xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision aab841cf63c6a00d613f4d5836181f645c6ea626)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCStrategy.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/PseudoSourceValue.h"
45 #include "llvm/CodeGen/SelectionDAG.h"
46 #include "llvm/Analysis/DebugInfo.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetIntrinsicInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 using namespace llvm;
60 
61 /// LimitFloatPrecision - Generate low-precision inline sequences for
62 /// some float libcalls (6, 8 or 12 bits).
63 static unsigned LimitFloatPrecision;
64 
65 static cl::opt<unsigned, true>
66 LimitFPPrecision("limit-float-precision",
67                  cl::desc("Generate low-precision inline sequences "
68                           "for some float libcalls"),
69                  cl::location(LimitFloatPrecision),
70                  cl::init(0));
71 
72 // Limit the width of DAG chains. This is important in general to prevent
73 // prevent DAG-based analysis from blowing up. For example, alias analysis and
74 // load clustering may not complete in reasonable time. It is difficult to
75 // recognize and avoid this situation within each individual analysis, and
76 // future analyses are likely to have the same behavior. Limiting DAG width is
77 // the safe approach, and will be especially important with global DAGs.
78 //
79 // MaxParallelChains default is arbitrarily high to avoid affecting
80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81 // sequence over this should have been converted to llvm.memcpy by the
82 // frontend. It easy to induce this behavior with .ll code such as:
83 // %buffer = alloca [4096 x i8]
84 // %data = load [4096 x i8]* %argPtr
85 // store [4096 x i8] %data, [4096 x i8]* %buffer
86 static const unsigned MaxParallelChains = 64;
87 
88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                       const SDValue *Parts, unsigned NumParts,
90                                       EVT PartVT, EVT ValueVT);
91 
92 /// getCopyFromParts - Create a value that contains the specified legal parts
93 /// combined into the value they represent.  If the parts combine to a type
94 /// larger then ValueVT then AssertOp can be used to specify whether the extra
95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96 /// (ISD::AssertSext).
97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                 const SDValue *Parts,
99                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101   if (ValueVT.isVector())
102     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103 
104   assert(NumParts > 0 && "No parts to assemble!");
105   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106   SDValue Val = Parts[0];
107 
108   if (NumParts > 1) {
109     // Assemble the value from multiple parts.
110     if (ValueVT.isInteger()) {
111       unsigned PartBits = PartVT.getSizeInBits();
112       unsigned ValueBits = ValueVT.getSizeInBits();
113 
114       // Assemble the power of 2 part.
115       unsigned RoundParts = NumParts & (NumParts - 1) ?
116         1 << Log2_32(NumParts) : NumParts;
117       unsigned RoundBits = PartBits * RoundParts;
118       EVT RoundVT = RoundBits == ValueBits ?
119         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120       SDValue Lo, Hi;
121 
122       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123 
124       if (RoundParts > 2) {
125         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                               PartVT, HalfVT);
127         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                               RoundParts / 2, PartVT, HalfVT);
129       } else {
130         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132       }
133 
134       if (TLI.isBigEndian())
135         std::swap(Lo, Hi);
136 
137       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138 
139       if (RoundParts < NumParts) {
140         // Assemble the trailing non-power-of-2 part.
141         unsigned OddParts = NumParts - RoundParts;
142         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143         Hi = getCopyFromParts(DAG, DL,
144                               Parts + RoundParts, OddParts, PartVT, OddVT);
145 
146         // Combine the round and odd parts.
147         Lo = Val;
148         if (TLI.isBigEndian())
149           std::swap(Lo, Hi);
150         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                          TLI.getPointerTy()));
155         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157       }
158     } else if (PartVT.isFloatingPoint()) {
159       // FP split into multiple FP parts (for ppcf128)
160       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161              "Unexpected split");
162       SDValue Lo, Hi;
163       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165       if (TLI.isBigEndian())
166         std::swap(Lo, Hi);
167       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168     } else {
169       // FP split into integer parts (soft fp)
170       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171              !PartVT.isVector() && "Unexpected split");
172       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174     }
175   }
176 
177   // There is now one part, held in Val.  Correct it to match ValueVT.
178   PartVT = Val.getValueType();
179 
180   if (PartVT == ValueVT)
181     return Val;
182 
183   if (PartVT.isInteger() && ValueVT.isInteger()) {
184     if (ValueVT.bitsLT(PartVT)) {
185       // For a truncate, see if we have any information to
186       // indicate whether the truncated bits will always be
187       // zero or sign-extension.
188       if (AssertOp != ISD::DELETED_NODE)
189         Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                           DAG.getValueType(ValueVT));
191       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192     }
193     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194   }
195 
196   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197     // FP_ROUND's are always exact here.
198     if (ValueVT.bitsLT(Val.getValueType()))
199       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                          DAG.getIntPtrConstant(1));
201 
202     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203   }
204 
205   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207 
208   llvm_unreachable("Unknown mismatch!");
209   return SDValue();
210 }
211 
212 /// getCopyFromParts - Create a value that contains the specified legal parts
213 /// combined into the value they represent.  If the parts combine to a type
214 /// larger then ValueVT then AssertOp can be used to specify whether the extra
215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216 /// (ISD::AssertSext).
217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                       const SDValue *Parts, unsigned NumParts,
219                                       EVT PartVT, EVT ValueVT) {
220   assert(ValueVT.isVector() && "Not a vector value");
221   assert(NumParts > 0 && "No parts to assemble!");
222   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223   SDValue Val = Parts[0];
224 
225   // Handle a multi-element vector.
226   if (NumParts > 1) {
227     EVT IntermediateVT, RegisterVT;
228     unsigned NumIntermediates;
229     unsigned NumRegs =
230     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                                NumIntermediates, RegisterVT);
232     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233     NumParts = NumRegs; // Silence a compiler warning.
234     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235     assert(RegisterVT == Parts[0].getValueType() &&
236            "Part type doesn't match part!");
237 
238     // Assemble the parts into intermediate operands.
239     SmallVector<SDValue, 8> Ops(NumIntermediates);
240     if (NumIntermediates == NumParts) {
241       // If the register was not expanded, truncate or copy the value,
242       // as appropriate.
243       for (unsigned i = 0; i != NumParts; ++i)
244         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                   PartVT, IntermediateVT);
246     } else if (NumParts > 0) {
247       // If the intermediate type was expanded, build the intermediate
248       // operands from the parts.
249       assert(NumParts % NumIntermediates == 0 &&
250              "Must expand into a divisible number of parts!");
251       unsigned Factor = NumParts / NumIntermediates;
252       for (unsigned i = 0; i != NumIntermediates; ++i)
253         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                   PartVT, IntermediateVT);
255     }
256 
257     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258     // intermediate operands.
259     Val = DAG.getNode(IntermediateVT.isVector() ?
260                       ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                       ValueVT, &Ops[0], NumIntermediates);
262   }
263 
264   // There is now one part, held in Val.  Correct it to match ValueVT.
265   PartVT = Val.getValueType();
266 
267   if (PartVT == ValueVT)
268     return Val;
269 
270   if (PartVT.isVector()) {
271     // If the element type of the source/dest vectors are the same, but the
272     // parts vector has more elements than the value vector, then we have a
273     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274     // elements we want.
275     if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276       assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277              "Cannot narrow, it would be a lossy transformation");
278       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                          DAG.getIntPtrConstant(0));
280     }
281 
282     // Vector/Vector bitcast.
283     if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285 
286     assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287       "Cannot handle this kind of promotion");
288     // Promoted vector extract
289     bool Smaller = ValueVT.bitsLE(PartVT);
290     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                        DL, ValueVT, Val);
292 
293   }
294 
295   // Trivial bitcast if the types are the same size and the destination
296   // vector type is legal.
297   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298       TLI.isTypeLegal(ValueVT))
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle cases such as i8 -> <1 x i1>
302   assert(ValueVT.getVectorNumElements() == 1 &&
303          "Only trivial scalar-to-vector conversions should get here!");
304 
305   if (ValueVT.getVectorNumElements() == 1 &&
306       ValueVT.getVectorElementType() != PartVT) {
307     bool Smaller = ValueVT.bitsLE(PartVT);
308     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                        DL, ValueVT.getScalarType(), Val);
310   }
311 
312   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313 }
314 
315 
316 
317 
318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                  SDValue Val, SDValue *Parts, unsigned NumParts,
320                                  EVT PartVT);
321 
322 /// getCopyToParts - Create a series of nodes that contain the specified value
323 /// split into legal parts.  If the parts contain more bits than Val, then, for
324 /// integers, ExtendKind can be used to specify how to generate the extra bits.
325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                            SDValue Val, SDValue *Parts, unsigned NumParts,
327                            EVT PartVT,
328                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329   EVT ValueVT = Val.getValueType();
330 
331   // Handle the vector case separately.
332   if (ValueVT.isVector())
333     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334 
335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336   unsigned PartBits = PartVT.getSizeInBits();
337   unsigned OrigNumParts = NumParts;
338   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339 
340   if (NumParts == 0)
341     return;
342 
343   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344   if (PartVT == ValueVT) {
345     assert(NumParts == 1 && "No-op copy with multiple parts!");
346     Parts[0] = Val;
347     return;
348   }
349 
350   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351     // If the parts cover more bits than the value has, promote the value.
352     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353       assert(NumParts == 1 && "Do not know what to promote to!");
354       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355     } else {
356       assert(PartVT.isInteger() && ValueVT.isInteger() &&
357              "Unknown mismatch!");
358       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360     }
361   } else if (PartBits == ValueVT.getSizeInBits()) {
362     // Different types of the same size.
363     assert(NumParts == 1 && PartVT != ValueVT);
364     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366     // If the parts cover less bits than value has, truncate the value.
367     assert(PartVT.isInteger() && ValueVT.isInteger() &&
368            "Unknown mismatch!");
369     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371   }
372 
373   // The value may have changed - recompute ValueVT.
374   ValueVT = Val.getValueType();
375   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376          "Failed to tile the value with PartVT!");
377 
378   if (NumParts == 1) {
379     assert(PartVT == ValueVT && "Type conversion failed!");
380     Parts[0] = Val;
381     return;
382   }
383 
384   // Expand the value into multiple parts.
385   if (NumParts & (NumParts - 1)) {
386     // The number of parts is not a power of 2.  Split off and copy the tail.
387     assert(PartVT.isInteger() && ValueVT.isInteger() &&
388            "Do not know what to expand to!");
389     unsigned RoundParts = 1 << Log2_32(NumParts);
390     unsigned RoundBits = RoundParts * PartBits;
391     unsigned OddParts = NumParts - RoundParts;
392     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                  DAG.getIntPtrConstant(RoundBits));
394     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395 
396     if (TLI.isBigEndian())
397       // The odd parts were reversed by getCopyToParts - unreverse them.
398       std::reverse(Parts + RoundParts, Parts + NumParts);
399 
400     NumParts = RoundParts;
401     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403   }
404 
405   // The number of parts is a power of 2.  Repeatedly bisect the value using
406   // EXTRACT_ELEMENT.
407   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                          EVT::getIntegerVT(*DAG.getContext(),
409                                            ValueVT.getSizeInBits()),
410                          Val);
411 
412   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413     for (unsigned i = 0; i < NumParts; i += StepSize) {
414       unsigned ThisBits = StepSize * PartBits / 2;
415       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416       SDValue &Part0 = Parts[i];
417       SDValue &Part1 = Parts[i+StepSize/2];
418 
419       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                           ThisVT, Part0, DAG.getIntPtrConstant(1));
421       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                           ThisVT, Part0, DAG.getIntPtrConstant(0));
423 
424       if (ThisBits == PartBits && ThisVT != PartVT) {
425         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427       }
428     }
429   }
430 
431   if (TLI.isBigEndian())
432     std::reverse(Parts, Parts + OrigNumParts);
433 }
434 
435 
436 /// getCopyToPartsVector - Create a series of nodes that contain the specified
437 /// value split into legal parts.
438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                  SDValue Val, SDValue *Parts, unsigned NumParts,
440                                  EVT PartVT) {
441   EVT ValueVT = Val.getValueType();
442   assert(ValueVT.isVector() && "Not a vector");
443   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444 
445   if (NumParts == 1) {
446     if (PartVT == ValueVT) {
447       // Nothing to do.
448     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449       // Bitconvert vector->vector case.
450       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451     } else if (PartVT.isVector() &&
452                PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453                PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454       EVT ElementVT = PartVT.getVectorElementType();
455       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456       // undef elements.
457       SmallVector<SDValue, 16> Ops;
458       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                   ElementVT, Val, DAG.getIntPtrConstant(i)));
461 
462       for (unsigned i = ValueVT.getVectorNumElements(),
463            e = PartVT.getVectorNumElements(); i != e; ++i)
464         Ops.push_back(DAG.getUNDEF(ElementVT));
465 
466       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467 
468       // FIXME: Use CONCAT for 2x -> 4x.
469 
470       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472     } else if (PartVT.isVector() &&
473                PartVT.getVectorElementType().bitsGE(
474                  ValueVT.getVectorElementType()) &&
475                PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476 
477       // Promoted vector extract
478       bool Smaller = PartVT.bitsLE(ValueVT);
479       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480                         DL, PartVT, Val);
481     } else{
482       // Vector -> scalar conversion.
483       assert(ValueVT.getVectorNumElements() == 1 &&
484              "Only trivial vector-to-scalar conversions should get here!");
485       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                         PartVT, Val, DAG.getIntPtrConstant(0));
487 
488       bool Smaller = ValueVT.bitsLE(PartVT);
489       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490                          DL, PartVT, Val);
491     }
492 
493     Parts[0] = Val;
494     return;
495   }
496 
497   // Handle a multi-element vector.
498   EVT IntermediateVT, RegisterVT;
499   unsigned NumIntermediates;
500   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501                                                 IntermediateVT,
502                                                 NumIntermediates, RegisterVT);
503   unsigned NumElements = ValueVT.getVectorNumElements();
504 
505   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506   NumParts = NumRegs; // Silence a compiler warning.
507   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508 
509   // Split the vector into intermediate operands.
510   SmallVector<SDValue, 8> Ops(NumIntermediates);
511   for (unsigned i = 0; i != NumIntermediates; ++i) {
512     if (IntermediateVT.isVector())
513       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514                            IntermediateVT, Val,
515                    DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516     else
517       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                            IntermediateVT, Val, DAG.getIntPtrConstant(i));
519   }
520 
521   // Split the intermediate operands into legal parts.
522   if (NumParts == NumIntermediates) {
523     // If the register was not expanded, promote or copy the value,
524     // as appropriate.
525     for (unsigned i = 0; i != NumParts; ++i)
526       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527   } else if (NumParts > 0) {
528     // If the intermediate type was expanded, split each the value into
529     // legal parts.
530     assert(NumParts % NumIntermediates == 0 &&
531            "Must expand into a divisible number of parts!");
532     unsigned Factor = NumParts / NumIntermediates;
533     for (unsigned i = 0; i != NumIntermediates; ++i)
534       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535   }
536 }
537 
538 
539 
540 
541 namespace {
542   /// RegsForValue - This struct represents the registers (physical or virtual)
543   /// that a particular set of values is assigned, and the type information
544   /// about the value. The most common situation is to represent one value at a
545   /// time, but struct or array values are handled element-wise as multiple
546   /// values.  The splitting of aggregates is performed recursively, so that we
547   /// never have aggregate-typed registers. The values at this point do not
548   /// necessarily have legal types, so each value may require one or more
549   /// registers of some legal type.
550   ///
551   struct RegsForValue {
552     /// ValueVTs - The value types of the values, which may not be legal, and
553     /// may need be promoted or synthesized from one or more registers.
554     ///
555     SmallVector<EVT, 4> ValueVTs;
556 
557     /// RegVTs - The value types of the registers. This is the same size as
558     /// ValueVTs and it records, for each value, what the type of the assigned
559     /// register or registers are. (Individual values are never synthesized
560     /// from more than one type of register.)
561     ///
562     /// With virtual registers, the contents of RegVTs is redundant with TLI's
563     /// getRegisterType member function, however when with physical registers
564     /// it is necessary to have a separate record of the types.
565     ///
566     SmallVector<EVT, 4> RegVTs;
567 
568     /// Regs - This list holds the registers assigned to the values.
569     /// Each legal or promoted value requires one register, and each
570     /// expanded value requires multiple registers.
571     ///
572     SmallVector<unsigned, 4> Regs;
573 
574     RegsForValue() {}
575 
576     RegsForValue(const SmallVector<unsigned, 4> &regs,
577                  EVT regvt, EVT valuevt)
578       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579 
580     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581                  unsigned Reg, Type *Ty) {
582       ComputeValueVTs(tli, Ty, ValueVTs);
583 
584       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585         EVT ValueVT = ValueVTs[Value];
586         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587         EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588         for (unsigned i = 0; i != NumRegs; ++i)
589           Regs.push_back(Reg + i);
590         RegVTs.push_back(RegisterVT);
591         Reg += NumRegs;
592       }
593     }
594 
595     /// areValueTypesLegal - Return true if types of all the values are legal.
596     bool areValueTypesLegal(const TargetLowering &TLI) {
597       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598         EVT RegisterVT = RegVTs[Value];
599         if (!TLI.isTypeLegal(RegisterVT))
600           return false;
601       }
602       return true;
603     }
604 
605     /// append - Add the specified values to this one.
606     void append(const RegsForValue &RHS) {
607       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610     }
611 
612     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613     /// this value and returns the result as a ValueVTs value.  This uses
614     /// Chain/Flag as the input and updates them for the output Chain/Flag.
615     /// If the Flag pointer is NULL, no flag is used.
616     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617                             DebugLoc dl,
618                             SDValue &Chain, SDValue *Flag) const;
619 
620     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621     /// specified value into the registers specified by this object.  This uses
622     /// Chain/Flag as the input and updates them for the output Chain/Flag.
623     /// If the Flag pointer is NULL, no flag is used.
624     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625                        SDValue &Chain, SDValue *Flag) const;
626 
627     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628     /// operand list.  This adds the code marker, matching input operand index
629     /// (if applicable), and includes the number of values added into it.
630     void AddInlineAsmOperands(unsigned Kind,
631                               bool HasMatching, unsigned MatchingIdx,
632                               SelectionDAG &DAG,
633                               std::vector<SDValue> &Ops) const;
634   };
635 }
636 
637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638 /// this value and returns the result as a ValueVT value.  This uses
639 /// Chain/Flag as the input and updates them for the output Chain/Flag.
640 /// If the Flag pointer is NULL, no flag is used.
641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                       FunctionLoweringInfo &FuncInfo,
643                                       DebugLoc dl,
644                                       SDValue &Chain, SDValue *Flag) const {
645   // A Value with type {} or [0 x %t] needs no registers.
646   if (ValueVTs.empty())
647     return SDValue();
648 
649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650 
651   // Assemble the legal parts into the final values.
652   SmallVector<SDValue, 4> Values(ValueVTs.size());
653   SmallVector<SDValue, 8> Parts;
654   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655     // Copy the legal parts from the registers.
656     EVT ValueVT = ValueVTs[Value];
657     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658     EVT RegisterVT = RegVTs[Value];
659 
660     Parts.resize(NumRegs);
661     for (unsigned i = 0; i != NumRegs; ++i) {
662       SDValue P;
663       if (Flag == 0) {
664         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665       } else {
666         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667         *Flag = P.getValue(2);
668       }
669 
670       Chain = P.getValue(1);
671       Parts[i] = P;
672 
673       // If the source register was virtual and if we know something about it,
674       // add an assert node.
675       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676           !RegisterVT.isInteger() || RegisterVT.isVector())
677         continue;
678 
679       const FunctionLoweringInfo::LiveOutInfo *LOI =
680         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681       if (!LOI)
682         continue;
683 
684       unsigned RegSize = RegisterVT.getSizeInBits();
685       unsigned NumSignBits = LOI->NumSignBits;
686       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687 
688       // FIXME: We capture more information than the dag can represent.  For
689       // now, just use the tightest assertzext/assertsext possible.
690       bool isSExt = true;
691       EVT FromVT(MVT::Other);
692       if (NumSignBits == RegSize)
693         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
694       else if (NumZeroBits >= RegSize-1)
695         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
696       else if (NumSignBits > RegSize-8)
697         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
698       else if (NumZeroBits >= RegSize-8)
699         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
700       else if (NumSignBits > RegSize-16)
701         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
702       else if (NumZeroBits >= RegSize-16)
703         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704       else if (NumSignBits > RegSize-32)
705         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
706       else if (NumZeroBits >= RegSize-32)
707         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708       else
709         continue;
710 
711       // Add an assertion node.
712       assert(FromVT != MVT::Other);
713       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714                              RegisterVT, P, DAG.getValueType(FromVT));
715     }
716 
717     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718                                      NumRegs, RegisterVT, ValueVT);
719     Part += NumRegs;
720     Parts.clear();
721   }
722 
723   return DAG.getNode(ISD::MERGE_VALUES, dl,
724                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725                      &Values[0], ValueVTs.size());
726 }
727 
728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729 /// specified value into the registers specified by this object.  This uses
730 /// Chain/Flag as the input and updates them for the output Chain/Flag.
731 /// If the Flag pointer is NULL, no flag is used.
732 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733                                  SDValue &Chain, SDValue *Flag) const {
734   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735 
736   // Get the list of the values's legal parts.
737   unsigned NumRegs = Regs.size();
738   SmallVector<SDValue, 8> Parts(NumRegs);
739   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740     EVT ValueVT = ValueVTs[Value];
741     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742     EVT RegisterVT = RegVTs[Value];
743 
744     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745                    &Parts[Part], NumParts, RegisterVT);
746     Part += NumParts;
747   }
748 
749   // Copy the parts into the registers.
750   SmallVector<SDValue, 8> Chains(NumRegs);
751   for (unsigned i = 0; i != NumRegs; ++i) {
752     SDValue Part;
753     if (Flag == 0) {
754       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755     } else {
756       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757       *Flag = Part.getValue(1);
758     }
759 
760     Chains[i] = Part.getValue(0);
761   }
762 
763   if (NumRegs == 1 || Flag)
764     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765     // flagged to it. That is the CopyToReg nodes and the user are considered
766     // a single scheduling unit. If we create a TokenFactor and return it as
767     // chain, then the TokenFactor is both a predecessor (operand) of the
768     // user as well as a successor (the TF operands are flagged to the user).
769     // c1, f1 = CopyToReg
770     // c2, f2 = CopyToReg
771     // c3     = TokenFactor c1, c2
772     // ...
773     //        = op c3, ..., f2
774     Chain = Chains[NumRegs-1];
775   else
776     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777 }
778 
779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
780 /// operand list.  This adds the code marker and includes the number of
781 /// values added into it.
782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783                                         unsigned MatchingIdx,
784                                         SelectionDAG &DAG,
785                                         std::vector<SDValue> &Ops) const {
786   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787 
788   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789   if (HasMatching)
790     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
792   Ops.push_back(Res);
793 
794   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
795     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
796     EVT RegisterVT = RegVTs[Value];
797     for (unsigned i = 0; i != NumRegs; ++i) {
798       assert(Reg < Regs.size() && "Mismatch in # registers expected");
799       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
800     }
801   }
802 }
803 
804 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
805   AA = &aa;
806   GFI = gfi;
807   TD = DAG.getTarget().getTargetData();
808 }
809 
810 /// clear - Clear out the current SelectionDAG and the associated
811 /// state and prepare this SelectionDAGBuilder object to be used
812 /// for a new block. This doesn't clear out information about
813 /// additional blocks that are needed to complete switch lowering
814 /// or PHI node updating; that information is cleared out as it is
815 /// consumed.
816 void SelectionDAGBuilder::clear() {
817   NodeMap.clear();
818   UnusedArgNodeMap.clear();
819   PendingLoads.clear();
820   PendingExports.clear();
821   CurDebugLoc = DebugLoc();
822   HasTailCall = false;
823 }
824 
825 /// clearDanglingDebugInfo - Clear the dangling debug information
826 /// map. This function is seperated from the clear so that debug
827 /// information that is dangling in a basic block can be properly
828 /// resolved in a different basic block. This allows the
829 /// SelectionDAG to resolve dangling debug information attached
830 /// to PHI nodes.
831 void SelectionDAGBuilder::clearDanglingDebugInfo() {
832   DanglingDebugInfoMap.clear();
833 }
834 
835 /// getRoot - Return the current virtual root of the Selection DAG,
836 /// flushing any PendingLoad items. This must be done before emitting
837 /// a store or any other node that may need to be ordered after any
838 /// prior load instructions.
839 ///
840 SDValue SelectionDAGBuilder::getRoot() {
841   if (PendingLoads.empty())
842     return DAG.getRoot();
843 
844   if (PendingLoads.size() == 1) {
845     SDValue Root = PendingLoads[0];
846     DAG.setRoot(Root);
847     PendingLoads.clear();
848     return Root;
849   }
850 
851   // Otherwise, we have to make a token factor node.
852   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
853                                &PendingLoads[0], PendingLoads.size());
854   PendingLoads.clear();
855   DAG.setRoot(Root);
856   return Root;
857 }
858 
859 /// getControlRoot - Similar to getRoot, but instead of flushing all the
860 /// PendingLoad items, flush all the PendingExports items. It is necessary
861 /// to do this before emitting a terminator instruction.
862 ///
863 SDValue SelectionDAGBuilder::getControlRoot() {
864   SDValue Root = DAG.getRoot();
865 
866   if (PendingExports.empty())
867     return Root;
868 
869   // Turn all of the CopyToReg chains into one factored node.
870   if (Root.getOpcode() != ISD::EntryToken) {
871     unsigned i = 0, e = PendingExports.size();
872     for (; i != e; ++i) {
873       assert(PendingExports[i].getNode()->getNumOperands() > 1);
874       if (PendingExports[i].getNode()->getOperand(0) == Root)
875         break;  // Don't add the root if we already indirectly depend on it.
876     }
877 
878     if (i == e)
879       PendingExports.push_back(Root);
880   }
881 
882   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
883                      &PendingExports[0],
884                      PendingExports.size());
885   PendingExports.clear();
886   DAG.setRoot(Root);
887   return Root;
888 }
889 
890 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
891   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
892   DAG.AssignOrdering(Node, SDNodeOrder);
893 
894   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
895     AssignOrderingToNode(Node->getOperand(I).getNode());
896 }
897 
898 void SelectionDAGBuilder::visit(const Instruction &I) {
899   // Set up outgoing PHI node register values before emitting the terminator.
900   if (isa<TerminatorInst>(&I))
901     HandlePHINodesInSuccessorBlocks(I.getParent());
902 
903   CurDebugLoc = I.getDebugLoc();
904 
905   visit(I.getOpcode(), I);
906 
907   if (!isa<TerminatorInst>(&I) && !HasTailCall)
908     CopyToExportRegsIfNeeded(&I);
909 
910   CurDebugLoc = DebugLoc();
911 }
912 
913 void SelectionDAGBuilder::visitPHI(const PHINode &) {
914   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
915 }
916 
917 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
918   // Note: this doesn't use InstVisitor, because it has to work with
919   // ConstantExpr's in addition to instructions.
