xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision aaa5944ad4cef316634423d0683c36149c4c76b6)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/MachineValueType.h"
53 #include "llvm/CodeGen/RuntimeLibcalls.h"
54 #include "llvm/CodeGen/SelectionDAG.h"
55 #include "llvm/CodeGen/SelectionDAGNodes.h"
56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/ValueTypes.h"
61 #include "llvm/CodeGen/WinEHFuncInfo.h"
62 #include "llvm/IR/Argument.h"
63 #include "llvm/IR/Attributes.h"
64 #include "llvm/IR/BasicBlock.h"
65 #include "llvm/IR/CFG.h"
66 #include "llvm/IR/CallSite.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Constant.h"
69 #include "llvm/IR/ConstantRange.h"
70 #include "llvm/IR/Constants.h"
71 #include "llvm/IR/DataLayout.h"
72 #include "llvm/IR/DebugInfoMetadata.h"
73 #include "llvm/IR/DebugLoc.h"
74 #include "llvm/IR/DerivedTypes.h"
75 #include "llvm/IR/Function.h"
76 #include "llvm/IR/GetElementPtrTypeIterator.h"
77 #include "llvm/IR/InlineAsm.h"
78 #include "llvm/IR/InstrTypes.h"
79 #include "llvm/IR/Instruction.h"
80 #include "llvm/IR/Instructions.h"
81 #include "llvm/IR/IntrinsicInst.h"
82 #include "llvm/IR/Intrinsics.h"
83 #include "llvm/IR/LLVMContext.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/Operator.h"
87 #include "llvm/IR/Statepoint.h"
88 #include "llvm/IR/Type.h"
89 #include "llvm/IR/User.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/MC/MCContext.h"
92 #include "llvm/MC/MCSymbol.h"
93 #include "llvm/Support/AtomicOrdering.h"
94 #include "llvm/Support/BranchProbability.h"
95 #include "llvm/Support/Casting.h"
96 #include "llvm/Support/CodeGen.h"
97 #include "llvm/Support/CommandLine.h"
98 #include "llvm/Support/Compiler.h"
99 #include "llvm/Support/Debug.h"
100 #include "llvm/Support/ErrorHandling.h"
101 #include "llvm/Support/MathExtras.h"
102 #include "llvm/Support/raw_ostream.h"
103 #include "llvm/Target/TargetIntrinsicInfo.h"
104 #include "llvm/Target/TargetLowering.h"
105 #include "llvm/Target/TargetMachine.h"
106 #include "llvm/Target/TargetOpcodes.h"
107 #include "llvm/Target/TargetOptions.h"
108 #include "llvm/Target/TargetRegisterInfo.h"
109 #include "llvm/Target/TargetSubtargetInfo.h"
110 #include <algorithm>
111 #include <cassert>
112 #include <cstddef>
113 #include <cstdint>
114 #include <cstring>
115 #include <iterator>
116 #include <limits>
117 #include <numeric>
118 #include <tuple>
119 #include <utility>
120 #include <vector>
121 
122 using namespace llvm;
123 
124 #define DEBUG_TYPE "isel"
125 
126 /// LimitFloatPrecision - Generate low-precision inline sequences for
127 /// some float libcalls (6, 8 or 12 bits).
128 static unsigned LimitFloatPrecision;
129 
130 static cl::opt<unsigned, true>
131 LimitFPPrecision("limit-float-precision",
132                  cl::desc("Generate low-precision inline sequences "
133                           "for some float libcalls"),
134                  cl::location(LimitFloatPrecision),
135                  cl::init(0));
136 
137 // Limit the width of DAG chains. This is important in general to prevent
138 // DAG-based analysis from blowing up. For example, alias analysis and
139 // load clustering may not complete in reasonable time. It is difficult to
140 // recognize and avoid this situation within each individual analysis, and
141 // future analyses are likely to have the same behavior. Limiting DAG width is
142 // the safe approach and will be especially important with global DAGs.
143 //
144 // MaxParallelChains default is arbitrarily high to avoid affecting
145 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
146 // sequence over this should have been converted to llvm.memcpy by the
147 // frontend. It is easy to induce this behavior with .ll code such as:
148 // %buffer = alloca [4096 x i8]
149 // %data = load [4096 x i8]* %argPtr
150 // store [4096 x i8] %data, [4096 x i8]* %buffer
151 static const unsigned MaxParallelChains = 64;
152 
153 // True if the Value passed requires ABI mangling as it is a parameter to a
154 // function or a return value from a function which is not an intrinsic.
155 static bool isABIRegCopy(const Value *V) {
156   const bool IsRetInst = V && isa<ReturnInst>(V);
157   const bool IsCallInst = V && isa<CallInst>(V);
158   const bool IsInLineAsm =
159       IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm();
160   const bool IsIndirectFunctionCall =
161       IsCallInst && !IsInLineAsm &&
162       !static_cast<const CallInst *>(V)->getCalledFunction();
163   // It is possible that the call instruction is an inline asm statement or an
164   // indirect function call in which case the return value of
165   // getCalledFunction() would be nullptr.
166   const bool IsInstrinsicCall =
167       IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall &&
168       static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() !=
169           Intrinsic::not_intrinsic;
170 
171   return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall));
172 }
173 
174 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
175                                       const SDValue *Parts, unsigned NumParts,
176                                       MVT PartVT, EVT ValueVT, const Value *V,
177                                       bool IsABIRegCopy);
178 
179 /// getCopyFromParts - Create a value that contains the specified legal parts
180 /// combined into the value they represent.  If the parts combine to a type
181 /// larger than ValueVT then AssertOp can be used to specify whether the extra
182 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
183 /// (ISD::AssertSext).
184 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
185                                 const SDValue *Parts, unsigned NumParts,
186                                 MVT PartVT, EVT ValueVT, const Value *V,
187                                 Optional<ISD::NodeType> AssertOp = None,
188                                 bool IsABIRegCopy = false) {
189   if (ValueVT.isVector())
190     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
191                                   PartVT, ValueVT, V, IsABIRegCopy);
192 
193   assert(NumParts > 0 && "No parts to assemble!");
194   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
195   SDValue Val = Parts[0];
196 
197   if (NumParts > 1) {
198     // Assemble the value from multiple parts.
199     if (ValueVT.isInteger()) {
200       unsigned PartBits = PartVT.getSizeInBits();
201       unsigned ValueBits = ValueVT.getSizeInBits();
202 
203       // Assemble the power of 2 part.
204       unsigned RoundParts = NumParts & (NumParts - 1) ?
205         1 << Log2_32(NumParts) : NumParts;
206       unsigned RoundBits = PartBits * RoundParts;
207       EVT RoundVT = RoundBits == ValueBits ?
208         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
209       SDValue Lo, Hi;
210 
211       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
212 
213       if (RoundParts > 2) {
214         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
215                               PartVT, HalfVT, V);
216         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
217                               RoundParts / 2, PartVT, HalfVT, V);
218       } else {
219         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
220         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
221       }
222 
223       if (DAG.getDataLayout().isBigEndian())
224         std::swap(Lo, Hi);
225 
226       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
227 
228       if (RoundParts < NumParts) {
229         // Assemble the trailing non-power-of-2 part.
230         unsigned OddParts = NumParts - RoundParts;
231         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
232         Hi = getCopyFromParts(DAG, DL,
233                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
234 
235         // Combine the round and odd parts.
236         Lo = Val;
237         if (DAG.getDataLayout().isBigEndian())
238           std::swap(Lo, Hi);
239         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
240         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
241         Hi =
242             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
243                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
244                                         TLI.getPointerTy(DAG.getDataLayout())));
245         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
246         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
247       }
248     } else if (PartVT.isFloatingPoint()) {
249       // FP split into multiple FP parts (for ppcf128)
250       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
251              "Unexpected split");
252       SDValue Lo, Hi;
253       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
254       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
255       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
256         std::swap(Lo, Hi);
257       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
258     } else {
259       // FP split into integer parts (soft fp)
260       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
261              !PartVT.isVector() && "Unexpected split");
262       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
263       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
264     }
265   }
266 
267   // There is now one part, held in Val.  Correct it to match ValueVT.
268   // PartEVT is the type of the register class that holds the value.
269   // ValueVT is the type of the inline asm operation.
270   EVT PartEVT = Val.getValueType();
271 
272   if (PartEVT == ValueVT)
273     return Val;
274 
275   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
276       ValueVT.bitsLT(PartEVT)) {
277     // For an FP value in an integer part, we need to truncate to the right
278     // width first.
279     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
280     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
281   }
282 
283   // Handle types that have the same size.
284   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
285     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
286 
287   // Handle types with different sizes.
288   if (PartEVT.isInteger() && ValueVT.isInteger()) {
289     if (ValueVT.bitsLT(PartEVT)) {
290       // For a truncate, see if we have any information to
291       // indicate whether the truncated bits will always be
292       // zero or sign-extension.
293       if (AssertOp.hasValue())
294         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
295                           DAG.getValueType(ValueVT));
296       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
297     }
298     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
299   }
300 
301   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
302     // FP_ROUND's are always exact here.
303     if (ValueVT.bitsLT(Val.getValueType()))
304       return DAG.getNode(
305           ISD::FP_ROUND, DL, ValueVT, Val,
306           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
307 
308     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
309   }
310 
311   llvm_unreachable("Unknown mismatch!");
312 }
313 
314 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
315                                               const Twine &ErrMsg) {
316   const Instruction *I = dyn_cast_or_null<Instruction>(V);
317   if (!V)
318     return Ctx.emitError(ErrMsg);
319 
320   const char *AsmError = ", possible invalid constraint for vector type";
321   if (const CallInst *CI = dyn_cast<CallInst>(I))
322     if (isa<InlineAsm>(CI->getCalledValue()))
323       return Ctx.emitError(I, ErrMsg + AsmError);
324 
325   return Ctx.emitError(I, ErrMsg);
326 }
327 
328 /// getCopyFromPartsVector - Create a value that contains the specified legal
329 /// parts combined into the value they represent.  If the parts combine to a
330 /// type larger than ValueVT then AssertOp can be used to specify whether the
331 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
332 /// ValueVT (ISD::AssertSext).
333 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
334                                       const SDValue *Parts, unsigned NumParts,
335                                       MVT PartVT, EVT ValueVT, const Value *V,
336                                       bool IsABIRegCopy) {
337   assert(ValueVT.isVector() && "Not a vector value");
338   assert(NumParts > 0 && "No parts to assemble!");
339   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
340   SDValue Val = Parts[0];
341 
342   // Handle a multi-element vector.
343   if (NumParts > 1) {
344     EVT IntermediateVT;
345     MVT RegisterVT;
346     unsigned NumIntermediates;
347     unsigned NumRegs;
348 
349     if (IsABIRegCopy) {
350       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
351           *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
352           RegisterVT);
353     } else {
354       NumRegs =
355           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
356                                      NumIntermediates, RegisterVT);
357     }
358 
359     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
360     NumParts = NumRegs; // Silence a compiler warning.
361     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
362     assert(RegisterVT.getSizeInBits() ==
363            Parts[0].getSimpleValueType().getSizeInBits() &&
364            "Part type sizes don't match!");
365 
366     // Assemble the parts into intermediate operands.
367     SmallVector<SDValue, 8> Ops(NumIntermediates);
368     if (NumIntermediates == NumParts) {
369       // If the register was not expanded, truncate or copy the value,
370       // as appropriate.
371       for (unsigned i = 0; i != NumParts; ++i)
372         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
373                                   PartVT, IntermediateVT, V);
374     } else if (NumParts > 0) {
375       // If the intermediate type was expanded, build the intermediate
376       // operands from the parts.
377       assert(NumParts % NumIntermediates == 0 &&
378              "Must expand into a divisible number of parts!");
379       unsigned Factor = NumParts / NumIntermediates;
380       for (unsigned i = 0; i != NumIntermediates; ++i)
381         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
382                                   PartVT, IntermediateVT, V);
383     }
384 
385     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
386     // intermediate operands.
387     EVT BuiltVectorTy =
388         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
389                          (IntermediateVT.isVector()
390                               ? IntermediateVT.getVectorNumElements() * NumParts
391                               : NumIntermediates));
392     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
393                                                 : ISD::BUILD_VECTOR,
394                       DL, BuiltVectorTy, Ops);
395   }
396 
397   // There is now one part, held in Val.  Correct it to match ValueVT.
398   EVT PartEVT = Val.getValueType();
399 
400   if (PartEVT == ValueVT)
401     return Val;
402 
403   if (PartEVT.isVector()) {
404     // If the element type of the source/dest vectors are the same, but the
405     // parts vector has more elements than the value vector, then we have a
406     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
407     // elements we want.
408     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
409       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
410              "Cannot narrow, it would be a lossy transformation");
411       return DAG.getNode(
412           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
413           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
414     }
415 
416     // Vector/Vector bitcast.
417     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
418       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419 
420     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
421       "Cannot handle this kind of promotion");
422     // Promoted vector extract
423     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
424 
425   }
426 
427   // Trivial bitcast if the types are the same size and the destination
428   // vector type is legal.
429   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
430       TLI.isTypeLegal(ValueVT))
431     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
432 
433   if (ValueVT.getVectorNumElements() != 1) {
434      // Certain ABIs require that vectors are passed as integers. For vectors
435      // are the same size, this is an obvious bitcast.
436      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
437        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
439        // Bitcast Val back the original type and extract the corresponding
440        // vector we want.
441        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
442        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
443                                            ValueVT.getVectorElementType(), Elts);
444        Val = DAG.getBitcast(WiderVecType, Val);
445        return DAG.getNode(
446            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
447            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
448      }
449 
450      diagnosePossiblyInvalidConstraint(
451          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
452      return DAG.getUNDEF(ValueVT);
453   }
454 
455   // Handle cases such as i8 -> <1 x i1>
456   EVT ValueSVT = ValueVT.getVectorElementType();
457   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
458     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
459                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
460 
461   return DAG.getBuildVector(ValueVT, DL, Val);
462 }
463 
464 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
465                                  SDValue Val, SDValue *Parts, unsigned NumParts,
466                                  MVT PartVT, const Value *V, bool IsABIRegCopy);
467 
468 /// getCopyToParts - Create a series of nodes that contain the specified value
469 /// split into legal parts.  If the parts contain more bits than Val, then, for
470 /// integers, ExtendKind can be used to specify how to generate the extra bits.
471 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
472                            SDValue *Parts, unsigned NumParts, MVT PartVT,
473                            const Value *V,
474                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND,
475                            bool IsABIRegCopy = false) {
476   EVT ValueVT = Val.getValueType();
477 
478   // Handle the vector case separately.
479   if (ValueVT.isVector())
480     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
481                                 IsABIRegCopy);
482 
483   unsigned PartBits = PartVT.getSizeInBits();
484   unsigned OrigNumParts = NumParts;
485   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
486          "Copying to an illegal type!");
487 
488   if (NumParts == 0)
489     return;
490 
491   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
492   EVT PartEVT = PartVT;
493   if (PartEVT == ValueVT) {
494     assert(NumParts == 1 && "No-op copy with multiple parts!");
495     Parts[0] = Val;
496     return;
497   }
498 
499   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
500     // If the parts cover more bits than the value has, promote the value.
501     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
502       assert(NumParts == 1 && "Do not know what to promote to!");
503       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
504     } else {
505       if (ValueVT.isFloatingPoint()) {
506         // FP values need to be bitcast, then extended if they are being put
507         // into a larger container.
508         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
509         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
510       }
511       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
512              ValueVT.isInteger() &&
513              "Unknown mismatch!");
514       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
515       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
516       if (PartVT == MVT::x86mmx)
517         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
518     }
519   } else if (PartBits == ValueVT.getSizeInBits()) {
520     // Different types of the same size.
521     assert(NumParts == 1 && PartEVT != ValueVT);
522     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
523   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
524     // If the parts cover less bits than value has, truncate the value.
525     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
526            ValueVT.isInteger() &&
527            "Unknown mismatch!");
528     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
529     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
530     if (PartVT == MVT::x86mmx)
531       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
532   }
533 
534   // The value may have changed - recompute ValueVT.
535   ValueVT = Val.getValueType();
536   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
537          "Failed to tile the value with PartVT!");
538 
539   if (NumParts == 1) {
540     if (PartEVT != ValueVT) {
541       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
542                                         "scalar-to-vector conversion failed");
543       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
544     }
545 
546     Parts[0] = Val;
547     return;
548   }
549 
550   // Expand the value into multiple parts.
551   if (NumParts & (NumParts - 1)) {
552     // The number of parts is not a power of 2.  Split off and copy the tail.
553     assert(PartVT.isInteger() && ValueVT.isInteger() &&
554            "Do not know what to expand to!");
555     unsigned RoundParts = 1 << Log2_32(NumParts);
556     unsigned RoundBits = RoundParts * PartBits;
557     unsigned OddParts = NumParts - RoundParts;
558     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
559                                  DAG.getIntPtrConstant(RoundBits, DL));
560     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
561 
562     if (DAG.getDataLayout().isBigEndian())
563       // The odd parts were reversed by getCopyToParts - unreverse them.
564       std::reverse(Parts + RoundParts, Parts + NumParts);
565 
566     NumParts = RoundParts;
567     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
568     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
569   }
570 
571   // The number of parts is a power of 2.  Repeatedly bisect the value using
572   // EXTRACT_ELEMENT.
573   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
574                          EVT::getIntegerVT(*DAG.getContext(),
575                                            ValueVT.getSizeInBits()),
576                          Val);
577 
578   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
579     for (unsigned i = 0; i < NumParts; i += StepSize) {
580       unsigned ThisBits = StepSize * PartBits / 2;
581       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
582       SDValue &Part0 = Parts[i];
583       SDValue &Part1 = Parts[i+StepSize/2];
584 
585       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
586                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
587       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
588                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
589 
590       if (ThisBits == PartBits && ThisVT != PartVT) {
591         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
592         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
593       }
594     }
595   }
596 
597   if (DAG.getDataLayout().isBigEndian())
598     std::reverse(Parts, Parts + OrigNumParts);
599 }
600 
601 
602 /// getCopyToPartsVector - Create a series of nodes that contain the specified
603 /// value split into legal parts.
604 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
605                                  SDValue Val, SDValue *Parts, unsigned NumParts,
606                                  MVT PartVT, const Value *V,
607                                  bool IsABIRegCopy) {
608   EVT ValueVT = Val.getValueType();
609   assert(ValueVT.isVector() && "Not a vector");
610   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
611 
612   if (NumParts == 1) {
613     EVT PartEVT = PartVT;
614     if (PartEVT == ValueVT) {
615       // Nothing to do.
616     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
617       // Bitconvert vector->vector case.
618       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
619     } else if (PartVT.isVector() &&
620                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
621                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
622       EVT ElementVT = PartVT.getVectorElementType();
623       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
624       // undef elements.
625       SmallVector<SDValue, 16> Ops;
626       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
627         Ops.push_back(DAG.getNode(
628             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
629             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
630 
631       for (unsigned i = ValueVT.getVectorNumElements(),
632            e = PartVT.getVectorNumElements(); i != e; ++i)
633         Ops.push_back(DAG.getUNDEF(ElementVT));
634 
635       Val = DAG.getBuildVector(PartVT, DL, Ops);
636 
637       // FIXME: Use CONCAT for 2x -> 4x.
638 
639       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
640       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
641     } else if (PartVT.isVector() &&
642                PartEVT.getVectorElementType().bitsGE(
643                  ValueVT.getVectorElementType()) &&
644                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
645 
646       // Promoted vector extract
647       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
648     } else {
649       if (ValueVT.getVectorNumElements() == 1) {
650         Val = DAG.getNode(
651             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
652             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
653       } else {
654         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
655                "lossy conversion of vector to scalar type");
656         EVT IntermediateType =
657             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
658         Val = DAG.getBitcast(IntermediateType, Val);
659         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
660       }
661     }
662 
663     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
664     Parts[0] = Val;
665     return;
666   }
667 
668   // Handle a multi-element vector.
669   EVT IntermediateVT;
670   MVT RegisterVT;
671   unsigned NumIntermediates;
672   unsigned NumRegs;
673   if (IsABIRegCopy) {
674     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
675         *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
676         RegisterVT);
677   } else {
678     NumRegs =
679         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
680                                    NumIntermediates, RegisterVT);
681   }
682   unsigned NumElements = ValueVT.getVectorNumElements();
683 
684   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
685   NumParts = NumRegs; // Silence a compiler warning.
686   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
687 
688   // Convert the vector to the appropiate type if necessary.
689   unsigned DestVectorNoElts =
690       NumIntermediates *
691       (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1);
692   EVT BuiltVectorTy = EVT::getVectorVT(
693       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
694   if (Val.getValueType() != BuiltVectorTy)
695     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
696 
697   // Split the vector into intermediate operands.
698   SmallVector<SDValue, 8> Ops(NumIntermediates);
699   for (unsigned i = 0; i != NumIntermediates; ++i) {
700     if (IntermediateVT.isVector())
701       Ops[i] =
702           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
703                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
704                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
705     else
706       Ops[i] = DAG.getNode(
707           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
708           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
709   }
710 
711   // Split the intermediate operands into legal parts.
712   if (NumParts == NumIntermediates) {
713     // If the register was not expanded, promote or copy the value,
714     // as appropriate.
715     for (unsigned i = 0; i != NumParts; ++i)
716       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
717   } else if (NumParts > 0) {
718     // If the intermediate type was expanded, split each the value into
719     // legal parts.
720     assert(NumIntermediates != 0 && "division by zero");
721     assert(NumParts % NumIntermediates == 0 &&
722            "Must expand into a divisible number of parts!");
723     unsigned Factor = NumParts / NumIntermediates;
724     for (unsigned i = 0; i != NumIntermediates; ++i)
725       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
726   }
727 }
728 
729 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
730                            EVT valuevt, bool IsABIMangledValue)
731     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
732       RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {}
733 
734 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
735                            const DataLayout &DL, unsigned Reg, Type *Ty,
736                            bool IsABIMangledValue) {
737   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
738 
739   IsABIMangled = IsABIMangledValue;
740 
741   for (EVT ValueVT : ValueVTs) {
742     unsigned NumRegs = IsABIMangledValue
743                            ? TLI.getNumRegistersForCallingConv(Context, ValueVT)
744                            : TLI.getNumRegisters(Context, ValueVT);
745     MVT RegisterVT = IsABIMangledValue
746                          ? TLI.getRegisterTypeForCallingConv(Context, ValueVT)
747                          : TLI.getRegisterType(Context, ValueVT);
748     for (unsigned i = 0; i != NumRegs; ++i)
749       Regs.push_back(Reg + i);
750     RegVTs.push_back(RegisterVT);
751     RegCount.push_back(NumRegs);
752     Reg += NumRegs;
753   }
754 }
755 
756 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
757                                       FunctionLoweringInfo &FuncInfo,
758                                       const SDLoc &dl, SDValue &Chain,
759                                       SDValue *Flag, const Value *V) const {
760   // A Value with type {} or [0 x %t] needs no registers.
761   if (ValueVTs.empty())
762     return SDValue();
763 
764   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
765 
766   // Assemble the legal parts into the final values.
767   SmallVector<SDValue, 4> Values(ValueVTs.size());
768   SmallVector<SDValue, 8> Parts;
769   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
770     // Copy the legal parts from the registers.
771     EVT ValueVT = ValueVTs[Value];
772     unsigned NumRegs = RegCount[Value];
773     MVT RegisterVT = IsABIMangled
774                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
775                          : RegVTs[Value];
776 
777     Parts.resize(NumRegs);
778     for (unsigned i = 0; i != NumRegs; ++i) {
779       SDValue P;
780       if (!Flag) {
781         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
782       } else {
783         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
784         *Flag = P.getValue(2);
785       }
786 
787       Chain = P.getValue(1);
788       Parts[i] = P;
789 
790       // If the source register was virtual and if we know something about it,
791       // add an assert node.
792       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
793           !RegisterVT.isInteger() || RegisterVT.isVector())
794         continue;
795 
796       const FunctionLoweringInfo::LiveOutInfo *LOI =
797         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
798       if (!LOI)
799         continue;
800 
801       unsigned RegSize = RegisterVT.getSizeInBits();
802       unsigned NumSignBits = LOI->NumSignBits;
803       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
804 
805       if (NumZeroBits == RegSize) {
806         // The current value is a zero.
807         // Explicitly express that as it would be easier for
808         // optimizations to kick in.
809         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
810         continue;
811       }
812 
813       // FIXME: We capture more information than the dag can represent.  For
814       // now, just use the tightest assertzext/assertsext possible.
815       bool isSExt = true;
816       EVT FromVT(MVT::Other);
817       if (NumSignBits == RegSize) {
818         isSExt = true;   // ASSERT SEXT 1
819         FromVT = MVT::i1;
820       } else if (NumZeroBits >= RegSize - 1) {
821         isSExt = false;  // ASSERT ZEXT 1
822         FromVT = MVT::i1;
823       } else if (NumSignBits > RegSize - 8) {
824         isSExt = true;   // ASSERT SEXT 8
825         FromVT = MVT::i8;
826       } else if (NumZeroBits >= RegSize - 8) {
827         isSExt = false;  // ASSERT ZEXT 8
828         FromVT = MVT::i8;
829       } else if (NumSignBits > RegSize - 16) {
830         isSExt = true;   // ASSERT SEXT 16
831         FromVT = MVT::i16;
832       } else if (NumZeroBits >= RegSize - 16) {
833         isSExt = false;  // ASSERT ZEXT 16
834         FromVT = MVT::i16;
835       } else if (NumSignBits > RegSize - 32) {
836         isSExt = true;   // ASSERT SEXT 32
837         FromVT = MVT::i32;
838       } else if (NumZeroBits >= RegSize - 32) {
839         isSExt = false;  // ASSERT ZEXT 32
840         FromVT = MVT::i32;
841       } else {
842         continue;
843       }
844       // Add an assertion node.
845       assert(FromVT != MVT::Other);
846       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
847                              RegisterVT, P, DAG.getValueType(FromVT));
848     }
849 
850     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
851                                      NumRegs, RegisterVT, ValueVT, V);
852     Part += NumRegs;
853     Parts.clear();
854   }
855 
856   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
857 }
858 
859 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
860                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
861                                  const Value *V,
862                                  ISD::NodeType PreferredExtendType) const {
863   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
864   ISD::NodeType ExtendKind = PreferredExtendType;
865 
866   // Get the list of the values's legal parts.
867   unsigned NumRegs = Regs.size();
868   SmallVector<SDValue, 8> Parts(NumRegs);
869   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
870     unsigned NumParts = RegCount[Value];
871 
872     MVT RegisterVT = IsABIMangled
873                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
874                          : RegVTs[Value];
875 
876     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
877       ExtendKind = ISD::ZERO_EXTEND;
878 
879     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
880                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
881     Part += NumParts;
882   }
883 
884   // Copy the parts into the registers.
885   SmallVector<SDValue, 8> Chains(NumRegs);
886   for (unsigned i = 0; i != NumRegs; ++i) {
887     SDValue Part;
888     if (!Flag) {
889       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
890     } else {
891       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
892       *Flag = Part.getValue(1);
893     }
894 
895     Chains[i] = Part.getValue(0);
896   }
897 
898   if (NumRegs == 1 || Flag)
899     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
900     // flagged to it. That is the CopyToReg nodes and the user are considered
901     // a single scheduling unit. If we create a TokenFactor and return it as
902     // chain, then the TokenFactor is both a predecessor (operand) of the
903     // user as well as a successor (the TF operands are flagged to the user).
904     // c1, f1 = CopyToReg
905     // c2, f2 = CopyToReg
906     // c3     = TokenFactor c1, c2
907     // ...
908     //        = op c3, ..., f2
909     Chain = Chains[NumRegs-1];
910   else
911     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
912 }
913 
914 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
915                                         unsigned MatchingIdx, const SDLoc &dl,
916                                         SelectionDAG &DAG,
917                                         std::vector<SDValue> &Ops) const {
918   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
919 
920   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
921   if (HasMatching)
922     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
923   else if (!Regs.empty() &&
924            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
925     // Put the register class of the virtual registers in the flag word.  That
926     // way, later passes can recompute register class constraints for inline
927     // assembly as well as normal instructions.
928     // Don't do this for tied operands that can use the regclass information
929     // from the def.
930     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
931     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
932     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
933   }
934 
935   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
936   Ops.push_back(Res);
937 
938   if (Code == InlineAsm::Kind_Clobber) {
939     // Clobbers should always have a 1:1 mapping with registers, and may
940     // reference registers that have illegal (e.g. vector) types. Hence, we
941     // shouldn't try to apply any sort of splitting logic to them.
942     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
943            "No 1:1 mapping from clobbers to regs?");
944     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
945     (void)SP;
946     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
947       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
948       assert(
949           (Regs[I] != SP ||
950            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
951           "If we clobbered the stack pointer, MFI should know about it.");
952     }
953     return;
954   }
955 
956   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
957     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
958     MVT RegisterVT = RegVTs[Value];
959     for (unsigned i = 0; i != NumRegs; ++i) {
960       assert(Reg < Regs.size() && "Mismatch in # registers expected");
961       unsigned TheReg = Regs[Reg++];
962       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
963     }
964   }
965 }
966 
967 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
968                                const TargetLibraryInfo *li) {
969   AA = aa;
970   GFI = gfi;
971   LibInfo = li;
972   DL = &DAG.getDataLayout();
973   Context = DAG.getContext();
974   LPadToCallSiteMap.clear();
975 }
976 
977 void SelectionDAGBuilder::clear() {
978   NodeMap.clear();
979   UnusedArgNodeMap.clear();
980   PendingLoads.clear();
981   PendingExports.clear();
982   CurInst = nullptr;
983   HasTailCall = false;
984   SDNodeOrder = LowestSDNodeOrder;
985   StatepointLowering.clear();
986 }
987 
988 void SelectionDAGBuilder::clearDanglingDebugInfo() {
989   DanglingDebugInfoMap.clear();
990 }
991 
992 SDValue SelectionDAGBuilder::getRoot() {
993   if (PendingLoads.empty())
994     return DAG.getRoot();
995 
996   if (PendingLoads.size() == 1) {
997     SDValue Root = PendingLoads[0];
998     DAG.setRoot(Root);
999     PendingLoads.clear();
1000     return Root;
1001   }
1002 
1003   // Otherwise, we have to make a token factor node.
1004   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1005                              PendingLoads);
1006   PendingLoads.clear();
1007   DAG.setRoot(Root);
1008   return Root;
1009 }
1010 
1011 SDValue SelectionDAGBuilder::getControlRoot() {
1012   SDValue Root = DAG.getRoot();
1013 
1014   if (PendingExports.empty())
1015     return Root;
1016 
1017   // Turn all of the CopyToReg chains into one factored node.
1018   if (Root.getOpcode() != ISD::EntryToken) {
1019     unsigned i = 0, e = PendingExports.size();
1020     for (; i != e; ++i) {
1021       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1022       if (PendingExports[i].getNode()->getOperand(0) == Root)
1023         break;  // Don't add the root if we already indirectly depend on it.
1024     }
1025 
1026     if (i == e)
1027       PendingExports.push_back(Root);
1028   }
1029 
1030   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1031                      PendingExports);
1032   PendingExports.clear();
1033   DAG.setRoot(Root);
1034   return Root;
1035 }
1036 
1037 void SelectionDAGBuilder::visit(const Instruction &I) {
1038   // Set up outgoing PHI node register values before emitting the terminator.
1039   if (isa<TerminatorInst>(&I)) {
1040     HandlePHINodesInSuccessorBlocks(I.getParent());
1041   }
1042 
1043   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1044   if (!isa<DbgInfoIntrinsic>(I))
1045     ++SDNodeOrder;
1046 
1047   CurInst = &I;
1048 
1049   visit(I.getOpcode(), I);
1050 
1051   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
1052       !isStatepoint(&I)) // statepoints handle their exports internally
1053     CopyToExportRegsIfNeeded(&I);
1054 
1055   CurInst = nullptr;
1056 }
1057 
1058 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1059   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1060 }
1061 
1062 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1063   // Note: this doesn't use InstVisitor, because it has to work with
1064   // ConstantExpr's in addition to instructions.
1065   switch (Opcode) {
1066   default: llvm_unreachable("Unknown instruction type encountered!");
1067     // Build the switch statement using the Instruction.def file.
1068 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1069     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1070 #include "llvm/IR/Instruction.def"
1071   }
1072 }
1073 
1074 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1075 // generate the debug data structures now that we've seen its definition.
1076 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1077                                                    SDValue Val) {
1078   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
1079   if (DDI.getDI()) {
1080     const DbgValueInst *DI = DDI.getDI();
1081     DebugLoc dl = DDI.getdl();
1082     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1083     DILocalVariable *Variable = DI->getVariable();
1084     DIExpression *Expr = DI->getExpression();
1085     assert(Variable->isValidLocationForIntrinsic(dl) &&
1086            "Expected inlined-at fields to agree");
1087     SDDbgValue *SDV;
1088     if (Val.getNode()) {
1089       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1090         SDV = getDbgValue(Val, Variable, Expr, dl, DbgSDNodeOrder);
1091         DAG.AddDbgValue(SDV, Val.getNode(), false);
1092       }
1093     } else
1094       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1095     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1096   }
1097 }
1098 
1099 /// getCopyFromRegs - If there was virtual register allocated for the value V
1100 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1101 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1102   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1103   SDValue Result;
1104 
1105   if (It != FuncInfo.ValueMap.end()) {
1106     unsigned InReg = It->second;
1107 
1108     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1109                      DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V));
1110     SDValue Chain = DAG.getEntryNode();
1111     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1112                                  V);
1113     resolveDanglingDebugInfo(V, Result);
1114   }
1115 
1116   return Result;
1117 }
1118 
1119 /// getValue - Return an SDValue for the given Value.
1120 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1121   // If we already have an SDValue for this value, use it. It's important
1122   // to do this first, so that we don't create a CopyFromReg if we already
1123   // have a regular SDValue.
1124   SDValue &N = NodeMap[V];
1125   if (N.getNode()) return N;
1126 
1127   // If there's a virtual register allocated and initialized for this
1128   // value, use it.
1129   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1130     return copyFromReg;
1131 
1132   // Otherwise create a new SDValue and remember it.
1133   SDValue Val = getValueImpl(V);
1134   NodeMap[V] = Val;
1135   resolveDanglingDebugInfo(V, Val);
1136   return Val;
1137 }
1138 
1139 // Return true if SDValue exists for the given Value
1140 bool SelectionDAGBuilder::findValue(const Value *V) const {
1141   return (NodeMap.find(V) != NodeMap.end()) ||
1142     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1143 }
1144 
1145 /// getNonRegisterValue - Return an SDValue for the given Value, but
1146 /// don't look in FuncInfo.ValueMap for a virtual register.
1147 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1148   // If we already have an SDValue for this value, use it.
1149   SDValue &N = NodeMap[V];
1150   if (N.getNode()) {
1151     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1152       // Remove the debug location from the node as the node is about to be used
1153       // in a location which may differ from the original debug location.  This
1154       // is relevant to Constant and ConstantFP nodes because they can appear
1155       // as constant expressions inside PHI nodes.
1156       N->setDebugLoc(DebugLoc());
1157     }
1158     return N;
1159   }
1160 
1161   // Otherwise create a new SDValue and remember it.
1162   SDValue Val = getValueImpl(V);
1163   NodeMap[V] = Val;
1164   resolveDanglingDebugInfo(V, Val);
1165   return Val;
1166 }
1167 
1168 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1169 /// Create an SDValue for the given value.
1170 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1171   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1172 
1173   if (const Constant *C = dyn_cast<Constant>(V)) {
1174     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1175 
1176     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1177       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1178 
1179     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1180       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1181 
1182     if (isa<ConstantPointerNull>(C)) {
1183       unsigned AS = V->getType()->getPointerAddressSpace();
1184       return DAG.getConstant(0, getCurSDLoc(),
1185                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1186     }
1187 
1188     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1189       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1190 
1191     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1192       return DAG.getUNDEF(VT);
1193 
1194     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1195       visit(CE->getOpcode(), *CE);
1196       SDValue N1 = NodeMap[V];
1197       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1198       return N1;
1199     }
1200 
1201     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1202       SmallVector<SDValue, 4> Constants;
1203       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1204            OI != OE; ++OI) {
1205         SDNode *Val = getValue(*OI).getNode();
1206         // If the operand is an empty aggregate, there are no values.
1207         if (!Val) continue;
1208         // Add each leaf value from the operand to the Constants list
1209         // to form a flattened list of all the values.
1210         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1211           Constants.push_back(SDValue(Val, i));
1212       }
1213 
1214       return DAG.getMergeValues(Constants, getCurSDLoc());
1215     }
1216 
1217     if (const ConstantDataSequential *CDS =
1218           dyn_cast<ConstantDataSequential>(C)) {
1219       SmallVector<SDValue, 4> Ops;
1220       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1221         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1222         // Add each leaf value from the operand to the Constants list
1223         // to form a flattened list of all the values.
1224         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1225           Ops.push_back(SDValue(Val, i));
1226       }
1227 
1228       if (isa<ArrayType>(CDS->getType()))
1229         return DAG.getMergeValues(Ops, getCurSDLoc());
1230       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1231     }
1232 
1233     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1234       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1235              "Unknown struct or array constant!");
1236 
1237       SmallVector<EVT, 4> ValueVTs;
1238       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1239       unsigned NumElts = ValueVTs.size();
1240       if (NumElts == 0)
1241         return SDValue(); // empty struct
1242       SmallVector<SDValue, 4> Constants(NumElts);
1243       for (unsigned i = 0; i != NumElts; ++i) {
1244         EVT EltVT = ValueVTs[i];
1245         if (isa<UndefValue>(C))
1246           Constants[i] = DAG.getUNDEF(EltVT);
1247         else if (EltVT.isFloatingPoint())
1248           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1249         else
1250           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1251       }
1252 
1253       return DAG.getMergeValues(Constants, getCurSDLoc());
1254     }
1255 
1256     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1257       return DAG.getBlockAddress(BA, VT);
1258 
1259     VectorType *VecTy = cast<VectorType>(V->getType());
1260     unsigned NumElements = VecTy->getNumElements();
1261 
1262     // Now that we know the number and type of the elements, get that number of
1263     // elements into the Ops array based on what kind of constant it is.
1264     SmallVector<SDValue, 16> Ops;
1265     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1266       for (unsigned i = 0; i != NumElements; ++i)
1267         Ops.push_back(getValue(CV->getOperand(i)));
1268     } else {
1269       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1270       EVT EltVT =
1271           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1272 
1273       SDValue Op;
1274       if (EltVT.isFloatingPoint())
1275         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1276       else
1277         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1278       Ops.assign(NumElements, Op);
1279     }
1280 
1281     // Create a BUILD_VECTOR node.
1282     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1283   }
1284 
1285   // If this is a static alloca, generate it as the frameindex instead of
1286   // computation.
1287   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1288     DenseMap<const AllocaInst*, int>::iterator SI =
1289       FuncInfo.StaticAllocaMap.find(AI);
1290     if (SI != FuncInfo.StaticAllocaMap.end())
1291       return DAG.getFrameIndex(SI->second,
1292                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1293   }
1294 
1295   // If this is an instruction which fast-isel has deferred, select it now.
