  DAG.getIntPtrConstant(RoundBits));
394     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395 
396     if (TLI.isBigEndian())
397       // The odd parts were reversed by getCopyToParts - unreverse them.
398       std::reverse(Parts + RoundParts, Parts + NumParts);
399 
400     NumParts = RoundParts;
401     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403   }
404 
405   // The number of parts is a power of 2.  Repeatedly bisect the value using
406   // EXTRACT_ELEMENT.
407   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                          EVT::getIntegerVT(*DAG.getContext(),
409                                            ValueVT.getSizeInBits()),
410                          Val);
411 
412   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413     for (unsigned i = 0; i < NumParts; i += StepSize) {
414       unsigned ThisBits = StepSize * PartBits / 2;
415       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416       SDValue &Part0 = Parts[i];
417       SDValue &Part1 = Parts[i+StepSize/2];
418 
419       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                           ThisVT, Part0, DAG.getIntPtrConstant(1));
421       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                           ThisVT, Part0, DAG.getIntPtrConstant(0));
423 
424       if (ThisBits == PartBits && ThisVT != PartVT) {
425         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427       }
428     }
429   }
430 
431   if (TLI.isBigEndian())
432     std::reverse(Parts, Parts + OrigNumParts);
433 }
434 
435 
436 /// getCopyToPartsVector - Create a series of nodes that contain the specified
437 /// value split into legal parts.
438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                  SDValue Val, SDValue *Parts, unsigned NumParts,
440                                  EVT PartVT) {
441   EVT ValueVT = Val.getValueType();
442   assert(ValueVT.isVector() && "Not a vector");
443   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444 
445   if (NumParts == 1) {
446     if (PartVT == ValueVT) {
447       // Nothing to do.
448     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449       // Bitconvert vector->vector case.
450       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451     } else if (PartVT.isVector() &&
452                PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453                PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454       EVT ElementVT = PartVT.getVectorElementType();
455       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456       // undef elements.
457       SmallVector<SDValue, 16> Ops;
458       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                   ElementVT, Val, DAG.getIntPtrConstant(i)));
461 
462       for (unsigned i = ValueVT.getVectorNumElements(),
463            e = PartVT.getVectorNumElements(); i != e; ++i)
464         Ops.push_back(DAG.getUNDEF(ElementVT));
465 
466       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467 
468       // FIXME: Use CONCAT for 2x -> 4x.
469 
470       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472     } else if (PartVT.isVector() &&
473                PartVT.getVectorElementType().bitsGE(
474                  ValueVT.getVectorElementType()) &&
475                PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476 
477       // Promoted vector extract
478       bool Smaller = PartVT.bitsLE(ValueVT);
479       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480                         DL, PartVT, Val);
481     } else{
482       // Vector -> scalar conversion.
483       assert(ValueVT.getVectorNumElements() == 1 &&
484              "Only trivial vector-to-scalar conversions should get here!");
485       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                         PartVT, Val, DAG.getIntPtrConstant(0));
487 
488       bool Smaller = ValueVT.bitsLE(PartVT);
489       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490                          DL, PartVT, Val);
491     }
492 
493     Parts[0] = Val;
494     return;
495   }
496 
497   // Handle a multi-element vector.
498   EVT IntermediateVT, RegisterVT;
499   unsigned NumIntermediates;
500   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501                                                 IntermediateVT,
502                                                 NumIntermediates, RegisterVT);
503   unsigned NumElements = ValueVT.getVectorNumElements();
504 
505   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506   NumParts = NumRegs; // Silence a compiler warning.
507   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508 
509   // Split the vector into intermediate operands.
510   SmallVector<SDValue, 8> Ops(NumIntermediates);
511   for (unsigned i = 0; i != NumIntermediates; ++i) {
512     if (IntermediateVT.isVector())
513       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514                            IntermediateVT, Val,
515                    DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516     else
517       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                            IntermediateVT, Val, DAG.getIntPtrConstant(i));
519   }
520 
521   // Split the intermediate operands into legal parts.
522   if (NumParts == NumIntermediates) {
523     // If the register was not expanded, promote or copy the value,
524     // as appropriate.
525     for (unsigned i = 0; i != NumParts; ++i)
526       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527   } else if (NumParts > 0) {
528     // If the intermediate type was expanded, split each the value into
529     // legal parts.
530     assert(NumParts % NumIntermediates == 0 &&
531            "Must expand into a divisible number of parts!");
532     unsigned Factor = NumParts / NumIntermediates;
533     for (unsigned i = 0; i != NumIntermediates; ++i)
534       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535   }
536 }
537 
538 
539 
540 
541 namespace {
542   /// RegsForValue - This struct represents the registers (physical or virtual)
543   /// that a particular set of values is assigned, and the type information
544   /// about the value. The most common situation is to represent one value at a
545   /// time, but struct or array values are handled element-wise as multiple
546   /// values.  The splitting of aggregates is performed recursively, so that we
547   /// never have aggregate-typed registers. The values at this point do not
548   /// necessarily have legal types, so each value may require one or more
549   /// registers of some legal type.
550   ///
551   struct RegsForValue {
552     /// ValueVTs - The value types of the values, which may not be legal, and
553     /// may need be promoted or synthesized from one or more registers.
554     ///
555     SmallVector<EVT, 4> ValueVTs;
556 
557     /// RegVTs - The value types of the registers. This is the same size as
558     /// ValueVTs and it records, for each value, what the type of the assigned
559     /// register or registers are. (Individual values are never synthesized
560     /// from more than one type of register.)
561     ///
562     /// With virtual registers, the contents of RegVTs is redundant with TLI's
563     /// getRegisterType member function, however when with physical registers
564     /// it is necessary to have a separate record of the types.
565     ///
566     SmallVector<EVT, 4> RegVTs;
567 
568     /// Regs - This list holds the registers assigned to the values.
569     /// Each legal or promoted value requires one register, and each
570     /// expanded value requires multiple registers.
571     ///
572     SmallVector<unsigned, 4> Regs;
573 
574     RegsForValue() {}
575 
576     RegsForValue(const SmallVector<unsigned, 4> &regs,
577                  EVT regvt, EVT valuevt)
578       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579 
580     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581                  unsigned Reg, Type *Ty) {
582       ComputeValueVTs(tli, Ty, ValueVTs);
583 
584       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585         EVT ValueVT = ValueVTs[Value];
586         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587         EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588         for (unsigned i = 0; i != NumRegs; ++i)
589           Regs.push_back(Reg + i);
590         RegVTs.push_back(RegisterVT);
591         Reg += NumRegs;
592       }
593     }
594 
595     /// areValueTypesLegal - Return true if types of all the values are legal.
596     bool areValueTypesLegal(const TargetLowering &TLI) {
597       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598         EVT RegisterVT = RegVTs[Value];
599         if (!TLI.isTypeLegal(RegisterVT))
600           return false;
601       }
602       return true;
603     }
604 
605     /// append - Add the specified values to this one.
606     void append(const RegsForValue &RHS) {
607       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610     }
611 
612     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613     /// this value and returns the result as a ValueVTs value.  This uses
614     /// Chain/Flag as the input and updates them for the output Chain/Flag.
615     /// If the Flag pointer is NULL, no flag is used.
616     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617                             DebugLoc dl,
618                             SDValue &Chain, SDValue *Flag) const;
619 
620     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621     /// specified value into the registers specified by this object.  This uses
622     /// Chain/Flag as the input and updates them for the output Chain/Flag.
623     /// If the Flag pointer is NULL, no flag is used.
624     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625                        SDValue &Chain, SDValue *Flag) const;
626 
627     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628     /// operand list.  This adds the code marker, matching input operand index
629     /// (if applicable), and includes the number of values added into it.
630     void AddInlineAsmOperands(unsigned Kind,
631                               bool HasMatching, unsigned MatchingIdx,
632                               SelectionDAG &DAG,
633                               std::vector<SDValue> &Ops) const;
634   };
635 }
636 
637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638 /// this value and returns the result as a ValueVT value.  This uses
639 /// Chain/Flag as the input and updates them for the output Chain/Flag.
640 /// If the Flag pointer is NULL, no flag is used.
641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                       FunctionLoweringInfo &FuncInfo,
643                                       DebugLoc dl,
644                                       SDValue &Chain, SDValue *Flag) const {
645   // A Value with type {} or [0 x %t] needs no registers.
646   if (ValueVTs.empty())
647     return SDValue();
648 
649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650 
651   // Assemble the legal parts into the final values.
652   SmallVector<SDValue, 4> Values(ValueVTs.size());
653   SmallVector<SDValue, 8> Parts;
654   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655     // Copy the legal parts from the registers.
656     EVT ValueVT = ValueVTs[Value];
657     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658     EVT RegisterVT = RegVTs[Value];
659 
660     Parts.resize(NumRegs);
661     for (unsigned i = 0; i != NumRegs; ++i) {
662       SDValue P;
663       if (Flag == 0) {
664         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665       } else {
666         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667         *Flag = P.getValue(2);
668       }
669 
670       Chain = P.getValue(1);
671       Parts[i] = P;
672 
673       // If the source register was virtual and if we know something about it,
674       // add an assert node.
675       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676           !RegisterVT.isInteger() || RegisterVT.isVector())
677         continue;
678 
679       const FunctionLoweringInfo::LiveOutInfo *LOI =
680         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681       if (!LOI)
682         continue;
683 
684       unsigned RegSize = RegisterVT.getSizeInBits();
685       unsigned NumSignBits = LOI->NumSignBits;
686       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687 
688       // FIXME: We capture more information than the dag can represent.  For
689       // now, just use the tightest assertzext/assertsext possible.
690       bool isSExt = true;
691       EVT FromVT(MVT::Other);
692       if (NumSignBits == RegSize)
693         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
694       else if (NumZeroBits >= RegSize-1)
695         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
696       else if (NumSignBits > RegSize-8)
697         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
698       else if (NumZeroBits >= RegSize-8)
699         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
700       else if (NumSignBits > RegSize-16)
701         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
702       else if (NumZeroBits >= RegSize-16)
703         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704       else if (NumSignBits > RegSize-32)
705         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
706       else if (NumZeroBits >= RegSize-32)
707         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708       else
709         continue;
710 
711       // Add an assertion node.
712       assert(FromVT != MVT::Other);
713       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714                              RegisterVT, P, DAG.getValueType(FromVT));
715     }
716 
717     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718                                      NumRegs, RegisterVT, ValueVT);
719     Part += NumRegs;
720     Parts.clear();
721   }
722 
723   return DAG.getNode(ISD::MERGE_VALUES, dl,
724                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725                      &Values[0], ValueVTs.size());
726 }
727 
728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729 /// specified value into the registers specified by this object.  This uses
730 /// Chain/Flag as the input and updates them for the output Chain/Flag.
731 /// If the Flag pointer is NULL, no flag is used.
732 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733                                  SDValue &Chain, SDValue *Flag) const {
734   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735 
736   // Get the list of the values's legal parts.
737   unsigned NumRegs = Regs.size();
738   SmallVector<SDValue, 8> Parts(NumRegs);
739   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740     EVT ValueVT = ValueVTs[Value];
741     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742     EVT RegisterVT = RegVTs[Value];
743 
744     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745                    &Parts[Part], NumParts, RegisterVT);
746     Part += NumParts;
747   }
748 
749   // Copy the parts into the registers.
750   SmallVector<SDValue, 8> Chains(NumRegs);
751   for (unsigned i = 0; i != NumRegs; ++i) {
752     SDValue Part;
753     if (Flag == 0) {
754       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755     } else {
756       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757       *Flag = Part.getValue(1);
758     }
759 
760     Chains[i] = Part.getValue(0);
761   }
762 
763   if (NumRegs == 1 || Flag)
764     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765     // flagged to it. That is the CopyToReg nodes and the user are considered
766     // a single scheduling unit. If we create a TokenFactor and return it as
767     // chain, then the TokenFactor is both a predecessor (operand) of the
768     // user as well as a successor (the TF operands are flagged to the user).
769     // c1, f1 = CopyToReg
770     // c2, f2 = CopyToReg
771     // c3     = TokenFactor c1, c2
772     // ...
773     //        = op c3, ..., f2
774     Chain = Chains[NumRegs-1];
775   else
776     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777 }
778 
779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
780 /// operand list.  This adds the code marker and includes the number of
781 /// values added into it.
782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783                                         unsigned MatchingIdx,
784                                         SelectionDAG &DAG,
785                                         std::vector<SDValue> &Ops) const {
786   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787 
788   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789   if (HasMatching)
790     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
792   Ops.push_back(Res);
793 
794   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
795     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
796     EVT RegisterVT = RegVTs[Value];
797     for (unsigned i = 0; i != NumRegs; ++i) {
798       assert(Reg < Regs.size() && "Mismatch in # registers expected");
799       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
800     }
801   }
802 }
803 
804 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
805   AA = &aa;
806   GFI = gfi;
807   TD = DAG.getTarget().getTargetData();
808 }
809 
810 /// clear - Clear out the current SelectionDAG and the associated
811 /// state and prepare this SelectionDAGBuilder object to be used
812 /// for a new block. This doesn't clear out information about
813 /// additional blocks that are needed to complete switch lowering
814 /// or PHI node updating; that information is cleared out as it is
815 /// consumed.
816 void SelectionDAGBuilder::clear() {
817   NodeMap.clear();
818   UnusedArgNodeMap.clear();
819   PendingLoads.clear();
820   PendingExports.clear();
821   CurDebugLoc = DebugLoc();
822   HasTailCall = false;
823 }
824 
825 /// clearDanglingDebugInfo - Clear the dangling debug information
826 /// map. This function is seperated from the clear so that debug
827 /// information that is dangling in a basic block can be properly
828 /// resolved in a different basic block. This allows the
829 /// SelectionDAG to resolve dangling debug information attached
830 /// to PHI nodes.
831 void SelectionDAGBuilder::clearDanglingDebugInfo() {
832   DanglingDebugInfoMap.clear();
833 }
834 
835 /// getRoot - Return the current virtual root of the Selection DAG,
836 /// flushing any PendingLoad items. This must be done before emitting
837 /// a store or any other node that may need to be ordered after any
838 /// prior load instructions.
839 ///
840 SDValue SelectionDAGBuilder::getRoot() {
841   if (PendingLoads.empty())
842     return DAG.getRoot();
843 
844   if (PendingLoads.size() == 1) {
845     SDValue Root = PendingLoads[0];
846     DAG.setRoot(Root);
847     PendingLoads.clear();
848     return Root;
849   }
850 
851   // Otherwise, we have to make a token factor node.
852   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
853                                &PendingLoads[0], PendingLoads.size());
854   PendingLoads.clear();
855   DAG.setRoot(Root);
856   return Root;
857 }
858 
859 /// getControlRoot - Similar to getRoot, but instead of flushing all the
860 /// PendingLoad items, flush all the PendingExports items. It is necessary
861 /// to do this before emitting a terminator instruction.
862 ///
863 SDValue SelectionDAGBuilder::getControlRoot() {
864   SDValue Root = DAG.getRoot();
865 
866   if (PendingExports.empty())
867     return Root;
868 
869   // Turn all of the CopyToReg chains into one factored node.
870   if (Root.getOpcode() != ISD::EntryToken) {
871     unsigned i = 0, e = PendingExports.size();
872     for (; i != e; ++i) {
873       assert(PendingExports[i].getNode()->getNumOperands() > 1);
874       if (PendingExports[i].getNode()->getOperand(0) == Root)
875         break;  // Don't add the root if we already indirectly depend on it.
876     }
877 
878     if (i == e)
879       PendingExports.push_back(Root);
880   }
881 
882   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
883                      &PendingExports[0],
884                      PendingExports.size());
885   PendingExports.clear();
886   DAG.setRoot(Root);
887   return Root;
888 }
889 
890 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
891   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
892   DAG.AssignOrdering(Node, SDNodeOrder);
893 
894   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
895     AssignOrderingToNode(Node->getOperand(I).getNode());
896 }
897 
898 void SelectionDAGBuilder::visit(const Instruction &I) {
899   // Set up outgoing PHI node register values before emitting the terminator.
900   if (isa<TerminatorInst>(&I))
901     HandlePHINodesInSuccessorBlocks(I.getParent());
902 
903   CurDebugLoc = I.getDebugLoc();
904 
905   visit(I.getOpcode(), I);
906 
907   if (!isa<TerminatorInst>(&I) && !HasTailCall)
908     CopyToExportRegsIfNeeded(&I);
909 
910   CurDebugLoc = DebugLoc();
911 }
912 
913 void SelectionDAGBuilder::visitPHI(const PHINode &) {
914   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
915 }
916 
917 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
918   // Note: this doesn't use InstVisitor, because it has to work with
919   // ConstantExpr's in addition to instructions.
920   switch (Opcode) {
921   default: llvm_unreachable("Unknown instruction type encountered!");
922     // Build the switch statement using the Instruction.def file.
923 #define HANDLE_INST(NUM, OPCODE, CLASS) \
924     case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
925 #include "llvm/Instruction.def"
926   }
927 
928   // Assign the ordering to the freshly created DAG nodes.
929   if (NodeMap.count(&I)) {
930     ++SDNodeOrder;
931     AssignOrderingToNode(getValue(&I).getNode());
932   }
933 }
934 
935 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
936 // generate the debug data structures now that we've seen its definition.
937 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
938                                                    SDValue Val) {
939   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
940   if (DDI.getDI()) {
941     const DbgValueInst *DI = DDI.getDI();
942     DebugLoc dl = DDI.getdl();
943     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
944     MDNode *Variable = DI->getVariable();
945     uint64_t Offset = DI->getOffset();
946     SDDbgValue *SDV;
947     if (Val.getNode()) {
948       if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
949         SDV = DAG.getDbgValue(Variable, Val.getNode(),
950                               Val.getResNo(), Offset, dl, DbgSDNodeOrder);
951         DAG.AddDbgValue(SDV, Val.getNode(), false);
952       }
953     } else
954       DEBUG(dbgs() << "Dropping debug info for " << DI);
955     DanglingDebugInfoMap[V] = DanglingDebugInfo();
956   }
957 }
958 
959 // getValue - Return an SDValue for the given Value.
960 SDValue SelectionDAGBuilder::getValue(const Value *V) {
961   // If we already have an SDValue for this value, use it. It's important
962   // to do this first, so that we don't create a CopyFromReg if we already
963   // have a regular SDValue.
964   SDValue &N = NodeMap[V];
965   if (N.getNode()) return N;
966 
967   // If there's a virtual register allocated and initialized for this
968   // value, use it.
969   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
970   if (It != FuncInfo.ValueMap.end()) {
971     unsigned InReg = It->second;
972     RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
973     SDValue Chain = DAG.getEntryNode();
974     N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
975     resolveDanglingDebugInfo(V, N);
976     return N;
977   }
978 
979   // Otherwise create a new SDValue and remember it.
980   SDValue Val = getValueImpl(V);
981   NodeMap[V] = Val;
982   resolveDanglingDebugInfo(V, Val);
983   return Val;
984 }
985 
986 /// getNonRegisterValue - Return an SDValue for the given Value, but
987 /// don't look in FuncInfo.ValueMap for a virtual register.
988 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
989   // If we already have an SDValue for this value, use it.
990   SDValue &N = NodeMap[V];
991   if (N.getNode()) return N;
992 
993   // Otherwise create a new SDValue and remember it.
994   SDValue Val = getValueImpl(V);
995   NodeMap[V] = Val;
996   resolveDanglingDebugInfo(V, Val);
997   return Val;
998 }
999 
1000 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1001 /// Create an SDValue for the given value.
1002 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1003   if (const Constant *C = dyn_cast<Constant>(V)) {
1004     EVT VT = TLI.getValueType(V->getType(), true);
1005 
1006     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1007       return DAG.getConstant(*CI, VT);
1008 
1009     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1010       return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1011 
1012     if (isa<ConstantPointerNull>(C))
1013       return DAG.getConstant(0, TLI.getPointerTy());
1014 
1015     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1016       return DAG.getConstantFP(*CFP, VT);
1017 
1018     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1019       return DAG.getUNDEF(VT);
1020 
1021     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1022       visit(CE->getOpcode(), *CE);
1023       SDValue N1 = NodeMap[V];
1024       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1025       return N1;
1026     }
1027 
1028     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1029       SmallVector<SDValue, 4> Constants;
1030       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1031            OI != OE; ++OI) {
1032         SDNode *Val = getValue(*OI).getNode();
1033         // If the operand is an empty aggregate, there are no values.
1034         if (!Val) continue;
1035         // Add each leaf value from the operand to the Constants list
1036         // to form a flattened list of all the values.
1037         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1038           Constants.push_back(SDValue(Val, i));
1039       }
1040 
1041       return DAG.getMergeValues(&Constants[0], Constants.size(),
1042                                 getCurDebugLoc());
1043     }
1044 
1045     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1046       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1047              "Unknown struct or array constant!");
1048 
1049       SmallVector<EVT, 4> ValueVTs;
1050       ComputeValueVTs(TLI, C->getType(), ValueVTs);
1051       unsigned NumElts = ValueVTs.size();
1052       if (NumElts == 0)
1053         return SDValue(); // empty struct
1054       SmallVector<SDValue, 4> Constants(NumElts);
1055       for (unsigned i = 0; i != NumElts; ++i) {
1056         EVT EltVT = ValueVTs[i];
1057         if (isa<UndefValue>(C))
1058           Constants[i] = DAG.getUNDEF(EltVT);
1059         else if (EltVT.isFloatingPoint())
1060           Constants[i] = DAG.getConstantFP(0, EltVT);
1061         else
1062           Constants[i] = DAG.getConstant(0, EltVT);
1063       }
1064 
1065       return DAG.getMergeValues(&Constants[0], NumElts,
1066                                 getCurDebugLoc());
1067     }
1068 
1069     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1070       return DAG.getBlockAddress(BA, VT);
1071 
1072     VectorType *VecTy = cast<VectorType>(V->getType());
1073     unsigned NumElements = VecTy->getNumElements();
1074 
1075     // Now that we know the number and type of the elements, get that number of
1076     // elements into the Ops array based on what kind of constant it is.
1077     SmallVector<SDValue, 16> Ops;
1078     if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1079       for (unsigned i = 0; i != NumElements; ++i)
1080         Ops.push_back(getValue(CP->getOperand(i)));
1081     } else {
1082       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1083       EVT EltVT = TLI.getValueType(VecTy->getElementType());
1084 
1085       SDValue Op;
1086       if (EltVT.isFloatingPoint())
1087         Op = DAG.getConstantFP(0, EltVT);
1088       else
1089         Op = DAG.getConstant(0, EltVT);
1090       Ops.assign(NumElements, Op);
1091     }
1092 
1093     // Create a BUILD_VECTOR node.
1094     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1095                                     VT, &Ops[0], Ops.size());
1096   }
1097 
1098   // If this is a static alloca, generate it as the frameindex instead of
1099   // computation.
1100   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1101     DenseMap<const AllocaInst*, int>::iterator SI =
1102       FuncInfo.StaticAllocaMap.find(AI);
1103     if (SI != FuncInfo.StaticAllocaMap.end())
1104       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1105   }
1106 
1107   // If this is an instruction which fast-isel has deferred, select it now.
1108   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1109     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1110     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1111     SDValue Chain = DAG.getEntryNode();
1112     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1113   }
1114 
1115   llvm_unreachable("Can't get register for value!");
1116   return SDValue();
1117 }
1118 
1119 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1120   SDValue Chain = getControlRoot();
1121   SmallVector<ISD::OutputArg, 8> Outs;
1122   SmallVector<SDValue, 8> OutVals;
1123 
1124   if (!FuncInfo.CanLowerReturn) {
1125     unsigned DemoteReg = FuncInfo.DemoteRegister;
1126     const Function *F = I.getParent()->getParent();
1127 
1128     // Emit a store of the return value through the virtual register.
1129     // Leave Outs empty so that LowerReturn won't try to load return
1130     // registers the usual way.
1131     SmallVector<EVT, 1> PtrValueVTs;
1132     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1133                     PtrValueVTs);
1134 
1135     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1136     SDValue RetOp = getValue(I.getOperand(0));
1137 
1138     SmallVector<EVT, 4> ValueVTs;
1139     SmallVector<uint64_t, 4> Offsets;
1140     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1141     unsigned NumValues = ValueVTs.size();
1142 
1143     SmallVector<SDValue, 4> Chains(NumValues);
1144     for (unsigned i = 0; i != NumValues; ++i) {
1145       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1146                                 RetPtr.getValueType(), RetPtr,
1147                                 DAG.getIntPtrConstant(Offsets[i]));
1148       Chains[i] =
1149         DAG.getStore(Chain, getCurDebugLoc(),
1150                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1151                      // FIXME: better loc info would be nice.