920   switch (Opcode) {
921   default: llvm_unreachable("Unknown instruction type encountered!");
922     // Build the switch statement using the Instruction.def file.
923 #define HANDLE_INST(NUM, OPCODE, CLASS) \
924     case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
925 #include "llvm/Instruction.def"
926   }
927 
928   // Assign the ordering to the freshly created DAG nodes.
929   if (NodeMap.count(&I)) {
930     ++SDNodeOrder;
931     AssignOrderingToNode(getValue(&I).getNode());
932   }
933 }
934 
935 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
936 // generate the debug data structures now that we've seen its definition.
937 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
938                                                    SDValue Val) {
939   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
940   if (DDI.getDI()) {
941     const DbgValueInst *DI = DDI.getDI();
942     DebugLoc dl = DDI.getdl();
943     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
944     MDNode *Variable = DI->getVariable();
945     uint64_t Offset = DI->getOffset();
946     SDDbgValue *SDV;
947     if (Val.getNode()) {
948       if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
949         SDV = DAG.getDbgValue(Variable, Val.getNode(),
950                               Val.getResNo(), Offset, dl, DbgSDNodeOrder);
951         DAG.AddDbgValue(SDV, Val.getNode(), false);
952       }
953     } else
954       DEBUG(dbgs() << "Dropping debug info for " << DI);
955     DanglingDebugInfoMap[V] = DanglingDebugInfo();
956   }
957 }
958 
959 // getValue - Return an SDValue for the given Value.
960 SDValue SelectionDAGBuilder::getValue(const Value *V) {
961   // If we already have an SDValue for this value, use it. It's important
962   // to do this first, so that we don't create a CopyFromReg if we already
963   // have a regular SDValue.
964   SDValue &N = NodeMap[V];
965   if (N.getNode()) return N;
966 
967   // If there's a virtual register allocated and initialized for this
968   // value, use it.
969   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
970   if (It != FuncInfo.ValueMap.end()) {
971     unsigned InReg = It->second;
972     RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
973     SDValue Chain = DAG.getEntryNode();
974     N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
975     resolveDanglingDebugInfo(V, N);
976     return N;
977   }
978 
979   // Otherwise create a new SDValue and remember it.
980   SDValue Val = getValueImpl(V);
981   NodeMap[V] = Val;
982   resolveDanglingDebugInfo(V, Val);
983   return Val;
984 }
985 
986 /// getNonRegisterValue - Return an SDValue for the given Value, but
987 /// don't look in FuncInfo.ValueMap for a virtual register.
988 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
989   // If we already have an SDValue for this value, use it.
990   SDValue &N = NodeMap[V];
991   if (N.getNode()) return N;
992 
993   // Otherwise create a new SDValue and remember it.
994   SDValue Val = getValueImpl(V);
995   NodeMap[V] = Val;
996   resolveDanglingDebugInfo(V, Val);
997   return Val;
998 }
999 
1000 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1001 /// Create an SDValue for the given value.
1002 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1003   if (const Constant *C = dyn_cast<Constant>(V)) {
1004     EVT VT = TLI.getValueType(V->getType(), true);
1005 
1006     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1007       return DAG.getConstant(*CI, VT);
1008 
1009     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1010       return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1011 
1012     if (isa<ConstantPointerNull>(C))
1013       return DAG.getConstant(0, TLI.getPointerTy());
1014 
1015     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1016       return DAG.getConstantFP(*CFP, VT);
1017 
1018     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1019       return DAG.getUNDEF(VT);
1020 
1021     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1022       visit(CE->getOpcode(), *CE);
1023       SDValue N1 = NodeMap[V];
1024       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1025       return N1;
1026     }
1027 
1028     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1029       SmallVector<SDValue, 4> Constants;
1030       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1031            OI != OE; ++OI) {
1032         SDNode *Val = getValue(*OI).getNode();
1033         // If the operand is an empty aggregate, there are no values.
1034         if (!Val) continue;
1035         // Add each leaf value from the operand to the Constants list
1036         // to form a flattened list of all the values.
1037         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1038           Constants.push_back(SDValue(Val, i));
1039       }
1040 
1041       return DAG.getMergeValues(&Constants[0], Constants.size(),
1042                                 getCurDebugLoc());
1043     }
1044 
1045     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1046       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1047              "Unknown struct or array constant!");
1048 
1049       SmallVector<EVT, 4> ValueVTs;
1050       ComputeValueVTs(TLI, C->getType(), ValueVTs);
1051       unsigned NumElts = ValueVTs.size();
1052       if (NumElts == 0)
1053         return SDValue(); // empty struct
1054       SmallVector<SDValue, 4> Constants(NumElts);
1055       for (unsigned i = 0; i != NumElts; ++i) {
1056         EVT EltVT = ValueVTs[i];
1057         if (isa<UndefValue>(C))
1058           Constants[i] = DAG.getUNDEF(EltVT);
1059         else if (EltVT.isFloatingPoint())
1060           Constants[i] = DAG.getConstantFP(0, EltVT);
1061         else
1062           Constants[i] = DAG.getConstant(0, EltVT);
1063       }
1064 
1065       return DAG.getMergeValues(&Constants[0], NumElts,
1066                                 getCurDebugLoc());
1067     }
1068 
1069     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1070       return DAG.getBlockAddress(BA, VT);
1071 
1072     VectorType *VecTy = cast<VectorType>(V->getType());
1073     unsigned NumElements = VecTy->getNumElements();
1074 
1075     // Now that we know the number and type of the elements, get that number of
1076     // elements into the Ops array based on what kind of constant it is.
1077     SmallVector<SDValue, 16> Ops;
1078     if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1079       for (unsigned i = 0; i != NumElements; ++i)
1080         Ops.push_back(getValue(CP->getOperand(i)));
1081     } else {
1082       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1083       EVT EltVT = TLI.getValueType(VecTy->getElementType());
1084 
1085       SDValue Op;
1086       if (EltVT.isFloatingPoint())
1087         Op = DAG.getConstantFP(0, EltVT);
1088       else
1089         Op = DAG.getConstant(0, EltVT);
1090       Ops.assign(NumElements, Op);
1091     }
1092 
1093     // Create a BUILD_VECTOR node.
1094     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1095                                     VT, &Ops[0], Ops.size());
1096   }
1097 
1098   // If this is a static alloca, generate it as the frameindex instead of
1099   // computation.
1100   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1101     DenseMap<const AllocaInst*, int>::iterator SI =
1102       FuncInfo.StaticAllocaMap.find(AI);
1103     if (SI != FuncInfo.StaticAllocaMap.end())
1104       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1105   }
1106 
1107   // If this is an instruction which fast-isel has deferred, select it now.
1108   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1109     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1110     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1111     SDValue Chain = DAG.getEntryNode();
1112     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1113   }
1114 
1115   llvm_unreachable("Can't get register for value!");
1116   return SDValue();
1117 }
1118 
1119 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1120   SDValue Chain = getControlRoot();
1121   SmallVector<ISD::OutputArg, 8> Outs;
1122   SmallVector<SDValue, 8> OutVals;
1123 
1124   if (!FuncInfo.CanLowerReturn) {
1125     unsigned DemoteReg = FuncInfo.DemoteRegister;
1126     const Function *F = I.getParent()->getParent();
1127 
1128     // Emit a store of the return value through the virtual register.
1129     // Leave Outs empty so that LowerReturn won't try to load return
1130     // registers the usual way.
1131     SmallVector<EVT, 1> PtrValueVTs;
1132     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1133                     PtrValueVTs);
1134 
1135     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1136     SDValue RetOp = getValue(I.getOperand(0));
1137 
1138     SmallVector<EVT, 4> ValueVTs;
1139     SmallVector<uint64_t, 4> Offsets;
1140     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1141     unsigned NumValues = ValueVTs.size();
1142 
1143     SmallVector<SDValue, 4> Chains(NumValues);
1144     for (unsigned i = 0; i != NumValues; ++i) {
1145       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1146                                 RetPtr.getValueType(), RetPtr,
1147                                 DAG.getIntPtrConstant(Offsets[i]));
1148       Chains[i] =
1149         DAG.getStore(Chain, getCurDebugLoc(),
1150                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1151                      // FIXME: better loc info would be nice.
1152                      Add, MachinePointerInfo(), false, false, 0);
1153     }
1154 
1155     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1156                         MVT::Other, &Chains[0], NumValues);
1157   } else if (I.getNumOperands() != 0) {
1158     SmallVector<EVT, 4> ValueVTs;
1159     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1160     unsigned NumValues = ValueVTs.size();
1161     if (NumValues) {
1162       SDValue RetOp = getValue(I.getOperand(0));
1163       for (unsigned j = 0, f = NumValues; j != f; ++j) {
1164         EVT VT = ValueVTs[j];
1165 
1166         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1167 
1168         const Function *F = I.getParent()->getParent();
1169         if (F->paramHasAttr(0, Attribute::SExt))
1170           ExtendKind = ISD::SIGN_EXTEND;
1171         else if (F->paramHasAttr(0, Attribute::ZExt))
1172           ExtendKind = ISD::ZERO_EXTEND;
1173 
1174         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1175           VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1176 
1177         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1178         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1179         SmallVector<SDValue, 4> Parts(NumParts);
1180         getCopyToParts(DAG, getCurDebugLoc(),
1181                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1182                        &Parts[0], NumParts, PartVT, ExtendKind);
1183 
1184         // 'inreg' on function refers to return value
1185         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1186         if (F->paramHasAttr(0, Attribute::InReg))
1187           Flags.setInReg();
1188 
1189         // Propagate extension type if any
1190         if (ExtendKind == ISD::SIGN_EXTEND)
1191           Flags.setSExt();
1192         else if (ExtendKind == ISD::ZERO_EXTEND)
1193           Flags.setZExt();
1194 
1195         for (unsigned i = 0; i < NumParts; ++i) {
1196           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1197                                         /*isfixed=*/true));
1198           OutVals.push_back(Parts[i]);
1199         }
1200       }
1201     }
1202   }
1203 
1204   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1205   CallingConv::ID CallConv =
1206     DAG.getMachineFunction().getFunction()->getCallingConv();
1207   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1208                           Outs, OutVals, getCurDebugLoc(), DAG);
1209 
1210   // Verify that the target's LowerReturn behaved as expected.
1211   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1212          "LowerReturn didn't return a valid chain!");
1213 
1214   // Update the DAG with the new chain value resulting from return lowering.
1215   DAG.setRoot(Chain);
1216 }
1217 
1218 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1219 /// created for it, emit nodes to copy the value into the virtual
1220 /// registers.
1221 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1222   // Skip empty types
1223   if (V->getType()->isEmptyTy())
1224     return;
1225 
1226   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1227   if (VMI != FuncInfo.ValueMap.end()) {
1228     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1229     CopyValueToVirtualRegister(V, VMI->second);
1230   }
1231 }
1232 
1233 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1234 /// the current basic block, add it to ValueMap now so that we'll get a
1235 /// CopyTo/FromReg.
1236 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1237   // No need to export constants.
1238   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1239 
1240   // Already exported?
1241   if (FuncInfo.isExportedInst(V)) return;
1242 
1243   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1244   CopyValueToVirtualRegister(V, Reg);
1245 }
1246 
1247 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1248                                                      const BasicBlock *FromBB) {
1249   // The operands of the setcc have to be in this block.  We don't know
1250   // how to export them from some other block.
1251   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1252     // Can export from current BB.
1253     if (VI->getParent() == FromBB)
1254       return true;
1255 
1256     // Is already exported, noop.
1257     return FuncInfo.isExportedInst(V);
1258   }
1259 
1260   // If this is an argument, we can export it if the BB is the entry block or
1261   // if it is already exported.
1262   if (isa<Argument>(V)) {
1263     if (FromBB == &FromBB->getParent()->getEntryBlock())
1264       return true;
1265 
1266     // Otherwise, can only export this if it is already exported.
1267     return FuncInfo.isExportedInst(V);
1268   }
1269 
1270   // Otherwise, constants can always be exported.
1271   return true;
1272 }
1273 
1274 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1275 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1276                                             MachineBasicBlock *Dst) {
1277   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1278   if (!BPI)
1279     return 0;
1280   const BasicBlock *SrcBB = Src->getBasicBlock();
1281   const BasicBlock *DstBB = Dst->getBasicBlock();
1282   return BPI->getEdgeWeight(SrcBB, DstBB);
1283 }
1284 
1285 void SelectionDAGBuilder::
1286 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1287                        uint32_t Weight /* = 0 */) {
1288   if (!Weight)
1289     Weight = getEdgeWeight(Src, Dst);
1290   Src->addSuccessor(Dst, Weight);
1291 }
1292 
1293 
1294 static bool InBlock(const Value *V, const BasicBlock *BB) {
1295   if (const Instruction *I = dyn_cast<Instruction>(V))
1296     return I->getParent() == BB;
1297   return true;
1298 }
1299 
1300 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1301 /// This function emits a branch and is used at the leaves of an OR or an
1302 /// AND operator tree.
1303 ///
1304 void
1305 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1306                                                   MachineBasicBlock *TBB,
1307                                                   MachineBasicBlock *FBB,
1308                                                   MachineBasicBlock *CurBB,
1309                                                   MachineBasicBlock *SwitchBB) {
1310   const BasicBlock *BB = CurBB->getBasicBlock();
1311 
1312   // If the leaf of the tree is a comparison, merge the condition into
1313   // the caseblock.
1314   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1315     // The operands of the cmp have to be in this block.  We don't know
1316     // how to export them from some other block.  If this is the first block
1317     // of the sequence, no exporting is needed.
1318     if (CurBB == SwitchBB ||
1319         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1320          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1321       ISD::CondCode Condition;
1322       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1323         Condition = getICmpCondCode(IC->getPredicate());
1324       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1325         Condition = getFCmpCondCode(FC->getPredicate());
1326       } else {
1327         Condition = ISD::SETEQ; // silence warning.
1328         llvm_unreachable("Unknown compare instruction");
1329       }
1330 
1331       CaseBlock CB(Condition, BOp->getOperand(0),
1332                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1333       SwitchCases.push_back(CB);
1334       return;
1335     }
1336   }
1337 
1338   // Create a CaseBlock record representing this branch.
1339   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1340                NULL, TBB, FBB, CurBB);
1341   SwitchCases.push_back(CB);
1342 }
1343 
1344 /// FindMergedConditions - If Cond is an expression like
1345 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1346                                                MachineBasicBlock *TBB,
1347                                                MachineBasicBlock *FBB,
1348                                                MachineBasicBlock *CurBB,
1349                                                MachineBasicBlock *SwitchBB,
1350                                                unsigned Opc) {
1351   // If this node is not part of the or/and tree, emit it as a branch.
1352   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1353   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1354       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1355       BOp->getParent() != CurBB->getBasicBlock() ||
1356       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1357       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1358     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1359     return;
1360   }
1361 
1362   //  Create TmpBB after CurBB.
1363   MachineFunction::iterator BBI = CurBB;
1364   MachineFunction &MF = DAG.getMachineFunction();
1365   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1366   CurBB->getParent()->insert(++BBI, TmpBB);
1367 
1368   if (Opc == Instruction::Or) {
1369     // Codegen X | Y as:
1370     //   jmp_if_X TBB
1371     //   jmp TmpBB
1372     // TmpBB:
1373     //   jmp_if_Y TBB
1374     //   jmp FBB
1375     //
1376 
1377     // Emit the LHS condition.
1378     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1379 
1380     // Emit the RHS condition into TmpBB.
1381     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1382   } else {
1383     assert(Opc == Instruction::And && "Unknown merge op!");
1384     // Codegen X & Y as:
1385     //   jmp_if_X TmpBB
1386     //   jmp FBB
1387     // TmpBB:
1388     //   jmp_if_Y TBB
1389     //   jmp FBB
1390     //
1391     //  This requires creation of TmpBB after CurBB.
1392 
1393     // Emit the LHS condition.
1394     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1395 
1396     // Emit the RHS condition into TmpBB.
1397     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1398   }
1399 }
1400 
1401 /// If the set of cases should be emitted as a series of branches, return true.
1402 /// If we should emit this as a bunch of and/or'd together conditions, return
1403 /// false.
1404 bool
1405 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1406   if (Cases.size() != 2) return true;
1407 
1408   // If this is two comparisons of the same values or'd or and'd together, they
1409   // will get folded into a single comparison, so don't emit two blocks.
1410   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1411        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1412       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1413        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1414     return false;
1415   }
1416 
1417   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1418   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1419   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1420       Cases[0].CC == Cases[1].CC &&
1421       isa<Constant>(Cases[0].CmpRHS) &&
1422       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1423     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1424       return false;
1425     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1426       return false;
1427   }
1428 
1429   return true;
1430 }
1431 
1432 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1433   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1434 
1435   // Update machine-CFG edges.
1436   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1437 
1438   // Figure out which block is immediately after the current one.
1439   MachineBasicBlock *NextBlock = 0;
1440   MachineFunction::iterator BBI = BrMBB;
1441   if (++BBI != FuncInfo.MF->end())
1442     NextBlock = BBI;
1443 
1444   if (I.isUnconditional()) {
1445     // Update machine-CFG edges.
1446     BrMBB->addSuccessor(Succ0MBB);
1447 
1448     // If this is not a fall-through branch, emit the branch.
1449     if (Succ0MBB != NextBlock)
1450       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1451                               MVT::Other, getControlRoot(),
1452                               DAG.getBasicBlock(Succ0MBB)));
1453 
1454     return;
1455   }
1456 
1457   // If this condition is one of the special cases we handle, do special stuff
1458   // now.
1459   const Value *CondVal = I.getCondition();
1460   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1461 
1462   // If this is a series of conditions that are or'd or and'd together, emit
1463   // this as a sequence of branches instead of setcc's with and/or operations.
1464   // As long as jumps are not expensive, this should improve performance.
1465   // For example, instead of something like:
1466   //     cmp A, B
1467   //     C = seteq
1468   //     cmp D, E
1469   //     F = setle
1470   //     or C, F
1471   //     jnz foo
1472   // Emit:
1473   //     cmp A, B
1474   //     je foo
1475   //     cmp D, E
1476   //     jle foo
1477   //
1478   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1479     if (!TLI.isJumpExpensive() &&
1480         BOp->hasOneUse() &&
1481         (BOp->getOpcode() == Instruction::And ||
1482          BOp->getOpcode() == Instruction::Or)) {
1483       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1484                            BOp->getOpcode());
1485       // If the compares in later blocks need to use values not currently
1486       // exported from this block, export them now.  This block should always
1487       // be the first entry.
1488       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1489 
1490       // Allow some cases to be rejected.
1491       if (ShouldEmitAsBranches(SwitchCases)) {
1492         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1493           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1494           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1495         }
1496 
1497         // Emit the branch for this block.
1498         visitSwitchCase(SwitchCases[0], BrMBB);
1499         SwitchCases.erase(SwitchCases.begin());
1500         return;
1501       }
1502 
1503       // Okay, we decided not to do this, remove any inserted MBB's and clear
1504       // SwitchCases.
1505       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1506         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1507 
1508       SwitchCases.clear();
1509     }
1510   }
1511 
1512   // Create a CaseBlock record representing this branch.
1513   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1514                NULL, Succ0MBB, Succ1MBB, BrMBB);
1515 
1516   // Use visitSwitchCase to actually insert the fast branch sequence for this
1517   // cond branch.
1518   visitSwitchCase(CB, BrMBB);
1519 }
1520 
1521 /// visitSwitchCase - Emits the necessary code to represent a single node in
1522 /// the binary search tree resulting from lowering a switch instruction.
1523 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1524                                           MachineBasicBlock *SwitchBB) {
1525   SDValue Cond;
1526   SDValue CondLHS = getValue(CB.CmpLHS);
1527   DebugLoc dl = getCurDebugLoc();
1528 
1529   // Build the setcc now.
1530   if (CB.CmpMHS == NULL) {
1531     // Fold "(X == true)" to X and "(X == false)" to !X to
1532     // handle common cases produced by branch lowering.
1533     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1534         CB.CC == ISD::SETEQ)
1535       Cond = CondLHS;
1536     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1537              CB.CC == ISD::SETEQ) {
1538       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1539       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1540     } else
1541       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1542   } else {
1543     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1544 
1545     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1546     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1547 
1548     SDValue CmpOp = getValue(CB.CmpMHS);
1549     EVT VT = CmpOp.getValueType();
1550 
1551     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1552       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1553                           ISD::SETLE);
1554     } else {
1555       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1556                                 VT, CmpOp, DAG.getConstant(Low, VT));
1557       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1558                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1559     }
1560   }
1561 
1562   // Update successor info
1563   addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1564   addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1565 
1566   // Set NextBlock to be the MBB immediately after the current one, if any.
1567   // This is used to avoid emitting unnecessary branches to the next block.
1568   MachineBasicBlock *NextBlock = 0;
1569   MachineFunction::iterator BBI = SwitchBB;
1570   if (++BBI != FuncInfo.MF->end())
1571     NextBlock = BBI;
1572 
1573   // If the lhs block is the next block, invert the condition so that we can
1574   // fall through to the lhs instead of the rhs block.
1575   if (CB.TrueBB == NextBlock) {
1576     std::swap(CB.TrueBB, CB.FalseBB);
1577     SDValue True = DAG.getConstant(1, Cond.getValueType());
1578     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1579   }
1580 
1581   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1582                                MVT::Other, getControlRoot(), Cond,
1583                                DAG.getBasicBlock(CB.TrueBB));
1584 
1585   // Insert the false branch. Do this even if it's a fall through branch,
1586   // this makes it easier to do DAG optimizations which require inverting
1587   // the branch condition.
1588   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1589                        DAG.getBasicBlock(CB.FalseBB));
1590 
1591   DAG.setRoot(BrCond);
1592 }
1593 
1594 /// visitJumpTable - Emit JumpTable node in the current MBB
1595 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1596   // Emit the code for the jump table
1597   assert(JT.Reg != -1U && "Should lower JT Header first!");
1598   EVT PTy = TLI.getPointerTy();
1599   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1600                                      JT.Reg, PTy);
1601   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1602   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1603                                     MVT::Other, Index.getValue(1),
1604                                     Table, Index);
1605   DAG.setRoot(BrJumpTable);
1606 }
1607 
1608 /// visitJumpTableHeader - This function emits necessary code to produce index
1609 /// in the JumpTable from switch case.
1610 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1611                                                JumpTableHeader &JTH,
1612                                                MachineBasicBlock *SwitchBB) {
1613   // Subtract the lowest switch case value from the value being switched on and
1614   // conditional branch to default mbb if the result is greater than the
1615   // difference between smallest and largest cases.
1616   SDValue SwitchOp = getValue(JTH.SValue);
1617   EVT VT = SwitchOp.getValueType();
1618   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1619                             DAG.getConstant(JTH.First, VT));
1620 
1621   // The SDNode we just created, which holds the value being switched on minus
1622   // the smallest case value, needs to be copied to a virtual register so it
1623   // can be used as an index into the jump table in a subsequent basic block.
1624   // This value may be smaller or larger than the target's pointer type, and
1625   // therefore require extension or truncating.
1626   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1627 
1628   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1629   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1630                                     JumpTableReg, SwitchOp);
1631   JT.Reg = JumpTableReg;
1632 
1633   // Emit the range check for the jump table, and branch to the default block
1634   // for the switch statement if the value being switched on exceeds the largest
1635   // case in the switch.
1636   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1637                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
1638                              DAG.getConstant(JTH.Last-JTH.First,VT),
1639                              ISD::SETUGT);
1640 
1641   // Set NextBlock to be the MBB immediately after the current one, if any.
1642   // This is used to avoid emitting unnecessary branches to the next block.
1643   MachineBasicBlock *NextBlock = 0;
1644   MachineFunction::iterator BBI = SwitchBB;
1645 
1646   if (++BBI != FuncInfo.MF->end())
1647     NextBlock = BBI;
1648 
1649   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1650                                MVT::Other, CopyTo, CMP,
1651                                DAG.getBasicBlock(JT.Default));
1652 
1653   if (JT.MBB != NextBlock)
1654     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1655                          DAG.getBasicBlock(JT.MBB));
1656 
1657   DAG.setRoot(BrCond);
1658 }
1659 
1660 /// visitBitTestHeader - This function emits necessary code to produce value
1661 /// suitable for "bit tests"
1662 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1663                                              MachineBasicBlock *SwitchBB) {
1664   // Subtract the minimum value
1665   SDValue SwitchOp = getValue(B.SValue);
1666   EVT VT = SwitchOp.getValueType();
1667   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1668                             DAG.getConstant(B.First, VT));
1669 
1670   // Check range
1671   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1672                                   TLI.getSetCCResultType(Sub.getValueType()),
1673                                   Sub, DAG.getConstant(B.Range, VT),
1674                                   ISD::SETUGT);
1675 
1676   // Determine the type of the test operands.
1677   bool UsePtrType = false;
1678   if (!TLI.isTypeLegal(VT))
1679     UsePtrType = true;
1680   else {
1681     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1682       if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1683         // Switch table case range are encoded into series of masks.
1684         // Just use pointer type, it's guaranteed to fit.
1685         UsePtrType = true;
1686         break;
1687       }
1688   }
1689   if (UsePtrType) {
1690     VT = TLI.getPointerTy();
1691     Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1692   }
1693 
1694   B.RegVT = VT;
1695   B.Reg = FuncInfo.CreateReg(VT);
1696   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1697                                     B.Reg, Sub);
1698 
1699   // Set NextBlock to be the MBB immediately after the current one, if any.
1700   // This is used to avoid emitting unnecessary branches to the next block.
1701   MachineBasicBlock *NextBlock = 0;
1702   MachineFunction::iterator BBI = SwitchBB;
1703   if (++BBI != FuncInfo.MF->end())
1704     NextBlock = BBI;
1705 
1706   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1707 
1708   addSuccessorWithWeight(SwitchBB, B.Default);
1709   addSuccessorWithWeight(SwitchBB, MBB);
1710 
1711   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1712                                 MVT::Other, CopyTo, RangeCmp,
1713                                 DAG.getBasicBlock(B.Default));
1714 
1715   if (MBB != NextBlock)
1716     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1717                           DAG.getBasicBlock(MBB));
1718 
1719   DAG.setRoot(BrRange);
1720 }
1721 
1722 /// visitBitTestCase - this function produces one "bit test"
1723 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1724                                            MachineBasicBlock* NextMBB,
1725                                            unsigned Reg,
1726                                            BitTestCase &B,
1727                                            MachineBasicBlock *SwitchBB) {
1728   EVT VT = BB.RegVT;
1729   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1730                                        Reg, VT);
1731   SDValue Cmp;
1732   unsigned PopCount = CountPopulation_64(B.Mask);
1733   if (PopCount == 1) {
1734     // Testing for a single bit; just compare the shift count with what it
1735     // would need to be to shift a 1 bit in that position.
1736     Cmp = DAG.getSetCC(getCurDebugLoc(),
1737                        TLI.getSetCCResultType(VT),
1738                        ShiftOp,
1739                        DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1740                        ISD::SETEQ);
1741   } else if (PopCount == BB.Range) {
1742     // There is only one zero bit in the range, test for it directly.