1296   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1297     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1298 
1299     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1300                      Inst->getType(), isABIRegCopy(V));
1301     SDValue Chain = DAG.getEntryNode();
1302     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1303   }
1304 
1305   llvm_unreachable("Can't get register for value!");
1306 }
1307 
1308 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1309   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1310   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1311   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1312   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1313   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1314   if (IsMSVCCXX || IsCoreCLR)
1315     CatchPadMBB->setIsEHFuncletEntry();
1316 
1317   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1318 }
1319 
1320 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1321   // Update machine-CFG edge.
1322   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1323   FuncInfo.MBB->addSuccessor(TargetMBB);
1324 
1325   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1326   bool IsSEH = isAsynchronousEHPersonality(Pers);
1327   if (IsSEH) {
1328     // If this is not a fall-through branch or optimizations are switched off,
1329     // emit the branch.
1330     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1331         TM.getOptLevel() == CodeGenOpt::None)
1332       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1333                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1334     return;
1335   }
1336 
1337   // Figure out the funclet membership for the catchret's successor.
1338   // This will be used by the FuncletLayout pass to determine how to order the
1339   // BB's.
1340   // A 'catchret' returns to the outer scope's color.
1341   Value *ParentPad = I.getCatchSwitchParentPad();
1342   const BasicBlock *SuccessorColor;
1343   if (isa<ConstantTokenNone>(ParentPad))
1344     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1345   else
1346     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1347   assert(SuccessorColor && "No parent funclet for catchret!");
1348   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1349   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1350 
1351   // Create the terminator node.
1352   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1353                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1354                             DAG.getBasicBlock(SuccessorColorMBB));
1355   DAG.setRoot(Ret);
1356 }
1357 
1358 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1359   // Don't emit any special code for the cleanuppad instruction. It just marks
1360   // the start of a funclet.
1361   FuncInfo.MBB->setIsEHFuncletEntry();
1362   FuncInfo.MBB->setIsCleanupFuncletEntry();
1363 }
1364 
1365 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1366 /// many places it could ultimately go. In the IR, we have a single unwind
1367 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1368 /// This function skips over imaginary basic blocks that hold catchswitch
1369 /// instructions, and finds all the "real" machine
1370 /// basic block destinations. As those destinations may not be successors of
1371 /// EHPadBB, here we also calculate the edge probability to those destinations.
1372 /// The passed-in Prob is the edge probability to EHPadBB.
1373 static void findUnwindDestinations(
1374     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1375     BranchProbability Prob,
1376     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1377         &UnwindDests) {
1378   EHPersonality Personality =
1379     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1380   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1381   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1382 
1383   while (EHPadBB) {
1384     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1385     BasicBlock *NewEHPadBB = nullptr;
1386     if (isa<LandingPadInst>(Pad)) {
1387       // Stop on landingpads. They are not funclets.
1388       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1389       break;
1390     } else if (isa<CleanupPadInst>(Pad)) {
1391       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1392       // personalities.
1393       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1394       UnwindDests.back().first->setIsEHFuncletEntry();
1395       break;
1396     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1397       // Add the catchpad handlers to the possible destinations.
1398       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1399         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1400         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1401         if (IsMSVCCXX || IsCoreCLR)
1402           UnwindDests.back().first->setIsEHFuncletEntry();
1403       }
1404       NewEHPadBB = CatchSwitch->getUnwindDest();
1405     } else {
1406       continue;
1407     }
1408 
1409     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1410     if (BPI && NewEHPadBB)
1411       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1412     EHPadBB = NewEHPadBB;
1413   }
1414 }
1415 
1416 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1417   // Update successor info.
1418   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1419   auto UnwindDest = I.getUnwindDest();
1420   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1421   BranchProbability UnwindDestProb =
1422       (BPI && UnwindDest)
1423           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1424           : BranchProbability::getZero();
1425   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1426   for (auto &UnwindDest : UnwindDests) {
1427     UnwindDest.first->setIsEHPad();
1428     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1429   }
1430   FuncInfo.MBB->normalizeSuccProbs();
1431 
1432   // Create the terminator node.
1433   SDValue Ret =
1434       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1435   DAG.setRoot(Ret);
1436 }
1437 
1438 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1439   report_fatal_error("visitCatchSwitch not yet implemented!");
1440 }
1441 
1442 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1443   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1444   auto &DL = DAG.getDataLayout();
1445   SDValue Chain = getControlRoot();
1446   SmallVector<ISD::OutputArg, 8> Outs;
1447   SmallVector<SDValue, 8> OutVals;
1448 
1449   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1450   // lower
1451   //
1452   //   %val = call <ty> @llvm.experimental.deoptimize()
1453   //   ret <ty> %val
1454   //
1455   // differently.
1456   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1457     LowerDeoptimizingReturn();
1458     return;
1459   }
1460 
1461   if (!FuncInfo.CanLowerReturn) {
1462     unsigned DemoteReg = FuncInfo.DemoteRegister;
1463     const Function *F = I.getParent()->getParent();
1464 
1465     // Emit a store of the return value through the virtual register.
1466     // Leave Outs empty so that LowerReturn won't try to load return
1467     // registers the usual way.
1468     SmallVector<EVT, 1> PtrValueVTs;
1469     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1470                     PtrValueVTs);
1471 
1472     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1473                                         DemoteReg, PtrValueVTs[0]);
1474     SDValue RetOp = getValue(I.getOperand(0));
1475 
1476     SmallVector<EVT, 4> ValueVTs;
1477     SmallVector<uint64_t, 4> Offsets;
1478     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1479     unsigned NumValues = ValueVTs.size();
1480 
1481     // An aggregate return value cannot wrap around the address space, so
1482     // offsets to its parts don't wrap either.
1483     SDNodeFlags Flags;
1484     Flags.setNoUnsignedWrap(true);
1485 
1486     SmallVector<SDValue, 4> Chains(NumValues);
1487     for (unsigned i = 0; i != NumValues; ++i) {
1488       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1489                                 RetPtr.getValueType(), RetPtr,
1490                                 DAG.getIntPtrConstant(Offsets[i],
1491                                                       getCurSDLoc()),
1492                                 Flags);
1493       Chains[i] = DAG.getStore(Chain, getCurSDLoc(),
1494                                SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1495                                // FIXME: better loc info would be nice.
1496                                Add, MachinePointerInfo());
1497     }
1498 
1499     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1500                         MVT::Other, Chains);
1501   } else if (I.getNumOperands() != 0) {
1502     SmallVector<EVT, 4> ValueVTs;
1503     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1504     unsigned NumValues = ValueVTs.size();
1505     if (NumValues) {
1506       SDValue RetOp = getValue(I.getOperand(0));
1507 
1508       const Function *F = I.getParent()->getParent();
1509 
1510       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1511       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1512                                           Attribute::SExt))
1513         ExtendKind = ISD::SIGN_EXTEND;
1514       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1515                                                Attribute::ZExt))
1516         ExtendKind = ISD::ZERO_EXTEND;
1517 
1518       LLVMContext &Context = F->getContext();
1519       bool RetInReg = F->getAttributes().hasAttribute(
1520           AttributeList::ReturnIndex, Attribute::InReg);
1521 
1522       for (unsigned j = 0; j != NumValues; ++j) {
1523         EVT VT = ValueVTs[j];
1524 
1525         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1526           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1527 
1528         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT);
1529         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT);
1530         SmallVector<SDValue, 4> Parts(NumParts);
1531         getCopyToParts(DAG, getCurSDLoc(),
1532                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1533                        &Parts[0], NumParts, PartVT, &I, ExtendKind, true);
1534 
1535         // 'inreg' on function refers to return value
1536         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1537         if (RetInReg)
1538           Flags.setInReg();
1539 
1540         // Propagate extension type if any
1541         if (ExtendKind == ISD::SIGN_EXTEND)
1542           Flags.setSExt();
1543         else if (ExtendKind == ISD::ZERO_EXTEND)
1544           Flags.setZExt();
1545 
1546         for (unsigned i = 0; i < NumParts; ++i) {
1547           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1548                                         VT, /*isfixed=*/true, 0, 0));
1549           OutVals.push_back(Parts[i]);
1550         }
1551       }
1552     }
1553   }
1554 
1555   // Push in swifterror virtual register as the last element of Outs. This makes
1556   // sure swifterror virtual register will be returned in the swifterror
1557   // physical register.
1558   const Function *F = I.getParent()->getParent();
1559   if (TLI.supportSwiftError() &&
1560       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1561     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1562     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1563     Flags.setSwiftError();
1564     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1565                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1566                                   true /*isfixed*/, 1 /*origidx*/,
1567                                   0 /*partOffs*/));
1568     // Create SDNode for the swifterror virtual register.
1569     OutVals.push_back(
1570         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1571                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1572                         EVT(TLI.getPointerTy(DL))));
1573   }
1574 
1575   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1576   CallingConv::ID CallConv =
1577     DAG.getMachineFunction().getFunction()->getCallingConv();
1578   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1579       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1580 
1581   // Verify that the target's LowerReturn behaved as expected.
1582   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1583          "LowerReturn didn't return a valid chain!");
1584 
1585   // Update the DAG with the new chain value resulting from return lowering.
1586   DAG.setRoot(Chain);
1587 }
1588 
1589 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1590 /// created for it, emit nodes to copy the value into the virtual
1591 /// registers.
1592 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1593   // Skip empty types
1594   if (V->getType()->isEmptyTy())
1595     return;
1596 
1597   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1598   if (VMI != FuncInfo.ValueMap.end()) {
1599     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1600     CopyValueToVirtualRegister(V, VMI->second);
1601   }
1602 }
1603 
1604 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1605 /// the current basic block, add it to ValueMap now so that we'll get a
1606 /// CopyTo/FromReg.
1607 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1608   // No need to export constants.
1609   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1610 
1611   // Already exported?
1612   if (FuncInfo.isExportedInst(V)) return;
1613 
1614   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1615   CopyValueToVirtualRegister(V, Reg);
1616 }
1617 
1618 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1619                                                      const BasicBlock *FromBB) {
1620   // The operands of the setcc have to be in this block.  We don't know
1621   // how to export them from some other block.
1622   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1623     // Can export from current BB.
1624     if (VI->getParent() == FromBB)
1625       return true;
1626 
1627     // Is already exported, noop.
1628     return FuncInfo.isExportedInst(V);
1629   }
1630 
1631   // If this is an argument, we can export it if the BB is the entry block or
1632   // if it is already exported.
1633   if (isa<Argument>(V)) {
1634     if (FromBB == &FromBB->getParent()->getEntryBlock())
1635       return true;
1636 
1637     // Otherwise, can only export this if it is already exported.
1638     return FuncInfo.isExportedInst(V);
1639   }
1640 
1641   // Otherwise, constants can always be exported.
1642   return true;
1643 }
1644 
1645 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1646 BranchProbability
1647 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1648                                         const MachineBasicBlock *Dst) const {
1649   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1650   const BasicBlock *SrcBB = Src->getBasicBlock();
1651   const BasicBlock *DstBB = Dst->getBasicBlock();
1652   if (!BPI) {
1653     // If BPI is not available, set the default probability as 1 / N, where N is
1654     // the number of successors.
1655     auto SuccSize = std::max<uint32_t>(
1656         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1657     return BranchProbability(1, SuccSize);
1658   }
1659   return BPI->getEdgeProbability(SrcBB, DstBB);
1660 }
1661 
1662 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1663                                                MachineBasicBlock *Dst,
1664                                                BranchProbability Prob) {
1665   if (!FuncInfo.BPI)
1666     Src->addSuccessorWithoutProb(Dst);
1667   else {
1668     if (Prob.isUnknown())
1669       Prob = getEdgeProbability(Src, Dst);
1670     Src->addSuccessor(Dst, Prob);
1671   }
1672 }
1673 
1674 static bool InBlock(const Value *V, const BasicBlock *BB) {
1675   if (const Instruction *I = dyn_cast<Instruction>(V))
1676     return I->getParent() == BB;
1677   return true;
1678 }
1679 
1680 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1681 /// This function emits a branch and is used at the leaves of an OR or an
1682 /// AND operator tree.
1683 void
1684 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1685                                                   MachineBasicBlock *TBB,
1686                                                   MachineBasicBlock *FBB,
1687                                                   MachineBasicBlock *CurBB,
1688                                                   MachineBasicBlock *SwitchBB,
1689                                                   BranchProbability TProb,
1690                                                   BranchProbability FProb,
1691                                                   bool InvertCond) {
1692   const BasicBlock *BB = CurBB->getBasicBlock();
1693 
1694   // If the leaf of the tree is a comparison, merge the condition into
1695   // the caseblock.
1696   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1697     // The operands of the cmp have to be in this block.  We don't know
1698     // how to export them from some other block.  If this is the first block
1699     // of the sequence, no exporting is needed.
1700     if (CurBB == SwitchBB ||
1701         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1702          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1703       ISD::CondCode Condition;
1704       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1705         ICmpInst::Predicate Pred =
1706             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1707         Condition = getICmpCondCode(Pred);
1708       } else {
1709         const FCmpInst *FC = cast<FCmpInst>(Cond);
1710         FCmpInst::Predicate Pred =
1711             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1712         Condition = getFCmpCondCode(Pred);
1713         if (TM.Options.NoNaNsFPMath)
1714           Condition = getFCmpCodeWithoutNaN(Condition);
1715       }
1716 
1717       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1718                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1719       SwitchCases.push_back(CB);
1720       return;
1721     }
1722   }
1723 
1724   // Create a CaseBlock record representing this branch.
1725   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1726   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1727                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1728   SwitchCases.push_back(CB);
1729 }
1730 
1731 /// FindMergedConditions - If Cond is an expression like
1732 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1733                                                MachineBasicBlock *TBB,
1734                                                MachineBasicBlock *FBB,
1735                                                MachineBasicBlock *CurBB,
1736                                                MachineBasicBlock *SwitchBB,
1737                                                Instruction::BinaryOps Opc,
1738                                                BranchProbability TProb,
1739                                                BranchProbability FProb,
1740                                                bool InvertCond) {
1741   // Skip over not part of the tree and remember to invert op and operands at
1742   // next level.
1743   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1744     const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1745     if (InBlock(CondOp, CurBB->getBasicBlock())) {
1746       FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1747                            !InvertCond);
1748       return;
1749     }
1750   }
1751 
1752   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1753   // Compute the effective opcode for Cond, taking into account whether it needs
1754   // to be inverted, e.g.
1755   //   and (not (or A, B)), C
1756   // gets lowered as
1757   //   and (and (not A, not B), C)
1758   unsigned BOpc = 0;
1759   if (BOp) {
1760     BOpc = BOp->getOpcode();
1761     if (InvertCond) {
1762       if (BOpc == Instruction::And)
1763         BOpc = Instruction::Or;
1764       else if (BOpc == Instruction::Or)
1765         BOpc = Instruction::And;
1766     }
1767   }
1768 
1769   // If this node is not part of the or/and tree, emit it as a branch.
1770   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1771       BOpc != Opc || !BOp->hasOneUse() ||
1772       BOp->getParent() != CurBB->getBasicBlock() ||
1773       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1774       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1775     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1776                                  TProb, FProb, InvertCond);
1777     return;
1778   }
1779 
1780   //  Create TmpBB after CurBB.
1781   MachineFunction::iterator BBI(CurBB);
1782   MachineFunction &MF = DAG.getMachineFunction();
1783   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1784   CurBB->getParent()->insert(++BBI, TmpBB);
1785 
1786   if (Opc == Instruction::Or) {
1787     // Codegen X | Y as:
1788     // BB1:
1789     //   jmp_if_X TBB
1790     //   jmp TmpBB
1791     // TmpBB:
1792     //   jmp_if_Y TBB
1793     //   jmp FBB
1794     //
1795 
1796     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1797     // The requirement is that
1798     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1799     //     = TrueProb for original BB.
1800     // Assuming the original probabilities are A and B, one choice is to set
1801     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1802     // A/(1+B) and 2B/(1+B). This choice assumes that
1803     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1804     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1805     // TmpBB, but the math is more complicated.
1806 
1807     auto NewTrueProb = TProb / 2;
1808     auto NewFalseProb = TProb / 2 + FProb;
1809     // Emit the LHS condition.
1810     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1811                          NewTrueProb, NewFalseProb, InvertCond);
1812 
1813     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1814     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1815     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1816     // Emit the RHS condition into TmpBB.
1817     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1818                          Probs[0], Probs[1], InvertCond);
1819   } else {
1820     assert(Opc == Instruction::And && "Unknown merge op!");
1821     // Codegen X & Y as:
1822     // BB1:
1823     //   jmp_if_X TmpBB
1824     //   jmp FBB
1825     // TmpBB:
1826     //   jmp_if_Y TBB
1827     //   jmp FBB
1828     //
1829     //  This requires creation of TmpBB after CurBB.
1830 
1831     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1832     // The requirement is that
1833     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1834     //     = FalseProb for original BB.
1835     // Assuming the original probabilities are A and B, one choice is to set
1836     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1837     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1838     // TrueProb for BB1 * FalseProb for TmpBB.
1839 
1840     auto NewTrueProb = TProb + FProb / 2;
1841     auto NewFalseProb = FProb / 2;
1842     // Emit the LHS condition.
1843     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1844                          NewTrueProb, NewFalseProb, InvertCond);
1845 
1846     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1847     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1848     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1849     // Emit the RHS condition into TmpBB.
1850     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1851                          Probs[0], Probs[1], InvertCond);
1852   }
1853 }
1854 
1855 /// If the set of cases should be emitted as a series of branches, return true.
1856 /// If we should emit this as a bunch of and/or'd together conditions, return
1857 /// false.
1858 bool
1859 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1860   if (Cases.size() != 2) return true;
1861 
1862   // If this is two comparisons of the same values or'd or and'd together, they
1863   // will get folded into a single comparison, so don't emit two blocks.
1864   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1865        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1866       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1867        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1868     return false;
1869   }
1870 
1871   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1872   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1873   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1874       Cases[0].CC == Cases[1].CC &&
1875       isa<Constant>(Cases[0].CmpRHS) &&
1876       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1877     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1878       return false;
1879     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1880       return false;
1881   }
1882 
1883   return true;
1884 }
1885 
1886 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1887   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1888 
1889   // Update machine-CFG edges.
1890   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1891 
1892   if (I.isUnconditional()) {
1893     // Update machine-CFG edges.
1894     BrMBB->addSuccessor(Succ0MBB);
1895 
1896     // If this is not a fall-through branch or optimizations are switched off,
1897     // emit the branch.
1898     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1899       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1900                               MVT::Other, getControlRoot(),
1901                               DAG.getBasicBlock(Succ0MBB)));
1902 
1903     return;
1904   }
1905 
1906   // If this condition is one of the special cases we handle, do special stuff
1907   // now.
1908   const Value *CondVal = I.getCondition();
1909   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1910 
1911   // If this is a series of conditions that are or'd or and'd together, emit
1912   // this as a sequence of branches instead of setcc's with and/or operations.
1913   // As long as jumps are not expensive, this should improve performance.
1914   // For example, instead of something like:
1915   //     cmp A, B
1916   //     C = seteq
1917   //     cmp D, E
1918   //     F = setle
1919   //     or C, F
1920   //     jnz foo
1921   // Emit:
1922   //     cmp A, B
1923   //     je foo
1924   //     cmp D, E
1925   //     jle foo
1926   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1927     Instruction::BinaryOps Opcode = BOp->getOpcode();
1928     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1929         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1930         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1931       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1932                            Opcode,
1933                            getEdgeProbability(BrMBB, Succ0MBB),
1934                            getEdgeProbability(BrMBB, Succ1MBB),
1935                            /*InvertCond=*/false);
1936       // If the compares in later blocks need to use values not currently
1937       // exported from this block, export them now.  This block should always
1938       // be the first entry.
1939       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1940 
1941       // Allow some cases to be rejected.
1942       if (ShouldEmitAsBranches(SwitchCases)) {
1943         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1944           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1945           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1946         }
1947 
1948         // Emit the branch for this block.
1949         visitSwitchCase(SwitchCases[0], BrMBB);
1950         SwitchCases.erase(SwitchCases.begin());
1951         return;
1952       }
1953 
1954       // Okay, we decided not to do this, remove any inserted MBB's and clear
1955       // SwitchCases.
1956       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1957         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1958 
1959       SwitchCases.clear();
1960     }
1961   }
1962 
1963   // Create a CaseBlock record representing this branch.
1964   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1965                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
1966 
1967   // Use visitSwitchCase to actually insert the fast branch sequence for this
1968   // cond branch.
1969   visitSwitchCase(CB, BrMBB);
1970 }
1971 
1972 /// visitSwitchCase - Emits the necessary code to represent a single node in
1973 /// the binary search tree resulting from lowering a switch instruction.
1974 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1975                                           MachineBasicBlock *SwitchBB) {
1976   SDValue Cond;
1977   SDValue CondLHS = getValue(CB.CmpLHS);
1978   SDLoc dl = CB.DL;
1979 
1980   // Build the setcc now.
1981   if (!CB.CmpMHS) {
1982     // Fold "(X == true)" to X and "(X == false)" to !X to
1983     // handle common cases produced by branch lowering.
1984     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1985         CB.CC == ISD::SETEQ)
1986       Cond = CondLHS;
1987     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1988              CB.CC == ISD::SETEQ) {
1989       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1990       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1991     } else
1992       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1993   } else {
1994     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1995 
1996     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1997     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1998 
1999     SDValue CmpOp = getValue(CB.CmpMHS);
2000     EVT VT = CmpOp.getValueType();
2001 
2002     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2003       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2004                           ISD::SETLE);
2005     } else {
2006       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2007                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2008       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2009                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2010     }
2011   }
2012 
2013   // Update successor info
2014   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2015   // TrueBB and FalseBB are always different unless the incoming IR is
2016   // degenerate. This only happens when running llc on weird IR.
2017   if (CB.TrueBB != CB.FalseBB)
2018     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2019   SwitchBB->normalizeSuccProbs();
2020 
2021   // If the lhs block is the next block, invert the condition so that we can
2022   // fall through to the lhs instead of the rhs block.
2023   if (CB.TrueBB == NextBlock(SwitchBB)) {
2024     std::swap(CB.TrueBB, CB.FalseBB);
2025     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2026     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2027   }
2028 
2029   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2030                                MVT::Other, getControlRoot(), Cond,
2031                                DAG.getBasicBlock(CB.TrueBB));
2032 
2033   // Insert the false branch. Do this even if it's a fall through branch,
2034   // this makes it easier to do DAG optimizations which require inverting
2035   // the branch condition.
2036   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2037                        DAG.getBasicBlock(CB.FalseBB));
2038 
2039   DAG.setRoot(BrCond);
2040 }
2041 
2042 /// visitJumpTable - Emit JumpTable node in the current MBB
2043 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2044   // Emit the code for the jump table
2045   assert(JT.Reg != -1U && "Should lower JT Header first!");
2046   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2047   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2048                                      JT.Reg, PTy);
2049   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2050   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2051                                     MVT::Other, Index.getValue(1),
2052                                     Table, Index);
2053   DAG.setRoot(BrJumpTable);
2054 }
2055 
2056 /// visitJumpTableHeader - This function emits necessary code to produce index
2057 /// in the JumpTable from switch case.
2058 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2059                                                JumpTableHeader &JTH,
2060                                                MachineBasicBlock *SwitchBB) {
2061   SDLoc dl = getCurSDLoc();
2062 
2063   // Subtract the lowest switch case value from the value being switched on and
2064   // conditional branch to default mbb if the result is greater than the
2065   // difference between smallest and largest cases.
2066   SDValue SwitchOp = getValue(JTH.SValue);
2067   EVT VT = SwitchOp.getValueType();
2068   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2069                             DAG.getConstant(JTH.First, dl, VT));
2070 
2071   // The SDNode we just created, which holds the value being switched on minus
2072   // the smallest case value, needs to be copied to a virtual register so it
2073   // can be used as an index into the jump table in a subsequent basic block.
2074   // This value may be smaller or larger than the target's pointer type, and
2075   // therefore require extension or truncating.
2076   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2077   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2078 
2079   unsigned JumpTableReg =
2080       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2081   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2082                                     JumpTableReg, SwitchOp);
2083   JT.Reg = JumpTableReg;
2084 
2085   // Emit the range check for the jump table, and branch to the default block
2086   // for the switch statement if the value being switched on exceeds the largest
2087   // case in the switch.
2088   SDValue CMP = DAG.getSetCC(
2089       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2090                                  Sub.getValueType()),
2091       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2092 
2093   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2094                                MVT::Other, CopyTo, CMP,
2095                                DAG.getBasicBlock(JT.Default));
2096 
2097   // Avoid emitting unnecessary branches to the next block.
2098   if (JT.MBB != NextBlock(SwitchBB))
2099     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2100                          DAG.getBasicBlock(JT.MBB));
2101 
2102   DAG.setRoot(BrCond);
2103 }
2104 
2105 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2106 /// variable if there exists one.
2107 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2108                                  SDValue &Chain) {
2109   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2110   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2111   MachineFunction &MF = DAG.getMachineFunction();
2112   Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
2113   MachineSDNode *Node =
2114       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2115   if (Global) {
2116     MachinePointerInfo MPInfo(Global);
2117     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2118     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2119                  MachineMemOperand::MODereferenceable;
2120     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2121                                        DAG.getEVTAlignment(PtrTy));
2122     Node->setMemRefs(MemRefs, MemRefs + 1);
2123   }
2124   return SDValue(Node, 0);
2125 }
2126 
2127 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2128 /// tail spliced into a stack protector check success bb.
2129 ///
2130 /// For a high level explanation of how this fits into the stack protector
2131 /// generation see the comment on the declaration of class
2132 /// StackProtectorDescriptor.
2133 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2134                                                   MachineBasicBlock *ParentBB) {
2135 
2136   // First create the loads to the guard/stack slot for the comparison.
2137   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2138   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2139 
2140   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2141   int FI = MFI.getStackProtectorIndex();
2142 
2143   SDValue Guard;
2144   SDLoc dl = getCurSDLoc();
2145   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2146   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2147   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2148 
2149   // Generate code to load the content of the guard slot.
2150   SDValue StackSlot = DAG.getLoad(
2151       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2152       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2153       MachineMemOperand::MOVolatile);
2154 
2155   // Retrieve guard check function, nullptr if instrumentation is inlined.
2156   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2157     // The target provides a guard check function to validate the guard value.
2158     // Generate a call to that function with the content of the guard slot as
2159     // argument.
2160     auto *Fn = cast<Function>(GuardCheck);
2161     FunctionType *FnTy = Fn->getFunctionType();
2162     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2163 
2164     TargetLowering::ArgListTy Args;
2165     TargetLowering::ArgListEntry Entry;
2166     Entry.Node = StackSlot;
2167     Entry.Ty = FnTy->getParamType(0);
2168     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2169       Entry.IsInReg = true;
2170     Args.push_back(Entry);
2171 
2172     TargetLowering::CallLoweringInfo CLI(DAG);
2173     CLI.setDebugLoc(getCurSDLoc())
2174       .setChain(DAG.getEntryNode())
2175       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2176                  getValue(GuardCheck), std::move(Args));
2177 
2178     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2179     DAG.setRoot(Result.second);
2180     return;
2181   }
2182 
2183   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2184   // Otherwise, emit a volatile load to retrieve the stack guard value.
2185   SDValue Chain = DAG.getEntryNode();
2186   if (TLI.useLoadStackGuardNode()) {
2187     Guard = getLoadStackGuard(DAG, dl, Chain);
2188   } else {
2189     const Value *IRGuard = TLI.getSDagStackGuard(M);
2190     SDValue GuardPtr = getValue(IRGuard);
2191 
2192     Guard =
2193         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2194                     Align, MachineMemOperand::MOVolatile);
2195   }
2196 
2197   // Perform the comparison via a subtract/getsetcc.
2198   EVT VT = Guard.getValueType();
2199   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2200 
2201   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2202                                                         *DAG.getContext(),
2203                                                         Sub.getValueType()),
2204                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2205 
2206   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2207   // branch to failure MBB.
2208   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2209                                MVT::Other, StackSlot.getOperand(0),
2210                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2211   // Otherwise branch to success MBB.
2212   SDValue Br = DAG.getNode(ISD::BR, dl,
2213                            MVT::Other, BrCond,
2214                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2215 
2216   DAG.setRoot(Br);
2217 }
2218 
2219 /// Codegen the failure basic block for a stack protector check.
2220 ///
2221 /// A failure stack protector machine basic block consists simply of a call to
2222 /// __stack_chk_fail().
2223 ///
2224 /// For a high level explanation of how this fits into the stack protector
2225 /// generation see the comment on the declaration of class
2226 /// StackProtectorDescriptor.
2227 void
2228 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2229   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2230   SDValue Chain =
2231       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2232                       None, false, getCurSDLoc(), false, false).second;
2233   DAG.setRoot(Chain);
2234 }
2235 
2236 /// visitBitTestHeader - This function emits necessary code to produce value
2237 /// suitable for "bit tests"
2238 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2239                                              MachineBasicBlock *SwitchBB) {
2240   SDLoc dl = getCurSDLoc();
2241 
2242   // Subtract the minimum value
2243   SDValue SwitchOp = getValue(B.SValue);
2244   EVT VT = SwitchOp.getValueType();
2245   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2246                             DAG.getConstant(B.First, dl, VT));
2247 
2248   // Check range
2249   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2250   SDValue RangeCmp = DAG.getSetCC(
2251       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2252                                  Sub.getValueType()),
2253       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2254 
2255   // Determine the type of the test operands.
2256   bool UsePtrType = false;
2257   if (!TLI.isTypeLegal(VT))
2258     UsePtrType = true;
2259   else {
2260     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2261       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2262         // Switch table case range are encoded into series of masks.
2263         // Just use pointer type, it's guaranteed to fit.
2264         UsePtrType = true;
2265         break;
2266       }
2267   }
2268   if (UsePtrType) {
2269     VT = TLI.getPointerTy(DAG.getDataLayout());
2270     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2271   }
2272 
2273   B.RegVT = VT.getSimpleVT();
2274   B.Reg = FuncInfo.CreateReg(B.RegVT);
2275   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2276 
2277   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2278 
2279   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2280   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2281   SwitchBB->normalizeSuccProbs();
2282 
2283   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2284                                 MVT::Other, CopyTo, RangeCmp,
2285                                 DAG.getBasicBlock(B.Default));
2286 
2287   // Avoid emitting unnecessary branches to the next block.
2288   if (MBB != NextBlock(SwitchBB))
2289     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2290                           DAG.getBasicBlock(MBB));
2291 
2292   DAG.setRoot(BrRange);
2293 }
2294 
2295 /// visitBitTestCase - this function produces one "bit test"
2296 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2297                                            MachineBasicBlock* NextMBB,
2298                                            BranchProbability BranchProbToNext,
2299                                            unsigned Reg,
2300                                            BitTestCase &B,
2301                                            MachineBasicBlock *SwitchBB) {
2302   SDLoc dl = getCurSDLoc();
2303   MVT VT = BB.RegVT;
2304   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2305   SDValue Cmp;
2306   unsigned PopCount = countPopulation(B.Mask);
2307   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2308   if (PopCount == 1) {
2309     // Testing for a single bit; just compare the shift count with what it
2310     // would need to be to shift a 1 bit in that position.
2311     Cmp = DAG.getSetCC(
2312         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2313         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2314         ISD::SETEQ);
2315   } else if (PopCount == BB.Range) {
2316     // There is only one zero bit in the range, test for it directly.
2317     Cmp = DAG.getSetCC(
2318         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2319         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2320         ISD::SETNE);
2321   } else {
2322     // Make desired shift
2323     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2324                                     DAG.getConstant(1, dl, VT), ShiftOp);
2325 
2326     // Emit bit tests and jumps
2327     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2328                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2329     Cmp = DAG.getSetCC(
2330         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2331         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2332   }
2333 
2334   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2335   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2336   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2337   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2338   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2339   // one as they are relative probabilities (and thus work more like weights),
2340   // and hence we need to normalize them to let the sum of them become one.
2341   SwitchBB->normalizeSuccProbs();
2342 
2343   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2344                               MVT::Other, getControlRoot(),
2345                               Cmp, DAG.getBasicBlock(B.TargetBB));
2346 
2347   // Avoid emitting unnecessary branches to the next block.
2348   if (NextMBB != NextBlock(SwitchBB))
2349     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2350                         DAG.getBasicBlock(NextMBB));
2351 
2352   DAG.setRoot(BrAnd);
2353 }
2354 
2355 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2356   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2357 
2358   // Retrieve successors. Look through artificial IR level blocks like
2359   // catchswitch for successors.
2360   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2361   const BasicBlock *EHPadBB = I.getSuccessor(1);
2362 
2363   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2364   // have to do anything here to lower funclet bundles.
2365   assert(!I.hasOperandBundlesOtherThan(
2366              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2367          "Cannot lower invokes with arbitrary operand bundles yet!");
2368 
2369   const Value *Callee(I.getCalledValue());
2370   const Function *Fn = dyn_cast<Function>(Callee);
2371   if (isa<InlineAsm>(Callee))
2372     visitInlineAsm(&I);
2373   else if (Fn && Fn->isIntrinsic()) {
2374     switch (Fn->getIntrinsicID()) {
2375     default:
2376       llvm_unreachable("Cannot invoke this intrinsic");
2377     case Intrinsic::donothing:
2378       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2379       break;
2380     case Intrinsic::experimental_patchpoint_void:
2381     case Intrinsic::experimental_patchpoint_i64:
2382       visitPatchpoint(&I, EHPadBB);
2383       break;
2384     case Intrinsic::experimental_gc_statepoint:
2385       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2386       break;
2387     }
2388   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2389     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2390     // Eventually we will support lowering the @llvm.experimental.deoptimize
2391     // intrinsic, and right now there are no plans to support other intrinsics
2392     // with deopt state.
2393     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2394   } else {
2395     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2396   }
2397 
2398   // If the value of the invoke is used outside of its defining block, make it
2399   // available as a virtual register.
2400   // We already took care of the exported value for the statepoint instruction
2401   // during call to the LowerStatepoint.
2402   if (!isStatepoint(I)) {
2403     CopyToExportRegsIfNeeded(&I);
2404   }
2405 
2406   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2407   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2408   BranchProbability EHPadBBProb =
2409       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2410           : BranchProbability::getZero();
2411   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2412 
2413   // Update successor info.
2414   addSuccessorWithProb(InvokeMBB, Return);
2415   for (auto &UnwindDest : UnwindDests) {
2416     UnwindDest.first->setIsEHPad();
2417     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2418   }
2419   InvokeMBB->normalizeSuccProbs();
2420 
2421   // Drop into normal successor.
2422   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2423                           MVT::Other, getControlRoot(),
2424                           DAG.getBasicBlock(Return)));
2425 }
2426 
2427 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2428   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2429 }
2430 
2431 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2432   assert(FuncInfo.MBB->isEHPad() &&
2433          "Call to landingpad not in landing pad!");
2434 
2435   MachineBasicBlock *MBB = FuncInfo.MBB;
2436   addLandingPadInfo(LP, *MBB);
2437 
2438   // If there aren't registers to copy the values into (e.g., during SjLj
2439   // exceptions), then don't bother to create these DAG nodes.
2440   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2441   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2442   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2443       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2444     return;
2445 
2446   // If landingpad's return type is token type, we don't create DAG nodes
2447   // for its exception pointer and selector value. The extraction of exception
2448   // pointer or selector value from token type landingpads is not currently
2449   // supported.
2450   if (LP.getType()->isTokenTy())
2451     return;
2452 
2453   SmallVector<EVT, 2> ValueVTs;
2454   SDLoc dl = getCurSDLoc();
2455   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2456   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2457 
2458   // Get the two live-in registers as SDValues. The physregs have already been
2459   // copied into virtual registers.
2460   SDValue Ops[2];
2461   if (FuncInfo.ExceptionPointerVirtReg) {
2462     Ops[0] = DAG.getZExtOrTrunc(
2463         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2464                            FuncInfo.ExceptionPointerVirtReg,
2465                            TLI.getPointerTy(DAG.getDataLayout())),
2466         dl, ValueVTs[0]);
2467   } else {
2468     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2469   }
2470   Ops[1] = DAG.getZExtOrTrunc(
2471       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2472                          FuncInfo.ExceptionSelectorVirtReg,
2473                          TLI.getPointerTy(DAG.getDataLayout())),
2474       dl, ValueVTs[1]);
2475 
2476   // Merge into one.
2477   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2478                             DAG.getVTList(ValueVTs), Ops);
2479   setValue(&LP, Res);
2480 }
2481 
2482 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2483 #ifndef NDEBUG
2484   for (const CaseCluster &CC : Clusters)
2485     assert(CC.Low == CC.High && "Input clusters must be single-case");
2486 #endif
2487 
2488   std::sort(Clusters.begin(), Clusters.end(),
2489             [](const CaseCluster &a, const CaseCluster &b) {
2490     return a.Low->getValue().slt(b.Low->getValue());
2491   });
2492 
2493   // Merge adjacent clusters with the same destination.
2494   const unsigned N = Clusters.size();
2495   unsigned DstIndex = 0;
2496   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2497     CaseCluster &CC = Clusters[SrcIndex];
2498     const ConstantInt *CaseVal = CC.Low;
2499     MachineBasicBlock *Succ = CC.MBB;
2500 
2501     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2502         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2503       // If this case has the same successor and is a neighbour, merge it into
2504       // the previous cluster.
2505       Clusters[DstIndex - 1].High = CaseVal;
2506       Clusters[DstIndex - 1].Prob += CC.Prob;
2507     } else {
2508       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2509                    sizeof(Clusters[SrcIndex]));
2510     }
2511   }
2512   Clusters.resize(DstIndex);
2513 }
2514 
2515 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2516                                            MachineBasicBlock *Last) {
2517   // Update JTCases.
2518   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2519     if (JTCases[i].first.HeaderBB == First)
2520       JTCases[i].first.HeaderBB = Last;
2521 
2522   // Update BitTestCases.
2523   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2524     if (BitTestCases[i].Parent == First)
2525       BitTestCases[i].Parent = Last;
2526 }
2527 
2528 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2529   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2530 
2531   // Update machine-CFG edges with unique successors.
2532   SmallSet<BasicBlock*, 32> Done;
2533   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2534     BasicBlock *BB = I.getSuccessor(i);
2535     bool Inserted = Done.insert(BB).second;
2536     if (!Inserted)
2537         continue;
2538 
2539     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2540     addSuccessorWithProb(IndirectBrMBB, Succ);
2541   }
2542   IndirectBrMBB->normalizeSuccProbs();
2543 
2544   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2545                           MVT::Other, getControlRoot(),
2546                           getValue(I.getAddress())));
2547 }
2548 
2549 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2550   if (DAG.getTarget().Options.TrapUnreachable)
2551     DAG.setRoot(
2552         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2553 }
2554 
2555 void SelectionDAGBuilder::visitFSub(const User &I) {
2556   // -0.0 - X --> fneg
2557   Type *Ty = I.getType();
2558   if (isa<Constant>(I.getOperand(0)) &&
2559       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2560     SDValue Op2 = getValue(I.getOperand(1));
2561     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2562                              Op2.getValueType(), Op2));
2563     return;
2564   }
2565 
2566   visitBinary(I, ISD::FSUB);
2567 }
2568 
2569 /// Checks if the given instruction performs a vector reduction, in which case
2570 /// we have the freedom to alter the elements in the result as long as the
2571 /// reduction of them stays unchanged.