1152                      Add, MachinePointerInfo(), false, false, 0);
1153     }
1154 
1155     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1156                         MVT::Other, &Chains[0], NumValues);
1157   } else if (I.getNumOperands() != 0) {
1158     SmallVector<EVT, 4> ValueVTs;
1159     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1160     unsigned NumValues = ValueVTs.size();
1161     if (NumValues) {
1162       SDValue RetOp = getValue(I.getOperand(0));
1163       for (unsigned j = 0, f = NumValues; j != f; ++j) {
1164         EVT VT = ValueVTs[j];
1165 
1166         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1167 
1168         const Function *F = I.getParent()->getParent();
1169         if (F->paramHasAttr(0, Attribute::SExt))
1170           ExtendKind = ISD::SIGN_EXTEND;
1171         else if (F->paramHasAttr(0, Attribute::ZExt))
1172           ExtendKind = ISD::ZERO_EXTEND;
1173 
1174         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1175           VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1176 
1177         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1178         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1179         SmallVector<SDValue, 4> Parts(NumParts);
1180         getCopyToParts(DAG, getCurDebugLoc(),
1181                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1182                        &Parts[0], NumParts, PartVT, ExtendKind);
1183 
1184         // 'inreg' on function refers to return value
1185         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1186         if (F->paramHasAttr(0, Attribute::InReg))
1187           Flags.setInReg();
1188 
1189         // Propagate extension type if any
1190         if (ExtendKind == ISD::SIGN_EXTEND)
1191           Flags.setSExt();
1192         else if (ExtendKind == ISD::ZERO_EXTEND)
1193           Flags.setZExt();
1194 
1195         for (unsigned i = 0; i < NumParts; ++i) {
1196           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1197                                         /*isfixed=*/true));
1198           OutVals.push_back(Parts[i]);
1199         }
1200       }
1201     }
1202   }
1203 
1204   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1205   CallingConv::ID CallConv =
1206     DAG.getMachineFunction().getFunction()->getCallingConv();
1207   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1208                           Outs, OutVals, getCurDebugLoc(), DAG);
1209 
1210   // Verify that the target's LowerReturn behaved as expected.
1211   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1212          "LowerReturn didn't return a valid chain!");
1213 
1214   // Update the DAG with the new chain value resulting from return lowering.
1215   DAG.setRoot(Chain);
1216 }
1217 
1218 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1219 /// created for it, emit nodes to copy the value into the virtual
1220 /// registers.
1221 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1222   // Skip empty types
1223   if (V->getType()->isEmptyTy())
1224     return;
1225 
1226   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1227   if (VMI != FuncInfo.ValueMap.end()) {
1228     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1229     CopyValueToVirtualRegister(V, VMI->second);
1230   }
1231 }
1232 
1233 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1234 /// the current basic block, add it to ValueMap now so that we'll get a
1235 /// CopyTo/FromReg.
1236 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1237   // No need to export constants.
1238   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1239 
1240   // Already exported?
1241   if (FuncInfo.isExportedInst(V)) return;
1242 
1243   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1244   CopyValueToVirtualRegister(V, Reg);
1245 }
1246 
1247 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1248                                                      const BasicBlock *FromBB) {
1249   // The operands of the setcc have to be in this block.  We don't know
1250   // how to export them from some other block.
1251   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1252     // Can export from current BB.
1253     if (VI->getParent() == FromBB)
1254       return true;
1255 
1256     // Is already exported, noop.
1257     return FuncInfo.isExportedInst(V);
1258   }
1259 
1260   // If this is an argument, we can export it if the BB is the entry block or
1261   // if it is already exported.
1262   if (isa<Argument>(V)) {
1263     if (FromBB == &FromBB->getParent()->getEntryBlock())
1264       return true;
1265 
1266     // Otherwise, can only export this if it is already exported.
1267     return FuncInfo.isExportedInst(V);
1268   }
1269 
1270   // Otherwise, constants can always be exported.
1271   return true;
1272 }
1273 
1274 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1275 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1276                                             MachineBasicBlock *Dst) {
1277   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1278   if (!BPI)
1279     return 0;
1280   const BasicBlock *SrcBB = Src->getBasicBlock();
1281   const BasicBlock *DstBB = Dst->getBasicBlock();
1282   return BPI->getEdgeWeight(SrcBB, DstBB);
1283 }
1284 
1285 void SelectionDAGBuilder::
1286 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1287                        uint32_t Weight /* = 0 */) {
1288   if (!Weight)
1289     Weight = getEdgeWeight(Src, Dst);
1290   Src->addSuccessor(Dst, Weight);
1291 }
1292 
1293 
1294 static bool InBlock(const Value *V, const BasicBlock *BB) {
1295   if (const Instruction *I = dyn_cast<Instruction>(V))
1296     return I->getParent() == BB;
1297   return true;
1298 }
1299 
1300 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1301 /// This function emits a branch and is used at the leaves of an OR or an
1302 /// AND operator tree.
1303 ///
1304 void
1305 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1306                                                   MachineBasicBlock *TBB,
1307                                                   MachineBasicBlock *FBB,
1308                                                   MachineBasicBlock *CurBB,
1309                                                   MachineBasicBlock *SwitchBB) {
1310   const BasicBlock *BB = CurBB->getBasicBlock();
1311 
1312   // If the leaf of the tree is a comparison, merge the condition into
1313   // the caseblock.
1314   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1315     // The operands of the cmp have to be in this block.  We don't know
1316     // how to export them from some other block.  If this is the first block
1317     // of the sequence, no exporting is needed.
1318     if (CurBB == SwitchBB ||
1319         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1320          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1321       ISD::CondCode Condition;
1322       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1323         Condition = getICmpCondCode(IC->getPredicate());
1324       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1325         Condition = getFCmpCondCode(FC->getPredicate());
1326       } else {
1327         Condition = ISD::SETEQ; // silence warning.
1328         llvm_unreachable("Unknown compare instruction");
1329       }
1330 
1331       CaseBlock CB(Condition, BOp->getOperand(0),
1332                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1333       SwitchCases.push_back(CB);
1334       return;
1335     }
1336   }
1337 
1338   // Create a CaseBlock record representing this branch.
1339   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1340                NULL, TBB, FBB, CurBB);
1341   SwitchCases.push_back(CB);
1342 }
1343 
1344 /// FindMergedConditions - If Cond is an expression like
1345 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1346                                                MachineBasicBlock *TBB,
1347                                                MachineBasicBlock *FBB,
1348                                                MachineBasicBlock *CurBB,
1349                                                MachineBasicBlock *SwitchBB,
1350                                                unsigned Opc) {
1351   // If this node is not part of the or/and tree, emit it as a branch.
1352   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1353   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1354       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1355       BOp->getParent() != CurBB->getBasicBlock() ||
1356       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1357       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1358     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1359     return;
1360   }
1361 
1362   //  Create TmpBB after CurBB.
1363   MachineFunction::iterator BBI = CurBB;
1364   MachineFunction &MF = DAG.getMachineFunction();
1365   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1366   CurBB->getParent()->insert(++BBI, TmpBB);
1367 
1368   if (Opc == Instruction::Or) {
1369     // Codegen X | Y as:
1370     //   jmp_if_X TBB
1371     //   jmp TmpBB
1372     // TmpBB:
1373     //   jmp_if_Y TBB
1374     //   jmp FBB
1375     //
1376 
1377     // Emit the LHS condition.
1378     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1379 
1380     // Emit the RHS condition into TmpBB.
1381     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1382   } else {
1383     assert(Opc == Instruction::And && "Unknown merge op!");
1384     // Codegen X & Y as:
1385     //   jmp_if_X TmpBB
1386     //   jmp FBB
1387     // TmpBB:
1388     //   jmp_if_Y TBB
1389     //   jmp FBB
1390     //
1391     //  This requires creation of TmpBB after CurBB.
1392 
1393     // Emit the LHS condition.
1394     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1395 
1396     // Emit the RHS condition into TmpBB.
1397     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1398   }
1399 }
1400 
1401 /// If the set of cases should be emitted as a series of branches, return true.
1402 /// If we should emit this as a bunch of and/or'd together conditions, return
1403 /// false.
1404 bool
1405 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1406   if (Cases.size() != 2) return true;
1407 
1408   // If this is two comparisons of the same values or'd or and'd together, they
1409   // will get folded into a single comparison, so don't emit two blocks.
1410   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1411        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1412       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1413        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1414     return false;
1415   }
1416 
1417   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1418   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1419   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1420       Cases[0].CC == Cases[1].CC &&
1421       isa<Constant>(Cases[0].CmpRHS) &&
1422       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1423     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1424       return false;
1425     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1426       return false;
1427   }
1428 
1429   return true;
1430 }
1431 
1432 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1433   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1434 
1435   // Update machine-CFG edges.
1436   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1437 
1438   // Figure out which block is immediately after the current one.
1439   MachineBasicBlock *NextBlock = 0;
1440   MachineFunction::iterator BBI = BrMBB;
1441   if (++BBI != FuncInfo.MF->end())
1442     NextBlock = BBI;
1443 
1444   if (I.isUnconditional()) {
1445     // Update machine-CFG edges.
1446     BrMBB->addSuccessor(Succ0MBB);
1447 
1448     // If this is not a fall-through branch, emit the branch.
1449     if (Succ0MBB != NextBlock)
1450       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1451                               MVT::Other, getControlRoot(),
1452                               DAG.getBasicBlock(Succ0MBB)));
1453 
1454     return;
1455   }
1456 
1457   // If this condition is one of the special cases we handle, do special stuff
1458   // now.
1459   const Value *CondVal = I.getCondition();
1460   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1461 
1462   // If this is a series of conditions that are or'd or and'd together, emit
1463   // this as a sequence of branches instead of setcc's with and/or operations.
1464   // As long as jumps are not expensive, this should improve performance.
1465   // For example, instead of something like:
1466   //     cmp A, B
1467   //     C = seteq
1468   //     cmp D, E
1469   //     F = setle
1470   //     or C, F
1471   //     jnz foo
1472   // Emit:
1473   //     cmp A, B
1474   //     je foo
1475   //     cmp D, E
1476   //     jle foo
1477   //
1478   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1479     if (!TLI.isJumpExpensive() &&
1480         BOp->hasOneUse() &&
1481         (BOp->getOpcode() == Instruction::And ||
1482          BOp->getOpcode() == Instruction::Or)) {
1483       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1484                            BOp->getOpcode());
1485       // If the compares in later blocks need to use values not currently
1486       // exported from this block, export them now.  This block should always
1487       // be the first entry.
1488       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1489 
1490       // Allow some cases to be rejected.
1491       if (ShouldEmitAsBranches(SwitchCases)) {
1492         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1493           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1494           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1495         }
1496 
1497         // Emit the branch for this block.
1498         visitSwitchCase(SwitchCases[0], BrMBB);
1499         SwitchCases.erase(SwitchCases.begin());
1500         return;
1501       }
1502 
1503       // Okay, we decided not to do this, remove any inserted MBB's and clear
1504       // SwitchCases.
1505       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1506         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1507 
1508       SwitchCases.clear();
1509     }
1510   }
1511 
1512   // Create a CaseBlock record representing this branch.
1513   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1514                NULL, Succ0MBB, Succ1MBB, BrMBB);
1515 
1516   // Use visitSwitchCase to actually insert the fast branch sequence for this
1517   // cond branch.
1518   visitSwitchCase(CB, BrMBB);
1519 }
1520 
1521 /// visitSwitchCase - Emits the necessary code to represent a single node in
1522 /// the binary search tree resulting from lowering a switch instruction.
1523 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1524                                           MachineBasicBlock *SwitchBB) {
1525   SDValue Cond;
1526   SDValue CondLHS = getValue(CB.CmpLHS);
1527   DebugLoc dl = getCurDebugLoc();
1528 
1529   // Build the setcc now.
1530   if (CB.CmpMHS == NULL) {
1531     // Fold "(X == true)" to X and "(X == false)" to !X to
1532     // handle common cases produced by branch lowering.
1533     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1534         CB.CC == ISD::SETEQ)
1535       Cond = CondLHS;
1536     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1537              CB.CC == ISD::SETEQ) {
1538       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1539       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1540     } else
1541       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1542   } else {
1543     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1544 
1545     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1546     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1547 
1548     SDValue CmpOp = getValue(CB.CmpMHS);
1549     EVT VT = CmpOp.getValueType();
1550 
1551     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1552       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1553                           ISD::SETLE);
1554     } else {
1555       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1556                                 VT, CmpOp, DAG.getConstant(Low, VT));
1557       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1558                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1559     }
1560   }
1561 
1562   // Update successor info
1563   addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1564   addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1565 
1566   // Set NextBlock to be the MBB immediately after the current one, if any.
1567   // This is used to avoid emitting unnecessary branches to the next block.
1568   MachineBasicBlock *NextBlock = 0;
1569   MachineFunction::iterator BBI = SwitchBB;
1570   if (++BBI != FuncInfo.MF->end())
1571     NextBlock = BBI;
1572 
1573   // If the lhs block is the next block, invert the condition so that we can
1574   // fall through to the lhs instead of the rhs block.
1575   if (CB.TrueBB == NextBlock) {
1576     std::swap(CB.TrueBB, CB.FalseBB);
1577     SDValue True = DAG.getConstant(1, Cond.getValueType());
1578     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1579   }
1580 
1581   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1582                                MVT::Other, getControlRoot(), Cond,
1583                                DAG.getBasicBlock(CB.TrueBB));
1584 
1585   // Insert the false branch. Do this even if it's a fall through branch,
1586   // this makes it easier to do DAG optimizations which require inverting
1587   // the branch condition.
1588   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1589                        DAG.getBasicBlock(CB.FalseBB));
1590 
1591   DAG.setRoot(BrCond);
1592 }
1593 
1594 /// visitJumpTable - Emit JumpTable node in the current MBB
1595 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1596   // Emit the code for the jump table
1597   assert(JT.Reg != -1U && "Should lower JT Header first!");
1598   EVT PTy = TLI.getPointerTy();
1599   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1600                                      JT.Reg, PTy);
1601   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1602   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1603                                     MVT::Other, Index.getValue(1),
1604                                     Table, Index);
1605   DAG.setRoot(BrJumpTable);
1606 }
1607 
1608 /// visitJumpTableHeader - This function emits necessary code to produce index
1609 /// in the JumpTable from switch case.
1610 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1611                                                JumpTableHeader &JTH,
1612                                                MachineBasicBlock *SwitchBB) {
1613   // Subtract the lowest switch case value from the value being switched on and
1614   // conditional branch to default mbb if the result is greater than the
1615   // difference between smallest and largest cases.
1616   SDValue SwitchOp = getValue(JTH.SValue);
1617   EVT VT = SwitchOp.getValueType();
1618   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1619                             DAG.getConstant(JTH.First, VT));
1620 
1621   // The SDNode we just created, which holds the value being switched on minus
1622   // the smallest case value, needs to be copied to a virtual register so it
1623   // can be used as an index into the jump table in a subsequent basic block.
1624   // This value may be smaller or larger than the target's pointer type, and
1625   // therefore require extension or truncating.
1626   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1627 
1628   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1629   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1630                                     JumpTableReg, SwitchOp);
1631   JT.Reg = JumpTableReg;
1632 
1633   // Emit the range check for the jump table, and branch to the default block
1634   // for the switch statement if the value being switched on exceeds the largest
1635   // case in the switch.
1636   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1637                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
1638                              DAG.getConstant(JTH.Last-JTH.First,VT),
1639                              ISD::SETUGT);
1640 
1641   // Set NextBlock to be the MBB immediately after the current one, if any.
1642   // This is used to avoid emitting unnecessary branches to the next block.
1643   MachineBasicBlock *NextBlock = 0;
1644   MachineFunction::iterator BBI = SwitchBB;
1645 
1646   if (++BBI != FuncInfo.MF->end())
1647     NextBlock = BBI;
1648 
1649   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1650                                MVT::Other, CopyTo, CMP,
1651                                DAG.getBasicBlock(JT.Default));
1652 
1653   if (JT.MBB != NextBlock)
1654     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1655                          DAG.getBasicBlock(JT.MBB));
1656 
1657   DAG.setRoot(BrCond);
1658 }
1659 
1660 /// visitBitTestHeader - This function emits necessary code to produce value
1661 /// suitable for "bit tests"
1662 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1663                                              MachineBasicBlock *SwitchBB) {
1664   // Subtract the minimum value
1665   SDValue SwitchOp = getValue(B.SValue);
1666   EVT VT = SwitchOp.getValueType();
1667   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1668                             DAG.getConstant(B.First, VT));
1669 
1670   // Check range
1671   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1672                                   TLI.getSetCCResultType(Sub.getValueType()),
1673                                   Sub, DAG.getConstant(B.Range, VT),
1674                                   ISD::SETUGT);
1675 
1676   // Determine the type of the test operands.
1677   bool UsePtrType = false;
1678   if (!TLI.isTypeLegal(VT))
1679     UsePtrType = true;
1680   else {
1681     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1682       if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1683         // Switch table case range are encoded into series of masks.
1684         // Just use pointer type, it's guaranteed to fit.
1685         UsePtrType = true;
1686         break;
1687       }
1688   }
1689   if (UsePtrType) {
1690     VT = TLI.getPointerTy();
1691     Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1692   }
1693 
1694   B.RegVT = VT;
1695   B.Reg = FuncInfo.CreateReg(VT);
1696   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1697                                     B.Reg, Sub);
1698 
1699   // Set NextBlock to be the MBB immediately after the current one, if any.
1700   // This is used to avoid emitting unnecessary branches to the next block.
1701   MachineBasicBlock *NextBlock = 0;
1702   MachineFunction::iterator BBI = SwitchBB;
1703   if (++BBI != FuncInfo.MF->end())
1704     NextBlock = BBI;
1705 
1706   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1707 
1708   addSuccessorWithWeight(SwitchBB, B.Default);
1709   addSuccessorWithWeight(SwitchBB, MBB);
1710 
1711   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1712                                 MVT::Other, CopyTo, RangeCmp,
1713                                 DAG.getBasicBlock(B.Default));
1714 
1715   if (MBB != NextBlock)
1716     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1717                           DAG.getBasicBlock(MBB));
1718 
1719   DAG.setRoot(BrRange);
1720 }
1721 
1722 /// visitBitTestCase - this function produces one "bit test"
1723 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1724                                            MachineBasicBlock* NextMBB,
1725                                            unsigned Reg,
1726                                            BitTestCase &B,
1727                                            MachineBasicBlock *SwitchBB) {
1728   EVT VT = BB.RegVT;
1729   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1730                                        Reg, VT);
1731   SDValue Cmp;
1732   unsigned PopCount = CountPopulation_64(B.Mask);
1733   if (PopCount == 1) {
1734     // Testing for a single bit; just compare the shift count with what it
1735     // would need to be to shift a 1 bit in that position.
1736     Cmp = DAG.getSetCC(getCurDebugLoc(),
1737                        TLI.getSetCCResultType(VT),
1738                        ShiftOp,
1739                        DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1740                        ISD::SETEQ);
1741   } else if (PopCount == BB.Range) {
1742     // There is only one zero bit in the range, test for it directly.
1743     Cmp = DAG.getSetCC(getCurDebugLoc(),
1744                        TLI.getSetCCResultType(VT),
1745                        ShiftOp,
1746                        DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1747                        ISD::SETNE);
1748   } else {
1749     // Make desired shift
1750     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1751                                     DAG.getConstant(1, VT), ShiftOp);
1752 
1753     // Emit bit tests and jumps
1754     SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1755                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1756     Cmp = DAG.getSetCC(getCurDebugLoc(),
1757                        TLI.getSetCCResultType(VT),
1758                        AndOp, DAG.getConstant(0, VT),
1759                        ISD::SETNE);
1760   }
1761 
1762   addSuccessorWithWeight(SwitchBB, B.TargetBB);
1763   addSuccessorWithWeight(SwitchBB, NextMBB);
1764 
1765   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1766                               MVT::Other, getControlRoot(),
1767                               Cmp, DAG.getBasicBlock(B.TargetBB));
1768 
1769   // Set NextBlock to be the MBB immediately after the current one, if any.
1770   // This is used to avoid emitting unnecessary branches to the next block.
1771   MachineBasicBlock *NextBlock = 0;
1772   MachineFunction::iterator BBI = SwitchBB;
1773   if (++BBI != FuncInfo.MF->end())
1774     NextBlock = BBI;
1775 
1776   if (NextMBB != NextBlock)
1777     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1778                         DAG.getBasicBlock(NextMBB));
1779 
1780   DAG.setRoot(BrAnd);
1781 }
1782 
1783 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1784   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1785 
1786   // Retrieve successors.
1787   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1788   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1789 
1790   const Value *Callee(I.getCalledValue());
1791   if (isa<InlineAsm>(Callee))
1792     visitInlineAsm(&I);
1793   else
1794     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1795 
1796   // If the value of the invoke is used outside of its defining block, make it
1797   // available as a virtual register.
1798   CopyToExportRegsIfNeeded(&I);
1799 
1800   // Update successor info
1801   InvokeMBB->addSuccessor(Return);
1802   InvokeMBB->addSuccessor(LandingPad);
1803 
1804   // Drop into normal successor.
1805   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1806                           MVT::Other, getControlRoot(),
1807                           DAG.getBasicBlock(Return)));
1808 }
1809 
1810 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1811 }
1812 
1813 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1814 /// small case ranges).
1815 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1816                                                  CaseRecVector& WorkList,
1817                                                  const Value* SV,
1818                                                  MachineBasicBlock *Default,
1819                                                  MachineBasicBlock *SwitchBB) {
1820   Case& BackCase  = *(CR.Range.second-1);
1821 
1822   // Size is the number of Cases represented by this range.
1823   size_t Size = CR.Range.second - CR.Range.first;
1824   if (Size > 3)
1825     return false;
1826 
1827   // Get the MachineFunction which holds the current MBB.  This is used when
1828   // inserting any additional MBBs necessary to represent the switch.
1829   MachineFunction *CurMF = FuncInfo.MF;
1830 
1831   // Figure out which block is immediately after the current one.
1832   MachineBasicBlock *NextBlock = 0;
1833   MachineFunction::iterator BBI = CR.CaseBB;
1834 
1835   if (++BBI != FuncInfo.MF->end())
1836     NextBlock = BBI;
1837 
1838   // If any two of the cases has the same destination, and if one value
1839   // is the same as the other, but has one bit unset that the other has set,
1840   // use bit manipulation to do two compares at once.  For example:
1841   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1842   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1843   // TODO: Handle cases where CR.CaseBB != SwitchBB.
1844   if (Size == 2 && CR.CaseBB == SwitchBB) {
1845     Case &Small = *CR.Range.first;
1846     Case &Big = *(CR.Range.second-1);
1847 
1848     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1849       const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1850       const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1851 
1852       // Check that there is only one bit different.
1853       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1854           (SmallValue | BigValue) == BigValue) {
1855         // Isolate the common bit.
1856         APInt CommonBit = BigValue & ~SmallValue;
1857         assert((SmallValue | CommonBit) == BigValue &&
1858                CommonBit.countPopulation() == 1 && "Not a common bit?");
1859 
1860         SDValue CondLHS = getValue(SV);
1861         EVT VT = CondLHS.getValueType();
1862         DebugLoc DL = getCurDebugLoc();
1863 
1864         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1865                                  DAG.getConstant(CommonBit, VT));
1866         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1867                                     Or, DAG.getConstant(BigValue, VT),
1868                                     ISD::SETEQ);
1869 
1870         // Update successor info.
1871         addSuccessorWithWeight(SwitchBB, Small.BB);
1872         addSuccessorWithWeight(SwitchBB, Default);
1873 
1874         // Insert the true branch.
1875         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1876                                      getControlRoot(), Cond,
1877                                      DAG.getBasicBlock(Small.BB));
1878 
1879         // Insert the false branch.
1880         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1881                              DAG.getBasicBlock(Default));
1882 
1883         DAG.setRoot(BrCond);
1884         return true;
1885       }
1886     }
1887   }
1888 
1889   // Rearrange the case blocks so that the last one falls through if possible.
1890   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1891     // The last case block won't fall through into 'NextBlock' if we emit the
1892     // branches in this order.  See if rearranging a case value would help.
1893     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1894       if (I->BB == NextBlock) {
1895         std::swap(*I, BackCase);
1896         break;
1897       }
1898     }
1899   }
1900 
1901   // Create a CaseBlock record representing a conditional branch to
1902   // the Case's target mbb if the value being switched on SV is equal
1903   // to C.
1904   MachineBasicBlock *CurBlock = CR.CaseBB;
1905   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1906     MachineBasicBlock *FallThrough;
1907     if (I != E-1) {
1908       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1909       CurMF->insert(BBI, FallThrough);
1910 
1911       // Put SV in a virtual register to make it available from the new blocks.
1912       ExportFromCurrentBlock(SV);
1913     } else {
1914       // If the last case doesn't match, go to the default block.
1915       FallThrough = Default;
1916     }
1917 
1918     const Value *RHS, *LHS, *MHS;
1919     ISD::CondCode CC;
1920     if (I->High == I->Low) {
1921       // This is just small small case range :) containing exactly 1 case
1922       CC = ISD::SETEQ;
1923       LHS = SV; RHS = I->High; MHS = NULL;
1924     } else {
1925       CC = ISD::SETLE;
1926       LHS = I->Low; MHS = SV; RHS = I->High;
1927     }
1928 
1929     uint32_t ExtraWeight = I->ExtraWeight;
1930     CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
1931                  /* me */ CurBlock,
1932                  /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
1933 
1934     // If emitting the first comparison, just call visitSwitchCase to emit the
1935     // code into the current block.  Otherwise, push the CaseBlock onto the
1936     // vector to be later processed by SDISel, and insert the node's MBB
1937     // before the next MBB.