1743     Cmp = DAG.getSetCC(getCurDebugLoc(),
1744                        TLI.getSetCCResultType(VT),
1745                        ShiftOp,
1746                        DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1747                        ISD::SETNE);
1748   } else {
1749     // Make desired shift
1750     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1751                                     DAG.getConstant(1, VT), ShiftOp);
1752 
1753     // Emit bit tests and jumps
1754     SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1755                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1756     Cmp = DAG.getSetCC(getCurDebugLoc(),
1757                        TLI.getSetCCResultType(VT),
1758                        AndOp, DAG.getConstant(0, VT),
1759                        ISD::SETNE);
1760   }
1761 
1762   addSuccessorWithWeight(SwitchBB, B.TargetBB);
1763   addSuccessorWithWeight(SwitchBB, NextMBB);
1764 
1765   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1766                               MVT::Other, getControlRoot(),
1767                               Cmp, DAG.getBasicBlock(B.TargetBB));
1768 
1769   // Set NextBlock to be the MBB immediately after the current one, if any.
1770   // This is used to avoid emitting unnecessary branches to the next block.
1771   MachineBasicBlock *NextBlock = 0;
1772   MachineFunction::iterator BBI = SwitchBB;
1773   if (++BBI != FuncInfo.MF->end())
1774     NextBlock = BBI;
1775 
1776   if (NextMBB != NextBlock)
1777     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1778                         DAG.getBasicBlock(NextMBB));
1779 
1780   DAG.setRoot(BrAnd);
1781 }
1782 
1783 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1784   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1785 
1786   // Retrieve successors.
1787   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1788   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1789 
1790   const Value *Callee(I.getCalledValue());
1791   if (isa<InlineAsm>(Callee))
1792     visitInlineAsm(&I);
1793   else
1794     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1795 
1796   // If the value of the invoke is used outside of its defining block, make it
1797   // available as a virtual register.
1798   CopyToExportRegsIfNeeded(&I);
1799 
1800   // Update successor info
1801   InvokeMBB->addSuccessor(Return);
1802   InvokeMBB->addSuccessor(LandingPad);
1803 
1804   // Drop into normal successor.
1805   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1806                           MVT::Other, getControlRoot(),
1807                           DAG.getBasicBlock(Return)));
1808 }
1809 
1810 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1811 }
1812 
1813 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1814   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1815 }
1816 
1817 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1818 /// small case ranges).
1819 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1820                                                  CaseRecVector& WorkList,
1821                                                  const Value* SV,
1822                                                  MachineBasicBlock *Default,
1823                                                  MachineBasicBlock *SwitchBB) {
1824   Case& BackCase  = *(CR.Range.second-1);
1825 
1826   // Size is the number of Cases represented by this range.
1827   size_t Size = CR.Range.second - CR.Range.first;
1828   if (Size > 3)
1829     return false;
1830 
1831   // Get the MachineFunction which holds the current MBB.  This is used when
1832   // inserting any additional MBBs necessary to represent the switch.
1833   MachineFunction *CurMF = FuncInfo.MF;
1834 
1835   // Figure out which block is immediately after the current one.
1836   MachineBasicBlock *NextBlock = 0;
1837   MachineFunction::iterator BBI = CR.CaseBB;
1838 
1839   if (++BBI != FuncInfo.MF->end())
1840     NextBlock = BBI;
1841 
1842   // If any two of the cases has the same destination, and if one value
1843   // is the same as the other, but has one bit unset that the other has set,
1844   // use bit manipulation to do two compares at once.  For example:
1845   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1846   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1847   // TODO: Handle cases where CR.CaseBB != SwitchBB.
1848   if (Size == 2 && CR.CaseBB == SwitchBB) {
1849     Case &Small = *CR.Range.first;
1850     Case &Big = *(CR.Range.second-1);
1851 
1852     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1853       const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1854       const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1855 
1856       // Check that there is only one bit different.
1857       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1858           (SmallValue | BigValue) == BigValue) {
1859         // Isolate the common bit.
1860         APInt CommonBit = BigValue & ~SmallValue;
1861         assert((SmallValue | CommonBit) == BigValue &&
1862                CommonBit.countPopulation() == 1 && "Not a common bit?");
1863 
1864         SDValue CondLHS = getValue(SV);
1865         EVT VT = CondLHS.getValueType();
1866         DebugLoc DL = getCurDebugLoc();
1867 
1868         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1869                                  DAG.getConstant(CommonBit, VT));
1870         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1871                                     Or, DAG.getConstant(BigValue, VT),
1872                                     ISD::SETEQ);
1873 
1874         // Update successor info.
1875         addSuccessorWithWeight(SwitchBB, Small.BB);
1876         addSuccessorWithWeight(SwitchBB, Default);
1877 
1878         // Insert the true branch.
1879         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1880                                      getControlRoot(), Cond,
1881                                      DAG.getBasicBlock(Small.BB));
1882 
1883         // Insert the false branch.
1884         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1885                              DAG.getBasicBlock(Default));
1886 
1887         DAG.setRoot(BrCond);
1888         return true;
1889       }
1890     }
1891   }
1892 
1893   // Rearrange the case blocks so that the last one falls through if possible.
1894   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1895     // The last case block won't fall through into 'NextBlock' if we emit the
1896     // branches in this order.  See if rearranging a case value would help.
1897     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1898       if (I->BB == NextBlock) {
1899         std::swap(*I, BackCase);
1900         break;
1901       }
1902     }
1903   }
1904 
1905   // Create a CaseBlock record representing a conditional branch to
1906   // the Case's target mbb if the value being switched on SV is equal
1907   // to C.
1908   MachineBasicBlock *CurBlock = CR.CaseBB;
1909   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1910     MachineBasicBlock *FallThrough;
1911     if (I != E-1) {
1912       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1913       CurMF->insert(BBI, FallThrough);
1914 
1915       // Put SV in a virtual register to make it available from the new blocks.
1916       ExportFromCurrentBlock(SV);
1917     } else {
1918       // If the last case doesn't match, go to the default block.
1919       FallThrough = Default;
1920     }
1921 
1922     const Value *RHS, *LHS, *MHS;
1923     ISD::CondCode CC;
1924     if (I->High == I->Low) {
1925       // This is just small small case range :) containing exactly 1 case
1926       CC = ISD::SETEQ;
1927       LHS = SV; RHS = I->High; MHS = NULL;
1928     } else {
1929       CC = ISD::SETLE;
1930       LHS = I->Low; MHS = SV; RHS = I->High;
1931     }
1932 
1933     uint32_t ExtraWeight = I->ExtraWeight;
1934     CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
1935                  /* me */ CurBlock,
1936                  /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
1937 
1938     // If emitting the first comparison, just call visitSwitchCase to emit the
1939     // code into the current block.  Otherwise, push the CaseBlock onto the
1940     // vector to be later processed by SDISel, and insert the node's MBB
1941     // before the next MBB.
1942     if (CurBlock == SwitchBB)
1943       visitSwitchCase(CB, SwitchBB);
1944     else
1945       SwitchCases.push_back(CB);
1946 
1947     CurBlock = FallThrough;
1948   }
1949 
1950   return true;
1951 }
1952 
1953 static inline bool areJTsAllowed(const TargetLowering &TLI) {
1954   return !DisableJumpTables &&
1955           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1956            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1957 }
1958 
1959 static APInt ComputeRange(const APInt &First, const APInt &Last) {
1960   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1961   APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1962   return (LastExt - FirstExt + 1ULL);
1963 }
1964 
1965 /// handleJTSwitchCase - Emit jumptable for current switch case range
1966 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1967                                              CaseRecVector& WorkList,
1968                                              const Value* SV,
1969                                              MachineBasicBlock* Default,
1970                                              MachineBasicBlock *SwitchBB) {
1971   Case& FrontCase = *CR.Range.first;
1972   Case& BackCase  = *(CR.Range.second-1);
1973 
1974   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1975   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1976 
1977   APInt TSize(First.getBitWidth(), 0);
1978   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1979        I!=E; ++I)
1980     TSize += I->size();
1981 
1982   if (!areJTsAllowed(TLI) || TSize.ult(4))
1983     return false;
1984 
1985   APInt Range = ComputeRange(First, Last);
1986   double Density = TSize.roundToDouble() / Range.roundToDouble();
1987   if (Density < 0.4)
1988     return false;
1989 
1990   DEBUG(dbgs() << "Lowering jump table\n"
1991                << "First entry: " << First << ". Last entry: " << Last << '\n'
1992                << "Range: " << Range
1993                << ". Size: " << TSize << ". Density: " << Density << "\n\n");
1994 
1995   // Get the MachineFunction which holds the current MBB.  This is used when
1996   // inserting any additional MBBs necessary to represent the switch.
1997   MachineFunction *CurMF = FuncInfo.MF;
1998 
1999   // Figure out which block is immediately after the current one.
2000   MachineFunction::iterator BBI = CR.CaseBB;
2001   ++BBI;
2002 
2003   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2004 
2005   // Create a new basic block to hold the code for loading the address
2006   // of the jump table, and jumping to it.  Update successor information;
2007   // we will either branch to the default case for the switch, or the jump
2008   // table.
2009   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2010   CurMF->insert(BBI, JumpTableBB);
2011 
2012   addSuccessorWithWeight(CR.CaseBB, Default);
2013   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2014 
2015   // Build a vector of destination BBs, corresponding to each target
2016   // of the jump table. If the value of the jump table slot corresponds to
2017   // a case statement, push the case's BB onto the vector, otherwise, push
2018   // the default BB.
2019   std::vector<MachineBasicBlock*> DestBBs;
2020   APInt TEI = First;
2021   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2022     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2023     const APInt &High = cast<ConstantInt>(I->High)->getValue();
2024 
2025     if (Low.sle(TEI) && TEI.sle(High)) {
2026       DestBBs.push_back(I->BB);
2027       if (TEI==High)
2028         ++I;
2029     } else {
2030       DestBBs.push_back(Default);
2031     }
2032   }
2033 
2034   // Update successor info. Add one edge to each unique successor.
2035   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2036   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2037          E = DestBBs.end(); I != E; ++I) {
2038     if (!SuccsHandled[(*I)->getNumber()]) {
2039       SuccsHandled[(*I)->getNumber()] = true;
2040       addSuccessorWithWeight(JumpTableBB, *I);
2041     }
2042   }
2043 
2044   // Create a jump table index for this jump table.
2045   unsigned JTEncoding = TLI.getJumpTableEncoding();
2046   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2047                        ->createJumpTableIndex(DestBBs);
2048 
2049   // Set the jump table information so that we can codegen it as a second
2050   // MachineBasicBlock
2051   JumpTable JT(-1U, JTI, JumpTableBB, Default);
2052   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2053   if (CR.CaseBB == SwitchBB)
2054     visitJumpTableHeader(JT, JTH, SwitchBB);
2055 
2056   JTCases.push_back(JumpTableBlock(JTH, JT));
2057 
2058   return true;
2059 }
2060 
2061 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2062 /// 2 subtrees.
2063 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2064                                                   CaseRecVector& WorkList,
2065                                                   const Value* SV,
2066                                                   MachineBasicBlock *Default,
2067                                                   MachineBasicBlock *SwitchBB) {
2068   // Get the MachineFunction which holds the current MBB.  This is used when
2069   // inserting any additional MBBs necessary to represent the switch.
2070   MachineFunction *CurMF = FuncInfo.MF;
2071 
2072   // Figure out which block is immediately after the current one.
2073   MachineFunction::iterator BBI = CR.CaseBB;
2074   ++BBI;
2075 
2076   Case& FrontCase = *CR.Range.first;
2077   Case& BackCase  = *(CR.Range.second-1);
2078   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2079 
2080   // Size is the number of Cases represented by this range.
2081   unsigned Size = CR.Range.second - CR.Range.first;
2082 
2083   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2084   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2085   double FMetric = 0;
2086   CaseItr Pivot = CR.Range.first + Size/2;
2087 
2088   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2089   // (heuristically) allow us to emit JumpTable's later.
2090   APInt TSize(First.getBitWidth(), 0);
2091   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2092        I!=E; ++I)
2093     TSize += I->size();
2094 
2095   APInt LSize = FrontCase.size();
2096   APInt RSize = TSize-LSize;
2097   DEBUG(dbgs() << "Selecting best pivot: \n"
2098                << "First: " << First << ", Last: " << Last <<'\n'
2099                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2100   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2101        J!=E; ++I, ++J) {
2102     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2103     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2104     APInt Range = ComputeRange(LEnd, RBegin);
2105     assert((Range - 2ULL).isNonNegative() &&
2106            "Invalid case distance");
2107     // Use volatile double here to avoid excess precision issues on some hosts,
2108     // e.g. that use 80-bit X87 registers.
2109     volatile double LDensity =
2110        (double)LSize.roundToDouble() /
2111                            (LEnd - First + 1ULL).roundToDouble();
2112     volatile double RDensity =
2113       (double)RSize.roundToDouble() /
2114                            (Last - RBegin + 1ULL).roundToDouble();
2115     double Metric = Range.logBase2()*(LDensity+RDensity);
2116     // Should always split in some non-trivial place
2117     DEBUG(dbgs() <<"=>Step\n"
2118                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2119                  << "LDensity: " << LDensity
2120                  << ", RDensity: " << RDensity << '\n'
2121                  << "Metric: " << Metric << '\n');
2122     if (FMetric < Metric) {
2123       Pivot = J;
2124       FMetric = Metric;
2125       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2126     }
2127 
2128     LSize += J->size();
2129     RSize -= J->size();
2130   }
2131   if (areJTsAllowed(TLI)) {
2132     // If our case is dense we *really* should handle it earlier!
2133     assert((FMetric > 0) && "Should handle dense range earlier!");
2134   } else {
2135     Pivot = CR.Range.first + Size/2;
2136   }
2137 
2138   CaseRange LHSR(CR.Range.first, Pivot);
2139   CaseRange RHSR(Pivot, CR.Range.second);
2140   Constant *C = Pivot->Low;
2141   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2142 
2143   // We know that we branch to the LHS if the Value being switched on is
2144   // less than the Pivot value, C.  We use this to optimize our binary
2145   // tree a bit, by recognizing that if SV is greater than or equal to the
2146   // LHS's Case Value, and that Case Value is exactly one less than the
2147   // Pivot's Value, then we can branch directly to the LHS's Target,
2148   // rather than creating a leaf node for it.
2149   if ((LHSR.second - LHSR.first) == 1 &&
2150       LHSR.first->High == CR.GE &&
2151       cast<ConstantInt>(C)->getValue() ==
2152       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2153     TrueBB = LHSR.first->BB;
2154   } else {
2155     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2156     CurMF->insert(BBI, TrueBB);
2157     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2158 
2159     // Put SV in a virtual register to make it available from the new blocks.
2160     ExportFromCurrentBlock(SV);
2161   }
2162 
2163   // Similar to the optimization above, if the Value being switched on is
2164   // known to be less than the Constant CR.LT, and the current Case Value
2165   // is CR.LT - 1, then we can branch directly to the target block for
2166   // the current Case Value, rather than emitting a RHS leaf node for it.
2167   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2168       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2169       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2170     FalseBB = RHSR.first->BB;
2171   } else {
2172     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2173     CurMF->insert(BBI, FalseBB);
2174     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2175 
2176     // Put SV in a virtual register to make it available from the new blocks.
2177     ExportFromCurrentBlock(SV);
2178   }
2179 
2180   // Create a CaseBlock record representing a conditional branch to
2181   // the LHS node if the value being switched on SV is less than C.
2182   // Otherwise, branch to LHS.
2183   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2184 
2185   if (CR.CaseBB == SwitchBB)
2186     visitSwitchCase(CB, SwitchBB);
2187   else
2188     SwitchCases.push_back(CB);
2189 
2190   return true;
2191 }
2192 
2193 /// handleBitTestsSwitchCase - if current case range has few destination and
2194 /// range span less, than machine word bitwidth, encode case range into series
2195 /// of masks and emit bit tests with these masks.
2196 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2197                                                    CaseRecVector& WorkList,
2198                                                    const Value* SV,
2199                                                    MachineBasicBlock* Default,
2200                                                    MachineBasicBlock *SwitchBB){
2201   EVT PTy = TLI.getPointerTy();
2202   unsigned IntPtrBits = PTy.getSizeInBits();
2203 
2204   Case& FrontCase = *CR.Range.first;
2205   Case& BackCase  = *(CR.Range.second-1);
2206 
2207   // Get the MachineFunction which holds the current MBB.  This is used when
2208   // inserting any additional MBBs necessary to represent the switch.
2209   MachineFunction *CurMF = FuncInfo.MF;
2210 
2211   // If target does not have legal shift left, do not emit bit tests at all.
2212   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2213     return false;
2214 
2215   size_t numCmps = 0;
2216   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2217        I!=E; ++I) {
2218     // Single case counts one, case range - two.
2219     numCmps += (I->Low == I->High ? 1 : 2);
2220   }
2221 
2222   // Count unique destinations
2223   SmallSet<MachineBasicBlock*, 4> Dests;
2224   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2225     Dests.insert(I->BB);
2226     if (Dests.size() > 3)
2227       // Don't bother the code below, if there are too much unique destinations
2228       return false;
2229   }
2230   DEBUG(dbgs() << "Total number of unique destinations: "
2231         << Dests.size() << '\n'
2232         << "Total number of comparisons: " << numCmps << '\n');
2233 
2234   // Compute span of values.
2235   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2236   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2237   APInt cmpRange = maxValue - minValue;
2238 
2239   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2240                << "Low bound: " << minValue << '\n'
2241                << "High bound: " << maxValue << '\n');
2242 
2243   if (cmpRange.uge(IntPtrBits) ||
2244       (!(Dests.size() == 1 && numCmps >= 3) &&
2245        !(Dests.size() == 2 && numCmps >= 5) &&
2246        !(Dests.size() >= 3 && numCmps >= 6)))
2247     return false;
2248 
2249   DEBUG(dbgs() << "Emitting bit tests\n");
2250   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2251 
2252   // Optimize the case where all the case values fit in a
2253   // word without having to subtract minValue. In this case,
2254   // we can optimize away the subtraction.
2255   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2256     cmpRange = maxValue;
2257   } else {
2258     lowBound = minValue;
2259   }
2260 
2261   CaseBitsVector CasesBits;
2262   unsigned i, count = 0;
2263 
2264   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2265     MachineBasicBlock* Dest = I->BB;
2266     for (i = 0; i < count; ++i)
2267       if (Dest == CasesBits[i].BB)
2268         break;
2269 
2270     if (i == count) {
2271       assert((count < 3) && "Too much destinations to test!");
2272       CasesBits.push_back(CaseBits(0, Dest, 0));
2273       count++;
2274     }
2275 
2276     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2277     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2278 
2279     uint64_t lo = (lowValue - lowBound).getZExtValue();
2280     uint64_t hi = (highValue - lowBound).getZExtValue();
2281 
2282     for (uint64_t j = lo; j <= hi; j++) {
2283       CasesBits[i].Mask |=  1ULL << j;
2284       CasesBits[i].Bits++;
2285     }
2286 
2287   }
2288   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2289 
2290   BitTestInfo BTC;
2291 
2292   // Figure out which block is immediately after the current one.
2293   MachineFunction::iterator BBI = CR.CaseBB;
2294   ++BBI;
2295 
2296   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2297 
2298   DEBUG(dbgs() << "Cases:\n");
2299   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2300     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2301                  << ", Bits: " << CasesBits[i].Bits
2302                  << ", BB: " << CasesBits[i].BB << '\n');
2303 
2304     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2305     CurMF->insert(BBI, CaseBB);
2306     BTC.push_back(BitTestCase(CasesBits[i].Mask,
2307                               CaseBB,
2308                               CasesBits[i].BB));
2309 
2310     // Put SV in a virtual register to make it available from the new blocks.
2311     ExportFromCurrentBlock(SV);
2312   }
2313 
2314   BitTestBlock BTB(lowBound, cmpRange, SV,
2315                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2316                    CR.CaseBB, Default, BTC);
2317 
2318   if (CR.CaseBB == SwitchBB)
2319     visitBitTestHeader(BTB, SwitchBB);
2320 
2321   BitTestCases.push_back(BTB);
2322 
2323   return true;
2324 }
2325 
2326 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2327 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2328                                        const SwitchInst& SI) {
2329   size_t numCmps = 0;
2330 
2331   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2332   // Start with "simple" cases
2333   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2334     BasicBlock *SuccBB = SI.getSuccessor(i);
2335     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2336 
2337     uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2338 
2339     Cases.push_back(Case(SI.getSuccessorValue(i),
2340                          SI.getSuccessorValue(i),
2341                          SMBB, ExtraWeight));
2342   }
2343   std::sort(Cases.begin(), Cases.end(), CaseCmp());
2344 
2345   // Merge case into clusters
2346   if (Cases.size() >= 2)
2347     // Must recompute end() each iteration because it may be
2348     // invalidated by erase if we hold on to it
2349     for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2350          J != Cases.end(); ) {
2351       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2352       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2353       MachineBasicBlock* nextBB = J->BB;
2354       MachineBasicBlock* currentBB = I->BB;
2355 
2356       // If the two neighboring cases go to the same destination, merge them
2357       // into a single case.
2358       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2359         I->High = J->High;
2360         J = Cases.erase(J);
2361 
2362         if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2363           uint32_t CurWeight = currentBB->getBasicBlock() ?
2364             BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2365           uint32_t NextWeight = nextBB->getBasicBlock() ?
2366             BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2367 
2368           BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2369                              CurWeight + NextWeight);
2370         }
2371       } else {
2372         I = J++;
2373       }
2374     }
2375 
2376   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2377     if (I->Low != I->High)
2378       // A range counts double, since it requires two compares.
2379       ++numCmps;
2380   }
2381 
2382   return numCmps;
2383 }
2384 
2385 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2386                                            MachineBasicBlock *Last) {
2387   // Update JTCases.
2388   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2389     if (JTCases[i].first.HeaderBB == First)
2390       JTCases[i].first.HeaderBB = Last;
2391 
2392   // Update BitTestCases.
2393   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2394     if (BitTestCases[i].Parent == First)
2395       BitTestCases[i].Parent = Last;
2396 }
2397 
2398 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2399   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2400 
2401   // Figure out which block is immediately after the current one.
2402   MachineBasicBlock *NextBlock = 0;
2403   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2404 
2405   // If there is only the default destination, branch to it if it is not the
2406   // next basic block.  Otherwise, just fall through.
2407   if (SI.getNumOperands() == 2) {
2408     // Update machine-CFG edges.
2409 
2410     // If this is not a fall-through branch, emit the branch.
2411     SwitchMBB->addSuccessor(Default);
2412     if (Default != NextBlock)
2413       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2414                               MVT::Other, getControlRoot(),
2415                               DAG.getBasicBlock(Default)));
2416 
2417     return;
2418   }
2419 
2420   // If there are any non-default case statements, create a vector of Cases
2421   // representing each one, and sort the vector so that we can efficiently
2422   // create a binary search tree from them.
2423   CaseVector Cases;
2424   size_t numCmps = Clusterify(Cases, SI);
2425   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2426                << ". Total compares: " << numCmps << '\n');
2427   numCmps = 0;
2428 
2429   // Get the Value to be switched on and default basic blocks, which will be
2430   // inserted into CaseBlock records, representing basic blocks in the binary
2431   // search tree.
2432   const Value *SV = SI.getOperand(0);
2433 
2434   // Push the initial CaseRec onto the worklist
2435   CaseRecVector WorkList;
2436   WorkList.push_back(CaseRec(SwitchMBB,0,0,
2437                              CaseRange(Cases.begin(),Cases.end())));
2438 
2439   while (!WorkList.empty()) {
2440     // Grab a record representing a case range to process off the worklist
2441     CaseRec CR = WorkList.back();
2442     WorkList.pop_back();
2443 
2444     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2445       continue;
2446 
2447     // If the range has few cases (two or less) emit a series of specific
2448     // tests.
2449     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2450       continue;
2451 
2452     // If the switch has more than 5 blocks, and at least 40% dense, and the
2453     // target supports indirect branches, then emit a jump table rather than
2454     // lowering the switch to a binary tree of conditional branches.
2455     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2456       continue;
2457 
2458     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2459     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2460     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2461   }
2462 }
2463 
2464 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2465   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2466 
2467   // Update machine-CFG edges with unique successors.
2468   SmallVector<BasicBlock*, 32> succs;
2469   succs.reserve(I.getNumSuccessors());
2470   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2471     succs.push_back(I.getSuccessor(i));
2472   array_pod_sort(succs.begin(), succs.end());
2473   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2474   for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2475     MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2476     addSuccessorWithWeight(IndirectBrMBB, Succ);
2477   }
2478 
2479   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2480                           MVT::Other, getControlRoot(),
2481                           getValue(I.getAddress())));
2482 }
2483 
2484 void SelectionDAGBuilder::visitFSub(const User &I) {
2485   // -0.0 - X --> fneg
2486   Type *Ty = I.getType();
2487   if (isa<Constant>(I.getOperand(0)) &&
2488       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2489     SDValue Op2 = getValue(I.getOperand(1));
2490     setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2491                              Op2.getValueType(), Op2));
2492     return;
2493   }
2494 
2495   visitBinary(I, ISD::FSUB);
2496 }
2497 
2498 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2499   SDValue Op1 = getValue(I.getOperand(0));
2500   SDValue Op2 = getValue(I.getOperand(1));
2501   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2502                            Op1.getValueType(), Op1, Op2));
2503 }
2504 
2505 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2506   SDValue Op1 = getValue(I.getOperand(0));
2507   SDValue Op2 = getValue(I.getOperand(1));
2508 
2509   MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2510 
2511   // Coerce the shift amount to the right type if we can.
2512   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2513     unsigned ShiftSize = ShiftTy.getSizeInBits();
2514     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2515     DebugLoc DL = getCurDebugLoc();
2516 
2517     // If the operand is smaller than the shift count type, promote it.
2518     if (ShiftSize > Op2Size)
2519       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2520 
2521     // If the operand is larger than the shift count type but the shift
2522     // count type has enough bits to represent any shift value, truncate
2523     // it now. This is a common case and it exposes the truncate to
2524     // optimization early.
2525     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2526       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2527     // Otherwise we'll need to temporarily settle for some other convenient
2528     // type.  Type legalization will make adjustments once the shiftee is split.
2529     else
2530       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2531   }
2532 
2533   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2534                            Op1.getValueType(), Op1, Op2));
2535 }
2536 
2537 void SelectionDAGBuilder::visitSDiv(const User &I) {
2538   SDValue Op1 = getValue(I.getOperand(0));
2539   SDValue Op2 = getValue(I.getOperand(1));
2540 
2541   // Turn exact SDivs into multiplications.
2542   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2543   // exact bit.