2572 static bool isVectorReductionOp(const User *I) {
2573   const Instruction *Inst = dyn_cast<Instruction>(I);
2574   if (!Inst || !Inst->getType()->isVectorTy())
2575     return false;
2576 
2577   auto OpCode = Inst->getOpcode();
2578   switch (OpCode) {
2579   case Instruction::Add:
2580   case Instruction::Mul:
2581   case Instruction::And:
2582   case Instruction::Or:
2583   case Instruction::Xor:
2584     break;
2585   case Instruction::FAdd:
2586   case Instruction::FMul:
2587     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2588       if (FPOp->getFastMathFlags().isFast())
2589         break;
2590     LLVM_FALLTHROUGH;
2591   default:
2592     return false;
2593   }
2594 
2595   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2596   unsigned ElemNumToReduce = ElemNum;
2597 
2598   // Do DFS search on the def-use chain from the given instruction. We only
2599   // allow four kinds of operations during the search until we reach the
2600   // instruction that extracts the first element from the vector:
2601   //
2602   //   1. The reduction operation of the same opcode as the given instruction.
2603   //
2604   //   2. PHI node.
2605   //
2606   //   3. ShuffleVector instruction together with a reduction operation that
2607   //      does a partial reduction.
2608   //
2609   //   4. ExtractElement that extracts the first element from the vector, and we
2610   //      stop searching the def-use chain here.
2611   //
2612   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2613   // from 1-3 to the stack to continue the DFS. The given instruction is not
2614   // a reduction operation if we meet any other instructions other than those
2615   // listed above.
2616 
2617   SmallVector<const User *, 16> UsersToVisit{Inst};
2618   SmallPtrSet<const User *, 16> Visited;
2619   bool ReduxExtracted = false;
2620 
2621   while (!UsersToVisit.empty()) {
2622     auto User = UsersToVisit.back();
2623     UsersToVisit.pop_back();
2624     if (!Visited.insert(User).second)
2625       continue;
2626 
2627     for (const auto &U : User->users()) {
2628       auto Inst = dyn_cast<Instruction>(U);
2629       if (!Inst)
2630         return false;
2631 
2632       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2633         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2634           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2635             return false;
2636         UsersToVisit.push_back(U);
2637       } else if (const ShuffleVectorInst *ShufInst =
2638                      dyn_cast<ShuffleVectorInst>(U)) {
2639         // Detect the following pattern: A ShuffleVector instruction together
2640         // with a reduction that do partial reduction on the first and second
2641         // ElemNumToReduce / 2 elements, and store the result in
2642         // ElemNumToReduce / 2 elements in another vector.
2643 
2644         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2645         if (ResultElements < ElemNum)
2646           return false;
2647 
2648         if (ElemNumToReduce == 1)
2649           return false;
2650         if (!isa<UndefValue>(U->getOperand(1)))
2651           return false;
2652         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2653           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2654             return false;
2655         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2656           if (ShufInst->getMaskValue(i) != -1)
2657             return false;
2658 
2659         // There is only one user of this ShuffleVector instruction, which
2660         // must be a reduction operation.
2661         if (!U->hasOneUse())
2662           return false;
2663 
2664         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2665         if (!U2 || U2->getOpcode() != OpCode)
2666           return false;
2667 
2668         // Check operands of the reduction operation.
2669         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2670             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2671           UsersToVisit.push_back(U2);
2672           ElemNumToReduce /= 2;
2673         } else
2674           return false;
2675       } else if (isa<ExtractElementInst>(U)) {
2676         // At this moment we should have reduced all elements in the vector.
2677         if (ElemNumToReduce != 1)
2678           return false;
2679 
2680         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2681         if (!Val || Val->getZExtValue() != 0)
2682           return false;
2683 
2684         ReduxExtracted = true;
2685       } else
2686         return false;
2687     }
2688   }
2689   return ReduxExtracted;
2690 }
2691 
2692 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2693   SDValue Op1 = getValue(I.getOperand(0));
2694   SDValue Op2 = getValue(I.getOperand(1));
2695 
2696   bool nuw = false;
2697   bool nsw = false;
2698   bool exact = false;
2699   bool vec_redux = false;
2700   FastMathFlags FMF;
2701 
2702   if (const OverflowingBinaryOperator *OFBinOp =
2703           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2704     nuw = OFBinOp->hasNoUnsignedWrap();
2705     nsw = OFBinOp->hasNoSignedWrap();
2706   }
2707   if (const PossiblyExactOperator *ExactOp =
2708           dyn_cast<const PossiblyExactOperator>(&I))
2709     exact = ExactOp->isExact();
2710   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2711     FMF = FPOp->getFastMathFlags();
2712 
2713   if (isVectorReductionOp(&I)) {
2714     vec_redux = true;
2715     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2716   }
2717 
2718   SDNodeFlags Flags;
2719   Flags.setExact(exact);
2720   Flags.setNoSignedWrap(nsw);
2721   Flags.setNoUnsignedWrap(nuw);
2722   Flags.setVectorReduction(vec_redux);
2723   Flags.setAllowReciprocal(FMF.allowReciprocal());
2724   Flags.setAllowContract(FMF.allowContract());
2725   Flags.setNoInfs(FMF.noInfs());
2726   Flags.setNoNaNs(FMF.noNaNs());
2727   Flags.setNoSignedZeros(FMF.noSignedZeros());
2728   Flags.setUnsafeAlgebra(FMF.isFast());
2729 
2730   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2731                                      Op1, Op2, Flags);
2732   setValue(&I, BinNodeValue);
2733 }
2734 
2735 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2736   SDValue Op1 = getValue(I.getOperand(0));
2737   SDValue Op2 = getValue(I.getOperand(1));
2738 
2739   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2740       Op2.getValueType(), DAG.getDataLayout());
2741 
2742   // Coerce the shift amount to the right type if we can.
2743   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2744     unsigned ShiftSize = ShiftTy.getSizeInBits();
2745     unsigned Op2Size = Op2.getValueSizeInBits();
2746     SDLoc DL = getCurSDLoc();
2747 
2748     // If the operand is smaller than the shift count type, promote it.
2749     if (ShiftSize > Op2Size)
2750       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2751 
2752     // If the operand is larger than the shift count type but the shift
2753     // count type has enough bits to represent any shift value, truncate
2754     // it now. This is a common case and it exposes the truncate to
2755     // optimization early.
2756     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2757       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2758     // Otherwise we'll need to temporarily settle for some other convenient
2759     // type.  Type legalization will make adjustments once the shiftee is split.
2760     else
2761       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2762   }
2763 
2764   bool nuw = false;
2765   bool nsw = false;
2766   bool exact = false;
2767 
2768   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2769 
2770     if (const OverflowingBinaryOperator *OFBinOp =
2771             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2772       nuw = OFBinOp->hasNoUnsignedWrap();
2773       nsw = OFBinOp->hasNoSignedWrap();
2774     }
2775     if (const PossiblyExactOperator *ExactOp =
2776             dyn_cast<const PossiblyExactOperator>(&I))
2777       exact = ExactOp->isExact();
2778   }
2779   SDNodeFlags Flags;
2780   Flags.setExact(exact);
2781   Flags.setNoSignedWrap(nsw);
2782   Flags.setNoUnsignedWrap(nuw);
2783   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2784                             Flags);
2785   setValue(&I, Res);
2786 }
2787 
2788 void SelectionDAGBuilder::visitSDiv(const User &I) {
2789   SDValue Op1 = getValue(I.getOperand(0));
2790   SDValue Op2 = getValue(I.getOperand(1));
2791 
2792   SDNodeFlags Flags;
2793   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2794                  cast<PossiblyExactOperator>(&I)->isExact());
2795   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2796                            Op2, Flags));
2797 }
2798 
2799 void SelectionDAGBuilder::visitICmp(const User &I) {
2800   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2801   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2802     predicate = IC->getPredicate();
2803   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2804     predicate = ICmpInst::Predicate(IC->getPredicate());
2805   SDValue Op1 = getValue(I.getOperand(0));
2806   SDValue Op2 = getValue(I.getOperand(1));
2807   ISD::CondCode Opcode = getICmpCondCode(predicate);
2808 
2809   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2810                                                         I.getType());
2811   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2812 }
2813 
2814 void SelectionDAGBuilder::visitFCmp(const User &I) {
2815   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2816   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2817     predicate = FC->getPredicate();
2818   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2819     predicate = FCmpInst::Predicate(FC->getPredicate());
2820   SDValue Op1 = getValue(I.getOperand(0));
2821   SDValue Op2 = getValue(I.getOperand(1));
2822   ISD::CondCode Condition = getFCmpCondCode(predicate);
2823 
2824   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2825   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2826   // further optimization, but currently FMF is only applicable to binary nodes.
2827   if (TM.Options.NoNaNsFPMath)
2828     Condition = getFCmpCodeWithoutNaN(Condition);
2829   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2830                                                         I.getType());
2831   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2832 }
2833 
2834 // Check if the condition of the select has one use or two users that are both
2835 // selects with the same condition.
2836 static bool hasOnlySelectUsers(const Value *Cond) {
2837   return llvm::all_of(Cond->users(), [](const Value *V) {
2838     return isa<SelectInst>(V);
2839   });
2840 }
2841 
2842 void SelectionDAGBuilder::visitSelect(const User &I) {
2843   SmallVector<EVT, 4> ValueVTs;
2844   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2845                   ValueVTs);
2846   unsigned NumValues = ValueVTs.size();
2847   if (NumValues == 0) return;
2848 
2849   SmallVector<SDValue, 4> Values(NumValues);
2850   SDValue Cond     = getValue(I.getOperand(0));
2851   SDValue LHSVal   = getValue(I.getOperand(1));
2852   SDValue RHSVal   = getValue(I.getOperand(2));
2853   auto BaseOps = {Cond};
2854   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2855     ISD::VSELECT : ISD::SELECT;
2856 
2857   // Min/max matching is only viable if all output VTs are the same.
2858   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2859     EVT VT = ValueVTs[0];
2860     LLVMContext &Ctx = *DAG.getContext();
2861     auto &TLI = DAG.getTargetLoweringInfo();
2862 
2863     // We care about the legality of the operation after it has been type
2864     // legalized.
2865     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2866            VT != TLI.getTypeToTransformTo(Ctx, VT))
2867       VT = TLI.getTypeToTransformTo(Ctx, VT);
2868 
2869     // If the vselect is legal, assume we want to leave this as a vector setcc +
2870     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2871     // min/max is legal on the scalar type.
2872     bool UseScalarMinMax = VT.isVector() &&
2873       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2874 
2875     Value *LHS, *RHS;
2876     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2877     ISD::NodeType Opc = ISD::DELETED_NODE;
2878     switch (SPR.Flavor) {
2879     case SPF_UMAX:    Opc = ISD::UMAX; break;
2880     case SPF_UMIN:    Opc = ISD::UMIN; break;
2881     case SPF_SMAX:    Opc = ISD::SMAX; break;
2882     case SPF_SMIN:    Opc = ISD::SMIN; break;
2883     case SPF_FMINNUM:
2884       switch (SPR.NaNBehavior) {
2885       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2886       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2887       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2888       case SPNB_RETURNS_ANY: {
2889         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2890           Opc = ISD::FMINNUM;
2891         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2892           Opc = ISD::FMINNAN;
2893         else if (UseScalarMinMax)
2894           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2895             ISD::FMINNUM : ISD::FMINNAN;
2896         break;
2897       }
2898       }
2899       break;
2900     case SPF_FMAXNUM:
2901       switch (SPR.NaNBehavior) {
2902       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2903       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2904       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2905       case SPNB_RETURNS_ANY:
2906 
2907         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2908           Opc = ISD::FMAXNUM;
2909         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2910           Opc = ISD::FMAXNAN;
2911         else if (UseScalarMinMax)
2912           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2913             ISD::FMAXNUM : ISD::FMAXNAN;
2914         break;
2915       }
2916       break;
2917     default: break;
2918     }
2919 
2920     if (Opc != ISD::DELETED_NODE &&
2921         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2922          (UseScalarMinMax &&
2923           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2924         // If the underlying comparison instruction is used by any other
2925         // instruction, the consumed instructions won't be destroyed, so it is
2926         // not profitable to convert to a min/max.
2927         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2928       OpCode = Opc;
2929       LHSVal = getValue(LHS);
2930       RHSVal = getValue(RHS);
2931       BaseOps = {};
2932     }
2933   }
2934 
2935   for (unsigned i = 0; i != NumValues; ++i) {
2936     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2937     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2938     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2939     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2940                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2941                             Ops);
2942   }
2943 
2944   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2945                            DAG.getVTList(ValueVTs), Values));
2946 }
2947 
2948 void SelectionDAGBuilder::visitTrunc(const User &I) {
2949   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2950   SDValue N = getValue(I.getOperand(0));
2951   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2952                                                         I.getType());
2953   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2954 }
2955 
2956 void SelectionDAGBuilder::visitZExt(const User &I) {
2957   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2958   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2959   SDValue N = getValue(I.getOperand(0));
2960   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2961                                                         I.getType());
2962   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2963 }
2964 
2965 void SelectionDAGBuilder::visitSExt(const User &I) {
2966   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2967   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2968   SDValue N = getValue(I.getOperand(0));
2969   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2970                                                         I.getType());
2971   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2972 }
2973 
2974 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2975   // FPTrunc is never a no-op cast, no need to check
2976   SDValue N = getValue(I.getOperand(0));
2977   SDLoc dl = getCurSDLoc();
2978   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2979   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2980   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2981                            DAG.getTargetConstant(
2982                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2983 }
2984 
2985 void SelectionDAGBuilder::visitFPExt(const User &I) {
2986   // FPExt is never a no-op cast, no need to check
2987   SDValue N = getValue(I.getOperand(0));
2988   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2989                                                         I.getType());
2990   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2991 }
2992 
2993 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2994   // FPToUI is never a no-op cast, no need to check
2995   SDValue N = getValue(I.getOperand(0));
2996   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2997                                                         I.getType());
2998   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2999 }
3000 
3001 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3002   // FPToSI is never a no-op cast, no need to check
3003   SDValue N = getValue(I.getOperand(0));
3004   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3005                                                         I.getType());
3006   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3007 }
3008 
3009 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3010   // UIToFP is never a no-op cast, no need to check
3011   SDValue N = getValue(I.getOperand(0));
3012   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3013                                                         I.getType());
3014   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3015 }
3016 
3017 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3018   // SIToFP is never a no-op cast, no need to check
3019   SDValue N = getValue(I.getOperand(0));
3020   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3021                                                         I.getType());
3022   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3023 }
3024 
3025 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3026   // What to do depends on the size of the integer and the size of the pointer.
3027   // We can either truncate, zero extend, or no-op, accordingly.
3028   SDValue N = getValue(I.getOperand(0));
3029   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3030                                                         I.getType());
3031   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3032 }
3033 
3034 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3035   // What to do depends on the size of the integer and the size of the pointer.
3036   // We can either truncate, zero extend, or no-op, accordingly.
3037   SDValue N = getValue(I.getOperand(0));
3038   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3039                                                         I.getType());
3040   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3041 }
3042 
3043 void SelectionDAGBuilder::visitBitCast(const User &I) {
3044   SDValue N = getValue(I.getOperand(0));
3045   SDLoc dl = getCurSDLoc();
3046   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3047                                                         I.getType());
3048 
3049   // BitCast assures us that source and destination are the same size so this is
3050   // either a BITCAST or a no-op.
3051   if (DestVT != N.getValueType())
3052     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3053                              DestVT, N)); // convert types.
3054   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3055   // might fold any kind of constant expression to an integer constant and that
3056   // is not what we are looking for. Only recognize a bitcast of a genuine
3057   // constant integer as an opaque constant.
3058   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3059     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3060                                  /*isOpaque*/true));
3061   else
3062     setValue(&I, N);            // noop cast.
3063 }
3064 
3065 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3066   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3067   const Value *SV = I.getOperand(0);
3068   SDValue N = getValue(SV);
3069   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3070 
3071   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3072   unsigned DestAS = I.getType()->getPointerAddressSpace();
3073 
3074   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3075     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3076 
3077   setValue(&I, N);
3078 }
3079 
3080 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3081   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3082   SDValue InVec = getValue(I.getOperand(0));
3083   SDValue InVal = getValue(I.getOperand(1));
3084   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3085                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3086   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3087                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3088                            InVec, InVal, InIdx));
3089 }
3090 
3091 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3092   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3093   SDValue InVec = getValue(I.getOperand(0));
3094   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3095                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3096   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3097                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3098                            InVec, InIdx));
3099 }
3100 
3101 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3102   SDValue Src1 = getValue(I.getOperand(0));
3103   SDValue Src2 = getValue(I.getOperand(1));
3104   SDLoc DL = getCurSDLoc();
3105 
3106   SmallVector<int, 8> Mask;
3107   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3108   unsigned MaskNumElts = Mask.size();
3109 
3110   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3111   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3112   EVT SrcVT = Src1.getValueType();
3113   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3114 
3115   if (SrcNumElts == MaskNumElts) {
3116     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3117     return;
3118   }
3119 
3120   // Normalize the shuffle vector since mask and vector length don't match.
3121   if (SrcNumElts < MaskNumElts) {
3122     // Mask is longer than the source vectors. We can use concatenate vector to
3123     // make the mask and vectors lengths match.
3124 
3125     if (MaskNumElts % SrcNumElts == 0) {
3126       // Mask length is a multiple of the source vector length.
3127       // Check if the shuffle is some kind of concatenation of the input
3128       // vectors.
3129       unsigned NumConcat = MaskNumElts / SrcNumElts;
3130       bool IsConcat = true;
3131       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3132       for (unsigned i = 0; i != MaskNumElts; ++i) {
3133         int Idx = Mask[i];
3134         if (Idx < 0)
3135           continue;
3136         // Ensure the indices in each SrcVT sized piece are sequential and that
3137         // the same source is used for the whole piece.
3138         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3139             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3140              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3141           IsConcat = false;
3142           break;
3143         }
3144         // Remember which source this index came from.
3145         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3146       }
3147 
3148       // The shuffle is concatenating multiple vectors together. Just emit
3149       // a CONCAT_VECTORS operation.
3150       if (IsConcat) {
3151         SmallVector<SDValue, 8> ConcatOps;
3152         for (auto Src : ConcatSrcs) {
3153           if (Src < 0)
3154             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3155           else if (Src == 0)
3156             ConcatOps.push_back(Src1);
3157           else
3158             ConcatOps.push_back(Src2);
3159         }
3160         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3161         return;
3162       }
3163     }
3164 
3165     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3166     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3167     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3168                                     PaddedMaskNumElts);
3169 
3170     // Pad both vectors with undefs to make them the same length as the mask.
3171     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3172 
3173     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3174     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3175     MOps1[0] = Src1;
3176     MOps2[0] = Src2;
3177 
3178     Src1 = Src1.isUndef()
3179                ? DAG.getUNDEF(PaddedVT)
3180                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3181     Src2 = Src2.isUndef()
3182                ? DAG.getUNDEF(PaddedVT)
3183                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3184 
3185     // Readjust mask for new input vector length.
3186     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3187     for (unsigned i = 0; i != MaskNumElts; ++i) {
3188       int Idx = Mask[i];
3189       if (Idx >= (int)SrcNumElts)
3190         Idx -= SrcNumElts - PaddedMaskNumElts;
3191       MappedOps[i] = Idx;
3192     }
3193 
3194     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3195 
3196     // If the concatenated vector was padded, extract a subvector with the
3197     // correct number of elements.
3198     if (MaskNumElts != PaddedMaskNumElts)
3199       Result = DAG.getNode(
3200           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3201           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3202 
3203     setValue(&I, Result);
3204     return;
3205   }
3206 
3207   if (SrcNumElts > MaskNumElts) {
3208     // Analyze the access pattern of the vector to see if we can extract
3209     // two subvectors and do the shuffle.
3210     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3211     bool CanExtract = true;
3212     for (int Idx : Mask) {
3213       unsigned Input = 0;
3214       if (Idx < 0)
3215         continue;
3216 
3217       if (Idx >= (int)SrcNumElts) {
3218         Input = 1;
3219         Idx -= SrcNumElts;
3220       }
3221 
3222       // If all the indices come from the same MaskNumElts sized portion of
3223       // the sources we can use extract. Also make sure the extract wouldn't
3224       // extract past the end of the source.
3225       int NewStartIdx = alignDown(Idx, MaskNumElts);
3226       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3227           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3228         CanExtract = false;
3229       // Make sure we always update StartIdx as we use it to track if all
3230       // elements are undef.
3231       StartIdx[Input] = NewStartIdx;
3232     }
3233 
3234     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3235       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3236       return;
3237     }
3238     if (CanExtract) {
3239       // Extract appropriate subvector and generate a vector shuffle
3240       for (unsigned Input = 0; Input < 2; ++Input) {
3241         SDValue &Src = Input == 0 ? Src1 : Src2;
3242         if (StartIdx[Input] < 0)
3243           Src = DAG.getUNDEF(VT);
3244         else {
3245           Src = DAG.getNode(
3246               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3247               DAG.getConstant(StartIdx[Input], DL,
3248                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3249         }
3250       }
3251 
3252       // Calculate new mask.
3253       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3254       for (int &Idx : MappedOps) {
3255         if (Idx >= (int)SrcNumElts)
3256           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3257         else if (Idx >= 0)
3258           Idx -= StartIdx[0];
3259       }
3260 
3261       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3262       return;
3263     }
3264   }
3265 
3266   // We can't use either concat vectors or extract subvectors so fall back to
3267   // replacing the shuffle with extract and build vector.
3268   // to insert and build vector.
3269   EVT EltVT = VT.getVectorElementType();
3270   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3271   SmallVector<SDValue,8> Ops;
3272   for (int Idx : Mask) {
3273     SDValue Res;
3274 
3275     if (Idx < 0) {
3276       Res = DAG.getUNDEF(EltVT);
3277     } else {
3278       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3279       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3280 
3281       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3282                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3283     }
3284 
3285     Ops.push_back(Res);
3286   }
3287 
3288   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3289 }
3290 
3291 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3292   ArrayRef<unsigned> Indices;
3293   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3294     Indices = IV->getIndices();
3295   else
3296     Indices = cast<ConstantExpr>(&I)->getIndices();
3297 
3298   const Value *Op0 = I.getOperand(0);
3299   const Value *Op1 = I.getOperand(1);
3300   Type *AggTy = I.getType();
3301   Type *ValTy = Op1->getType();
3302   bool IntoUndef = isa<UndefValue>(Op0);
3303   bool FromUndef = isa<UndefValue>(Op1);
3304 
3305   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3306 
3307   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3308   SmallVector<EVT, 4> AggValueVTs;
3309   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3310   SmallVector<EVT, 4> ValValueVTs;
3311   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3312 
3313   unsigned NumAggValues = AggValueVTs.size();
3314   unsigned NumValValues = ValValueVTs.size();
3315   SmallVector<SDValue, 4> Values(NumAggValues);
3316 
3317   // Ignore an insertvalue that produces an empty object
3318   if (!NumAggValues) {
3319     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3320     return;
3321   }
3322 
3323   SDValue Agg = getValue(Op0);
3324   unsigned i = 0;
3325   // Copy the beginning value(s) from the original aggregate.
3326   for (; i != LinearIndex; ++i)
3327     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3328                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3329   // Copy values from the inserted value(s).
3330   if (NumValValues) {
3331     SDValue Val = getValue(Op1);
3332     for (; i != LinearIndex + NumValValues; ++i)
3333       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3334                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3335   }
3336   // Copy remaining value(s) from the original aggregate.
3337   for (; i != NumAggValues; ++i)
3338     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3339                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3340 
3341   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3342                            DAG.getVTList(AggValueVTs), Values));
3343 }
3344 
3345 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3346   ArrayRef<unsigned> Indices;
3347   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3348     Indices = EV->getIndices();
3349   else
3350     Indices = cast<ConstantExpr>(&I)->getIndices();
3351 
3352   const Value *Op0 = I.getOperand(0);
3353   Type *AggTy = Op0->getType();
3354   Type *ValTy = I.getType();
3355   bool OutOfUndef = isa<UndefValue>(Op0);
3356 
3357   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3358 
3359   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3360   SmallVector<EVT, 4> ValValueVTs;
3361   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3362 
3363   unsigned NumValValues = ValValueVTs.size();
3364 
3365   // Ignore a extractvalue that produces an empty object
3366   if (!NumValValues) {
3367     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3368     return;
3369   }
3370 
3371   SmallVector<SDValue, 4> Values(NumValValues);
3372 
3373   SDValue Agg = getValue(Op0);
3374   // Copy out the selected value(s).
3375   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3376     Values[i - LinearIndex] =
3377       OutOfUndef ?
3378         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3379         SDValue(Agg.getNode(), Agg.getResNo() + i);
3380 
3381   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3382                            DAG.getVTList(ValValueVTs), Values));
3383 }
3384 
3385 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3386   Value *Op0 = I.getOperand(0);
3387   // Note that the pointer operand may be a vector of pointers. Take the scalar
3388   // element which holds a pointer.
3389   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3390   SDValue N = getValue(Op0);
3391   SDLoc dl = getCurSDLoc();
3392 
3393   // Normalize Vector GEP - all scalar operands should be converted to the
3394   // splat vector.
3395   unsigned VectorWidth = I.getType()->isVectorTy() ?
3396     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3397 
3398   if (VectorWidth && !N.getValueType().isVector()) {
3399     LLVMContext &Context = *DAG.getContext();
3400     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3401     N = DAG.getSplatBuildVector(VT, dl, N);
3402   }
3403 
3404   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3405        GTI != E; ++GTI) {
3406     const Value *Idx = GTI.getOperand();
3407     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3408       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3409       if (Field) {
3410         // N = N + Offset
3411         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3412 
3413         // In an inbounds GEP with an offset that is nonnegative even when
3414         // interpreted as signed, assume there is no unsigned overflow.
3415         SDNodeFlags Flags;
3416         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3417           Flags.setNoUnsignedWrap(true);
3418 
3419         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3420                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3421       }
3422     } else {
3423       MVT PtrTy =
3424           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3425       unsigned PtrSize = PtrTy.getSizeInBits();
3426       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3427 
3428       // If this is a scalar constant or a splat vector of constants,
3429       // handle it quickly.
3430       const auto *CI = dyn_cast<ConstantInt>(Idx);
3431       if (!CI && isa<ConstantDataVector>(Idx) &&
3432           cast<ConstantDataVector>(Idx)->getSplatValue())
3433         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3434 
3435       if (CI) {
3436         if (CI->isZero())
3437           continue;
3438         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3439         LLVMContext &Context = *DAG.getContext();
3440         SDValue OffsVal = VectorWidth ?
3441           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) :
3442           DAG.getConstant(Offs, dl, PtrTy);
3443 
3444         // In an inbouds GEP with an offset that is nonnegative even when
3445         // interpreted as signed, assume there is no unsigned overflow.
3446         SDNodeFlags Flags;
3447         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3448           Flags.setNoUnsignedWrap(true);
3449 
3450         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3451         continue;
3452       }
3453 
3454       // N = N + Idx * ElementSize;
3455       SDValue IdxN = getValue(Idx);
3456 
3457       if (!IdxN.getValueType().isVector() && VectorWidth) {
3458         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3459         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3460       }
3461 
3462       // If the index is smaller or larger than intptr_t, truncate or extend
3463       // it.
3464       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3465 
3466       // If this is a multiply by a power of two, turn it into a shl
3467       // immediately.  This is a very common case.
3468       if (ElementSize != 1) {
3469         if (ElementSize.isPowerOf2()) {
3470           unsigned Amt = ElementSize.logBase2();
3471           IdxN = DAG.getNode(ISD::SHL, dl,
3472                              N.getValueType(), IdxN,
3473                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3474         } else {
3475           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3476           IdxN = DAG.getNode(ISD::MUL, dl,
3477                              N.getValueType(), IdxN, Scale);
3478         }
3479       }
3480 
3481       N = DAG.getNode(ISD::ADD, dl,
3482                       N.getValueType(), N, IdxN);
3483     }
3484   }
3485 
3486   setValue(&I, N);
3487 }
3488 
3489 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3490   // If this is a fixed sized alloca in the entry block of the function,
3491   // allocate it statically on the stack.
3492   if (FuncInfo.StaticAllocaMap.count(&I))
3493     return;   // getValue will auto-populate this.
3494 
3495   SDLoc dl = getCurSDLoc();
3496   Type *Ty = I.getAllocatedType();
3497   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3498   auto &DL = DAG.getDataLayout();
3499   uint64_t TySize = DL.getTypeAllocSize(Ty);
3500   unsigned Align =
3501       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3502 
3503   SDValue AllocSize = getValue(I.getArraySize());
3504 
3505   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3506   if (AllocSize.getValueType() != IntPtr)
3507     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3508 
3509   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3510                           AllocSize,
3511                           DAG.getConstant(TySize, dl, IntPtr));
3512 
3513   // Handle alignment.  If the requested alignment is less than or equal to
3514   // the stack alignment, ignore it.  If the size is greater than or equal to
3515   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3516   unsigned StackAlign =
3517       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3518   if (Align <= StackAlign)
3519     Align = 0;
3520 
3521   // Round the size of the allocation up to the stack alignment size
3522   // by add SA-1 to the size. This doesn't overflow because we're computing
3523   // an address inside an alloca.
3524   SDNodeFlags Flags;
3525   Flags.setNoUnsignedWrap(true);
3526   AllocSize = DAG.getNode(ISD::ADD, dl,
3527                           AllocSize.getValueType(), AllocSize,
3528                           DAG.getIntPtrConstant(StackAlign - 1, dl), Flags);
3529 
3530   // Mask out the low bits for alignment purposes.
3531   AllocSize = DAG.getNode(ISD::AND, dl,
3532                           AllocSize.getValueType(), AllocSize,
3533                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3534                                                 dl));
3535 
3536   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3537   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3538   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3539   setValue(&I, DSA);
3540   DAG.setRoot(DSA.getValue(1));
3541 
3542   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3543 }
3544 
3545 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3546   if (I.isAtomic())
3547     return visitAtomicLoad(I);
3548 
3549   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3550   const Value *SV = I.getOperand(0);
3551   if (TLI.supportSwiftError()) {
3552     // Swifterror values can come from either a function parameter with
3553     // swifterror attribute or an alloca with swifterror attribute.
3554     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3555       if (Arg->hasSwiftErrorAttr())
3556         return visitLoadFromSwiftError(I);
3557     }
3558 
3559     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3560       if (Alloca->isSwiftError())
3561         return visitLoadFromSwiftError(I);
3562     }
3563   }
3564 
3565   SDValue Ptr = getValue(SV);
3566 
3567   Type *Ty = I.getType();
3568 
3569   bool isVolatile = I.isVolatile();
3570   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3571   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3572   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3573   unsigned Alignment = I.getAlignment();
3574 
3575   AAMDNodes AAInfo;
3576   I.getAAMetadata(AAInfo);
3577   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3578 
3579   SmallVector<EVT, 4> ValueVTs;
3580   SmallVector<uint64_t, 4> Offsets;
3581   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3582   unsigned NumValues = ValueVTs.size();
3583   if (NumValues == 0)
3584     return;
3585 
3586   SDValue Root;
3587   bool ConstantMemory = false;
3588   if (isVolatile || NumValues > MaxParallelChains)
3589     // Serialize volatile loads with other side effects.
3590     Root = getRoot();
3591   else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3592                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3593     // Do not serialize (non-volatile) loads of constant memory with anything.
3594     Root = DAG.getEntryNode();
3595     ConstantMemory = true;
3596   } else {
3597     // Do not serialize non-volatile loads against each other.
3598     Root = DAG.getRoot();
3599   }
3600 
3601   SDLoc dl = getCurSDLoc();
3602 
3603   if (isVolatile)
3604     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3605 
3606   // An aggregate load cannot wrap around the address space, so offsets to its
3607   // parts don't wrap either.
3608   SDNodeFlags Flags;
3609   Flags.setNoUnsignedWrap(true);
3610 
3611   SmallVector<SDValue, 4> Values(NumValues);
3612   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3613   EVT PtrVT = Ptr.getValueType();
3614   unsigned ChainI = 0;
3615   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3616     // Serializing loads here may result in excessive register pressure, and
3617     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3618     // could recover a bit by hoisting nodes upward in the chain by recognizing
3619     // they are side-effect free or do not alias. The optimizer should really
3620     // avoid this case by converting large object/array copies to llvm.memcpy
3621     // (MaxParallelChains should always remain as failsafe).
3622     if (ChainI == MaxParallelChains) {
3623       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3624       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3625                                   makeArrayRef(Chains.data(), ChainI));
3626       Root = Chain;
3627       ChainI = 0;
3628     }
3629     SDValue A = DAG.getNode(ISD::ADD, dl,
3630                             PtrVT, Ptr,
3631                             DAG.getConstant(Offsets[i], dl, PtrVT),
3632                             Flags);
3633     auto MMOFlags = MachineMemOperand::MONone;
3634     if (isVolatile)
3635       MMOFlags |= MachineMemOperand::MOVolatile;
3636     if (isNonTemporal)
3637       MMOFlags |= MachineMemOperand::MONonTemporal;
3638     if (isInvariant)
3639       MMOFlags |= MachineMemOperand::MOInvariant;
3640     if (isDereferenceable)
3641       MMOFlags |= MachineMemOperand::MODereferenceable;
3642     MMOFlags |= TLI.getMMOFlags(I);
3643 
3644     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3645                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3646                             MMOFlags, AAInfo, Ranges);
3647 
3648     Values[i] = L;
3649     Chains[ChainI] = L.getValue(1);
3650   }
3651 
3652   if (!ConstantMemory) {
3653     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3654                                 makeArrayRef(Chains.data(), ChainI));
3655     if (isVolatile)
3656       DAG.setRoot(Chain);
3657     else
3658       PendingLoads.push_back(Chain);
3659   }
3660 
3661   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3662                            DAG.getVTList(ValueVTs), Values));
3663 }
3664 
3665 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3666   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3667          "call visitStoreToSwiftError when backend supports swifterror");
3668 
3669   SmallVector<EVT, 4> ValueVTs;
3670   SmallVector<uint64_t, 4> Offsets;
3671   const Value *SrcV = I.getOperand(0);
3672   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3673                   SrcV->getType(), ValueVTs, &Offsets);
3674   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3675          "expect a single EVT for swifterror");
3676 
3677   SDValue Src = getValue(SrcV);
3678   // Create a virtual register, then update the virtual register.
3679   unsigned VReg; bool CreatedVReg;
3680   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3681   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3682   // Chain can be getRoot or getControlRoot.
3683   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3684                                       SDValue(Src.getNode(), Src.getResNo()));
3685   DAG.setRoot(CopyNode);
3686   if (CreatedVReg)
3687     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3688 }
3689 
3690 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3691   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3692          "call visitLoadFromSwiftError when backend supports swifterror");
3693 
3694   assert(!I.isVolatile() &&
3695          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3696          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3697          "Support volatile, non temporal, invariant for load_from_swift_error");
3698 
3699   const Value *SV = I.getOperand(0);
3700   Type *Ty = I.getType();
3701   AAMDNodes AAInfo;
3702   I.getAAMetadata(AAInfo);
3703   assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3704              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3705          "load_from_swift_error should not be constant memory");
3706 
3707   SmallVector<EVT, 4> ValueVTs;
3708   SmallVector<uint64_t, 4> Offsets;
3709   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3710                   ValueVTs, &Offsets);
3711   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3712          "expect a single EVT for swifterror");
3713 
3714   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3715   SDValue L = DAG.getCopyFromReg(
3716       getRoot(), getCurSDLoc(),
3717       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3718       ValueVTs[0]);
3719 
3720   setValue(&I, L);
3721 }
3722 
3723 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3724   if (I.isAtomic())
3725     return visitAtomicStore(I);
3726 
3727   const Value *SrcV = I.getOperand(0);
3728   const Value *PtrV = I.getOperand(1);
3729 
3730   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3731   if (TLI.supportSwiftError()) {
3732     // Swifterror values can come from either a function parameter with
3733     // swifterror attribute or an alloca with swifterror attribute.
3734     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3735       if (Arg->hasSwiftErrorAttr())
3736         return visitStoreToSwiftError(I);
3737     }
3738 
3739     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3740       if (Alloca->isSwiftError())
3741         return visitStoreToSwiftError(I);
3742     }
3743   }
3744 
3745   SmallVector<EVT, 4> ValueVTs;
3746   SmallVector<uint64_t, 4> Offsets;
3747   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3748                   SrcV->getType(), ValueVTs, &Offsets);
3749   unsigned NumValues = ValueVTs.size();
3750   if (NumValues == 0)
3751     return;
3752 
3753   // Get the lowered operands. Note that we do this after
3754   // checking if NumResults is zero, because with zero results
3755   // the operands won't have values in the map.
3756   SDValue Src = getValue(SrcV);
3757   SDValue Ptr = getValue(PtrV);
3758 
3759   SDValue Root = getRoot();
3760   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3761   SDLoc dl = getCurSDLoc();
3762   EVT PtrVT = Ptr.getValueType();
3763   unsigned Alignment = I.getAlignment();
3764   AAMDNodes AAInfo;
3765   I.getAAMetadata(AAInfo);
3766 
3767   auto MMOFlags = MachineMemOperand::MONone;
3768   if (I.isVolatile())
3769     MMOFlags |= MachineMemOperand::MOVolatile;
3770   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3771     MMOFlags |= MachineMemOperand::MONonTemporal;
3772   MMOFlags |= TLI.getMMOFlags(I);
3773 
3774   // An aggregate load cannot wrap around the address space, so offsets to its
3775   // parts don't wrap either.
3776   SDNodeFlags Flags;
3777   Flags.setNoUnsignedWrap(true);
3778 
3779   unsigned ChainI = 0;
3780   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3781     // See visitLoad comments.
3782     if (ChainI == MaxParallelChains) {
3783       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3784                                   makeArrayRef(Chains.data(), ChainI));
3785       Root = Chain;
3786       ChainI = 0;
3787     }
3788     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3789                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3790     SDValue St = DAG.getStore(
3791         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3792         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3793     Chains[ChainI] = St;
3794   }
3795 
3796   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3797                                   makeArrayRef(Chains.data(), ChainI));
3798   DAG.setRoot(StoreNode);
3799 }
3800 
3801 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3802                                            bool IsCompressing) {
3803   SDLoc sdl = getCurSDLoc();
3804 
3805   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3806                            unsigned& Alignment) {
3807     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3808     Src0 = I.getArgOperand(0);
3809     Ptr = I.getArgOperand(1);
3810     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3811     Mask = I.getArgOperand(3);
3812   };
3813   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3814                            unsigned& Alignment) {
3815     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3816     Src0 = I.getArgOperand(0);
3817     Ptr = I.getArgOperand(1);
3818     Mask = I.getArgOperand(2);
3819     Alignment = 0;
3820   };
3821 
3822   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3823   unsigned Alignment;
3824   if (IsCompressing)
3825     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3826   else
3827     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3828 
3829   SDValue Ptr = getValue(PtrOperand);
3830   SDValue Src0 = getValue(Src0Operand);
3831   SDValue Mask = getValue(MaskOperand);
3832 
3833   EVT VT = Src0.getValueType();
3834   if (!Alignment)
3835     Alignment = DAG.getEVTAlignment(VT);
3836 
3837   AAMDNodes AAInfo;
3838   I.getAAMetadata(AAInfo);
3839 
3840   MachineMemOperand *MMO =
3841     DAG.getMachineFunction().
3842     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3843                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3844                           Alignment, AAInfo);
3845   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3846                                          MMO, false /* Truncating */,
3847                                          IsCompressing);
3848   DAG.setRoot(StoreNode);
3849   setValue(&I, StoreNode);
3850 }
3851 
3852 // Get a uniform base for the Gather/Scatter intrinsic.
