1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineJumpTableInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/SelectionDAG.h" 45 #include "llvm/Analysis/DebugInfo.h" 46 #include "llvm/Target/TargetData.h" 47 #include "llvm/Target/TargetFrameLowering.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetIntrinsicInfo.h" 50 #include "llvm/Target/TargetLibraryInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/CRSBuilder.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 using namespace llvm; 61 62 /// LimitFloatPrecision - Generate low-precision inline sequences for 63 /// some float libcalls (6, 8 or 12 bits). 64 static unsigned LimitFloatPrecision; 65 66 static cl::opt<unsigned, true> 67 LimitFPPrecision("limit-float-precision", 68 cl::desc("Generate low-precision inline sequences " 69 "for some float libcalls"), 70 cl::location(LimitFloatPrecision), 71 cl::init(0)); 72 73 // Limit the width of DAG chains. This is important in general to prevent 74 // prevent DAG-based analysis from blowing up. For example, alias analysis and 75 // load clustering may not complete in reasonable time. It is difficult to 76 // recognize and avoid this situation within each individual analysis, and 77 // future analyses are likely to have the same behavior. Limiting DAG width is 78 // the safe approach, and will be especially important with global DAGs. 79 // 80 // MaxParallelChains default is arbitrarily high to avoid affecting 81 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 82 // sequence over this should have been converted to llvm.memcpy by the 83 // frontend. It easy to induce this behavior with .ll code such as: 84 // %buffer = alloca [4096 x i8] 85 // %data = load [4096 x i8]* %argPtr 86 // store [4096 x i8] %data, [4096 x i8]* %buffer 87 static const unsigned MaxParallelChains = 64; 88 89 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 90 const SDValue *Parts, unsigned NumParts, 91 EVT PartVT, EVT ValueVT); 92 93 /// getCopyFromParts - Create a value that contains the specified legal parts 94 /// combined into the value they represent. If the parts combine to a type 95 /// larger then ValueVT then AssertOp can be used to specify whether the extra 96 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 97 /// (ISD::AssertSext). 98 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 99 const SDValue *Parts, 100 unsigned NumParts, EVT PartVT, EVT ValueVT, 101 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 102 if (ValueVT.isVector()) 103 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 104 105 assert(NumParts > 0 && "No parts to assemble!"); 106 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 107 SDValue Val = Parts[0]; 108 109 if (NumParts > 1) { 110 // Assemble the value from multiple parts. 111 if (ValueVT.isInteger()) { 112 unsigned PartBits = PartVT.getSizeInBits(); 113 unsigned ValueBits = ValueVT.getSizeInBits(); 114 115 // Assemble the power of 2 part. 116 unsigned RoundParts = NumParts & (NumParts - 1) ? 117 1 << Log2_32(NumParts) : NumParts; 118 unsigned RoundBits = PartBits * RoundParts; 119 EVT RoundVT = RoundBits == ValueBits ? 120 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 121 SDValue Lo, Hi; 122 123 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 124 125 if (RoundParts > 2) { 126 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 127 PartVT, HalfVT); 128 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 129 RoundParts / 2, PartVT, HalfVT); 130 } else { 131 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 132 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 133 } 134 135 if (TLI.isBigEndian()) 136 std::swap(Lo, Hi); 137 138 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 139 140 if (RoundParts < NumParts) { 141 // Assemble the trailing non-power-of-2 part. 142 unsigned OddParts = NumParts - RoundParts; 143 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 144 Hi = getCopyFromParts(DAG, DL, 145 Parts + RoundParts, OddParts, PartVT, OddVT); 146 147 // Combine the round and odd parts. 148 Lo = Val; 149 if (TLI.isBigEndian()) 150 std::swap(Lo, Hi); 151 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 152 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 153 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 154 DAG.getConstant(Lo.getValueType().getSizeInBits(), 155 TLI.getPointerTy())); 156 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 157 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 158 } 159 } else if (PartVT.isFloatingPoint()) { 160 // FP split into multiple FP parts (for ppcf128) 161 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 162 "Unexpected split"); 163 SDValue Lo, Hi; 164 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 165 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 166 if (TLI.isBigEndian()) 167 std::swap(Lo, Hi); 168 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 169 } else { 170 // FP split into integer parts (soft fp) 171 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 172 !PartVT.isVector() && "Unexpected split"); 173 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 174 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 175 } 176 } 177 178 // There is now one part, held in Val. Correct it to match ValueVT. 