2544   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2545       !isa<ConstantSDNode>(Op1) &&
2546       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2547     setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2548   else
2549     setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2550                              Op1, Op2));
2551 }
2552 
2553 void SelectionDAGBuilder::visitICmp(const User &I) {
2554   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2555   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2556     predicate = IC->getPredicate();
2557   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2558     predicate = ICmpInst::Predicate(IC->getPredicate());
2559   SDValue Op1 = getValue(I.getOperand(0));
2560   SDValue Op2 = getValue(I.getOperand(1));
2561   ISD::CondCode Opcode = getICmpCondCode(predicate);
2562 
2563   EVT DestVT = TLI.getValueType(I.getType());
2564   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2565 }
2566 
2567 void SelectionDAGBuilder::visitFCmp(const User &I) {
2568   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2569   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2570     predicate = FC->getPredicate();
2571   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2572     predicate = FCmpInst::Predicate(FC->getPredicate());
2573   SDValue Op1 = getValue(I.getOperand(0));
2574   SDValue Op2 = getValue(I.getOperand(1));
2575   ISD::CondCode Condition = getFCmpCondCode(predicate);
2576   EVT DestVT = TLI.getValueType(I.getType());
2577   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2578 }
2579 
2580 void SelectionDAGBuilder::visitSelect(const User &I) {
2581   SmallVector<EVT, 4> ValueVTs;
2582   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2583   unsigned NumValues = ValueVTs.size();
2584   if (NumValues == 0) return;
2585 
2586   SmallVector<SDValue, 4> Values(NumValues);
2587   SDValue Cond     = getValue(I.getOperand(0));
2588   SDValue TrueVal  = getValue(I.getOperand(1));
2589   SDValue FalseVal = getValue(I.getOperand(2));
2590 
2591   for (unsigned i = 0; i != NumValues; ++i)
2592     Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2593                           TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2594                             Cond,
2595                             SDValue(TrueVal.getNode(),
2596                                     TrueVal.getResNo() + i),
2597                             SDValue(FalseVal.getNode(),
2598                                     FalseVal.getResNo() + i));
2599 
2600   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2601                            DAG.getVTList(&ValueVTs[0], NumValues),
2602                            &Values[0], NumValues));
2603 }
2604 
2605 void SelectionDAGBuilder::visitTrunc(const User &I) {
2606   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2607   SDValue N = getValue(I.getOperand(0));
2608   EVT DestVT = TLI.getValueType(I.getType());
2609   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2610 }
2611 
2612 void SelectionDAGBuilder::visitZExt(const User &I) {
2613   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2614   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2615   SDValue N = getValue(I.getOperand(0));
2616   EVT DestVT = TLI.getValueType(I.getType());
2617   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2618 }
2619 
2620 void SelectionDAGBuilder::visitSExt(const User &I) {
2621   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2622   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2623   SDValue N = getValue(I.getOperand(0));
2624   EVT DestVT = TLI.getValueType(I.getType());
2625   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2626 }
2627 
2628 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2629   // FPTrunc is never a no-op cast, no need to check
2630   SDValue N = getValue(I.getOperand(0));
2631   EVT DestVT = TLI.getValueType(I.getType());
2632   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2633                            DestVT, N, DAG.getIntPtrConstant(0)));
2634 }
2635 
2636 void SelectionDAGBuilder::visitFPExt(const User &I){
2637   // FPTrunc is never a no-op cast, no need to check
2638   SDValue N = getValue(I.getOperand(0));
2639   EVT DestVT = TLI.getValueType(I.getType());
2640   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2641 }
2642 
2643 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2644   // FPToUI is never a no-op cast, no need to check
2645   SDValue N = getValue(I.getOperand(0));
2646   EVT DestVT = TLI.getValueType(I.getType());
2647   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2648 }
2649 
2650 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2651   // FPToSI is never a no-op cast, no need to check
2652   SDValue N = getValue(I.getOperand(0));
2653   EVT DestVT = TLI.getValueType(I.getType());
2654   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2655 }
2656 
2657 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2658   // UIToFP is never a no-op cast, no need to check
2659   SDValue N = getValue(I.getOperand(0));
2660   EVT DestVT = TLI.getValueType(I.getType());
2661   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2662 }
2663 
2664 void SelectionDAGBuilder::visitSIToFP(const User &I){
2665   // SIToFP is never a no-op cast, no need to check
2666   SDValue N = getValue(I.getOperand(0));
2667   EVT DestVT = TLI.getValueType(I.getType());
2668   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2669 }
2670 
2671 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2672   // What to do depends on the size of the integer and the size of the pointer.
2673   // We can either truncate, zero extend, or no-op, accordingly.
2674   SDValue N = getValue(I.getOperand(0));
2675   EVT DestVT = TLI.getValueType(I.getType());
2676   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2677 }
2678 
2679 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2680   // What to do depends on the size of the integer and the size of the pointer.
2681   // We can either truncate, zero extend, or no-op, accordingly.
2682   SDValue N = getValue(I.getOperand(0));
2683   EVT DestVT = TLI.getValueType(I.getType());
2684   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2685 }
2686 
2687 void SelectionDAGBuilder::visitBitCast(const User &I) {
2688   SDValue N = getValue(I.getOperand(0));
2689   EVT DestVT = TLI.getValueType(I.getType());
2690 
2691   // BitCast assures us that source and destination are the same size so this is
2692   // either a BITCAST or a no-op.
2693   if (DestVT != N.getValueType())
2694     setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2695                              DestVT, N)); // convert types.
2696   else
2697     setValue(&I, N);            // noop cast.
2698 }
2699 
2700 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2701   SDValue InVec = getValue(I.getOperand(0));
2702   SDValue InVal = getValue(I.getOperand(1));
2703   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2704                               TLI.getPointerTy(),
2705                               getValue(I.getOperand(2)));
2706   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2707                            TLI.getValueType(I.getType()),
2708                            InVec, InVal, InIdx));
2709 }
2710 
2711 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2712   SDValue InVec = getValue(I.getOperand(0));
2713   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2714                               TLI.getPointerTy(),
2715                               getValue(I.getOperand(1)));
2716   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2717                            TLI.getValueType(I.getType()), InVec, InIdx));
2718 }
2719 
2720 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2721 // from SIndx and increasing to the element length (undefs are allowed).
2722 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2723   unsigned MaskNumElts = Mask.size();
2724   for (unsigned i = 0; i != MaskNumElts; ++i)
2725     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2726       return false;
2727   return true;
2728 }
2729 
2730 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2731   SmallVector<int, 8> Mask;
2732   SDValue Src1 = getValue(I.getOperand(0));
2733   SDValue Src2 = getValue(I.getOperand(1));
2734 
2735   // Convert the ConstantVector mask operand into an array of ints, with -1
2736   // representing undef values.
2737   SmallVector<Constant*, 8> MaskElts;
2738   cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2739   unsigned MaskNumElts = MaskElts.size();
2740   for (unsigned i = 0; i != MaskNumElts; ++i) {
2741     if (isa<UndefValue>(MaskElts[i]))
2742       Mask.push_back(-1);
2743     else
2744       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2745   }
2746 
2747   EVT VT = TLI.getValueType(I.getType());
2748   EVT SrcVT = Src1.getValueType();
2749   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2750 
2751   if (SrcNumElts == MaskNumElts) {
2752     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2753                                       &Mask[0]));
2754     return;
2755   }
2756 
2757   // Normalize the shuffle vector since mask and vector length don't match.
2758   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2759     // Mask is longer than the source vectors and is a multiple of the source
2760     // vectors.  We can use concatenate vector to make the mask and vectors
2761     // lengths match.
2762     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2763       // The shuffle is concatenating two vectors together.
2764       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2765                                VT, Src1, Src2));
2766       return;
2767     }
2768 
2769     // Pad both vectors with undefs to make them the same length as the mask.
2770     unsigned NumConcat = MaskNumElts / SrcNumElts;
2771     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2772     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2773     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2774 
2775     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2776     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2777     MOps1[0] = Src1;
2778     MOps2[0] = Src2;
2779 
2780     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2781                                                   getCurDebugLoc(), VT,
2782                                                   &MOps1[0], NumConcat);
2783     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2784                                                   getCurDebugLoc(), VT,
2785                                                   &MOps2[0], NumConcat);
2786 
2787     // Readjust mask for new input vector length.
2788     SmallVector<int, 8> MappedOps;
2789     for (unsigned i = 0; i != MaskNumElts; ++i) {
2790       int Idx = Mask[i];
2791       if (Idx < (int)SrcNumElts)
2792         MappedOps.push_back(Idx);
2793       else
2794         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2795     }
2796 
2797     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2798                                       &MappedOps[0]));
2799     return;
2800   }
2801 
2802   if (SrcNumElts > MaskNumElts) {
2803     // Analyze the access pattern of the vector to see if we can extract
2804     // two subvectors and do the shuffle. The analysis is done by calculating
2805     // the range of elements the mask access on both vectors.
2806     int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2807                         static_cast<int>(SrcNumElts+1)};
2808     int MaxRange[2] = {-1, -1};
2809 
2810     for (unsigned i = 0; i != MaskNumElts; ++i) {
2811       int Idx = Mask[i];
2812       int Input = 0;
2813       if (Idx < 0)
2814         continue;
2815 
2816       if (Idx >= (int)SrcNumElts) {
2817         Input = 1;
2818         Idx -= SrcNumElts;
2819       }
2820       if (Idx > MaxRange[Input])
2821         MaxRange[Input] = Idx;
2822       if (Idx < MinRange[Input])
2823         MinRange[Input] = Idx;
2824     }
2825 
2826     // Check if the access is smaller than the vector size and can we find
2827     // a reasonable extract index.
2828     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2829                                  // Extract.
2830     int StartIdx[2];  // StartIdx to extract from
2831     for (int Input=0; Input < 2; ++Input) {
2832       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2833         RangeUse[Input] = 0; // Unused
2834         StartIdx[Input] = 0;
2835       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2836         // Fits within range but we should see if we can find a good
2837         // start index that is a multiple of the mask length.
2838         if (MaxRange[Input] < (int)MaskNumElts) {
2839           RangeUse[Input] = 1; // Extract from beginning of the vector
2840           StartIdx[Input] = 0;
2841         } else {
2842           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2843           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2844               StartIdx[Input] + MaskNumElts <= SrcNumElts)
2845             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2846         }
2847       }
2848     }
2849 
2850     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2851       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2852       return;
2853     }
2854     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2855       // Extract appropriate subvector and generate a vector shuffle
2856       for (int Input=0; Input < 2; ++Input) {
2857         SDValue &Src = Input == 0 ? Src1 : Src2;
2858         if (RangeUse[Input] == 0)
2859           Src = DAG.getUNDEF(VT);
2860         else
2861           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2862                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
2863       }
2864 
2865       // Calculate new mask.
2866       SmallVector<int, 8> MappedOps;
2867       for (unsigned i = 0; i != MaskNumElts; ++i) {
2868         int Idx = Mask[i];
2869         if (Idx < 0)
2870           MappedOps.push_back(Idx);
2871         else if (Idx < (int)SrcNumElts)
2872           MappedOps.push_back(Idx - StartIdx[0]);
2873         else
2874           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2875       }
2876 
2877       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2878                                         &MappedOps[0]));
2879       return;
2880     }
2881   }
2882 
2883   // We can't use either concat vectors or extract subvectors so fall back to
2884   // replacing the shuffle with extract and build vector.
2885   // to insert and build vector.
2886   EVT EltVT = VT.getVectorElementType();
2887   EVT PtrVT = TLI.getPointerTy();
2888   SmallVector<SDValue,8> Ops;
2889   for (unsigned i = 0; i != MaskNumElts; ++i) {
2890     if (Mask[i] < 0) {
2891       Ops.push_back(DAG.getUNDEF(EltVT));
2892     } else {
2893       int Idx = Mask[i];
2894       SDValue Res;
2895 
2896       if (Idx < (int)SrcNumElts)
2897         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2898                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2899       else
2900         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2901                           EltVT, Src2,
2902                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
2903 
2904       Ops.push_back(Res);
2905     }
2906   }
2907 
2908   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2909                            VT, &Ops[0], Ops.size()));
2910 }
2911 
2912 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2913   const Value *Op0 = I.getOperand(0);
2914   const Value *Op1 = I.getOperand(1);
2915   Type *AggTy = I.getType();
2916   Type *ValTy = Op1->getType();
2917   bool IntoUndef = isa<UndefValue>(Op0);
2918   bool FromUndef = isa<UndefValue>(Op1);
2919 
2920   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2921 
2922   SmallVector<EVT, 4> AggValueVTs;
2923   ComputeValueVTs(TLI, AggTy, AggValueVTs);
2924   SmallVector<EVT, 4> ValValueVTs;
2925   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2926 
2927   unsigned NumAggValues = AggValueVTs.size();
2928   unsigned NumValValues = ValValueVTs.size();
2929   SmallVector<SDValue, 4> Values(NumAggValues);
2930 
2931   SDValue Agg = getValue(Op0);
2932   unsigned i = 0;
2933   // Copy the beginning value(s) from the original aggregate.
2934   for (; i != LinearIndex; ++i)
2935     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2936                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2937   // Copy values from the inserted value(s).
2938   if (NumValValues) {
2939     SDValue Val = getValue(Op1);
2940     for (; i != LinearIndex + NumValValues; ++i)
2941       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2942                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2943   }
2944   // Copy remaining value(s) from the original aggregate.
2945   for (; i != NumAggValues; ++i)
2946     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2947                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2948 
2949   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2950                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
2951                            &Values[0], NumAggValues));
2952 }
2953 
2954 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2955   const Value *Op0 = I.getOperand(0);
2956   Type *AggTy = Op0->getType();
2957   Type *ValTy = I.getType();
2958   bool OutOfUndef = isa<UndefValue>(Op0);
2959 
2960   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2961 
2962   SmallVector<EVT, 4> ValValueVTs;
2963   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2964 
2965   unsigned NumValValues = ValValueVTs.size();
2966 
2967   // Ignore a extractvalue that produces an empty object
2968   if (!NumValValues) {
2969     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2970     return;
2971   }
2972 
2973   SmallVector<SDValue, 4> Values(NumValValues);
2974 
2975   SDValue Agg = getValue(Op0);
2976   // Copy out the selected value(s).
2977   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2978     Values[i - LinearIndex] =
2979       OutOfUndef ?
2980         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2981         SDValue(Agg.getNode(), Agg.getResNo() + i);
2982 
2983   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2984                            DAG.getVTList(&ValValueVTs[0], NumValValues),
2985                            &Values[0], NumValValues));
2986 }
2987 
2988 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2989   SDValue N = getValue(I.getOperand(0));
2990   Type *Ty = I.getOperand(0)->getType();
2991 
2992   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2993        OI != E; ++OI) {
2994     const Value *Idx = *OI;
2995     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
2996       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2997       if (Field) {
2998         // N = N + Offset
2999         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3000         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3001                         DAG.getIntPtrConstant(Offset));
3002       }
3003 
3004       Ty = StTy->getElementType(Field);
3005     } else {
3006       Ty = cast<SequentialType>(Ty)->getElementType();
3007 
3008       // If this is a constant subscript, handle it quickly.
3009       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3010         if (CI->isZero()) continue;
3011         uint64_t Offs =
3012             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3013         SDValue OffsVal;
3014         EVT PTy = TLI.getPointerTy();
3015         unsigned PtrBits = PTy.getSizeInBits();
3016         if (PtrBits < 64)
3017           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3018                                 TLI.getPointerTy(),
3019                                 DAG.getConstant(Offs, MVT::i64));
3020         else
3021           OffsVal = DAG.getIntPtrConstant(Offs);
3022 
3023         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3024                         OffsVal);
3025         continue;
3026       }
3027 
3028       // N = N + Idx * ElementSize;
3029       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3030                                 TD->getTypeAllocSize(Ty));
3031       SDValue IdxN = getValue(Idx);
3032 
3033       // If the index is smaller or larger than intptr_t, truncate or extend
3034       // it.
3035       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3036 
3037       // If this is a multiply by a power of two, turn it into a shl
3038       // immediately.  This is a very common case.
3039       if (ElementSize != 1) {
3040         if (ElementSize.isPowerOf2()) {
3041           unsigned Amt = ElementSize.logBase2();
3042           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3043                              N.getValueType(), IdxN,
3044                              DAG.getConstant(Amt, TLI.getPointerTy()));
3045         } else {
3046           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3047           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3048                              N.getValueType(), IdxN, Scale);
3049         }
3050       }
3051 
3052       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3053                       N.getValueType(), N, IdxN);
3054     }
3055   }
3056 
3057   setValue(&I, N);
3058 }
3059 
3060 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3061   // If this is a fixed sized alloca in the entry block of the function,
3062   // allocate it statically on the stack.
3063   if (FuncInfo.StaticAllocaMap.count(&I))
3064     return;   // getValue will auto-populate this.
3065 
3066   Type *Ty = I.getAllocatedType();
3067   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3068   unsigned Align =
3069     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3070              I.getAlignment());
3071 
3072   SDValue AllocSize = getValue(I.getArraySize());
3073 
3074   EVT IntPtr = TLI.getPointerTy();
3075   if (AllocSize.getValueType() != IntPtr)
3076     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3077 
3078   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3079                           AllocSize,
3080                           DAG.getConstant(TySize, IntPtr));
3081 
3082   // Handle alignment.  If the requested alignment is less than or equal to
3083   // the stack alignment, ignore it.  If the size is greater than or equal to
3084   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3085   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3086   if (Align <= StackAlign)
3087     Align = 0;
3088 
3089   // Round the size of the allocation up to the stack alignment size
3090   // by add SA-1 to the size.
3091   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3092                           AllocSize.getValueType(), AllocSize,
3093                           DAG.getIntPtrConstant(StackAlign-1));
3094 
3095   // Mask out the low bits for alignment purposes.
3096   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3097                           AllocSize.getValueType(), AllocSize,
3098                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3099 
3100   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3101   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3102   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3103                             VTs, Ops, 3);
3104   setValue(&I, DSA);
3105   DAG.setRoot(DSA.getValue(1));
3106 
3107   // Inform the Frame Information that we have just allocated a variable-sized
3108   // object.
3109   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3110 }
3111 
3112 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3113   const Value *SV = I.getOperand(0);
3114   SDValue Ptr = getValue(SV);
3115 
3116   Type *Ty = I.getType();
3117 
3118   bool isVolatile = I.isVolatile();
3119   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3120   unsigned Alignment = I.getAlignment();
3121   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3122 
3123   SmallVector<EVT, 4> ValueVTs;
3124   SmallVector<uint64_t, 4> Offsets;
3125   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3126   unsigned NumValues = ValueVTs.size();
3127   if (NumValues == 0)
3128     return;
3129 
3130   SDValue Root;
3131   bool ConstantMemory = false;
3132   if (I.isVolatile() || NumValues > MaxParallelChains)
3133     // Serialize volatile loads with other side effects.
3134     Root = getRoot();
3135   else if (AA->pointsToConstantMemory(
3136              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3137     // Do not serialize (non-volatile) loads of constant memory with anything.
3138     Root = DAG.getEntryNode();
3139     ConstantMemory = true;
3140   } else {
3141     // Do not serialize non-volatile loads against each other.
3142     Root = DAG.getRoot();
3143   }
3144 
3145   SmallVector<SDValue, 4> Values(NumValues);
3146   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3147                                           NumValues));
3148   EVT PtrVT = Ptr.getValueType();
3149   unsigned ChainI = 0;
3150   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3151     // Serializing loads here may result in excessive register pressure, and
3152     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3153     // could recover a bit by hoisting nodes upward in the chain by recognizing
3154     // they are side-effect free or do not alias. The optimizer should really
3155     // avoid this case by converting large object/array copies to llvm.memcpy
3156     // (MaxParallelChains should always remain as failsafe).
3157     if (ChainI == MaxParallelChains) {
3158       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3159       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3160                                   MVT::Other, &Chains[0], ChainI);
3161       Root = Chain;
3162       ChainI = 0;
3163     }
3164     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3165                             PtrVT, Ptr,
3166                             DAG.getConstant(Offsets[i], PtrVT));
3167     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3168                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3169                             isNonTemporal, Alignment, TBAAInfo);
3170 
3171     Values[i] = L;
3172     Chains[ChainI] = L.getValue(1);
3173   }
3174 
3175   if (!ConstantMemory) {
3176     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3177                                 MVT::Other, &Chains[0], ChainI);
3178     if (isVolatile)
3179       DAG.setRoot(Chain);
3180     else
3181       PendingLoads.push_back(Chain);
3182   }
3183 
3184   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3185                            DAG.getVTList(&ValueVTs[0], NumValues),
3186                            &Values[0], NumValues));
3187 }
3188 
3189 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3190   const Value *SrcV = I.getOperand(0);
3191   const Value *PtrV = I.getOperand(1);
3192 
3193   SmallVector<EVT, 4> ValueVTs;
3194   SmallVector<uint64_t, 4> Offsets;
3195   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3196   unsigned NumValues = ValueVTs.size();
3197   if (NumValues == 0)
3198     return;
3199 
3200   // Get the lowered operands. Note that we do this after
3201   // checking if NumResults is zero, because with zero results
3202   // the operands won't have values in the map.
3203   SDValue Src = getValue(SrcV);
3204   SDValue Ptr = getValue(PtrV);
3205 
3206   SDValue Root = getRoot();
3207   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3208                                           NumValues));
3209   EVT PtrVT = Ptr.getValueType();
3210   bool isVolatile = I.isVolatile();
3211   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3212   unsigned Alignment = I.getAlignment();
3213   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3214 
3215   unsigned ChainI = 0;
3216   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3217     // See visitLoad comments.
3218     if (ChainI == MaxParallelChains) {
3219       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3220                                   MVT::Other, &Chains[0], ChainI);
3221       Root = Chain;
3222       ChainI = 0;
3223     }
3224     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3225                               DAG.getConstant(Offsets[i], PtrVT));
3226     SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3227                               SDValue(Src.getNode(), Src.getResNo() + i),
3228                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3229                               isVolatile, isNonTemporal, Alignment, TBAAInfo);
3230     Chains[ChainI] = St;
3231   }
3232 
3233   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3234                                   MVT::Other, &Chains[0], ChainI);
3235   ++SDNodeOrder;
3236   AssignOrderingToNode(StoreNode.getNode());
3237   DAG.setRoot(StoreNode);
3238 }
3239 
3240 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3241                                     bool Before, DebugLoc dl,
3242                                     SelectionDAG &DAG,
3243                                     const TargetLowering &TLI) {
3244   // Fence, if necessary
3245   if (Before) {
3246     if (Order == AcquireRelease)
3247       Order = Release;
3248     else if (Order == Acquire || Order == Monotonic)
3249       return Chain;
3250   } else {
3251     if (Order == AcquireRelease)
3252       Order = Acquire;
3253     else if (Order == Release || Order == Monotonic)
3254       return Chain;
3255   }
3256   SDValue Ops[3];
3257   Ops[0] = Chain;
3258   Ops[1] = DAG.getConstant(SequentiallyConsistent, TLI.getPointerTy());
3259   Ops[2] = DAG.getConstant(Order, TLI.getPointerTy());
3260   return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3261 }
3262 
3263 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3264   DebugLoc dl = getCurDebugLoc();
3265   AtomicOrdering Order = I.getOrdering();
3266 
3267   SDValue InChain = getRoot();
3268 
3269   if (TLI.getInsertFencesForAtomic())
3270     InChain = InsertFenceForAtomic(InChain, Order, true, dl, DAG, TLI);
3271 
3272   SDValue L =
3273     DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3274                   getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3275                   InChain,
3276                   getValue(I.getPointerOperand()),
3277                   getValue(I.getCompareOperand()),
3278                   getValue(I.getNewValOperand()),
3279                   MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3280                   I.getOrdering(), I.getSynchScope());
3281 
3282   SDValue OutChain = L.getValue(1);
3283 
3284   if (TLI.getInsertFencesForAtomic())
3285     OutChain = InsertFenceForAtomic(OutChain, Order, false, dl, DAG, TLI);
3286 
3287   setValue(&I, L);
3288   DAG.setRoot(OutChain);
3289 }
3290 
3291 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3292   DebugLoc dl = getCurDebugLoc();
3293   ISD::NodeType NT;
3294   switch (I.getOperation()) {
3295   default: llvm_unreachable("Unknown atomicrmw operation"); return;
3296   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3297   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3298   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3299   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3300   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3301   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3302   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3303   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3304   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3305   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3306   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3307   }
3308   AtomicOrdering Order = I.getOrdering();
3309 
3310   SDValue InChain = getRoot();
3311 
3312   if (TLI.getInsertFencesForAtomic())
3313     InChain = InsertFenceForAtomic(InChain, Order, true, dl, DAG, TLI);
3314 
3315   SDValue L =
3316     DAG.getAtomic(NT, dl,
3317                   getValue(I.getValOperand()).getValueType().getSimpleVT(),
3318                   InChain,
3319                   getValue(I.getPointerOperand()),
3320                   getValue(I.getValOperand()),
3321                   I.getPointerOperand(), 0 /* Alignment */,
3322                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3323                   I.getSynchScope());
3324 
3325   SDValue OutChain = L.getValue(1);
3326 
3327   if (TLI.getInsertFencesForAtomic())
3328     OutChain = InsertFenceForAtomic(OutChain, Order, false, dl, DAG, TLI);
3329 
3330   setValue(&I, L);
3331   DAG.setRoot(OutChain);
3332 }
3333 
3334 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3335   DebugLoc dl = getCurDebugLoc();
3336   SDValue Ops[3];
3337   Ops[0] = getRoot();
3338   Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3339   Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3340   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3341 }
3342 
3343 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3344 /// node.
3345 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3346                                                unsigned Intrinsic) {
3347   bool HasChain = !I.doesNotAccessMemory();
3348   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3349 
3350   // Build the operand list.
3351   SmallVector<SDValue, 8> Ops;
3352   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3353     if (OnlyLoad) {
3354       // We don't need to serialize loads against other loads.
3355       Ops.push_back(DAG.getRoot());
3356     } else {
3357       Ops.push_back(getRoot());
3358     }
3359   }
3360 
3361   // Info is set by getTgtMemInstrinsic
3362   TargetLowering::IntrinsicInfo Info;
3363   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3364 
3365   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3366   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3367       Info.opc == ISD::INTRINSIC_W_CHAIN)
3368     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3369 
3370   // Add all operands of the call to the operand list.
3371   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3372     SDValue Op = getValue(I.getArgOperand(i));
3373     assert(TLI.isTypeLegal(Op.getValueType()) &&
3374            "Intrinsic uses a non-legal type?");
3375     Ops.push_back(Op);
3376   }
3377 
3378   SmallVector<EVT, 4> ValueVTs;
3379   ComputeValueVTs(TLI, I.getType(), ValueVTs);
3380 #ifndef NDEBUG
3381   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3382     assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3383            "Intrinsic uses a non-legal type?");
3384   }
3385 #endif // NDEBUG
3386 
3387   if (HasChain)
3388     ValueVTs.push_back(MVT::Other);
3389 
3390   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3391 
3392   // Create the node.