3853 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3854 // We try to represent it as a base pointer + vector of indices.
3855 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3856 // The first operand of the GEP may be a single pointer or a vector of pointers
3857 // Example:
3858 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3859 //  or
3860 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3861 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3862 //
3863 // When the first GEP operand is a single pointer - it is the uniform base we
3864 // are looking for. If first operand of the GEP is a splat vector - we
3865 // extract the splat value and use it as a uniform base.
3866 // In all other cases the function returns 'false'.
3867 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3868                            SelectionDAGBuilder* SDB) {
3869   SelectionDAG& DAG = SDB->DAG;
3870   LLVMContext &Context = *DAG.getContext();
3871 
3872   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3873   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3874   if (!GEP || GEP->getNumOperands() > 2)
3875     return false;
3876 
3877   const Value *GEPPtr = GEP->getPointerOperand();
3878   if (!GEPPtr->getType()->isVectorTy())
3879     Ptr = GEPPtr;
3880   else if (!(Ptr = getSplatValue(GEPPtr)))
3881     return false;
3882 
3883   Value *IndexVal = GEP->getOperand(1);
3884 
3885   // The operands of the GEP may be defined in another basic block.
3886   // In this case we'll not find nodes for the operands.
3887   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3888     return false;
3889 
3890   Base = SDB->getValue(Ptr);
3891   Index = SDB->getValue(IndexVal);
3892 
3893   // Suppress sign extension.
3894   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3895     if (SDB->findValue(Sext->getOperand(0))) {
3896       IndexVal = Sext->getOperand(0);
3897       Index = SDB->getValue(IndexVal);
3898     }
3899   }
3900   if (!Index.getValueType().isVector()) {
3901     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3902     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3903     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3904   }
3905   return true;
3906 }
3907 
3908 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3909   SDLoc sdl = getCurSDLoc();
3910 
3911   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3912   const Value *Ptr = I.getArgOperand(1);
3913   SDValue Src0 = getValue(I.getArgOperand(0));
3914   SDValue Mask = getValue(I.getArgOperand(3));
3915   EVT VT = Src0.getValueType();
3916   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3917   if (!Alignment)
3918     Alignment = DAG.getEVTAlignment(VT);
3919   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3920 
3921   AAMDNodes AAInfo;
3922   I.getAAMetadata(AAInfo);
3923 
3924   SDValue Base;
3925   SDValue Index;
3926   const Value *BasePtr = Ptr;
3927   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3928 
3929   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3930   MachineMemOperand *MMO = DAG.getMachineFunction().
3931     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3932                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3933                          Alignment, AAInfo);
3934   if (!UniformBase) {
3935     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3936     Index = getValue(Ptr);
3937   }
3938   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3939   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3940                                          Ops, MMO);
3941   DAG.setRoot(Scatter);
3942   setValue(&I, Scatter);
3943 }
3944 
3945 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
3946   SDLoc sdl = getCurSDLoc();
3947 
3948   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3949                            unsigned& Alignment) {
3950     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3951     Ptr = I.getArgOperand(0);
3952     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3953     Mask = I.getArgOperand(2);
3954     Src0 = I.getArgOperand(3);
3955   };
3956   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3957                            unsigned& Alignment) {
3958     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
3959     Ptr = I.getArgOperand(0);
3960     Alignment = 0;
3961     Mask = I.getArgOperand(1);
3962     Src0 = I.getArgOperand(2);
3963   };
3964 
3965   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3966   unsigned Alignment;
3967   if (IsExpanding)
3968     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3969   else
3970     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3971 
3972   SDValue Ptr = getValue(PtrOperand);
3973   SDValue Src0 = getValue(Src0Operand);
3974   SDValue Mask = getValue(MaskOperand);
3975 
3976   EVT VT = Src0.getValueType();
3977   if (!Alignment)
3978     Alignment = DAG.getEVTAlignment(VT);
3979 
3980   AAMDNodes AAInfo;
3981   I.getAAMetadata(AAInfo);
3982   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3983 
3984   // Do not serialize masked loads of constant memory with anything.
3985   bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
3986       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
3987   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
3988 
3989   MachineMemOperand *MMO =
3990     DAG.getMachineFunction().
3991     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3992                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3993                           Alignment, AAInfo, Ranges);
3994 
3995   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3996                                    ISD::NON_EXTLOAD, IsExpanding);
3997   if (AddToChain) {
3998     SDValue OutChain = Load.getValue(1);
3999     DAG.setRoot(OutChain);
4000   }
4001   setValue(&I, Load);
4002 }
4003 
4004 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4005   SDLoc sdl = getCurSDLoc();
4006 
4007   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4008   const Value *Ptr = I.getArgOperand(0);
4009   SDValue Src0 = getValue(I.getArgOperand(3));
4010   SDValue Mask = getValue(I.getArgOperand(2));
4011 
4012   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4013   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4014   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4015   if (!Alignment)
4016     Alignment = DAG.getEVTAlignment(VT);
4017 
4018   AAMDNodes AAInfo;
4019   I.getAAMetadata(AAInfo);
4020   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4021 
4022   SDValue Root = DAG.getRoot();
4023   SDValue Base;
4024   SDValue Index;
4025   const Value *BasePtr = Ptr;
4026   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
4027   bool ConstantMemory = false;
4028   if (UniformBase &&
4029       AA && AA->pointsToConstantMemory(MemoryLocation(
4030           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
4031           AAInfo))) {
4032     // Do not serialize (non-volatile) loads of constant memory with anything.
4033     Root = DAG.getEntryNode();
4034     ConstantMemory = true;
4035   }
4036 
4037   MachineMemOperand *MMO =
4038     DAG.getMachineFunction().
4039     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4040                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4041                          Alignment, AAInfo, Ranges);
4042 
4043   if (!UniformBase) {
4044     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4045     Index = getValue(Ptr);
4046   }
4047   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
4048   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4049                                        Ops, MMO);
4050 
4051   SDValue OutChain = Gather.getValue(1);
4052   if (!ConstantMemory)
4053     PendingLoads.push_back(OutChain);
4054   setValue(&I, Gather);
4055 }
4056 
4057 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4058   SDLoc dl = getCurSDLoc();
4059   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4060   AtomicOrdering FailureOrder = I.getFailureOrdering();
4061   SyncScope::ID SSID = I.getSyncScopeID();
4062 
4063   SDValue InChain = getRoot();
4064 
4065   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4066   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4067   SDValue L = DAG.getAtomicCmpSwap(
4068       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4069       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4070       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4071       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4072 
4073   SDValue OutChain = L.getValue(2);
4074 
4075   setValue(&I, L);
4076   DAG.setRoot(OutChain);
4077 }
4078 
4079 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4080   SDLoc dl = getCurSDLoc();
4081   ISD::NodeType NT;
4082   switch (I.getOperation()) {
4083   default: llvm_unreachable("Unknown atomicrmw operation");
4084   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4085   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4086   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4087   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4088   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4089   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4090   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4091   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4092   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4093   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4094   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4095   }
4096   AtomicOrdering Order = I.getOrdering();
4097   SyncScope::ID SSID = I.getSyncScopeID();
4098 
4099   SDValue InChain = getRoot();
4100 
4101   SDValue L =
4102     DAG.getAtomic(NT, dl,
4103                   getValue(I.getValOperand()).getSimpleValueType(),
4104                   InChain,
4105                   getValue(I.getPointerOperand()),
4106                   getValue(I.getValOperand()),
4107                   I.getPointerOperand(),
4108                   /* Alignment=*/ 0, Order, SSID);
4109 
4110   SDValue OutChain = L.getValue(1);
4111 
4112   setValue(&I, L);
4113   DAG.setRoot(OutChain);
4114 }
4115 
4116 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4117   SDLoc dl = getCurSDLoc();
4118   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4119   SDValue Ops[3];
4120   Ops[0] = getRoot();
4121   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4122                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4123   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4124                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4125   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4126 }
4127 
4128 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4129   SDLoc dl = getCurSDLoc();
4130   AtomicOrdering Order = I.getOrdering();
4131   SyncScope::ID SSID = I.getSyncScopeID();
4132 
4133   SDValue InChain = getRoot();
4134 
4135   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4136   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4137 
4138   if (I.getAlignment() < VT.getSizeInBits() / 8)
4139     report_fatal_error("Cannot generate unaligned atomic load");
4140 
4141   MachineMemOperand *MMO =
4142       DAG.getMachineFunction().
4143       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4144                            MachineMemOperand::MOVolatile |
4145                            MachineMemOperand::MOLoad,
4146                            VT.getStoreSize(),
4147                            I.getAlignment() ? I.getAlignment() :
4148                                               DAG.getEVTAlignment(VT),
4149                            AAMDNodes(), nullptr, SSID, Order);
4150 
4151   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4152   SDValue L =
4153       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4154                     getValue(I.getPointerOperand()), MMO);
4155 
4156   SDValue OutChain = L.getValue(1);
4157 
4158   setValue(&I, L);
4159   DAG.setRoot(OutChain);
4160 }
4161 
4162 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4163   SDLoc dl = getCurSDLoc();
4164 
4165   AtomicOrdering Order = I.getOrdering();
4166   SyncScope::ID SSID = I.getSyncScopeID();
4167 
4168   SDValue InChain = getRoot();
4169 
4170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4171   EVT VT =
4172       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4173 
4174   if (I.getAlignment() < VT.getSizeInBits() / 8)
4175     report_fatal_error("Cannot generate unaligned atomic store");
4176 
4177   SDValue OutChain =
4178     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4179                   InChain,
4180                   getValue(I.getPointerOperand()),
4181                   getValue(I.getValueOperand()),
4182                   I.getPointerOperand(), I.getAlignment(),
4183                   Order, SSID);
4184 
4185   DAG.setRoot(OutChain);
4186 }
4187 
4188 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4189 /// node.
4190 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4191                                                unsigned Intrinsic) {
4192   // Ignore the callsite's attributes. A specific call site may be marked with
4193   // readnone, but the lowering code will expect the chain based on the
4194   // definition.
4195   const Function *F = I.getCalledFunction();
4196   bool HasChain = !F->doesNotAccessMemory();
4197   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4198 
4199   // Build the operand list.
4200   SmallVector<SDValue, 8> Ops;
4201   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4202     if (OnlyLoad) {
4203       // We don't need to serialize loads against other loads.
4204       Ops.push_back(DAG.getRoot());
4205     } else {
4206       Ops.push_back(getRoot());
4207     }
4208   }
4209 
4210   // Info is set by getTgtMemInstrinsic
4211   TargetLowering::IntrinsicInfo Info;
4212   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4213   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4214 
4215   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4216   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4217       Info.opc == ISD::INTRINSIC_W_CHAIN)
4218     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4219                                         TLI.getPointerTy(DAG.getDataLayout())));
4220 
4221   // Add all operands of the call to the operand list.
4222   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4223     SDValue Op = getValue(I.getArgOperand(i));
4224     Ops.push_back(Op);
4225   }
4226 
4227   SmallVector<EVT, 4> ValueVTs;
4228   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4229 
4230   if (HasChain)
4231     ValueVTs.push_back(MVT::Other);
4232 
4233   SDVTList VTs = DAG.getVTList(ValueVTs);
4234 
4235   // Create the node.
4236   SDValue Result;
4237   if (IsTgtIntrinsic) {
4238     // This is target intrinsic that touches memory
4239     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4240                                      VTs, Ops, Info.memVT,
4241                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4242                                      Info.align, Info.vol,
4243                                      Info.readMem, Info.writeMem, Info.size);
4244   } else if (!HasChain) {
4245     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4246   } else if (!I.getType()->isVoidTy()) {
4247     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4248   } else {
4249     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4250   }
4251 
4252   if (HasChain) {
4253     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4254     if (OnlyLoad)
4255       PendingLoads.push_back(Chain);
4256     else
4257       DAG.setRoot(Chain);
4258   }
4259 
4260   if (!I.getType()->isVoidTy()) {
4261     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4262       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4263       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4264     } else
4265       Result = lowerRangeToAssertZExt(DAG, I, Result);
4266 
4267     setValue(&I, Result);
4268   }
4269 }
4270 
4271 /// GetSignificand - Get the significand and build it into a floating-point
4272 /// number with exponent of 1:
4273 ///
4274 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4275 ///
4276 /// where Op is the hexadecimal representation of floating point value.
4277 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4278   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4279                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4280   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4281                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4282   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4283 }
4284 
4285 /// GetExponent - Get the exponent:
4286 ///
4287 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4288 ///
4289 /// where Op is the hexadecimal representation of floating point value.
4290 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4291                            const TargetLowering &TLI, const SDLoc &dl) {
4292   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4293                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4294   SDValue t1 = DAG.getNode(
4295       ISD::SRL, dl, MVT::i32, t0,
4296       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4297   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4298                            DAG.getConstant(127, dl, MVT::i32));
4299   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4300 }
4301 
4302 /// getF32Constant - Get 32-bit floating point constant.
4303 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4304                               const SDLoc &dl) {
4305   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4306                            MVT::f32);
4307 }
4308 
4309 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4310                                        SelectionDAG &DAG) {
4311   // TODO: What fast-math-flags should be set on the floating-point nodes?
4312 
4313   //   IntegerPartOfX = ((int32_t)(t0);
4314   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4315 
4316   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4317   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4318   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4319 
4320   //   IntegerPartOfX <<= 23;
4321   IntegerPartOfX = DAG.getNode(
4322       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4323       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4324                                   DAG.getDataLayout())));
4325 
4326   SDValue TwoToFractionalPartOfX;
4327   if (LimitFloatPrecision <= 6) {
4328     // For floating-point precision of 6:
4329     //
4330     //   TwoToFractionalPartOfX =
4331     //     0.997535578f +
4332     //       (0.735607626f + 0.252464424f * x) * x;
4333     //
4334     // error 0.0144103317, which is 6 bits
4335     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4336                              getF32Constant(DAG, 0x3e814304, dl));
4337     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4338                              getF32Constant(DAG, 0x3f3c50c8, dl));
4339     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4340     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4341                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4342   } else if (LimitFloatPrecision <= 12) {
4343     // For floating-point precision of 12:
4344     //
4345     //   TwoToFractionalPartOfX =
4346     //     0.999892986f +
4347     //       (0.696457318f +
4348     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4349     //
4350     // error 0.000107046256, which is 13 to 14 bits
4351     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4352                              getF32Constant(DAG, 0x3da235e3, dl));
4353     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4354                              getF32Constant(DAG, 0x3e65b8f3, dl));
4355     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4356     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4357                              getF32Constant(DAG, 0x3f324b07, dl));
4358     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4359     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4360                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4361   } else { // LimitFloatPrecision <= 18
4362     // For floating-point precision of 18:
4363     //
4364     //   TwoToFractionalPartOfX =
4365     //     0.999999982f +
4366     //       (0.693148872f +
4367     //         (0.240227044f +
4368     //           (0.554906021e-1f +
4369     //             (0.961591928e-2f +
4370     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4371     // error 2.47208000*10^(-7), which is better than 18 bits
4372     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4373                              getF32Constant(DAG, 0x3924b03e, dl));
4374     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4375                              getF32Constant(DAG, 0x3ab24b87, dl));
4376     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4377     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4378                              getF32Constant(DAG, 0x3c1d8c17, dl));
4379     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4380     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4381                              getF32Constant(DAG, 0x3d634a1d, dl));
4382     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4383     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4384                              getF32Constant(DAG, 0x3e75fe14, dl));
4385     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4386     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4387                               getF32Constant(DAG, 0x3f317234, dl));
4388     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4389     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4390                                          getF32Constant(DAG, 0x3f800000, dl));
4391   }
4392 
4393   // Add the exponent into the result in integer domain.
4394   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4395   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4396                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4397 }
4398 
4399 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4400 /// limited-precision mode.
4401 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4402                          const TargetLowering &TLI) {
4403   if (Op.getValueType() == MVT::f32 &&
4404       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4405 
4406     // Put the exponent in the right bit position for later addition to the
4407     // final result:
4408     //
4409     //   #define LOG2OFe 1.4426950f
4410     //   t0 = Op * LOG2OFe
4411 
4412     // TODO: What fast-math-flags should be set here?
4413     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4414                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4415     return getLimitedPrecisionExp2(t0, dl, DAG);
4416   }
4417 
4418   // No special expansion.
4419   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4420 }
4421 
4422 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4423 /// limited-precision mode.
4424 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4425                          const TargetLowering &TLI) {
4426   // TODO: What fast-math-flags should be set on the floating-point nodes?
4427 
4428   if (Op.getValueType() == MVT::f32 &&
4429       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4430     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4431 
4432     // Scale the exponent by log(2) [0.69314718f].
4433     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4434     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4435                                         getF32Constant(DAG, 0x3f317218, dl));
4436 
4437     // Get the significand and build it into a floating-point number with
4438     // exponent of 1.
4439     SDValue X = GetSignificand(DAG, Op1, dl);
4440 
4441     SDValue LogOfMantissa;
4442     if (LimitFloatPrecision <= 6) {
4443       // For floating-point precision of 6:
4444       //
4445       //   LogofMantissa =
4446       //     -1.1609546f +
4447       //       (1.4034025f - 0.23903021f * x) * x;
4448       //
4449       // error 0.0034276066, which is better than 8 bits
4450       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4451                                getF32Constant(DAG, 0xbe74c456, dl));
4452       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4453                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4454       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4455       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4456                                   getF32Constant(DAG, 0x3f949a29, dl));
4457     } else if (LimitFloatPrecision <= 12) {
4458       // For floating-point precision of 12:
4459       //
4460       //   LogOfMantissa =
4461       //     -1.7417939f +
4462       //       (2.8212026f +
4463       //         (-1.4699568f +
4464       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4465       //
4466       // error 0.000061011436, which is 14 bits
4467       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4468                                getF32Constant(DAG, 0xbd67b6d6, dl));
4469       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4470                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4471       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4472       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4473                                getF32Constant(DAG, 0x3fbc278b, dl));
4474       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4475       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4476                                getF32Constant(DAG, 0x40348e95, dl));
4477       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4478       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4479                                   getF32Constant(DAG, 0x3fdef31a, dl));
4480     } else { // LimitFloatPrecision <= 18
4481       // For floating-point precision of 18:
4482       //
4483       //   LogOfMantissa =
4484       //     -2.1072184f +
4485       //       (4.2372794f +
4486       //         (-3.7029485f +
4487       //           (2.2781945f +
4488       //             (-0.87823314f +
4489       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4490       //
4491       // error 0.0000023660568, which is better than 18 bits
4492       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4493                                getF32Constant(DAG, 0xbc91e5ac, dl));
4494       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4495                                getF32Constant(DAG, 0x3e4350aa, dl));
4496       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4497       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4498                                getF32Constant(DAG, 0x3f60d3e3, dl));
4499       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4500       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4501                                getF32Constant(DAG, 0x4011cdf0, dl));
4502       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4503       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4504                                getF32Constant(DAG, 0x406cfd1c, dl));
4505       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4506       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4507                                getF32Constant(DAG, 0x408797cb, dl));
4508       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4509       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4510                                   getF32Constant(DAG, 0x4006dcab, dl));
4511     }
4512 
4513     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4514   }
4515 
4516   // No special expansion.
4517   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4518 }
4519 
4520 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4521 /// limited-precision mode.
4522 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4523                           const TargetLowering &TLI) {
4524   // TODO: What fast-math-flags should be set on the floating-point nodes?
4525 
4526   if (Op.getValueType() == MVT::f32 &&
4527       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4528     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4529 
4530     // Get the exponent.
4531     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4532 
4533     // Get the significand and build it into a floating-point number with
4534     // exponent of 1.
4535     SDValue X = GetSignificand(DAG, Op1, dl);
4536 
4537     // Different possible minimax approximations of significand in
4538     // floating-point for various degrees of accuracy over [1,2].
4539     SDValue Log2ofMantissa;
4540     if (LimitFloatPrecision <= 6) {
4541       // For floating-point precision of 6:
4542       //
4543       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4544       //
4545       // error 0.0049451742, which is more than 7 bits
4546       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4547                                getF32Constant(DAG, 0xbeb08fe0, dl));
4548       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4549                                getF32Constant(DAG, 0x40019463, dl));
4550       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4551       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4552                                    getF32Constant(DAG, 0x3fd6633d, dl));
4553     } else if (LimitFloatPrecision <= 12) {
4554       // For floating-point precision of 12:
4555       //
4556       //   Log2ofMantissa =
4557       //     -2.51285454f +
4558       //       (4.07009056f +
4559       //         (-2.12067489f +
4560       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4561       //
4562       // error 0.0000876136000, which is better than 13 bits
4563       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4564                                getF32Constant(DAG, 0xbda7262e, dl));
4565       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4566                                getF32Constant(DAG, 0x3f25280b, dl));
4567       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4568       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4569                                getF32Constant(DAG, 0x4007b923, dl));
4570       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4571       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4572                                getF32Constant(DAG, 0x40823e2f, dl));
4573       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4574       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4575                                    getF32Constant(DAG, 0x4020d29c, dl));
4576     } else { // LimitFloatPrecision <= 18
4577       // For floating-point precision of 18:
4578       //
4579       //   Log2ofMantissa =
4580       //     -3.0400495f +
4581       //       (6.1129976f +
4582       //         (-5.3420409f +
4583       //           (3.2865683f +
4584       //             (-1.2669343f +
4585       //               (0.27515199f -
4586       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4587       //
4588       // error 0.0000018516, which is better than 18 bits
4589       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4590                                getF32Constant(DAG, 0xbcd2769e, dl));
4591       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4592                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4593       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4594       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4595                                getF32Constant(DAG, 0x3fa22ae7, dl));
4596       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4597       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4598                                getF32Constant(DAG, 0x40525723, dl));
4599       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4600       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4601                                getF32Constant(DAG, 0x40aaf200, dl));
4602       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4603       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4604                                getF32Constant(DAG, 0x40c39dad, dl));
4605       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4606       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4607                                    getF32Constant(DAG, 0x4042902c, dl));
4608     }
4609 
4610     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4611   }
4612 
4613   // No special expansion.
4614   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4615 }
4616 
4617 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4618 /// limited-precision mode.
4619 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4620                            const TargetLowering &TLI) {
4621   // TODO: What fast-math-flags should be set on the floating-point nodes?
4622 
4623   if (Op.getValueType() == MVT::f32 &&
4624       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4625     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4626 
4627     // Scale the exponent by log10(2) [0.30102999f].
4628     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4629     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4630                                         getF32Constant(DAG, 0x3e9a209a, dl));
4631 
4632     // Get the significand and build it into a floating-point number with
4633     // exponent of 1.
4634     SDValue X = GetSignificand(DAG, Op1, dl);
4635 
4636     SDValue Log10ofMantissa;
4637     if (LimitFloatPrecision <= 6) {
4638       // For floating-point precision of 6:
4639       //
4640       //   Log10ofMantissa =
4641       //     -0.50419619f +
4642       //       (0.60948995f - 0.10380950f * x) * x;
4643       //
4644       // error 0.0014886165, which is 6 bits
4645       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4646                                getF32Constant(DAG, 0xbdd49a13, dl));
4647       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4648                                getF32Constant(DAG, 0x3f1c0789, dl));
4649       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4650       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4651                                     getF32Constant(DAG, 0x3f011300, dl));
4652     } else if (LimitFloatPrecision <= 12) {
4653       // For floating-point precision of 12:
4654       //
4655       //   Log10ofMantissa =
4656       //     -0.64831180f +
4657       //       (0.91751397f +
4658       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4659       //
4660       // error 0.00019228036, which is better than 12 bits
4661       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4662                                getF32Constant(DAG, 0x3d431f31, dl));
4663       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4664                                getF32Constant(DAG, 0x3ea21fb2, dl));
4665       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4666       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4667                                getF32Constant(DAG, 0x3f6ae232, dl));
4668       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4669       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4670                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4671     } else { // LimitFloatPrecision <= 18
4672       // For floating-point precision of 18:
4673       //
4674       //   Log10ofMantissa =
4675       //     -0.84299375f +
4676       //       (1.5327582f +
4677       //         (-1.0688956f +
4678       //           (0.49102474f +
4679       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4680       //
4681       // error 0.0000037995730, which is better than 18 bits
4682       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4683                                getF32Constant(DAG, 0x3c5d51ce, dl));
4684       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4685                                getF32Constant(DAG, 0x3e00685a, dl));
4686       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4687       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4688                                getF32Constant(DAG, 0x3efb6798, dl));
4689       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4690       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4691                                getF32Constant(DAG, 0x3f88d192, dl));
4692       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4693       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4694                                getF32Constant(DAG, 0x3fc4316c, dl));
4695       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4696       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4697                                     getF32Constant(DAG, 0x3f57ce70, dl));
4698     }
4699 
4700     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4701   }
4702 
4703   // No special expansion.
4704   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4705 }
4706 
4707 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4708 /// limited-precision mode.
4709 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4710                           const TargetLowering &TLI) {
4711   if (Op.getValueType() == MVT::f32 &&
4712       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4713     return getLimitedPrecisionExp2(Op, dl, DAG);
4714 
4715   // No special expansion.
4716   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4717 }
4718 
4719 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4720 /// limited-precision mode with x == 10.0f.
4721 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4722                          SelectionDAG &DAG, const TargetLowering &TLI) {
4723   bool IsExp10 = false;
4724   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4725       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4726     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4727       APFloat Ten(10.0f);
4728       IsExp10 = LHSC->isExactlyValue(Ten);
4729     }
4730   }
4731 
4732   // TODO: What fast-math-flags should be set on the FMUL node?
4733   if (IsExp10) {
4734     // Put the exponent in the right bit position for later addition to the
4735     // final result:
4736     //
4737     //   #define LOG2OF10 3.3219281f
4738     //   t0 = Op * LOG2OF10;
4739     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4740                              getF32Constant(DAG, 0x40549a78, dl));
4741     return getLimitedPrecisionExp2(t0, dl, DAG);
4742   }
4743 
4744   // No special expansion.
4745   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4746 }
4747 
4748 /// ExpandPowI - Expand a llvm.powi intrinsic.
4749 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4750                           SelectionDAG &DAG) {
4751   // If RHS is a constant, we can expand this out to a multiplication tree,
4752   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4753   // optimizing for size, we only want to do this if the expansion would produce
4754   // a small number of multiplies, otherwise we do the full expansion.
4755   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4756     // Get the exponent as a positive value.
4757     unsigned Val = RHSC->getSExtValue();
4758     if ((int)Val < 0) Val = -Val;
4759 
4760     // powi(x, 0) -> 1.0
4761     if (Val == 0)
4762       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4763 
4764     const Function *F = DAG.getMachineFunction().getFunction();
4765     if (!F->optForSize() ||
4766         // If optimizing for size, don't insert too many multiplies.
4767         // This inserts up to 5 multiplies.
4768         countPopulation(Val) + Log2_32(Val) < 7) {
4769       // We use the simple binary decomposition method to generate the multiply
4770       // sequence.  There are more optimal ways to do this (for example,
4771       // powi(x,15) generates one more multiply than it should), but this has
4772       // the benefit of being both really simple and much better than a libcall.
4773       SDValue Res;  // Logically starts equal to 1.0
4774       SDValue CurSquare = LHS;
4775       // TODO: Intrinsics should have fast-math-flags that propagate to these
4776       // nodes.
4777       while (Val) {
4778         if (Val & 1) {
4779           if (Res.getNode())
4780             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4781           else
4782             Res = CurSquare;  // 1.0*CurSquare.
4783         }
4784 
4785         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4786                                 CurSquare, CurSquare);
4787         Val >>= 1;
4788       }
4789 
4790       // If the original was negative, invert the result, producing 1/(x*x*x).
4791       if (RHSC->getSExtValue() < 0)
4792         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4793                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4794       return Res;
4795     }
4796   }
4797 
4798   // Otherwise, expand to a libcall.
4799   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4800 }
4801 
4802 // getUnderlyingArgReg - Find underlying register used for a truncated or
4803 // bitcasted argument.
4804 static unsigned getUnderlyingArgReg(const SDValue &N) {
4805   switch (N.getOpcode()) {
4806   case ISD::CopyFromReg:
4807     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4808   case ISD::BITCAST:
4809   case ISD::AssertZext:
4810   case ISD::AssertSext:
4811   case ISD::TRUNCATE:
4812     return getUnderlyingArgReg(N.getOperand(0));
4813   default:
4814     return 0;
4815   }
4816 }
4817 
4818 /// If the DbgValueInst is a dbg_value of a function argument, create the
4819 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4820 /// instruction selection, they will be inserted to the entry BB.
4821 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4822     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4823     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4824   const Argument *Arg = dyn_cast<Argument>(V);
4825   if (!Arg)
4826     return false;
4827 
4828   MachineFunction &MF = DAG.getMachineFunction();
4829   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4830 
4831   bool IsIndirect = false;
4832   Optional<MachineOperand> Op;
4833   // Some arguments' frame index is recorded during argument lowering.
4834   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4835   if (FI != std::numeric_limits<int>::max())
4836     Op = MachineOperand::CreateFI(FI);
4837 
4838   if (!Op && N.getNode()) {
4839     unsigned Reg = getUnderlyingArgReg(N);
4840     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4841       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4842       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4843       if (PR)
4844         Reg = PR;
4845     }
4846     if (Reg) {
4847       Op = MachineOperand::CreateReg(Reg, false);
4848       IsIndirect = IsDbgDeclare;
4849     }
4850   }
4851 
4852   if (!Op) {
4853     // Check if ValueMap has reg number.
4854     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4855     if (VMI != FuncInfo.ValueMap.end()) {
4856       const auto &TLI = DAG.getTargetLoweringInfo();
4857       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4858                        V->getType(), isABIRegCopy(V));
4859       unsigned NumRegs =
4860           std::accumulate(RFV.RegCount.begin(), RFV.RegCount.end(), 0);
4861       if (NumRegs > 1) {
4862         unsigned I = 0;
4863         unsigned Offset = 0;
4864         auto RegisterVT = RFV.RegVTs.begin();
4865         for (auto RegCount : RFV.RegCount) {
4866           unsigned RegisterSize = (RegisterVT++)->getSizeInBits();
4867           for (unsigned E = I + RegCount; I != E; ++I) {
4868             // The vregs are guaranteed to be allocated in sequence.
4869             Op = MachineOperand::CreateReg(VMI->second + I, false);
4870             auto FragmentExpr = DIExpression::createFragmentExpression(
4871                 Expr, Offset, RegisterSize);
4872             if (!FragmentExpr)
4873               continue;
4874             FuncInfo.ArgDbgValues.push_back(
4875                 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4876                         Op->getReg(), Variable, *FragmentExpr));
4877             Offset += RegisterSize;
4878           }
4879         }
4880         return true;
4881       }
4882       Op = MachineOperand::CreateReg(VMI->second, false);
4883       IsIndirect = IsDbgDeclare;
4884     }
4885   }
4886 
4887   if (!Op && N.getNode())
4888     // Check if frame index is available.
4889     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4890       if (FrameIndexSDNode *FINode =
4891           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4892         Op = MachineOperand::CreateFI(FINode->getIndex());
4893 
4894   if (!Op)
4895     return false;
4896 
4897   assert(Variable->isValidLocationForIntrinsic(DL) &&
4898          "Expected inlined-at fields to agree");
4899   if (Op->isReg())
4900     FuncInfo.ArgDbgValues.push_back(
4901         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4902                 Op->getReg(), Variable, Expr));
4903   else
4904     FuncInfo.ArgDbgValues.push_back(
4905         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4906             .add(*Op)
4907             .addImm(0)
4908             .addMetadata(Variable)
4909             .addMetadata(Expr));
4910 
4911   return true;
4912 }
4913 
4914 /// Return the appropriate SDDbgValue based on N.
4915 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4916                                              DILocalVariable *Variable,
4917                                              DIExpression *Expr,
4918                                              const DebugLoc &dl,
4919                                              unsigned DbgSDNodeOrder) {
4920   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
4921     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4922     // stack slot locations as such instead of as indirectly addressed
4923     // locations.
4924     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl,
4925                                      DbgSDNodeOrder);
4926   }
4927   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl,
4928                          DbgSDNodeOrder);
4929 }
4930 
4931 // VisualStudio defines setjmp as _setjmp
4932 #if defined(_MSC_VER) && defined(setjmp) && \
4933                          !defined(setjmp_undefined_for_msvc)
4934 #  pragma push_macro("setjmp")
4935 #  undef setjmp
4936 #  define setjmp_undefined_for_msvc
4937 #endif
4938 
4939 /// Lower the call to the specified intrinsic function. If we want to emit this
4940 /// as a call to a named external function, return the name. Otherwise, lower it
4941 /// and return null.
4942 const char *
4943 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4944   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4945   SDLoc sdl = getCurSDLoc();
4946   DebugLoc dl = getCurDebugLoc();
4947   SDValue Res;
4948 
4949   switch (Intrinsic) {
4950   default:
4951     // By default, turn this into a target intrinsic node.
4952     visitTargetIntrinsic(I, Intrinsic);
4953     return nullptr;
4954   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4955   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4956   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4957   case Intrinsic::returnaddress:
4958     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4959                              TLI.getPointerTy(DAG.getDataLayout()),
4960                              getValue(I.getArgOperand(0))));
4961     return nullptr;
4962   case Intrinsic::addressofreturnaddress:
4963     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
4964                              TLI.getPointerTy(DAG.getDataLayout())));
4965     return nullptr;
4966   case Intrinsic::frameaddress:
4967     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4968                              TLI.getPointerTy(DAG.getDataLayout()),
4969                              getValue(I.getArgOperand(0))));
4970     return nullptr;
4971   case Intrinsic::read_register: {
4972     Value *Reg = I.getArgOperand(0);
4973     SDValue Chain = getRoot();
4974     SDValue RegName =
4975         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4976     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4977     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4978       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4979     setValue(&I, Res);
4980     DAG.setRoot(Res.getValue(1));
4981     return nullptr;
4982   }
4983   case Intrinsic::write_register: {
4984     Value *Reg = I.getArgOperand(0);
4985     Value *RegValue = I.getArgOperand(1);
4986     SDValue Chain = getRoot();
4987     SDValue RegName =
4988         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4989     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4990                             RegName, getValue(RegValue)));
4991     return nullptr;
4992   }
4993   case Intrinsic::setjmp:
4994     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4995   case Intrinsic::longjmp:
4996     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4997   case Intrinsic::memcpy: {
4998     SDValue Op1 = getValue(I.getArgOperand(0));
4999     SDValue Op2 = getValue(I.getArgOperand(1));
5000     SDValue Op3 = getValue(I.getArgOperand(2));
5001     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
5002     if (!Align)
5003       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5004     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
5005     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5006     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5007                                false, isTC,
5008                                MachinePointerInfo(I.getArgOperand(0)),
5009                                MachinePointerInfo(I.getArgOperand(1)));
5010     updateDAGForMaybeTailCall(MC);
5011     return nullptr;
5012   }
5013   case Intrinsic::memset: {
5014     SDValue Op1 = getValue(I.getArgOperand(0));
5015     SDValue Op2 = getValue(I.getArgOperand(1));
5016     SDValue Op3 = getValue(I.getArgOperand(2));
5017     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
5018     if (!Align)
5019       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
5020     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
5021     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5022     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5023                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5024     updateDAGForMaybeTailCall(MS);
5025     return nullptr;
5026   }
5027   case Intrinsic::memmove: {
5028     SDValue Op1 = getValue(I.getArgOperand(0));
5029     SDValue Op2 = getValue(I.getArgOperand(1));
5030     SDValue Op3 = getValue(I.getArgOperand(2));
5031     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
5032     if (!Align)
5033       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
5034     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
5035     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5036     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5037                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5038                                 MachinePointerInfo(I.getArgOperand(1)));
5039     updateDAGForMaybeTailCall(MM);
5040     return nullptr;
5041   }
5042   case Intrinsic::memcpy_element_unordered_atomic: {
5043     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5044     SDValue Dst = getValue(MI.getRawDest());
5045     SDValue Src = getValue(MI.getRawSource());
5046     SDValue Length = getValue(MI.getLength());
5047 
5048     // Emit a library call.
5049     TargetLowering::ArgListTy Args;
5050     TargetLowering::ArgListEntry Entry;
5051     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
5052     Entry.Node = Dst;
5053     Args.push_back(Entry);
5054 
5055     Entry.Node = Src;
5056     Args.push_back(Entry);
5057 
5058     Entry.Ty = MI.getLength()->getType();
5059     Entry.Node = Length;
5060     Args.push_back(Entry);
5061 
5062     uint64_t ElementSizeConstant = MI.getElementSizeInBytes();
5063     RTLIB::Libcall LibraryCall =
5064         RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant);
5065     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5066       report_fatal_error("Unsupported element size");
5067 
5068     TargetLowering::CallLoweringInfo CLI(DAG);
5069     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5070         TLI.getLibcallCallingConv(LibraryCall),
5071         Type::getVoidTy(*DAG.getContext()),
5072         DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall),
5073                               TLI.getPointerTy(DAG.getDataLayout())),
5074         std::move(Args));
5075 
5076     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
5077     DAG.setRoot(CallResult.second);
5078     return nullptr;
5079   }
5080   case Intrinsic::memmove_element_unordered_atomic: {
5081     auto &MI = cast<AtomicMemMoveInst>(I);
5082     SDValue Dst = getValue(MI.getRawDest());
5083     SDValue Src = getValue(MI.getRawSource());
5084     SDValue Length = getValue(MI.getLength());
5085 
5086     // Emit a library call.
5087     TargetLowering::ArgListTy Args;
5088     TargetLowering::ArgListEntry Entry;
5089     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
5090     Entry.Node = Dst;
5091     Args.push_back(Entry);
5092 
5093     Entry.Node = Src;
5094     Args.push_back(Entry);
5095 
5096     Entry.Ty = MI.getLength()->getType();
5097     Entry.Node = Length;
5098     Args.push_back(Entry);
5099 
5100     uint64_t ElementSizeConstant = MI.getElementSizeInBytes();
5101     RTLIB::Libcall LibraryCall =
5102         RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant);
5103     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5104       report_fatal_error("Unsupported element size");
5105 
5106     TargetLowering::CallLoweringInfo CLI(DAG);
5107     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5108         TLI.getLibcallCallingConv(LibraryCall),
5109         Type::getVoidTy(*DAG.getContext()),
5110         DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall),
5111                               TLI.getPointerTy(DAG.getDataLayout())),
5112         std::move(Args));
5113 
5114     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
5115     DAG.setRoot(CallResult.second);
5116     return nullptr;
5117   }
5118   case Intrinsic::memset_element_unordered_atomic: {
5119     auto &MI = cast<AtomicMemSetInst>(I);
5120     SDValue Dst = getValue(MI.getRawDest());
5121     SDValue Val = getValue(MI.getValue());
5122     SDValue Length = getValue(MI.getLength());
5123 
5124     // Emit a library call.