1938     if (CurBlock == SwitchBB)
1939       visitSwitchCase(CB, SwitchBB);
1940     else
1941       SwitchCases.push_back(CB);
1942 
1943     CurBlock = FallThrough;
1944   }
1945 
1946   return true;
1947 }
1948 
1949 static inline bool areJTsAllowed(const TargetLowering &TLI) {
1950   return !DisableJumpTables &&
1951           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1952            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1953 }
1954 
1955 static APInt ComputeRange(const APInt &First, const APInt &Last) {
1956   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1957   APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1958   return (LastExt - FirstExt + 1ULL);
1959 }
1960 
1961 /// handleJTSwitchCase - Emit jumptable for current switch case range
1962 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1963                                              CaseRecVector& WorkList,
1964                                              const Value* SV,
1965                                              MachineBasicBlock* Default,
1966                                              MachineBasicBlock *SwitchBB) {
1967   Case& FrontCase = *CR.Range.first;
1968   Case& BackCase  = *(CR.Range.second-1);
1969 
1970   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1971   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1972 
1973   APInt TSize(First.getBitWidth(), 0);
1974   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1975        I!=E; ++I)
1976     TSize += I->size();
1977 
1978   if (!areJTsAllowed(TLI) || TSize.ult(4))
1979     return false;
1980 
1981   APInt Range = ComputeRange(First, Last);
1982   double Density = TSize.roundToDouble() / Range.roundToDouble();
1983   if (Density < 0.4)
1984     return false;
1985 
1986   DEBUG(dbgs() << "Lowering jump table\n"
1987                << "First entry: " << First << ". Last entry: " << Last << '\n'
1988                << "Range: " << Range
1989                << ". Size: " << TSize << ". Density: " << Density << "\n\n");
1990 
1991   // Get the MachineFunction which holds the current MBB.  This is used when
1992   // inserting any additional MBBs necessary to represent the switch.
1993   MachineFunction *CurMF = FuncInfo.MF;
1994 
1995   // Figure out which block is immediately after the current one.
1996   MachineFunction::iterator BBI = CR.CaseBB;
1997   ++BBI;
1998 
1999   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2000 
2001   // Create a new basic block to hold the code for loading the address
2002   // of the jump table, and jumping to it.  Update successor information;
2003   // we will either branch to the default case for the switch, or the jump
2004   // table.
2005   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2006   CurMF->insert(BBI, JumpTableBB);
2007 
2008   addSuccessorWithWeight(CR.CaseBB, Default);
2009   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2010 
2011   // Build a vector of destination BBs, corresponding to each target
2012   // of the jump table. If the value of the jump table slot corresponds to
2013   // a case statement, push the case's BB onto the vector, otherwise, push
2014   // the default BB.
2015   std::vector<MachineBasicBlock*> DestBBs;
2016   APInt TEI = First;
2017   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2018     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2019     const APInt &High = cast<ConstantInt>(I->High)->getValue();
2020 
2021     if (Low.sle(TEI) && TEI.sle(High)) {
2022       DestBBs.push_back(I->BB);
2023       if (TEI==High)
2024         ++I;
2025     } else {
2026       DestBBs.push_back(Default);
2027     }
2028   }
2029 
2030   // Update successor info. Add one edge to each unique successor.
2031   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2032   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2033          E = DestBBs.end(); I != E; ++I) {
2034     if (!SuccsHandled[(*I)->getNumber()]) {
2035       SuccsHandled[(*I)->getNumber()] = true;
2036       addSuccessorWithWeight(JumpTableBB, *I);
2037     }
2038   }
2039 
2040   // Create a jump table index for this jump table.
2041   unsigned JTEncoding = TLI.getJumpTableEncoding();
2042   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2043                        ->createJumpTableIndex(DestBBs);
2044 
2045   // Set the jump table information so that we can codegen it as a second
2046   // MachineBasicBlock
2047   JumpTable JT(-1U, JTI, JumpTableBB, Default);
2048   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2049   if (CR.CaseBB == SwitchBB)
2050     visitJumpTableHeader(JT, JTH, SwitchBB);
2051 
2052   JTCases.push_back(JumpTableBlock(JTH, JT));
2053 
2054   return true;
2055 }
2056 
2057 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2058 /// 2 subtrees.
2059 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2060                                                   CaseRecVector& WorkList,
2061                                                   const Value* SV,
2062                                                   MachineBasicBlock *Default,
2063                                                   MachineBasicBlock *SwitchBB) {
2064   // Get the MachineFunction which holds the current MBB.  This is used when
2065   // inserting any additional MBBs necessary to represent the switch.
2066   MachineFunction *CurMF = FuncInfo.MF;
2067 
2068   // Figure out which block is immediately after the current one.
2069   MachineFunction::iterator BBI = CR.CaseBB;
2070   ++BBI;
2071 
2072   Case& FrontCase = *CR.Range.first;
2073   Case& BackCase  = *(CR.Range.second-1);
2074   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2075 
2076   // Size is the number of Cases represented by this range.
2077   unsigned Size = CR.Range.second - CR.Range.first;
2078 
2079   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2080   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2081   double FMetric = 0;
2082   CaseItr Pivot = CR.Range.first + Size/2;
2083 
2084   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2085   // (heuristically) allow us to emit JumpTable's later.
2086   APInt TSize(First.getBitWidth(), 0);
2087   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2088        I!=E; ++I)
2089     TSize += I->size();
2090 
2091   APInt LSize = FrontCase.size();
2092   APInt RSize = TSize-LSize;
2093   DEBUG(dbgs() << "Selecting best pivot: \n"
2094                << "First: " << First << ", Last: " << Last <<'\n'
2095                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2096   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2097        J!=E; ++I, ++J) {
2098     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2099     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2100     APInt Range = ComputeRange(LEnd, RBegin);
2101     assert((Range - 2ULL).isNonNegative() &&
2102            "Invalid case distance");
2103     // Use volatile double here to avoid excess precision issues on some hosts,
2104     // e.g. that use 80-bit X87 registers.
2105     volatile double LDensity =
2106        (double)LSize.roundToDouble() /
2107                            (LEnd - First + 1ULL).roundToDouble();
2108     volatile double RDensity =
2109       (double)RSize.roundToDouble() /
2110                            (Last - RBegin + 1ULL).roundToDouble();
2111     double Metric = Range.logBase2()*(LDensity+RDensity);
2112     // Should always split in some non-trivial place
2113     DEBUG(dbgs() <<"=>Step\n"
2114                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2115                  << "LDensity: " << LDensity
2116                  << ", RDensity: " << RDensity << '\n'
2117                  << "Metric: " << Metric << '\n');
2118     if (FMetric < Metric) {
2119       Pivot = J;
2120       FMetric = Metric;
2121       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2122     }
2123 
2124     LSize += J->size();
2125     RSize -= J->size();
2126   }
2127   if (areJTsAllowed(TLI)) {
2128     // If our case is dense we *really* should handle it earlier!
2129     assert((FMetric > 0) && "Should handle dense range earlier!");
2130   } else {
2131     Pivot = CR.Range.first + Size/2;
2132   }
2133 
2134   CaseRange LHSR(CR.Range.first, Pivot);
2135   CaseRange RHSR(Pivot, CR.Range.second);
2136   Constant *C = Pivot->Low;
2137   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2138 
2139   // We know that we branch to the LHS if the Value being switched on is
2140   // less than the Pivot value, C.  We use this to optimize our binary
2141   // tree a bit, by recognizing that if SV is greater than or equal to the
2142   // LHS's Case Value, and that Case Value is exactly one less than the
2143   // Pivot's Value, then we can branch directly to the LHS's Target,
2144   // rather than creating a leaf node for it.
2145   if ((LHSR.second - LHSR.first) == 1 &&
2146       LHSR.first->High == CR.GE &&
2147       cast<ConstantInt>(C)->getValue() ==
2148       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2149     TrueBB = LHSR.first->BB;
2150   } else {
2151     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2152     CurMF->insert(BBI, TrueBB);
2153     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2154 
2155     // Put SV in a virtual register to make it available from the new blocks.
2156     ExportFromCurrentBlock(SV);
2157   }
2158 
2159   // Similar to the optimization above, if the Value being switched on is
2160   // known to be less than the Constant CR.LT, and the current Case Value
2161   // is CR.LT - 1, then we can branch directly to the target block for
2162   // the current Case Value, rather than emitting a RHS leaf node for it.
2163   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2164       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2165       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2166     FalseBB = RHSR.first->BB;
2167   } else {
2168     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2169     CurMF->insert(BBI, FalseBB);
2170     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2171 
2172     // Put SV in a virtual register to make it available from the new blocks.
2173     ExportFromCurrentBlock(SV);
2174   }
2175 
2176   // Create a CaseBlock record representing a conditional branch to
2177   // the LHS node if the value being switched on SV is less than C.
2178   // Otherwise, branch to LHS.
2179   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2180 
2181   if (CR.CaseBB == SwitchBB)
2182     visitSwitchCase(CB, SwitchBB);
2183   else
2184     SwitchCases.push_back(CB);
2185 
2186   return true;
2187 }
2188 
2189 /// handleBitTestsSwitchCase - if current case range has few destination and
2190 /// range span less, than machine word bitwidth, encode case range into series
2191 /// of masks and emit bit tests with these masks.
2192 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2193                                                    CaseRecVector& WorkList,
2194                                                    const Value* SV,
2195                                                    MachineBasicBlock* Default,
2196                                                    MachineBasicBlock *SwitchBB){
2197   EVT PTy = TLI.getPointerTy();
2198   unsigned IntPtrBits = PTy.getSizeInBits();
2199 
2200   Case& FrontCase = *CR.Range.first;
2201   Case& BackCase  = *(CR.Range.second-1);
2202 
2203   // Get the MachineFunction which holds the current MBB.  This is used when
2204   // inserting any additional MBBs necessary to represent the switch.
2205   MachineFunction *CurMF = FuncInfo.MF;
2206 
2207   // If target does not have legal shift left, do not emit bit tests at all.
2208   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2209     return false;
2210 
2211   size_t numCmps = 0;
2212   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2213        I!=E; ++I) {
2214     // Single case counts one, case range - two.
2215     numCmps += (I->Low == I->High ? 1 : 2);
2216   }
2217 
2218   // Count unique destinations
2219   SmallSet<MachineBasicBlock*, 4> Dests;
2220   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2221     Dests.insert(I->BB);
2222     if (Dests.size() > 3)
2223       // Don't bother the code below, if there are too much unique destinations
2224       return false;
2225   }
2226   DEBUG(dbgs() << "Total number of unique destinations: "
2227         << Dests.size() << '\n'
2228         << "Total number of comparisons: " << numCmps << '\n');
2229 
2230   // Compute span of values.
2231   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2232   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2233   APInt cmpRange = maxValue - minValue;
2234 
2235   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2236                << "Low bound: " << minValue << '\n'
2237                << "High bound: " << maxValue << '\n');
2238 
2239   if (cmpRange.uge(IntPtrBits) ||
2240       (!(Dests.size() == 1 && numCmps >= 3) &&
2241        !(Dests.size() == 2 && numCmps >= 5) &&
2242        !(Dests.size() >= 3 && numCmps >= 6)))
2243     return false;
2244 
2245   DEBUG(dbgs() << "Emitting bit tests\n");
2246   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2247 
2248   // Optimize the case where all the case values fit in a
2249   // word without having to subtract minValue. In this case,
2250   // we can optimize away the subtraction.
2251   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2252     cmpRange = maxValue;
2253   } else {
2254     lowBound = minValue;
2255   }
2256 
2257   CaseBitsVector CasesBits;
2258   unsigned i, count = 0;
2259 
2260   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2261     MachineBasicBlock* Dest = I->BB;
2262     for (i = 0; i < count; ++i)
2263       if (Dest == CasesBits[i].BB)
2264         break;
2265 
2266     if (i == count) {
2267       assert((count < 3) && "Too much destinations to test!");
2268       CasesBits.push_back(CaseBits(0, Dest, 0));
2269       count++;
2270     }
2271 
2272     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2273     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2274 
2275     uint64_t lo = (lowValue - lowBound).getZExtValue();
2276     uint64_t hi = (highValue - lowBound).getZExtValue();
2277 
2278     for (uint64_t j = lo; j <= hi; j++) {
2279       CasesBits[i].Mask |=  1ULL << j;
2280       CasesBits[i].Bits++;
2281     }
2282 
2283   }
2284   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2285 
2286   BitTestInfo BTC;
2287 
2288   // Figure out which block is immediately after the current one.
2289   MachineFunction::iterator BBI = CR.CaseBB;
2290   ++BBI;
2291 
2292   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2293 
2294   DEBUG(dbgs() << "Cases:\n");
2295   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2296     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2297                  << ", Bits: " << CasesBits[i].Bits
2298                  << ", BB: " << CasesBits[i].BB << '\n');
2299 
2300     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2301     CurMF->insert(BBI, CaseBB);
2302     BTC.push_back(BitTestCase(CasesBits[i].Mask,
2303                               CaseBB,
2304                               CasesBits[i].BB));
2305 
2306     // Put SV in a virtual register to make it available from the new blocks.
2307     ExportFromCurrentBlock(SV);
2308   }
2309 
2310   BitTestBlock BTB(lowBound, cmpRange, SV,
2311                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2312                    CR.CaseBB, Default, BTC);
2313 
2314   if (CR.CaseBB == SwitchBB)
2315     visitBitTestHeader(BTB, SwitchBB);
2316 
2317   BitTestCases.push_back(BTB);
2318 
2319   return true;
2320 }
2321 
2322 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2323 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2324                                        const SwitchInst& SI) {
2325   size_t numCmps = 0;
2326 
2327   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2328   // Start with "simple" cases
2329   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2330     BasicBlock *SuccBB = SI.getSuccessor(i);
2331     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2332 
2333     uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2334 
2335     Cases.push_back(Case(SI.getSuccessorValue(i),
2336                          SI.getSuccessorValue(i),
2337                          SMBB, ExtraWeight));
2338   }
2339   std::sort(Cases.begin(), Cases.end(), CaseCmp());
2340 
2341   // Merge case into clusters
2342   if (Cases.size() >= 2)
2343     // Must recompute end() each iteration because it may be
2344     // invalidated by erase if we hold on to it
2345     for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2346          J != Cases.end(); ) {
2347       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2348       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2349       MachineBasicBlock* nextBB = J->BB;
2350       MachineBasicBlock* currentBB = I->BB;
2351 
2352       // If the two neighboring cases go to the same destination, merge them
2353       // into a single case.
2354       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2355         I->High = J->High;
2356         J = Cases.erase(J);
2357 
2358         if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2359           uint32_t CurWeight = currentBB->getBasicBlock() ?
2360             BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2361           uint32_t NextWeight = nextBB->getBasicBlock() ?
2362             BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2363 
2364           BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2365                              CurWeight + NextWeight);
2366         }
2367       } else {
2368         I = J++;
2369       }
2370     }
2371 
2372   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2373     if (I->Low != I->High)
2374       // A range counts double, since it requires two compares.
2375       ++numCmps;
2376   }
2377 
2378   return numCmps;
2379 }
2380 
2381 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2382                                            MachineBasicBlock *Last) {
2383   // Update JTCases.
2384   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2385     if (JTCases[i].first.HeaderBB == First)
2386       JTCases[i].first.HeaderBB = Last;
2387 
2388   // Update BitTestCases.
2389   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2390     if (BitTestCases[i].Parent == First)
2391       BitTestCases[i].Parent = Last;
2392 }
2393 
2394 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2395   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2396 
2397   // Figure out which block is immediately after the current one.
2398   MachineBasicBlock *NextBlock = 0;
2399   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2400 
2401   // If there is only the default destination, branch to it if it is not the
2402   // next basic block.  Otherwise, just fall through.
2403   if (SI.getNumOperands() == 2) {
2404     // Update machine-CFG edges.
2405 
2406     // If this is not a fall-through branch, emit the branch.
2407     SwitchMBB->addSuccessor(Default);
2408     if (Default != NextBlock)
2409       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2410                               MVT::Other, getControlRoot(),
2411                               DAG.getBasicBlock(Default)));
2412 
2413     return;
2414   }
2415 
2416   // If there are any non-default case statements, create a vector of Cases
2417   // representing each one, and sort the vector so that we can efficiently
2418   // create a binary search tree from them.
2419   CaseVector Cases;
2420   size_t numCmps = Clusterify(Cases, SI);
2421   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2422                << ". Total compares: " << numCmps << '\n');
2423   numCmps = 0;
2424 
2425   // Get the Value to be switched on and default basic blocks, which will be
2426   // inserted into CaseBlock records, representing basic blocks in the binary
2427   // search tree.
2428   const Value *SV = SI.getOperand(0);
2429 
2430   // Push the initial CaseRec onto the worklist
2431   CaseRecVector WorkList;
2432   WorkList.push_back(CaseRec(SwitchMBB,0,0,
2433                              CaseRange(Cases.begin(),Cases.end())));
2434 
2435   while (!WorkList.empty()) {
2436     // Grab a record representing a case range to process off the worklist
2437     CaseRec CR = WorkList.back();
2438     WorkList.pop_back();
2439 
2440     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2441       continue;
2442 
2443     // If the range has few cases (two or less) emit a series of specific
2444     // tests.
2445     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2446       continue;
2447 
2448     // If the switch has more than 5 blocks, and at least 40% dense, and the
2449     // target supports indirect branches, then emit a jump table rather than
2450     // lowering the switch to a binary tree of conditional branches.
2451     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2452       continue;
2453 
2454     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2455     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2456     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2457   }
2458 }
2459 
2460 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2461   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2462 
2463   // Update machine-CFG edges with unique successors.
2464   SmallVector<BasicBlock*, 32> succs;
2465   succs.reserve(I.getNumSuccessors());
2466   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2467     succs.push_back(I.getSuccessor(i));
2468   array_pod_sort(succs.begin(), succs.end());
2469   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2470   for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2471     MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2472     addSuccessorWithWeight(IndirectBrMBB, Succ);
2473   }
2474 
2475   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2476                           MVT::Other, getControlRoot(),
2477                           getValue(I.getAddress())));
2478 }
2479 
2480 void SelectionDAGBuilder::visitFSub(const User &I) {
2481   // -0.0 - X --> fneg
2482   Type *Ty = I.getType();
2483   if (isa<Constant>(I.getOperand(0)) &&
2484       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2485     SDValue Op2 = getValue(I.getOperand(1));
2486     setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2487                              Op2.getValueType(), Op2));
2488     return;
2489   }
2490 
2491   visitBinary(I, ISD::FSUB);
2492 }
2493 
2494 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2495   SDValue Op1 = getValue(I.getOperand(0));
2496   SDValue Op2 = getValue(I.getOperand(1));
2497   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2498                            Op1.getValueType(), Op1, Op2));
2499 }
2500 
2501 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2502   SDValue Op1 = getValue(I.getOperand(0));
2503   SDValue Op2 = getValue(I.getOperand(1));
2504 
2505   MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2506 
2507   // Coerce the shift amount to the right type if we can.
2508   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2509     unsigned ShiftSize = ShiftTy.getSizeInBits();
2510     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2511     DebugLoc DL = getCurDebugLoc();
2512 
2513     // If the operand is smaller than the shift count type, promote it.
2514     if (ShiftSize > Op2Size)
2515       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2516 
2517     // If the operand is larger than the shift count type but the shift
2518     // count type has enough bits to represent any shift value, truncate
2519     // it now. This is a common case and it exposes the truncate to
2520     // optimization early.
2521     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2522       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2523     // Otherwise we'll need to temporarily settle for some other convenient
2524     // type.  Type legalization will make adjustments once the shiftee is split.
2525     else
2526       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2527   }
2528 
2529   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2530                            Op1.getValueType(), Op1, Op2));
2531 }
2532 
2533 void SelectionDAGBuilder::visitSDiv(const User &I) {
2534   SDValue Op1 = getValue(I.getOperand(0));
2535   SDValue Op2 = getValue(I.getOperand(1));
2536 
2537   // Turn exact SDivs into multiplications.
2538   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2539   // exact bit.
2540   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2541       !isa<ConstantSDNode>(Op1) &&
2542       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2543     setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2544   else
2545     setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2546                              Op1, Op2));
2547 }
2548 
2549 void SelectionDAGBuilder::visitICmp(const User &I) {
2550   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2551   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2552     predicate = IC->getPredicate();
2553   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2554     predicate = ICmpInst::Predicate(IC->getPredicate());
2555   SDValue Op1 = getValue(I.getOperand(0));
2556   SDValue Op2 = getValue(I.getOperand(1));
2557   ISD::CondCode Opcode = getICmpCondCode(predicate);
2558 
2559   EVT DestVT = TLI.getValueType(I.getType());
2560   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2561 }
2562 
2563 void SelectionDAGBuilder::visitFCmp(const User &I) {
2564   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2565   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2566     predicate = FC->getPredicate();
2567   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2568     predicate = FCmpInst::Predicate(FC->getPredicate());
2569   SDValue Op1 = getValue(I.getOperand(0));
2570   SDValue Op2 = getValue(I.getOperand(1));
2571   ISD::CondCode Condition = getFCmpCondCode(predicate);
2572   EVT DestVT = TLI.getValueType(I.getType());
2573   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2574 }
2575 
2576 void SelectionDAGBuilder::visitSelect(const User &I) {
2577   SmallVector<EVT, 4> ValueVTs;
2578   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2579   unsigned NumValues = ValueVTs.size();
2580   if (NumValues == 0) return;
2581 
2582   SmallVector<SDValue, 4> Values(NumValues);
2583   SDValue Cond     = getValue(I.getOperand(0));
2584   SDValue TrueVal  = getValue(I.getOperand(1));
2585   SDValue FalseVal = getValue(I.getOperand(2));
2586 
2587   for (unsigned i = 0; i != NumValues; ++i)
2588     Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2589                           TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2590                             Cond,
2591                             SDValue(TrueVal.getNode(),
2592                                     TrueVal.getResNo() + i),
2593                             SDValue(FalseVal.getNode(),
2594                                     FalseVal.getResNo() + i));
2595 
2596   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2597                            DAG.getVTList(&ValueVTs[0], NumValues),
2598                            &Values[0], NumValues));
2599 }
2600 
2601 void SelectionDAGBuilder::visitTrunc(const User &I) {
2602   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2603   SDValue N = getValue(I.getOperand(0));
2604   EVT DestVT = TLI.getValueType(I.getType());
2605   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2606 }
2607 
2608 void SelectionDAGBuilder::visitZExt(const User &I) {
2609   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2610   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2611   SDValue N = getValue(I.getOperand(0));
2612   EVT DestVT = TLI.getValueType(I.getType());
2613   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2614 }
2615 
2616 void SelectionDAGBuilder::visitSExt(const User &I) {
2617   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2618   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2619   SDValue N = getValue(I.getOperand(0));
2620   EVT DestVT = TLI.getValueType(I.getType());
2621   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2622 }
2623 
2624 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2625   // FPTrunc is never a no-op cast, no need to check
2626   SDValue N = getValue(I.getOperand(0));
2627   EVT DestVT = TLI.getValueType(I.getType());
2628   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2629                            DestVT, N, DAG.getIntPtrConstant(0)));
2630 }
2631 
2632 void SelectionDAGBuilder::visitFPExt(const User &I){
2633   // FPTrunc is never a no-op cast, no need to check
2634   SDValue N = getValue(I.getOperand(0));
2635   EVT DestVT = TLI.getValueType(I.getType());
2636   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2637 }
2638 
2639 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2640   // FPToUI is never a no-op cast, no need to check
2641   SDValue N = getValue(I.getOperand(0));
2642   EVT DestVT = TLI.getValueType(I.getType());
2643   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2644 }
2645 
2646 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2647   // FPToSI is never a no-op cast, no need to check
2648   SDValue N = getValue(I.getOperand(0));
2649   EVT DestVT = TLI.getValueType(I.getType());
2650   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2651 }
2652 
2653 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2654   // UIToFP is never a no-op cast, no need to check
2655   SDValue N = getValue(I.getOperand(0));
2656   EVT DestVT = TLI.getValueType(I.getType());
2657   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2658 }
2659 
2660 void SelectionDAGBuilder::visitSIToFP(const User &I){
2661   // SIToFP is never a no-op cast, no need to check
2662   SDValue N = getValue(I.getOperand(0));
2663   EVT DestVT = TLI.getValueType(I.getType());
2664   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2665 }
2666 
2667 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2668   // What to do depends on the size of the integer and the size of the pointer.
2669   // We can either truncate, zero extend, or no-op, accordingly.
2670   SDValue N = getValue(I.getOperand(0));
2671   EVT DestVT = TLI.getValueType(I.getType());
2672   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2673 }
2674 
2675 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2676   // What to do depends on the size of the integer and the size of the pointer.
2677   // We can either truncate, zero extend, or no-op, accordingly.
2678   SDValue N = getValue(I.getOperand(0));
2679   EVT DestVT = TLI.getValueType(I.getType());
2680   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2681 }
2682 
2683 void SelectionDAGBuilder::visitBitCast(const User &I) {
2684   SDValue N = getValue(I.getOperand(0));
2685   EVT DestVT = TLI.getValueType(I.getType());
2686 
2687   // BitCast assures us that source and destination are the same size so this is
2688   // either a BITCAST or a no-op.
2689   if (DestVT != N.getValueType())
2690     setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2691                              DestVT, N)); // convert types.
2692   else
2693     setValue(&I, N);            // noop cast.
2694 }
2695 
2696 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2697   SDValue InVec = getValue(I.getOperand(0));
2698   SDValue InVal = getValue(I.getOperand(1));
2699   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2700                               TLI.getPointerTy(),
2701                               getValue(I.getOperand(2)));
2702   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2703                            TLI.getValueType(I.getType()),
2704                            InVec, InVal, InIdx));
2705 }
2706 
2707 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2708   SDValue InVec = getValue(I.getOperand(0));
2709   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2710                               TLI.getPointerTy(),
2711                               getValue(I.getOperand(1)));
2712   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2713                            TLI.getValueType(I.getType()), InVec, InIdx));
2714 }
2715 
2716 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2717 // from SIndx and increasing to the element length (undefs are allowed).