3393   SDValue Result;
3394   if (IsTgtIntrinsic) {
3395     // This is target intrinsic that touches memory
3396     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3397                                      VTs, &Ops[0], Ops.size(),
3398                                      Info.memVT,
3399                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3400                                      Info.align, Info.vol,
3401                                      Info.readMem, Info.writeMem);
3402   } else if (!HasChain) {
3403     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3404                          VTs, &Ops[0], Ops.size());
3405   } else if (!I.getType()->isVoidTy()) {
3406     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3407                          VTs, &Ops[0], Ops.size());
3408   } else {
3409     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3410                          VTs, &Ops[0], Ops.size());
3411   }
3412 
3413   if (HasChain) {
3414     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3415     if (OnlyLoad)
3416       PendingLoads.push_back(Chain);
3417     else
3418       DAG.setRoot(Chain);
3419   }
3420 
3421   if (!I.getType()->isVoidTy()) {
3422     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3423       EVT VT = TLI.getValueType(PTy);
3424       Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3425     }
3426 
3427     setValue(&I, Result);
3428   }
3429 }
3430 
3431 /// GetSignificand - Get the significand and build it into a floating-point
3432 /// number with exponent of 1:
3433 ///
3434 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3435 ///
3436 /// where Op is the hexidecimal representation of floating point value.
3437 static SDValue
3438 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3439   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3440                            DAG.getConstant(0x007fffff, MVT::i32));
3441   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3442                            DAG.getConstant(0x3f800000, MVT::i32));
3443   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3444 }
3445 
3446 /// GetExponent - Get the exponent:
3447 ///
3448 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3449 ///
3450 /// where Op is the hexidecimal representation of floating point value.
3451 static SDValue
3452 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3453             DebugLoc dl) {
3454   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3455                            DAG.getConstant(0x7f800000, MVT::i32));
3456   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3457                            DAG.getConstant(23, TLI.getPointerTy()));
3458   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3459                            DAG.getConstant(127, MVT::i32));
3460   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3461 }
3462 
3463 /// getF32Constant - Get 32-bit floating point constant.
3464 static SDValue
3465 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3466   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3467 }
3468 
3469 /// Inlined utility function to implement binary input atomic intrinsics for
3470 /// visitIntrinsicCall: I is a call instruction
3471 ///                     Op is the associated NodeType for I
3472 const char *
3473 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3474                                            ISD::NodeType Op) {
3475   SDValue Root = getRoot();
3476   SDValue L =
3477     DAG.getAtomic(Op, getCurDebugLoc(),
3478                   getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3479                   Root,
3480                   getValue(I.getArgOperand(0)),
3481                   getValue(I.getArgOperand(1)),
3482                   I.getArgOperand(0), 0 /* Alignment */,
3483                   Monotonic, CrossThread);
3484   setValue(&I, L);
3485   DAG.setRoot(L.getValue(1));
3486   return 0;
3487 }
3488 
3489 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3490 const char *
3491 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3492   SDValue Op1 = getValue(I.getArgOperand(0));
3493   SDValue Op2 = getValue(I.getArgOperand(1));
3494 
3495   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3496   setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3497   return 0;
3498 }
3499 
3500 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3501 /// limited-precision mode.
3502 void
3503 SelectionDAGBuilder::visitExp(const CallInst &I) {
3504   SDValue result;
3505   DebugLoc dl = getCurDebugLoc();
3506 
3507   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3508       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3509     SDValue Op = getValue(I.getArgOperand(0));
3510 
3511     // Put the exponent in the right bit position for later addition to the
3512     // final result:
3513     //
3514     //   #define LOG2OFe 1.4426950f
3515     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3516     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3517                              getF32Constant(DAG, 0x3fb8aa3b));
3518     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3519 
3520     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3521     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3522     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3523 
3524     //   IntegerPartOfX <<= 23;
3525     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3526                                  DAG.getConstant(23, TLI.getPointerTy()));
3527 
3528     if (LimitFloatPrecision <= 6) {
3529       // For floating-point precision of 6:
3530       //
3531       //   TwoToFractionalPartOfX =
3532       //     0.997535578f +
3533       //       (0.735607626f + 0.252464424f * x) * x;
3534       //
3535       // error 0.0144103317, which is 6 bits
3536       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3537                                getF32Constant(DAG, 0x3e814304));
3538       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3539                                getF32Constant(DAG, 0x3f3c50c8));
3540       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3541       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3542                                getF32Constant(DAG, 0x3f7f5e7e));
3543       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3544 
3545       // Add the exponent into the result in integer domain.
3546       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3547                                TwoToFracPartOfX, IntegerPartOfX);
3548 
3549       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3550     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3551       // For floating-point precision of 12:
3552       //
3553       //   TwoToFractionalPartOfX =
3554       //     0.999892986f +
3555       //       (0.696457318f +
3556       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3557       //
3558       // 0.000107046256 error, which is 13 to 14 bits
3559       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3560                                getF32Constant(DAG, 0x3da235e3));
3561       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3562                                getF32Constant(DAG, 0x3e65b8f3));
3563       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3564       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3565                                getF32Constant(DAG, 0x3f324b07));
3566       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3567       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3568                                getF32Constant(DAG, 0x3f7ff8fd));
3569       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3570 
3571       // Add the exponent into the result in integer domain.
3572       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3573                                TwoToFracPartOfX, IntegerPartOfX);
3574 
3575       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3576     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3577       // For floating-point precision of 18:
3578       //
3579       //   TwoToFractionalPartOfX =
3580       //     0.999999982f +
3581       //       (0.693148872f +
3582       //         (0.240227044f +
3583       //           (0.554906021e-1f +
3584       //             (0.961591928e-2f +
3585       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3586       //
3587       // error 2.47208000*10^(-7), which is better than 18 bits
3588       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3589                                getF32Constant(DAG, 0x3924b03e));
3590       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3591                                getF32Constant(DAG, 0x3ab24b87));
3592       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3593       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3594                                getF32Constant(DAG, 0x3c1d8c17));
3595       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3596       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3597                                getF32Constant(DAG, 0x3d634a1d));
3598       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3599       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3600                                getF32Constant(DAG, 0x3e75fe14));
3601       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3602       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3603                                 getF32Constant(DAG, 0x3f317234));
3604       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3605       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3606                                 getF32Constant(DAG, 0x3f800000));
3607       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3608                                              MVT::i32, t13);
3609 
3610       // Add the exponent into the result in integer domain.
3611       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3612                                 TwoToFracPartOfX, IntegerPartOfX);
3613 
3614       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3615     }
3616   } else {
3617     // No special expansion.
3618     result = DAG.getNode(ISD::FEXP, dl,
3619                          getValue(I.getArgOperand(0)).getValueType(),
3620                          getValue(I.getArgOperand(0)));
3621   }
3622 
3623   setValue(&I, result);
3624 }
3625 
3626 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3627 /// limited-precision mode.
3628 void
3629 SelectionDAGBuilder::visitLog(const CallInst &I) {
3630   SDValue result;
3631   DebugLoc dl = getCurDebugLoc();
3632 
3633   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3634       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3635     SDValue Op = getValue(I.getArgOperand(0));
3636     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3637 
3638     // Scale the exponent by log(2) [0.69314718f].
3639     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3640     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3641                                         getF32Constant(DAG, 0x3f317218));
3642 
3643     // Get the significand and build it into a floating-point number with
3644     // exponent of 1.
3645     SDValue X = GetSignificand(DAG, Op1, dl);
3646 
3647     if (LimitFloatPrecision <= 6) {
3648       // For floating-point precision of 6:
3649       //
3650       //   LogofMantissa =
3651       //     -1.1609546f +
3652       //       (1.4034025f - 0.23903021f * x) * x;
3653       //
3654       // error 0.0034276066, which is better than 8 bits
3655       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3656                                getF32Constant(DAG, 0xbe74c456));
3657       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3658                                getF32Constant(DAG, 0x3fb3a2b1));
3659       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3660       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3661                                           getF32Constant(DAG, 0x3f949a29));
3662 
3663       result = DAG.getNode(ISD::FADD, dl,
3664                            MVT::f32, LogOfExponent, LogOfMantissa);
3665     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3666       // For floating-point precision of 12:
3667       //
3668       //   LogOfMantissa =
3669       //     -1.7417939f +
3670       //       (2.8212026f +
3671       //         (-1.4699568f +
3672       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3673       //
3674       // error 0.000061011436, which is 14 bits
3675       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3676                                getF32Constant(DAG, 0xbd67b6d6));
3677       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3678                                getF32Constant(DAG, 0x3ee4f4b8));
3679       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3680       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3681                                getF32Constant(DAG, 0x3fbc278b));
3682       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3683       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3684                                getF32Constant(DAG, 0x40348e95));
3685       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3686       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3687                                           getF32Constant(DAG, 0x3fdef31a));
3688 
3689       result = DAG.getNode(ISD::FADD, dl,
3690                            MVT::f32, LogOfExponent, LogOfMantissa);
3691     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3692       // For floating-point precision of 18:
3693       //
3694       //   LogOfMantissa =
3695       //     -2.1072184f +
3696       //       (4.2372794f +
3697       //         (-3.7029485f +
3698       //           (2.2781945f +
3699       //             (-0.87823314f +
3700       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3701       //
3702       // error 0.0000023660568, which is better than 18 bits
3703       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3704                                getF32Constant(DAG, 0xbc91e5ac));
3705       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3706                                getF32Constant(DAG, 0x3e4350aa));
3707       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3708       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3709                                getF32Constant(DAG, 0x3f60d3e3));
3710       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3711       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3712                                getF32Constant(DAG, 0x4011cdf0));
3713       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3714       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3715                                getF32Constant(DAG, 0x406cfd1c));
3716       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3717       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3718                                getF32Constant(DAG, 0x408797cb));
3719       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3720       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3721                                           getF32Constant(DAG, 0x4006dcab));
3722 
3723       result = DAG.getNode(ISD::FADD, dl,
3724                            MVT::f32, LogOfExponent, LogOfMantissa);
3725     }
3726   } else {
3727     // No special expansion.
3728     result = DAG.getNode(ISD::FLOG, dl,
3729                          getValue(I.getArgOperand(0)).getValueType(),
3730                          getValue(I.getArgOperand(0)));
3731   }
3732 
3733   setValue(&I, result);
3734 }
3735 
3736 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3737 /// limited-precision mode.
3738 void
3739 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3740   SDValue result;
3741   DebugLoc dl = getCurDebugLoc();
3742 
3743   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3744       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3745     SDValue Op = getValue(I.getArgOperand(0));
3746     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3747 
3748     // Get the exponent.
3749     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3750 
3751     // Get the significand and build it into a floating-point number with
3752     // exponent of 1.
3753     SDValue X = GetSignificand(DAG, Op1, dl);
3754 
3755     // Different possible minimax approximations of significand in
3756     // floating-point for various degrees of accuracy over [1,2].
3757     if (LimitFloatPrecision <= 6) {
3758       // For floating-point precision of 6:
3759       //
3760       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3761       //
3762       // error 0.0049451742, which is more than 7 bits
3763       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3764                                getF32Constant(DAG, 0xbeb08fe0));
3765       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3766                                getF32Constant(DAG, 0x40019463));
3767       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3768       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3769                                            getF32Constant(DAG, 0x3fd6633d));
3770 
3771       result = DAG.getNode(ISD::FADD, dl,
3772                            MVT::f32, LogOfExponent, Log2ofMantissa);
3773     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3774       // For floating-point precision of 12:
3775       //
3776       //   Log2ofMantissa =
3777       //     -2.51285454f +
3778       //       (4.07009056f +
3779       //         (-2.12067489f +
3780       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3781       //
3782       // error 0.0000876136000, which is better than 13 bits
3783       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3784                                getF32Constant(DAG, 0xbda7262e));
3785       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3786                                getF32Constant(DAG, 0x3f25280b));
3787       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3788       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3789                                getF32Constant(DAG, 0x4007b923));
3790       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3791       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3792                                getF32Constant(DAG, 0x40823e2f));
3793       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3794       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3795                                            getF32Constant(DAG, 0x4020d29c));
3796 
3797       result = DAG.getNode(ISD::FADD, dl,
3798                            MVT::f32, LogOfExponent, Log2ofMantissa);
3799     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3800       // For floating-point precision of 18:
3801       //
3802       //   Log2ofMantissa =
3803       //     -3.0400495f +
3804       //       (6.1129976f +
3805       //         (-5.3420409f +
3806       //           (3.2865683f +
3807       //             (-1.2669343f +
3808       //               (0.27515199f -
3809       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3810       //
3811       // error 0.0000018516, which is better than 18 bits
3812       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3813                                getF32Constant(DAG, 0xbcd2769e));
3814       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3815                                getF32Constant(DAG, 0x3e8ce0b9));
3816       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3817       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3818                                getF32Constant(DAG, 0x3fa22ae7));
3819       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3820       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3821                                getF32Constant(DAG, 0x40525723));
3822       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3823       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3824                                getF32Constant(DAG, 0x40aaf200));
3825       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3826       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3827                                getF32Constant(DAG, 0x40c39dad));
3828       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3829       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3830                                            getF32Constant(DAG, 0x4042902c));
3831 
3832       result = DAG.getNode(ISD::FADD, dl,
3833                            MVT::f32, LogOfExponent, Log2ofMantissa);
3834     }
3835   } else {
3836     // No special expansion.
3837     result = DAG.getNode(ISD::FLOG2, dl,
3838                          getValue(I.getArgOperand(0)).getValueType(),
3839                          getValue(I.getArgOperand(0)));
3840   }
3841 
3842   setValue(&I, result);
3843 }
3844 
3845 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3846 /// limited-precision mode.
3847 void
3848 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3849   SDValue result;
3850   DebugLoc dl = getCurDebugLoc();
3851 
3852   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3853       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3854     SDValue Op = getValue(I.getArgOperand(0));
3855     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3856 
3857     // Scale the exponent by log10(2) [0.30102999f].
3858     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3859     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3860                                         getF32Constant(DAG, 0x3e9a209a));
3861 
3862     // Get the significand and build it into a floating-point number with
3863     // exponent of 1.
3864     SDValue X = GetSignificand(DAG, Op1, dl);
3865 
3866     if (LimitFloatPrecision <= 6) {
3867       // For floating-point precision of 6:
3868       //
3869       //   Log10ofMantissa =
3870       //     -0.50419619f +
3871       //       (0.60948995f - 0.10380950f * x) * x;
3872       //
3873       // error 0.0014886165, which is 6 bits
3874       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3875                                getF32Constant(DAG, 0xbdd49a13));
3876       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3877                                getF32Constant(DAG, 0x3f1c0789));
3878       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3879       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3880                                             getF32Constant(DAG, 0x3f011300));
3881 
3882       result = DAG.getNode(ISD::FADD, dl,
3883                            MVT::f32, LogOfExponent, Log10ofMantissa);
3884     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3885       // For floating-point precision of 12:
3886       //
3887       //   Log10ofMantissa =
3888       //     -0.64831180f +
3889       //       (0.91751397f +
3890       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3891       //
3892       // error 0.00019228036, which is better than 12 bits
3893       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3894                                getF32Constant(DAG, 0x3d431f31));
3895       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3896                                getF32Constant(DAG, 0x3ea21fb2));
3897       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3898       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3899                                getF32Constant(DAG, 0x3f6ae232));
3900       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3901       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3902                                             getF32Constant(DAG, 0x3f25f7c3));
3903 
3904       result = DAG.getNode(ISD::FADD, dl,
3905                            MVT::f32, LogOfExponent, Log10ofMantissa);
3906     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3907       // For floating-point precision of 18:
3908       //
3909       //   Log10ofMantissa =
3910       //     -0.84299375f +
3911       //       (1.5327582f +
3912       //         (-1.0688956f +
3913       //           (0.49102474f +
3914       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3915       //
3916       // error 0.0000037995730, which is better than 18 bits
3917       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3918                                getF32Constant(DAG, 0x3c5d51ce));
3919       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3920                                getF32Constant(DAG, 0x3e00685a));
3921       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3922       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3923                                getF32Constant(DAG, 0x3efb6798));
3924       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3925       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3926                                getF32Constant(DAG, 0x3f88d192));
3927       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3928       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3929                                getF32Constant(DAG, 0x3fc4316c));
3930       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3931       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3932                                             getF32Constant(DAG, 0x3f57ce70));
3933 
3934       result = DAG.getNode(ISD::FADD, dl,
3935                            MVT::f32, LogOfExponent, Log10ofMantissa);
3936     }
3937   } else {
3938     // No special expansion.
3939     result = DAG.getNode(ISD::FLOG10, dl,
3940                          getValue(I.getArgOperand(0)).getValueType(),
3941                          getValue(I.getArgOperand(0)));
3942   }
3943 
3944   setValue(&I, result);
3945 }
3946 
3947 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3948 /// limited-precision mode.
3949 void
3950 SelectionDAGBuilder::visitExp2(const CallInst &I) {
3951   SDValue result;
3952   DebugLoc dl = getCurDebugLoc();
3953 
3954   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3955       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3956     SDValue Op = getValue(I.getArgOperand(0));
3957 
3958     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3959 
3960     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3961     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3962     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3963 
3964     //   IntegerPartOfX <<= 23;
3965     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3966                                  DAG.getConstant(23, TLI.getPointerTy()));
3967 
3968     if (LimitFloatPrecision <= 6) {
3969       // For floating-point precision of 6:
3970       //
3971       //   TwoToFractionalPartOfX =
3972       //     0.997535578f +
3973       //       (0.735607626f + 0.252464424f * x) * x;
3974       //
3975       // error 0.0144103317, which is 6 bits
3976       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3977                                getF32Constant(DAG, 0x3e814304));
3978       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3979                                getF32Constant(DAG, 0x3f3c50c8));
3980       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3981       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3982                                getF32Constant(DAG, 0x3f7f5e7e));
3983       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3984       SDValue TwoToFractionalPartOfX =
3985         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3986 
3987       result = DAG.getNode(ISD::BITCAST, dl,
3988                            MVT::f32, TwoToFractionalPartOfX);
3989     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3990       // For floating-point precision of 12:
3991       //
3992       //   TwoToFractionalPartOfX =
3993       //     0.999892986f +
3994       //       (0.696457318f +
3995       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3996       //
3997       // error 0.000107046256, which is 13 to 14 bits
3998       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3999                                getF32Constant(DAG, 0x3da235e3));
4000       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4001                                getF32Constant(DAG, 0x3e65b8f3));
4002       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4003       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4004                                getF32Constant(DAG, 0x3f324b07));
4005       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4006       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4007                                getF32Constant(DAG, 0x3f7ff8fd));
4008       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4009       SDValue TwoToFractionalPartOfX =
4010         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4011 
4012       result = DAG.getNode(ISD::BITCAST, dl,
4013                            MVT::f32, TwoToFractionalPartOfX);
4014     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4015       // For floating-point precision of 18:
4016       //
4017       //   TwoToFractionalPartOfX =
4018       //     0.999999982f +
4019       //       (0.693148872f +
4020       //         (0.240227044f +
4021       //           (0.554906021e-1f +
4022       //             (0.961591928e-2f +
4023       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4024       // error 2.47208000*10^(-7), which is better than 18 bits
4025       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4026                                getF32Constant(DAG, 0x3924b03e));
4027       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4028                                getF32Constant(DAG, 0x3ab24b87));
4029       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4030       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4031                                getF32Constant(DAG, 0x3c1d8c17));
4032       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4033       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4034                                getF32Constant(DAG, 0x3d634a1d));
4035       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4036       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4037                                getF32Constant(DAG, 0x3e75fe14));
4038       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4039       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4040                                 getF32Constant(DAG, 0x3f317234));
4041       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4042       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4043                                 getF32Constant(DAG, 0x3f800000));
4044       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4045       SDValue TwoToFractionalPartOfX =
4046         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4047 
4048       result = DAG.getNode(ISD::BITCAST, dl,
4049                            MVT::f32, TwoToFractionalPartOfX);
4050     }
4051   } else {
4052     // No special expansion.
4053     result = DAG.getNode(ISD::FEXP2, dl,
4054                          getValue(I.getArgOperand(0)).getValueType(),
4055                          getValue(I.getArgOperand(0)));
4056   }
4057 
4058   setValue(&I, result);
4059 }
4060 
4061 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4062 /// limited-precision mode with x == 10.0f.
4063 void
4064 SelectionDAGBuilder::visitPow(const CallInst &I) {
4065   SDValue result;
4066   const Value *Val = I.getArgOperand(0);
4067   DebugLoc dl = getCurDebugLoc();
4068   bool IsExp10 = false;
4069 
4070   if (getValue(Val).getValueType() == MVT::f32 &&
4071       getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4072       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4073     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4074       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4075         APFloat Ten(10.0f);
4076         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4077       }
4078     }
4079   }
4080 
4081   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4082     SDValue Op = getValue(I.getArgOperand(1));
4083 
4084     // Put the exponent in the right bit position for later addition to the
4085     // final result:
4086     //
4087     //   #define LOG2OF10 3.3219281f
4088     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4089     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4090                              getF32Constant(DAG, 0x40549a78));
4091     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4092 
4093     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4094     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4095     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4096 
4097     //   IntegerPartOfX <<= 23;
4098     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4099                                  DAG.getConstant(23, TLI.getPointerTy()));
4100 
4101     if (LimitFloatPrecision <= 6) {
4102       // For floating-point precision of 6:
4103       //
4104       //   twoToFractionalPartOfX =
4105       //     0.997535578f +
4106       //       (0.735607626f + 0.252464424f * x) * x;
4107       //
4108       // error 0.0144103317, which is 6 bits
4109       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4110                                getF32Constant(DAG, 0x3e814304));
4111       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4112                                getF32Constant(DAG, 0x3f3c50c8));
4113       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4114       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4115                                getF32Constant(DAG, 0x3f7f5e7e));
4116       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4117       SDValue TwoToFractionalPartOfX =
4118         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4119 
4120       result = DAG.getNode(ISD::BITCAST, dl,
4121                            MVT::f32, TwoToFractionalPartOfX);
4122     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4123       // For floating-point precision of 12:
4124       //
4125       //   TwoToFractionalPartOfX =
4126       //     0.999892986f +
4127       //       (0.696457318f +
4128       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4129       //
4130       // error 0.000107046256, which is 13 to 14 bits
4131       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4132                                getF32Constant(DAG, 0x3da235e3));
4133       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4134                                getF32Constant(DAG, 0x3e65b8f3));
4135       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4136       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4137                                getF32Constant(DAG, 0x3f324b07));
4138       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4139       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4140                                getF32Constant(DAG, 0x3f7ff8fd));
4141       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4142       SDValue TwoToFractionalPartOfX =
4143         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4144 
4145       result = DAG.getNode(ISD::BITCAST, dl,
4146                            MVT::f32, TwoToFractionalPartOfX);
4147     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4148       // For floating-point precision of 18:
4149       //
4150       //   TwoToFractionalPartOfX =
4151       //     0.999999982f +
4152       //       (0.693148872f +
4153       //         (0.240227044f +
4154       //           (0.554906021e-1f +
4155       //             (0.961591928e-2f +
4156       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4157       // error 2.47208000*10^(-7), which is better than 18 bits
4158       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4159                                getF32Constant(DAG, 0x3924b03e));
4160       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4161                                getF32Constant(DAG, 0x3ab24b87));
4162       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4163       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4164                                getF32Constant(DAG, 0x3c1d8c17));
4165       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4166       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4167                                getF32Constant(DAG, 0x3d634a1d));
4168       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4169       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4170                                getF32Constant(DAG, 0x3e75fe14));
4171       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4172       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4173                                 getF32Constant(DAG, 0x3f317234));
4174       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4175       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4176                                 getF32Constant(DAG, 0x3f800000));
4177       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4178       SDValue TwoToFractionalPartOfX =
4179         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4180 
4181       result = DAG.getNode(ISD::BITCAST, dl,
4182                            MVT::f32, TwoToFractionalPartOfX);
4183     }
4184   } else {
4185     // No special expansion.
4186     result = DAG.getNode(ISD::FPOW, dl,
4187                          getValue(I.getArgOperand(0)).getValueType(),
4188                          getValue(I.getArgOperand(0)),
4189                          getValue(I.getArgOperand(1)));
4190   }
4191 
4192   setValue(&I, result);
4193 }
4194 
4195 
4196 /// ExpandPowI - Expand a llvm.powi intrinsic.
4197 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4198                           SelectionDAG &DAG) {
4199   // If RHS is a constant, we can expand this out to a multiplication tree,
4200   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4201   // optimizing for size, we only want to do this if the expansion would produce
4202   // a small number of multiplies, otherwise we do the full expansion.
4203   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4204     // Get the exponent as a positive value.
4205     unsigned Val = RHSC->getSExtValue();
4206     if ((int)Val < 0) Val = -Val;
4207 
4208     // powi(x, 0) -> 1.0
4209     if (Val == 0)
4210       return DAG.getConstantFP(1.0, LHS.getValueType());
4211 
4212     const Function *F = DAG.getMachineFunction().getFunction();
4213     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4214         // If optimizing for size, don't insert too many multiplies.  This
4215         // inserts up to 5 multiplies.
4216         CountPopulation_32(Val)+Log2_32(Val) < 7) {
4217       // We use the simple binary decomposition method to generate the multiply
4218       // sequence.  There are more optimal ways to do this (for example,
4219       // powi(x,15) generates one more multiply than it should), but this has
4220       // the benefit of being both really simple and much better than a libcall.
4221       SDValue Res;  // Logically starts equal to 1.0
4222       SDValue CurSquare = LHS;
4223       while (Val) {
4224         if (Val & 1) {
4225           if (Res.getNode())
4226             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4227           else
4228             Res = CurSquare;  // 1.0*CurSquare.
4229         }
4230 
4231         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4232                                 CurSquare, CurSquare);
4233         Val >>= 1;
4234       }
4235 
4236       // If the original was negative, invert the result, producing 1/(x*x*x).
4237       if (RHSC->getSExtValue() < 0)
4238         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4239                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4240       return Res;
4241     }
4242   }
4243 
4244   // Otherwise, expand to a libcall.
4245   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4246 }
4247 
4248 // getTruncatedArgReg - Find underlying register used for an truncated
4249 // argument.
4250 static unsigned getTruncatedArgReg(const SDValue &N) {
4251   if (N.getOpcode() != ISD::TRUNCATE)
4252     return 0;
4253 
4254   const SDValue &Ext = N.getOperand(0);
4255   if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4256     const SDValue &CFR = Ext.getOperand(0);
4257     if (CFR.getOpcode() == ISD::CopyFromReg)
4258       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4259     else
4260       if (CFR.getOpcode() == ISD::TRUNCATE)
4261         return getTruncatedArgReg(CFR);
4262   }
4263   return 0;
4264 }
4265 
4266 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4267 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4268 /// At the end of instruction selection, they will be inserted to the entry BB.
4269 bool
4270 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4271                                               int64_t Offset,
4272                                               const SDValue &N) {
4273   const Argument *Arg = dyn_cast<Argument>(V);
4274   if (!Arg)
4275     return false;
4276 
4277   MachineFunction &MF = DAG.getMachineFunction();
4278   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4279   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4280 
4281   // Ignore inlined function arguments here.