5125     TargetLowering::ArgListTy Args;
5126     TargetLowering::ArgListEntry Entry;
5127     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
5128     Entry.Node = Dst;
5129     Args.push_back(Entry);
5130 
5131     Entry.Ty = Type::getInt8Ty(*DAG.getContext());
5132     Entry.Node = Val;
5133     Args.push_back(Entry);
5134 
5135     Entry.Ty = MI.getLength()->getType();
5136     Entry.Node = Length;
5137     Args.push_back(Entry);
5138 
5139     uint64_t ElementSizeConstant = MI.getElementSizeInBytes();
5140     RTLIB::Libcall LibraryCall =
5141         RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant);
5142     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5143       report_fatal_error("Unsupported element size");
5144 
5145     TargetLowering::CallLoweringInfo CLI(DAG);
5146     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5147         TLI.getLibcallCallingConv(LibraryCall),
5148         Type::getVoidTy(*DAG.getContext()),
5149         DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall),
5150                               TLI.getPointerTy(DAG.getDataLayout())),
5151         std::move(Args));
5152 
5153     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
5154     DAG.setRoot(CallResult.second);
5155     return nullptr;
5156   }
5157   case Intrinsic::dbg_addr:
5158   case Intrinsic::dbg_declare: {
5159     const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I);
5160     DILocalVariable *Variable = DI.getVariable();
5161     DIExpression *Expression = DI.getExpression();
5162     assert(Variable && "Missing variable");
5163 
5164     // Check if address has undef value.
5165     const Value *Address = DI.getVariableLocation();
5166     if (!Address || isa<UndefValue>(Address) ||
5167         (Address->use_empty() && !isa<Argument>(Address))) {
5168       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5169       return nullptr;
5170     }
5171 
5172     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5173 
5174     // Check if this variable can be described by a frame index, typically
5175     // either as a static alloca or a byval parameter.
5176     int FI = std::numeric_limits<int>::max();
5177     if (const auto *AI =
5178             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5179       if (AI->isStaticAlloca()) {
5180         auto I = FuncInfo.StaticAllocaMap.find(AI);
5181         if (I != FuncInfo.StaticAllocaMap.end())
5182           FI = I->second;
5183       }
5184     } else if (const auto *Arg = dyn_cast<Argument>(
5185                    Address->stripInBoundsConstantOffsets())) {
5186       FI = FuncInfo.getArgumentFrameIndex(Arg);
5187     }
5188 
5189     // llvm.dbg.addr is control dependent and always generates indirect
5190     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5191     // the MachineFunction variable table.
5192     if (FI != std::numeric_limits<int>::max()) {
5193       if (Intrinsic == Intrinsic::dbg_addr)
5194         DAG.AddDbgValue(DAG.getFrameIndexDbgValue(Variable, Expression, FI, dl,
5195                                                   SDNodeOrder),
5196                         getRoot().getNode(), isParameter);
5197       return nullptr;
5198     }
5199 
5200     SDValue &N = NodeMap[Address];
5201     if (!N.getNode() && isa<Argument>(Address))
5202       // Check unused arguments map.
5203       N = UnusedArgNodeMap[Address];
5204     SDDbgValue *SDV;
5205     if (N.getNode()) {
5206       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5207         Address = BCI->getOperand(0);
5208       // Parameters are handled specially.
5209       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5210       if (isParameter && FINode) {
5211         // Byval parameter. We have a frame index at this point.
5212         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5213                                         FINode->getIndex(), dl, SDNodeOrder);
5214       } else if (isa<Argument>(Address)) {
5215         // Address is an argument, so try to emit its dbg value using
5216         // virtual register info from the FuncInfo.ValueMap.
5217         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5218         return nullptr;
5219       } else {
5220         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5221                               true, dl, SDNodeOrder);
5222       }
5223       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5224     } else {
5225       // If Address is an argument then try to emit its dbg value using
5226       // virtual register info from the FuncInfo.ValueMap.
5227       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5228                                     N)) {
5229         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5230       }
5231     }
5232     return nullptr;
5233   }
5234   case Intrinsic::dbg_value: {
5235     const DbgValueInst &DI = cast<DbgValueInst>(I);
5236     assert(DI.getVariable() && "Missing variable");
5237 
5238     DILocalVariable *Variable = DI.getVariable();
5239     DIExpression *Expression = DI.getExpression();
5240     const Value *V = DI.getValue();
5241     if (!V)
5242       return nullptr;
5243 
5244     SDDbgValue *SDV;
5245     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5246       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5247       DAG.AddDbgValue(SDV, nullptr, false);
5248       return nullptr;
5249     }
5250 
5251     // Do not use getValue() in here; we don't want to generate code at
5252     // this point if it hasn't been done yet.
5253     SDValue N = NodeMap[V];
5254     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5255       N = UnusedArgNodeMap[V];
5256     if (N.getNode()) {
5257       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5258         return nullptr;
5259       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5260       DAG.AddDbgValue(SDV, N.getNode(), false);
5261       return nullptr;
5262     }
5263 
5264     if (!V->use_empty() ) {
5265       // Do not call getValue(V) yet, as we don't want to generate code.
5266       // Remember it for later.
5267       DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
5268       DanglingDebugInfoMap[V] = DDI;
5269       return nullptr;
5270     }
5271 
5272     DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5273     DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5274     return nullptr;
5275   }
5276 
5277   case Intrinsic::eh_typeid_for: {
5278     // Find the type id for the given typeinfo.
5279     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5280     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5281     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5282     setValue(&I, Res);
5283     return nullptr;
5284   }
5285 
5286   case Intrinsic::eh_return_i32:
5287   case Intrinsic::eh_return_i64:
5288     DAG.getMachineFunction().setCallsEHReturn(true);
5289     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5290                             MVT::Other,
5291                             getControlRoot(),
5292                             getValue(I.getArgOperand(0)),
5293                             getValue(I.getArgOperand(1))));
5294     return nullptr;
5295   case Intrinsic::eh_unwind_init:
5296     DAG.getMachineFunction().setCallsUnwindInit(true);
5297     return nullptr;
5298   case Intrinsic::eh_dwarf_cfa:
5299     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5300                              TLI.getPointerTy(DAG.getDataLayout()),
5301                              getValue(I.getArgOperand(0))));
5302     return nullptr;
5303   case Intrinsic::eh_sjlj_callsite: {
5304     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5305     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5306     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5307     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5308 
5309     MMI.setCurrentCallSite(CI->getZExtValue());
5310     return nullptr;
5311   }
5312   case Intrinsic::eh_sjlj_functioncontext: {
5313     // Get and store the index of the function context.
5314     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5315     AllocaInst *FnCtx =
5316       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5317     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5318     MFI.setFunctionContextIndex(FI);
5319     return nullptr;
5320   }
5321   case Intrinsic::eh_sjlj_setjmp: {
5322     SDValue Ops[2];
5323     Ops[0] = getRoot();
5324     Ops[1] = getValue(I.getArgOperand(0));
5325     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5326                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5327     setValue(&I, Op.getValue(0));
5328     DAG.setRoot(Op.getValue(1));
5329     return nullptr;
5330   }
5331   case Intrinsic::eh_sjlj_longjmp:
5332     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5333                             getRoot(), getValue(I.getArgOperand(0))));
5334     return nullptr;
5335   case Intrinsic::eh_sjlj_setup_dispatch:
5336     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5337                             getRoot()));
5338     return nullptr;
5339   case Intrinsic::masked_gather:
5340     visitMaskedGather(I);
5341     return nullptr;
5342   case Intrinsic::masked_load:
5343     visitMaskedLoad(I);
5344     return nullptr;
5345   case Intrinsic::masked_scatter:
5346     visitMaskedScatter(I);
5347     return nullptr;
5348   case Intrinsic::masked_store:
5349     visitMaskedStore(I);
5350     return nullptr;
5351   case Intrinsic::masked_expandload:
5352     visitMaskedLoad(I, true /* IsExpanding */);
5353     return nullptr;
5354   case Intrinsic::masked_compressstore:
5355     visitMaskedStore(I, true /* IsCompressing */);
5356     return nullptr;
5357   case Intrinsic::x86_mmx_pslli_w:
5358   case Intrinsic::x86_mmx_pslli_d:
5359   case Intrinsic::x86_mmx_pslli_q:
5360   case Intrinsic::x86_mmx_psrli_w:
5361   case Intrinsic::x86_mmx_psrli_d:
5362   case Intrinsic::x86_mmx_psrli_q:
5363   case Intrinsic::x86_mmx_psrai_w:
5364   case Intrinsic::x86_mmx_psrai_d: {
5365     SDValue ShAmt = getValue(I.getArgOperand(1));
5366     if (isa<ConstantSDNode>(ShAmt)) {
5367       visitTargetIntrinsic(I, Intrinsic);
5368       return nullptr;
5369     }
5370     unsigned NewIntrinsic = 0;
5371     EVT ShAmtVT = MVT::v2i32;
5372     switch (Intrinsic) {
5373     case Intrinsic::x86_mmx_pslli_w:
5374       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5375       break;
5376     case Intrinsic::x86_mmx_pslli_d:
5377       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5378       break;
5379     case Intrinsic::x86_mmx_pslli_q:
5380       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5381       break;
5382     case Intrinsic::x86_mmx_psrli_w:
5383       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5384       break;
5385     case Intrinsic::x86_mmx_psrli_d:
5386       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5387       break;
5388     case Intrinsic::x86_mmx_psrli_q:
5389       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5390       break;
5391     case Intrinsic::x86_mmx_psrai_w:
5392       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5393       break;
5394     case Intrinsic::x86_mmx_psrai_d:
5395       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5396       break;
5397     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5398     }
5399 
5400     // The vector shift intrinsics with scalars uses 32b shift amounts but
5401     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5402     // to be zero.
5403     // We must do this early because v2i32 is not a legal type.
5404     SDValue ShOps[2];
5405     ShOps[0] = ShAmt;
5406     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5407     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5408     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5409     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5410     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5411                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5412                        getValue(I.getArgOperand(0)), ShAmt);
5413     setValue(&I, Res);
5414     return nullptr;
5415   }
5416   case Intrinsic::powi:
5417     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5418                             getValue(I.getArgOperand(1)), DAG));
5419     return nullptr;
5420   case Intrinsic::log:
5421     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5422     return nullptr;
5423   case Intrinsic::log2:
5424     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5425     return nullptr;
5426   case Intrinsic::log10:
5427     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5428     return nullptr;
5429   case Intrinsic::exp:
5430     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5431     return nullptr;
5432   case Intrinsic::exp2:
5433     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5434     return nullptr;
5435   case Intrinsic::pow:
5436     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5437                            getValue(I.getArgOperand(1)), DAG, TLI));
5438     return nullptr;
5439   case Intrinsic::sqrt:
5440   case Intrinsic::fabs:
5441   case Intrinsic::sin:
5442   case Intrinsic::cos:
5443   case Intrinsic::floor:
5444   case Intrinsic::ceil:
5445   case Intrinsic::trunc:
5446   case Intrinsic::rint:
5447   case Intrinsic::nearbyint:
5448   case Intrinsic::round:
5449   case Intrinsic::canonicalize: {
5450     unsigned Opcode;
5451     switch (Intrinsic) {
5452     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5453     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5454     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5455     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5456     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5457     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5458     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5459     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5460     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5461     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5462     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5463     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5464     }
5465 
5466     setValue(&I, DAG.getNode(Opcode, sdl,
5467                              getValue(I.getArgOperand(0)).getValueType(),
5468                              getValue(I.getArgOperand(0))));
5469     return nullptr;
5470   }
5471   case Intrinsic::minnum: {
5472     auto VT = getValue(I.getArgOperand(0)).getValueType();
5473     unsigned Opc =
5474         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5475             ? ISD::FMINNAN
5476             : ISD::FMINNUM;
5477     setValue(&I, DAG.getNode(Opc, sdl, VT,
5478                              getValue(I.getArgOperand(0)),
5479                              getValue(I.getArgOperand(1))));
5480     return nullptr;
5481   }
5482   case Intrinsic::maxnum: {
5483     auto VT = getValue(I.getArgOperand(0)).getValueType();
5484     unsigned Opc =
5485         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5486             ? ISD::FMAXNAN
5487             : ISD::FMAXNUM;
5488     setValue(&I, DAG.getNode(Opc, sdl, VT,
5489                              getValue(I.getArgOperand(0)),
5490                              getValue(I.getArgOperand(1))));
5491     return nullptr;
5492   }
5493   case Intrinsic::copysign:
5494     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5495                              getValue(I.getArgOperand(0)).getValueType(),
5496                              getValue(I.getArgOperand(0)),
5497                              getValue(I.getArgOperand(1))));
5498     return nullptr;
5499   case Intrinsic::fma:
5500     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5501                              getValue(I.getArgOperand(0)).getValueType(),
5502                              getValue(I.getArgOperand(0)),
5503                              getValue(I.getArgOperand(1)),
5504                              getValue(I.getArgOperand(2))));
5505     return nullptr;
5506   case Intrinsic::experimental_constrained_fadd:
5507   case Intrinsic::experimental_constrained_fsub:
5508   case Intrinsic::experimental_constrained_fmul:
5509   case Intrinsic::experimental_constrained_fdiv:
5510   case Intrinsic::experimental_constrained_frem:
5511   case Intrinsic::experimental_constrained_fma:
5512   case Intrinsic::experimental_constrained_sqrt:
5513   case Intrinsic::experimental_constrained_pow:
5514   case Intrinsic::experimental_constrained_powi:
5515   case Intrinsic::experimental_constrained_sin:
5516   case Intrinsic::experimental_constrained_cos:
5517   case Intrinsic::experimental_constrained_exp:
5518   case Intrinsic::experimental_constrained_exp2:
5519   case Intrinsic::experimental_constrained_log:
5520   case Intrinsic::experimental_constrained_log10:
5521   case Intrinsic::experimental_constrained_log2:
5522   case Intrinsic::experimental_constrained_rint:
5523   case Intrinsic::experimental_constrained_nearbyint:
5524     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5525     return nullptr;
5526   case Intrinsic::fmuladd: {
5527     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5528     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5529         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5530       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5531                                getValue(I.getArgOperand(0)).getValueType(),
5532                                getValue(I.getArgOperand(0)),
5533                                getValue(I.getArgOperand(1)),
5534                                getValue(I.getArgOperand(2))));
5535     } else {
5536       // TODO: Intrinsic calls should have fast-math-flags.
5537       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5538                                 getValue(I.getArgOperand(0)).getValueType(),
5539                                 getValue(I.getArgOperand(0)),
5540                                 getValue(I.getArgOperand(1)));
5541       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5542                                 getValue(I.getArgOperand(0)).getValueType(),
5543                                 Mul,
5544                                 getValue(I.getArgOperand(2)));
5545       setValue(&I, Add);
5546     }
5547     return nullptr;
5548   }
5549   case Intrinsic::convert_to_fp16:
5550     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5551                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5552                                          getValue(I.getArgOperand(0)),
5553                                          DAG.getTargetConstant(0, sdl,
5554                                                                MVT::i32))));
5555     return nullptr;
5556   case Intrinsic::convert_from_fp16:
5557     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5558                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5559                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5560                                          getValue(I.getArgOperand(0)))));
5561     return nullptr;
5562   case Intrinsic::pcmarker: {
5563     SDValue Tmp = getValue(I.getArgOperand(0));
5564     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5565     return nullptr;
5566   }
5567   case Intrinsic::readcyclecounter: {
5568     SDValue Op = getRoot();
5569     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5570                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5571     setValue(&I, Res);
5572     DAG.setRoot(Res.getValue(1));
5573     return nullptr;
5574   }
5575   case Intrinsic::bitreverse:
5576     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5577                              getValue(I.getArgOperand(0)).getValueType(),
5578                              getValue(I.getArgOperand(0))));
5579     return nullptr;
5580   case Intrinsic::bswap:
5581     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5582                              getValue(I.getArgOperand(0)).getValueType(),
5583                              getValue(I.getArgOperand(0))));
5584     return nullptr;
5585   case Intrinsic::cttz: {
5586     SDValue Arg = getValue(I.getArgOperand(0));
5587     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5588     EVT Ty = Arg.getValueType();
5589     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5590                              sdl, Ty, Arg));
5591     return nullptr;
5592   }
5593   case Intrinsic::ctlz: {
5594     SDValue Arg = getValue(I.getArgOperand(0));
5595     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5596     EVT Ty = Arg.getValueType();
5597     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5598                              sdl, Ty, Arg));
5599     return nullptr;
5600   }
5601   case Intrinsic::ctpop: {
5602     SDValue Arg = getValue(I.getArgOperand(0));
5603     EVT Ty = Arg.getValueType();
5604     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5605     return nullptr;
5606   }
5607   case Intrinsic::stacksave: {
5608     SDValue Op = getRoot();
5609     Res = DAG.getNode(
5610         ISD::STACKSAVE, sdl,
5611         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5612     setValue(&I, Res);
5613     DAG.setRoot(Res.getValue(1));
5614     return nullptr;
5615   }
5616   case Intrinsic::stackrestore:
5617     Res = getValue(I.getArgOperand(0));
5618     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5619     return nullptr;
5620   case Intrinsic::get_dynamic_area_offset: {
5621     SDValue Op = getRoot();
5622     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5623     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5624     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5625     // target.
5626     if (PtrTy != ResTy)
5627       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5628                          " intrinsic!");
5629     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5630                       Op);
5631     DAG.setRoot(Op);
5632     setValue(&I, Res);
5633     return nullptr;
5634   }
5635   case Intrinsic::stackguard: {
5636     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5637     MachineFunction &MF = DAG.getMachineFunction();
5638     const Module &M = *MF.getFunction()->getParent();
5639     SDValue Chain = getRoot();
5640     if (TLI.useLoadStackGuardNode()) {
5641       Res = getLoadStackGuard(DAG, sdl, Chain);
5642     } else {
5643       const Value *Global = TLI.getSDagStackGuard(M);
5644       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5645       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5646                         MachinePointerInfo(Global, 0), Align,
5647                         MachineMemOperand::MOVolatile);
5648     }
5649     DAG.setRoot(Chain);
5650     setValue(&I, Res);
5651     return nullptr;
5652   }
5653   case Intrinsic::stackprotector: {
5654     // Emit code into the DAG to store the stack guard onto the stack.
5655     MachineFunction &MF = DAG.getMachineFunction();
5656     MachineFrameInfo &MFI = MF.getFrameInfo();
5657     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5658     SDValue Src, Chain = getRoot();
5659 
5660     if (TLI.useLoadStackGuardNode())
5661       Src = getLoadStackGuard(DAG, sdl, Chain);
5662     else
5663       Src = getValue(I.getArgOperand(0));   // The guard's value.
5664 
5665     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5666 
5667     int FI = FuncInfo.StaticAllocaMap[Slot];
5668     MFI.setStackProtectorIndex(FI);
5669 
5670     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5671 
5672     // Store the stack protector onto the stack.
5673     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5674                                                  DAG.getMachineFunction(), FI),
5675                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5676     setValue(&I, Res);
5677     DAG.setRoot(Res);
5678     return nullptr;
5679   }
5680   case Intrinsic::objectsize: {
5681     // If we don't know by now, we're never going to know.
5682     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5683 
5684     assert(CI && "Non-constant type in __builtin_object_size?");
5685 
5686     SDValue Arg = getValue(I.getCalledValue());
5687     EVT Ty = Arg.getValueType();
5688 
5689     if (CI->isZero())
5690       Res = DAG.getConstant(-1ULL, sdl, Ty);
5691     else
5692       Res = DAG.getConstant(0, sdl, Ty);
5693 
5694     setValue(&I, Res);
5695     return nullptr;
5696   }
5697   case Intrinsic::annotation:
5698   case Intrinsic::ptr_annotation:
5699   case Intrinsic::invariant_group_barrier:
5700     // Drop the intrinsic, but forward the value
5701     setValue(&I, getValue(I.getOperand(0)));
5702     return nullptr;
5703   case Intrinsic::assume:
5704   case Intrinsic::var_annotation:
5705   case Intrinsic::sideeffect:
5706     // Discard annotate attributes, assumptions, and artificial side-effects.
5707     return nullptr;
5708 
5709   case Intrinsic::codeview_annotation: {
5710     // Emit a label associated with this metadata.
5711     MachineFunction &MF = DAG.getMachineFunction();
5712     MCSymbol *Label =
5713         MF.getMMI().getContext().createTempSymbol("annotation", true);
5714     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5715     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5716     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5717     DAG.setRoot(Res);
5718     return nullptr;
5719   }
5720 
5721   case Intrinsic::init_trampoline: {
5722     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5723 
5724     SDValue Ops[6];
5725     Ops[0] = getRoot();
5726     Ops[1] = getValue(I.getArgOperand(0));
5727     Ops[2] = getValue(I.getArgOperand(1));
5728     Ops[3] = getValue(I.getArgOperand(2));
5729     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5730     Ops[5] = DAG.getSrcValue(F);
5731 
5732     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5733 
5734     DAG.setRoot(Res);
5735     return nullptr;
5736   }
5737   case Intrinsic::adjust_trampoline:
5738     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5739                              TLI.getPointerTy(DAG.getDataLayout()),
5740                              getValue(I.getArgOperand(0))));
5741     return nullptr;
5742   case Intrinsic::gcroot: {
5743     MachineFunction &MF = DAG.getMachineFunction();
5744     const Function *F = MF.getFunction();
5745     (void)F;
5746     assert(F->hasGC() &&
5747            "only valid in functions with gc specified, enforced by Verifier");
5748     assert(GFI && "implied by previous");
5749     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5750     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5751 
5752     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5753     GFI->addStackRoot(FI->getIndex(), TypeMap);
5754     return nullptr;
5755   }
5756   case Intrinsic::gcread:
5757   case Intrinsic::gcwrite:
5758     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5759   case Intrinsic::flt_rounds:
5760     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5761     return nullptr;
5762 
5763   case Intrinsic::expect:
5764     // Just replace __builtin_expect(exp, c) with EXP.
5765     setValue(&I, getValue(I.getArgOperand(0)));
5766     return nullptr;
5767 
5768   case Intrinsic::debugtrap:
5769   case Intrinsic::trap: {
5770     StringRef TrapFuncName =
5771         I.getAttributes()
5772             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5773             .getValueAsString();
5774     if (TrapFuncName.empty()) {
5775       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5776         ISD::TRAP : ISD::DEBUGTRAP;
5777       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5778       return nullptr;
5779     }
5780     TargetLowering::ArgListTy Args;
5781 
5782     TargetLowering::CallLoweringInfo CLI(DAG);
5783     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5784         CallingConv::C, I.getType(),
5785         DAG.getExternalSymbol(TrapFuncName.data(),
5786                               TLI.getPointerTy(DAG.getDataLayout())),
5787         std::move(Args));
5788 
5789     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5790     DAG.setRoot(Result.second);
5791     return nullptr;
5792   }
5793 
5794   case Intrinsic::uadd_with_overflow:
5795   case Intrinsic::sadd_with_overflow:
5796   case Intrinsic::usub_with_overflow:
5797   case Intrinsic::ssub_with_overflow:
5798   case Intrinsic::umul_with_overflow:
5799   case Intrinsic::smul_with_overflow: {
5800     ISD::NodeType Op;
5801     switch (Intrinsic) {
5802     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5803     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5804     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5805     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5806     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5807     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5808     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5809     }
5810     SDValue Op1 = getValue(I.getArgOperand(0));
5811     SDValue Op2 = getValue(I.getArgOperand(1));
5812 
5813     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5814     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5815     return nullptr;
5816   }
5817   case Intrinsic::prefetch: {
5818     SDValue Ops[5];
5819     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5820     Ops[0] = getRoot();
5821     Ops[1] = getValue(I.getArgOperand(0));
5822     Ops[2] = getValue(I.getArgOperand(1));
5823     Ops[3] = getValue(I.getArgOperand(2));
5824     Ops[4] = getValue(I.getArgOperand(3));
5825     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5826                                         DAG.getVTList(MVT::Other), Ops,
5827                                         EVT::getIntegerVT(*Context, 8),
5828                                         MachinePointerInfo(I.getArgOperand(0)),
5829                                         0, /* align */
5830                                         false, /* volatile */
5831                                         rw==0, /* read */
5832                                         rw==1)); /* write */
5833     return nullptr;
5834   }
5835   case Intrinsic::lifetime_start:
5836   case Intrinsic::lifetime_end: {
5837     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5838     // Stack coloring is not enabled in O0, discard region information.
5839     if (TM.getOptLevel() == CodeGenOpt::None)
5840       return nullptr;
5841 
5842     SmallVector<Value *, 4> Allocas;
5843     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5844 
5845     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5846            E = Allocas.end(); Object != E; ++Object) {
5847       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5848 
5849       // Could not find an Alloca.
5850       if (!LifetimeObject)
5851         continue;
5852 
5853       // First check that the Alloca is static, otherwise it won't have a
5854       // valid frame index.
5855       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5856       if (SI == FuncInfo.StaticAllocaMap.end())
5857         return nullptr;
5858 
5859       int FI = SI->second;
5860 
5861       SDValue Ops[2];
5862       Ops[0] = getRoot();
5863       Ops[1] =
5864           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
5865       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5866 
5867       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5868       DAG.setRoot(Res);
5869     }
5870     return nullptr;
5871   }
5872   case Intrinsic::invariant_start:
5873     // Discard region information.
5874     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5875     return nullptr;
5876   case Intrinsic::invariant_end:
5877     // Discard region information.
5878     return nullptr;
5879   case Intrinsic::clear_cache:
5880     return TLI.getClearCacheBuiltinName();
5881   case Intrinsic::donothing:
5882     // ignore
5883     return nullptr;
5884   case Intrinsic::experimental_stackmap:
5885     visitStackmap(I);
5886     return nullptr;
5887   case Intrinsic::experimental_patchpoint_void:
5888   case Intrinsic::experimental_patchpoint_i64:
5889     visitPatchpoint(&I);
5890     return nullptr;
5891   case Intrinsic::experimental_gc_statepoint:
5892     LowerStatepoint(ImmutableStatepoint(&I));
5893     return nullptr;
5894   case Intrinsic::experimental_gc_result:
5895     visitGCResult(cast<GCResultInst>(I));
5896     return nullptr;
5897   case Intrinsic::experimental_gc_relocate:
5898     visitGCRelocate(cast<GCRelocateInst>(I));
5899     return nullptr;
5900   case Intrinsic::instrprof_increment:
5901     llvm_unreachable("instrprof failed to lower an increment");
5902   case Intrinsic::instrprof_value_profile:
5903     llvm_unreachable("instrprof failed to lower a value profiling call");
5904   case Intrinsic::localescape: {
5905     MachineFunction &MF = DAG.getMachineFunction();
5906     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5907 
5908     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5909     // is the same on all targets.
5910     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5911       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5912       if (isa<ConstantPointerNull>(Arg))
5913         continue; // Skip null pointers. They represent a hole in index space.
5914       AllocaInst *Slot = cast<AllocaInst>(Arg);
5915       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5916              "can only escape static allocas");
5917       int FI = FuncInfo.StaticAllocaMap[Slot];
5918       MCSymbol *FrameAllocSym =
5919           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5920               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
5921       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5922               TII->get(TargetOpcode::LOCAL_ESCAPE))
5923           .addSym(FrameAllocSym)
5924           .addFrameIndex(FI);
5925     }
5926 
5927     return nullptr;
5928   }
5929 
5930   case Intrinsic::localrecover: {
5931     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5932     MachineFunction &MF = DAG.getMachineFunction();
5933     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5934 
5935     // Get the symbol that defines the frame offset.
5936     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5937     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5938     unsigned IdxVal =
5939         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
5940     MCSymbol *FrameAllocSym =
5941         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5942             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
5943 
5944     // Create a MCSymbol for the label to avoid any target lowering
5945     // that would make this PC relative.
5946     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5947     SDValue OffsetVal =
5948         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5949 
5950     // Add the offset to the FP.
5951     Value *FP = I.getArgOperand(1);
5952     SDValue FPVal = getValue(FP);
5953     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5954     setValue(&I, Add);
5955 
5956     return nullptr;
5957   }
5958 
5959   case Intrinsic::eh_exceptionpointer:
5960   case Intrinsic::eh_exceptioncode: {
5961     // Get the exception pointer vreg, copy from it, and resize it to fit.
5962     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5963     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5964     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5965     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5966     SDValue N =
5967         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5968     if (Intrinsic == Intrinsic::eh_exceptioncode)
5969       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5970     setValue(&I, N);
5971     return nullptr;
5972   }
5973   case Intrinsic::xray_customevent: {
5974     // Here we want to make sure that the intrinsic behaves as if it has a
5975     // specific calling convention, and only for x86_64.
5976     // FIXME: Support other platforms later.
5977     const auto &Triple = DAG.getTarget().getTargetTriple();
5978     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
5979       return nullptr;
5980 
5981     SDLoc DL = getCurSDLoc();
5982     SmallVector<SDValue, 8> Ops;
5983 
5984     // We want to say that we always want the arguments in registers.
5985     SDValue LogEntryVal = getValue(I.getArgOperand(0));
5986     SDValue StrSizeVal = getValue(I.getArgOperand(1));
5987     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
5988     SDValue Chain = getRoot();
5989     Ops.push_back(LogEntryVal);
5990     Ops.push_back(StrSizeVal);
5991     Ops.push_back(Chain);
5992 
5993     // We need to enforce the calling convention for the callsite, so that
5994     // argument ordering is enforced correctly, and that register allocation can
5995     // see that some registers may be assumed clobbered and have to preserve
5996     // them across calls to the intrinsic.
5997     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
5998                                            DL, NodeTys, Ops);
5999     SDValue patchableNode = SDValue(MN, 0);
6000     DAG.setRoot(patchableNode);
6001     setValue(&I, patchableNode);
6002     return nullptr;
6003   }
6004   case Intrinsic::experimental_deoptimize:
6005     LowerDeoptimizeCall(&I);
6006     return nullptr;
6007 
6008   case Intrinsic::experimental_vector_reduce_fadd:
6009   case Intrinsic::experimental_vector_reduce_fmul:
6010   case Intrinsic::experimental_vector_reduce_add:
6011   case Intrinsic::experimental_vector_reduce_mul:
6012   case Intrinsic::experimental_vector_reduce_and:
6013   case Intrinsic::experimental_vector_reduce_or:
6014   case Intrinsic::experimental_vector_reduce_xor:
6015   case Intrinsic::experimental_vector_reduce_smax:
6016   case Intrinsic::experimental_vector_reduce_smin:
6017   case Intrinsic::experimental_vector_reduce_umax:
6018   case Intrinsic::experimental_vector_reduce_umin:
6019   case Intrinsic::experimental_vector_reduce_fmax:
6020   case Intrinsic::experimental_vector_reduce_fmin:
6021     visitVectorReduce(I, Intrinsic);
6022     return nullptr;
6023   }
6024 }
6025 
6026 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6027     const ConstrainedFPIntrinsic &FPI) {
6028   SDLoc sdl = getCurSDLoc();
6029   unsigned Opcode;
6030   switch (FPI.getIntrinsicID()) {
6031   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6032   case Intrinsic::experimental_constrained_fadd:
6033     Opcode = ISD::STRICT_FADD;
6034     break;
6035   case Intrinsic::experimental_constrained_fsub:
6036     Opcode = ISD::STRICT_FSUB;
6037     break;
6038   case Intrinsic::experimental_constrained_fmul:
6039     Opcode = ISD::STRICT_FMUL;
6040     break;
6041   case Intrinsic::experimental_constrained_fdiv:
6042     Opcode = ISD::STRICT_FDIV;
6043     break;
6044   case Intrinsic::experimental_constrained_frem:
6045     Opcode = ISD::STRICT_FREM;
6046     break;
6047   case Intrinsic::experimental_constrained_fma:
6048     Opcode = ISD::STRICT_FMA;
6049     break;
6050   case Intrinsic::experimental_constrained_sqrt:
6051     Opcode = ISD::STRICT_FSQRT;
6052     break;
6053   case Intrinsic::experimental_constrained_pow:
6054     Opcode = ISD::STRICT_FPOW;
6055     break;
6056   case Intrinsic::experimental_constrained_powi:
6057     Opcode = ISD::STRICT_FPOWI;
6058     break;
6059   case Intrinsic::experimental_constrained_sin:
6060     Opcode = ISD::STRICT_FSIN;
6061     break;
6062   case Intrinsic::experimental_constrained_cos:
6063     Opcode = ISD::STRICT_FCOS;
6064     break;
6065   case Intrinsic::experimental_constrained_exp:
6066     Opcode = ISD::STRICT_FEXP;
6067     break;
6068   case Intrinsic::experimental_constrained_exp2:
6069     Opcode = ISD::STRICT_FEXP2;
6070     break;
6071   case Intrinsic::experimental_constrained_log:
6072     Opcode = ISD::STRICT_FLOG;
6073     break;
6074   case Intrinsic::experimental_constrained_log10:
6075     Opcode = ISD::STRICT_FLOG10;
6076     break;
6077   case Intrinsic::experimental_constrained_log2:
6078     Opcode = ISD::STRICT_FLOG2;
6079     break;
6080   case Intrinsic::experimental_constrained_rint:
6081     Opcode = ISD::STRICT_FRINT;
6082     break;
6083   case Intrinsic::experimental_constrained_nearbyint:
6084     Opcode = ISD::STRICT_FNEARBYINT;
6085     break;
6086   }
6087   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6088   SDValue Chain = getRoot();
6089   SmallVector<EVT, 4> ValueVTs;
6090   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6091   ValueVTs.push_back(MVT::Other); // Out chain
6092 
6093   SDVTList VTs = DAG.getVTList(ValueVTs);
6094   SDValue Result;
6095   if (FPI.isUnaryOp())
6096     Result = DAG.getNode(Opcode, sdl, VTs,
6097                          { Chain, getValue(FPI.getArgOperand(0)) });
6098   else if (FPI.isTernaryOp())
6099     Result = DAG.getNode(Opcode, sdl, VTs,
6100                          { Chain, getValue(FPI.getArgOperand(0)),
6101                                   getValue(FPI.getArgOperand(1)),
6102                                   getValue(FPI.getArgOperand(2)) });
6103   else
6104     Result = DAG.getNode(Opcode, sdl, VTs,
6105                          { Chain, getValue(FPI.getArgOperand(0)),
6106                            getValue(FPI.getArgOperand(1))  });
6107 
6108   assert(Result.getNode()->getNumValues() == 2);
6109   SDValue OutChain = Result.getValue(1);
6110   DAG.setRoot(OutChain);
6111   SDValue FPResult = Result.getValue(0);
6112   setValue(&FPI, FPResult);
6113 }
6114 
6115 std::pair<SDValue, SDValue>
6116 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6117                                     const BasicBlock *EHPadBB) {
6118   MachineFunction &MF = DAG.getMachineFunction();
6119   MachineModuleInfo &MMI = MF.getMMI();
6120   MCSymbol *BeginLabel = nullptr;
6121 
6122   if (EHPadBB) {
6123     // Insert a label before the invoke call to mark the try range.  This can be
6124     // used to detect deletion of the invoke via the MachineModuleInfo.
6125     BeginLabel = MMI.getContext().createTempSymbol();
6126 
6127     // For SjLj, keep track of which landing pads go with which invokes
6128     // so as to maintain the ordering of pads in the LSDA.
6129     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6130     if (CallSiteIndex) {
6131       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6132       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6133 
6134       // Now that the call site is handled, stop tracking it.
6135       MMI.setCurrentCallSite(0);
6136     }
6137 
6138     // Both PendingLoads and PendingExports must be flushed here;
6139     // this call might not return.
6140     (void)getRoot();
6141     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6142 
6143     CLI.setChain(getRoot());
6144   }
6145   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6146   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6147 
6148   assert((CLI.IsTailCall || Result.second.getNode()) &&
6149          "Non-null chain expected with non-tail call!");
6150   assert((Result.second.getNode() || !Result.first.getNode()) &&
6151          "Null value expected with tail call!");
6152 
6153   if (!Result.second.getNode()) {
6154     // As a special case, a null chain means that a tail call has been emitted
6155     // and the DAG root is already updated.
6156     HasTailCall = true;
6157 
6158     // Since there's no actual continuation from this block, nothing can be
6159     // relying on us setting vregs for them.
6160     PendingExports.clear();
6161   } else {
6162     DAG.setRoot(Result.second);
6163   }
6164 
6165   if (EHPadBB) {
6166     // Insert a label at the end of the invoke call to mark the try range.  This
6167     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6168     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6169     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6170 
6171     // Inform MachineModuleInfo of range.
6172     if (MF.hasEHFunclets()) {
6173       assert(CLI.CS);
6174       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6175       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6176                                 BeginLabel, EndLabel);
6177     } else {
6178       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6179     }
6180   }
6181 
6182   return Result;
6183 }
6184 
6185 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6186                                       bool isTailCall,
6187                                       const BasicBlock *EHPadBB) {
6188   auto &DL = DAG.getDataLayout();
6189   FunctionType *FTy = CS.getFunctionType();
6190   Type *RetTy = CS.getType();
6191 
6192   TargetLowering::ArgListTy Args;
6193   Args.reserve(CS.arg_size());
6194 
6195   const Value *SwiftErrorVal = nullptr;
6196   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6197 
6198   // We can't tail call inside a function with a swifterror argument. Lowering
6199   // does not support this yet. It would have to move into the swifterror
6200   // register before the call.
6201   auto *Caller = CS.getInstruction()->getParent()->getParent();
6202   if (TLI.supportSwiftError() &&
6203       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6204     isTailCall = false;
6205 
6206   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6207        i != e; ++i) {
6208     TargetLowering::ArgListEntry Entry;
6209     const Value *V = *i;
6210 
6211     // Skip empty types
6212     if (V->getType()->isEmptyTy())
6213       continue;
6214 
6215     SDValue ArgNode = getValue(V);
6216     Entry.Node = ArgNode; Entry.Ty = V->getType();
6217 
6218     Entry.setAttributes(&CS, i - CS.arg_begin());
6219 
6220     // Use swifterror virtual register as input to the call.
6221     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6222       SwiftErrorVal = V;
6223       // We find the virtual register for the actual swifterror argument.
6224       // Instead of using the Value, we use the virtual register instead.
6225       Entry.Node = DAG.getRegister(FuncInfo
6226                                        .getOrCreateSwiftErrorVRegUseAt(
6227                                            CS.getInstruction(), FuncInfo.MBB, V)
6228                                        .first,
6229                                    EVT(TLI.getPointerTy(DL)));
6230     }
6231 
6232     Args.push_back(Entry);
6233 
6234     // If we have an explicit sret argument that is an Instruction, (i.e., it
6235     // might point to function-local memory), we can't meaningfully tail-call.
6236     if (Entry.IsSRet && isa<Instruction>(V))
6237       isTailCall = false;
6238   }
6239 
6240   // Check if target-independent constraints permit a tail call here.
6241   // Target-dependent constraints are checked within TLI->LowerCallTo.
6242   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6243     isTailCall = false;
6244 
6245   // Disable tail calls if there is an swifterror argument. Targets have not
6246   // been updated to support tail calls.
6247   if (TLI.supportSwiftError() && SwiftErrorVal)
6248     isTailCall = false;
6249 
6250   TargetLowering::CallLoweringInfo CLI(DAG);
6251   CLI.setDebugLoc(getCurSDLoc())
6252       .setChain(getRoot())
6253       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6254       .setTailCall(isTailCall)
6255       .setConvergent(CS.isConvergent());
6256   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6257 
6258   if (Result.first.getNode()) {
6259     const Instruction *Inst = CS.getInstruction();
6260     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6261     setValue(Inst, Result.first);
6262   }
6263 
6264   // The last element of CLI.InVals has the SDValue for swifterror return.
6265   // Here we copy it to a virtual register and update SwiftErrorMap for
6266   // book-keeping.
6267   if (SwiftErrorVal && TLI.supportSwiftError()) {
6268     // Get the last element of InVals.