179 PartVT = Val.getValueType(); 180 181 if (PartVT == ValueVT) 182 return Val; 183 184 if (PartVT.isInteger() && ValueVT.isInteger()) { 185 if (ValueVT.bitsLT(PartVT)) { 186 // For a truncate, see if we have any information to 187 // indicate whether the truncated bits will always be 188 // zero or sign-extension. 189 if (AssertOp != ISD::DELETED_NODE) 190 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 191 DAG.getValueType(ValueVT)); 192 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 193 } 194 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 195 } 196 197 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 198 // FP_ROUND's are always exact here. 199 if (ValueVT.bitsLT(Val.getValueType())) 200 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 201 DAG.getTargetConstant(1, TLI.getPointerTy())); 202 203 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 204 } 205 206 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 207 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 208 209 llvm_unreachable("Unknown mismatch!"); 210 } 211 212 /// getCopyFromParts - Create a value that contains the specified legal parts 213 /// combined into the value they represent. If the parts combine to a type 214 /// larger then ValueVT then AssertOp can be used to specify whether the extra 215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 216 /// (ISD::AssertSext). 217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 218 const SDValue *Parts, unsigned NumParts, 219 EVT PartVT, EVT ValueVT) { 220 assert(ValueVT.isVector() && "Not a vector value"); 221 assert(NumParts > 0 && "No parts to assemble!"); 222 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 223 SDValue Val = Parts[0]; 224 225 // Handle a multi-element vector. 226 if (NumParts > 1) { 227 EVT IntermediateVT, RegisterVT; 228 unsigned NumIntermediates; 229 unsigned NumRegs = 230 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 231 NumIntermediates, RegisterVT); 232 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 233 NumParts = NumRegs; // Silence a compiler warning. 234 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 235 assert(RegisterVT == Parts[0].getValueType() && 236 "Part type doesn't match part!"); 237 238 // Assemble the parts into intermediate operands. 239 SmallVector<SDValue, 8> Ops(NumIntermediates); 240 if (NumIntermediates == NumParts) { 241 // If the register was not expanded, truncate or copy the value, 242 // as appropriate. 243 for (unsigned i = 0; i != NumParts; ++i) 244 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 245 PartVT, IntermediateVT); 246 } else if (NumParts > 0) { 247 // If the intermediate type was expanded, build the intermediate 248 // operands from the parts. 249 assert(NumParts % NumIntermediates == 0 && 250 "Must expand into a divisible number of parts!"); 251 unsigned Factor = NumParts / NumIntermediates; 252 for (unsigned i = 0; i != NumIntermediates; ++i) 253 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 254 PartVT, IntermediateVT); 255 } 256 257 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 258 // intermediate operands. 259 Val = DAG.getNode(IntermediateVT.isVector() ? 260 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 261 ValueVT, &Ops[0], NumIntermediates); 262 } 263 264 // There is now one part, held in Val. Correct it to match ValueVT. 265 PartVT = Val.getValueType(); 266 267 if (PartVT == ValueVT) 268 return Val; 269 270 if (PartVT.isVector()) { 271 // If the element type of the source/dest vectors are the same, but the 272 // parts vector has more elements than the value vector, then we have a 273 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 274 // elements we want. 275 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 276 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 277 "Cannot narrow, it would be a lossy transformation"); 278 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 279 DAG.getIntPtrConstant(0)); 280 } 281 282 // Vector/Vector bitcast. 283 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 284 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 285 286 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 287 "Cannot handle this kind of promotion"); 288 // Promoted vector extract 289 bool Smaller = ValueVT.bitsLE(PartVT); 290 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 291 DL, ValueVT, Val); 292 293 } 294 295 // Trivial bitcast if the types are the same size and the destination 296 // vector type is legal. 