4282   DIVariable DV(Variable);
4283   if (DV.isInlinedFnArgument(MF.getFunction()))
4284     return false;
4285 
4286   unsigned Reg = 0;
4287   if (Arg->hasByValAttr()) {
4288     // Byval arguments' frame index is recorded during argument lowering.
4289     // Use this info directly.
4290     Reg = TRI->getFrameRegister(MF);
4291     Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4292     // If byval argument ofset is not recorded then ignore this.
4293     if (!Offset)
4294       Reg = 0;
4295   }
4296 
4297   if (N.getNode()) {
4298     if (N.getOpcode() == ISD::CopyFromReg)
4299       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4300     else
4301       Reg = getTruncatedArgReg(N);
4302     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4303       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4304       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4305       if (PR)
4306         Reg = PR;
4307     }
4308   }
4309 
4310   if (!Reg) {
4311     // Check if ValueMap has reg number.
4312     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4313     if (VMI != FuncInfo.ValueMap.end())
4314       Reg = VMI->second;
4315   }
4316 
4317   if (!Reg && N.getNode()) {
4318     // Check if frame index is available.
4319     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4320       if (FrameIndexSDNode *FINode =
4321           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4322         Reg = TRI->getFrameRegister(MF);
4323         Offset = FINode->getIndex();
4324       }
4325   }
4326 
4327   if (!Reg)
4328     return false;
4329 
4330   MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4331                                     TII->get(TargetOpcode::DBG_VALUE))
4332     .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4333   FuncInfo.ArgDbgValues.push_back(&*MIB);
4334   return true;
4335 }
4336 
4337 // VisualStudio defines setjmp as _setjmp
4338 #if defined(_MSC_VER) && defined(setjmp) && \
4339                          !defined(setjmp_undefined_for_msvc)
4340 #  pragma push_macro("setjmp")
4341 #  undef setjmp
4342 #  define setjmp_undefined_for_msvc
4343 #endif
4344 
4345 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4346 /// we want to emit this as a call to a named external function, return the name
4347 /// otherwise lower it and return null.
4348 const char *
4349 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4350   DebugLoc dl = getCurDebugLoc();
4351   SDValue Res;
4352 
4353   switch (Intrinsic) {
4354   default:
4355     // By default, turn this into a target intrinsic node.
4356     visitTargetIntrinsic(I, Intrinsic);
4357     return 0;
4358   case Intrinsic::vastart:  visitVAStart(I); return 0;
4359   case Intrinsic::vaend:    visitVAEnd(I); return 0;
4360   case Intrinsic::vacopy:   visitVACopy(I); return 0;
4361   case Intrinsic::returnaddress:
4362     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4363                              getValue(I.getArgOperand(0))));
4364     return 0;
4365   case Intrinsic::frameaddress:
4366     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4367                              getValue(I.getArgOperand(0))));
4368     return 0;
4369   case Intrinsic::setjmp:
4370     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4371   case Intrinsic::longjmp:
4372     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4373   case Intrinsic::memcpy: {
4374     // Assert for address < 256 since we support only user defined address
4375     // spaces.
4376     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4377            < 256 &&
4378            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4379            < 256 &&
4380            "Unknown address space");
4381     SDValue Op1 = getValue(I.getArgOperand(0));
4382     SDValue Op2 = getValue(I.getArgOperand(1));
4383     SDValue Op3 = getValue(I.getArgOperand(2));
4384     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4385     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4386     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4387                               MachinePointerInfo(I.getArgOperand(0)),
4388                               MachinePointerInfo(I.getArgOperand(1))));
4389     return 0;
4390   }
4391   case Intrinsic::memset: {
4392     // Assert for address < 256 since we support only user defined address
4393     // spaces.
4394     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4395            < 256 &&
4396            "Unknown address space");
4397     SDValue Op1 = getValue(I.getArgOperand(0));
4398     SDValue Op2 = getValue(I.getArgOperand(1));
4399     SDValue Op3 = getValue(I.getArgOperand(2));
4400     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4401     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4402     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4403                               MachinePointerInfo(I.getArgOperand(0))));
4404     return 0;
4405   }
4406   case Intrinsic::memmove: {
4407     // Assert for address < 256 since we support only user defined address
4408     // spaces.
4409     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4410            < 256 &&
4411            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4412            < 256 &&
4413            "Unknown address space");
4414     SDValue Op1 = getValue(I.getArgOperand(0));
4415     SDValue Op2 = getValue(I.getArgOperand(1));
4416     SDValue Op3 = getValue(I.getArgOperand(2));
4417     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4418     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4419     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4420                                MachinePointerInfo(I.getArgOperand(0)),
4421                                MachinePointerInfo(I.getArgOperand(1))));
4422     return 0;
4423   }
4424   case Intrinsic::dbg_declare: {
4425     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4426     MDNode *Variable = DI.getVariable();
4427     const Value *Address = DI.getAddress();
4428     if (!Address || !DIVariable(DI.getVariable()).Verify())
4429       return 0;
4430 
4431     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4432     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4433     // absolute, but not relative, values are different depending on whether
4434     // debug info exists.
4435     ++SDNodeOrder;
4436 
4437     // Check if address has undef value.
4438     if (isa<UndefValue>(Address) ||
4439         (Address->use_empty() && !isa<Argument>(Address))) {
4440       DEBUG(dbgs() << "Dropping debug info for " << DI);
4441       return 0;
4442     }
4443 
4444     SDValue &N = NodeMap[Address];
4445     if (!N.getNode() && isa<Argument>(Address))
4446       // Check unused arguments map.
4447       N = UnusedArgNodeMap[Address];
4448     SDDbgValue *SDV;
4449     if (N.getNode()) {
4450       // Parameters are handled specially.
4451       bool isParameter =
4452         DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4453       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4454         Address = BCI->getOperand(0);
4455       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4456 
4457       if (isParameter && !AI) {
4458         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4459         if (FINode)
4460           // Byval parameter.  We have a frame index at this point.
4461           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4462                                 0, dl, SDNodeOrder);
4463         else {
4464           // Address is an argument, so try to emit its dbg value using
4465           // virtual register info from the FuncInfo.ValueMap.
4466           EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4467           return 0;
4468         }
4469       } else if (AI)
4470         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4471                               0, dl, SDNodeOrder);
4472       else {
4473         // Can't do anything with other non-AI cases yet.
4474         DEBUG(dbgs() << "Dropping debug info for " << DI);
4475         return 0;
4476       }
4477       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4478     } else {
4479       // If Address is an argument then try to emit its dbg value using
4480       // virtual register info from the FuncInfo.ValueMap.
4481       if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4482         // If variable is pinned by a alloca in dominating bb then
4483         // use StaticAllocaMap.
4484         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4485           if (AI->getParent() != DI.getParent()) {
4486             DenseMap<const AllocaInst*, int>::iterator SI =
4487               FuncInfo.StaticAllocaMap.find(AI);
4488             if (SI != FuncInfo.StaticAllocaMap.end()) {
4489               SDV = DAG.getDbgValue(Variable, SI->second,
4490                                     0, dl, SDNodeOrder);
4491               DAG.AddDbgValue(SDV, 0, false);
4492               return 0;
4493             }
4494           }
4495         }
4496         DEBUG(dbgs() << "Dropping debug info for " << DI);
4497       }
4498     }
4499     return 0;
4500   }
4501   case Intrinsic::dbg_value: {
4502     const DbgValueInst &DI = cast<DbgValueInst>(I);
4503     if (!DIVariable(DI.getVariable()).Verify())
4504       return 0;
4505 
4506     MDNode *Variable = DI.getVariable();
4507     uint64_t Offset = DI.getOffset();
4508     const Value *V = DI.getValue();
4509     if (!V)
4510       return 0;
4511 
4512     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4513     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4514     // absolute, but not relative, values are different depending on whether
4515     // debug info exists.
4516     ++SDNodeOrder;
4517     SDDbgValue *SDV;
4518     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4519       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4520       DAG.AddDbgValue(SDV, 0, false);
4521     } else {
4522       // Do not use getValue() in here; we don't want to generate code at
4523       // this point if it hasn't been done yet.
4524       SDValue N = NodeMap[V];
4525       if (!N.getNode() && isa<Argument>(V))
4526         // Check unused arguments map.
4527         N = UnusedArgNodeMap[V];
4528       if (N.getNode()) {
4529         if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4530           SDV = DAG.getDbgValue(Variable, N.getNode(),
4531                                 N.getResNo(), Offset, dl, SDNodeOrder);
4532           DAG.AddDbgValue(SDV, N.getNode(), false);
4533         }
4534       } else if (!V->use_empty() ) {
4535         // Do not call getValue(V) yet, as we don't want to generate code.
4536         // Remember it for later.
4537         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4538         DanglingDebugInfoMap[V] = DDI;
4539       } else {
4540         // We may expand this to cover more cases.  One case where we have no
4541         // data available is an unreferenced parameter.
4542         DEBUG(dbgs() << "Dropping debug info for " << DI);
4543       }
4544     }
4545 
4546     // Build a debug info table entry.
4547     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4548       V = BCI->getOperand(0);
4549     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4550     // Don't handle byval struct arguments or VLAs, for example.
4551     if (!AI)
4552       return 0;
4553     DenseMap<const AllocaInst*, int>::iterator SI =
4554       FuncInfo.StaticAllocaMap.find(AI);
4555     if (SI == FuncInfo.StaticAllocaMap.end())
4556       return 0; // VLAs.
4557     int FI = SI->second;
4558 
4559     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4560     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4561       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4562     return 0;
4563   }
4564   case Intrinsic::eh_exception: {
4565     // Insert the EXCEPTIONADDR instruction.
4566     assert(FuncInfo.MBB->isLandingPad() &&
4567            "Call to eh.exception not in landing pad!");
4568     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4569     SDValue Ops[1];
4570     Ops[0] = DAG.getRoot();
4571     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4572     setValue(&I, Op);
4573     DAG.setRoot(Op.getValue(1));
4574     return 0;
4575   }
4576 
4577   case Intrinsic::eh_selector: {
4578     MachineBasicBlock *CallMBB = FuncInfo.MBB;
4579     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4580     if (CallMBB->isLandingPad())
4581       AddCatchInfo(I, &MMI, CallMBB);
4582     else {
4583 #ifndef NDEBUG
4584       FuncInfo.CatchInfoLost.insert(&I);
4585 #endif
4586       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4587       unsigned Reg = TLI.getExceptionSelectorRegister();
4588       if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4589     }
4590 
4591     // Insert the EHSELECTION instruction.
4592     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4593     SDValue Ops[2];
4594     Ops[0] = getValue(I.getArgOperand(0));
4595     Ops[1] = getRoot();
4596     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4597     DAG.setRoot(Op.getValue(1));
4598     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4599     return 0;
4600   }
4601 
4602   case Intrinsic::eh_typeid_for: {
4603     // Find the type id for the given typeinfo.
4604     GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4605     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4606     Res = DAG.getConstant(TypeID, MVT::i32);
4607     setValue(&I, Res);
4608     return 0;
4609   }
4610 
4611   case Intrinsic::eh_return_i32:
4612   case Intrinsic::eh_return_i64:
4613     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4614     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4615                             MVT::Other,
4616                             getControlRoot(),
4617                             getValue(I.getArgOperand(0)),
4618                             getValue(I.getArgOperand(1))));
4619     return 0;
4620   case Intrinsic::eh_unwind_init:
4621     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4622     return 0;
4623   case Intrinsic::eh_dwarf_cfa: {
4624     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4625                                         TLI.getPointerTy());
4626     SDValue Offset = DAG.getNode(ISD::ADD, dl,
4627                                  TLI.getPointerTy(),
4628                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4629                                              TLI.getPointerTy()),
4630                                  CfaArg);
4631     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4632                              TLI.getPointerTy(),
4633                              DAG.getConstant(0, TLI.getPointerTy()));
4634     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4635                              FA, Offset));
4636     return 0;
4637   }
4638   case Intrinsic::eh_sjlj_callsite: {
4639     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4640     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4641     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4642     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4643 
4644     MMI.setCurrentCallSite(CI->getZExtValue());
4645     return 0;
4646   }
4647   case Intrinsic::eh_sjlj_setjmp: {
4648     setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4649                              getValue(I.getArgOperand(0))));
4650     return 0;
4651   }
4652   case Intrinsic::eh_sjlj_longjmp: {
4653     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4654                             getRoot(), getValue(I.getArgOperand(0))));
4655     return 0;
4656   }
4657   case Intrinsic::eh_sjlj_dispatch_setup: {
4658     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4659                             getRoot(), getValue(I.getArgOperand(0))));
4660     return 0;
4661   }
4662 
4663   case Intrinsic::x86_mmx_pslli_w:
4664   case Intrinsic::x86_mmx_pslli_d:
4665   case Intrinsic::x86_mmx_pslli_q:
4666   case Intrinsic::x86_mmx_psrli_w:
4667   case Intrinsic::x86_mmx_psrli_d:
4668   case Intrinsic::x86_mmx_psrli_q:
4669   case Intrinsic::x86_mmx_psrai_w:
4670   case Intrinsic::x86_mmx_psrai_d: {
4671     SDValue ShAmt = getValue(I.getArgOperand(1));
4672     if (isa<ConstantSDNode>(ShAmt)) {
4673       visitTargetIntrinsic(I, Intrinsic);
4674       return 0;
4675     }
4676     unsigned NewIntrinsic = 0;
4677     EVT ShAmtVT = MVT::v2i32;
4678     switch (Intrinsic) {
4679     case Intrinsic::x86_mmx_pslli_w:
4680       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4681       break;
4682     case Intrinsic::x86_mmx_pslli_d:
4683       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4684       break;
4685     case Intrinsic::x86_mmx_pslli_q:
4686       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4687       break;
4688     case Intrinsic::x86_mmx_psrli_w:
4689       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4690       break;
4691     case Intrinsic::x86_mmx_psrli_d:
4692       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4693       break;
4694     case Intrinsic::x86_mmx_psrli_q:
4695       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4696       break;
4697     case Intrinsic::x86_mmx_psrai_w:
4698       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4699       break;
4700     case Intrinsic::x86_mmx_psrai_d:
4701       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4702       break;
4703     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4704     }
4705 
4706     // The vector shift intrinsics with scalars uses 32b shift amounts but
4707     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4708     // to be zero.
4709     // We must do this early because v2i32 is not a legal type.
4710     DebugLoc dl = getCurDebugLoc();
4711     SDValue ShOps[2];
4712     ShOps[0] = ShAmt;
4713     ShOps[1] = DAG.getConstant(0, MVT::i32);
4714     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4715     EVT DestVT = TLI.getValueType(I.getType());
4716     ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4717     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4718                        DAG.getConstant(NewIntrinsic, MVT::i32),
4719                        getValue(I.getArgOperand(0)), ShAmt);
4720     setValue(&I, Res);
4721     return 0;
4722   }
4723   case Intrinsic::convertff:
4724   case Intrinsic::convertfsi:
4725   case Intrinsic::convertfui:
4726   case Intrinsic::convertsif:
4727   case Intrinsic::convertuif:
4728   case Intrinsic::convertss:
4729   case Intrinsic::convertsu:
4730   case Intrinsic::convertus:
4731   case Intrinsic::convertuu: {
4732     ISD::CvtCode Code = ISD::CVT_INVALID;
4733     switch (Intrinsic) {
4734     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4735     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4736     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4737     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4738     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4739     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4740     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4741     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4742     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4743     }
4744     EVT DestVT = TLI.getValueType(I.getType());
4745     const Value *Op1 = I.getArgOperand(0);
4746     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4747                                DAG.getValueType(DestVT),
4748                                DAG.getValueType(getValue(Op1).getValueType()),
4749                                getValue(I.getArgOperand(1)),
4750                                getValue(I.getArgOperand(2)),
4751                                Code);
4752     setValue(&I, Res);
4753     return 0;
4754   }
4755   case Intrinsic::sqrt:
4756     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4757                              getValue(I.getArgOperand(0)).getValueType(),
4758                              getValue(I.getArgOperand(0))));
4759     return 0;
4760   case Intrinsic::powi:
4761     setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4762                             getValue(I.getArgOperand(1)), DAG));
4763     return 0;
4764   case Intrinsic::sin:
4765     setValue(&I, DAG.getNode(ISD::FSIN, dl,
4766                              getValue(I.getArgOperand(0)).getValueType(),
4767                              getValue(I.getArgOperand(0))));
4768     return 0;
4769   case Intrinsic::cos:
4770     setValue(&I, DAG.getNode(ISD::FCOS, dl,
4771                              getValue(I.getArgOperand(0)).getValueType(),
4772                              getValue(I.getArgOperand(0))));
4773     return 0;
4774   case Intrinsic::log:
4775     visitLog(I);
4776     return 0;
4777   case Intrinsic::log2:
4778     visitLog2(I);
4779     return 0;
4780   case Intrinsic::log10:
4781     visitLog10(I);
4782     return 0;
4783   case Intrinsic::exp:
4784     visitExp(I);
4785     return 0;
4786   case Intrinsic::exp2:
4787     visitExp2(I);
4788     return 0;
4789   case Intrinsic::pow:
4790     visitPow(I);
4791     return 0;
4792   case Intrinsic::fma:
4793     setValue(&I, DAG.getNode(ISD::FMA, dl,
4794                              getValue(I.getArgOperand(0)).getValueType(),
4795                              getValue(I.getArgOperand(0)),
4796                              getValue(I.getArgOperand(1)),
4797                              getValue(I.getArgOperand(2))));
4798     return 0;
4799   case Intrinsic::convert_to_fp16:
4800     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4801                              MVT::i16, getValue(I.getArgOperand(0))));
4802     return 0;
4803   case Intrinsic::convert_from_fp16:
4804     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4805                              MVT::f32, getValue(I.getArgOperand(0))));
4806     return 0;
4807   case Intrinsic::pcmarker: {
4808     SDValue Tmp = getValue(I.getArgOperand(0));
4809     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4810     return 0;
4811   }
4812   case Intrinsic::readcyclecounter: {
4813     SDValue Op = getRoot();
4814     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4815                       DAG.getVTList(MVT::i64, MVT::Other),
4816                       &Op, 1);
4817     setValue(&I, Res);
4818     DAG.setRoot(Res.getValue(1));
4819     return 0;
4820   }
4821   case Intrinsic::bswap:
4822     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4823                              getValue(I.getArgOperand(0)).getValueType(),
4824                              getValue(I.getArgOperand(0))));
4825     return 0;
4826   case Intrinsic::cttz: {
4827     SDValue Arg = getValue(I.getArgOperand(0));
4828     EVT Ty = Arg.getValueType();
4829     setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4830     return 0;
4831   }
4832   case Intrinsic::ctlz: {
4833     SDValue Arg = getValue(I.getArgOperand(0));
4834     EVT Ty = Arg.getValueType();
4835     setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4836     return 0;
4837   }
4838   case Intrinsic::ctpop: {
4839     SDValue Arg = getValue(I.getArgOperand(0));
4840     EVT Ty = Arg.getValueType();
4841     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4842     return 0;
4843   }
4844   case Intrinsic::stacksave: {
4845     SDValue Op = getRoot();
4846     Res = DAG.getNode(ISD::STACKSAVE, dl,
4847                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4848     setValue(&I, Res);
4849     DAG.setRoot(Res.getValue(1));
4850     return 0;
4851   }
4852   case Intrinsic::stackrestore: {
4853     Res = getValue(I.getArgOperand(0));
4854     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4855     return 0;
4856   }
4857   case Intrinsic::stackprotector: {
4858     // Emit code into the DAG to store the stack guard onto the stack.
4859     MachineFunction &MF = DAG.getMachineFunction();
4860     MachineFrameInfo *MFI = MF.getFrameInfo();
4861     EVT PtrTy = TLI.getPointerTy();
4862 
4863     SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4864     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4865 
4866     int FI = FuncInfo.StaticAllocaMap[Slot];
4867     MFI->setStackProtectorIndex(FI);
4868 
4869     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4870 
4871     // Store the stack protector onto the stack.
4872     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4873                        MachinePointerInfo::getFixedStack(FI),
4874                        true, false, 0);
4875     setValue(&I, Res);
4876     DAG.setRoot(Res);
4877     return 0;
4878   }
4879   case Intrinsic::objectsize: {
4880     // If we don't know by now, we're never going to know.
4881     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4882 
4883     assert(CI && "Non-constant type in __builtin_object_size?");
4884 
4885     SDValue Arg = getValue(I.getCalledValue());
4886     EVT Ty = Arg.getValueType();
4887 
4888     if (CI->isZero())
4889       Res = DAG.getConstant(-1ULL, Ty);
4890     else
4891       Res = DAG.getConstant(0, Ty);
4892 
4893     setValue(&I, Res);
4894     return 0;
4895   }
4896   case Intrinsic::var_annotation:
4897     // Discard annotate attributes
4898     return 0;
4899 
4900   case Intrinsic::init_trampoline: {
4901     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4902 
4903     SDValue Ops[6];
4904     Ops[0] = getRoot();
4905     Ops[1] = getValue(I.getArgOperand(0));
4906     Ops[2] = getValue(I.getArgOperand(1));
4907     Ops[3] = getValue(I.getArgOperand(2));
4908     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4909     Ops[5] = DAG.getSrcValue(F);
4910 
4911     Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4912                       DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4913                       Ops, 6);
4914 
4915     setValue(&I, Res);
4916     DAG.setRoot(Res.getValue(1));
4917     return 0;
4918   }
4919   case Intrinsic::gcroot:
4920     if (GFI) {
4921       const Value *Alloca = I.getArgOperand(0);
4922       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4923 
4924       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4925       GFI->addStackRoot(FI->getIndex(), TypeMap);
4926     }
4927     return 0;
4928   case Intrinsic::gcread:
4929   case Intrinsic::gcwrite:
4930     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4931     return 0;
4932   case Intrinsic::flt_rounds:
4933     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4934     return 0;
4935 
4936   case Intrinsic::expect: {
4937     // Just replace __builtin_expect(exp, c) with EXP.
4938     setValue(&I, getValue(I.getArgOperand(0)));
4939     return 0;
4940   }
4941 
4942   case Intrinsic::trap: {
4943     StringRef TrapFuncName = getTrapFunctionName();
4944     if (TrapFuncName.empty()) {
4945       DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4946       return 0;
4947     }
4948     TargetLowering::ArgListTy Args;
4949     std::pair<SDValue, SDValue> Result =
4950       TLI.LowerCallTo(getRoot(), I.getType(),
4951                  false, false, false, false, 0, CallingConv::C,
4952                  /*isTailCall=*/false, /*isReturnValueUsed=*/true,
4953                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
4954                  Args, DAG, getCurDebugLoc());
4955     DAG.setRoot(Result.second);
4956     return 0;
4957   }
4958   case Intrinsic::uadd_with_overflow:
4959     return implVisitAluOverflow(I, ISD::UADDO);
4960   case Intrinsic::sadd_with_overflow:
4961     return implVisitAluOverflow(I, ISD::SADDO);
4962   case Intrinsic::usub_with_overflow:
4963     return implVisitAluOverflow(I, ISD::USUBO);
4964   case Intrinsic::ssub_with_overflow:
4965     return implVisitAluOverflow(I, ISD::SSUBO);
4966   case Intrinsic::umul_with_overflow:
4967     return implVisitAluOverflow(I, ISD::UMULO);
4968   case Intrinsic::smul_with_overflow:
4969     return implVisitAluOverflow(I, ISD::SMULO);
4970 
4971   case Intrinsic::prefetch: {
4972     SDValue Ops[5];
4973     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4974     Ops[0] = getRoot();
4975     Ops[1] = getValue(I.getArgOperand(0));
4976     Ops[2] = getValue(I.getArgOperand(1));
4977     Ops[3] = getValue(I.getArgOperand(2));
4978     Ops[4] = getValue(I.getArgOperand(3));
4979     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4980                                         DAG.getVTList(MVT::Other),
4981                                         &Ops[0], 5,
4982                                         EVT::getIntegerVT(*Context, 8),
4983                                         MachinePointerInfo(I.getArgOperand(0)),
4984                                         0, /* align */
4985                                         false, /* volatile */
4986                                         rw==0, /* read */
4987                                         rw==1)); /* write */
4988     return 0;
4989   }
4990   case Intrinsic::memory_barrier: {
4991     SDValue Ops[6];
4992     Ops[0] = getRoot();
4993     for (int x = 1; x < 6; ++x)
4994       Ops[x] = getValue(I.getArgOperand(x - 1));
4995 
4996     DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4997     return 0;
4998   }
4999   case Intrinsic::atomic_cmp_swap: {
5000     SDValue Root = getRoot();
5001     SDValue L =
5002       DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
5003                     getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
5004                     Root,
5005                     getValue(I.getArgOperand(0)),
5006                     getValue(I.getArgOperand(1)),
5007                     getValue(I.getArgOperand(2)),
5008                     MachinePointerInfo(I.getArgOperand(0)), 0 /* Alignment */,
5009                     Monotonic, CrossThread);
5010     setValue(&I, L);
5011     DAG.setRoot(L.getValue(1));
5012     return 0;
5013   }
5014   case Intrinsic::atomic_load_add:
5015     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
5016   case Intrinsic::atomic_load_sub:
5017     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
5018   case Intrinsic::atomic_load_or:
5019     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
5020   case Intrinsic::atomic_load_xor:
5021     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
5022   case Intrinsic::atomic_load_and:
5023     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
5024   case Intrinsic::atomic_load_nand:
5025     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
5026   case Intrinsic::atomic_load_max:
5027     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
5028   case Intrinsic::atomic_load_min:
5029     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
5030   case Intrinsic::atomic_load_umin:
5031     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
5032   case Intrinsic::atomic_load_umax:
5033     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
5034   case Intrinsic::atomic_swap:
5035     return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
5036 
5037   case Intrinsic::invariant_start:
5038   case Intrinsic::lifetime_start:
5039     // Discard region information.
5040     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5041     return 0;
5042   case Intrinsic::invariant_end:
5043   case Intrinsic::lifetime_end:
5044     // Discard region information.
5045     return 0;
5046   }
5047 }
5048 
5049 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5050                                       bool isTailCall,
5051                                       MachineBasicBlock *LandingPad) {
5052   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5053   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5054   Type *RetTy = FTy->getReturnType();
5055   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5056   MCSymbol *BeginLabel = 0;
5057 
5058   TargetLowering::ArgListTy Args;
5059   TargetLowering::ArgListEntry Entry;
5060   Args.reserve(CS.arg_size());
5061 
5062   // Check whether the function can return without sret-demotion.