2718 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2719   unsigned MaskNumElts = Mask.size();
2720   for (unsigned i = 0; i != MaskNumElts; ++i)
2721     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2722       return false;
2723   return true;
2724 }
2725 
2726 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2727   SmallVector<int, 8> Mask;
2728   SDValue Src1 = getValue(I.getOperand(0));
2729   SDValue Src2 = getValue(I.getOperand(1));
2730 
2731   // Convert the ConstantVector mask operand into an array of ints, with -1
2732   // representing undef values.
2733   SmallVector<Constant*, 8> MaskElts;
2734   cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2735   unsigned MaskNumElts = MaskElts.size();
2736   for (unsigned i = 0; i != MaskNumElts; ++i) {
2737     if (isa<UndefValue>(MaskElts[i]))
2738       Mask.push_back(-1);
2739     else
2740       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2741   }
2742 
2743   EVT VT = TLI.getValueType(I.getType());
2744   EVT SrcVT = Src1.getValueType();
2745   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2746 
2747   if (SrcNumElts == MaskNumElts) {
2748     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2749                                       &Mask[0]));
2750     return;
2751   }
2752 
2753   // Normalize the shuffle vector since mask and vector length don't match.
2754   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2755     // Mask is longer than the source vectors and is a multiple of the source
2756     // vectors.  We can use concatenate vector to make the mask and vectors
2757     // lengths match.
2758     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2759       // The shuffle is concatenating two vectors together.
2760       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2761                                VT, Src1, Src2));
2762       return;
2763     }
2764 
2765     // Pad both vectors with undefs to make them the same length as the mask.
2766     unsigned NumConcat = MaskNumElts / SrcNumElts;
2767     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2768     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2769     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2770 
2771     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2772     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2773     MOps1[0] = Src1;
2774     MOps2[0] = Src2;
2775 
2776     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2777                                                   getCurDebugLoc(), VT,
2778                                                   &MOps1[0], NumConcat);
2779     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2780                                                   getCurDebugLoc(), VT,
2781                                                   &MOps2[0], NumConcat);
2782 
2783     // Readjust mask for new input vector length.
2784     SmallVector<int, 8> MappedOps;
2785     for (unsigned i = 0; i != MaskNumElts; ++i) {
2786       int Idx = Mask[i];
2787       if (Idx < (int)SrcNumElts)
2788         MappedOps.push_back(Idx);
2789       else
2790         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2791     }
2792 
2793     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2794                                       &MappedOps[0]));
2795     return;
2796   }
2797 
2798   if (SrcNumElts > MaskNumElts) {
2799     // Analyze the access pattern of the vector to see if we can extract
2800     // two subvectors and do the shuffle. The analysis is done by calculating
2801     // the range of elements the mask access on both vectors.
2802     int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2803                         static_cast<int>(SrcNumElts+1)};
2804     int MaxRange[2] = {-1, -1};
2805 
2806     for (unsigned i = 0; i != MaskNumElts; ++i) {
2807       int Idx = Mask[i];
2808       int Input = 0;
2809       if (Idx < 0)
2810         continue;
2811 
2812       if (Idx >= (int)SrcNumElts) {
2813         Input = 1;
2814         Idx -= SrcNumElts;
2815       }
2816       if (Idx > MaxRange[Input])
2817         MaxRange[Input] = Idx;
2818       if (Idx < MinRange[Input])
2819         MinRange[Input] = Idx;
2820     }
2821 
2822     // Check if the access is smaller than the vector size and can we find
2823     // a reasonable extract index.
2824     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2825                                  // Extract.
2826     int StartIdx[2];  // StartIdx to extract from
2827     for (int Input=0; Input < 2; ++Input) {
2828       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2829         RangeUse[Input] = 0; // Unused
2830         StartIdx[Input] = 0;
2831       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2832         // Fits within range but we should see if we can find a good
2833         // start index that is a multiple of the mask length.
2834         if (MaxRange[Input] < (int)MaskNumElts) {
2835           RangeUse[Input] = 1; // Extract from beginning of the vector
2836           StartIdx[Input] = 0;
2837         } else {
2838           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2839           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2840               StartIdx[Input] + MaskNumElts <= SrcNumElts)
2841             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2842         }
2843       }
2844     }
2845 
2846     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2847       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2848       return;
2849     }
2850     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2851       // Extract appropriate subvector and generate a vector shuffle
2852       for (int Input=0; Input < 2; ++Input) {
2853         SDValue &Src = Input == 0 ? Src1 : Src2;
2854         if (RangeUse[Input] == 0)
2855           Src = DAG.getUNDEF(VT);
2856         else
2857           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2858                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
2859       }
2860 
2861       // Calculate new mask.
2862       SmallVector<int, 8> MappedOps;
2863       for (unsigned i = 0; i != MaskNumElts; ++i) {
2864         int Idx = Mask[i];
2865         if (Idx < 0)
2866           MappedOps.push_back(Idx);
2867         else if (Idx < (int)SrcNumElts)
2868           MappedOps.push_back(Idx - StartIdx[0]);
2869         else
2870           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2871       }
2872 
2873       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2874                                         &MappedOps[0]));
2875       return;
2876     }
2877   }
2878 
2879   // We can't use either concat vectors or extract subvectors so fall back to
2880   // replacing the shuffle with extract and build vector.
2881   // to insert and build vector.
2882   EVT EltVT = VT.getVectorElementType();
2883   EVT PtrVT = TLI.getPointerTy();
2884   SmallVector<SDValue,8> Ops;
2885   for (unsigned i = 0; i != MaskNumElts; ++i) {
2886     if (Mask[i] < 0) {
2887       Ops.push_back(DAG.getUNDEF(EltVT));
2888     } else {
2889       int Idx = Mask[i];
2890       SDValue Res;
2891 
2892       if (Idx < (int)SrcNumElts)
2893         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2894                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2895       else
2896         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2897                           EltVT, Src2,
2898                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
2899 
2900       Ops.push_back(Res);
2901     }
2902   }
2903 
2904   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2905                            VT, &Ops[0], Ops.size()));
2906 }
2907 
2908 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2909   const Value *Op0 = I.getOperand(0);
2910   const Value *Op1 = I.getOperand(1);
2911   Type *AggTy = I.getType();
2912   Type *ValTy = Op1->getType();
2913   bool IntoUndef = isa<UndefValue>(Op0);
2914   bool FromUndef = isa<UndefValue>(Op1);
2915 
2916   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2917 
2918   SmallVector<EVT, 4> AggValueVTs;
2919   ComputeValueVTs(TLI, AggTy, AggValueVTs);
2920   SmallVector<EVT, 4> ValValueVTs;
2921   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2922 
2923   unsigned NumAggValues = AggValueVTs.size();
2924   unsigned NumValValues = ValValueVTs.size();
2925   SmallVector<SDValue, 4> Values(NumAggValues);
2926 
2927   SDValue Agg = getValue(Op0);
2928   unsigned i = 0;
2929   // Copy the beginning value(s) from the original aggregate.
2930   for (; i != LinearIndex; ++i)
2931     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2932                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2933   // Copy values from the inserted value(s).
2934   if (NumValValues) {
2935     SDValue Val = getValue(Op1);
2936     for (; i != LinearIndex + NumValValues; ++i)
2937       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2938                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2939   }
2940   // Copy remaining value(s) from the original aggregate.
2941   for (; i != NumAggValues; ++i)
2942     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2943                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2944 
2945   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2946                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
2947                            &Values[0], NumAggValues));
2948 }
2949 
2950 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2951   const Value *Op0 = I.getOperand(0);
2952   Type *AggTy = Op0->getType();
2953   Type *ValTy = I.getType();
2954   bool OutOfUndef = isa<UndefValue>(Op0);
2955 
2956   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2957 
2958   SmallVector<EVT, 4> ValValueVTs;
2959   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2960 
2961   unsigned NumValValues = ValValueVTs.size();
2962 
2963   // Ignore a extractvalue that produces an empty object
2964   if (!NumValValues) {
2965     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2966     return;
2967   }
2968 
2969   SmallVector<SDValue, 4> Values(NumValValues);
2970 
2971   SDValue Agg = getValue(Op0);
2972   // Copy out the selected value(s).
2973   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2974     Values[i - LinearIndex] =
2975       OutOfUndef ?
2976         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2977         SDValue(Agg.getNode(), Agg.getResNo() + i);
2978 
2979   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2980                            DAG.getVTList(&ValValueVTs[0], NumValValues),
2981                            &Values[0], NumValValues));
2982 }
2983 
2984 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2985   SDValue N = getValue(I.getOperand(0));
2986   Type *Ty = I.getOperand(0)->getType();
2987 
2988   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2989        OI != E; ++OI) {
2990     const Value *Idx = *OI;
2991     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
2992       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2993       if (Field) {
2994         // N = N + Offset
2995         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2996         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2997                         DAG.getIntPtrConstant(Offset));
2998       }
2999 
3000       Ty = StTy->getElementType(Field);
3001     } else {
3002       Ty = cast<SequentialType>(Ty)->getElementType();
3003 
3004       // If this is a constant subscript, handle it quickly.
3005       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3006         if (CI->isZero()) continue;
3007         uint64_t Offs =
3008             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3009         SDValue OffsVal;
3010         EVT PTy = TLI.getPointerTy();
3011         unsigned PtrBits = PTy.getSizeInBits();
3012         if (PtrBits < 64)
3013           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3014                                 TLI.getPointerTy(),
3015                                 DAG.getConstant(Offs, MVT::i64));
3016         else
3017           OffsVal = DAG.getIntPtrConstant(Offs);
3018 
3019         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3020                         OffsVal);
3021         continue;
3022       }
3023 
3024       // N = N + Idx * ElementSize;
3025       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3026                                 TD->getTypeAllocSize(Ty));
3027       SDValue IdxN = getValue(Idx);
3028 
3029       // If the index is smaller or larger than intptr_t, truncate or extend
3030       // it.
3031       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3032 
3033       // If this is a multiply by a power of two, turn it into a shl
3034       // immediately.  This is a very common case.
3035       if (ElementSize != 1) {
3036         if (ElementSize.isPowerOf2()) {
3037           unsigned Amt = ElementSize.logBase2();
3038           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3039                              N.getValueType(), IdxN,
3040                              DAG.getConstant(Amt, TLI.getPointerTy()));
3041         } else {
3042           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3043           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3044                              N.getValueType(), IdxN, Scale);
3045         }
3046       }
3047 
3048       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3049                       N.getValueType(), N, IdxN);
3050     }
3051   }
3052 
3053   setValue(&I, N);
3054 }
3055 
3056 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3057   // If this is a fixed sized alloca in the entry block of the function,
3058   // allocate it statically on the stack.
3059   if (FuncInfo.StaticAllocaMap.count(&I))
3060     return;   // getValue will auto-populate this.
3061 
3062   Type *Ty = I.getAllocatedType();
3063   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3064   unsigned Align =
3065     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3066              I.getAlignment());
3067 
3068   SDValue AllocSize = getValue(I.getArraySize());
3069 
3070   EVT IntPtr = TLI.getPointerTy();
3071   if (AllocSize.getValueType() != IntPtr)
3072     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3073 
3074   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3075                           AllocSize,
3076                           DAG.getConstant(TySize, IntPtr));
3077 
3078   // Handle alignment.  If the requested alignment is less than or equal to
3079   // the stack alignment, ignore it.  If the size is greater than or equal to
3080   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3081   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3082   if (Align <= StackAlign)
3083     Align = 0;
3084 
3085   // Round the size of the allocation up to the stack alignment size
3086   // by add SA-1 to the size.
3087   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3088                           AllocSize.getValueType(), AllocSize,
3089                           DAG.getIntPtrConstant(StackAlign-1));
3090 
3091   // Mask out the low bits for alignment purposes.
3092   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3093                           AllocSize.getValueType(), AllocSize,
3094                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3095 
3096   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3097   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3098   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3099                             VTs, Ops, 3);
3100   setValue(&I, DSA);
3101   DAG.setRoot(DSA.getValue(1));
3102 
3103   // Inform the Frame Information that we have just allocated a variable-sized
3104   // object.
3105   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3106 }
3107 
3108 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3109   const Value *SV = I.getOperand(0);
3110   SDValue Ptr = getValue(SV);
3111 
3112   Type *Ty = I.getType();
3113 
3114   bool isVolatile = I.isVolatile();
3115   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3116   unsigned Alignment = I.getAlignment();
3117   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3118 
3119   SmallVector<EVT, 4> ValueVTs;
3120   SmallVector<uint64_t, 4> Offsets;
3121   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3122   unsigned NumValues = ValueVTs.size();
3123   if (NumValues == 0)
3124     return;
3125 
3126   SDValue Root;
3127   bool ConstantMemory = false;
3128   if (I.isVolatile() || NumValues > MaxParallelChains)
3129     // Serialize volatile loads with other side effects.
3130     Root = getRoot();
3131   else if (AA->pointsToConstantMemory(
3132              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3133     // Do not serialize (non-volatile) loads of constant memory with anything.
3134     Root = DAG.getEntryNode();
3135     ConstantMemory = true;
3136   } else {
3137     // Do not serialize non-volatile loads against each other.
3138     Root = DAG.getRoot();
3139   }
3140 
3141   SmallVector<SDValue, 4> Values(NumValues);
3142   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3143                                           NumValues));
3144   EVT PtrVT = Ptr.getValueType();
3145   unsigned ChainI = 0;
3146   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3147     // Serializing loads here may result in excessive register pressure, and
3148     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3149     // could recover a bit by hoisting nodes upward in the chain by recognizing
3150     // they are side-effect free or do not alias. The optimizer should really
3151     // avoid this case by converting large object/array copies to llvm.memcpy
3152     // (MaxParallelChains should always remain as failsafe).
3153     if (ChainI == MaxParallelChains) {
3154       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3155       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3156                                   MVT::Other, &Chains[0], ChainI);
3157       Root = Chain;
3158       ChainI = 0;
3159     }
3160     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3161                             PtrVT, Ptr,
3162                             DAG.getConstant(Offsets[i], PtrVT));
3163     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3164                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3165                             isNonTemporal, Alignment, TBAAInfo);
3166 
3167     Values[i] = L;
3168     Chains[ChainI] = L.getValue(1);
3169   }
3170 
3171   if (!ConstantMemory) {
3172     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3173                                 MVT::Other, &Chains[0], ChainI);
3174     if (isVolatile)
3175       DAG.setRoot(Chain);
3176     else
3177       PendingLoads.push_back(Chain);
3178   }
3179 
3180   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3181                            DAG.getVTList(&ValueVTs[0], NumValues),
3182                            &Values[0], NumValues));
3183 }
3184 
3185 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3186   const Value *SrcV = I.getOperand(0);
3187   const Value *PtrV = I.getOperand(1);
3188 
3189   SmallVector<EVT, 4> ValueVTs;
3190   SmallVector<uint64_t, 4> Offsets;
3191   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3192   unsigned NumValues = ValueVTs.size();
3193   if (NumValues == 0)
3194     return;
3195 
3196   // Get the lowered operands. Note that we do this after
3197   // checking if NumResults is zero, because with zero results
3198   // the operands won't have values in the map.
3199   SDValue Src = getValue(SrcV);
3200   SDValue Ptr = getValue(PtrV);
3201 
3202   SDValue Root = getRoot();
3203   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3204                                           NumValues));
3205   EVT PtrVT = Ptr.getValueType();
3206   bool isVolatile = I.isVolatile();
3207   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3208   unsigned Alignment = I.getAlignment();
3209   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3210 
3211   unsigned ChainI = 0;
3212   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3213     // See visitLoad comments.
3214     if (ChainI == MaxParallelChains) {
3215       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3216                                   MVT::Other, &Chains[0], ChainI);
3217       Root = Chain;
3218       ChainI = 0;
3219     }
3220     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3221                               DAG.getConstant(Offsets[i], PtrVT));
3222     SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3223                               SDValue(Src.getNode(), Src.getResNo() + i),
3224                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3225                               isVolatile, isNonTemporal, Alignment, TBAAInfo);
3226     Chains[ChainI] = St;
3227   }
3228 
3229   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3230                                   MVT::Other, &Chains[0], ChainI);
3231   ++SDNodeOrder;
3232   AssignOrderingToNode(StoreNode.getNode());
3233   DAG.setRoot(StoreNode);
3234 }
3235 
3236 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3237   SDValue Root = getRoot();
3238   SDValue L =
3239     DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
3240                   getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3241                   Root,
3242                   getValue(I.getPointerOperand()),
3243                   getValue(I.getCompareOperand()),
3244                   getValue(I.getNewValOperand()),
3245                   MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3246                   I.getOrdering(), I.getSynchScope());
3247   setValue(&I, L);
3248   DAG.setRoot(L.getValue(1));
3249 }
3250 
3251 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3252   ISD::NodeType NT;
3253   switch (I.getOperation()) {
3254   default: llvm_unreachable("Unknown atomicrmw operation"); return;
3255   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3256   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3257   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3258   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3259   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3260   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3261   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3262   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3263   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3264   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3265   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3266   }
3267   SDValue L =
3268     DAG.getAtomic(NT, getCurDebugLoc(),
3269                   getValue(I.getValOperand()).getValueType().getSimpleVT(),
3270                   getRoot(),
3271                   getValue(I.getPointerOperand()),
3272                   getValue(I.getValOperand()),
3273                   I.getPointerOperand(), 0 /* Alignment */,
3274                   I.getOrdering(), I.getSynchScope());
3275   setValue(&I, L);
3276   DAG.setRoot(L.getValue(1));
3277 }
3278 
3279 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3280   DebugLoc dl = getCurDebugLoc();
3281   SDValue Ops[3];
3282   Ops[0] = getRoot();
3283   Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3284   Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3285   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3286 }
3287 
3288 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3289 /// node.
3290 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3291                                                unsigned Intrinsic) {
3292   bool HasChain = !I.doesNotAccessMemory();
3293   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3294 
3295   // Build the operand list.
3296   SmallVector<SDValue, 8> Ops;
3297   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3298     if (OnlyLoad) {
3299       // We don't need to serialize loads against other loads.
3300       Ops.push_back(DAG.getRoot());
3301     } else {
3302       Ops.push_back(getRoot());
3303     }
3304   }
3305 
3306   // Info is set by getTgtMemInstrinsic
3307   TargetLowering::IntrinsicInfo Info;
3308   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3309 
3310   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3311   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3312       Info.opc == ISD::INTRINSIC_W_CHAIN)
3313     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3314 
3315   // Add all operands of the call to the operand list.
3316   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3317     SDValue Op = getValue(I.getArgOperand(i));
3318     assert(TLI.isTypeLegal(Op.getValueType()) &&
3319            "Intrinsic uses a non-legal type?");
3320     Ops.push_back(Op);
3321   }
3322 
3323   SmallVector<EVT, 4> ValueVTs;
3324   ComputeValueVTs(TLI, I.getType(), ValueVTs);
3325 #ifndef NDEBUG
3326   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3327     assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3328            "Intrinsic uses a non-legal type?");
3329   }
3330 #endif // NDEBUG
3331 
3332   if (HasChain)
3333     ValueVTs.push_back(MVT::Other);
3334 
3335   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3336 
3337   // Create the node.
3338   SDValue Result;
3339   if (IsTgtIntrinsic) {
3340     // This is target intrinsic that touches memory
3341     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3342                                      VTs, &Ops[0], Ops.size(),
3343                                      Info.memVT,
3344                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3345                                      Info.align, Info.vol,
3346                                      Info.readMem, Info.writeMem);
3347   } else if (!HasChain) {
3348     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3349                          VTs, &Ops[0], Ops.size());
3350   } else if (!I.getType()->isVoidTy()) {
3351     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3352                          VTs, &Ops[0], Ops.size());
3353   } else {
3354     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3355                          VTs, &Ops[0], Ops.size());
3356   }
3357 
3358   if (HasChain) {
3359     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3360     if (OnlyLoad)
3361       PendingLoads.push_back(Chain);
3362     else
3363       DAG.setRoot(Chain);
3364   }
3365 
3366   if (!I.getType()->isVoidTy()) {
3367     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3368       EVT VT = TLI.getValueType(PTy);
3369       Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3370     }
3371 
3372     setValue(&I, Result);
3373   }
3374 }
3375 
3376 /// GetSignificand - Get the significand and build it into a floating-point
3377 /// number with exponent of 1:
3378 ///
3379 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3380 ///
3381 /// where Op is the hexidecimal representation of floating point value.
3382 static SDValue
3383 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3384   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3385                            DAG.getConstant(0x007fffff, MVT::i32));
3386   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3387                            DAG.getConstant(0x3f800000, MVT::i32));
3388   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3389 }
3390 
3391 /// GetExponent - Get the exponent:
3392 ///
3393 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3394 ///
3395 /// where Op is the hexidecimal representation of floating point value.
3396 static SDValue
3397 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3398             DebugLoc dl) {
3399   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3400                            DAG.getConstant(0x7f800000, MVT::i32));
3401   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3402                            DAG.getConstant(23, TLI.getPointerTy()));
3403   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3404                            DAG.getConstant(127, MVT::i32));
3405   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3406 }
3407 
3408 /// getF32Constant - Get 32-bit floating point constant.
3409 static SDValue
3410 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3411   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3412 }
3413 
3414 /// Inlined utility function to implement binary input atomic intrinsics for
3415 /// visitIntrinsicCall: I is a call instruction
3416 ///                     Op is the associated NodeType for I
3417 const char *
3418 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3419                                            ISD::NodeType Op) {
3420   SDValue Root = getRoot();
3421   SDValue L =
3422     DAG.getAtomic(Op, getCurDebugLoc(),
3423                   getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3424                   Root,
3425                   getValue(I.getArgOperand(0)),
3426                   getValue(I.getArgOperand(1)),
3427                   I.getArgOperand(0), 0 /* Alignment */,
3428                   Monotonic, CrossThread);
3429   setValue(&I, L);
3430   DAG.setRoot(L.getValue(1));
3431   return 0;
3432 }
3433 
3434 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3435 const char *
3436 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3437   SDValue Op1 = getValue(I.getArgOperand(0));
3438   SDValue Op2 = getValue(I.getArgOperand(1));
3439 
3440   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3441   setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3442   return 0;
3443 }
3444 
3445 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3446 /// limited-precision mode.
3447 void
3448 SelectionDAGBuilder::visitExp(const CallInst &I) {
3449   SDValue result;
3450   DebugLoc dl = getCurDebugLoc();
3451 
3452   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3453       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3454     SDValue Op = getValue(I.getArgOperand(0));
3455 
3456     // Put the exponent in the right bit position for later addition to the
3457     // final result:
3458     //
3459     //   #define LOG2OFe 1.4426950f
3460     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3461     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3462                              getF32Constant(DAG, 0x3fb8aa3b));
3463     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3464 
3465     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3466     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3467     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3468 
3469     //   IntegerPartOfX <<= 23;
3470     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3471                                  DAG.getConstant(23, TLI.getPointerTy()));
3472 
3473     if (LimitFloatPrecision <= 6) {
3474       // For floating-point precision of 6:
3475       //
3476       //   TwoToFractionalPartOfX =
3477       //     0.997535578f +
3478       //       (0.735607626f + 0.252464424f * x) * x;
3479       //
3480       // error 0.0144103317, which is 6 bits
3481       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3482                                getF32Constant(DAG, 0x3e814304));
3483       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3484                                getF32Constant(DAG, 0x3f3c50c8));
3485       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3486       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3487                                getF32Constant(DAG, 0x3f7f5e7e));
3488       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3489 
3490       // Add the exponent into the result in integer domain.
3491       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3492                                TwoToFracPartOfX, IntegerPartOfX);
3493 
3494       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3495     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3496       // For floating-point precision of 12:
3497       //
3498       //   TwoToFractionalPartOfX =
3499       //     0.999892986f +
3500       //       (0.696457318f +
3501       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3502       //
3503       // 0.000107046256 error, which is 13 to 14 bits
3504       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3505                                getF32Constant(DAG, 0x3da235e3));
3506       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3507                                getF32Constant(DAG, 0x3e65b8f3));
3508       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3509       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3510                                getF32Constant(DAG, 0x3f324b07));
3511       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3512       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3513                                getF32Constant(DAG, 0x3f7ff8fd));
3514       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3515 
3516       // Add the exponent into the result in integer domain.
3517       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3518                                TwoToFracPartOfX, IntegerPartOfX);
3519 
3520       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3521     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3522       // For floating-point precision of 18:
3523       //
3524       //   TwoToFractionalPartOfX =
3525       //     0.999999982f +
3526       //       (0.693148872f +
3527       //         (0.240227044f +
3528       //           (0.554906021e-1f +
3529       //             (0.961591928e-2f +
3530       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3531       //
3532       // error 2.47208000*10^(-7), which is better than 18 bits
3533       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3534                                getF32Constant(DAG, 0x3924b03e));
3535       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3536                                getF32Constant(DAG, 0x3ab24b87));
3537       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3538       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3539                                getF32Constant(DAG, 0x3c1d8c17));
3540       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3541       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3542                                getF32Constant(DAG, 0x3d634a1d));
3543       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3544       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3545                                getF32Constant(DAG, 0x3e75fe14));
3546       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3547       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3548                                 getF32Constant(DAG, 0x3f317234));
3549       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3550       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3551                                 getF32Constant(DAG, 0x3f800000));
3552       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3553                                              MVT::i32, t13);
3554 
3555       // Add the exponent into the result in integer domain.