297 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 298 TLI.isTypeLegal(ValueVT)) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle cases such as i8 -> <1 x i1> 302 assert(ValueVT.getVectorNumElements() == 1 && 303 "Only trivial scalar-to-vector conversions should get here!"); 304 305 if (ValueVT.getVectorNumElements() == 1 && 306 ValueVT.getVectorElementType() != PartVT) { 307 bool Smaller = ValueVT.bitsLE(PartVT); 308 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 309 DL, ValueVT.getScalarType(), Val); 310 } 311 312 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 313 } 314 315 316 317 318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 319 SDValue Val, SDValue *Parts, unsigned NumParts, 320 EVT PartVT); 321 322 /// getCopyToParts - Create a series of nodes that contain the specified value 323 /// split into legal parts. If the parts contain more bits than Val, then, for 324 /// integers, ExtendKind can be used to specify how to generate the extra bits. 325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 326 SDValue Val, SDValue *Parts, unsigned NumParts, 327 EVT PartVT, 328 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 329 EVT ValueVT = Val.getValueType(); 330 331 // Handle the vector case separately. 332 if (ValueVT.isVector()) 333 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 334 335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 336 unsigned PartBits = PartVT.getSizeInBits(); 337 unsigned OrigNumParts = NumParts; 338 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 339 340 if (NumParts == 0) 341 return; 342 343 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 344 if (PartVT == ValueVT) { 345 assert(NumParts == 1 && "No-op copy with multiple parts!"); 346 Parts[0] = Val; 347 return; 348 } 349 350 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 351 // If the parts cover more bits than the value has, promote the value. 352 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 353 assert(NumParts == 1 && "Do not know what to promote to!"); 354 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 355 } else { 356 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 357 ValueVT.isInteger() && 358 "Unknown mismatch!"); 359 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 360 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 361 if (PartVT == MVT::x86mmx) 362 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 363 } 364 } else if (PartBits == ValueVT.getSizeInBits()) { 365 // Different types of the same size. 366 assert(NumParts == 1 && PartVT != ValueVT); 367 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 368 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 369 // If the parts cover less bits than value has, truncate the value. 370 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 371 ValueVT.isInteger() && 372 "Unknown mismatch!"); 373 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 374 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 375 if (PartVT == MVT::x86mmx) 376 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 377 } 378 379 // The value may have changed - recompute ValueVT. 380 ValueVT = Val.getValueType(); 381 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 382 "Failed to tile the value with PartVT!"); 383 384 if (NumParts == 1) { 385 assert(PartVT == ValueVT && "Type conversion failed!"); 386 Parts[0] = Val; 387 return; 388 } 389 390 // Expand the value into multiple parts. 391 if (NumParts & (NumParts - 1)) { 392 // The number of parts is not a power of 2. Split off and copy the tail. 393 assert(PartVT.isInteger() && ValueVT.isInteger() && 394 "Do not know what to expand to!"); 395 unsigned RoundParts = 1 << Log2_32(NumParts); 396 unsigned RoundBits = RoundParts * PartBits; 397 unsigned OddParts = NumParts - RoundParts; 398 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 399 DAG.getIntPtrConstant(RoundBits)); 400 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 401 402 if (TLI.isBigEndian()) 403 // The odd parts were reversed by getCopyToParts - unreverse them. 404 std::reverse(Parts + RoundParts, Parts + NumParts); 405 406 NumParts = RoundParts; 407 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 408 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 409 } 410 411 // The number of parts is a power of 2. Repeatedly bisect the value using 412 // EXTRACT_ELEMENT. 413 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 414 EVT::getIntegerVT(*DAG.getContext(), 415 ValueVT.getSizeInBits()), 416 Val); 417 418 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 419 for (unsigned i = 0; i < NumParts; i += StepSize) { 420 unsigned ThisBits = StepSize * PartBits / 2; 421 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 422 SDValue &Part0 = Parts[i]; 423 SDValue &Part1 = Parts[i+StepSize/2]; 424 425 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 426 ThisVT, Part0, DAG.getIntPtrConstant(1)); 427 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 428 ThisVT, Part0, DAG.getIntPtrConstant(0)); 429 430 if (ThisBits == PartBits && ThisVT != PartVT) { 431 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 432 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 433 } 434 } 435 } 436 437 if (TLI.isBigEndian()) 438 std::reverse(Parts, Parts + OrigNumParts); 439 } 440 441 442 /// getCopyToPartsVector - Create a series of nodes that contain the specified 443 /// value split into legal parts. 