5063   SmallVector<ISD::OutputArg, 4> Outs;
5064   SmallVector<uint64_t, 4> Offsets;
5065   GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5066                 Outs, TLI, &Offsets);
5067 
5068   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5069 					   DAG.getMachineFunction(),
5070 					   FTy->isVarArg(), Outs,
5071 					   FTy->getContext());
5072 
5073   SDValue DemoteStackSlot;
5074   int DemoteStackIdx = -100;
5075 
5076   if (!CanLowerReturn) {
5077     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5078                       FTy->getReturnType());
5079     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5080                       FTy->getReturnType());
5081     MachineFunction &MF = DAG.getMachineFunction();
5082     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5083     Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5084 
5085     DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5086     Entry.Node = DemoteStackSlot;
5087     Entry.Ty = StackSlotPtrType;
5088     Entry.isSExt = false;
5089     Entry.isZExt = false;
5090     Entry.isInReg = false;
5091     Entry.isSRet = true;
5092     Entry.isNest = false;
5093     Entry.isByVal = false;
5094     Entry.Alignment = Align;
5095     Args.push_back(Entry);
5096     RetTy = Type::getVoidTy(FTy->getContext());
5097   }
5098 
5099   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5100        i != e; ++i) {
5101     const Value *V = *i;
5102 
5103     // Skip empty types
5104     if (V->getType()->isEmptyTy())
5105       continue;
5106 
5107     SDValue ArgNode = getValue(V);
5108     Entry.Node = ArgNode; Entry.Ty = V->getType();
5109 
5110     unsigned attrInd = i - CS.arg_begin() + 1;
5111     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5112     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5113     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5114     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5115     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5116     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5117     Entry.Alignment = CS.getParamAlignment(attrInd);
5118     Args.push_back(Entry);
5119   }
5120 
5121   if (LandingPad) {
5122     // Insert a label before the invoke call to mark the try range.  This can be
5123     // used to detect deletion of the invoke via the MachineModuleInfo.
5124     BeginLabel = MMI.getContext().CreateTempSymbol();
5125 
5126     // For SjLj, keep track of which landing pads go with which invokes
5127     // so as to maintain the ordering of pads in the LSDA.
5128     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5129     if (CallSiteIndex) {
5130       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5131       // Now that the call site is handled, stop tracking it.
5132       MMI.setCurrentCallSite(0);
5133     }
5134 
5135     // Both PendingLoads and PendingExports must be flushed here;
5136     // this call might not return.
5137     (void)getRoot();
5138     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5139   }
5140 
5141   // Check if target-independent constraints permit a tail call here.
5142   // Target-dependent constraints are checked within TLI.LowerCallTo.
5143   if (isTailCall &&
5144       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5145     isTailCall = false;
5146 
5147   // If there's a possibility that fast-isel has already selected some amount
5148   // of the current basic block, don't emit a tail call.
5149   if (isTailCall && EnableFastISel)
5150     isTailCall = false;
5151 
5152   std::pair<SDValue,SDValue> Result =
5153     TLI.LowerCallTo(getRoot(), RetTy,
5154                     CS.paramHasAttr(0, Attribute::SExt),
5155                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5156                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5157                     CS.getCallingConv(),
5158                     isTailCall,
5159                     !CS.getInstruction()->use_empty(),
5160                     Callee, Args, DAG, getCurDebugLoc());
5161   assert((isTailCall || Result.second.getNode()) &&
5162          "Non-null chain expected with non-tail call!");
5163   assert((Result.second.getNode() || !Result.first.getNode()) &&
5164          "Null value expected with tail call!");
5165   if (Result.first.getNode()) {
5166     setValue(CS.getInstruction(), Result.first);
5167   } else if (!CanLowerReturn && Result.second.getNode()) {
5168     // The instruction result is the result of loading from the
5169     // hidden sret parameter.
5170     SmallVector<EVT, 1> PVTs;
5171     Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5172 
5173     ComputeValueVTs(TLI, PtrRetTy, PVTs);
5174     assert(PVTs.size() == 1 && "Pointers should fit in one register");
5175     EVT PtrVT = PVTs[0];
5176     unsigned NumValues = Outs.size();
5177     SmallVector<SDValue, 4> Values(NumValues);
5178     SmallVector<SDValue, 4> Chains(NumValues);
5179 
5180     for (unsigned i = 0; i < NumValues; ++i) {
5181       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5182                                 DemoteStackSlot,
5183                                 DAG.getConstant(Offsets[i], PtrVT));
5184       SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5185                               Add,
5186                   MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5187                               false, false, 1);
5188       Values[i] = L;
5189       Chains[i] = L.getValue(1);
5190     }
5191 
5192     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5193                                 MVT::Other, &Chains[0], NumValues);
5194     PendingLoads.push_back(Chain);
5195 
5196     // Collect the legal value parts into potentially illegal values
5197     // that correspond to the original function's return values.
5198     SmallVector<EVT, 4> RetTys;
5199     RetTy = FTy->getReturnType();
5200     ComputeValueVTs(TLI, RetTy, RetTys);
5201     ISD::NodeType AssertOp = ISD::DELETED_NODE;
5202     SmallVector<SDValue, 4> ReturnValues;
5203     unsigned CurReg = 0;
5204     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5205       EVT VT = RetTys[I];
5206       EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5207       unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5208 
5209       SDValue ReturnValue =
5210         getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5211                          RegisterVT, VT, AssertOp);
5212       ReturnValues.push_back(ReturnValue);
5213       CurReg += NumRegs;
5214     }
5215 
5216     setValue(CS.getInstruction(),
5217              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5218                          DAG.getVTList(&RetTys[0], RetTys.size()),
5219                          &ReturnValues[0], ReturnValues.size()));
5220   }
5221 
5222   // Assign order to nodes here. If the call does not produce a result, it won't
5223   // be mapped to a SDNode and visit() will not assign it an order number.
5224   if (!Result.second.getNode()) {
5225     // As a special case, a null chain means that a tail call has been emitted and
5226     // the DAG root is already updated.
5227     HasTailCall = true;
5228     ++SDNodeOrder;
5229     AssignOrderingToNode(DAG.getRoot().getNode());
5230   } else {
5231     DAG.setRoot(Result.second);
5232     ++SDNodeOrder;
5233     AssignOrderingToNode(Result.second.getNode());
5234   }
5235 
5236   if (LandingPad) {
5237     // Insert a label at the end of the invoke call to mark the try range.  This
5238     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5239     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5240     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5241 
5242     // Inform MachineModuleInfo of range.
5243     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5244   }
5245 }
5246 
5247 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5248 /// value is equal or not-equal to zero.
5249 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5250   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5251        UI != E; ++UI) {
5252     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5253       if (IC->isEquality())
5254         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5255           if (C->isNullValue())
5256             continue;
5257     // Unknown instruction.
5258     return false;
5259   }
5260   return true;
5261 }
5262 
5263 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5264                              Type *LoadTy,
5265                              SelectionDAGBuilder &Builder) {
5266 
5267   // Check to see if this load can be trivially constant folded, e.g. if the
5268   // input is from a string literal.
5269   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5270     // Cast pointer to the type we really want to load.
5271     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5272                                          PointerType::getUnqual(LoadTy));
5273 
5274     if (const Constant *LoadCst =
5275           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5276                                        Builder.TD))
5277       return Builder.getValue(LoadCst);
5278   }
5279 
5280   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5281   // still constant memory, the input chain can be the entry node.
5282   SDValue Root;
5283   bool ConstantMemory = false;
5284 
5285   // Do not serialize (non-volatile) loads of constant memory with anything.
5286   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5287     Root = Builder.DAG.getEntryNode();
5288     ConstantMemory = true;
5289   } else {
5290     // Do not serialize non-volatile loads against each other.
5291     Root = Builder.DAG.getRoot();
5292   }
5293 
5294   SDValue Ptr = Builder.getValue(PtrVal);
5295   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5296                                         Ptr, MachinePointerInfo(PtrVal),
5297                                         false /*volatile*/,
5298                                         false /*nontemporal*/, 1 /* align=1 */);
5299 
5300   if (!ConstantMemory)
5301     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5302   return LoadVal;
5303 }
5304 
5305 
5306 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5307 /// If so, return true and lower it, otherwise return false and it will be
5308 /// lowered like a normal call.
5309 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5310   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5311   if (I.getNumArgOperands() != 3)
5312     return false;
5313 
5314   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5315   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5316       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5317       !I.getType()->isIntegerTy())
5318     return false;
5319 
5320   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5321 
5322   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5323   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5324   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5325     bool ActuallyDoIt = true;
5326     MVT LoadVT;
5327     Type *LoadTy;
5328     switch (Size->getZExtValue()) {
5329     default:
5330       LoadVT = MVT::Other;
5331       LoadTy = 0;
5332       ActuallyDoIt = false;
5333       break;
5334     case 2:
5335       LoadVT = MVT::i16;
5336       LoadTy = Type::getInt16Ty(Size->getContext());
5337       break;
5338     case 4:
5339       LoadVT = MVT::i32;
5340       LoadTy = Type::getInt32Ty(Size->getContext());
5341       break;
5342     case 8:
5343       LoadVT = MVT::i64;
5344       LoadTy = Type::getInt64Ty(Size->getContext());
5345       break;
5346         /*
5347     case 16:
5348       LoadVT = MVT::v4i32;
5349       LoadTy = Type::getInt32Ty(Size->getContext());
5350       LoadTy = VectorType::get(LoadTy, 4);
5351       break;
5352          */
5353     }
5354 
5355     // This turns into unaligned loads.  We only do this if the target natively
5356     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5357     // we'll only produce a small number of byte loads.
5358 
5359     // Require that we can find a legal MVT, and only do this if the target
5360     // supports unaligned loads of that type.  Expanding into byte loads would
5361     // bloat the code.
5362     if (ActuallyDoIt && Size->getZExtValue() > 4) {
5363       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5364       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5365       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5366         ActuallyDoIt = false;
5367     }
5368 
5369     if (ActuallyDoIt) {
5370       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5371       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5372 
5373       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5374                                  ISD::SETNE);
5375       EVT CallVT = TLI.getValueType(I.getType(), true);
5376       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5377       return true;
5378     }
5379   }
5380 
5381 
5382   return false;
5383 }
5384 
5385 
5386 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5387   // Handle inline assembly differently.
5388   if (isa<InlineAsm>(I.getCalledValue())) {
5389     visitInlineAsm(&I);
5390     return;
5391   }
5392 
5393   // See if any floating point values are being passed to this function. This is
5394   // used to emit an undefined reference to fltused on Windows.
5395   FunctionType *FT =
5396     cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5397   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5398   if (FT->isVarArg() &&
5399       !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5400     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5401       Type* T = I.getArgOperand(i)->getType();
5402       for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5403            i != e; ++i) {
5404         if (!i->isFloatingPointTy()) continue;
5405         MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5406         break;
5407       }
5408     }
5409   }
5410 
5411   const char *RenameFn = 0;
5412   if (Function *F = I.getCalledFunction()) {
5413     if (F->isDeclaration()) {
5414       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5415         if (unsigned IID = II->getIntrinsicID(F)) {
5416           RenameFn = visitIntrinsicCall(I, IID);
5417           if (!RenameFn)
5418             return;
5419         }
5420       }
5421       if (unsigned IID = F->getIntrinsicID()) {
5422         RenameFn = visitIntrinsicCall(I, IID);
5423         if (!RenameFn)
5424           return;
5425       }
5426     }
5427 
5428     // Check for well-known libc/libm calls.  If the function is internal, it
5429     // can't be a library call.
5430     if (!F->hasLocalLinkage() && F->hasName()) {
5431       StringRef Name = F->getName();
5432       if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5433         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5434             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5435             I.getType() == I.getArgOperand(0)->getType() &&
5436             I.getType() == I.getArgOperand(1)->getType()) {
5437           SDValue LHS = getValue(I.getArgOperand(0));
5438           SDValue RHS = getValue(I.getArgOperand(1));
5439           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5440                                    LHS.getValueType(), LHS, RHS));
5441           return;
5442         }
5443       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5444         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5445             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5446             I.getType() == I.getArgOperand(0)->getType()) {
5447           SDValue Tmp = getValue(I.getArgOperand(0));
5448           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5449                                    Tmp.getValueType(), Tmp));
5450           return;
5451         }
5452       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5453         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5454             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5455             I.getType() == I.getArgOperand(0)->getType() &&
5456             I.onlyReadsMemory()) {
5457           SDValue Tmp = getValue(I.getArgOperand(0));
5458           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5459                                    Tmp.getValueType(), Tmp));
5460           return;
5461         }
5462       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5463         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5464             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5465             I.getType() == I.getArgOperand(0)->getType() &&
5466             I.onlyReadsMemory()) {
5467           SDValue Tmp = getValue(I.getArgOperand(0));
5468           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5469                                    Tmp.getValueType(), Tmp));
5470           return;
5471         }
5472       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5473         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5474             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5475             I.getType() == I.getArgOperand(0)->getType() &&
5476             I.onlyReadsMemory()) {
5477           SDValue Tmp = getValue(I.getArgOperand(0));
5478           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5479                                    Tmp.getValueType(), Tmp));
5480           return;
5481         }
5482       } else if (Name == "memcmp") {
5483         if (visitMemCmpCall(I))
5484           return;
5485       }
5486     }
5487   }
5488 
5489   SDValue Callee;
5490   if (!RenameFn)
5491     Callee = getValue(I.getCalledValue());
5492   else
5493     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5494 
5495   // Check if we can potentially perform a tail call. More detailed checking is
5496   // be done within LowerCallTo, after more information about the call is known.
5497   LowerCallTo(&I, Callee, I.isTailCall());
5498 }
5499 
5500 namespace {
5501 
5502 /// AsmOperandInfo - This contains information for each constraint that we are
5503 /// lowering.
5504 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5505 public:
5506   /// CallOperand - If this is the result output operand or a clobber
5507   /// this is null, otherwise it is the incoming operand to the CallInst.
5508   /// This gets modified as the asm is processed.
5509   SDValue CallOperand;
5510 
5511   /// AssignedRegs - If this is a register or register class operand, this
5512   /// contains the set of register corresponding to the operand.
5513   RegsForValue AssignedRegs;
5514 
5515   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5516     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5517   }
5518 
5519   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5520   /// busy in OutputRegs/InputRegs.
5521   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5522                          std::set<unsigned> &OutputRegs,
5523                          std::set<unsigned> &InputRegs,
5524                          const TargetRegisterInfo &TRI) const {
5525     if (isOutReg) {
5526       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5527         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5528     }
5529     if (isInReg) {
5530       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5531         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5532     }
5533   }
5534 
5535   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5536   /// corresponds to.  If there is no Value* for this operand, it returns
5537   /// MVT::Other.
5538   EVT getCallOperandValEVT(LLVMContext &Context,
5539                            const TargetLowering &TLI,
5540                            const TargetData *TD) const {
5541     if (CallOperandVal == 0) return MVT::Other;
5542 
5543     if (isa<BasicBlock>(CallOperandVal))
5544       return TLI.getPointerTy();
5545 
5546     llvm::Type *OpTy = CallOperandVal->getType();
5547 
5548     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5549     // If this is an indirect operand, the operand is a pointer to the
5550     // accessed type.
5551     if (isIndirect) {
5552       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5553       if (!PtrTy)
5554         report_fatal_error("Indirect operand for inline asm not a pointer!");
5555       OpTy = PtrTy->getElementType();
5556     }
5557 
5558     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5559     if (StructType *STy = dyn_cast<StructType>(OpTy))
5560       if (STy->getNumElements() == 1)
5561         OpTy = STy->getElementType(0);
5562 
5563     // If OpTy is not a single value, it may be a struct/union that we
5564     // can tile with integers.
5565     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5566       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5567       switch (BitSize) {
5568       default: break;
5569       case 1:
5570       case 8:
5571       case 16:
5572       case 32:
5573       case 64:
5574       case 128:
5575         OpTy = IntegerType::get(Context, BitSize);
5576         break;
5577       }
5578     }
5579 
5580     return TLI.getValueType(OpTy, true);
5581   }
5582 
5583 private:
5584   /// MarkRegAndAliases - Mark the specified register and all aliases in the
5585   /// specified set.
5586   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5587                                 const TargetRegisterInfo &TRI) {
5588     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5589     Regs.insert(Reg);
5590     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5591       for (; *Aliases; ++Aliases)
5592         Regs.insert(*Aliases);
5593   }
5594 };
5595 
5596 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5597 
5598 } // end anonymous namespace
5599 
5600 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5601 /// specified operand.  We prefer to assign virtual registers, to allow the
5602 /// register allocator to handle the assignment process.  However, if the asm
5603 /// uses features that we can't model on machineinstrs, we have SDISel do the
5604 /// allocation.  This produces generally horrible, but correct, code.
5605 ///
5606 ///   OpInfo describes the operand.
5607 ///   Input and OutputRegs are the set of already allocated physical registers.
5608 ///
5609 static void GetRegistersForValue(SelectionDAG &DAG,
5610                                  const TargetLowering &TLI,
5611                                  DebugLoc DL,
5612                                  SDISelAsmOperandInfo &OpInfo,
5613                                  std::set<unsigned> &OutputRegs,
5614                                  std::set<unsigned> &InputRegs) {
5615   LLVMContext &Context = *DAG.getContext();
5616 
5617   // Compute whether this value requires an input register, an output register,
5618   // or both.
5619   bool isOutReg = false;
5620   bool isInReg = false;
5621   switch (OpInfo.Type) {
5622   case InlineAsm::isOutput:
5623     isOutReg = true;
5624 
5625     // If there is an input constraint that matches this, we need to reserve
5626     // the input register so no other inputs allocate to it.
5627     isInReg = OpInfo.hasMatchingInput();
5628     break;
5629   case InlineAsm::isInput:
5630     isInReg = true;
5631     isOutReg = false;
5632     break;
5633   case InlineAsm::isClobber:
5634     isOutReg = true;
5635     isInReg = true;
5636     break;
5637   }
5638 
5639 
5640   MachineFunction &MF = DAG.getMachineFunction();
5641   SmallVector<unsigned, 4> Regs;
5642 
5643   // If this is a constraint for a single physreg, or a constraint for a
5644   // register class, find it.
5645   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5646     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5647                                      OpInfo.ConstraintVT);
5648 
5649   unsigned NumRegs = 1;
5650   if (OpInfo.ConstraintVT != MVT::Other) {
5651     // If this is a FP input in an integer register (or visa versa) insert a bit
5652     // cast of the input value.  More generally, handle any case where the input
5653     // value disagrees with the register class we plan to stick this in.
5654     if (OpInfo.Type == InlineAsm::isInput &&
5655         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5656       // Try to convert to the first EVT that the reg class contains.  If the
5657       // types are identical size, use a bitcast to convert (e.g. two differing
5658       // vector types).
5659       EVT RegVT = *PhysReg.second->vt_begin();
5660       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5661         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5662                                          RegVT, OpInfo.CallOperand);
5663         OpInfo.ConstraintVT = RegVT;
5664       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5665         // If the input is a FP value and we want it in FP registers, do a
5666         // bitcast to the corresponding integer type.  This turns an f64 value
5667         // into i64, which can be passed with two i32 values on a 32-bit
5668         // machine.
5669         RegVT = EVT::getIntegerVT(Context,
5670                                   OpInfo.ConstraintVT.getSizeInBits());
5671         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5672                                          RegVT, OpInfo.CallOperand);
5673         OpInfo.ConstraintVT = RegVT;
5674       }
5675     }
5676 
5677     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5678   }
5679 
5680   EVT RegVT;
5681   EVT ValueVT = OpInfo.ConstraintVT;
5682 
5683   // If this is a constraint for a specific physical register, like {r17},
5684   // assign it now.
5685   if (unsigned AssignedReg = PhysReg.first) {
5686     const TargetRegisterClass *RC = PhysReg.second;
5687     if (OpInfo.ConstraintVT == MVT::Other)
5688       ValueVT = *RC->vt_begin();
5689 
5690     // Get the actual register value type.  This is important, because the user
5691     // may have asked for (e.g.) the AX register in i32 type.  We need to
5692     // remember that AX is actually i16 to get the right extension.
5693     RegVT = *RC->vt_begin();
5694 
5695     // This is a explicit reference to a physical register.
5696     Regs.push_back(AssignedReg);
5697 
5698     // If this is an expanded reference, add the rest of the regs to Regs.
5699     if (NumRegs != 1) {
5700       TargetRegisterClass::iterator I = RC->begin();
5701       for (; *I != AssignedReg; ++I)
5702         assert(I != RC->end() && "Didn't find reg!");
5703 
5704       // Already added the first reg.
5705       --NumRegs; ++I;
5706       for (; NumRegs; --NumRegs, ++I) {
5707         assert(I != RC->end() && "Ran out of registers to allocate!");
5708         Regs.push_back(*I);
5709       }
5710     }
5711 
5712     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5713     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5714     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5715     return;
5716   }
5717 
5718   // Otherwise, if this was a reference to an LLVM register class, create vregs
5719   // for this reference.
5720   if (const TargetRegisterClass *RC = PhysReg.second) {
5721     RegVT = *RC->vt_begin();
5722     if (OpInfo.ConstraintVT == MVT::Other)
5723       ValueVT = RegVT;
5724 
5725     // Create the appropriate number of virtual registers.
5726     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5727     for (; NumRegs; --NumRegs)
5728       Regs.push_back(RegInfo.createVirtualRegister(RC));
5729 
5730     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5731     return;
5732   }
5733 
5734   // Otherwise, we couldn't allocate enough registers for this.
5735 }
5736 
5737 /// visitInlineAsm - Handle a call to an InlineAsm object.
5738 ///
5739 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5740   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5741 
5742   /// ConstraintOperands - Information about all of the constraints.
5743   SDISelAsmOperandInfoVector ConstraintOperands;
5744 
5745   std::set<unsigned> OutputRegs, InputRegs;
5746 
5747   TargetLowering::AsmOperandInfoVector
5748     TargetConstraints = TLI.ParseConstraints(CS);
5749 
5750   bool hasMemory = false;
5751 
5752   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5753   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5754   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5755     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5756     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5757 
5758     EVT OpVT = MVT::Other;
5759 
5760     // Compute the value type for each operand.
5761     switch (OpInfo.Type) {
5762     case InlineAsm::isOutput:
5763       // Indirect outputs just consume an argument.
5764       if (OpInfo.isIndirect) {
5765         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5766         break;
5767       }
5768 
5769       // The return value of the call is this value.  As such, there is no
5770       // corresponding argument.
5771       assert(!CS.getType()->isVoidTy() &&
5772              "Bad inline asm!");
5773       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5774         OpVT = TLI.getValueType(STy->getElementType(ResNo));
5775       } else {
5776         assert(ResNo == 0 && "Asm only has one result!");
5777         OpVT = TLI.getValueType(CS.getType());
5778       }
5779       ++ResNo;
5780       break;
5781     case InlineAsm::isInput:
5782       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5783       break;
5784     case InlineAsm::isClobber:
5785       // Nothing to do.
5786       break;
5787     }
5788 
5789     // If this is an input or an indirect output, process the call argument.
5790     // BasicBlocks are labels, currently appearing only in asm's.
5791     if (OpInfo.CallOperandVal) {
5792       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5793         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5794       } else {
5795         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5796       }
5797 
5798       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5799     }
5800 
5801     OpInfo.ConstraintVT = OpVT;
5802 
5803     // Indirect operand accesses access memory.
5804     if (OpInfo.isIndirect)
5805       hasMemory = true;
5806     else {
5807       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5808         TargetLowering::ConstraintType
5809           CType = TLI.getConstraintType(OpInfo.Codes[j]);
5810         if (CType == TargetLowering::C_Memory) {
5811           hasMemory = true;
5812           break;
5813         }
5814       }
5815     }
5816   }
5817 
5818   SDValue Chain, Flag;
5819 
5820   // We won't need to flush pending loads if this asm doesn't touch
5821   // memory and is nonvolatile.
5822   if (hasMemory || IA->hasSideEffects())
5823     Chain = getRoot();
5824   else
5825     Chain = DAG.getRoot();
5826 
5827   // Second pass over the constraints: compute which constraint option to use
5828   // and assign registers to constraints that want a specific physreg.
5829   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5830     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5831 
5832     // If this is an output operand with a matching input operand, look up the
5833     // matching input. If their types mismatch, e.g. one is an integer, the
5834     // other is floating point, or their sizes are different, flag it as an
5835     // error.
5836     if (OpInfo.hasMatchingInput()) {
5837       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5838 
5839       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5840 	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5841 	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT);
5842 	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5843 	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT);
5844         if ((OpInfo.ConstraintVT.isInteger() !=
5845              Input.ConstraintVT.isInteger()) ||
5846             (MatchRC.second != InputRC.second)) {
5847           report_fatal_error("Unsupported asm: input constraint"
5848                              " with a matching output constraint of"
5849                              " incompatible type!");
5850         }
5851         Input.ConstraintVT = OpInfo.ConstraintVT;
5852       }
5853     }
5854 
5855     // Compute the constraint code and ConstraintType to use.
5856     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5857 
5858     // If this is a memory input, and if the operand is not indirect, do what we
5859     // need to to provide an address for the memory input.
5860     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5861         !OpInfo.isIndirect) {
5862       assert((OpInfo.isMultipleAlternative ||
5863               (OpInfo.Type == InlineAsm::isInput)) &&
5864              "Can only indirectify direct input operands!");
5865 
5866       // Memory operands really want the address of the value.  If we don't have
5867       // an indirect input, put it in the constpool if we can, otherwise spill
5868       // it to a stack slot.
5869       // TODO: This isn't quite right. We need to handle these according to
5870       // the addressing mode that the constraint wants. Also, this may take
5871       // an additional register for the computation and we don't want that
5872       // either.
5873 
5874       // If the operand is a float, integer, or vector constant, spill to a
5875       // constant pool entry to get its address.
5876       const Value *OpVal = OpInfo.CallOperandVal;
5877       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5878           isa<ConstantVector>(OpVal)) {
5879         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5880                                                  TLI.getPointerTy());
5881       } else {
5882         // Otherwise, create a stack slot and emit a store to it before the
5883         // asm.
5884         Type *Ty = OpVal->getType();
5885         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5886         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5887         MachineFunction &MF = DAG.getMachineFunction();
5888         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5889         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5890         Chain = DAG.getStore(Chain, getCurDebugLoc(),
5891                              OpInfo.CallOperand, StackSlot,
5892                              MachinePointerInfo::getFixedStack(SSFI),
5893                              false, false, 0);
5894         OpInfo.CallOperand = StackSlot;
5895       }
5896 
5897       // There is no longer a Value* corresponding to this operand.
5898       OpInfo.CallOperandVal = 0;
5899 
5900       // It is now an indirect operand.
5901       OpInfo.isIndirect = true;
5902     }
5903 
5904     // If this constraint is for a specific register, allocate it before
5905     // anything else.
5906     if (OpInfo.ConstraintType == TargetLowering::C_Register)
5907       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5908                            InputRegs);
5909   }
5910 
5911   // Second pass - Loop over all of the operands, assigning virtual or physregs
5912   // to register class operands.
5913   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5914     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5915 
5916     // C_Register operands have already been allocated, Other/Memory don't need
5917     // to be.
5918     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5919       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5920                            InputRegs);
5921   }
5922 
5923   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5924   std::vector<SDValue> AsmNodeOperands;
5925   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5926   AsmNodeOperands.push_back(
5927           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5928                                       TLI.getPointerTy()));
5929 
5930   // If we have a !srcloc metadata node associated with it, we want to attach
5931   // this to the ultimately generated inline asm machineinstr.  To do this, we
5932   // pass in the third operand as this (potentially null) inline asm MDNode.