3556       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3557                                 TwoToFracPartOfX, IntegerPartOfX);
3558 
3559       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3560     }
3561   } else {
3562     // No special expansion.
3563     result = DAG.getNode(ISD::FEXP, dl,
3564                          getValue(I.getArgOperand(0)).getValueType(),
3565                          getValue(I.getArgOperand(0)));
3566   }
3567 
3568   setValue(&I, result);
3569 }
3570 
3571 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3572 /// limited-precision mode.
3573 void
3574 SelectionDAGBuilder::visitLog(const CallInst &I) {
3575   SDValue result;
3576   DebugLoc dl = getCurDebugLoc();
3577 
3578   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3579       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3580     SDValue Op = getValue(I.getArgOperand(0));
3581     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3582 
3583     // Scale the exponent by log(2) [0.69314718f].
3584     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3585     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3586                                         getF32Constant(DAG, 0x3f317218));
3587 
3588     // Get the significand and build it into a floating-point number with
3589     // exponent of 1.
3590     SDValue X = GetSignificand(DAG, Op1, dl);
3591 
3592     if (LimitFloatPrecision <= 6) {
3593       // For floating-point precision of 6:
3594       //
3595       //   LogofMantissa =
3596       //     -1.1609546f +
3597       //       (1.4034025f - 0.23903021f * x) * x;
3598       //
3599       // error 0.0034276066, which is better than 8 bits
3600       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3601                                getF32Constant(DAG, 0xbe74c456));
3602       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3603                                getF32Constant(DAG, 0x3fb3a2b1));
3604       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3605       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3606                                           getF32Constant(DAG, 0x3f949a29));
3607 
3608       result = DAG.getNode(ISD::FADD, dl,
3609                            MVT::f32, LogOfExponent, LogOfMantissa);
3610     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3611       // For floating-point precision of 12:
3612       //
3613       //   LogOfMantissa =
3614       //     -1.7417939f +
3615       //       (2.8212026f +
3616       //         (-1.4699568f +
3617       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3618       //
3619       // error 0.000061011436, which is 14 bits
3620       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3621                                getF32Constant(DAG, 0xbd67b6d6));
3622       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3623                                getF32Constant(DAG, 0x3ee4f4b8));
3624       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3625       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3626                                getF32Constant(DAG, 0x3fbc278b));
3627       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3628       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3629                                getF32Constant(DAG, 0x40348e95));
3630       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3631       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3632                                           getF32Constant(DAG, 0x3fdef31a));
3633 
3634       result = DAG.getNode(ISD::FADD, dl,
3635                            MVT::f32, LogOfExponent, LogOfMantissa);
3636     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3637       // For floating-point precision of 18:
3638       //
3639       //   LogOfMantissa =
3640       //     -2.1072184f +
3641       //       (4.2372794f +
3642       //         (-3.7029485f +
3643       //           (2.2781945f +
3644       //             (-0.87823314f +
3645       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3646       //
3647       // error 0.0000023660568, which is better than 18 bits
3648       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3649                                getF32Constant(DAG, 0xbc91e5ac));
3650       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3651                                getF32Constant(DAG, 0x3e4350aa));
3652       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3653       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3654                                getF32Constant(DAG, 0x3f60d3e3));
3655       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3656       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3657                                getF32Constant(DAG, 0x4011cdf0));
3658       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3659       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3660                                getF32Constant(DAG, 0x406cfd1c));
3661       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3662       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3663                                getF32Constant(DAG, 0x408797cb));
3664       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3665       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3666                                           getF32Constant(DAG, 0x4006dcab));
3667 
3668       result = DAG.getNode(ISD::FADD, dl,
3669                            MVT::f32, LogOfExponent, LogOfMantissa);
3670     }
3671   } else {
3672     // No special expansion.
3673     result = DAG.getNode(ISD::FLOG, dl,
3674                          getValue(I.getArgOperand(0)).getValueType(),
3675                          getValue(I.getArgOperand(0)));
3676   }
3677 
3678   setValue(&I, result);
3679 }
3680 
3681 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3682 /// limited-precision mode.
3683 void
3684 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3685   SDValue result;
3686   DebugLoc dl = getCurDebugLoc();
3687 
3688   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3689       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3690     SDValue Op = getValue(I.getArgOperand(0));
3691     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3692 
3693     // Get the exponent.
3694     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3695 
3696     // Get the significand and build it into a floating-point number with
3697     // exponent of 1.
3698     SDValue X = GetSignificand(DAG, Op1, dl);
3699 
3700     // Different possible minimax approximations of significand in
3701     // floating-point for various degrees of accuracy over [1,2].
3702     if (LimitFloatPrecision <= 6) {
3703       // For floating-point precision of 6:
3704       //
3705       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3706       //
3707       // error 0.0049451742, which is more than 7 bits
3708       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3709                                getF32Constant(DAG, 0xbeb08fe0));
3710       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3711                                getF32Constant(DAG, 0x40019463));
3712       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3713       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3714                                            getF32Constant(DAG, 0x3fd6633d));
3715 
3716       result = DAG.getNode(ISD::FADD, dl,
3717                            MVT::f32, LogOfExponent, Log2ofMantissa);
3718     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3719       // For floating-point precision of 12:
3720       //
3721       //   Log2ofMantissa =
3722       //     -2.51285454f +
3723       //       (4.07009056f +
3724       //         (-2.12067489f +
3725       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3726       //
3727       // error 0.0000876136000, which is better than 13 bits
3728       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3729                                getF32Constant(DAG, 0xbda7262e));
3730       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3731                                getF32Constant(DAG, 0x3f25280b));
3732       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3733       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3734                                getF32Constant(DAG, 0x4007b923));
3735       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3736       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3737                                getF32Constant(DAG, 0x40823e2f));
3738       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3739       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3740                                            getF32Constant(DAG, 0x4020d29c));
3741 
3742       result = DAG.getNode(ISD::FADD, dl,
3743                            MVT::f32, LogOfExponent, Log2ofMantissa);
3744     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3745       // For floating-point precision of 18:
3746       //
3747       //   Log2ofMantissa =
3748       //     -3.0400495f +
3749       //       (6.1129976f +
3750       //         (-5.3420409f +
3751       //           (3.2865683f +
3752       //             (-1.2669343f +
3753       //               (0.27515199f -
3754       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3755       //
3756       // error 0.0000018516, which is better than 18 bits
3757       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3758                                getF32Constant(DAG, 0xbcd2769e));
3759       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3760                                getF32Constant(DAG, 0x3e8ce0b9));
3761       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3762       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3763                                getF32Constant(DAG, 0x3fa22ae7));
3764       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3765       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3766                                getF32Constant(DAG, 0x40525723));
3767       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3768       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3769                                getF32Constant(DAG, 0x40aaf200));
3770       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3771       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3772                                getF32Constant(DAG, 0x40c39dad));
3773       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3774       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3775                                            getF32Constant(DAG, 0x4042902c));
3776 
3777       result = DAG.getNode(ISD::FADD, dl,
3778                            MVT::f32, LogOfExponent, Log2ofMantissa);
3779     }
3780   } else {
3781     // No special expansion.
3782     result = DAG.getNode(ISD::FLOG2, dl,
3783                          getValue(I.getArgOperand(0)).getValueType(),
3784                          getValue(I.getArgOperand(0)));
3785   }
3786 
3787   setValue(&I, result);
3788 }
3789 
3790 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3791 /// limited-precision mode.
3792 void
3793 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3794   SDValue result;
3795   DebugLoc dl = getCurDebugLoc();
3796 
3797   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3798       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3799     SDValue Op = getValue(I.getArgOperand(0));
3800     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3801 
3802     // Scale the exponent by log10(2) [0.30102999f].
3803     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3804     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3805                                         getF32Constant(DAG, 0x3e9a209a));
3806 
3807     // Get the significand and build it into a floating-point number with
3808     // exponent of 1.
3809     SDValue X = GetSignificand(DAG, Op1, dl);
3810 
3811     if (LimitFloatPrecision <= 6) {
3812       // For floating-point precision of 6:
3813       //
3814       //   Log10ofMantissa =
3815       //     -0.50419619f +
3816       //       (0.60948995f - 0.10380950f * x) * x;
3817       //
3818       // error 0.0014886165, which is 6 bits
3819       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3820                                getF32Constant(DAG, 0xbdd49a13));
3821       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3822                                getF32Constant(DAG, 0x3f1c0789));
3823       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3824       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3825                                             getF32Constant(DAG, 0x3f011300));
3826 
3827       result = DAG.getNode(ISD::FADD, dl,
3828                            MVT::f32, LogOfExponent, Log10ofMantissa);
3829     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3830       // For floating-point precision of 12:
3831       //
3832       //   Log10ofMantissa =
3833       //     -0.64831180f +
3834       //       (0.91751397f +
3835       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3836       //
3837       // error 0.00019228036, which is better than 12 bits
3838       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3839                                getF32Constant(DAG, 0x3d431f31));
3840       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3841                                getF32Constant(DAG, 0x3ea21fb2));
3842       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3843       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3844                                getF32Constant(DAG, 0x3f6ae232));
3845       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3846       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3847                                             getF32Constant(DAG, 0x3f25f7c3));
3848 
3849       result = DAG.getNode(ISD::FADD, dl,
3850                            MVT::f32, LogOfExponent, Log10ofMantissa);
3851     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3852       // For floating-point precision of 18:
3853       //
3854       //   Log10ofMantissa =
3855       //     -0.84299375f +
3856       //       (1.5327582f +
3857       //         (-1.0688956f +
3858       //           (0.49102474f +
3859       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3860       //
3861       // error 0.0000037995730, which is better than 18 bits
3862       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3863                                getF32Constant(DAG, 0x3c5d51ce));
3864       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3865                                getF32Constant(DAG, 0x3e00685a));
3866       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3867       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3868                                getF32Constant(DAG, 0x3efb6798));
3869       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3870       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3871                                getF32Constant(DAG, 0x3f88d192));
3872       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3873       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3874                                getF32Constant(DAG, 0x3fc4316c));
3875       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3876       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3877                                             getF32Constant(DAG, 0x3f57ce70));
3878 
3879       result = DAG.getNode(ISD::FADD, dl,
3880                            MVT::f32, LogOfExponent, Log10ofMantissa);
3881     }
3882   } else {
3883     // No special expansion.
3884     result = DAG.getNode(ISD::FLOG10, dl,
3885                          getValue(I.getArgOperand(0)).getValueType(),
3886                          getValue(I.getArgOperand(0)));
3887   }
3888 
3889   setValue(&I, result);
3890 }
3891 
3892 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3893 /// limited-precision mode.
3894 void
3895 SelectionDAGBuilder::visitExp2(const CallInst &I) {
3896   SDValue result;
3897   DebugLoc dl = getCurDebugLoc();
3898 
3899   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3900       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3901     SDValue Op = getValue(I.getArgOperand(0));
3902 
3903     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3904 
3905     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3906     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3907     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3908 
3909     //   IntegerPartOfX <<= 23;
3910     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3911                                  DAG.getConstant(23, TLI.getPointerTy()));
3912 
3913     if (LimitFloatPrecision <= 6) {
3914       // For floating-point precision of 6:
3915       //
3916       //   TwoToFractionalPartOfX =
3917       //     0.997535578f +
3918       //       (0.735607626f + 0.252464424f * x) * x;
3919       //
3920       // error 0.0144103317, which is 6 bits
3921       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3922                                getF32Constant(DAG, 0x3e814304));
3923       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3924                                getF32Constant(DAG, 0x3f3c50c8));
3925       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3926       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3927                                getF32Constant(DAG, 0x3f7f5e7e));
3928       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3929       SDValue TwoToFractionalPartOfX =
3930         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3931 
3932       result = DAG.getNode(ISD::BITCAST, dl,
3933                            MVT::f32, TwoToFractionalPartOfX);
3934     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3935       // For floating-point precision of 12:
3936       //
3937       //   TwoToFractionalPartOfX =
3938       //     0.999892986f +
3939       //       (0.696457318f +
3940       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3941       //
3942       // error 0.000107046256, which is 13 to 14 bits
3943       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3944                                getF32Constant(DAG, 0x3da235e3));
3945       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3946                                getF32Constant(DAG, 0x3e65b8f3));
3947       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3948       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3949                                getF32Constant(DAG, 0x3f324b07));
3950       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3951       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3952                                getF32Constant(DAG, 0x3f7ff8fd));
3953       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3954       SDValue TwoToFractionalPartOfX =
3955         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3956 
3957       result = DAG.getNode(ISD::BITCAST, dl,
3958                            MVT::f32, TwoToFractionalPartOfX);
3959     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3960       // For floating-point precision of 18:
3961       //
3962       //   TwoToFractionalPartOfX =
3963       //     0.999999982f +
3964       //       (0.693148872f +
3965       //         (0.240227044f +
3966       //           (0.554906021e-1f +
3967       //             (0.961591928e-2f +
3968       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3969       // error 2.47208000*10^(-7), which is better than 18 bits
3970       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3971                                getF32Constant(DAG, 0x3924b03e));
3972       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3973                                getF32Constant(DAG, 0x3ab24b87));
3974       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3975       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3976                                getF32Constant(DAG, 0x3c1d8c17));
3977       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3978       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3979                                getF32Constant(DAG, 0x3d634a1d));
3980       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3981       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3982                                getF32Constant(DAG, 0x3e75fe14));
3983       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3984       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3985                                 getF32Constant(DAG, 0x3f317234));
3986       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3987       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3988                                 getF32Constant(DAG, 0x3f800000));
3989       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3990       SDValue TwoToFractionalPartOfX =
3991         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3992 
3993       result = DAG.getNode(ISD::BITCAST, dl,
3994                            MVT::f32, TwoToFractionalPartOfX);
3995     }
3996   } else {
3997     // No special expansion.
3998     result = DAG.getNode(ISD::FEXP2, dl,
3999                          getValue(I.getArgOperand(0)).getValueType(),
4000                          getValue(I.getArgOperand(0)));
4001   }
4002 
4003   setValue(&I, result);
4004 }
4005 
4006 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4007 /// limited-precision mode with x == 10.0f.
4008 void
4009 SelectionDAGBuilder::visitPow(const CallInst &I) {
4010   SDValue result;
4011   const Value *Val = I.getArgOperand(0);
4012   DebugLoc dl = getCurDebugLoc();
4013   bool IsExp10 = false;
4014 
4015   if (getValue(Val).getValueType() == MVT::f32 &&
4016       getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4017       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4018     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4019       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4020         APFloat Ten(10.0f);
4021         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4022       }
4023     }
4024   }
4025 
4026   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4027     SDValue Op = getValue(I.getArgOperand(1));
4028 
4029     // Put the exponent in the right bit position for later addition to the
4030     // final result:
4031     //
4032     //   #define LOG2OF10 3.3219281f
4033     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4034     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4035                              getF32Constant(DAG, 0x40549a78));
4036     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4037 
4038     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4039     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4040     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4041 
4042     //   IntegerPartOfX <<= 23;
4043     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4044                                  DAG.getConstant(23, TLI.getPointerTy()));
4045 
4046     if (LimitFloatPrecision <= 6) {
4047       // For floating-point precision of 6:
4048       //
4049       //   twoToFractionalPartOfX =
4050       //     0.997535578f +
4051       //       (0.735607626f + 0.252464424f * x) * x;
4052       //
4053       // error 0.0144103317, which is 6 bits
4054       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4055                                getF32Constant(DAG, 0x3e814304));
4056       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4057                                getF32Constant(DAG, 0x3f3c50c8));
4058       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4059       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4060                                getF32Constant(DAG, 0x3f7f5e7e));
4061       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4062       SDValue TwoToFractionalPartOfX =
4063         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4064 
4065       result = DAG.getNode(ISD::BITCAST, dl,
4066                            MVT::f32, TwoToFractionalPartOfX);
4067     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4068       // For floating-point precision of 12:
4069       //
4070       //   TwoToFractionalPartOfX =
4071       //     0.999892986f +
4072       //       (0.696457318f +
4073       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4074       //
4075       // error 0.000107046256, which is 13 to 14 bits
4076       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4077                                getF32Constant(DAG, 0x3da235e3));
4078       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4079                                getF32Constant(DAG, 0x3e65b8f3));
4080       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4081       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4082                                getF32Constant(DAG, 0x3f324b07));
4083       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4084       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4085                                getF32Constant(DAG, 0x3f7ff8fd));
4086       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4087       SDValue TwoToFractionalPartOfX =
4088         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4089 
4090       result = DAG.getNode(ISD::BITCAST, dl,
4091                            MVT::f32, TwoToFractionalPartOfX);
4092     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4093       // For floating-point precision of 18:
4094       //
4095       //   TwoToFractionalPartOfX =
4096       //     0.999999982f +
4097       //       (0.693148872f +
4098       //         (0.240227044f +
4099       //           (0.554906021e-1f +
4100       //             (0.961591928e-2f +
4101       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4102       // error 2.47208000*10^(-7), which is better than 18 bits
4103       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4104                                getF32Constant(DAG, 0x3924b03e));
4105       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4106                                getF32Constant(DAG, 0x3ab24b87));
4107       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4108       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4109                                getF32Constant(DAG, 0x3c1d8c17));
4110       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4111       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4112                                getF32Constant(DAG, 0x3d634a1d));
4113       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4114       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4115                                getF32Constant(DAG, 0x3e75fe14));
4116       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4117       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4118                                 getF32Constant(DAG, 0x3f317234));
4119       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4120       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4121                                 getF32Constant(DAG, 0x3f800000));
4122       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4123       SDValue TwoToFractionalPartOfX =
4124         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4125 
4126       result = DAG.getNode(ISD::BITCAST, dl,
4127                            MVT::f32, TwoToFractionalPartOfX);
4128     }
4129   } else {
4130     // No special expansion.
4131     result = DAG.getNode(ISD::FPOW, dl,
4132                          getValue(I.getArgOperand(0)).getValueType(),
4133                          getValue(I.getArgOperand(0)),
4134                          getValue(I.getArgOperand(1)));
4135   }
4136 
4137   setValue(&I, result);
4138 }
4139 
4140 
4141 /// ExpandPowI - Expand a llvm.powi intrinsic.
4142 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4143                           SelectionDAG &DAG) {
4144   // If RHS is a constant, we can expand this out to a multiplication tree,
4145   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4146   // optimizing for size, we only want to do this if the expansion would produce
4147   // a small number of multiplies, otherwise we do the full expansion.
4148   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4149     // Get the exponent as a positive value.
4150     unsigned Val = RHSC->getSExtValue();
4151     if ((int)Val < 0) Val = -Val;
4152 
4153     // powi(x, 0) -> 1.0
4154     if (Val == 0)
4155       return DAG.getConstantFP(1.0, LHS.getValueType());
4156 
4157     const Function *F = DAG.getMachineFunction().getFunction();
4158     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4159         // If optimizing for size, don't insert too many multiplies.  This
4160         // inserts up to 5 multiplies.
4161         CountPopulation_32(Val)+Log2_32(Val) < 7) {
4162       // We use the simple binary decomposition method to generate the multiply
4163       // sequence.  There are more optimal ways to do this (for example,
4164       // powi(x,15) generates one more multiply than it should), but this has
4165       // the benefit of being both really simple and much better than a libcall.
4166       SDValue Res;  // Logically starts equal to 1.0
4167       SDValue CurSquare = LHS;
4168       while (Val) {
4169         if (Val & 1) {
4170           if (Res.getNode())
4171             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4172           else
4173             Res = CurSquare;  // 1.0*CurSquare.
4174         }
4175 
4176         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4177                                 CurSquare, CurSquare);
4178         Val >>= 1;
4179       }
4180 
4181       // If the original was negative, invert the result, producing 1/(x*x*x).
4182       if (RHSC->getSExtValue() < 0)
4183         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4184                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4185       return Res;
4186     }
4187   }
4188 
4189   // Otherwise, expand to a libcall.
4190   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4191 }
4192 
4193 // getTruncatedArgReg - Find underlying register used for an truncated
4194 // argument.
4195 static unsigned getTruncatedArgReg(const SDValue &N) {
4196   if (N.getOpcode() != ISD::TRUNCATE)
4197     return 0;
4198 
4199   const SDValue &Ext = N.getOperand(0);
4200   if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4201     const SDValue &CFR = Ext.getOperand(0);
4202     if (CFR.getOpcode() == ISD::CopyFromReg)
4203       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4204     else
4205       if (CFR.getOpcode() == ISD::TRUNCATE)
4206         return getTruncatedArgReg(CFR);
4207   }
4208   return 0;
4209 }
4210 
4211 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4212 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4213 /// At the end of instruction selection, they will be inserted to the entry BB.
4214 bool
4215 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4216                                               int64_t Offset,
4217                                               const SDValue &N) {
4218   const Argument *Arg = dyn_cast<Argument>(V);
4219   if (!Arg)
4220     return false;
4221 
4222   MachineFunction &MF = DAG.getMachineFunction();
4223   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4224   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4225 
4226   // Ignore inlined function arguments here.
4227   DIVariable DV(Variable);
4228   if (DV.isInlinedFnArgument(MF.getFunction()))
4229     return false;
4230 
4231   unsigned Reg = 0;
4232   if (Arg->hasByValAttr()) {
4233     // Byval arguments' frame index is recorded during argument lowering.
4234     // Use this info directly.
4235     Reg = TRI->getFrameRegister(MF);
4236     Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4237     // If byval argument ofset is not recorded then ignore this.
4238     if (!Offset)
4239       Reg = 0;
4240   }
4241 
4242   if (N.getNode()) {
4243     if (N.getOpcode() == ISD::CopyFromReg)
4244       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4245     else
4246       Reg = getTruncatedArgReg(N);
4247     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4248       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4249       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4250       if (PR)
4251         Reg = PR;
4252     }
4253   }
4254 
4255   if (!Reg) {
4256     // Check if ValueMap has reg number.
4257     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4258     if (VMI != FuncInfo.ValueMap.end())
4259       Reg = VMI->second;
4260   }
4261 
4262   if (!Reg && N.getNode()) {
4263     // Check if frame index is available.
4264     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4265       if (FrameIndexSDNode *FINode =
4266           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4267         Reg = TRI->getFrameRegister(MF);
4268         Offset = FINode->getIndex();
4269       }
4270   }
4271 
4272   if (!Reg)
4273     return false;
4274 
4275   MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4276                                     TII->get(TargetOpcode::DBG_VALUE))
4277     .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4278   FuncInfo.ArgDbgValues.push_back(&*MIB);
4279   return true;
4280 }
4281 
4282 // VisualStudio defines setjmp as _setjmp
4283 #if defined(_MSC_VER) && defined(setjmp) && \
4284                          !defined(setjmp_undefined_for_msvc)
4285 #  pragma push_macro("setjmp")
4286 #  undef setjmp
4287 #  define setjmp_undefined_for_msvc
4288 #endif
4289 
4290 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4291 /// we want to emit this as a call to a named external function, return the name
4292 /// otherwise lower it and return null.
4293 const char *
4294 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4295   DebugLoc dl = getCurDebugLoc();
4296   SDValue Res;
4297 
4298   switch (Intrinsic) {
4299   default:
4300     // By default, turn this into a target intrinsic node.
4301     visitTargetIntrinsic(I, Intrinsic);
4302     return 0;
4303   case Intrinsic::vastart:  visitVAStart(I); return 0;
4304   case Intrinsic::vaend:    visitVAEnd(I); return 0;
4305   case Intrinsic::vacopy:   visitVACopy(I); return 0;
4306   case Intrinsic::returnaddress:
4307     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4308                              getValue(I.getArgOperand(0))));
4309     return 0;
4310   case Intrinsic::frameaddress:
4311     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4312                              getValue(I.getArgOperand(0))));
4313     return 0;
4314   case Intrinsic::setjmp:
4315     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4316   case Intrinsic::longjmp:
4317     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4318   case Intrinsic::memcpy: {
4319     // Assert for address < 256 since we support only user defined address
4320     // spaces.
4321     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4322            < 256 &&
4323            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4324            < 256 &&
4325            "Unknown address space");
4326     SDValue Op1 = getValue(I.getArgOperand(0));
4327     SDValue Op2 = getValue(I.getArgOperand(1));
4328     SDValue Op3 = getValue(I.getArgOperand(2));
4329     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4330     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4331     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4332                               MachinePointerInfo(I.getArgOperand(0)),
4333                               MachinePointerInfo(I.getArgOperand(1))));
4334     return 0;
4335   }
4336   case Intrinsic::memset: {
4337     // Assert for address < 256 since we support only user defined address
4338     // spaces.
4339     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4340            < 256 &&
4341            "Unknown address space");
4342     SDValue Op1 = getValue(I.getArgOperand(0));
4343     SDValue Op2 = getValue(I.getArgOperand(1));
4344     SDValue Op3 = getValue(I.getArgOperand(2));
4345     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4346     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4347     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4348                               MachinePointerInfo(I.getArgOperand(0))));
4349     return 0;
4350   }
4351   case Intrinsic::memmove: {
4352     // Assert for address < 256 since we support only user defined address
4353     // spaces.
4354     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4355            < 256 &&
4356            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4357            < 256 &&
4358            "Unknown address space");
4359     SDValue Op1 = getValue(I.getArgOperand(0));
4360     SDValue Op2 = getValue(I.getArgOperand(1));
4361     SDValue Op3 = getValue(I.getArgOperand(2));
4362     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4363     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4364     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4365                                MachinePointerInfo(I.getArgOperand(0)),
4366                                MachinePointerInfo(I.getArgOperand(1))));
4367     return 0;
4368   }
4369   case Intrinsic::dbg_declare: {
4370     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4371     MDNode *Variable = DI.getVariable();
4372     const Value *Address = DI.getAddress();
4373     if (!Address || !DIVariable(DI.getVariable()).Verify())
4374       return 0;
4375 
4376     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4377     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4378     // absolute, but not relative, values are different depending on whether
4379     // debug info exists.