6269     SDValue Src = CLI.InVals.back();
6270     unsigned VReg; bool CreatedVReg;
6271     std::tie(VReg, CreatedVReg) =
6272         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6273     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6274     // We update the virtual register for the actual swifterror argument.
6275     if (CreatedVReg)
6276       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6277     DAG.setRoot(CopyNode);
6278   }
6279 }
6280 
6281 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6282                              SelectionDAGBuilder &Builder) {
6283   // Check to see if this load can be trivially constant folded, e.g. if the
6284   // input is from a string literal.
6285   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6286     // Cast pointer to the type we really want to load.
6287     Type *LoadTy =
6288         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6289     if (LoadVT.isVector())
6290       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6291 
6292     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6293                                          PointerType::getUnqual(LoadTy));
6294 
6295     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6296             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6297       return Builder.getValue(LoadCst);
6298   }
6299 
6300   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6301   // still constant memory, the input chain can be the entry node.
6302   SDValue Root;
6303   bool ConstantMemory = false;
6304 
6305   // Do not serialize (non-volatile) loads of constant memory with anything.
6306   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6307     Root = Builder.DAG.getEntryNode();
6308     ConstantMemory = true;
6309   } else {
6310     // Do not serialize non-volatile loads against each other.
6311     Root = Builder.DAG.getRoot();
6312   }
6313 
6314   SDValue Ptr = Builder.getValue(PtrVal);
6315   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6316                                         Ptr, MachinePointerInfo(PtrVal),
6317                                         /* Alignment = */ 1);
6318 
6319   if (!ConstantMemory)
6320     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6321   return LoadVal;
6322 }
6323 
6324 /// Record the value for an instruction that produces an integer result,
6325 /// converting the type where necessary.
6326 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6327                                                   SDValue Value,
6328                                                   bool IsSigned) {
6329   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6330                                                     I.getType(), true);
6331   if (IsSigned)
6332     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6333   else
6334     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6335   setValue(&I, Value);
6336 }
6337 
6338 /// See if we can lower a memcmp call into an optimized form. If so, return
6339 /// true and lower it. Otherwise return false, and it will be lowered like a
6340 /// normal call.
6341 /// The caller already checked that \p I calls the appropriate LibFunc with a
6342 /// correct prototype.
6343 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6344   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6345   const Value *Size = I.getArgOperand(2);
6346   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6347   if (CSize && CSize->getZExtValue() == 0) {
6348     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6349                                                           I.getType(), true);
6350     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6351     return true;
6352   }
6353 
6354   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6355   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6356       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6357       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6358   if (Res.first.getNode()) {
6359     processIntegerCallValue(I, Res.first, true);
6360     PendingLoads.push_back(Res.second);
6361     return true;
6362   }
6363 
6364   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6365   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6366   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6367     return false;
6368 
6369   // If the target has a fast compare for the given size, it will return a
6370   // preferred load type for that size. Require that the load VT is legal and
6371   // that the target supports unaligned loads of that type. Otherwise, return
6372   // INVALID.
6373   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6374     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6375     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6376     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6377       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6378       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6379       // TODO: Check alignment of src and dest ptrs.
6380       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6381       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6382       if (!TLI.isTypeLegal(LVT) ||
6383           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6384           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6385         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6386     }
6387 
6388     return LVT;
6389   };
6390 
6391   // This turns into unaligned loads. We only do this if the target natively
6392   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6393   // we'll only produce a small number of byte loads.
6394   MVT LoadVT;
6395   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6396   switch (NumBitsToCompare) {
6397   default:
6398     return false;
6399   case 16:
6400     LoadVT = MVT::i16;
6401     break;
6402   case 32:
6403     LoadVT = MVT::i32;
6404     break;
6405   case 64:
6406   case 128:
6407   case 256:
6408     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6409     break;
6410   }
6411 
6412   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6413     return false;
6414 
6415   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6416   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6417 
6418   // Bitcast to a wide integer type if the loads are vectors.
6419   if (LoadVT.isVector()) {
6420     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6421     LoadL = DAG.getBitcast(CmpVT, LoadL);
6422     LoadR = DAG.getBitcast(CmpVT, LoadR);
6423   }
6424 
6425   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6426   processIntegerCallValue(I, Cmp, false);
6427   return true;
6428 }
6429 
6430 /// See if we can lower a memchr call into an optimized form. If so, return
6431 /// true and lower it. Otherwise return false, and it will be lowered like a
6432 /// normal call.
6433 /// The caller already checked that \p I calls the appropriate LibFunc with a
6434 /// correct prototype.
6435 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6436   const Value *Src = I.getArgOperand(0);
6437   const Value *Char = I.getArgOperand(1);
6438   const Value *Length = I.getArgOperand(2);
6439 
6440   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6441   std::pair<SDValue, SDValue> Res =
6442     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6443                                 getValue(Src), getValue(Char), getValue(Length),
6444                                 MachinePointerInfo(Src));
6445   if (Res.first.getNode()) {
6446     setValue(&I, Res.first);
6447     PendingLoads.push_back(Res.second);
6448     return true;
6449   }
6450 
6451   return false;
6452 }
6453 
6454 /// See if we can lower a mempcpy call into an optimized form. If so, return
6455 /// true and lower it. Otherwise return false, and it will be lowered like a
6456 /// normal call.
6457 /// The caller already checked that \p I calls the appropriate LibFunc with a
6458 /// correct prototype.
6459 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6460   SDValue Dst = getValue(I.getArgOperand(0));
6461   SDValue Src = getValue(I.getArgOperand(1));
6462   SDValue Size = getValue(I.getArgOperand(2));
6463 
6464   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6465   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6466   unsigned Align = std::min(DstAlign, SrcAlign);
6467   if (Align == 0) // Alignment of one or both could not be inferred.
6468     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6469 
6470   bool isVol = false;
6471   SDLoc sdl = getCurSDLoc();
6472 
6473   // In the mempcpy context we need to pass in a false value for isTailCall
6474   // because the return pointer needs to be adjusted by the size of
6475   // the copied memory.
6476   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6477                              false, /*isTailCall=*/false,
6478                              MachinePointerInfo(I.getArgOperand(0)),
6479                              MachinePointerInfo(I.getArgOperand(1)));
6480   assert(MC.getNode() != nullptr &&
6481          "** memcpy should not be lowered as TailCall in mempcpy context **");
6482   DAG.setRoot(MC);
6483 
6484   // Check if Size needs to be truncated or extended.
6485   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6486 
6487   // Adjust return pointer to point just past the last dst byte.
6488   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6489                                     Dst, Size);
6490   setValue(&I, DstPlusSize);
6491   return true;
6492 }
6493 
6494 /// See if we can lower a strcpy call into an optimized form.  If so, return
6495 /// true and lower it, otherwise return false and it will be lowered like a
6496 /// normal call.
6497 /// The caller already checked that \p I calls the appropriate LibFunc with a
6498 /// correct prototype.
6499 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6500   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6501 
6502   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6503   std::pair<SDValue, SDValue> Res =
6504     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6505                                 getValue(Arg0), getValue(Arg1),
6506                                 MachinePointerInfo(Arg0),
6507                                 MachinePointerInfo(Arg1), isStpcpy);
6508   if (Res.first.getNode()) {
6509     setValue(&I, Res.first);
6510     DAG.setRoot(Res.second);
6511     return true;
6512   }
6513 
6514   return false;
6515 }
6516 
6517 /// See if we can lower a strcmp call into an optimized form.  If so, return
6518 /// true and lower it, otherwise return false and it will be lowered like a
6519 /// normal call.
6520 /// The caller already checked that \p I calls the appropriate LibFunc with a
6521 /// correct prototype.
6522 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6523   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6524 
6525   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6526   std::pair<SDValue, SDValue> Res =
6527     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6528                                 getValue(Arg0), getValue(Arg1),
6529                                 MachinePointerInfo(Arg0),
6530                                 MachinePointerInfo(Arg1));
6531   if (Res.first.getNode()) {
6532     processIntegerCallValue(I, Res.first, true);
6533     PendingLoads.push_back(Res.second);
6534     return true;
6535   }
6536 
6537   return false;
6538 }
6539 
6540 /// See if we can lower a strlen call into an optimized form.  If so, return
6541 /// true and lower it, otherwise return false and it will be lowered like a
6542 /// normal call.
6543 /// The caller already checked that \p I calls the appropriate LibFunc with a
6544 /// correct prototype.
6545 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6546   const Value *Arg0 = I.getArgOperand(0);
6547 
6548   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6549   std::pair<SDValue, SDValue> Res =
6550     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6551                                 getValue(Arg0), MachinePointerInfo(Arg0));
6552   if (Res.first.getNode()) {
6553     processIntegerCallValue(I, Res.first, false);
6554     PendingLoads.push_back(Res.second);
6555     return true;
6556   }
6557 
6558   return false;
6559 }
6560 
6561 /// See if we can lower a strnlen call into an optimized form.  If so, return
6562 /// true and lower it, otherwise return false and it will be lowered like a
6563 /// normal call.
6564 /// The caller already checked that \p I calls the appropriate LibFunc with a
6565 /// correct prototype.
6566 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6567   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6568 
6569   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6570   std::pair<SDValue, SDValue> Res =
6571     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6572                                  getValue(Arg0), getValue(Arg1),
6573                                  MachinePointerInfo(Arg0));
6574   if (Res.first.getNode()) {
6575     processIntegerCallValue(I, Res.first, false);
6576     PendingLoads.push_back(Res.second);
6577     return true;
6578   }
6579 
6580   return false;
6581 }
6582 
6583 /// See if we can lower a unary floating-point operation into an SDNode with
6584 /// the specified Opcode.  If so, return true and lower it, otherwise return
6585 /// false and it will be lowered like a normal call.
6586 /// The caller already checked that \p I calls the appropriate LibFunc with a
6587 /// correct prototype.
6588 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6589                                               unsigned Opcode) {
6590   // We already checked this call's prototype; verify it doesn't modify errno.
6591   if (!I.onlyReadsMemory())
6592     return false;
6593 
6594   SDValue Tmp = getValue(I.getArgOperand(0));
6595   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6596   return true;
6597 }
6598 
6599 /// See if we can lower a binary floating-point operation into an SDNode with
6600 /// the specified Opcode. If so, return true and lower it. Otherwise return
6601 /// false, and it will be lowered like a normal call.
6602 /// The caller already checked that \p I calls the appropriate LibFunc with a
6603 /// correct prototype.
6604 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6605                                                unsigned Opcode) {
6606   // We already checked this call's prototype; verify it doesn't modify errno.
6607   if (!I.onlyReadsMemory())
6608     return false;
6609 
6610   SDValue Tmp0 = getValue(I.getArgOperand(0));
6611   SDValue Tmp1 = getValue(I.getArgOperand(1));
6612   EVT VT = Tmp0.getValueType();
6613   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6614   return true;
6615 }
6616 
6617 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6618   // Handle inline assembly differently.
6619   if (isa<InlineAsm>(I.getCalledValue())) {
6620     visitInlineAsm(&I);
6621     return;
6622   }
6623 
6624   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6625   computeUsesVAFloatArgument(I, MMI);
6626 
6627   const char *RenameFn = nullptr;
6628   if (Function *F = I.getCalledFunction()) {
6629     if (F->isDeclaration()) {
6630       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6631         if (unsigned IID = II->getIntrinsicID(F)) {
6632           RenameFn = visitIntrinsicCall(I, IID);
6633           if (!RenameFn)
6634             return;
6635         }
6636       }
6637       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6638         RenameFn = visitIntrinsicCall(I, IID);
6639         if (!RenameFn)
6640           return;
6641       }
6642     }
6643 
6644     // Check for well-known libc/libm calls.  If the function is internal, it
6645     // can't be a library call.  Don't do the check if marked as nobuiltin for
6646     // some reason or the call site requires strict floating point semantics.
6647     LibFunc Func;
6648     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
6649         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
6650         LibInfo->hasOptimizedCodeGen(Func)) {
6651       switch (Func) {
6652       default: break;
6653       case LibFunc_copysign:
6654       case LibFunc_copysignf:
6655       case LibFunc_copysignl:
6656         // We already checked this call's prototype; verify it doesn't modify
6657         // errno.
6658         if (I.onlyReadsMemory()) {
6659           SDValue LHS = getValue(I.getArgOperand(0));
6660           SDValue RHS = getValue(I.getArgOperand(1));
6661           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6662                                    LHS.getValueType(), LHS, RHS));
6663           return;
6664         }
6665         break;
6666       case LibFunc_fabs:
6667       case LibFunc_fabsf:
6668       case LibFunc_fabsl:
6669         if (visitUnaryFloatCall(I, ISD::FABS))
6670           return;
6671         break;
6672       case LibFunc_fmin:
6673       case LibFunc_fminf:
6674       case LibFunc_fminl:
6675         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6676           return;
6677         break;
6678       case LibFunc_fmax:
6679       case LibFunc_fmaxf:
6680       case LibFunc_fmaxl:
6681         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6682           return;
6683         break;
6684       case LibFunc_sin:
6685       case LibFunc_sinf:
6686       case LibFunc_sinl:
6687         if (visitUnaryFloatCall(I, ISD::FSIN))
6688           return;
6689         break;
6690       case LibFunc_cos:
6691       case LibFunc_cosf:
6692       case LibFunc_cosl:
6693         if (visitUnaryFloatCall(I, ISD::FCOS))
6694           return;
6695         break;
6696       case LibFunc_sqrt:
6697       case LibFunc_sqrtf:
6698       case LibFunc_sqrtl:
6699       case LibFunc_sqrt_finite:
6700       case LibFunc_sqrtf_finite:
6701       case LibFunc_sqrtl_finite:
6702         if (visitUnaryFloatCall(I, ISD::FSQRT))
6703           return;
6704         break;
6705       case LibFunc_floor:
6706       case LibFunc_floorf:
6707       case LibFunc_floorl:
6708         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6709           return;
6710         break;
6711       case LibFunc_nearbyint:
6712       case LibFunc_nearbyintf:
6713       case LibFunc_nearbyintl:
6714         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6715           return;
6716         break;
6717       case LibFunc_ceil:
6718       case LibFunc_ceilf:
6719       case LibFunc_ceill:
6720         if (visitUnaryFloatCall(I, ISD::FCEIL))
6721           return;
6722         break;
6723       case LibFunc_rint:
6724       case LibFunc_rintf:
6725       case LibFunc_rintl:
6726         if (visitUnaryFloatCall(I, ISD::FRINT))
6727           return;
6728         break;
6729       case LibFunc_round:
6730       case LibFunc_roundf:
6731       case LibFunc_roundl:
6732         if (visitUnaryFloatCall(I, ISD::FROUND))
6733           return;
6734         break;
6735       case LibFunc_trunc:
6736       case LibFunc_truncf:
6737       case LibFunc_truncl:
6738         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6739           return;
6740         break;
6741       case LibFunc_log2:
6742       case LibFunc_log2f:
6743       case LibFunc_log2l:
6744         if (visitUnaryFloatCall(I, ISD::FLOG2))
6745           return;
6746         break;
6747       case LibFunc_exp2:
6748       case LibFunc_exp2f:
6749       case LibFunc_exp2l:
6750         if (visitUnaryFloatCall(I, ISD::FEXP2))
6751           return;
6752         break;
6753       case LibFunc_memcmp:
6754         if (visitMemCmpCall(I))
6755           return;
6756         break;
6757       case LibFunc_mempcpy:
6758         if (visitMemPCpyCall(I))
6759           return;
6760         break;
6761       case LibFunc_memchr:
6762         if (visitMemChrCall(I))
6763           return;
6764         break;
6765       case LibFunc_strcpy:
6766         if (visitStrCpyCall(I, false))
6767           return;
6768         break;
6769       case LibFunc_stpcpy:
6770         if (visitStrCpyCall(I, true))
6771           return;
6772         break;
6773       case LibFunc_strcmp:
6774         if (visitStrCmpCall(I))
6775           return;
6776         break;
6777       case LibFunc_strlen:
6778         if (visitStrLenCall(I))
6779           return;
6780         break;
6781       case LibFunc_strnlen:
6782         if (visitStrNLenCall(I))
6783           return;
6784         break;
6785       }
6786     }
6787   }
6788 
6789   SDValue Callee;
6790   if (!RenameFn)
6791     Callee = getValue(I.getCalledValue());
6792   else
6793     Callee = DAG.getExternalSymbol(
6794         RenameFn,
6795         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6796 
6797   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6798   // have to do anything here to lower funclet bundles.
6799   assert(!I.hasOperandBundlesOtherThan(
6800              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6801          "Cannot lower calls with arbitrary operand bundles!");
6802 
6803   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6804     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6805   else
6806     // Check if we can potentially perform a tail call. More detailed checking
6807     // is be done within LowerCallTo, after more information about the call is
6808     // known.
6809     LowerCallTo(&I, Callee, I.isTailCall());
6810 }
6811 
6812 namespace {
6813 
6814 /// AsmOperandInfo - This contains information for each constraint that we are
6815 /// lowering.
6816 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6817 public:
6818   /// CallOperand - If this is the result output operand or a clobber
6819   /// this is null, otherwise it is the incoming operand to the CallInst.
6820   /// This gets modified as the asm is processed.
6821   SDValue CallOperand;
6822 
6823   /// AssignedRegs - If this is a register or register class operand, this
6824   /// contains the set of register corresponding to the operand.
6825   RegsForValue AssignedRegs;
6826 
6827   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6828     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
6829   }
6830 
6831   /// Whether or not this operand accesses memory
6832   bool hasMemory(const TargetLowering &TLI) const {
6833     // Indirect operand accesses access memory.
6834     if (isIndirect)
6835       return true;
6836 
6837     for (const auto &Code : Codes)
6838       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6839         return true;
6840 
6841     return false;
6842   }
6843 
6844   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6845   /// corresponds to.  If there is no Value* for this operand, it returns
6846   /// MVT::Other.
6847   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6848                            const DataLayout &DL) const {
6849     if (!CallOperandVal) return MVT::Other;
6850 
6851     if (isa<BasicBlock>(CallOperandVal))
6852       return TLI.getPointerTy(DL);
6853 
6854     llvm::Type *OpTy = CallOperandVal->getType();
6855 
6856     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6857     // If this is an indirect operand, the operand is a pointer to the
6858     // accessed type.
6859     if (isIndirect) {
6860       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6861       if (!PtrTy)
6862         report_fatal_error("Indirect operand for inline asm not a pointer!");
6863       OpTy = PtrTy->getElementType();
6864     }
6865 
6866     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6867     if (StructType *STy = dyn_cast<StructType>(OpTy))
6868       if (STy->getNumElements() == 1)
6869         OpTy = STy->getElementType(0);
6870 
6871     // If OpTy is not a single value, it may be a struct/union that we
6872     // can tile with integers.
6873     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6874       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6875       switch (BitSize) {
6876       default: break;
6877       case 1:
6878       case 8:
6879       case 16:
6880       case 32:
6881       case 64:
6882       case 128:
6883         OpTy = IntegerType::get(Context, BitSize);
6884         break;
6885       }
6886     }
6887 
6888     return TLI.getValueType(DL, OpTy, true);
6889   }
6890 };
6891 
6892 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
6893 
6894 } // end anonymous namespace
6895 
6896 /// Make sure that the output operand \p OpInfo and its corresponding input
6897 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
6898 /// out).
6899 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
6900                                SDISelAsmOperandInfo &MatchingOpInfo,
6901                                SelectionDAG &DAG) {
6902   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
6903     return;
6904 
6905   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6906   const auto &TLI = DAG.getTargetLoweringInfo();
6907 
6908   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6909       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6910                                        OpInfo.ConstraintVT);
6911   std::pair<unsigned, const TargetRegisterClass *> InputRC =
6912       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
6913                                        MatchingOpInfo.ConstraintVT);
6914   if ((OpInfo.ConstraintVT.isInteger() !=
6915        MatchingOpInfo.ConstraintVT.isInteger()) ||
6916       (MatchRC.second != InputRC.second)) {
6917     // FIXME: error out in a more elegant fashion
6918     report_fatal_error("Unsupported asm: input constraint"
6919                        " with a matching output constraint of"
6920                        " incompatible type!");
6921   }
6922   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
6923 }
6924 
6925 /// Get a direct memory input to behave well as an indirect operand.
6926 /// This may introduce stores, hence the need for a \p Chain.
6927 /// \return The (possibly updated) chain.
6928 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
6929                                         SDISelAsmOperandInfo &OpInfo,
6930                                         SelectionDAG &DAG) {
6931   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6932 
6933   // If we don't have an indirect input, put it in the constpool if we can,
6934   // otherwise spill it to a stack slot.
6935   // TODO: This isn't quite right. We need to handle these according to
6936   // the addressing mode that the constraint wants. Also, this may take
6937   // an additional register for the computation and we don't want that
6938   // either.
6939 
6940   // If the operand is a float, integer, or vector constant, spill to a
6941   // constant pool entry to get its address.
6942   const Value *OpVal = OpInfo.CallOperandVal;
6943   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6944       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6945     OpInfo.CallOperand = DAG.getConstantPool(
6946         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6947     return Chain;
6948   }
6949 
6950   // Otherwise, create a stack slot and emit a store to it before the asm.
6951   Type *Ty = OpVal->getType();
6952   auto &DL = DAG.getDataLayout();
6953   uint64_t TySize = DL.getTypeAllocSize(Ty);
6954   unsigned Align = DL.getPrefTypeAlignment(Ty);
6955   MachineFunction &MF = DAG.getMachineFunction();
6956   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
6957   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
6958   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
6959                        MachinePointerInfo::getFixedStack(MF, SSFI));
6960   OpInfo.CallOperand = StackSlot;
6961 
6962   return Chain;
6963 }
6964 
6965 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6966 /// specified operand.  We prefer to assign virtual registers, to allow the
6967 /// register allocator to handle the assignment process.  However, if the asm
6968 /// uses features that we can't model on machineinstrs, we have SDISel do the
6969 /// allocation.  This produces generally horrible, but correct, code.
6970 ///
6971 ///   OpInfo describes the operand.
6972 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
6973                                  const SDLoc &DL,
6974                                  SDISelAsmOperandInfo &OpInfo) {
6975   LLVMContext &Context = *DAG.getContext();
6976 
6977   MachineFunction &MF = DAG.getMachineFunction();
6978   SmallVector<unsigned, 4> Regs;
6979   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6980 
6981   // If this is a constraint for a single physreg, or a constraint for a
6982   // register class, find it.
6983   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6984       TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode,
6985                                        OpInfo.ConstraintVT);
6986 
6987   unsigned NumRegs = 1;
6988   if (OpInfo.ConstraintVT != MVT::Other) {
6989     // If this is a FP input in an integer register (or visa versa) insert a bit
6990     // cast of the input value.  More generally, handle any case where the input
6991     // value disagrees with the register class we plan to stick this in.
6992     if (OpInfo.Type == InlineAsm::isInput && PhysReg.second &&
6993         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
6994       // Try to convert to the first EVT that the reg class contains.  If the
6995       // types are identical size, use a bitcast to convert (e.g. two differing
6996       // vector types).
6997       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
6998       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6999         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7000                                          RegVT, OpInfo.CallOperand);
7001         OpInfo.ConstraintVT = RegVT;
7002       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7003         // If the input is a FP value and we want it in FP registers, do a
7004         // bitcast to the corresponding integer type.  This turns an f64 value
7005         // into i64, which can be passed with two i32 values on a 32-bit
7006         // machine.
7007         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7008         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7009                                          RegVT, OpInfo.CallOperand);
7010         OpInfo.ConstraintVT = RegVT;
7011       }
7012     }
7013 
7014     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7015   }
7016 
7017   MVT RegVT;
7018   EVT ValueVT = OpInfo.ConstraintVT;
7019 
7020   // If this is a constraint for a specific physical register, like {r17},
7021   // assign it now.
7022   if (unsigned AssignedReg = PhysReg.first) {
7023     const TargetRegisterClass *RC = PhysReg.second;
7024     if (OpInfo.ConstraintVT == MVT::Other)
7025       ValueVT = *TRI.legalclasstypes_begin(*RC);
7026 
7027     // Get the actual register value type.  This is important, because the user
7028     // may have asked for (e.g.) the AX register in i32 type.  We need to
7029     // remember that AX is actually i16 to get the right extension.
7030     RegVT = *TRI.legalclasstypes_begin(*RC);
7031 
7032     // This is a explicit reference to a physical register.
7033     Regs.push_back(AssignedReg);
7034 
7035     // If this is an expanded reference, add the rest of the regs to Regs.
7036     if (NumRegs != 1) {
7037       TargetRegisterClass::iterator I = RC->begin();
7038       for (; *I != AssignedReg; ++I)
7039         assert(I != RC->end() && "Didn't find reg!");
7040 
7041       // Already added the first reg.
7042       --NumRegs; ++I;
7043       for (; NumRegs; --NumRegs, ++I) {
7044         assert(I != RC->end() && "Ran out of registers to allocate!");
7045         Regs.push_back(*I);
7046       }
7047     }
7048 
7049     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7050     return;
7051   }
7052 
7053   // Otherwise, if this was a reference to an LLVM register class, create vregs
7054   // for this reference.
7055   if (const TargetRegisterClass *RC = PhysReg.second) {
7056     RegVT = *TRI.legalclasstypes_begin(*RC);
7057     if (OpInfo.ConstraintVT == MVT::Other)
7058       ValueVT = RegVT;
7059 
7060     // Create the appropriate number of virtual registers.
7061     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7062     for (; NumRegs; --NumRegs)
7063       Regs.push_back(RegInfo.createVirtualRegister(RC));
7064 
7065     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7066     return;
7067   }
7068 
7069   // Otherwise, we couldn't allocate enough registers for this.
7070 }
7071 
7072 static unsigned
7073 findMatchingInlineAsmOperand(unsigned OperandNo,
7074                              const std::vector<SDValue> &AsmNodeOperands) {
7075   // Scan until we find the definition we already emitted of this operand.
7076   unsigned CurOp = InlineAsm::Op_FirstOperand;
7077   for (; OperandNo; --OperandNo) {
7078     // Advance to the next operand.
7079     unsigned OpFlag =
7080         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7081     assert((InlineAsm::isRegDefKind(OpFlag) ||
7082             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7083             InlineAsm::isMemKind(OpFlag)) &&
7084            "Skipped past definitions?");
7085     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7086   }
7087   return CurOp;
7088 }
7089 
7090 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
7091 /// \return true if it has succeeded, false otherwise
7092 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
7093                               MVT RegVT, SelectionDAG &DAG) {
7094   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7095   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
7096   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
7097     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
7098       Regs.push_back(RegInfo.createVirtualRegister(RC));
7099     else
7100       return false;
7101   }
7102   return true;
7103 }
7104 
7105 namespace {
7106 
7107 class ExtraFlags {
7108   unsigned Flags = 0;
7109 
7110 public:
7111   explicit ExtraFlags(ImmutableCallSite CS) {
7112     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7113     if (IA->hasSideEffects())
7114       Flags |= InlineAsm::Extra_HasSideEffects;
7115     if (IA->isAlignStack())
7116       Flags |= InlineAsm::Extra_IsAlignStack;
7117     if (CS.isConvergent())
7118       Flags |= InlineAsm::Extra_IsConvergent;
7119     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7120   }
7121 
7122   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7123     // Ideally, we would only check against memory constraints.  However, the
7124     // meaning of an Other constraint can be target-specific and we can't easily
7125     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7126     // for Other constraints as well.
7127     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7128         OpInfo.ConstraintType == TargetLowering::C_Other) {
7129       if (OpInfo.Type == InlineAsm::isInput)
7130         Flags |= InlineAsm::Extra_MayLoad;
7131       else if (OpInfo.Type == InlineAsm::isOutput)
7132         Flags |= InlineAsm::Extra_MayStore;
7133       else if (OpInfo.Type == InlineAsm::isClobber)
7134         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7135     }
7136   }
7137 
7138   unsigned get() const { return Flags; }
7139 };
7140 
7141 } // end anonymous namespace
7142 
7143 /// visitInlineAsm - Handle a call to an InlineAsm object.
7144 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7145   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7146 
7147   /// ConstraintOperands - Information about all of the constraints.
7148   SDISelAsmOperandInfoVector ConstraintOperands;
7149 
7150   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7151   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7152       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7153 
7154   bool hasMemory = false;
7155 
7156   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7157   ExtraFlags ExtraInfo(CS);
7158 
7159   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7160   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7161   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
7162     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
7163     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7164 
7165     MVT OpVT = MVT::Other;
7166 
7167     // Compute the value type for each operand.
7168     if (OpInfo.Type == InlineAsm::isInput ||
7169         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7170       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7171 
7172       // Process the call argument. BasicBlocks are labels, currently appearing
7173       // only in asm's.
7174       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7175         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7176       } else {
7177         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7178       }
7179 
7180       OpVT =
7181           OpInfo
7182               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7183               .getSimpleVT();
7184     }
7185 
7186     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7187       // The return value of the call is this value.  As such, there is no
7188       // corresponding argument.
7189       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7190       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7191         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
7192                                       STy->getElementType(ResNo));
7193       } else {
7194         assert(ResNo == 0 && "Asm only has one result!");
7195         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7196       }
7197       ++ResNo;
7198     }
7199 
7200     OpInfo.ConstraintVT = OpVT;
7201 
7202     if (!hasMemory)
7203       hasMemory = OpInfo.hasMemory(TLI);
7204 
7205     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7206     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7207     auto TargetConstraint = TargetConstraints[i];
7208 
7209     // Compute the constraint code and ConstraintType to use.
7210     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7211 
7212     ExtraInfo.update(TargetConstraint);
7213   }
7214 
7215   SDValue Chain, Flag;
7216 
7217   // We won't need to flush pending loads if this asm doesn't touch
7218   // memory and is nonvolatile.
7219   if (hasMemory || IA->hasSideEffects())
7220     Chain = getRoot();
7221   else
7222     Chain = DAG.getRoot();
7223 
7224   // Second pass over the constraints: compute which constraint option to use
7225   // and assign registers to constraints that want a specific physreg.
7226   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7227     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7228 
7229     // If this is an output operand with a matching input operand, look up the
7230     // matching input. If their types mismatch, e.g. one is an integer, the
7231     // other is floating point, or their sizes are different, flag it as an
7232     // error.
7233     if (OpInfo.hasMatchingInput()) {
7234       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7235       patchMatchingInput(OpInfo, Input, DAG);
7236     }
7237 
7238     // Compute the constraint code and ConstraintType to use.
7239     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7240 
7241     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7242         OpInfo.Type == InlineAsm::isClobber)
7243       continue;
7244 
7245     // If this is a memory input, and if the operand is not indirect, do what we
7246     // need to to provide an address for the memory input.
7247     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7248         !OpInfo.isIndirect) {
7249       assert((OpInfo.isMultipleAlternative ||
7250               (OpInfo.Type == InlineAsm::isInput)) &&
7251              "Can only indirectify direct input operands!");
7252 
7253       // Memory operands really want the address of the value.
7254       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7255 
7256       // There is no longer a Value* corresponding to this operand.
7257       OpInfo.CallOperandVal = nullptr;
7258 
7259       // It is now an indirect operand.
7260       OpInfo.isIndirect = true;
7261     }
7262 
7263     // If this constraint is for a specific register, allocate it before
7264     // anything else.
7265     if (OpInfo.ConstraintType == TargetLowering::C_Register)
7266       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7267   }
7268 
7269   // Third pass - Loop over all of the operands, assigning virtual or physregs
7270   // to register class operands.
7271   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7272     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7273 
7274     // C_Register operands have already been allocated, Other/Memory don't need
7275     // to be.
7276     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7277       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7278   }
7279 
7280   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7281   std::vector<SDValue> AsmNodeOperands;
7282   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7283   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7284       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7285 
7286   // If we have a !srcloc metadata node associated with it, we want to attach
7287   // this to the ultimately generated inline asm machineinstr.  To do this, we
7288   // pass in the third operand as this (potentially null) inline asm MDNode.
7289   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7290   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7291 
7292   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7293   // bits as operand 3.
7294   AsmNodeOperands.push_back(DAG.getTargetConstant(
7295       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7296 
7297   // Loop over all of the inputs, copying the operand values into the
7298   // appropriate registers and processing the output regs.
7299   RegsForValue RetValRegs;
7300 
7301   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7302   std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit;
7303 
7304   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7305     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7306 
7307     switch (OpInfo.Type) {
7308     case InlineAsm::isOutput:
7309       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7310           OpInfo.ConstraintType != TargetLowering::C_Register) {
7311         // Memory output, or 'other' output (e.g. 'X' constraint).
7312         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7313 
7314         unsigned ConstraintID =
7315             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7316         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7317                "Failed to convert memory constraint code to constraint id.");
7318 
7319         // Add information to the INLINEASM node to know about this output.
7320         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7321         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7322         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7323                                                         MVT::i32));
7324         AsmNodeOperands.push_back(OpInfo.CallOperand);
7325         break;
7326       }
7327 
7328       // Otherwise, this is a register or register class output.
7329 
7330       // Copy the output from the appropriate register.  Find a register that
7331       // we can use.
7332       if (OpInfo.AssignedRegs.Regs.empty()) {
7333         emitInlineAsmError(
7334             CS, "couldn't allocate output register for constraint '" +
7335                     Twine(OpInfo.ConstraintCode) + "'");
7336         return;
7337       }
7338 
7339       // If this is an indirect operand, store through the pointer after the
7340       // asm.
7341       if (OpInfo.isIndirect) {
7342         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7343                                                       OpInfo.CallOperandVal));
7344       } else {
7345         // This is the result value of the call.
7346         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7347         // Concatenate this output onto the outputs list.
7348         RetValRegs.append(OpInfo.AssignedRegs);
7349       }
7350 
7351       // Add information to the INLINEASM node to know that this register is
7352       // set.
7353       OpInfo.AssignedRegs
7354           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7355                                     ? InlineAsm::Kind_RegDefEarlyClobber
7356                                     : InlineAsm::Kind_RegDef,
7357                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7358       break;
7359 
7360     case InlineAsm::isInput: {
7361       SDValue InOperandVal = OpInfo.CallOperand;
7362 
7363       if (OpInfo.isMatchingInputConstraint()) {
7364         // If this is required to match an output register we have already set,
7365         // just use its register.
7366         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7367                                                   AsmNodeOperands);
7368         unsigned OpFlag =
7369           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7370         if (InlineAsm::isRegDefKind(OpFlag) ||
7371             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7372           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7373           if (OpInfo.isIndirect) {
7374             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7375             emitInlineAsmError(CS, "inline asm not supported yet:"
7376                                    " don't know how to handle tied "
7377                                    "indirect register inputs");
7378             return;
7379           }
7380 
7381           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7382           SmallVector<unsigned, 4> Regs;
7383 
7384           if (!createVirtualRegs(Regs,
7385                                  InlineAsm::getNumOperandRegisters(OpFlag),
7386                                  RegVT, DAG)) {
7387             emitInlineAsmError(CS, "inline asm error: This value type register "
7388                                    "class is not natively supported!");
7389             return;
7390           }
7391 
7392           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7393 
7394           SDLoc dl = getCurSDLoc();
7395           // Use the produced MatchedRegs object to
7396           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7397                                     CS.getInstruction());
7398           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7399                                            true, OpInfo.getMatchedOperand(), dl,
7400                                            DAG, AsmNodeOperands);
7401           break;
7402         }
7403 
7404         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7405         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7406                "Unexpected number of operands");
7407         // Add information to the INLINEASM node to know about this input.
7408         // See InlineAsm.h isUseOperandTiedToDef.
7409         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7410         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7411                                                     OpInfo.getMatchedOperand());
7412         AsmNodeOperands.push_back(DAG.getTargetConstant(
7413             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7414         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7415         break;
7416       }
7417 
7418       // Treat indirect 'X' constraint as memory.
7419       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7420           OpInfo.isIndirect)
7421         OpInfo.ConstraintType = TargetLowering::C_Memory;
7422 
7423       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7424         std::vector<SDValue> Ops;
7425         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7426                                           Ops, DAG);
7427         if (Ops.empty()) {
7428           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7429                                      Twine(OpInfo.ConstraintCode) + "'");
7430           return;
7431         }
7432 
7433         // Add information to the INLINEASM node to know about this input.
7434         unsigned ResOpType =
7435           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7436         AsmNodeOperands.push_back(DAG.getTargetConstant(
7437             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7438         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7439         break;
7440       }
7441 
7442       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7443         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7444         assert(InOperandVal.getValueType() ==
7445                    TLI.getPointerTy(DAG.getDataLayout()) &&
7446                "Memory operands expect pointer values");
7447 
7448         unsigned ConstraintID =
7449             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7450         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7451                "Failed to convert memory constraint code to constraint id.");
7452 
7453         // Add information to the INLINEASM node to know about this input.
7454         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7455         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7456         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7457                                                         getCurSDLoc(),
7458                                                         MVT::i32));
7459         AsmNodeOperands.push_back(InOperandVal);
7460         break;
7461       }
7462 
7463       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7464               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7465              "Unknown constraint type!");
7466 
7467       // TODO: Support this.
7468       if (OpInfo.isIndirect) {
7469         emitInlineAsmError(
7470             CS, "Don't know how to handle indirect register inputs yet "
7471                 "for constraint '" +
7472                     Twine(OpInfo.ConstraintCode) + "'");
7473         return;
7474       }
7475 
7476       // Copy the input into the appropriate registers.
7477       if (OpInfo.AssignedRegs.Regs.empty()) {
7478         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7479                                    Twine(OpInfo.ConstraintCode) + "'");
7480         return;
7481       }
7482 
7483       SDLoc dl = getCurSDLoc();
7484 
7485       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7486                                         Chain, &Flag, CS.getInstruction());
7487 
7488       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7489                                                dl, DAG, AsmNodeOperands);
7490       break;
7491     }
7492     case InlineAsm::isClobber:
7493       // Add the clobbered value to the operand list, so that the register
7494       // allocator is aware that the physreg got clobbered.
7495       if (!OpInfo.AssignedRegs.Regs.empty())
7496         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7497                                                  false, 0, getCurSDLoc(), DAG,
7498                                                  AsmNodeOperands);
7499       break;
7500     }
7501   }
7502 
7503   // Finish up input operands.  Set the input chain and add the flag last.
7504   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7505   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7506 
7507   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7508                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7509   Flag = Chain.getValue(1);
7510 
7511   // If this asm returns a register value, copy the result from that register
7512   // and set it as the value of the call.
7513   if (!RetValRegs.Regs.empty()) {
7514     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7515                                              Chain, &Flag, CS.getInstruction());
7516 
7517     // FIXME: Why don't we do this for inline asms with MRVs?
7518     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7519       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7520 
7521       // If any of the results of the inline asm is a vector, it may have the
7522       // wrong width/num elts.  This can happen for register classes that can
7523       // contain multiple different value types.  The preg or vreg allocated may
7524       // not have the same VT as was expected.  Convert it to the right type
7525       // with bit_convert.
7526       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7527         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7528                           ResultType, Val);
7529 
7530       } else if (ResultType != Val.getValueType() &&
7531                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7532         // If a result value was tied to an input value, the computed result may
7533         // have a wider width than the expected result.  Extract the relevant
7534         // portion.
7535         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7536       }
7537 
7538       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7539     }
7540 
7541     setValue(CS.getInstruction(), Val);
7542     // Don't need to use this as a chain in this case.
7543     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7544       return;
7545   }
7546 
7547   std::vector<std::pair<SDValue, const Value *>> StoresToEmit;
7548 
7549   // Process indirect outputs, first output all of the flagged copies out of
7550   // physregs.