5933   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5934   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5935 
5936   // Remember the HasSideEffect and AlignStack bits as operand 3.
5937   unsigned ExtraInfo = 0;
5938   if (IA->hasSideEffects())
5939     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5940   if (IA->isAlignStack())
5941     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5942   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5943                                                   TLI.getPointerTy()));
5944 
5945   // Loop over all of the inputs, copying the operand values into the
5946   // appropriate registers and processing the output regs.
5947   RegsForValue RetValRegs;
5948 
5949   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5950   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5951 
5952   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5953     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5954 
5955     switch (OpInfo.Type) {
5956     case InlineAsm::isOutput: {
5957       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5958           OpInfo.ConstraintType != TargetLowering::C_Register) {
5959         // Memory output, or 'other' output (e.g. 'X' constraint).
5960         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5961 
5962         // Add information to the INLINEASM node to know about this output.
5963         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5964         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5965                                                         TLI.getPointerTy()));
5966         AsmNodeOperands.push_back(OpInfo.CallOperand);
5967         break;
5968       }
5969 
5970       // Otherwise, this is a register or register class output.
5971 
5972       // Copy the output from the appropriate register.  Find a register that
5973       // we can use.
5974       if (OpInfo.AssignedRegs.Regs.empty())
5975         report_fatal_error("Couldn't allocate output reg for constraint '" +
5976                            Twine(OpInfo.ConstraintCode) + "'!");
5977 
5978       // If this is an indirect operand, store through the pointer after the
5979       // asm.
5980       if (OpInfo.isIndirect) {
5981         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5982                                                       OpInfo.CallOperandVal));
5983       } else {
5984         // This is the result value of the call.
5985         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5986         // Concatenate this output onto the outputs list.
5987         RetValRegs.append(OpInfo.AssignedRegs);
5988       }
5989 
5990       // Add information to the INLINEASM node to know that this register is
5991       // set.
5992       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5993                                            InlineAsm::Kind_RegDefEarlyClobber :
5994                                                InlineAsm::Kind_RegDef,
5995                                                false,
5996                                                0,
5997                                                DAG,
5998                                                AsmNodeOperands);
5999       break;
6000     }
6001     case InlineAsm::isInput: {
6002       SDValue InOperandVal = OpInfo.CallOperand;
6003 
6004       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6005         // If this is required to match an output register we have already set,
6006         // just use its register.
6007         unsigned OperandNo = OpInfo.getMatchedOperand();
6008 
6009         // Scan until we find the definition we already emitted of this operand.
6010         // When we find it, create a RegsForValue operand.
6011         unsigned CurOp = InlineAsm::Op_FirstOperand;
6012         for (; OperandNo; --OperandNo) {
6013           // Advance to the next operand.
6014           unsigned OpFlag =
6015             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6016           assert((InlineAsm::isRegDefKind(OpFlag) ||
6017                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6018                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6019           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6020         }
6021 
6022         unsigned OpFlag =
6023           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6024         if (InlineAsm::isRegDefKind(OpFlag) ||
6025             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6026           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6027           if (OpInfo.isIndirect) {
6028             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6029             LLVMContext &Ctx = *DAG.getContext();
6030             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6031                           " don't know how to handle tied "
6032                           "indirect register inputs");
6033           }
6034 
6035           RegsForValue MatchedRegs;
6036           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6037           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6038           MatchedRegs.RegVTs.push_back(RegVT);
6039           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6040           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6041                i != e; ++i)
6042             MatchedRegs.Regs.push_back
6043               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6044 
6045           // Use the produced MatchedRegs object to
6046           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6047                                     Chain, &Flag);
6048           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6049                                            true, OpInfo.getMatchedOperand(),
6050                                            DAG, AsmNodeOperands);
6051           break;
6052         }
6053 
6054         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6055         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6056                "Unexpected number of operands");
6057         // Add information to the INLINEASM node to know about this input.
6058         // See InlineAsm.h isUseOperandTiedToDef.
6059         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6060                                                     OpInfo.getMatchedOperand());
6061         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6062                                                         TLI.getPointerTy()));
6063         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6064         break;
6065       }
6066 
6067       // Treat indirect 'X' constraint as memory.
6068       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6069           OpInfo.isIndirect)
6070         OpInfo.ConstraintType = TargetLowering::C_Memory;
6071 
6072       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6073         std::vector<SDValue> Ops;
6074         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6075                                          Ops, DAG);
6076         if (Ops.empty())
6077           report_fatal_error("Invalid operand for inline asm constraint '" +
6078                              Twine(OpInfo.ConstraintCode) + "'!");
6079 
6080         // Add information to the INLINEASM node to know about this input.
6081         unsigned ResOpType =
6082           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6083         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6084                                                         TLI.getPointerTy()));
6085         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6086         break;
6087       }
6088 
6089       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6090         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6091         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6092                "Memory operands expect pointer values");
6093 
6094         // Add information to the INLINEASM node to know about this input.
6095         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6096         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6097                                                         TLI.getPointerTy()));
6098         AsmNodeOperands.push_back(InOperandVal);
6099         break;
6100       }
6101 
6102       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6103               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6104              "Unknown constraint type!");
6105       assert(!OpInfo.isIndirect &&
6106              "Don't know how to handle indirect register inputs yet!");
6107 
6108       // Copy the input into the appropriate registers.
6109       if (OpInfo.AssignedRegs.Regs.empty())
6110         report_fatal_error("Couldn't allocate input reg for constraint '" +
6111                            Twine(OpInfo.ConstraintCode) + "'!");
6112 
6113       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6114                                         Chain, &Flag);
6115 
6116       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6117                                                DAG, AsmNodeOperands);
6118       break;
6119     }
6120     case InlineAsm::isClobber: {
6121       // Add the clobbered value to the operand list, so that the register
6122       // allocator is aware that the physreg got clobbered.
6123       if (!OpInfo.AssignedRegs.Regs.empty())
6124         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6125                                                  false, 0, DAG,
6126                                                  AsmNodeOperands);
6127       break;
6128     }
6129     }
6130   }
6131 
6132   // Finish up input operands.  Set the input chain and add the flag last.
6133   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6134   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6135 
6136   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6137                       DAG.getVTList(MVT::Other, MVT::Glue),
6138                       &AsmNodeOperands[0], AsmNodeOperands.size());
6139   Flag = Chain.getValue(1);
6140 
6141   // If this asm returns a register value, copy the result from that register
6142   // and set it as the value of the call.
6143   if (!RetValRegs.Regs.empty()) {
6144     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6145                                              Chain, &Flag);
6146 
6147     // FIXME: Why don't we do this for inline asms with MRVs?
6148     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6149       EVT ResultType = TLI.getValueType(CS.getType());
6150 
6151       // If any of the results of the inline asm is a vector, it may have the
6152       // wrong width/num elts.  This can happen for register classes that can
6153       // contain multiple different value types.  The preg or vreg allocated may
6154       // not have the same VT as was expected.  Convert it to the right type
6155       // with bit_convert.
6156       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6157         Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6158                           ResultType, Val);
6159 
6160       } else if (ResultType != Val.getValueType() &&
6161                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6162         // If a result value was tied to an input value, the computed result may
6163         // have a wider width than the expected result.  Extract the relevant
6164         // portion.
6165         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6166       }
6167 
6168       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6169     }
6170 
6171     setValue(CS.getInstruction(), Val);
6172     // Don't need to use this as a chain in this case.
6173     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6174       return;
6175   }
6176 
6177   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6178 
6179   // Process indirect outputs, first output all of the flagged copies out of
6180   // physregs.
6181   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6182     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6183     const Value *Ptr = IndirectStoresToEmit[i].second;
6184     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6185                                              Chain, &Flag);
6186     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6187   }
6188 
6189   // Emit the non-flagged stores from the physregs.
6190   SmallVector<SDValue, 8> OutChains;
6191   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6192     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6193                                StoresToEmit[i].first,
6194                                getValue(StoresToEmit[i].second),
6195                                MachinePointerInfo(StoresToEmit[i].second),
6196                                false, false, 0);
6197     OutChains.push_back(Val);
6198   }
6199 
6200   if (!OutChains.empty())
6201     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6202                         &OutChains[0], OutChains.size());
6203 
6204   DAG.setRoot(Chain);
6205 }
6206 
6207 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6208   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6209                           MVT::Other, getRoot(),
6210                           getValue(I.getArgOperand(0)),
6211                           DAG.getSrcValue(I.getArgOperand(0))));
6212 }
6213 
6214 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6215   const TargetData &TD = *TLI.getTargetData();
6216   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6217                            getRoot(), getValue(I.getOperand(0)),
6218                            DAG.getSrcValue(I.getOperand(0)),
6219                            TD.getABITypeAlignment(I.getType()));
6220   setValue(&I, V);
6221   DAG.setRoot(V.getValue(1));
6222 }
6223 
6224 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6225   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6226                           MVT::Other, getRoot(),
6227                           getValue(I.getArgOperand(0)),
6228                           DAG.getSrcValue(I.getArgOperand(0))));
6229 }
6230 
6231 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6232   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6233                           MVT::Other, getRoot(),
6234                           getValue(I.getArgOperand(0)),
6235                           getValue(I.getArgOperand(1)),
6236                           DAG.getSrcValue(I.getArgOperand(0)),
6237                           DAG.getSrcValue(I.getArgOperand(1))));
6238 }
6239 
6240 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6241 /// implementation, which just calls LowerCall.
6242 /// FIXME: When all targets are
6243 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6244 std::pair<SDValue, SDValue>
6245 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6246                             bool RetSExt, bool RetZExt, bool isVarArg,
6247                             bool isInreg, unsigned NumFixedArgs,
6248                             CallingConv::ID CallConv, bool isTailCall,
6249                             bool isReturnValueUsed,
6250                             SDValue Callee,
6251                             ArgListTy &Args, SelectionDAG &DAG,
6252                             DebugLoc dl) const {
6253   // Handle all of the outgoing arguments.
6254   SmallVector<ISD::OutputArg, 32> Outs;
6255   SmallVector<SDValue, 32> OutVals;
6256   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6257     SmallVector<EVT, 4> ValueVTs;
6258     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6259     for (unsigned Value = 0, NumValues = ValueVTs.size();
6260          Value != NumValues; ++Value) {
6261       EVT VT = ValueVTs[Value];
6262       Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6263       SDValue Op = SDValue(Args[i].Node.getNode(),
6264                            Args[i].Node.getResNo() + Value);
6265       ISD::ArgFlagsTy Flags;
6266       unsigned OriginalAlignment =
6267         getTargetData()->getABITypeAlignment(ArgTy);
6268 
6269       if (Args[i].isZExt)
6270         Flags.setZExt();
6271       if (Args[i].isSExt)
6272         Flags.setSExt();
6273       if (Args[i].isInReg)
6274         Flags.setInReg();
6275       if (Args[i].isSRet)
6276         Flags.setSRet();
6277       if (Args[i].isByVal) {
6278         Flags.setByVal();
6279         PointerType *Ty = cast<PointerType>(Args[i].Ty);
6280         Type *ElementTy = Ty->getElementType();
6281         Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6282         // For ByVal, alignment should come from FE.  BE will guess if this
6283         // info is not there but there are cases it cannot get right.
6284         unsigned FrameAlign;
6285         if (Args[i].Alignment)
6286           FrameAlign = Args[i].Alignment;
6287         else
6288           FrameAlign = getByValTypeAlignment(ElementTy);
6289         Flags.setByValAlign(FrameAlign);
6290       }
6291       if (Args[i].isNest)
6292         Flags.setNest();
6293       Flags.setOrigAlign(OriginalAlignment);
6294 
6295       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6296       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6297       SmallVector<SDValue, 4> Parts(NumParts);
6298       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6299 
6300       if (Args[i].isSExt)
6301         ExtendKind = ISD::SIGN_EXTEND;
6302       else if (Args[i].isZExt)
6303         ExtendKind = ISD::ZERO_EXTEND;
6304 
6305       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6306                      PartVT, ExtendKind);
6307 
6308       for (unsigned j = 0; j != NumParts; ++j) {
6309         // if it isn't first piece, alignment must be 1
6310         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6311                                i < NumFixedArgs);
6312         if (NumParts > 1 && j == 0)
6313           MyFlags.Flags.setSplit();
6314         else if (j != 0)
6315           MyFlags.Flags.setOrigAlign(1);
6316 
6317         Outs.push_back(MyFlags);
6318         OutVals.push_back(Parts[j]);
6319       }
6320     }
6321   }
6322 
6323   // Handle the incoming return values from the call.
6324   SmallVector<ISD::InputArg, 32> Ins;
6325   SmallVector<EVT, 4> RetTys;
6326   ComputeValueVTs(*this, RetTy, RetTys);
6327   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6328     EVT VT = RetTys[I];
6329     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6330     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6331     for (unsigned i = 0; i != NumRegs; ++i) {
6332       ISD::InputArg MyFlags;
6333       MyFlags.VT = RegisterVT.getSimpleVT();
6334       MyFlags.Used = isReturnValueUsed;
6335       if (RetSExt)
6336         MyFlags.Flags.setSExt();
6337       if (RetZExt)
6338         MyFlags.Flags.setZExt();
6339       if (isInreg)
6340         MyFlags.Flags.setInReg();
6341       Ins.push_back(MyFlags);
6342     }
6343   }
6344 
6345   SmallVector<SDValue, 4> InVals;
6346   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6347                     Outs, OutVals, Ins, dl, DAG, InVals);
6348 
6349   // Verify that the target's LowerCall behaved as expected.
6350   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6351          "LowerCall didn't return a valid chain!");
6352   assert((!isTailCall || InVals.empty()) &&
6353          "LowerCall emitted a return value for a tail call!");
6354   assert((isTailCall || InVals.size() == Ins.size()) &&
6355          "LowerCall didn't emit the correct number of values!");
6356 
6357   // For a tail call, the return value is merely live-out and there aren't
6358   // any nodes in the DAG representing it. Return a special value to
6359   // indicate that a tail call has been emitted and no more Instructions
6360   // should be processed in the current block.
6361   if (isTailCall) {
6362     DAG.setRoot(Chain);
6363     return std::make_pair(SDValue(), SDValue());
6364   }
6365 
6366   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6367           assert(InVals[i].getNode() &&
6368                  "LowerCall emitted a null value!");
6369           assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6370                  "LowerCall emitted a value with the wrong type!");
6371         });
6372 
6373   // Collect the legal value parts into potentially illegal values
6374   // that correspond to the original function's return values.
6375   ISD::NodeType AssertOp = ISD::DELETED_NODE;
6376   if (RetSExt)
6377     AssertOp = ISD::AssertSext;
6378   else if (RetZExt)
6379     AssertOp = ISD::AssertZext;
6380   SmallVector<SDValue, 4> ReturnValues;
6381   unsigned CurReg = 0;
6382   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6383     EVT VT = RetTys[I];
6384     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6385     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6386 
6387     ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6388                                             NumRegs, RegisterVT, VT,
6389                                             AssertOp));
6390     CurReg += NumRegs;
6391   }
6392 
6393   // For a function returning void, there is no return value. We can't create
6394   // such a node, so we just return a null return value in that case. In
6395   // that case, nothing will actually look at the value.
6396   if (ReturnValues.empty())
6397     return std::make_pair(SDValue(), Chain);
6398 
6399   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6400                             DAG.getVTList(&RetTys[0], RetTys.size()),
6401                             &ReturnValues[0], ReturnValues.size());
6402   return std::make_pair(Res, Chain);
6403 }
6404 
6405 void TargetLowering::LowerOperationWrapper(SDNode *N,
6406                                            SmallVectorImpl<SDValue> &Results,
6407                                            SelectionDAG &DAG) const {
6408   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6409   if (Res.getNode())
6410     Results.push_back(Res);
6411 }
6412 
6413 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6414   llvm_unreachable("LowerOperation not implemented for this target!");
6415   return SDValue();
6416 }
6417 
6418 void
6419 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6420   SDValue Op = getNonRegisterValue(V);
6421   assert((Op.getOpcode() != ISD::CopyFromReg ||
6422           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6423          "Copy from a reg to the same reg!");
6424   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6425 
6426   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6427   SDValue Chain = DAG.getEntryNode();
6428   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6429   PendingExports.push_back(Chain);
6430 }
6431 
6432 #include "llvm/CodeGen/SelectionDAGISel.h"
6433 
6434 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6435 /// entry block, return true.  This includes arguments used by switches, since
6436 /// the switch may expand into multiple basic blocks.
6437 static bool isOnlyUsedInEntryBlock(const Argument *A) {
6438   // With FastISel active, we may be splitting blocks, so force creation
6439   // of virtual registers for all non-dead arguments.
6440   if (EnableFastISel)
6441     return A->use_empty();
6442 
6443   const BasicBlock *Entry = A->getParent()->begin();
6444   for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6445        UI != E; ++UI) {
6446     const User *U = *UI;
6447     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6448       return false;  // Use not in entry block.
6449   }
6450   return true;
6451 }
6452 
6453 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6454   // If this is the entry block, emit arguments.
6455   const Function &F = *LLVMBB->getParent();
6456   SelectionDAG &DAG = SDB->DAG;
6457   DebugLoc dl = SDB->getCurDebugLoc();
6458   const TargetData *TD = TLI.getTargetData();
6459   SmallVector<ISD::InputArg, 16> Ins;
6460 
6461   // Check whether the function can return without sret-demotion.
6462   SmallVector<ISD::OutputArg, 4> Outs;
6463   GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6464                 Outs, TLI);
6465 
6466   if (!FuncInfo->CanLowerReturn) {
6467     // Put in an sret pointer parameter before all the other parameters.
6468     SmallVector<EVT, 1> ValueVTs;
6469     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6470 
6471     // NOTE: Assuming that a pointer will never break down to more than one VT
6472     // or one register.
6473     ISD::ArgFlagsTy Flags;
6474     Flags.setSRet();
6475     EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6476     ISD::InputArg RetArg(Flags, RegisterVT, true);
6477     Ins.push_back(RetArg);
6478   }
6479 
6480   // Set up the incoming argument description vector.
6481   unsigned Idx = 1;
6482   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6483        I != E; ++I, ++Idx) {
6484     SmallVector<EVT, 4> ValueVTs;
6485     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6486     bool isArgValueUsed = !I->use_empty();
6487     for (unsigned Value = 0, NumValues = ValueVTs.size();
6488          Value != NumValues; ++Value) {
6489       EVT VT = ValueVTs[Value];
6490       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6491       ISD::ArgFlagsTy Flags;
6492       unsigned OriginalAlignment =
6493         TD->getABITypeAlignment(ArgTy);
6494 
6495       if (F.paramHasAttr(Idx, Attribute::ZExt))
6496         Flags.setZExt();
6497       if (F.paramHasAttr(Idx, Attribute::SExt))
6498         Flags.setSExt();
6499       if (F.paramHasAttr(Idx, Attribute::InReg))
6500         Flags.setInReg();
6501       if (F.paramHasAttr(Idx, Attribute::StructRet))
6502         Flags.setSRet();
6503       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6504         Flags.setByVal();
6505         PointerType *Ty = cast<PointerType>(I->getType());
6506         Type *ElementTy = Ty->getElementType();
6507         Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6508         // For ByVal, alignment should be passed from FE.  BE will guess if
6509         // this info is not there but there are cases it cannot get right.
6510         unsigned FrameAlign;
6511         if (F.getParamAlignment(Idx))
6512           FrameAlign = F.getParamAlignment(Idx);
6513         else
6514           FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6515         Flags.setByValAlign(FrameAlign);
6516       }
6517       if (F.paramHasAttr(Idx, Attribute::Nest))
6518         Flags.setNest();
6519       Flags.setOrigAlign(OriginalAlignment);
6520 
6521       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6522       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6523       for (unsigned i = 0; i != NumRegs; ++i) {
6524         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6525         if (NumRegs > 1 && i == 0)
6526           MyFlags.Flags.setSplit();
6527         // if it isn't first piece, alignment must be 1
6528         else if (i > 0)
6529           MyFlags.Flags.setOrigAlign(1);
6530         Ins.push_back(MyFlags);
6531       }
6532     }
6533   }
6534 
6535   // Call the target to set up the argument values.
6536   SmallVector<SDValue, 8> InVals;
6537   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6538                                              F.isVarArg(), Ins,
6539                                              dl, DAG, InVals);
6540 
6541   // Verify that the target's LowerFormalArguments behaved as expected.
6542   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6543          "LowerFormalArguments didn't return a valid chain!");
6544   assert(InVals.size() == Ins.size() &&
6545          "LowerFormalArguments didn't emit the correct number of values!");
6546   DEBUG({
6547       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6548         assert(InVals[i].getNode() &&
6549                "LowerFormalArguments emitted a null value!");
6550         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6551                "LowerFormalArguments emitted a value with the wrong type!");
6552       }
6553     });
6554 
6555   // Update the DAG with the new chain value resulting from argument lowering.
6556   DAG.setRoot(NewRoot);
6557 
6558   // Set up the argument values.
6559   unsigned i = 0;
6560   Idx = 1;
6561   if (!FuncInfo->CanLowerReturn) {
6562     // Create a virtual register for the sret pointer, and put in a copy
6563     // from the sret argument into it.
6564     SmallVector<EVT, 1> ValueVTs;
6565     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6566     EVT VT = ValueVTs[0];
6567     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6568     ISD::NodeType AssertOp = ISD::DELETED_NODE;
6569     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6570                                         RegVT, VT, AssertOp);
6571 
6572     MachineFunction& MF = SDB->DAG.getMachineFunction();
6573     MachineRegisterInfo& RegInfo = MF.getRegInfo();
6574     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6575     FuncInfo->DemoteRegister = SRetReg;
6576     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6577                                     SRetReg, ArgValue);
6578     DAG.setRoot(NewRoot);
6579 
6580     // i indexes lowered arguments.  Bump it past the hidden sret argument.
6581     // Idx indexes LLVM arguments.  Don't touch it.
6582     ++i;
6583   }
6584 
6585   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6586       ++I, ++Idx) {
6587     SmallVector<SDValue, 4> ArgValues;
6588     SmallVector<EVT, 4> ValueVTs;
6589     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6590     unsigned NumValues = ValueVTs.size();
6591 
6592     // If this argument is unused then remember its value. It is used to generate
6593     // debugging information.
6594     if (I->use_empty() && NumValues)
6595       SDB->setUnusedArgValue(I, InVals[i]);
6596 
6597     for (unsigned Val = 0; Val != NumValues; ++Val) {
6598       EVT VT = ValueVTs[Val];
6599       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6600       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6601 
6602       if (!I->use_empty()) {
6603         ISD::NodeType AssertOp = ISD::DELETED_NODE;
6604         if (F.paramHasAttr(Idx, Attribute::SExt))
6605           AssertOp = ISD::AssertSext;
6606         else if (F.paramHasAttr(Idx, Attribute::ZExt))
6607           AssertOp = ISD::AssertZext;
6608 
6609         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6610                                              NumParts, PartVT, VT,
6611                                              AssertOp));
6612       }
6613 
6614       i += NumParts;
6615     }
6616 
6617     // We don't need to do anything else for unused arguments.
6618     if (ArgValues.empty())
6619       continue;
6620 
6621     // Note down frame index for byval arguments.
6622     if (I->hasByValAttr())
6623       if (FrameIndexSDNode *FI =
6624           dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6625         FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6626 
6627     SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6628                                      SDB->getCurDebugLoc());
6629     SDB->setValue(I, Res);
6630 
6631     // If this argument is live outside of the entry block, insert a copy from
6632     // wherever we got it to the vreg that other BB's will reference it as.
6633     if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6634       // If we can, though, try to skip creating an unnecessary vreg.
6635       // FIXME: This isn't very clean... it would be nice to make this more
6636       // general.  It's also subtly incompatible with the hacks FastISel
6637       // uses with vregs.
6638       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6639       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6640         FuncInfo->ValueMap[I] = Reg;
6641         continue;
6642       }
6643     }
6644     if (!isOnlyUsedInEntryBlock(I)) {
6645       FuncInfo->InitializeRegForValue(I);
6646       SDB->CopyToExportRegsIfNeeded(I);
6647     }
6648   }
6649 
6650   assert(i == InVals.size() && "Argument register count mismatch!");
6651 
6652   // Finally, if the target has anything special to do, allow it to do so.
6653   // FIXME: this should insert code into the DAG!
6654   EmitFunctionEntryCode();
6655 }
6656 
6657 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6658 /// ensure constants are generated when needed.  Remember the virtual registers
6659 /// that need to be added to the Machine PHI nodes as input.  We cannot just
6660 /// directly add them, because expansion might result in multiple MBB's for one
6661 /// BB.  As such, the start of the BB might correspond to a different MBB than
6662 /// the end.
6663 ///
6664 void
6665 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6666   const TerminatorInst *TI = LLVMBB->getTerminator();
6667 
6668   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6669 
6670   // Check successor nodes' PHI nodes that expect a constant to be available
6671   // from this block.
6672   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6673     const BasicBlock *SuccBB = TI->getSuccessor(succ);
6674     if (!isa<PHINode>(SuccBB->begin())) continue;
6675     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6676 
6677     // If this terminator has multiple identical successors (common for
6678     // switches), only handle each succ once.
6679     if (!SuccsHandled.insert(SuccMBB)) continue;
6680 
6681     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6682 
6683     // At this point we know that there is a 1-1 correspondence between LLVM PHI
6684     // nodes and Machine PHI nodes, but the incoming operands have not been
6685     // emitted yet.
6686     for (BasicBlock::const_iterator I = SuccBB->begin();
6687          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6688       // Ignore dead phi's.
6689       if (PN->use_empty()) continue;
6690 
6691       // Skip empty types
6692       if (PN->getType()->isEmptyTy())
6693         continue;
6694 
6695       unsigned Reg;
6696       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6697 
6698       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6699         unsigned &RegOut = ConstantsOut[C];
6700         if (RegOut == 0) {
6701           RegOut = FuncInfo.CreateRegs(C->getType());
6702           CopyValueToVirtualRegister(C, RegOut);
6703         }
6704         Reg = RegOut;
6705       } else {
6706         DenseMap<const Value *, unsigned>::iterator I =
6707           FuncInfo.ValueMap.find(PHIOp);
6708         if (I != FuncInfo.ValueMap.end())
6709           Reg = I->second;
6710         else {
6711           assert(isa<AllocaInst>(PHIOp) &&
6712                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6713                  "Didn't codegen value into a register!??");
6714           Reg = FuncInfo.CreateRegs(PHIOp->getType());
6715           CopyValueToVirtualRegister(PHIOp, Reg);
6716         }
6717       }
6718 
6719       // Remember that this register needs to added to the machine PHI node as
6720       // the input for this MBB.
6721       SmallVector<EVT, 4> ValueVTs;
6722       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6723       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6724         EVT VT = ValueVTs[vti];
6725         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6726         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6727           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6728         Reg += NumRegisters;
6729       }
6730     }
6731   }
6732   ConstantsOut.clear();
6733 }
6734