4380     ++SDNodeOrder;
4381 
4382     // Check if address has undef value.
4383     if (isa<UndefValue>(Address) ||
4384         (Address->use_empty() && !isa<Argument>(Address))) {
4385       DEBUG(dbgs() << "Dropping debug info for " << DI);
4386       return 0;
4387     }
4388 
4389     SDValue &N = NodeMap[Address];
4390     if (!N.getNode() && isa<Argument>(Address))
4391       // Check unused arguments map.
4392       N = UnusedArgNodeMap[Address];
4393     SDDbgValue *SDV;
4394     if (N.getNode()) {
4395       // Parameters are handled specially.
4396       bool isParameter =
4397         DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4398       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4399         Address = BCI->getOperand(0);
4400       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4401 
4402       if (isParameter && !AI) {
4403         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4404         if (FINode)
4405           // Byval parameter.  We have a frame index at this point.
4406           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4407                                 0, dl, SDNodeOrder);
4408         else {
4409           // Address is an argument, so try to emit its dbg value using
4410           // virtual register info from the FuncInfo.ValueMap.
4411           EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4412           return 0;
4413         }
4414       } else if (AI)
4415         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4416                               0, dl, SDNodeOrder);
4417       else {
4418         // Can't do anything with other non-AI cases yet.
4419         DEBUG(dbgs() << "Dropping debug info for " << DI);
4420         return 0;
4421       }
4422       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4423     } else {
4424       // If Address is an argument then try to emit its dbg value using
4425       // virtual register info from the FuncInfo.ValueMap.
4426       if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4427         // If variable is pinned by a alloca in dominating bb then
4428         // use StaticAllocaMap.
4429         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4430           if (AI->getParent() != DI.getParent()) {
4431             DenseMap<const AllocaInst*, int>::iterator SI =
4432               FuncInfo.StaticAllocaMap.find(AI);
4433             if (SI != FuncInfo.StaticAllocaMap.end()) {
4434               SDV = DAG.getDbgValue(Variable, SI->second,
4435                                     0, dl, SDNodeOrder);
4436               DAG.AddDbgValue(SDV, 0, false);
4437               return 0;
4438             }
4439           }
4440         }
4441         DEBUG(dbgs() << "Dropping debug info for " << DI);
4442       }
4443     }
4444     return 0;
4445   }
4446   case Intrinsic::dbg_value: {
4447     const DbgValueInst &DI = cast<DbgValueInst>(I);
4448     if (!DIVariable(DI.getVariable()).Verify())
4449       return 0;
4450 
4451     MDNode *Variable = DI.getVariable();
4452     uint64_t Offset = DI.getOffset();
4453     const Value *V = DI.getValue();
4454     if (!V)
4455       return 0;
4456 
4457     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4458     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4459     // absolute, but not relative, values are different depending on whether
4460     // debug info exists.
4461     ++SDNodeOrder;
4462     SDDbgValue *SDV;
4463     if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4464       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4465       DAG.AddDbgValue(SDV, 0, false);
4466     } else {
4467       // Do not use getValue() in here; we don't want to generate code at
4468       // this point if it hasn't been done yet.
4469       SDValue N = NodeMap[V];
4470       if (!N.getNode() && isa<Argument>(V))
4471         // Check unused arguments map.
4472         N = UnusedArgNodeMap[V];
4473       if (N.getNode()) {
4474         if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4475           SDV = DAG.getDbgValue(Variable, N.getNode(),
4476                                 N.getResNo(), Offset, dl, SDNodeOrder);
4477           DAG.AddDbgValue(SDV, N.getNode(), false);
4478         }
4479       } else if (!V->use_empty() ) {
4480         // Do not call getValue(V) yet, as we don't want to generate code.
4481         // Remember it for later.
4482         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4483         DanglingDebugInfoMap[V] = DDI;
4484       } else {
4485         // We may expand this to cover more cases.  One case where we have no
4486         // data available is an unreferenced parameter.
4487         DEBUG(dbgs() << "Dropping debug info for " << DI);
4488       }
4489     }
4490 
4491     // Build a debug info table entry.
4492     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4493       V = BCI->getOperand(0);
4494     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4495     // Don't handle byval struct arguments or VLAs, for example.
4496     if (!AI)
4497       return 0;
4498     DenseMap<const AllocaInst*, int>::iterator SI =
4499       FuncInfo.StaticAllocaMap.find(AI);
4500     if (SI == FuncInfo.StaticAllocaMap.end())
4501       return 0; // VLAs.
4502     int FI = SI->second;
4503 
4504     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4505     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4506       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4507     return 0;
4508   }
4509   case Intrinsic::eh_exception: {
4510     // Insert the EXCEPTIONADDR instruction.
4511     assert(FuncInfo.MBB->isLandingPad() &&
4512            "Call to eh.exception not in landing pad!");
4513     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4514     SDValue Ops[1];
4515     Ops[0] = DAG.getRoot();
4516     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4517     setValue(&I, Op);
4518     DAG.setRoot(Op.getValue(1));
4519     return 0;
4520   }
4521 
4522   case Intrinsic::eh_selector: {
4523     MachineBasicBlock *CallMBB = FuncInfo.MBB;
4524     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4525     if (CallMBB->isLandingPad())
4526       AddCatchInfo(I, &MMI, CallMBB);
4527     else {
4528 #ifndef NDEBUG
4529       FuncInfo.CatchInfoLost.insert(&I);
4530 #endif
4531       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4532       unsigned Reg = TLI.getExceptionSelectorRegister();
4533       if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4534     }
4535 
4536     // Insert the EHSELECTION instruction.
4537     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4538     SDValue Ops[2];
4539     Ops[0] = getValue(I.getArgOperand(0));
4540     Ops[1] = getRoot();
4541     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4542     DAG.setRoot(Op.getValue(1));
4543     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4544     return 0;
4545   }
4546 
4547   case Intrinsic::eh_typeid_for: {
4548     // Find the type id for the given typeinfo.
4549     GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4550     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4551     Res = DAG.getConstant(TypeID, MVT::i32);
4552     setValue(&I, Res);
4553     return 0;
4554   }
4555 
4556   case Intrinsic::eh_return_i32:
4557   case Intrinsic::eh_return_i64:
4558     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4559     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4560                             MVT::Other,
4561                             getControlRoot(),
4562                             getValue(I.getArgOperand(0)),
4563                             getValue(I.getArgOperand(1))));
4564     return 0;
4565   case Intrinsic::eh_unwind_init:
4566     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4567     return 0;
4568   case Intrinsic::eh_dwarf_cfa: {
4569     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4570                                         TLI.getPointerTy());
4571     SDValue Offset = DAG.getNode(ISD::ADD, dl,
4572                                  TLI.getPointerTy(),
4573                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4574                                              TLI.getPointerTy()),
4575                                  CfaArg);
4576     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4577                              TLI.getPointerTy(),
4578                              DAG.getConstant(0, TLI.getPointerTy()));
4579     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4580                              FA, Offset));
4581     return 0;
4582   }
4583   case Intrinsic::eh_sjlj_callsite: {
4584     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4585     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4586     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4587     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4588 
4589     MMI.setCurrentCallSite(CI->getZExtValue());
4590     return 0;
4591   }
4592   case Intrinsic::eh_sjlj_setjmp: {
4593     setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4594                              getValue(I.getArgOperand(0))));
4595     return 0;
4596   }
4597   case Intrinsic::eh_sjlj_longjmp: {
4598     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4599                             getRoot(), getValue(I.getArgOperand(0))));
4600     return 0;
4601   }
4602   case Intrinsic::eh_sjlj_dispatch_setup: {
4603     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4604                             getRoot(), getValue(I.getArgOperand(0))));
4605     return 0;
4606   }
4607 
4608   case Intrinsic::x86_mmx_pslli_w:
4609   case Intrinsic::x86_mmx_pslli_d:
4610   case Intrinsic::x86_mmx_pslli_q:
4611   case Intrinsic::x86_mmx_psrli_w:
4612   case Intrinsic::x86_mmx_psrli_d:
4613   case Intrinsic::x86_mmx_psrli_q:
4614   case Intrinsic::x86_mmx_psrai_w:
4615   case Intrinsic::x86_mmx_psrai_d: {
4616     SDValue ShAmt = getValue(I.getArgOperand(1));
4617     if (isa<ConstantSDNode>(ShAmt)) {
4618       visitTargetIntrinsic(I, Intrinsic);
4619       return 0;
4620     }
4621     unsigned NewIntrinsic = 0;
4622     EVT ShAmtVT = MVT::v2i32;
4623     switch (Intrinsic) {
4624     case Intrinsic::x86_mmx_pslli_w:
4625       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4626       break;
4627     case Intrinsic::x86_mmx_pslli_d:
4628       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4629       break;
4630     case Intrinsic::x86_mmx_pslli_q:
4631       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4632       break;
4633     case Intrinsic::x86_mmx_psrli_w:
4634       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4635       break;
4636     case Intrinsic::x86_mmx_psrli_d:
4637       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4638       break;
4639     case Intrinsic::x86_mmx_psrli_q:
4640       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4641       break;
4642     case Intrinsic::x86_mmx_psrai_w:
4643       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4644       break;
4645     case Intrinsic::x86_mmx_psrai_d:
4646       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4647       break;
4648     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4649     }
4650 
4651     // The vector shift intrinsics with scalars uses 32b shift amounts but
4652     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4653     // to be zero.
4654     // We must do this early because v2i32 is not a legal type.
4655     DebugLoc dl = getCurDebugLoc();
4656     SDValue ShOps[2];
4657     ShOps[0] = ShAmt;
4658     ShOps[1] = DAG.getConstant(0, MVT::i32);
4659     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4660     EVT DestVT = TLI.getValueType(I.getType());
4661     ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4662     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4663                        DAG.getConstant(NewIntrinsic, MVT::i32),
4664                        getValue(I.getArgOperand(0)), ShAmt);
4665     setValue(&I, Res);
4666     return 0;
4667   }
4668   case Intrinsic::convertff:
4669   case Intrinsic::convertfsi:
4670   case Intrinsic::convertfui:
4671   case Intrinsic::convertsif:
4672   case Intrinsic::convertuif:
4673   case Intrinsic::convertss:
4674   case Intrinsic::convertsu:
4675   case Intrinsic::convertus:
4676   case Intrinsic::convertuu: {
4677     ISD::CvtCode Code = ISD::CVT_INVALID;
4678     switch (Intrinsic) {
4679     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4680     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4681     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4682     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4683     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4684     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4685     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4686     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4687     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4688     }
4689     EVT DestVT = TLI.getValueType(I.getType());
4690     const Value *Op1 = I.getArgOperand(0);
4691     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4692                                DAG.getValueType(DestVT),
4693                                DAG.getValueType(getValue(Op1).getValueType()),
4694                                getValue(I.getArgOperand(1)),
4695                                getValue(I.getArgOperand(2)),
4696                                Code);
4697     setValue(&I, Res);
4698     return 0;
4699   }
4700   case Intrinsic::sqrt:
4701     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4702                              getValue(I.getArgOperand(0)).getValueType(),
4703                              getValue(I.getArgOperand(0))));
4704     return 0;
4705   case Intrinsic::powi:
4706     setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4707                             getValue(I.getArgOperand(1)), DAG));
4708     return 0;
4709   case Intrinsic::sin:
4710     setValue(&I, DAG.getNode(ISD::FSIN, dl,
4711                              getValue(I.getArgOperand(0)).getValueType(),
4712                              getValue(I.getArgOperand(0))));
4713     return 0;
4714   case Intrinsic::cos:
4715     setValue(&I, DAG.getNode(ISD::FCOS, dl,
4716                              getValue(I.getArgOperand(0)).getValueType(),
4717                              getValue(I.getArgOperand(0))));
4718     return 0;
4719   case Intrinsic::log:
4720     visitLog(I);
4721     return 0;
4722   case Intrinsic::log2:
4723     visitLog2(I);
4724     return 0;
4725   case Intrinsic::log10:
4726     visitLog10(I);
4727     return 0;
4728   case Intrinsic::exp:
4729     visitExp(I);
4730     return 0;
4731   case Intrinsic::exp2:
4732     visitExp2(I);
4733     return 0;
4734   case Intrinsic::pow:
4735     visitPow(I);
4736     return 0;
4737   case Intrinsic::fma:
4738     setValue(&I, DAG.getNode(ISD::FMA, dl,
4739                              getValue(I.getArgOperand(0)).getValueType(),
4740                              getValue(I.getArgOperand(0)),
4741                              getValue(I.getArgOperand(1)),
4742                              getValue(I.getArgOperand(2))));
4743     return 0;
4744   case Intrinsic::convert_to_fp16:
4745     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4746                              MVT::i16, getValue(I.getArgOperand(0))));
4747     return 0;
4748   case Intrinsic::convert_from_fp16:
4749     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4750                              MVT::f32, getValue(I.getArgOperand(0))));
4751     return 0;
4752   case Intrinsic::pcmarker: {
4753     SDValue Tmp = getValue(I.getArgOperand(0));
4754     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4755     return 0;
4756   }
4757   case Intrinsic::readcyclecounter: {
4758     SDValue Op = getRoot();
4759     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4760                       DAG.getVTList(MVT::i64, MVT::Other),
4761                       &Op, 1);
4762     setValue(&I, Res);
4763     DAG.setRoot(Res.getValue(1));
4764     return 0;
4765   }
4766   case Intrinsic::bswap:
4767     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4768                              getValue(I.getArgOperand(0)).getValueType(),
4769                              getValue(I.getArgOperand(0))));
4770     return 0;
4771   case Intrinsic::cttz: {
4772     SDValue Arg = getValue(I.getArgOperand(0));
4773     EVT Ty = Arg.getValueType();
4774     setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4775     return 0;
4776   }
4777   case Intrinsic::ctlz: {
4778     SDValue Arg = getValue(I.getArgOperand(0));
4779     EVT Ty = Arg.getValueType();
4780     setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4781     return 0;
4782   }
4783   case Intrinsic::ctpop: {
4784     SDValue Arg = getValue(I.getArgOperand(0));
4785     EVT Ty = Arg.getValueType();
4786     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4787     return 0;
4788   }
4789   case Intrinsic::stacksave: {
4790     SDValue Op = getRoot();
4791     Res = DAG.getNode(ISD::STACKSAVE, dl,
4792                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4793     setValue(&I, Res);
4794     DAG.setRoot(Res.getValue(1));
4795     return 0;
4796   }
4797   case Intrinsic::stackrestore: {
4798     Res = getValue(I.getArgOperand(0));
4799     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4800     return 0;
4801   }
4802   case Intrinsic::stackprotector: {
4803     // Emit code into the DAG to store the stack guard onto the stack.
4804     MachineFunction &MF = DAG.getMachineFunction();
4805     MachineFrameInfo *MFI = MF.getFrameInfo();
4806     EVT PtrTy = TLI.getPointerTy();
4807 
4808     SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4809     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4810 
4811     int FI = FuncInfo.StaticAllocaMap[Slot];
4812     MFI->setStackProtectorIndex(FI);
4813 
4814     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4815 
4816     // Store the stack protector onto the stack.
4817     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4818                        MachinePointerInfo::getFixedStack(FI),
4819                        true, false, 0);
4820     setValue(&I, Res);
4821     DAG.setRoot(Res);
4822     return 0;
4823   }
4824   case Intrinsic::objectsize: {
4825     // If we don't know by now, we're never going to know.
4826     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4827 
4828     assert(CI && "Non-constant type in __builtin_object_size?");
4829 
4830     SDValue Arg = getValue(I.getCalledValue());
4831     EVT Ty = Arg.getValueType();
4832 
4833     if (CI->isZero())
4834       Res = DAG.getConstant(-1ULL, Ty);
4835     else
4836       Res = DAG.getConstant(0, Ty);
4837 
4838     setValue(&I, Res);
4839     return 0;
4840   }
4841   case Intrinsic::var_annotation:
4842     // Discard annotate attributes
4843     return 0;
4844 
4845   case Intrinsic::init_trampoline: {
4846     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4847 
4848     SDValue Ops[6];
4849     Ops[0] = getRoot();
4850     Ops[1] = getValue(I.getArgOperand(0));
4851     Ops[2] = getValue(I.getArgOperand(1));
4852     Ops[3] = getValue(I.getArgOperand(2));
4853     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4854     Ops[5] = DAG.getSrcValue(F);
4855 
4856     Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4857                       DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4858                       Ops, 6);
4859 
4860     setValue(&I, Res);
4861     DAG.setRoot(Res.getValue(1));
4862     return 0;
4863   }
4864   case Intrinsic::gcroot:
4865     if (GFI) {
4866       const Value *Alloca = I.getArgOperand(0);
4867       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4868 
4869       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4870       GFI->addStackRoot(FI->getIndex(), TypeMap);
4871     }
4872     return 0;
4873   case Intrinsic::gcread:
4874   case Intrinsic::gcwrite:
4875     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4876     return 0;
4877   case Intrinsic::flt_rounds:
4878     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4879     return 0;
4880 
4881   case Intrinsic::expect: {
4882     // Just replace __builtin_expect(exp, c) with EXP.
4883     setValue(&I, getValue(I.getArgOperand(0)));
4884     return 0;
4885   }
4886 
4887   case Intrinsic::trap: {
4888     StringRef TrapFuncName = getTrapFunctionName();
4889     if (TrapFuncName.empty()) {
4890       DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4891       return 0;
4892     }
4893     TargetLowering::ArgListTy Args;
4894     std::pair<SDValue, SDValue> Result =
4895       TLI.LowerCallTo(getRoot(), I.getType(),
4896                  false, false, false, false, 0, CallingConv::C,
4897                  /*isTailCall=*/false, /*isReturnValueUsed=*/true,
4898                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
4899                  Args, DAG, getCurDebugLoc());
4900     DAG.setRoot(Result.second);
4901     return 0;
4902   }
4903   case Intrinsic::uadd_with_overflow:
4904     return implVisitAluOverflow(I, ISD::UADDO);
4905   case Intrinsic::sadd_with_overflow:
4906     return implVisitAluOverflow(I, ISD::SADDO);
4907   case Intrinsic::usub_with_overflow:
4908     return implVisitAluOverflow(I, ISD::USUBO);
4909   case Intrinsic::ssub_with_overflow:
4910     return implVisitAluOverflow(I, ISD::SSUBO);
4911   case Intrinsic::umul_with_overflow:
4912     return implVisitAluOverflow(I, ISD::UMULO);
4913   case Intrinsic::smul_with_overflow:
4914     return implVisitAluOverflow(I, ISD::SMULO);
4915 
4916   case Intrinsic::prefetch: {
4917     SDValue Ops[5];
4918     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4919     Ops[0] = getRoot();
4920     Ops[1] = getValue(I.getArgOperand(0));
4921     Ops[2] = getValue(I.getArgOperand(1));
4922     Ops[3] = getValue(I.getArgOperand(2));
4923     Ops[4] = getValue(I.getArgOperand(3));
4924     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4925                                         DAG.getVTList(MVT::Other),
4926                                         &Ops[0], 5,
4927                                         EVT::getIntegerVT(*Context, 8),
4928                                         MachinePointerInfo(I.getArgOperand(0)),
4929                                         0, /* align */
4930                                         false, /* volatile */
4931                                         rw==0, /* read */
4932                                         rw==1)); /* write */
4933     return 0;
4934   }
4935   case Intrinsic::memory_barrier: {
4936     SDValue Ops[6];
4937     Ops[0] = getRoot();
4938     for (int x = 1; x < 6; ++x)
4939       Ops[x] = getValue(I.getArgOperand(x - 1));
4940 
4941     DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4942     return 0;
4943   }
4944   case Intrinsic::atomic_cmp_swap: {
4945     SDValue Root = getRoot();
4946     SDValue L =
4947       DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4948                     getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4949                     Root,
4950                     getValue(I.getArgOperand(0)),
4951                     getValue(I.getArgOperand(1)),
4952                     getValue(I.getArgOperand(2)),
4953                     MachinePointerInfo(I.getArgOperand(0)), 0 /* Alignment */,
4954                     Monotonic, CrossThread);
4955     setValue(&I, L);
4956     DAG.setRoot(L.getValue(1));
4957     return 0;
4958   }
4959   case Intrinsic::atomic_load_add:
4960     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4961   case Intrinsic::atomic_load_sub:
4962     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4963   case Intrinsic::atomic_load_or:
4964     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4965   case Intrinsic::atomic_load_xor:
4966     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4967   case Intrinsic::atomic_load_and:
4968     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4969   case Intrinsic::atomic_load_nand:
4970     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4971   case Intrinsic::atomic_load_max:
4972     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4973   case Intrinsic::atomic_load_min:
4974     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4975   case Intrinsic::atomic_load_umin:
4976     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4977   case Intrinsic::atomic_load_umax:
4978     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4979   case Intrinsic::atomic_swap:
4980     return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4981 
4982   case Intrinsic::invariant_start:
4983   case Intrinsic::lifetime_start:
4984     // Discard region information.
4985     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4986     return 0;
4987   case Intrinsic::invariant_end:
4988   case Intrinsic::lifetime_end:
4989     // Discard region information.
4990     return 0;
4991   }
4992 }
4993 
4994 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4995                                       bool isTailCall,
4996                                       MachineBasicBlock *LandingPad) {
4997   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4998   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4999   Type *RetTy = FTy->getReturnType();
5000   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5001   MCSymbol *BeginLabel = 0;
5002 
5003   TargetLowering::ArgListTy Args;
5004   TargetLowering::ArgListEntry Entry;
5005   Args.reserve(CS.arg_size());
5006 
5007   // Check whether the function can return without sret-demotion.
5008   SmallVector<ISD::OutputArg, 4> Outs;
5009   SmallVector<uint64_t, 4> Offsets;
5010   GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5011                 Outs, TLI, &Offsets);
5012 
5013   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5014 					   DAG.getMachineFunction(),
5015 					   FTy->isVarArg(), Outs,
5016 					   FTy->getContext());
5017 
5018   SDValue DemoteStackSlot;
5019   int DemoteStackIdx = -100;
5020 
5021   if (!CanLowerReturn) {
5022     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5023                       FTy->getReturnType());
5024     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5025                       FTy->getReturnType());
5026     MachineFunction &MF = DAG.getMachineFunction();
5027     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5028     Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5029 
5030     DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5031     Entry.Node = DemoteStackSlot;
5032     Entry.Ty = StackSlotPtrType;
5033     Entry.isSExt = false;
5034     Entry.isZExt = false;
5035     Entry.isInReg = false;
5036     Entry.isSRet = true;
5037     Entry.isNest = false;
5038     Entry.isByVal = false;
5039     Entry.Alignment = Align;
5040     Args.push_back(Entry);
5041     RetTy = Type::getVoidTy(FTy->getContext());
5042   }
5043 
5044   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5045        i != e; ++i) {
5046     const Value *V = *i;
5047 
5048     // Skip empty types
5049     if (V->getType()->isEmptyTy())
5050       continue;
5051 
5052     SDValue ArgNode = getValue(V);
5053     Entry.Node = ArgNode; Entry.Ty = V->getType();
5054 
5055     unsigned attrInd = i - CS.arg_begin() + 1;
5056     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5057     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5058     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5059     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5060     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5061     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5062     Entry.Alignment = CS.getParamAlignment(attrInd);
5063     Args.push_back(Entry);
5064   }
5065 
5066   if (LandingPad) {
5067     // Insert a label before the invoke call to mark the try range.  This can be
5068     // used to detect deletion of the invoke via the MachineModuleInfo.
5069     BeginLabel = MMI.getContext().CreateTempSymbol();
5070 
5071     // For SjLj, keep track of which landing pads go with which invokes
5072     // so as to maintain the ordering of pads in the LSDA.
5073     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5074     if (CallSiteIndex) {
5075       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5076       // Now that the call site is handled, stop tracking it.
5077       MMI.setCurrentCallSite(0);
5078     }
5079 
5080     // Both PendingLoads and PendingExports must be flushed here;
5081     // this call might not return.
5082     (void)getRoot();
5083     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5084   }
5085 
5086   // Check if target-independent constraints permit a tail call here.
5087   // Target-dependent constraints are checked within TLI.LowerCallTo.
5088   if (isTailCall &&
5089       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5090     isTailCall = false;
5091 
5092   // If there's a possibility that fast-isel has already selected some amount
5093   // of the current basic block, don't emit a tail call.
5094   if (isTailCall && EnableFastISel)
5095     isTailCall = false;
5096 
5097   std::pair<SDValue,SDValue> Result =
5098     TLI.LowerCallTo(getRoot(), RetTy,
5099                     CS.paramHasAttr(0, Attribute::SExt),
5100                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5101                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5102                     CS.getCallingConv(),
5103                     isTailCall,
5104                     !CS.getInstruction()->use_empty(),
5105                     Callee, Args, DAG, getCurDebugLoc());
5106   assert((isTailCall || Result.second.getNode()) &&
5107          "Non-null chain expected with non-tail call!");
5108   assert((Result.second.getNode() || !Result.first.getNode()) &&
5109          "Null value expected with tail call!");
5110   if (Result.first.getNode()) {
5111     setValue(CS.getInstruction(), Result.first);
5112   } else if (!CanLowerReturn && Result.second.getNode()) {
5113     // The instruction result is the result of loading from the
5114     // hidden sret parameter.