7551   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7552     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7553     const Value *Ptr = IndirectStoresToEmit[i].second;
7554     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7555                                              Chain, &Flag, IA);
7556     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7557   }
7558 
7559   // Emit the non-flagged stores from the physregs.
7560   SmallVector<SDValue, 8> OutChains;
7561   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7562     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7563                                getValue(StoresToEmit[i].second),
7564                                MachinePointerInfo(StoresToEmit[i].second));
7565     OutChains.push_back(Val);
7566   }
7567 
7568   if (!OutChains.empty())
7569     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7570 
7571   DAG.setRoot(Chain);
7572 }
7573 
7574 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7575                                              const Twine &Message) {
7576   LLVMContext &Ctx = *DAG.getContext();
7577   Ctx.emitError(CS.getInstruction(), Message);
7578 
7579   // Make sure we leave the DAG in a valid state
7580   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7581   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7582   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7583 }
7584 
7585 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7586   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7587                           MVT::Other, getRoot(),
7588                           getValue(I.getArgOperand(0)),
7589                           DAG.getSrcValue(I.getArgOperand(0))));
7590 }
7591 
7592 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7593   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7594   const DataLayout &DL = DAG.getDataLayout();
7595   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7596                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7597                            DAG.getSrcValue(I.getOperand(0)),
7598                            DL.getABITypeAlignment(I.getType()));
7599   setValue(&I, V);
7600   DAG.setRoot(V.getValue(1));
7601 }
7602 
7603 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7604   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7605                           MVT::Other, getRoot(),
7606                           getValue(I.getArgOperand(0)),
7607                           DAG.getSrcValue(I.getArgOperand(0))));
7608 }
7609 
7610 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7611   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7612                           MVT::Other, getRoot(),
7613                           getValue(I.getArgOperand(0)),
7614                           getValue(I.getArgOperand(1)),
7615                           DAG.getSrcValue(I.getArgOperand(0)),
7616                           DAG.getSrcValue(I.getArgOperand(1))));
7617 }
7618 
7619 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7620                                                     const Instruction &I,
7621                                                     SDValue Op) {
7622   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7623   if (!Range)
7624     return Op;
7625 
7626   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7627   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7628     return Op;
7629 
7630   APInt Lo = CR.getUnsignedMin();
7631   if (!Lo.isMinValue())
7632     return Op;
7633 
7634   APInt Hi = CR.getUnsignedMax();
7635   unsigned Bits = Hi.getActiveBits();
7636 
7637   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7638 
7639   SDLoc SL = getCurSDLoc();
7640 
7641   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7642                              DAG.getValueType(SmallVT));
7643   unsigned NumVals = Op.getNode()->getNumValues();
7644   if (NumVals == 1)
7645     return ZExt;
7646 
7647   SmallVector<SDValue, 4> Ops;
7648 
7649   Ops.push_back(ZExt);
7650   for (unsigned I = 1; I != NumVals; ++I)
7651     Ops.push_back(Op.getValue(I));
7652 
7653   return DAG.getMergeValues(Ops, SL);
7654 }
7655 
7656 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7657 /// the call being lowered.
7658 ///
7659 /// This is a helper for lowering intrinsics that follow a target calling
7660 /// convention or require stack pointer adjustment. Only a subset of the
7661 /// intrinsic's operands need to participate in the calling convention.
7662 void SelectionDAGBuilder::populateCallLoweringInfo(
7663     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7664     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7665     bool IsPatchPoint) {
7666   TargetLowering::ArgListTy Args;
7667   Args.reserve(NumArgs);
7668 
7669   // Populate the argument list.
7670   // Attributes for args start at offset 1, after the return attribute.
7671   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
7672        ArgI != ArgE; ++ArgI) {
7673     const Value *V = CS->getOperand(ArgI);
7674 
7675     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7676 
7677     TargetLowering::ArgListEntry Entry;
7678     Entry.Node = getValue(V);
7679     Entry.Ty = V->getType();
7680     Entry.setAttributes(&CS, ArgIdx);
7681     Args.push_back(Entry);
7682   }
7683 
7684   CLI.setDebugLoc(getCurSDLoc())
7685       .setChain(getRoot())
7686       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7687       .setDiscardResult(CS->use_empty())
7688       .setIsPatchPoint(IsPatchPoint);
7689 }
7690 
7691 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7692 /// or patchpoint target node's operand list.
7693 ///
7694 /// Constants are converted to TargetConstants purely as an optimization to
7695 /// avoid constant materialization and register allocation.
7696 ///
7697 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7698 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7699 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7700 /// address materialization and register allocation, but may also be required
7701 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7702 /// alloca in the entry block, then the runtime may assume that the alloca's
7703 /// StackMap location can be read immediately after compilation and that the
7704 /// location is valid at any point during execution (this is similar to the
7705 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7706 /// only available in a register, then the runtime would need to trap when
7707 /// execution reaches the StackMap in order to read the alloca's location.
7708 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7709                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7710                                 SelectionDAGBuilder &Builder) {
7711   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7712     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7713     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7714       Ops.push_back(
7715         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7716       Ops.push_back(
7717         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7718     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7719       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7720       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7721           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
7722     } else
7723       Ops.push_back(OpVal);
7724   }
7725 }
7726 
7727 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7728 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7729   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7730   //                                  [live variables...])
7731 
7732   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7733 
7734   SDValue Chain, InFlag, Callee, NullPtr;
7735   SmallVector<SDValue, 32> Ops;
7736 
7737   SDLoc DL = getCurSDLoc();
7738   Callee = getValue(CI.getCalledValue());
7739   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7740 
7741   // The stackmap intrinsic only records the live variables (the arguemnts
7742   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7743   // intrinsic, this won't be lowered to a function call. This means we don't
7744   // have to worry about calling conventions and target specific lowering code.
7745   // Instead we perform the call lowering right here.
7746   //
7747   // chain, flag = CALLSEQ_START(chain, 0, 0)
7748   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7749   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7750   //
7751   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
7752   InFlag = Chain.getValue(1);
7753 
7754   // Add the <id> and <numBytes> constants.
7755   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7756   Ops.push_back(DAG.getTargetConstant(
7757                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7758   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7759   Ops.push_back(DAG.getTargetConstant(
7760                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7761                   MVT::i32));
7762 
7763   // Push live variables for the stack map.
7764   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7765 
7766   // We are not pushing any register mask info here on the operands list,
7767   // because the stackmap doesn't clobber anything.
7768 
7769   // Push the chain and the glue flag.
7770   Ops.push_back(Chain);
7771   Ops.push_back(InFlag);
7772 
7773   // Create the STACKMAP node.
7774   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7775   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7776   Chain = SDValue(SM, 0);
7777   InFlag = Chain.getValue(1);
7778 
7779   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7780 
7781   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7782 
7783   // Set the root to the target-lowered call chain.
7784   DAG.setRoot(Chain);
7785 
7786   // Inform the Frame Information that we have a stackmap in this function.
7787   FuncInfo.MF->getFrameInfo().setHasStackMap();
7788 }
7789 
7790 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7791 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7792                                           const BasicBlock *EHPadBB) {
7793   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7794   //                                                 i32 <numBytes>,
7795   //                                                 i8* <target>,
7796   //                                                 i32 <numArgs>,
7797   //                                                 [Args...],
7798   //                                                 [live variables...])
7799 
7800   CallingConv::ID CC = CS.getCallingConv();
7801   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7802   bool HasDef = !CS->getType()->isVoidTy();
7803   SDLoc dl = getCurSDLoc();
7804   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7805 
7806   // Handle immediate and symbolic callees.
7807   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7808     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7809                                    /*isTarget=*/true);
7810   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7811     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7812                                          SDLoc(SymbolicCallee),
7813                                          SymbolicCallee->getValueType(0));
7814 
7815   // Get the real number of arguments participating in the call <numArgs>
7816   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7817   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7818 
7819   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7820   // Intrinsics include all meta-operands up to but not including CC.
7821   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7822   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7823          "Not enough arguments provided to the patchpoint intrinsic");
7824 
7825   // For AnyRegCC the arguments are lowered later on manually.
7826   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7827   Type *ReturnTy =
7828     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7829 
7830   TargetLowering::CallLoweringInfo CLI(DAG);
7831   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7832                            true);
7833   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7834 
7835   SDNode *CallEnd = Result.second.getNode();
7836   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7837     CallEnd = CallEnd->getOperand(0).getNode();
7838 
7839   /// Get a call instruction from the call sequence chain.
7840   /// Tail calls are not allowed.
7841   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7842          "Expected a callseq node.");
7843   SDNode *Call = CallEnd->getOperand(0).getNode();
7844   bool HasGlue = Call->getGluedNode();
7845 
7846   // Replace the target specific call node with the patchable intrinsic.
7847   SmallVector<SDValue, 8> Ops;
7848 
7849   // Add the <id> and <numBytes> constants.
7850   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7851   Ops.push_back(DAG.getTargetConstant(
7852                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7853   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7854   Ops.push_back(DAG.getTargetConstant(
7855                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7856                   MVT::i32));
7857 
7858   // Add the callee.
7859   Ops.push_back(Callee);
7860 
7861   // Adjust <numArgs> to account for any arguments that have been passed on the
7862   // stack instead.
7863   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7864   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7865   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7866   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7867 
7868   // Add the calling convention
7869   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7870 
7871   // Add the arguments we omitted previously. The register allocator should
7872   // place these in any free register.
7873   if (IsAnyRegCC)
7874     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7875       Ops.push_back(getValue(CS.getArgument(i)));
7876 
7877   // Push the arguments from the call instruction up to the register mask.
7878   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7879   Ops.append(Call->op_begin() + 2, e);
7880 
7881   // Push live variables for the stack map.
7882   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7883 
7884   // Push the register mask info.
7885   if (HasGlue)
7886     Ops.push_back(*(Call->op_end()-2));
7887   else
7888     Ops.push_back(*(Call->op_end()-1));
7889 
7890   // Push the chain (this is originally the first operand of the call, but
7891   // becomes now the last or second to last operand).
7892   Ops.push_back(*(Call->op_begin()));
7893 
7894   // Push the glue flag (last operand).
7895   if (HasGlue)
7896     Ops.push_back(*(Call->op_end()-1));
7897 
7898   SDVTList NodeTys;
7899   if (IsAnyRegCC && HasDef) {
7900     // Create the return types based on the intrinsic definition
7901     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7902     SmallVector<EVT, 3> ValueVTs;
7903     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7904     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7905 
7906     // There is always a chain and a glue type at the end
7907     ValueVTs.push_back(MVT::Other);
7908     ValueVTs.push_back(MVT::Glue);
7909     NodeTys = DAG.getVTList(ValueVTs);
7910   } else
7911     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7912 
7913   // Replace the target specific call node with a PATCHPOINT node.
7914   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7915                                          dl, NodeTys, Ops);
7916 
7917   // Update the NodeMap.
7918   if (HasDef) {
7919     if (IsAnyRegCC)
7920       setValue(CS.getInstruction(), SDValue(MN, 0));
7921     else
7922       setValue(CS.getInstruction(), Result.first);
7923   }
7924 
7925   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7926   // call sequence. Furthermore the location of the chain and glue can change
7927   // when the AnyReg calling convention is used and the intrinsic returns a
7928   // value.
7929   if (IsAnyRegCC && HasDef) {
7930     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7931     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7932     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7933   } else
7934     DAG.ReplaceAllUsesWith(Call, MN);
7935   DAG.DeleteNode(Call);
7936 
7937   // Inform the Frame Information that we have a patchpoint in this function.
7938   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
7939 }
7940 
7941 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
7942                                             unsigned Intrinsic) {
7943   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7944   SDValue Op1 = getValue(I.getArgOperand(0));
7945   SDValue Op2;
7946   if (I.getNumArgOperands() > 1)
7947     Op2 = getValue(I.getArgOperand(1));
7948   SDLoc dl = getCurSDLoc();
7949   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7950   SDValue Res;
7951   FastMathFlags FMF;
7952   if (isa<FPMathOperator>(I))
7953     FMF = I.getFastMathFlags();
7954   SDNodeFlags SDFlags;
7955   SDFlags.setNoNaNs(FMF.noNaNs());
7956 
7957   switch (Intrinsic) {
7958   case Intrinsic::experimental_vector_reduce_fadd:
7959     if (FMF.isFast())
7960       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
7961     else
7962       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
7963     break;
7964   case Intrinsic::experimental_vector_reduce_fmul:
7965     if (FMF.isFast())
7966       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
7967     else
7968       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
7969     break;
7970   case Intrinsic::experimental_vector_reduce_add:
7971     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
7972     break;
7973   case Intrinsic::experimental_vector_reduce_mul:
7974     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
7975     break;
7976   case Intrinsic::experimental_vector_reduce_and:
7977     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
7978     break;
7979   case Intrinsic::experimental_vector_reduce_or:
7980     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
7981     break;
7982   case Intrinsic::experimental_vector_reduce_xor:
7983     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
7984     break;
7985   case Intrinsic::experimental_vector_reduce_smax:
7986     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
7987     break;
7988   case Intrinsic::experimental_vector_reduce_smin:
7989     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
7990     break;
7991   case Intrinsic::experimental_vector_reduce_umax:
7992     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
7993     break;
7994   case Intrinsic::experimental_vector_reduce_umin:
7995     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
7996     break;
7997   case Intrinsic::experimental_vector_reduce_fmax:
7998     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
7999     break;
8000   case Intrinsic::experimental_vector_reduce_fmin:
8001     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
8002     break;
8003   default:
8004     llvm_unreachable("Unhandled vector reduce intrinsic");
8005   }
8006   setValue(&I, Res);
8007 }
8008 
8009 /// Returns an AttributeList representing the attributes applied to the return
8010 /// value of the given call.
8011 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8012   SmallVector<Attribute::AttrKind, 2> Attrs;
8013   if (CLI.RetSExt)
8014     Attrs.push_back(Attribute::SExt);
8015   if (CLI.RetZExt)
8016     Attrs.push_back(Attribute::ZExt);
8017   if (CLI.IsInReg)
8018     Attrs.push_back(Attribute::InReg);
8019 
8020   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8021                             Attrs);
8022 }
8023 
8024 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8025 /// implementation, which just calls LowerCall.
8026 /// FIXME: When all targets are
8027 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8028 std::pair<SDValue, SDValue>
8029 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8030   // Handle the incoming return values from the call.
8031   CLI.Ins.clear();
8032   Type *OrigRetTy = CLI.RetTy;
8033   SmallVector<EVT, 4> RetTys;
8034   SmallVector<uint64_t, 4> Offsets;
8035   auto &DL = CLI.DAG.getDataLayout();
8036   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8037 
8038   if (CLI.IsPostTypeLegalization) {
8039     // If we are lowering a libcall after legalization, split the return type.
8040     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8041     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8042     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8043       EVT RetVT = OldRetTys[i];
8044       uint64_t Offset = OldOffsets[i];
8045       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8046       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8047       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8048       RetTys.append(NumRegs, RegisterVT);
8049       for (unsigned j = 0; j != NumRegs; ++j)
8050         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8051     }
8052   }
8053 
8054   SmallVector<ISD::OutputArg, 4> Outs;
8055   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8056 
8057   bool CanLowerReturn =
8058       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8059                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8060 
8061   SDValue DemoteStackSlot;
8062   int DemoteStackIdx = -100;
8063   if (!CanLowerReturn) {
8064     // FIXME: equivalent assert?
8065     // assert(!CS.hasInAllocaArgument() &&
8066     //        "sret demotion is incompatible with inalloca");
8067     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8068     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8069     MachineFunction &MF = CLI.DAG.getMachineFunction();
8070     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8071     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
8072 
8073     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8074     ArgListEntry Entry;
8075     Entry.Node = DemoteStackSlot;
8076     Entry.Ty = StackSlotPtrType;
8077     Entry.IsSExt = false;
8078     Entry.IsZExt = false;
8079     Entry.IsInReg = false;
8080     Entry.IsSRet = true;
8081     Entry.IsNest = false;
8082     Entry.IsByVal = false;
8083     Entry.IsReturned = false;
8084     Entry.IsSwiftSelf = false;
8085     Entry.IsSwiftError = false;
8086     Entry.Alignment = Align;
8087     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8088     CLI.NumFixedArgs += 1;
8089     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8090 
8091     // sret demotion isn't compatible with tail-calls, since the sret argument
8092     // points into the callers stack frame.
8093     CLI.IsTailCall = false;
8094   } else {
8095     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8096       EVT VT = RetTys[I];
8097       MVT RegisterVT =
8098           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8099       unsigned NumRegs =
8100           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8101       for (unsigned i = 0; i != NumRegs; ++i) {
8102         ISD::InputArg MyFlags;
8103         MyFlags.VT = RegisterVT;
8104         MyFlags.ArgVT = VT;
8105         MyFlags.Used = CLI.IsReturnValueUsed;
8106         if (CLI.RetSExt)
8107           MyFlags.Flags.setSExt();
8108         if (CLI.RetZExt)
8109           MyFlags.Flags.setZExt();
8110         if (CLI.IsInReg)
8111           MyFlags.Flags.setInReg();
8112         CLI.Ins.push_back(MyFlags);
8113       }
8114     }
8115   }
8116 
8117   // We push in swifterror return as the last element of CLI.Ins.
8118   ArgListTy &Args = CLI.getArgs();
8119   if (supportSwiftError()) {
8120     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8121       if (Args[i].IsSwiftError) {
8122         ISD::InputArg MyFlags;
8123         MyFlags.VT = getPointerTy(DL);
8124         MyFlags.ArgVT = EVT(getPointerTy(DL));
8125         MyFlags.Flags.setSwiftError();
8126         CLI.Ins.push_back(MyFlags);
8127       }
8128     }
8129   }
8130 
8131   // Handle all of the outgoing arguments.
8132   CLI.Outs.clear();
8133   CLI.OutVals.clear();
8134   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8135     SmallVector<EVT, 4> ValueVTs;
8136     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8137     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8138     Type *FinalType = Args[i].Ty;
8139     if (Args[i].IsByVal)
8140       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8141     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8142         FinalType, CLI.CallConv, CLI.IsVarArg);
8143     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8144          ++Value) {
8145       EVT VT = ValueVTs[Value];
8146       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8147       SDValue Op = SDValue(Args[i].Node.getNode(),
8148                            Args[i].Node.getResNo() + Value);
8149       ISD::ArgFlagsTy Flags;
8150 
8151       // Certain targets (such as MIPS), may have a different ABI alignment
8152       // for a type depending on the context. Give the target a chance to
8153       // specify the alignment it wants.
8154       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8155 
8156       if (Args[i].IsZExt)
8157         Flags.setZExt();
8158       if (Args[i].IsSExt)
8159         Flags.setSExt();
8160       if (Args[i].IsInReg) {
8161         // If we are using vectorcall calling convention, a structure that is
8162         // passed InReg - is surely an HVA
8163         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8164             isa<StructType>(FinalType)) {
8165           // The first value of a structure is marked
8166           if (0 == Value)
8167             Flags.setHvaStart();
8168           Flags.setHva();
8169         }
8170         // Set InReg Flag
8171         Flags.setInReg();
8172       }
8173       if (Args[i].IsSRet)
8174         Flags.setSRet();
8175       if (Args[i].IsSwiftSelf)
8176         Flags.setSwiftSelf();
8177       if (Args[i].IsSwiftError)
8178         Flags.setSwiftError();
8179       if (Args[i].IsByVal)
8180         Flags.setByVal();
8181       if (Args[i].IsInAlloca) {
8182         Flags.setInAlloca();
8183         // Set the byval flag for CCAssignFn callbacks that don't know about
8184         // inalloca.  This way we can know how many bytes we should've allocated
8185         // and how many bytes a callee cleanup function will pop.  If we port
8186         // inalloca to more targets, we'll have to add custom inalloca handling
8187         // in the various CC lowering callbacks.
8188         Flags.setByVal();
8189       }
8190       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8191         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8192         Type *ElementTy = Ty->getElementType();
8193         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8194         // For ByVal, alignment should come from FE.  BE will guess if this
8195         // info is not there but there are cases it cannot get right.
8196         unsigned FrameAlign;
8197         if (Args[i].Alignment)
8198           FrameAlign = Args[i].Alignment;
8199         else
8200           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8201         Flags.setByValAlign(FrameAlign);
8202       }
8203       if (Args[i].IsNest)
8204         Flags.setNest();
8205       if (NeedsRegBlock)
8206         Flags.setInConsecutiveRegs();
8207       Flags.setOrigAlign(OriginalAlignment);
8208 
8209       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8210       unsigned NumParts =
8211           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8212       SmallVector<SDValue, 4> Parts(NumParts);
8213       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8214 
8215       if (Args[i].IsSExt)
8216         ExtendKind = ISD::SIGN_EXTEND;
8217       else if (Args[i].IsZExt)
8218         ExtendKind = ISD::ZERO_EXTEND;
8219 
8220       // Conservatively only handle 'returned' on non-vectors for now
8221       if (Args[i].IsReturned && !Op.getValueType().isVector()) {
8222         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8223                "unexpected use of 'returned'");
8224         // Before passing 'returned' to the target lowering code, ensure that
8225         // either the register MVT and the actual EVT are the same size or that
8226         // the return value and argument are extended in the same way; in these
8227         // cases it's safe to pass the argument register value unchanged as the
8228         // return register value (although it's at the target's option whether
8229         // to do so)
8230         // TODO: allow code generation to take advantage of partially preserved
8231         // registers rather than clobbering the entire register when the
8232         // parameter extension method is not compatible with the return
8233         // extension method
8234         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8235             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8236              CLI.RetZExt == Args[i].IsZExt))
8237           Flags.setReturned();
8238       }
8239 
8240       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8241                      CLI.CS.getInstruction(), ExtendKind, true);
8242 
8243       for (unsigned j = 0; j != NumParts; ++j) {
8244         // if it isn't first piece, alignment must be 1
8245         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8246                                i < CLI.NumFixedArgs,
8247                                i, j*Parts[j].getValueType().getStoreSize());
8248         if (NumParts > 1 && j == 0)
8249           MyFlags.Flags.setSplit();
8250         else if (j != 0) {
8251           MyFlags.Flags.setOrigAlign(1);
8252           if (j == NumParts - 1)
8253             MyFlags.Flags.setSplitEnd();
8254         }
8255 
8256         CLI.Outs.push_back(MyFlags);
8257         CLI.OutVals.push_back(Parts[j]);
8258       }
8259 
8260       if (NeedsRegBlock && Value == NumValues - 1)
8261         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8262     }
8263   }
8264 
8265   SmallVector<SDValue, 4> InVals;
8266   CLI.Chain = LowerCall(CLI, InVals);
8267 
8268   // Update CLI.InVals to use outside of this function.
8269   CLI.InVals = InVals;
8270 
8271   // Verify that the target's LowerCall behaved as expected.
8272   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8273          "LowerCall didn't return a valid chain!");
8274   assert((!CLI.IsTailCall || InVals.empty()) &&
8275          "LowerCall emitted a return value for a tail call!");
8276   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8277          "LowerCall didn't emit the correct number of values!");
8278 
8279   // For a tail call, the return value is merely live-out and there aren't
8280   // any nodes in the DAG representing it. Return a special value to
8281   // indicate that a tail call has been emitted and no more Instructions
8282   // should be processed in the current block.
8283   if (CLI.IsTailCall) {
8284     CLI.DAG.setRoot(CLI.Chain);
8285     return std::make_pair(SDValue(), SDValue());
8286   }
8287 
8288 #ifndef NDEBUG
8289   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8290     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8291     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8292            "LowerCall emitted a value with the wrong type!");
8293   }
8294 #endif
8295 
8296   SmallVector<SDValue, 4> ReturnValues;
8297   if (!CanLowerReturn) {
8298     // The instruction result is the result of loading from the
8299     // hidden sret parameter.
8300     SmallVector<EVT, 1> PVTs;
8301     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
8302 
8303     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8304     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8305     EVT PtrVT = PVTs[0];
8306 
8307     unsigned NumValues = RetTys.size();
8308     ReturnValues.resize(NumValues);
8309     SmallVector<SDValue, 4> Chains(NumValues);
8310 
8311     // An aggregate return value cannot wrap around the address space, so
8312     // offsets to its parts don't wrap either.
8313     SDNodeFlags Flags;
8314     Flags.setNoUnsignedWrap(true);
8315 
8316     for (unsigned i = 0; i < NumValues; ++i) {
8317       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8318                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8319                                                         PtrVT), Flags);
8320       SDValue L = CLI.DAG.getLoad(
8321           RetTys[i], CLI.DL, CLI.Chain, Add,
8322           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8323                                             DemoteStackIdx, Offsets[i]),
8324           /* Alignment = */ 1);
8325       ReturnValues[i] = L;
8326       Chains[i] = L.getValue(1);
8327     }
8328 
8329     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8330   } else {
8331     // Collect the legal value parts into potentially illegal values
8332     // that correspond to the original function's return values.
8333     Optional<ISD::NodeType> AssertOp;
8334     if (CLI.RetSExt)
8335       AssertOp = ISD::AssertSext;
8336     else if (CLI.RetZExt)
8337       AssertOp = ISD::AssertZext;
8338     unsigned CurReg = 0;
8339     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8340       EVT VT = RetTys[I];
8341       MVT RegisterVT =
8342           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8343       unsigned NumRegs =
8344           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8345 
8346       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8347                                               NumRegs, RegisterVT, VT, nullptr,
8348                                               AssertOp, true));
8349       CurReg += NumRegs;
8350     }
8351 
8352     // For a function returning void, there is no return value. We can't create
8353     // such a node, so we just return a null return value in that case. In
8354     // that case, nothing will actually look at the value.
8355     if (ReturnValues.empty())
8356       return std::make_pair(SDValue(), CLI.Chain);
8357   }
8358 
8359   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8360                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8361   return std::make_pair(Res, CLI.Chain);
8362 }
8363 
8364 void TargetLowering::LowerOperationWrapper(SDNode *N,
8365                                            SmallVectorImpl<SDValue> &Results,
8366                                            SelectionDAG &DAG) const {
8367   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8368     Results.push_back(Res);
8369 }
8370 
8371 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8372   llvm_unreachable("LowerOperation not implemented for this target!");
8373 }
8374 
8375 void
8376 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8377   SDValue Op = getNonRegisterValue(V);
8378   assert((Op.getOpcode() != ISD::CopyFromReg ||
8379           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8380          "Copy from a reg to the same reg!");
8381   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8382 
8383   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8384   // If this is an InlineAsm we have to match the registers required, not the
8385   // notional registers required by the type.
8386 
8387   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
8388                    V->getType(), isABIRegCopy(V));
8389   SDValue Chain = DAG.getEntryNode();
8390 
8391   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8392                               FuncInfo.PreferredExtendType.end())
8393                                  ? ISD::ANY_EXTEND
8394                                  : FuncInfo.PreferredExtendType[V];
8395   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8396   PendingExports.push_back(Chain);
8397 }
8398 
8399 #include "llvm/CodeGen/SelectionDAGISel.h"
8400 
8401 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8402 /// entry block, return true.  This includes arguments used by switches, since
8403 /// the switch may expand into multiple basic blocks.
8404 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8405   // With FastISel active, we may be splitting blocks, so force creation
8406   // of virtual registers for all non-dead arguments.
8407   if (FastISel)
8408     return A->use_empty();
8409 
8410   const BasicBlock &Entry = A->getParent()->front();
8411   for (const User *U : A->users())
8412     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8413       return false;  // Use not in entry block.
8414 
8415   return true;
8416 }
8417 
8418 using ArgCopyElisionMapTy =
8419     DenseMap<const Argument *,
8420              std::pair<const AllocaInst *, const StoreInst *>>;
8421 
8422 /// Scan the entry block of the function in FuncInfo for arguments that look
8423 /// like copies into a local alloca. Record any copied arguments in
8424 /// ArgCopyElisionCandidates.
8425 static void
8426 findArgumentCopyElisionCandidates(const DataLayout &DL,
8427                                   FunctionLoweringInfo *FuncInfo,
8428                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8429   // Record the state of every static alloca used in the entry block. Argument
8430   // allocas are all used in the entry block, so we need approximately as many
8431   // entries as we have arguments.
8432   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8433   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8434   unsigned NumArgs = FuncInfo->Fn->arg_size();
8435   StaticAllocas.reserve(NumArgs * 2);
8436 
8437   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8438     if (!V)
8439       return nullptr;
8440     V = V->stripPointerCasts();
8441     const auto *AI = dyn_cast<AllocaInst>(V);
8442     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8443       return nullptr;
8444     auto Iter = StaticAllocas.insert({AI, Unknown});
8445     return &Iter.first->second;
8446   };
8447 
8448   // Look for stores of arguments to static allocas. Look through bitcasts and
8449   // GEPs to handle type coercions, as long as the alloca is fully initialized
8450   // by the store. Any non-store use of an alloca escapes it and any subsequent
8451   // unanalyzed store might write it.
8452   // FIXME: Handle structs initialized with multiple stores.
8453   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8454     // Look for stores, and handle non-store uses conservatively.
8455     const auto *SI = dyn_cast<StoreInst>(&I);
8456     if (!SI) {
8457       // We will look through cast uses, so ignore them completely.
8458       if (I.isCast())
8459         continue;
8460       // Ignore debug info intrinsics, they don't escape or store to allocas.
8461       if (isa<DbgInfoIntrinsic>(I))
8462         continue;
8463       // This is an unknown instruction. Assume it escapes or writes to all
8464       // static alloca operands.
8465       for (const Use &U : I.operands()) {
8466         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8467           *Info = StaticAllocaInfo::Clobbered;
8468       }
8469       continue;
8470     }
8471 
8472     // If the stored value is a static alloca, mark it as escaped.
8473     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8474       *Info = StaticAllocaInfo::Clobbered;
8475 
8476     // Check if the destination is a static alloca.
8477     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8478     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8479     if (!Info)
8480       continue;
8481     const AllocaInst *AI = cast<AllocaInst>(Dst);
8482 
8483     // Skip allocas that have been initialized or clobbered.
8484     if (*Info != StaticAllocaInfo::Unknown)
8485       continue;
8486 
8487     // Check if the stored value is an argument, and that this store fully
8488     // initializes the alloca. Don't elide copies from the same argument twice.
8489     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8490     const auto *Arg = dyn_cast<Argument>(Val);
8491     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8492         Arg->getType()->isEmptyTy() ||
8493         DL.getTypeStoreSize(Arg->getType()) !=
8494             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8495         ArgCopyElisionCandidates.count(Arg)) {
8496       *Info = StaticAllocaInfo::Clobbered;
8497       continue;
8498     }
8499 
8500     DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n');
8501 
8502     // Mark this alloca and store for argument copy elision.
8503     *Info = StaticAllocaInfo::Elidable;
8504     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8505 
8506     // Stop scanning if we've seen all arguments. This will happen early in -O0
8507     // builds, which is useful, because -O0 builds have large entry blocks and
8508     // many allocas.
8509     if (ArgCopyElisionCandidates.size() == NumArgs)
8510       break;
8511   }
8512 }
8513 
8514 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8515 /// ArgVal is a load from a suitable fixed stack object.
8516 static void tryToElideArgumentCopy(
8517     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8518     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8519     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8520     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8521     SDValue ArgVal, bool &ArgHasUses) {
8522   // Check if this is a load from a fixed stack object.
8523   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8524   if (!LNode)
8525     return;
8526   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8527   if (!FINode)
8528     return;
8529 
8530   // Check that the fixed stack object is the right size and alignment.
8531   // Look at the alignment that the user wrote on the alloca instead of looking
8532   // at the stack object.
8533   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8534   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8535   const AllocaInst *AI = ArgCopyIter->second.first;
8536   int FixedIndex = FINode->getIndex();
8537   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8538   int OldIndex = AllocaIndex;
8539   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8540   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8541     DEBUG(dbgs() << "  argument copy elision failed due to bad fixed stack "
8542                     "object size\n");
8543     return;
8544   }
8545   unsigned RequiredAlignment = AI->getAlignment();
8546   if (!RequiredAlignment) {
8547     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8548         AI->getAllocatedType());
8549   }
8550   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8551     DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8552                     "greater than stack argument alignment ("
8553                  << RequiredAlignment << " vs "
8554                  << MFI.getObjectAlignment(FixedIndex) << ")\n");
8555     return;
8556   }
8557 
8558   // Perform the elision. Delete the old stack object and replace its only use
8559   // in the variable info map. Mark the stack object as mutable.
8560   DEBUG({
8561     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8562            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8563            << '\n';
8564   });
8565   MFI.RemoveStackObject(OldIndex);
8566   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8567   AllocaIndex = FixedIndex;
8568   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8569   Chains.push_back(ArgVal.getValue(1));
8570 
8571   // Avoid emitting code for the store implementing the copy.
8572   const StoreInst *SI = ArgCopyIter->second.second;
8573   ElidedArgCopyInstrs.insert(SI);
8574 
8575   // Check for uses of the argument again so that we can avoid exporting ArgVal
8576   // if it is't used by anything other than the store.
8577   for (const Value *U : Arg.users()) {
8578     if (U != SI) {
8579       ArgHasUses = true;
8580       break;
8581     }
8582   }
8583 }
8584 
8585 void SelectionDAGISel::LowerArguments(const Function &F) {
8586   SelectionDAG &DAG = SDB->DAG;
8587   SDLoc dl = SDB->getCurSDLoc();
8588   const DataLayout &DL = DAG.getDataLayout();
8589   SmallVector<ISD::InputArg, 16> Ins;
8590 
8591   if (!FuncInfo->CanLowerReturn) {
8592     // Put in an sret pointer parameter before all the other parameters.
8593     SmallVector<EVT, 1> ValueVTs;
8594     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8595                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8596 
8597     // NOTE: Assuming that a pointer will never break down to more than one VT
8598     // or one register.
8599     ISD::ArgFlagsTy Flags;
8600     Flags.setSRet();
8601     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8602     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8603                          ISD::InputArg::NoArgIndex, 0);
8604     Ins.push_back(RetArg);
8605   }
8606 
8607   // Look for stores of arguments to static allocas. Mark such arguments with a
8608   // flag to ask the target to give us the memory location of that argument if
8609   // available.
8610   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8611   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8612 
8613   // Set up the incoming argument description vector.
8614   for (const Argument &Arg : F.args()) {
8615     unsigned ArgNo = Arg.getArgNo();
8616     SmallVector<EVT, 4> ValueVTs;
8617     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8618     bool isArgValueUsed = !Arg.use_empty();
8619     unsigned PartBase = 0;
8620     Type *FinalType = Arg.getType();
8621     if (Arg.hasAttribute(Attribute::ByVal))
8622       FinalType = cast<PointerType>(FinalType)->getElementType();
8623     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8624         FinalType, F.getCallingConv(), F.isVarArg());
8625     for (unsigned Value = 0, NumValues = ValueVTs.size();
8626          Value != NumValues; ++Value) {
8627       EVT VT = ValueVTs[Value];
8628       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8629       ISD::ArgFlagsTy Flags;
8630 
8631       // Certain targets (such as MIPS), may have a different ABI alignment
8632       // for a type depending on the context. Give the target a chance to
8633       // specify the alignment it wants.
8634       unsigned OriginalAlignment =
8635           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
8636 
8637       if (Arg.hasAttribute(Attribute::ZExt))
8638         Flags.setZExt();
8639       if (Arg.hasAttribute(Attribute::SExt))
8640         Flags.setSExt();
8641       if (Arg.hasAttribute(Attribute::InReg)) {
8642         // If we are using vectorcall calling convention, a structure that is
8643         // passed InReg - is surely an HVA
8644         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8645             isa<StructType>(Arg.getType())) {
8646           // The first value of a structure is marked
8647           if (0 == Value)
8648             Flags.setHvaStart();
8649           Flags.setHva();
8650         }
8651         // Set InReg Flag
8652         Flags.setInReg();
8653       }
8654       if (Arg.hasAttribute(Attribute::StructRet))
8655         Flags.setSRet();
8656       if (Arg.hasAttribute(Attribute::SwiftSelf))
8657         Flags.setSwiftSelf();
8658       if (Arg.hasAttribute(Attribute::SwiftError))
8659         Flags.setSwiftError();
8660       if (Arg.hasAttribute(Attribute::ByVal))
8661         Flags.setByVal();
8662       if (Arg.hasAttribute(Attribute::InAlloca)) {
8663         Flags.setInAlloca();
8664         // Set the byval flag for CCAssignFn callbacks that don't know about
8665         // inalloca.  This way we can know how many bytes we should've allocated
8666         // and how many bytes a callee cleanup function will pop.  If we port
8667         // inalloca to more targets, we'll have to add custom inalloca handling
8668         // in the various CC lowering callbacks.
8669         Flags.setByVal();
8670       }
8671       if (F.getCallingConv() == CallingConv::X86_INTR) {
8672         // IA Interrupt passes frame (1st parameter) by value in the stack.
8673         if (ArgNo == 0)
8674           Flags.setByVal();
8675       }
8676       if (Flags.isByVal() || Flags.isInAlloca()) {
8677         PointerType *Ty = cast<PointerType>(Arg.getType());
8678         Type *ElementTy = Ty->getElementType();
8679         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8680         // For ByVal, alignment should be passed from FE.  BE will guess if
8681         // this info is not there but there are cases it cannot get right.
8682         unsigned FrameAlign;
8683         if (Arg.getParamAlignment())
8684           FrameAlign = Arg.getParamAlignment();
8685         else
8686           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8687         Flags.setByValAlign(FrameAlign);
8688       }
8689       if (Arg.hasAttribute(Attribute::Nest))
8690         Flags.setNest();
8691       if (NeedsRegBlock)
8692         Flags.setInConsecutiveRegs();
8693       Flags.setOrigAlign(OriginalAlignment);
8694       if (ArgCopyElisionCandidates.count(&Arg))
8695         Flags.setCopyElisionCandidate();
8696 
8697       MVT RegisterVT =
8698           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8699       unsigned NumRegs =
8700           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8701       for (unsigned i = 0; i != NumRegs; ++i) {
8702         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8703                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
8704         if (NumRegs > 1 && i == 0)
8705           MyFlags.Flags.setSplit();
8706         // if it isn't first piece, alignment must be 1
8707         else if (i > 0) {
8708           MyFlags.Flags.setOrigAlign(1);
8709           if (i == NumRegs - 1)
8710             MyFlags.Flags.setSplitEnd();
8711         }
8712         Ins.push_back(MyFlags);
8713       }
8714       if (NeedsRegBlock && Value == NumValues - 1)
8715         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8716       PartBase += VT.getStoreSize();
8717     }
8718   }
8719 
8720   // Call the target to set up the argument values.
8721   SmallVector<SDValue, 8> InVals;
8722   SDValue NewRoot = TLI->LowerFormalArguments(
8723       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8724 
8725   // Verify that the target's LowerFormalArguments behaved as expected.
8726   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8727          "LowerFormalArguments didn't return a valid chain!");
8728   assert(InVals.size() == Ins.size() &&
8729          "LowerFormalArguments didn't emit the correct number of values!");
8730   DEBUG({
8731       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8732         assert(InVals[i].getNode() &&
8733                "LowerFormalArguments emitted a null value!");
8734         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8735                "LowerFormalArguments emitted a value with the wrong type!");
8736       }
8737     });
8738 
8739   // Update the DAG with the new chain value resulting from argument lowering.
8740   DAG.setRoot(NewRoot);
8741 
8742   // Set up the argument values.