5115     SmallVector<EVT, 1> PVTs;
5116     Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5117 
5118     ComputeValueVTs(TLI, PtrRetTy, PVTs);
5119     assert(PVTs.size() == 1 && "Pointers should fit in one register");
5120     EVT PtrVT = PVTs[0];
5121     unsigned NumValues = Outs.size();
5122     SmallVector<SDValue, 4> Values(NumValues);
5123     SmallVector<SDValue, 4> Chains(NumValues);
5124 
5125     for (unsigned i = 0; i < NumValues; ++i) {
5126       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5127                                 DemoteStackSlot,
5128                                 DAG.getConstant(Offsets[i], PtrVT));
5129       SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5130                               Add,
5131                   MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5132                               false, false, 1);
5133       Values[i] = L;
5134       Chains[i] = L.getValue(1);
5135     }
5136 
5137     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5138                                 MVT::Other, &Chains[0], NumValues);
5139     PendingLoads.push_back(Chain);
5140 
5141     // Collect the legal value parts into potentially illegal values
5142     // that correspond to the original function's return values.
5143     SmallVector<EVT, 4> RetTys;
5144     RetTy = FTy->getReturnType();
5145     ComputeValueVTs(TLI, RetTy, RetTys);
5146     ISD::NodeType AssertOp = ISD::DELETED_NODE;
5147     SmallVector<SDValue, 4> ReturnValues;
5148     unsigned CurReg = 0;
5149     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5150       EVT VT = RetTys[I];
5151       EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5152       unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5153 
5154       SDValue ReturnValue =
5155         getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5156                          RegisterVT, VT, AssertOp);
5157       ReturnValues.push_back(ReturnValue);
5158       CurReg += NumRegs;
5159     }
5160 
5161     setValue(CS.getInstruction(),
5162              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5163                          DAG.getVTList(&RetTys[0], RetTys.size()),
5164                          &ReturnValues[0], ReturnValues.size()));
5165   }
5166 
5167   // Assign order to nodes here. If the call does not produce a result, it won't
5168   // be mapped to a SDNode and visit() will not assign it an order number.
5169   if (!Result.second.getNode()) {
5170     // As a special case, a null chain means that a tail call has been emitted and
5171     // the DAG root is already updated.
5172     HasTailCall = true;
5173     ++SDNodeOrder;
5174     AssignOrderingToNode(DAG.getRoot().getNode());
5175   } else {
5176     DAG.setRoot(Result.second);
5177     ++SDNodeOrder;
5178     AssignOrderingToNode(Result.second.getNode());
5179   }
5180 
5181   if (LandingPad) {
5182     // Insert a label at the end of the invoke call to mark the try range.  This
5183     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5184     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5185     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5186 
5187     // Inform MachineModuleInfo of range.
5188     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5189   }
5190 }
5191 
5192 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5193 /// value is equal or not-equal to zero.
5194 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5195   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5196        UI != E; ++UI) {
5197     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5198       if (IC->isEquality())
5199         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5200           if (C->isNullValue())
5201             continue;
5202     // Unknown instruction.
5203     return false;
5204   }
5205   return true;
5206 }
5207 
5208 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5209                              Type *LoadTy,
5210                              SelectionDAGBuilder &Builder) {
5211 
5212   // Check to see if this load can be trivially constant folded, e.g. if the
5213   // input is from a string literal.
5214   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5215     // Cast pointer to the type we really want to load.
5216     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5217                                          PointerType::getUnqual(LoadTy));
5218 
5219     if (const Constant *LoadCst =
5220           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5221                                        Builder.TD))
5222       return Builder.getValue(LoadCst);
5223   }
5224 
5225   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5226   // still constant memory, the input chain can be the entry node.
5227   SDValue Root;
5228   bool ConstantMemory = false;
5229 
5230   // Do not serialize (non-volatile) loads of constant memory with anything.
5231   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5232     Root = Builder.DAG.getEntryNode();
5233     ConstantMemory = true;
5234   } else {
5235     // Do not serialize non-volatile loads against each other.
5236     Root = Builder.DAG.getRoot();
5237   }
5238 
5239   SDValue Ptr = Builder.getValue(PtrVal);
5240   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5241                                         Ptr, MachinePointerInfo(PtrVal),
5242                                         false /*volatile*/,
5243                                         false /*nontemporal*/, 1 /* align=1 */);
5244 
5245   if (!ConstantMemory)
5246     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5247   return LoadVal;
5248 }
5249 
5250 
5251 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5252 /// If so, return true and lower it, otherwise return false and it will be
5253 /// lowered like a normal call.
5254 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5255   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5256   if (I.getNumArgOperands() != 3)
5257     return false;
5258 
5259   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5260   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5261       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5262       !I.getType()->isIntegerTy())
5263     return false;
5264 
5265   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5266 
5267   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5268   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5269   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5270     bool ActuallyDoIt = true;
5271     MVT LoadVT;
5272     Type *LoadTy;
5273     switch (Size->getZExtValue()) {
5274     default:
5275       LoadVT = MVT::Other;
5276       LoadTy = 0;
5277       ActuallyDoIt = false;
5278       break;
5279     case 2:
5280       LoadVT = MVT::i16;
5281       LoadTy = Type::getInt16Ty(Size->getContext());
5282       break;
5283     case 4:
5284       LoadVT = MVT::i32;
5285       LoadTy = Type::getInt32Ty(Size->getContext());
5286       break;
5287     case 8:
5288       LoadVT = MVT::i64;
5289       LoadTy = Type::getInt64Ty(Size->getContext());
5290       break;
5291         /*
5292     case 16:
5293       LoadVT = MVT::v4i32;
5294       LoadTy = Type::getInt32Ty(Size->getContext());
5295       LoadTy = VectorType::get(LoadTy, 4);
5296       break;
5297          */
5298     }
5299 
5300     // This turns into unaligned loads.  We only do this if the target natively
5301     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5302     // we'll only produce a small number of byte loads.
5303 
5304     // Require that we can find a legal MVT, and only do this if the target
5305     // supports unaligned loads of that type.  Expanding into byte loads would
5306     // bloat the code.
5307     if (ActuallyDoIt && Size->getZExtValue() > 4) {
5308       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5309       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5310       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5311         ActuallyDoIt = false;
5312     }
5313 
5314     if (ActuallyDoIt) {
5315       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5316       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5317 
5318       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5319                                  ISD::SETNE);
5320       EVT CallVT = TLI.getValueType(I.getType(), true);
5321       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5322       return true;
5323     }
5324   }
5325 
5326 
5327   return false;
5328 }
5329 
5330 
5331 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5332   // Handle inline assembly differently.
5333   if (isa<InlineAsm>(I.getCalledValue())) {
5334     visitInlineAsm(&I);
5335     return;
5336   }
5337 
5338   // See if any floating point values are being passed to this function. This is
5339   // used to emit an undefined reference to fltused on Windows.
5340   FunctionType *FT =
5341     cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5342   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5343   if (FT->isVarArg() &&
5344       !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5345     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5346       Type* T = I.getArgOperand(i)->getType();
5347       for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5348            i != e; ++i) {
5349         if (!i->isFloatingPointTy()) continue;
5350         MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5351         break;
5352       }
5353     }
5354   }
5355 
5356   const char *RenameFn = 0;
5357   if (Function *F = I.getCalledFunction()) {
5358     if (F->isDeclaration()) {
5359       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5360         if (unsigned IID = II->getIntrinsicID(F)) {
5361           RenameFn = visitIntrinsicCall(I, IID);
5362           if (!RenameFn)
5363             return;
5364         }
5365       }
5366       if (unsigned IID = F->getIntrinsicID()) {
5367         RenameFn = visitIntrinsicCall(I, IID);
5368         if (!RenameFn)
5369           return;
5370       }
5371     }
5372 
5373     // Check for well-known libc/libm calls.  If the function is internal, it
5374     // can't be a library call.
5375     if (!F->hasLocalLinkage() && F->hasName()) {
5376       StringRef Name = F->getName();
5377       if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5378         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5379             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5380             I.getType() == I.getArgOperand(0)->getType() &&
5381             I.getType() == I.getArgOperand(1)->getType()) {
5382           SDValue LHS = getValue(I.getArgOperand(0));
5383           SDValue RHS = getValue(I.getArgOperand(1));
5384           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5385                                    LHS.getValueType(), LHS, RHS));
5386           return;
5387         }
5388       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5389         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5390             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5391             I.getType() == I.getArgOperand(0)->getType()) {
5392           SDValue Tmp = getValue(I.getArgOperand(0));
5393           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5394                                    Tmp.getValueType(), Tmp));
5395           return;
5396         }
5397       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5398         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5399             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5400             I.getType() == I.getArgOperand(0)->getType() &&
5401             I.onlyReadsMemory()) {
5402           SDValue Tmp = getValue(I.getArgOperand(0));
5403           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5404                                    Tmp.getValueType(), Tmp));
5405           return;
5406         }
5407       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5408         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5409             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5410             I.getType() == I.getArgOperand(0)->getType() &&
5411             I.onlyReadsMemory()) {
5412           SDValue Tmp = getValue(I.getArgOperand(0));
5413           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5414                                    Tmp.getValueType(), Tmp));
5415           return;
5416         }
5417       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5418         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5419             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5420             I.getType() == I.getArgOperand(0)->getType() &&
5421             I.onlyReadsMemory()) {
5422           SDValue Tmp = getValue(I.getArgOperand(0));
5423           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5424                                    Tmp.getValueType(), Tmp));
5425           return;
5426         }
5427       } else if (Name == "memcmp") {
5428         if (visitMemCmpCall(I))
5429           return;
5430       }
5431     }
5432   }
5433 
5434   SDValue Callee;
5435   if (!RenameFn)
5436     Callee = getValue(I.getCalledValue());
5437   else
5438     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5439 
5440   // Check if we can potentially perform a tail call. More detailed checking is
5441   // be done within LowerCallTo, after more information about the call is known.
5442   LowerCallTo(&I, Callee, I.isTailCall());
5443 }
5444 
5445 namespace {
5446 
5447 /// AsmOperandInfo - This contains information for each constraint that we are
5448 /// lowering.
5449 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5450 public:
5451   /// CallOperand - If this is the result output operand or a clobber
5452   /// this is null, otherwise it is the incoming operand to the CallInst.
5453   /// This gets modified as the asm is processed.
5454   SDValue CallOperand;
5455 
5456   /// AssignedRegs - If this is a register or register class operand, this
5457   /// contains the set of register corresponding to the operand.
5458   RegsForValue AssignedRegs;
5459 
5460   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5461     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5462   }
5463 
5464   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5465   /// busy in OutputRegs/InputRegs.
5466   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5467                          std::set<unsigned> &OutputRegs,
5468                          std::set<unsigned> &InputRegs,
5469                          const TargetRegisterInfo &TRI) const {
5470     if (isOutReg) {
5471       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5472         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5473     }
5474     if (isInReg) {
5475       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5476         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5477     }
5478   }
5479 
5480   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5481   /// corresponds to.  If there is no Value* for this operand, it returns
5482   /// MVT::Other.
5483   EVT getCallOperandValEVT(LLVMContext &Context,
5484                            const TargetLowering &TLI,
5485                            const TargetData *TD) const {
5486     if (CallOperandVal == 0) return MVT::Other;
5487 
5488     if (isa<BasicBlock>(CallOperandVal))
5489       return TLI.getPointerTy();
5490 
5491     llvm::Type *OpTy = CallOperandVal->getType();
5492 
5493     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5494     // If this is an indirect operand, the operand is a pointer to the
5495     // accessed type.
5496     if (isIndirect) {
5497       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5498       if (!PtrTy)
5499         report_fatal_error("Indirect operand for inline asm not a pointer!");
5500       OpTy = PtrTy->getElementType();
5501     }
5502 
5503     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5504     if (StructType *STy = dyn_cast<StructType>(OpTy))
5505       if (STy->getNumElements() == 1)
5506         OpTy = STy->getElementType(0);
5507 
5508     // If OpTy is not a single value, it may be a struct/union that we
5509     // can tile with integers.
5510     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5511       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5512       switch (BitSize) {
5513       default: break;
5514       case 1:
5515       case 8:
5516       case 16:
5517       case 32:
5518       case 64:
5519       case 128:
5520         OpTy = IntegerType::get(Context, BitSize);
5521         break;
5522       }
5523     }
5524 
5525     return TLI.getValueType(OpTy, true);
5526   }
5527 
5528 private:
5529   /// MarkRegAndAliases - Mark the specified register and all aliases in the
5530   /// specified set.
5531   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5532                                 const TargetRegisterInfo &TRI) {
5533     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5534     Regs.insert(Reg);
5535     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5536       for (; *Aliases; ++Aliases)
5537         Regs.insert(*Aliases);
5538   }
5539 };
5540 
5541 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5542 
5543 } // end anonymous namespace
5544 
5545 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5546 /// specified operand.  We prefer to assign virtual registers, to allow the
5547 /// register allocator to handle the assignment process.  However, if the asm
5548 /// uses features that we can't model on machineinstrs, we have SDISel do the
5549 /// allocation.  This produces generally horrible, but correct, code.
5550 ///
5551 ///   OpInfo describes the operand.
5552 ///   Input and OutputRegs are the set of already allocated physical registers.
5553 ///
5554 static void GetRegistersForValue(SelectionDAG &DAG,
5555                                  const TargetLowering &TLI,
5556                                  DebugLoc DL,
5557                                  SDISelAsmOperandInfo &OpInfo,
5558                                  std::set<unsigned> &OutputRegs,
5559                                  std::set<unsigned> &InputRegs) {
5560   LLVMContext &Context = *DAG.getContext();
5561 
5562   // Compute whether this value requires an input register, an output register,
5563   // or both.
5564   bool isOutReg = false;
5565   bool isInReg = false;
5566   switch (OpInfo.Type) {
5567   case InlineAsm::isOutput:
5568     isOutReg = true;
5569 
5570     // If there is an input constraint that matches this, we need to reserve
5571     // the input register so no other inputs allocate to it.
5572     isInReg = OpInfo.hasMatchingInput();
5573     break;
5574   case InlineAsm::isInput:
5575     isInReg = true;
5576     isOutReg = false;
5577     break;
5578   case InlineAsm::isClobber:
5579     isOutReg = true;
5580     isInReg = true;
5581     break;
5582   }
5583 
5584 
5585   MachineFunction &MF = DAG.getMachineFunction();
5586   SmallVector<unsigned, 4> Regs;
5587 
5588   // If this is a constraint for a single physreg, or a constraint for a
5589   // register class, find it.
5590   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5591     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5592                                      OpInfo.ConstraintVT);
5593 
5594   unsigned NumRegs = 1;
5595   if (OpInfo.ConstraintVT != MVT::Other) {
5596     // If this is a FP input in an integer register (or visa versa) insert a bit
5597     // cast of the input value.  More generally, handle any case where the input
5598     // value disagrees with the register class we plan to stick this in.
5599     if (OpInfo.Type == InlineAsm::isInput &&
5600         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5601       // Try to convert to the first EVT that the reg class contains.  If the
5602       // types are identical size, use a bitcast to convert (e.g. two differing
5603       // vector types).
5604       EVT RegVT = *PhysReg.second->vt_begin();
5605       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5606         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5607                                          RegVT, OpInfo.CallOperand);
5608         OpInfo.ConstraintVT = RegVT;
5609       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5610         // If the input is a FP value and we want it in FP registers, do a
5611         // bitcast to the corresponding integer type.  This turns an f64 value
5612         // into i64, which can be passed with two i32 values on a 32-bit
5613         // machine.
5614         RegVT = EVT::getIntegerVT(Context,
5615                                   OpInfo.ConstraintVT.getSizeInBits());
5616         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5617                                          RegVT, OpInfo.CallOperand);
5618         OpInfo.ConstraintVT = RegVT;
5619       }
5620     }
5621 
5622     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5623   }
5624 
5625   EVT RegVT;
5626   EVT ValueVT = OpInfo.ConstraintVT;
5627 
5628   // If this is a constraint for a specific physical register, like {r17},
5629   // assign it now.
5630   if (unsigned AssignedReg = PhysReg.first) {
5631     const TargetRegisterClass *RC = PhysReg.second;
5632     if (OpInfo.ConstraintVT == MVT::Other)
5633       ValueVT = *RC->vt_begin();
5634 
5635     // Get the actual register value type.  This is important, because the user
5636     // may have asked for (e.g.) the AX register in i32 type.  We need to
5637     // remember that AX is actually i16 to get the right extension.
5638     RegVT = *RC->vt_begin();
5639 
5640     // This is a explicit reference to a physical register.
5641     Regs.push_back(AssignedReg);
5642 
5643     // If this is an expanded reference, add the rest of the regs to Regs.
5644     if (NumRegs != 1) {
5645       TargetRegisterClass::iterator I = RC->begin();
5646       for (; *I != AssignedReg; ++I)
5647         assert(I != RC->end() && "Didn't find reg!");
5648 
5649       // Already added the first reg.
5650       --NumRegs; ++I;
5651       for (; NumRegs; --NumRegs, ++I) {
5652         assert(I != RC->end() && "Ran out of registers to allocate!");
5653         Regs.push_back(*I);
5654       }
5655     }
5656 
5657     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5658     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5659     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5660     return;
5661   }
5662 
5663   // Otherwise, if this was a reference to an LLVM register class, create vregs
5664   // for this reference.
5665   if (const TargetRegisterClass *RC = PhysReg.second) {
5666     RegVT = *RC->vt_begin();
5667     if (OpInfo.ConstraintVT == MVT::Other)
5668       ValueVT = RegVT;
5669 
5670     // Create the appropriate number of virtual registers.
5671     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5672     for (; NumRegs; --NumRegs)
5673       Regs.push_back(RegInfo.createVirtualRegister(RC));
5674 
5675     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5676     return;
5677   }
5678 
5679   // Otherwise, we couldn't allocate enough registers for this.
5680 }
5681 
5682 /// visitInlineAsm - Handle a call to an InlineAsm object.
5683 ///
5684 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5685   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5686 
5687   /// ConstraintOperands - Information about all of the constraints.
5688   SDISelAsmOperandInfoVector ConstraintOperands;
5689 
5690   std::set<unsigned> OutputRegs, InputRegs;
5691 
5692   TargetLowering::AsmOperandInfoVector
5693     TargetConstraints = TLI.ParseConstraints(CS);
5694 
5695   bool hasMemory = false;
5696 
5697   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5698   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5699   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5700     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5701     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5702 
5703     EVT OpVT = MVT::Other;
5704 
5705     // Compute the value type for each operand.
5706     switch (OpInfo.Type) {
5707     case InlineAsm::isOutput:
5708       // Indirect outputs just consume an argument.
5709       if (OpInfo.isIndirect) {
5710         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5711         break;
5712       }
5713 
5714       // The return value of the call is this value.  As such, there is no
5715       // corresponding argument.
5716       assert(!CS.getType()->isVoidTy() &&
5717              "Bad inline asm!");
5718       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5719         OpVT = TLI.getValueType(STy->getElementType(ResNo));
5720       } else {
5721         assert(ResNo == 0 && "Asm only has one result!");
5722         OpVT = TLI.getValueType(CS.getType());
5723       }
5724       ++ResNo;
5725       break;
5726     case InlineAsm::isInput:
5727       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5728       break;
5729     case InlineAsm::isClobber:
5730       // Nothing to do.
5731       break;
5732     }
5733 
5734     // If this is an input or an indirect output, process the call argument.
5735     // BasicBlocks are labels, currently appearing only in asm's.
5736     if (OpInfo.CallOperandVal) {
5737       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5738         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5739       } else {
5740         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5741       }
5742 
5743       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5744     }
5745 
5746     OpInfo.ConstraintVT = OpVT;
5747 
5748     // Indirect operand accesses access memory.
5749     if (OpInfo.isIndirect)
5750       hasMemory = true;
5751     else {
5752       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5753         TargetLowering::ConstraintType
5754           CType = TLI.getConstraintType(OpInfo.Codes[j]);
5755         if (CType == TargetLowering::C_Memory) {
5756           hasMemory = true;
5757           break;
5758         }
5759       }
5760     }
5761   }
5762 
5763   SDValue Chain, Flag;
5764 
5765   // We won't need to flush pending loads if this asm doesn't touch
5766   // memory and is nonvolatile.
5767   if (hasMemory || IA->hasSideEffects())
5768     Chain = getRoot();
5769   else
5770     Chain = DAG.getRoot();
5771 
5772   // Second pass over the constraints: compute which constraint option to use
5773   // and assign registers to constraints that want a specific physreg.
5774   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5775     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5776 
5777     // If this is an output operand with a matching input operand, look up the
5778     // matching input. If their types mismatch, e.g. one is an integer, the
5779     // other is floating point, or their sizes are different, flag it as an
5780     // error.
5781     if (OpInfo.hasMatchingInput()) {
5782       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5783 
5784       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5785 	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5786 	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT);
5787 	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5788 	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT);
5789         if ((OpInfo.ConstraintVT.isInteger() !=
5790              Input.ConstraintVT.isInteger()) ||
5791             (MatchRC.second != InputRC.second)) {
5792           report_fatal_error("Unsupported asm: input constraint"
5793                              " with a matching output constraint of"
5794                              " incompatible type!");
5795         }
5796         Input.ConstraintVT = OpInfo.ConstraintVT;
5797       }
5798     }
5799 
5800     // Compute the constraint code and ConstraintType to use.
5801     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5802 
5803     // If this is a memory input, and if the operand is not indirect, do what we
5804     // need to to provide an address for the memory input.
5805     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5806         !OpInfo.isIndirect) {
5807       assert((OpInfo.isMultipleAlternative ||
5808               (OpInfo.Type == InlineAsm::isInput)) &&
5809              "Can only indirectify direct input operands!");
5810 
5811       // Memory operands really want the address of the value.  If we don't have
5812       // an indirect input, put it in the constpool if we can, otherwise spill
5813       // it to a stack slot.
5814       // TODO: This isn't quite right. We need to handle these according to
5815       // the addressing mode that the constraint wants. Also, this may take
5816       // an additional register for the computation and we don't want that
5817       // either.
5818 
5819       // If the operand is a float, integer, or vector constant, spill to a
5820       // constant pool entry to get its address.
5821       const Value *OpVal = OpInfo.CallOperandVal;
5822       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5823           isa<ConstantVector>(OpVal)) {
5824         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5825                                                  TLI.getPointerTy());
5826       } else {
5827         // Otherwise, create a stack slot and emit a store to it before the
5828         // asm.
5829         Type *Ty = OpVal->getType();
5830         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5831         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5832         MachineFunction &MF = DAG.getMachineFunction();
5833         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5834         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5835         Chain = DAG.getStore(Chain, getCurDebugLoc(),
5836                              OpInfo.CallOperand, StackSlot,
5837                              MachinePointerInfo::getFixedStack(SSFI),
5838                              false, false, 0);
5839         OpInfo.CallOperand = StackSlot;
5840       }
5841 
5842       // There is no longer a Value* corresponding to this operand.
5843       OpInfo.CallOperandVal = 0;
5844 
5845       // It is now an indirect operand.
5846       OpInfo.isIndirect = true;
5847     }
5848 
5849     // If this constraint is for a specific register, allocate it before
5850     // anything else.
5851     if (OpInfo.ConstraintType == TargetLowering::C_Register)
5852       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5853                            InputRegs);
5854   }
5855 
5856   // Second pass - Loop over all of the operands, assigning virtual or physregs
5857   // to register class operands.
5858   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5859     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5860 
5861     // C_Register operands have already been allocated, Other/Memory don't need
5862     // to be.
5863     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5864       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5865                            InputRegs);
5866   }
5867 
5868   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5869   std::vector<SDValue> AsmNodeOperands;
5870   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5871   AsmNodeOperands.push_back(
5872           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5873                                       TLI.getPointerTy()));
5874 
5875   // If we have a !srcloc metadata node associated with it, we want to attach
5876   // this to the ultimately generated inline asm machineinstr.  To do this, we
5877   // pass in the third operand as this (potentially null) inline asm MDNode.
5878   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5879   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5880 
5881   // Remember the HasSideEffect and AlignStack bits as operand 3.
5882   unsigned ExtraInfo = 0;
5883   if (IA->hasSideEffects())
5884     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5885   if (IA->isAlignStack())
5886     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5887   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5888                                                   TLI.getPointerTy()));
5889 
5890   // Loop over all of the inputs, copying the operand values into the
5891   // appropriate registers and processing the output regs.
5892   RegsForValue RetValRegs;
5893 
5894   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5895   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5896 
5897   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5898     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5899 
5900     switch (OpInfo.Type) {
5901     case InlineAsm::isOutput: {
5902       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5903           OpInfo.ConstraintType != TargetLowering::C_Register) {
5904         // Memory output, or 'other' output (e.g. 'X' constraint).
5905         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5906 
5907         // Add information to the INLINEASM node to know about this output.
5908         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5909         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5910                                                         TLI.getPointerTy()));
5911         AsmNodeOperands.push_back(OpInfo.CallOperand);
5912         break;
5913       }
5914 
5915       // Otherwise, this is a register or register class output.
5916 
5917       // Copy the output from the appropriate register.  Find a register that
5918       // we can use.
5919       if (OpInfo.AssignedRegs.Regs.empty())
5920         report_fatal_error("Couldn't allocate output reg for constraint '" +
5921                            Twine(OpInfo.ConstraintCode) + "'!");
5922 
5923       // If this is an indirect operand, store through the pointer after the
5924       // asm.
5925       if (OpInfo.isIndirect) {
5926         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5927                                                       OpInfo.CallOperandVal));
5928       } else {
5929         // This is the result value of the call.
5930         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5931         // Concatenate this output onto the outputs list.
5932         RetValRegs.append(OpInfo.AssignedRegs);
5933       }
5934 
5935       // Add information to the INLINEASM node to know that this register is
5936       // set.
5937       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5938                                            InlineAsm::Kind_RegDefEarlyClobber :
5939                                                InlineAsm::Kind_RegDef,
5940                                                false,
5941                                                0,
5942                                                DAG,
5943                                                AsmNodeOperands);
5944       break;
5945     }
5946     case InlineAsm::isInput: {
5947       SDValue InOperandVal = OpInfo.CallOperand;
5948 
5949       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5950         // If this is required to match an output register we have already set,
5951         // just use its register.
5952         unsigned OperandNo = OpInfo.getMatchedOperand();
5953 
5954         // Scan until we find the definition we already emitted of this operand.
5955         // When we find it, create a RegsForValue operand.
5956         unsigned CurOp = InlineAsm::Op_FirstOperand;
5957         for (; OperandNo; --OperandNo) {
5958           // Advance to the next operand.
5959           unsigned OpFlag =
5960             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5961           assert((InlineAsm::isRegDefKind(OpFlag) ||
5962                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5963                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5964           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5965         }
5966 
5967         unsigned OpFlag =
5968           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5969         if (InlineAsm::isRegDefKind(OpFlag) ||
5970             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5971           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5972           if (OpInfo.isIndirect) {
5973             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5974             LLVMContext &Ctx = *DAG.getContext();
5975             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5976                           " don't know how to handle tied "
5977                           "indirect register inputs");
5978           }
5979 
5980           RegsForValue MatchedRegs;
5981           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5982           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5983           MatchedRegs.RegVTs.push_back(RegVT);
5984           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5985           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5986                i != e; ++i)
5987             MatchedRegs.Regs.push_back
5988               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5989 
5990           // Use the produced MatchedRegs object to
5991           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5992                                     Chain, &Flag);
5993           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5994                                            true, OpInfo.getMatchedOperand(),
5995                                            DAG, AsmNodeOperands);
5996           break;
5997         }
5998 
5999         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6000         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6001                "Unexpected number of operands");
6002         // Add information to the INLINEASM node to know about this input.
6003         // See InlineAsm.h isUseOperandTiedToDef.
6004         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6005                                                     OpInfo.getMatchedOperand());
6006         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6007                                                         TLI.getPointerTy()));
6008         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6009         break;
6010       }
6011 
6012       // Treat indirect 'X' constraint as memory.
6013       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6014           OpInfo.isIndirect)
6015         OpInfo.ConstraintType = TargetLowering::C_Memory;
6016 
6017       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6018         std::vector<SDValue> Ops;
6019         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6020                                          Ops, DAG);
6021         if (Ops.empty())
6022           report_fatal_error("Invalid operand for inline asm constraint '" +
6023                              Twine(OpInfo.ConstraintCode) + "'!");
6024 
6025         // Add information to the INLINEASM node to know about this input.
6026         unsigned ResOpType =
6027           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6028         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6029                                                         TLI.getPointerTy()));
6030         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6031         break;
6032       }
6033 
6034       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6035         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6036         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6037                "Memory operands expect pointer values");
6038 
6039         // Add information to the INLINEASM node to know about this input.
6040         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6041         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6042                                                         TLI.getPointerTy()));
6043         AsmNodeOperands.push_back(InOperandVal);
6044         break;
6045       }
6046 
6047       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6048               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6049              "Unknown constraint type!");
6050       assert(!OpInfo.isIndirect &&
6051              "Don't know how to handle indirect register inputs yet!");
6052 
6053       // Copy the input into the appropriate registers.
6054       if (OpInfo.AssignedRegs.Regs.empty())
6055         report_fatal_error("Couldn't allocate input reg for constraint '" +
6056                            Twine(OpInfo.ConstraintCode) + "'!");
6057 
6058       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6059                                         Chain, &Flag);
6060 
6061       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6062                                                DAG, AsmNodeOperands);
6063       break;
6064     }
6065     case InlineAsm::isClobber: {
6066       // Add the clobbered value to the operand list, so that the register
6067       // allocator is aware that the physreg got clobbered.
6068       if (!OpInfo.AssignedRegs.Regs.empty())
6069         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6070                                                  false, 0, DAG,
6071                                                  AsmNodeOperands);
6072       break;
6073     }
6074     }
6075   }
6076 
6077   // Finish up input operands.  Set the input chain and add the flag last.
6078   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6079   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6080 
6081   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6082                       DAG.getVTList(MVT::Other, MVT::Glue),
6083                       &AsmNodeOperands[0], AsmNodeOperands.size());
6084   Flag = Chain.getValue(1);
6085 
6086   // If this asm returns a register value, copy the result from that register
6087   // and set it as the value of the call.
6088   if (!RetValRegs.Regs.empty()) {
6089     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6090                                              Chain, &Flag);
6091 
6092     // FIXME: Why don't we do this for inline asms with MRVs?
6093     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6094       EVT ResultType = TLI.getValueType(CS.getType());
6095 
6096       // If any of the results of the inline asm is a vector, it may have the
6097       // wrong width/num elts.  This can happen for register classes that can
6098       // contain multiple different value types.  The preg or vreg allocated may
6099       // not have the same VT as was expected.  Convert it to the right type
6100       // with bit_convert.
6101       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6102         Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6103                           ResultType, Val);
6104 
6105       } else if (ResultType != Val.getValueType() &&
6106                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6107         // If a result value was tied to an input value, the computed result may
6108         // have a wider width than the expected result.  Extract the relevant
6109         // portion.
6110         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6111       }
6112 
6113       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6114     }
6115 
6116     setValue(CS.getInstruction(), Val);
6117     // Don't need to use this as a chain in this case.
6118     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6119       return;
6120   }
6121 
6122   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6123 
6124   // Process indirect outputs, first output all of the flagged copies out of
6125   // physregs.
6126   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6127     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6128     const Value *Ptr = IndirectStoresToEmit[i].second;
6129     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6130                                              Chain, &Flag);
6131     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6132   }
6133 
6134   // Emit the non-flagged stores from the physregs.
6135   SmallVector<SDValue, 8> OutChains;
6136   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6137     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6138                                StoresToEmit[i].first,
6139                                getValue(StoresToEmit[i].second),
6140                                MachinePointerInfo(StoresToEmit[i].second),
6141                                false, false, 0);
6142     OutChains.push_back(Val);
6143   }
6144 
6145   if (!OutChains.empty())
6146     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6147                         &OutChains[0], OutChains.size());
6148 
6149   DAG.setRoot(Chain);
6150 }
6151 
6152 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6153   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6154                           MVT::Other, getRoot(),
6155                           getValue(I.getArgOperand(0)),
6156                           DAG.getSrcValue(I.getArgOperand(0))));
6157 }
6158 
6159 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6160   const TargetData &TD = *TLI.getTargetData();
6161   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6162                            getRoot(), getValue(I.getOperand(0)),
6163                            DAG.getSrcValue(I.getOperand(0)),
6164                            TD.getABITypeAlignment(I.getType()));
6165   setValue(&I, V);
6166   DAG.setRoot(V.getValue(1));
6167 }
6168 
6169 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6170   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6171                           MVT::Other, getRoot(),
6172                           getValue(I.getArgOperand(0)),
6173                           DAG.getSrcValue(I.getArgOperand(0))));
6174 }
6175 
6176 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6177   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6178                           MVT::Other, getRoot(),
6179                           getValue(I.getArgOperand(0)),
6180                           getValue(I.getArgOperand(1)),
6181                           DAG.getSrcValue(I.getArgOperand(0)),
6182                           DAG.getSrcValue(I.getArgOperand(1))));
6183 }
6184 
6185 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6186 /// implementation, which just calls LowerCall.
6187 /// FIXME: When all targets are
6188 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6189 std::pair<SDValue, SDValue>
6190 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6191                             bool RetSExt, bool RetZExt, bool isVarArg,
6192                             bool isInreg, unsigned NumFixedArgs,
6193                             CallingConv::ID CallConv, bool isTailCall,
6194                             bool isReturnValueUsed,
6195                             SDValue Callee,
6196                             ArgListTy &Args, SelectionDAG &DAG,
6197                             DebugLoc dl) const {
6198   // Handle all of the outgoing arguments.
6199   SmallVector<ISD::OutputArg, 32> Outs;
6200   SmallVector<SDValue, 32> OutVals;
6201   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6202     SmallVector<EVT, 4> ValueVTs;
6203     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6204     for (unsigned Value = 0, NumValues = ValueVTs.size();
6205          Value != NumValues; ++Value) {
6206       EVT VT = ValueVTs[Value];
6207       Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6208       SDValue Op = SDValue(Args[i].Node.getNode(),
6209                            Args[i].Node.getResNo() + Value);
6210       ISD::ArgFlagsTy Flags;
6211       unsigned OriginalAlignment =
6212         getTargetData()->getABITypeAlignment(ArgTy);
6213 
6214       if (Args[i].isZExt)
6215         Flags.setZExt();
6216       if (Args[i].isSExt)
6217         Flags.setSExt();
6218       if (Args[i].isInReg)
6219         Flags.setInReg();
6220       if (Args[i].isSRet)
6221         Flags.setSRet();
6222       if (Args[i].isByVal) {
6223         Flags.setByVal();
6224         PointerType *Ty = cast<PointerType>(Args[i].Ty);
6225         Type *ElementTy = Ty->getElementType();
6226         Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6227         // For ByVal, alignment should come from FE.  BE will guess if this
6228         // info is not there but there are cases it cannot get right.
6229         unsigned FrameAlign;
6230         if (Args[i].Alignment)
6231           FrameAlign = Args[i].Alignment;
6232         else
6233           FrameAlign = getByValTypeAlignment(ElementTy);
6234         Flags.setByValAlign(FrameAlign);
6235       }
6236       if (Args[i].isNest)
6237         Flags.setNest();
6238       Flags.setOrigAlign(OriginalAlignment);
6239 
6240       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6241       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6242       SmallVector<SDValue, 4> Parts(NumParts);
6243       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6244 
6245       if (Args[i].isSExt)
6246         ExtendKind = ISD::SIGN_EXTEND;
6247       else if (Args[i].isZExt)
6248         ExtendKind = ISD::ZERO_EXTEND;
6249 
6250       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6251                      PartVT, ExtendKind);
6252 
6253       for (unsigned j = 0; j != NumParts; ++j) {
6254         // if it isn't first piece, alignment must be 1
6255         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6256                                i < NumFixedArgs);
6257         if (NumParts > 1 && j == 0)
6258           MyFlags.Flags.setSplit();
6259         else if (j != 0)
6260           MyFlags.Flags.setOrigAlign(1);
6261 
6262         Outs.push_back(MyFlags);
6263         OutVals.push_back(Parts[j]);
6264       }
6265     }
6266   }
6267 
6268   // Handle the incoming return values from the call.
6269   SmallVector<ISD::InputArg, 32> Ins;
6270   SmallVector<EVT, 4> RetTys;
6271   ComputeValueVTs(*this, RetTy, RetTys);
6272   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6273     EVT VT = RetTys[I];
6274     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6275     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6276     for (unsigned i = 0; i != NumRegs; ++i) {
6277       ISD::InputArg MyFlags;
6278       MyFlags.VT = RegisterVT.getSimpleVT();
6279       MyFlags.Used = isReturnValueUsed;
6280       if (RetSExt)
6281         MyFlags.Flags.setSExt();
6282       if (RetZExt)
6283         MyFlags.Flags.setZExt();
6284       if (isInreg)
6285         MyFlags.Flags.setInReg();
6286       Ins.push_back(MyFlags);
6287     }
6288   }
6289 
6290   SmallVector<SDValue, 4> InVals;
6291   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6292                     Outs, OutVals, Ins, dl, DAG, InVals);
6293 
6294   // Verify that the target's LowerCall behaved as expected.
6295   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6296          "LowerCall didn't return a valid chain!");
6297   assert((!isTailCall || InVals.empty()) &&
6298          "LowerCall emitted a return value for a tail call!");
6299   assert((isTailCall || InVals.size() == Ins.size()) &&
6300          "LowerCall didn't emit the correct number of values!");
6301 
6302   // For a tail call, the return value is merely live-out and there aren't
6303   // any nodes in the DAG representing it. Return a special value to
6304   // indicate that a tail call has been emitted and no more Instructions
6305   // should be processed in the current block.
6306   if (isTailCall) {
6307     DAG.setRoot(Chain);
6308     return std::make_pair(SDValue(), SDValue());
6309   }
6310 
6311   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6312           assert(InVals[i].getNode() &&
6313                  "LowerCall emitted a null value!");
6314           assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6315                  "LowerCall emitted a value with the wrong type!");
6316         });
6317 
6318   // Collect the legal value parts into potentially illegal values
6319   // that correspond to the original function's return values.
6320   ISD::NodeType AssertOp = ISD::DELETED_NODE;
6321   if (RetSExt)
6322     AssertOp = ISD::AssertSext;
6323   else if (RetZExt)
6324     AssertOp = ISD::AssertZext;
6325   SmallVector<SDValue, 4> ReturnValues;
6326   unsigned CurReg = 0;
6327   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6328     EVT VT = RetTys[I];
6329     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6330     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6331 
6332     ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6333                                             NumRegs, RegisterVT, VT,
6334                                             AssertOp));
6335     CurReg += NumRegs;
6336   }
6337 
6338   // For a function returning void, there is no return value. We can't create
6339   // such a node, so we just return a null return value in that case. In
6340   // that case, nothing will actually look at the value.
6341   if (ReturnValues.empty())
6342     return std::make_pair(SDValue(), Chain);
6343 
6344   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6345                             DAG.getVTList(&RetTys[0], RetTys.size()),
6346                             &ReturnValues[0], ReturnValues.size());
6347   return std::make_pair(Res, Chain);
6348 }
6349 
6350 void TargetLowering::LowerOperationWrapper(SDNode *N,
6351                                            SmallVectorImpl<SDValue> &Results,
6352                                            SelectionDAG &DAG) const {
6353   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6354   if (Res.getNode())
6355     Results.push_back(Res);
6356 }
6357 
6358 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6359   llvm_unreachable("LowerOperation not implemented for this target!");
6360   return SDValue();
6361 }
6362 
6363 void
6364 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6365   SDValue Op = getNonRegisterValue(V);
6366   assert((Op.getOpcode() != ISD::CopyFromReg ||
6367           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6368          "Copy from a reg to the same reg!");
6369   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6370 
6371   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6372   SDValue Chain = DAG.getEntryNode();
6373   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6374   PendingExports.push_back(Chain);
6375 }
6376 
6377 #include "llvm/CodeGen/SelectionDAGISel.h"
6378 
6379 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6380 /// entry block, return true.  This includes arguments used by switches, since
6381 /// the switch may expand into multiple basic blocks.
6382 static bool isOnlyUsedInEntryBlock(const Argument *A) {
6383   // With FastISel active, we may be splitting blocks, so force creation
6384   // of virtual registers for all non-dead arguments.
6385   if (EnableFastISel)
6386     return A->use_empty();
6387 
6388   const BasicBlock *Entry = A->getParent()->begin();
6389   for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6390        UI != E; ++UI) {
6391     const User *U = *UI;
6392     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6393       return false;  // Use not in entry block.
6394   }
6395   return true;
6396 }
6397 
6398 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6399   // If this is the entry block, emit arguments.
6400   const Function &F = *LLVMBB->getParent();
6401   SelectionDAG &DAG = SDB->DAG;
6402   DebugLoc dl = SDB->getCurDebugLoc();
6403   const TargetData *TD = TLI.getTargetData();
6404   SmallVector<ISD::InputArg, 16> Ins;
6405 
6406   // Check whether the function can return without sret-demotion.
6407   SmallVector<ISD::OutputArg, 4> Outs;
6408   GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6409                 Outs, TLI);
6410 
6411   if (!FuncInfo->CanLowerReturn) {
6412     // Put in an sret pointer parameter before all the other parameters.
6413     SmallVector<EVT, 1> ValueVTs;
6414     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6415 
6416     // NOTE: Assuming that a pointer will never break down to more than one VT
6417     // or one register.
6418     ISD::ArgFlagsTy Flags;
6419     Flags.setSRet();
6420     EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6421     ISD::InputArg RetArg(Flags, RegisterVT, true);
6422     Ins.push_back(RetArg);
6423   }
6424 
6425   // Set up the incoming argument description vector.
6426   unsigned Idx = 1;
6427   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6428        I != E; ++I, ++Idx) {
6429     SmallVector<EVT, 4> ValueVTs;
6430     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6431     bool isArgValueUsed = !I->use_empty();
6432     for (unsigned Value = 0, NumValues = ValueVTs.size();
6433          Value != NumValues; ++Value) {
6434       EVT VT = ValueVTs[Value];
6435       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6436       ISD::ArgFlagsTy Flags;
6437       unsigned OriginalAlignment =
6438         TD->getABITypeAlignment(ArgTy);
6439 
6440       if (F.paramHasAttr(Idx, Attribute::ZExt))
6441         Flags.setZExt();
6442       if (F.paramHasAttr(Idx, Attribute::SExt))
6443         Flags.setSExt();
6444       if (F.paramHasAttr(Idx, Attribute::InReg))
6445         Flags.setInReg();
6446       if (F.paramHasAttr(Idx, Attribute::StructRet))
6447         Flags.setSRet();
6448       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6449         Flags.setByVal();
6450         PointerType *Ty = cast<PointerType>(I->getType());
6451         Type *ElementTy = Ty->getElementType();
6452         Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6453         // For ByVal, alignment should be passed from FE.  BE will guess if
6454         // this info is not there but there are cases it cannot get right.
6455         unsigned FrameAlign;
6456         if (F.getParamAlignment(Idx))
6457           FrameAlign = F.getParamAlignment(Idx);
6458         else
6459           FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6460         Flags.setByValAlign(FrameAlign);
6461       }
6462       if (F.paramHasAttr(Idx, Attribute::Nest))
6463         Flags.setNest();
6464       Flags.setOrigAlign(OriginalAlignment);
6465 
6466       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6467       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6468       for (unsigned i = 0; i != NumRegs; ++i) {
6469         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6470         if (NumRegs > 1 && i == 0)
6471           MyFlags.Flags.setSplit();
6472         // if it isn't first piece, alignment must be 1
6473         else if (i > 0)
6474           MyFlags.Flags.setOrigAlign(1);
6475         Ins.push_back(MyFlags);
6476       }
6477     }
6478   }
6479 
6480   // Call the target to set up the argument values.
6481   SmallVector<SDValue, 8> InVals;
6482   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6483                                              F.isVarArg(), Ins,
6484                                              dl, DAG, InVals);
6485 
6486   // Verify that the target's LowerFormalArguments behaved as expected.
6487   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6488          "LowerFormalArguments didn't return a valid chain!");
6489   assert(InVals.size() == Ins.size() &&
6490          "LowerFormalArguments didn't emit the correct number of values!");
6491   DEBUG({
6492       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6493         assert(InVals[i].getNode() &&
6494                "LowerFormalArguments emitted a null value!");
6495         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6496                "LowerFormalArguments emitted a value with the wrong type!");
6497       }
6498     });
6499 
6500   // Update the DAG with the new chain value resulting from argument lowering.
6501   DAG.setRoot(NewRoot);
6502 
6503   // Set up the argument values.
6504   unsigned i = 0;
6505   Idx = 1;
6506   if (!FuncInfo->CanLowerReturn) {
6507     // Create a virtual register for the sret pointer, and put in a copy
6508     // from the sret argument into it.
6509     SmallVector<EVT, 1> ValueVTs;
6510     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6511     EVT VT = ValueVTs[0];
6512     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6513     ISD::NodeType AssertOp = ISD::DELETED_NODE;
6514     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6515                                         RegVT, VT, AssertOp);
6516 
6517     MachineFunction& MF = SDB->DAG.getMachineFunction();
6518     MachineRegisterInfo& RegInfo = MF.getRegInfo();
6519     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6520     FuncInfo->DemoteRegister = SRetReg;
6521     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6522                                     SRetReg, ArgValue);
6523     DAG.setRoot(NewRoot);
6524 
6525     // i indexes lowered arguments.  Bump it past the hidden sret argument.
6526     // Idx indexes LLVM arguments.  Don't touch it.
6527     ++i;
6528   }
6529 
6530   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6531       ++I, ++Idx) {
6532     SmallVector<SDValue, 4> ArgValues;
6533     SmallVector<EVT, 4> ValueVTs;
6534     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6535     unsigned NumValues = ValueVTs.size();
6536 
6537     // If this argument is unused then remember its value. It is used to generate
6538     // debugging information.
6539     if (I->use_empty() && NumValues)
6540       SDB->setUnusedArgValue(I, InVals[i]);
6541 
6542     for (unsigned Val = 0; Val != NumValues; ++Val) {
6543       EVT VT = ValueVTs[Val];
6544       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6545       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6546 
6547       if (!I->use_empty()) {
6548         ISD::NodeType AssertOp = ISD::DELETED_NODE;
6549         if (F.paramHasAttr(Idx, Attribute::SExt))
6550           AssertOp = ISD::AssertSext;
6551         else if (F.paramHasAttr(Idx, Attribute::ZExt))
6552           AssertOp = ISD::AssertZext;
6553 
6554         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6555                                              NumParts, PartVT, VT,
6556                                              AssertOp));
6557       }
6558 
6559       i += NumParts;
6560     }
6561 
6562     // We don't need to do anything else for unused arguments.
6563     if (ArgValues.empty())
6564       continue;
6565 
6566     // Note down frame index for byval arguments.
6567     if (I->hasByValAttr())
6568       if (FrameIndexSDNode *FI =
6569           dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6570         FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6571 
6572     SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6573                                      SDB->getCurDebugLoc());
6574     SDB->setValue(I, Res);
6575 
6576     // If this argument is live outside of the entry block, insert a copy from
6577     // wherever we got it to the vreg that other BB's will reference it as.
6578     if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6579       // If we can, though, try to skip creating an unnecessary vreg.
6580       // FIXME: This isn't very clean... it would be nice to make this more
6581       // general.  It's also subtly incompatible with the hacks FastISel
6582       // uses with vregs.
6583       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6584       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6585         FuncInfo->ValueMap[I] = Reg;
6586         continue;
6587       }
6588     }
6589     if (!isOnlyUsedInEntryBlock(I)) {
6590       FuncInfo->InitializeRegForValue(I);
6591       SDB->CopyToExportRegsIfNeeded(I);
6592     }
6593   }
6594 
6595   assert(i == InVals.size() && "Argument register count mismatch!");
6596 
6597   // Finally, if the target has anything special to do, allow it to do so.
6598   // FIXME: this should insert code into the DAG!
6599   EmitFunctionEntryCode();
6600 }
6601 
6602 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6603 /// ensure constants are generated when needed.  Remember the virtual registers
6604 /// that need to be added to the Machine PHI nodes as input.  We cannot just
6605 /// directly add them, because expansion might result in multiple MBB's for one
6606 /// BB.  As such, the start of the BB might correspond to a different MBB than
6607 /// the end.
6608 ///
6609 void
6610 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6611   const TerminatorInst *TI = LLVMBB->getTerminator();
6612 
6613   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6614 
6615   // Check successor nodes' PHI nodes that expect a constant to be available
6616   // from this block.
6617   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6618     const BasicBlock *SuccBB = TI->getSuccessor(succ);
6619     if (!isa<PHINode>(SuccBB->begin())) continue;
6620     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6621 
6622     // If this terminator has multiple identical successors (common for
6623     // switches), only handle each succ once.
6624     if (!SuccsHandled.insert(SuccMBB)) continue;
6625 
6626     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6627 
6628     // At this point we know that there is a 1-1 correspondence between LLVM PHI
6629     // nodes and Machine PHI nodes, but the incoming operands have not been
6630     // emitted yet.
6631     for (BasicBlock::const_iterator I = SuccBB->begin();
6632          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6633       // Ignore dead phi's.
6634       if (PN->use_empty()) continue;
6635 
6636       // Skip empty types
6637       if (PN->getType()->isEmptyTy())
6638         continue;
6639 
6640       unsigned Reg;
6641       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6642 
6643       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6644         unsigned &RegOut = ConstantsOut[C];
6645         if (RegOut == 0) {
6646           RegOut = FuncInfo.CreateRegs(C->getType());
6647           CopyValueToVirtualRegister(C, RegOut);
6648         }
6649         Reg = RegOut;
6650       } else {
6651         DenseMap<const Value *, unsigned>::iterator I =
6652           FuncInfo.ValueMap.find(PHIOp);
6653         if (I != FuncInfo.ValueMap.end())
6654           Reg = I->second;
6655         else {
6656           assert(isa<AllocaInst>(PHIOp) &&
6657                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6658                  "Didn't codegen value into a register!??");
6659           Reg = FuncInfo.CreateRegs(PHIOp->getType());
6660           CopyValueToVirtualRegister(PHIOp, Reg);
6661         }
6662       }
6663 
6664       // Remember that this register needs to added to the machine PHI node as
6665       // the input for this MBB.
6666       SmallVector<EVT, 4> ValueVTs;
6667       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6668       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6669         EVT VT = ValueVTs[vti];
6670         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6671         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6672           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6673         Reg += NumRegisters;
6674       }
6675     }
6676   }
6677   ConstantsOut.clear();
6678 }
6679