8743   unsigned i = 0;
8744   if (!FuncInfo->CanLowerReturn) {
8745     // Create a virtual register for the sret pointer, and put in a copy
8746     // from the sret argument into it.
8747     SmallVector<EVT, 1> ValueVTs;
8748     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8749                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8750     MVT VT = ValueVTs[0].getSimpleVT();
8751     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8752     Optional<ISD::NodeType> AssertOp = None;
8753     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8754                                         RegVT, VT, nullptr, AssertOp);
8755 
8756     MachineFunction& MF = SDB->DAG.getMachineFunction();
8757     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8758     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8759     FuncInfo->DemoteRegister = SRetReg;
8760     NewRoot =
8761         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8762     DAG.setRoot(NewRoot);
8763 
8764     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8765     ++i;
8766   }
8767 
8768   SmallVector<SDValue, 4> Chains;
8769   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
8770   for (const Argument &Arg : F.args()) {
8771     SmallVector<SDValue, 4> ArgValues;
8772     SmallVector<EVT, 4> ValueVTs;
8773     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8774     unsigned NumValues = ValueVTs.size();
8775     if (NumValues == 0)
8776       continue;
8777 
8778     bool ArgHasUses = !Arg.use_empty();
8779 
8780     // Elide the copying store if the target loaded this argument from a
8781     // suitable fixed stack object.
8782     if (Ins[i].Flags.isCopyElisionCandidate()) {
8783       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
8784                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
8785                              InVals[i], ArgHasUses);
8786     }
8787 
8788     // If this argument is unused then remember its value. It is used to generate
8789     // debugging information.
8790     bool isSwiftErrorArg =
8791         TLI->supportSwiftError() &&
8792         Arg.hasAttribute(Attribute::SwiftError);
8793     if (!ArgHasUses && !isSwiftErrorArg) {
8794       SDB->setUnusedArgValue(&Arg, InVals[i]);
8795 
8796       // Also remember any frame index for use in FastISel.
8797       if (FrameIndexSDNode *FI =
8798           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8799         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8800     }
8801 
8802     for (unsigned Val = 0; Val != NumValues; ++Val) {
8803       EVT VT = ValueVTs[Val];
8804       MVT PartVT =
8805           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8806       unsigned NumParts =
8807           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8808 
8809       // Even an apparant 'unused' swifterror argument needs to be returned. So
8810       // we do generate a copy for it that can be used on return from the
8811       // function.
8812       if (ArgHasUses || isSwiftErrorArg) {
8813         Optional<ISD::NodeType> AssertOp;
8814         if (Arg.hasAttribute(Attribute::SExt))
8815           AssertOp = ISD::AssertSext;
8816         else if (Arg.hasAttribute(Attribute::ZExt))
8817           AssertOp = ISD::AssertZext;
8818 
8819         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
8820                                              PartVT, VT, nullptr, AssertOp,
8821                                              true));
8822       }
8823 
8824       i += NumParts;
8825     }
8826 
8827     // We don't need to do anything else for unused arguments.
8828     if (ArgValues.empty())
8829       continue;
8830 
8831     // Note down frame index.
8832     if (FrameIndexSDNode *FI =
8833         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8834       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8835 
8836     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8837                                      SDB->getCurSDLoc());
8838 
8839     SDB->setValue(&Arg, Res);
8840     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8841       // We want to associate the argument with the frame index, among
8842       // involved operands, that correspond to the lowest address. The
8843       // getCopyFromParts function, called earlier, is swapping the order of
8844       // the operands to BUILD_PAIR depending on endianness. The result of
8845       // that swapping is that the least significant bits of the argument will
8846       // be in the first operand of the BUILD_PAIR node, and the most
8847       // significant bits will be in the second operand.
8848       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8849       if (LoadSDNode *LNode =
8850           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
8851         if (FrameIndexSDNode *FI =
8852             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8853           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8854     }
8855 
8856     // Update the SwiftErrorVRegDefMap.
8857     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
8858       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8859       if (TargetRegisterInfo::isVirtualRegister(Reg))
8860         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
8861                                            FuncInfo->SwiftErrorArg, Reg);
8862     }
8863 
8864     // If this argument is live outside of the entry block, insert a copy from
8865     // wherever we got it to the vreg that other BB's will reference it as.
8866     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8867       // If we can, though, try to skip creating an unnecessary vreg.
8868       // FIXME: This isn't very clean... it would be nice to make this more
8869       // general.  It's also subtly incompatible with the hacks FastISel
8870       // uses with vregs.
8871       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8872       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8873         FuncInfo->ValueMap[&Arg] = Reg;
8874         continue;
8875       }
8876     }
8877     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
8878       FuncInfo->InitializeRegForValue(&Arg);
8879       SDB->CopyToExportRegsIfNeeded(&Arg);
8880     }
8881   }
8882 
8883   if (!Chains.empty()) {
8884     Chains.push_back(NewRoot);
8885     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
8886   }
8887 
8888   DAG.setRoot(NewRoot);
8889 
8890   assert(i == InVals.size() && "Argument register count mismatch!");
8891 
8892   // If any argument copy elisions occurred and we have debug info, update the
8893   // stale frame indices used in the dbg.declare variable info table.
8894   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
8895   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
8896     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
8897       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
8898       if (I != ArgCopyElisionFrameIndexMap.end())
8899         VI.Slot = I->second;
8900     }
8901   }
8902 
8903   // Finally, if the target has anything special to do, allow it to do so.
8904   EmitFunctionEntryCode();
8905 }
8906 
8907 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8908 /// ensure constants are generated when needed.  Remember the virtual registers
8909 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8910 /// directly add them, because expansion might result in multiple MBB's for one
8911 /// BB.  As such, the start of the BB might correspond to a different MBB than
8912 /// the end.
8913 void
8914 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8915   const TerminatorInst *TI = LLVMBB->getTerminator();
8916 
8917   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8918 
8919   // Check PHI nodes in successors that expect a value to be available from this
8920   // block.
8921   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8922     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8923     if (!isa<PHINode>(SuccBB->begin())) continue;
8924     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8925 
8926     // If this terminator has multiple identical successors (common for
8927     // switches), only handle each succ once.
8928     if (!SuccsHandled.insert(SuccMBB).second)
8929       continue;
8930 
8931     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8932 
8933     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8934     // nodes and Machine PHI nodes, but the incoming operands have not been
8935     // emitted yet.
8936     for (BasicBlock::const_iterator I = SuccBB->begin();
8937          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8938       // Ignore dead phi's.
8939       if (PN->use_empty()) continue;
8940 
8941       // Skip empty types
8942       if (PN->getType()->isEmptyTy())
8943         continue;
8944 
8945       unsigned Reg;
8946       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8947 
8948       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8949         unsigned &RegOut = ConstantsOut[C];
8950         if (RegOut == 0) {
8951           RegOut = FuncInfo.CreateRegs(C->getType());
8952           CopyValueToVirtualRegister(C, RegOut);
8953         }
8954         Reg = RegOut;
8955       } else {
8956         DenseMap<const Value *, unsigned>::iterator I =
8957           FuncInfo.ValueMap.find(PHIOp);
8958         if (I != FuncInfo.ValueMap.end())
8959           Reg = I->second;
8960         else {
8961           assert(isa<AllocaInst>(PHIOp) &&
8962                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8963                  "Didn't codegen value into a register!??");
8964           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8965           CopyValueToVirtualRegister(PHIOp, Reg);
8966         }
8967       }
8968 
8969       // Remember that this register needs to added to the machine PHI node as
8970       // the input for this MBB.
8971       SmallVector<EVT, 4> ValueVTs;
8972       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8973       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8974       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8975         EVT VT = ValueVTs[vti];
8976         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8977         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8978           FuncInfo.PHINodesToUpdate.push_back(
8979               std::make_pair(&*MBBI++, Reg + i));
8980         Reg += NumRegisters;
8981       }
8982     }
8983   }
8984 
8985   ConstantsOut.clear();
8986 }
8987 
8988 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8989 /// is 0.
8990 MachineBasicBlock *
8991 SelectionDAGBuilder::StackProtectorDescriptor::
8992 AddSuccessorMBB(const BasicBlock *BB,
8993                 MachineBasicBlock *ParentMBB,
8994                 bool IsLikely,
8995                 MachineBasicBlock *SuccMBB) {
8996   // If SuccBB has not been created yet, create it.
8997   if (!SuccMBB) {
8998     MachineFunction *MF = ParentMBB->getParent();
8999     MachineFunction::iterator BBI(ParentMBB);
9000     SuccMBB = MF->CreateMachineBasicBlock(BB);
9001     MF->insert(++BBI, SuccMBB);
9002   }
9003   // Add it as a successor of ParentMBB.
9004   ParentMBB->addSuccessor(
9005       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9006   return SuccMBB;
9007 }
9008 
9009 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9010   MachineFunction::iterator I(MBB);
9011   if (++I == FuncInfo.MF->end())
9012     return nullptr;
9013   return &*I;
9014 }
9015 
9016 /// During lowering new call nodes can be created (such as memset, etc.).
9017 /// Those will become new roots of the current DAG, but complications arise
9018 /// when they are tail calls. In such cases, the call lowering will update
9019 /// the root, but the builder still needs to know that a tail call has been
9020 /// lowered in order to avoid generating an additional return.
9021 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9022   // If the node is null, we do have a tail call.
9023   if (MaybeTC.getNode() != nullptr)
9024     DAG.setRoot(MaybeTC);
9025   else
9026     HasTailCall = true;
9027 }
9028 
9029 uint64_t
9030 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9031                                        unsigned First, unsigned Last) const {
9032   assert(Last >= First);
9033   const APInt &LowCase = Clusters[First].Low->getValue();
9034   const APInt &HighCase = Clusters[Last].High->getValue();
9035   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9036 
9037   // FIXME: A range of consecutive cases has 100% density, but only requires one
9038   // comparison to lower. We should discriminate against such consecutive ranges
9039   // in jump tables.
9040 
9041   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9042 }
9043 
9044 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9045     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9046     unsigned Last) const {
9047   assert(Last >= First);
9048   assert(TotalCases[Last] >= TotalCases[First]);
9049   uint64_t NumCases =
9050       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9051   return NumCases;
9052 }
9053 
9054 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9055                                          unsigned First, unsigned Last,
9056                                          const SwitchInst *SI,
9057                                          MachineBasicBlock *DefaultMBB,
9058                                          CaseCluster &JTCluster) {
9059   assert(First <= Last);
9060 
9061   auto Prob = BranchProbability::getZero();
9062   unsigned NumCmps = 0;
9063   std::vector<MachineBasicBlock*> Table;
9064   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9065 
9066   // Initialize probabilities in JTProbs.
9067   for (unsigned I = First; I <= Last; ++I)
9068     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9069 
9070   for (unsigned I = First; I <= Last; ++I) {
9071     assert(Clusters[I].Kind == CC_Range);
9072     Prob += Clusters[I].Prob;
9073     const APInt &Low = Clusters[I].Low->getValue();
9074     const APInt &High = Clusters[I].High->getValue();
9075     NumCmps += (Low == High) ? 1 : 2;
9076     if (I != First) {
9077       // Fill the gap between this and the previous cluster.
9078       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9079       assert(PreviousHigh.slt(Low));
9080       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9081       for (uint64_t J = 0; J < Gap; J++)
9082         Table.push_back(DefaultMBB);
9083     }
9084     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9085     for (uint64_t J = 0; J < ClusterSize; ++J)
9086       Table.push_back(Clusters[I].MBB);
9087     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9088   }
9089 
9090   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9091   unsigned NumDests = JTProbs.size();
9092   if (TLI.isSuitableForBitTests(
9093           NumDests, NumCmps, Clusters[First].Low->getValue(),
9094           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9095     // Clusters[First..Last] should be lowered as bit tests instead.
9096     return false;
9097   }
9098 
9099   // Create the MBB that will load from and jump through the table.
9100   // Note: We create it here, but it's not inserted into the function yet.
9101   MachineFunction *CurMF = FuncInfo.MF;
9102   MachineBasicBlock *JumpTableMBB =
9103       CurMF->CreateMachineBasicBlock(SI->getParent());
9104 
9105   // Add successors. Note: use table order for determinism.
9106   SmallPtrSet<MachineBasicBlock *, 8> Done;
9107   for (MachineBasicBlock *Succ : Table) {
9108     if (Done.count(Succ))
9109       continue;
9110     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9111     Done.insert(Succ);
9112   }
9113   JumpTableMBB->normalizeSuccProbs();
9114 
9115   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9116                      ->createJumpTableIndex(Table);
9117 
9118   // Set up the jump table info.
9119   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9120   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9121                       Clusters[Last].High->getValue(), SI->getCondition(),
9122                       nullptr, false);
9123   JTCases.emplace_back(std::move(JTH), std::move(JT));
9124 
9125   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9126                                      JTCases.size() - 1, Prob);
9127   return true;
9128 }
9129 
9130 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9131                                          const SwitchInst *SI,
9132                                          MachineBasicBlock *DefaultMBB) {
9133 #ifndef NDEBUG
9134   // Clusters must be non-empty, sorted, and only contain Range clusters.
9135   assert(!Clusters.empty());
9136   for (CaseCluster &C : Clusters)
9137     assert(C.Kind == CC_Range);
9138   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9139     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9140 #endif
9141 
9142   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9143   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9144     return;
9145 
9146   const int64_t N = Clusters.size();
9147   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9148   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9149 
9150   if (N < 2 || N < MinJumpTableEntries)
9151     return;
9152 
9153   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9154   SmallVector<unsigned, 8> TotalCases(N);
9155   for (unsigned i = 0; i < N; ++i) {
9156     const APInt &Hi = Clusters[i].High->getValue();
9157     const APInt &Lo = Clusters[i].Low->getValue();
9158     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9159     if (i != 0)
9160       TotalCases[i] += TotalCases[i - 1];
9161   }
9162 
9163   // Cheap case: the whole range may be suitable for jump table.
9164   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9165   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9166   assert(NumCases < UINT64_MAX / 100);
9167   assert(Range >= NumCases);
9168   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9169     CaseCluster JTCluster;
9170     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9171       Clusters[0] = JTCluster;
9172       Clusters.resize(1);
9173       return;
9174     }
9175   }
9176 
9177   // The algorithm below is not suitable for -O0.
9178   if (TM.getOptLevel() == CodeGenOpt::None)
9179     return;
9180 
9181   // Split Clusters into minimum number of dense partitions. The algorithm uses
9182   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9183   // for the Case Statement'" (1994), but builds the MinPartitions array in
9184   // reverse order to make it easier to reconstruct the partitions in ascending
9185   // order. In the choice between two optimal partitionings, it picks the one
9186   // which yields more jump tables.
9187 
9188   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9189   SmallVector<unsigned, 8> MinPartitions(N);
9190   // LastElement[i] is the last element of the partition starting at i.
9191   SmallVector<unsigned, 8> LastElement(N);
9192   // PartitionsScore[i] is used to break ties when choosing between two
9193   // partitionings resulting in the same number of partitions.
9194   SmallVector<unsigned, 8> PartitionsScore(N);
9195   // For PartitionsScore, a small number of comparisons is considered as good as
9196   // a jump table and a single comparison is considered better than a jump
9197   // table.
9198   enum PartitionScores : unsigned {
9199     NoTable = 0,
9200     Table = 1,
9201     FewCases = 1,
9202     SingleCase = 2
9203   };
9204 
9205   // Base case: There is only one way to partition Clusters[N-1].
9206   MinPartitions[N - 1] = 1;
9207   LastElement[N - 1] = N - 1;
9208   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9209 
9210   // Note: loop indexes are signed to avoid underflow.
9211   for (int64_t i = N - 2; i >= 0; i--) {
9212     // Find optimal partitioning of Clusters[i..N-1].
9213     // Baseline: Put Clusters[i] into a partition on its own.
9214     MinPartitions[i] = MinPartitions[i + 1] + 1;
9215     LastElement[i] = i;
9216     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9217 
9218     // Search for a solution that results in fewer partitions.
9219     for (int64_t j = N - 1; j > i; j--) {
9220       // Try building a partition from Clusters[i..j].
9221       uint64_t Range = getJumpTableRange(Clusters, i, j);
9222       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9223       assert(NumCases < UINT64_MAX / 100);
9224       assert(Range >= NumCases);
9225       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9226         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9227         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9228         int64_t NumEntries = j - i + 1;
9229 
9230         if (NumEntries == 1)
9231           Score += PartitionScores::SingleCase;
9232         else if (NumEntries <= SmallNumberOfEntries)
9233           Score += PartitionScores::FewCases;
9234         else if (NumEntries >= MinJumpTableEntries)
9235           Score += PartitionScores::Table;
9236 
9237         // If this leads to fewer partitions, or to the same number of
9238         // partitions with better score, it is a better partitioning.
9239         if (NumPartitions < MinPartitions[i] ||
9240             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9241           MinPartitions[i] = NumPartitions;
9242           LastElement[i] = j;
9243           PartitionsScore[i] = Score;
9244         }
9245       }
9246     }
9247   }
9248 
9249   // Iterate over the partitions, replacing some with jump tables in-place.
9250   unsigned DstIndex = 0;
9251   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9252     Last = LastElement[First];
9253     assert(Last >= First);
9254     assert(DstIndex <= First);
9255     unsigned NumClusters = Last - First + 1;
9256 
9257     CaseCluster JTCluster;
9258     if (NumClusters >= MinJumpTableEntries &&
9259         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9260       Clusters[DstIndex++] = JTCluster;
9261     } else {
9262       for (unsigned I = First; I <= Last; ++I)
9263         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9264     }
9265   }
9266   Clusters.resize(DstIndex);
9267 }
9268 
9269 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9270                                         unsigned First, unsigned Last,
9271                                         const SwitchInst *SI,
9272                                         CaseCluster &BTCluster) {
9273   assert(First <= Last);
9274   if (First == Last)
9275     return false;
9276 
9277   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9278   unsigned NumCmps = 0;
9279   for (int64_t I = First; I <= Last; ++I) {
9280     assert(Clusters[I].Kind == CC_Range);
9281     Dests.set(Clusters[I].MBB->getNumber());
9282     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9283   }
9284   unsigned NumDests = Dests.count();
9285 
9286   APInt Low = Clusters[First].Low->getValue();
9287   APInt High = Clusters[Last].High->getValue();
9288   assert(Low.slt(High));
9289 
9290   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9291   const DataLayout &DL = DAG.getDataLayout();
9292   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9293     return false;
9294 
9295   APInt LowBound;
9296   APInt CmpRange;
9297 
9298   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9299   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9300          "Case range must fit in bit mask!");
9301 
9302   // Check if the clusters cover a contiguous range such that no value in the
9303   // range will jump to the default statement.
9304   bool ContiguousRange = true;
9305   for (int64_t I = First + 1; I <= Last; ++I) {
9306     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9307       ContiguousRange = false;
9308       break;
9309     }
9310   }
9311 
9312   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9313     // Optimize the case where all the case values fit in a word without having
9314     // to subtract minValue. In this case, we can optimize away the subtraction.
9315     LowBound = APInt::getNullValue(Low.getBitWidth());
9316     CmpRange = High;
9317     ContiguousRange = false;
9318   } else {
9319     LowBound = Low;
9320     CmpRange = High - Low;
9321   }
9322 
9323   CaseBitsVector CBV;
9324   auto TotalProb = BranchProbability::getZero();
9325   for (unsigned i = First; i <= Last; ++i) {
9326     // Find the CaseBits for this destination.
9327     unsigned j;
9328     for (j = 0; j < CBV.size(); ++j)
9329       if (CBV[j].BB == Clusters[i].MBB)
9330         break;
9331     if (j == CBV.size())
9332       CBV.push_back(
9333           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9334     CaseBits *CB = &CBV[j];
9335 
9336     // Update Mask, Bits and ExtraProb.
9337     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9338     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9339     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9340     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9341     CB->Bits += Hi - Lo + 1;
9342     CB->ExtraProb += Clusters[i].Prob;
9343     TotalProb += Clusters[i].Prob;
9344   }
9345 
9346   BitTestInfo BTI;
9347   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
9348     // Sort by probability first, number of bits second.
9349     if (a.ExtraProb != b.ExtraProb)
9350       return a.ExtraProb > b.ExtraProb;
9351     return a.Bits > b.Bits;
9352   });
9353 
9354   for (auto &CB : CBV) {
9355     MachineBasicBlock *BitTestBB =
9356         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9357     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9358   }
9359   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9360                             SI->getCondition(), -1U, MVT::Other, false,
9361                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9362                             TotalProb);
9363 
9364   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9365                                     BitTestCases.size() - 1, TotalProb);
9366   return true;
9367 }
9368 
9369 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9370                                               const SwitchInst *SI) {
9371 // Partition Clusters into as few subsets as possible, where each subset has a
9372 // range that fits in a machine word and has <= 3 unique destinations.
9373 
9374 #ifndef NDEBUG
9375   // Clusters must be sorted and contain Range or JumpTable clusters.
9376   assert(!Clusters.empty());
9377   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9378   for (const CaseCluster &C : Clusters)
9379     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9380   for (unsigned i = 1; i < Clusters.size(); ++i)
9381     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9382 #endif
9383 
9384   // The algorithm below is not suitable for -O0.
9385   if (TM.getOptLevel() == CodeGenOpt::None)
9386     return;
9387 
9388   // If target does not have legal shift left, do not emit bit tests at all.
9389   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9390   const DataLayout &DL = DAG.getDataLayout();
9391 
9392   EVT PTy = TLI.getPointerTy(DL);
9393   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9394     return;
9395 
9396   int BitWidth = PTy.getSizeInBits();
9397   const int64_t N = Clusters.size();
9398 
9399   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9400   SmallVector<unsigned, 8> MinPartitions(N);
9401   // LastElement[i] is the last element of the partition starting at i.
9402   SmallVector<unsigned, 8> LastElement(N);
9403 
9404   // FIXME: This might not be the best algorithm for finding bit test clusters.
9405 
9406   // Base case: There is only one way to partition Clusters[N-1].
9407   MinPartitions[N - 1] = 1;
9408   LastElement[N - 1] = N - 1;
9409 
9410   // Note: loop indexes are signed to avoid underflow.
9411   for (int64_t i = N - 2; i >= 0; --i) {
9412     // Find optimal partitioning of Clusters[i..N-1].
9413     // Baseline: Put Clusters[i] into a partition on its own.
9414     MinPartitions[i] = MinPartitions[i + 1] + 1;
9415     LastElement[i] = i;
9416 
9417     // Search for a solution that results in fewer partitions.
9418     // Note: the search is limited by BitWidth, reducing time complexity.
9419     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9420       // Try building a partition from Clusters[i..j].
9421 
9422       // Check the range.
9423       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9424                                Clusters[j].High->getValue(), DL))
9425         continue;
9426 
9427       // Check nbr of destinations and cluster types.
9428       // FIXME: This works, but doesn't seem very efficient.
9429       bool RangesOnly = true;
9430       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9431       for (int64_t k = i; k <= j; k++) {
9432         if (Clusters[k].Kind != CC_Range) {
9433           RangesOnly = false;
9434           break;
9435         }
9436         Dests.set(Clusters[k].MBB->getNumber());
9437       }
9438       if (!RangesOnly || Dests.count() > 3)
9439         break;
9440 
9441       // Check if it's a better partition.
9442       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9443       if (NumPartitions < MinPartitions[i]) {
9444         // Found a better partition.
9445         MinPartitions[i] = NumPartitions;
9446         LastElement[i] = j;
9447       }
9448     }
9449   }
9450 
9451   // Iterate over the partitions, replacing with bit-test clusters in-place.
9452   unsigned DstIndex = 0;
9453   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9454     Last = LastElement[First];
9455     assert(First <= Last);
9456     assert(DstIndex <= First);
9457 
9458     CaseCluster BitTestCluster;
9459     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9460       Clusters[DstIndex++] = BitTestCluster;
9461     } else {
9462       size_t NumClusters = Last - First + 1;
9463       std::memmove(&Clusters[DstIndex], &Clusters[First],
9464                    sizeof(Clusters[0]) * NumClusters);
9465       DstIndex += NumClusters;
9466     }
9467   }
9468   Clusters.resize(DstIndex);
9469 }
9470 
9471 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9472                                         MachineBasicBlock *SwitchMBB,
9473                                         MachineBasicBlock *DefaultMBB) {
9474   MachineFunction *CurMF = FuncInfo.MF;
9475   MachineBasicBlock *NextMBB = nullptr;
9476   MachineFunction::iterator BBI(W.MBB);
9477   if (++BBI != FuncInfo.MF->end())
9478     NextMBB = &*BBI;
9479 
9480   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9481 
9482   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9483 
9484   if (Size == 2 && W.MBB == SwitchMBB) {
9485     // If any two of the cases has the same destination, and if one value
9486     // is the same as the other, but has one bit unset that the other has set,
9487     // use bit manipulation to do two compares at once.  For example:
9488     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9489     // TODO: This could be extended to merge any 2 cases in switches with 3
9490     // cases.
9491     // TODO: Handle cases where W.CaseBB != SwitchBB.
9492     CaseCluster &Small = *W.FirstCluster;
9493     CaseCluster &Big = *W.LastCluster;
9494 
9495     if (Small.Low == Small.High && Big.Low == Big.High &&
9496         Small.MBB == Big.MBB) {
9497       const APInt &SmallValue = Small.Low->getValue();
9498       const APInt &BigValue = Big.Low->getValue();
9499 
9500       // Check that there is only one bit different.
9501       APInt CommonBit = BigValue ^ SmallValue;
9502       if (CommonBit.isPowerOf2()) {
9503         SDValue CondLHS = getValue(Cond);
9504         EVT VT = CondLHS.getValueType();
9505         SDLoc DL = getCurSDLoc();
9506 
9507         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9508                                  DAG.getConstant(CommonBit, DL, VT));
9509         SDValue Cond = DAG.getSetCC(
9510             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9511             ISD::SETEQ);
9512 
9513         // Update successor info.
9514         // Both Small and Big will jump to Small.BB, so we sum up the
9515         // probabilities.
9516         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9517         if (BPI)
9518           addSuccessorWithProb(
9519               SwitchMBB, DefaultMBB,
9520               // The default destination is the first successor in IR.
9521               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9522         else
9523           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9524 
9525         // Insert the true branch.
9526         SDValue BrCond =
9527             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9528                         DAG.getBasicBlock(Small.MBB));
9529         // Insert the false branch.
9530         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9531                              DAG.getBasicBlock(DefaultMBB));
9532 
9533         DAG.setRoot(BrCond);
9534         return;
9535       }
9536     }
9537   }
9538 
9539   if (TM.getOptLevel() != CodeGenOpt::None) {
9540     // Order cases by probability so the most likely case will be checked first.
9541     std::sort(W.FirstCluster, W.LastCluster + 1,
9542               [](const CaseCluster &a, const CaseCluster &b) {
9543       return a.Prob > b.Prob;
9544     });
9545 
9546     // Rearrange the case blocks so that the last one falls through if possible
9547     // without without changing the order of probabilities.
9548     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9549       --I;
9550       if (I->Prob > W.LastCluster->Prob)
9551         break;
9552       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9553         std::swap(*I, *W.LastCluster);
9554         break;
9555       }
9556     }
9557   }
9558 
9559   // Compute total probability.
9560   BranchProbability DefaultProb = W.DefaultProb;
9561   BranchProbability UnhandledProbs = DefaultProb;
9562   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9563     UnhandledProbs += I->Prob;
9564 
9565   MachineBasicBlock *CurMBB = W.MBB;
9566   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9567     MachineBasicBlock *Fallthrough;
9568     if (I == W.LastCluster) {
9569       // For the last cluster, fall through to the default destination.
9570       Fallthrough = DefaultMBB;
9571     } else {
9572       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9573       CurMF->insert(BBI, Fallthrough);
9574       // Put Cond in a virtual register to make it available from the new blocks.
9575       ExportFromCurrentBlock(Cond);
9576     }
9577     UnhandledProbs -= I->Prob;
9578 
9579     switch (I->Kind) {
9580       case CC_JumpTable: {
9581         // FIXME: Optimize away range check based on pivot comparisons.
9582         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9583         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9584 
9585         // The jump block hasn't been inserted yet; insert it here.
9586         MachineBasicBlock *JumpMBB = JT->MBB;
9587         CurMF->insert(BBI, JumpMBB);
9588 
9589         auto JumpProb = I->Prob;
9590         auto FallthroughProb = UnhandledProbs;
9591 
9592         // If the default statement is a target of the jump table, we evenly
9593         // distribute the default probability to successors of CurMBB. Also
9594         // update the probability on the edge from JumpMBB to Fallthrough.
9595         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9596                                               SE = JumpMBB->succ_end();
9597              SI != SE; ++SI) {
9598           if (*SI == DefaultMBB) {
9599             JumpProb += DefaultProb / 2;
9600             FallthroughProb -= DefaultProb / 2;
9601             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9602             JumpMBB->normalizeSuccProbs();
9603             break;
9604           }
9605         }
9606 
9607         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9608         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9609         CurMBB->normalizeSuccProbs();
9610 
9611         // The jump table header will be inserted in our current block, do the
9612         // range check, and fall through to our fallthrough block.
9613         JTH->HeaderBB = CurMBB;
9614         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9615 
9616         // If we're in the right place, emit the jump table header right now.
9617         if (CurMBB == SwitchMBB) {
9618           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9619           JTH->Emitted = true;
9620         }
9621         break;
9622       }
9623       case CC_BitTests: {
9624         // FIXME: Optimize away range check based on pivot comparisons.
9625         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9626 
9627         // The bit test blocks haven't been inserted yet; insert them here.
9628         for (BitTestCase &BTC : BTB->Cases)
9629           CurMF->insert(BBI, BTC.ThisBB);
9630 
9631         // Fill in fields of the BitTestBlock.
9632         BTB->Parent = CurMBB;
9633         BTB->Default = Fallthrough;
9634 
9635         BTB->DefaultProb = UnhandledProbs;
9636         // If the cases in bit test don't form a contiguous range, we evenly
9637         // distribute the probability on the edge to Fallthrough to two
9638         // successors of CurMBB.
9639         if (!BTB->ContiguousRange) {
9640           BTB->Prob += DefaultProb / 2;
9641           BTB->DefaultProb -= DefaultProb / 2;
9642         }
9643 
9644         // If we're in the right place, emit the bit test header right now.
9645         if (CurMBB == SwitchMBB) {
9646           visitBitTestHeader(*BTB, SwitchMBB);
9647           BTB->Emitted = true;
9648         }
9649         break;
9650       }
9651       case CC_Range: {
9652         const Value *RHS, *LHS, *MHS;
9653         ISD::CondCode CC;
9654         if (I->Low == I->High) {
9655           // Check Cond == I->Low.
9656           CC = ISD::SETEQ;
9657           LHS = Cond;
9658           RHS=I->Low;
9659           MHS = nullptr;
9660         } else {
9661           // Check I->Low <= Cond <= I->High.
9662           CC = ISD::SETLE;
9663           LHS = I->Low;
9664           MHS = Cond;
9665           RHS = I->High;
9666         }
9667 
9668         // The false probability is the sum of all unhandled cases.
9669         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
9670                      getCurSDLoc(), I->Prob, UnhandledProbs);
9671 
9672         if (CurMBB == SwitchMBB)
9673           visitSwitchCase(CB, SwitchMBB);
9674         else
9675           SwitchCases.push_back(CB);
9676 
9677         break;
9678       }
9679     }
9680     CurMBB = Fallthrough;
9681   }
9682 }
9683 
9684 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9685                                               CaseClusterIt First,
9686                                               CaseClusterIt Last) {
9687   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9688     if (X.Prob != CC.Prob)
9689       return X.Prob > CC.Prob;
9690 
9691     // Ties are broken by comparing the case value.
9692     return X.Low->getValue().slt(CC.Low->getValue());
9693   });
9694 }
9695 
9696 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9697                                         const SwitchWorkListItem &W,
9698                                         Value *Cond,
9699                                         MachineBasicBlock *SwitchMBB) {
9700   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9701          "Clusters not sorted?");
9702 
9703   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9704 
9705   // Balance the tree based on branch probabilities to create a near-optimal (in
9706   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9707   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9708   CaseClusterIt LastLeft = W.FirstCluster;
9709   CaseClusterIt FirstRight = W.LastCluster;
9710   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9711   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9712 
9713   // Move LastLeft and FirstRight towards each other from opposite directions to
9714   // find a partitioning of the clusters which balances the probability on both
9715   // sides. If LeftProb and RightProb are equal, alternate which side is
9716   // taken to ensure 0-probability nodes are distributed evenly.
9717   unsigned I = 0;
9718   while (LastLeft + 1 < FirstRight) {
9719     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9720       LeftProb += (++LastLeft)->Prob;
9721     else
9722       RightProb += (--FirstRight)->Prob;
9723     I++;
9724   }
9725 
9726   while (true) {
9727     // Our binary search tree differs from a typical BST in that ours can have up
9728     // to three values in each leaf. The pivot selection above doesn't take that
9729     // into account, which means the tree might require more nodes and be less
9730     // efficient. We compensate for this here.
9731 
9732     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9733     unsigned NumRight = W.LastCluster - FirstRight + 1;
9734 
9735     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9736       // If one side has less than 3 clusters, and the other has more than 3,
9737       // consider taking a cluster from the other side.
9738 
9739       if (NumLeft < NumRight) {
9740         // Consider moving the first cluster on the right to the left side.
9741         CaseCluster &CC = *FirstRight;
9742         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9743         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9744         if (LeftSideRank <= RightSideRank) {
9745           // Moving the cluster to the left does not demote it.
9746           ++LastLeft;
9747           ++FirstRight;
9748           continue;
9749         }
9750       } else {
9751         assert(NumRight < NumLeft);
9752         // Consider moving the last element on the left to the right side.
9753         CaseCluster &CC = *LastLeft;
9754         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9755         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9756         if (RightSideRank <= LeftSideRank) {
9757           // Moving the cluster to the right does not demot it.
9758           --LastLeft;
9759           --FirstRight;
9760           continue;
9761         }
9762       }
9763     }
9764     break;
9765   }
9766 
9767   assert(LastLeft + 1 == FirstRight);
9768   assert(LastLeft >= W.FirstCluster);
9769   assert(FirstRight <= W.LastCluster);
9770 
9771   // Use the first element on the right as pivot since we will make less-than
9772   // comparisons against it.
9773   CaseClusterIt PivotCluster = FirstRight;
9774   assert(PivotCluster > W.FirstCluster);
9775   assert(PivotCluster <= W.LastCluster);
9776 
9777   CaseClusterIt FirstLeft = W.FirstCluster;
9778   CaseClusterIt LastRight = W.LastCluster;
9779 
9780   const ConstantInt *Pivot = PivotCluster->Low;
9781 
9782   // New blocks will be inserted immediately after the current one.
9783   MachineFunction::iterator BBI(W.MBB);
9784   ++BBI;
9785 
9786   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9787   // we can branch to its destination directly if it's squeezed exactly in
9788   // between the known lower bound and Pivot - 1.
9789   MachineBasicBlock *LeftMBB;
9790   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9791       FirstLeft->Low == W.GE &&
9792       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9793     LeftMBB = FirstLeft->MBB;
9794   } else {
9795     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9796     FuncInfo.MF->insert(BBI, LeftMBB);
9797     WorkList.push_back(
9798         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9799     // Put Cond in a virtual register to make it available from the new blocks.
9800     ExportFromCurrentBlock(Cond);
9801   }
9802 
9803   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9804   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9805   // directly if RHS.High equals the current upper bound.
9806   MachineBasicBlock *RightMBB;
9807   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9808       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9809     RightMBB = FirstRight->MBB;
9810   } else {
9811     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9812     FuncInfo.MF->insert(BBI, RightMBB);
9813     WorkList.push_back(
9814         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9815     // Put Cond in a virtual register to make it available from the new blocks.
9816     ExportFromCurrentBlock(Cond);
9817   }
9818 
9819   // Create the CaseBlock record that will be used to lower the branch.
9820   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9821                getCurSDLoc(), LeftProb, RightProb);
9822 
9823   if (W.MBB == SwitchMBB)
9824     visitSwitchCase(CB, SwitchMBB);
9825   else
9826     SwitchCases.push_back(CB);
9827 }
9828 
9829 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
9830   // Extract cases from the switch.
9831   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9832   CaseClusterVector Clusters;
9833   Clusters.reserve(SI.getNumCases());
9834   for (auto I : SI.cases()) {
9835     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
9836     const ConstantInt *CaseVal = I.getCaseValue();
9837     BranchProbability Prob =
9838         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
9839             : BranchProbability(1, SI.getNumCases() + 1);
9840     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
9841   }
9842 
9843   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
9844 
9845   // Cluster adjacent cases with the same destination. We do this at all
9846   // optimization levels because it's cheap to do and will make codegen faster
9847   // if there are many clusters.
9848   sortAndRangeify(Clusters);
9849 
9850   if (TM.getOptLevel() != CodeGenOpt::None) {
9851     // Replace an unreachable default with the most popular destination.
9852     // FIXME: Exploit unreachable default more aggressively.
9853     bool UnreachableDefault =
9854         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9855     if (UnreachableDefault && !Clusters.empty()) {
9856       DenseMap<const BasicBlock *, unsigned> Popularity;
9857       unsigned MaxPop = 0;
9858       const BasicBlock *MaxBB = nullptr;
9859       for (auto I : SI.cases()) {
9860         const BasicBlock *BB = I.getCaseSuccessor();
9861         if (++Popularity[BB] > MaxPop) {
9862           MaxPop = Popularity[BB];
9863           MaxBB = BB;
9864         }
9865       }
9866       // Set new default.
9867       assert(MaxPop > 0 && MaxBB);
9868       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9869 
9870       // Remove cases that were pointing to the destination that is now the
9871       // default.
9872       CaseClusterVector New;
9873       New.reserve(Clusters.size());
9874       for (CaseCluster &CC : Clusters) {
9875         if (CC.MBB != DefaultMBB)
9876           New.push_back(CC);
9877       }
9878       Clusters = std::move(New);
9879     }
9880   }
9881 
9882   // If there is only the default destination, jump there directly.
9883   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9884   if (Clusters.empty()) {
9885     SwitchMBB->addSuccessor(DefaultMBB);
9886     if (DefaultMBB != NextBlock(SwitchMBB)) {
9887       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9888                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9889     }
9890     return;
9891   }
9892 
9893   findJumpTables(Clusters, &SI, DefaultMBB);
9894   findBitTestClusters(Clusters, &SI);
9895 
9896   DEBUG({
9897     dbgs() << "Case clusters: ";
9898     for (const CaseCluster &C : Clusters) {
9899       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9900       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9901 
9902       C.Low->getValue().print(dbgs(), true);
9903       if (C.Low != C.High) {
9904         dbgs() << '-';
9905         C.High->getValue().print(dbgs(), true);
9906       }
9907       dbgs() << ' ';
9908     }
9909     dbgs() << '\n';
9910   });
9911 
9912   assert(!Clusters.empty());
9913   SwitchWorkList WorkList;
9914   CaseClusterIt First = Clusters.begin();
9915   CaseClusterIt Last = Clusters.end() - 1;
9916   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9917   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9918 
9919   while (!WorkList.empty()) {
9920     SwitchWorkListItem W = WorkList.back();
9921     WorkList.pop_back();
9922     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9923 
9924     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
9925         !DefaultMBB->getParent()->getFunction()->optForMinSize()) {
9926       // For optimized builds, lower large range as a balanced binary tree.
9927       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9928       continue;
9929     }
9930 
9931     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9932   }
9933 }
9934