444 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 445 SDValue Val, SDValue *Parts, unsigned NumParts, 446 EVT PartVT) { 447 EVT ValueVT = Val.getValueType(); 448 assert(ValueVT.isVector() && "Not a vector"); 449 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 450 451 if (NumParts == 1) { 452 if (PartVT == ValueVT) { 453 // Nothing to do. 454 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 455 // Bitconvert vector->vector case. 456 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 457 } else if (PartVT.isVector() && 458 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 459 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 460 EVT ElementVT = PartVT.getVectorElementType(); 461 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 462 // undef elements. 463 SmallVector<SDValue, 16> Ops; 464 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 465 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 466 ElementVT, Val, DAG.getIntPtrConstant(i))); 467 468 for (unsigned i = ValueVT.getVectorNumElements(), 469 e = PartVT.getVectorNumElements(); i != e; ++i) 470 Ops.push_back(DAG.getUNDEF(ElementVT)); 471 472 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 473 474 // FIXME: Use CONCAT for 2x -> 4x. 475 476 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 477 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 478 } else if (PartVT.isVector() && 479 PartVT.getVectorElementType().bitsGE( 480 ValueVT.getVectorElementType()) && 481 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 482 483 // Promoted vector extract 484 bool Smaller = PartVT.bitsLE(ValueVT); 485 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 486 DL, PartVT, Val); 487 } else{ 488 // Vector -> scalar conversion. 489 assert(ValueVT.getVectorNumElements() == 1 && 490 "Only trivial vector-to-scalar conversions should get here!"); 491 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 492 PartVT, Val, DAG.getIntPtrConstant(0)); 493 494 bool Smaller = ValueVT.bitsLE(PartVT); 495 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 496 DL, PartVT, Val); 497 } 498 499 Parts[0] = Val; 500 return; 501 } 502 503 // Handle a multi-element vector. 504 EVT IntermediateVT, RegisterVT; 505 unsigned NumIntermediates; 506 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 507 IntermediateVT, 508 NumIntermediates, RegisterVT); 509 unsigned NumElements = ValueVT.getVectorNumElements(); 510 511 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 512 NumParts = NumRegs; // Silence a compiler warning. 513 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 514 515 // Split the vector into intermediate operands. 516 SmallVector<SDValue, 8> Ops(NumIntermediates); 517 for (unsigned i = 0; i != NumIntermediates; ++i) { 518 if (IntermediateVT.isVector()) 519 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 520 IntermediateVT, Val, 521 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 522 else 523 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 524 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 525 } 526 527 // Split the intermediate operands into legal parts. 528 if (NumParts == NumIntermediates) { 529 // If the register was not expanded, promote or copy the value, 530 // as appropriate. 531 for (unsigned i = 0; i != NumParts; ++i) 532 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 533 } else if (NumParts > 0) { 534 // If the intermediate type was expanded, split each the value into 535 // legal parts. 536 assert(NumParts % NumIntermediates == 0 && 537 "Must expand into a divisible number of parts!"); 538 unsigned Factor = NumParts / NumIntermediates; 539 for (unsigned i = 0; i != NumIntermediates; ++i) 540 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 541 } 542 } 543 544 545 546 547 namespace { 548 /// RegsForValue - This struct represents the registers (physical or virtual) 549 /// that a particular set of values is assigned, and the type information 550 /// about the value. The most common situation is to represent one value at a 551 /// time, but struct or array values are handled element-wise as multiple 552 /// values. The splitting of aggregates is performed recursively, so that we 553 /// never have aggregate-typed registers. The values at this point do not 554 /// necessarily have legal types, so each value may require one or more 555 /// registers of some legal type. 556 /// 557 struct RegsForValue { 558 /// ValueVTs - The value types of the values, which may not be legal, and 559 /// may need be promoted or synthesized from one or more registers. 560 /// 561 SmallVector<EVT, 4> ValueVTs; 562 563 /// RegVTs - The value types of the registers. This is the same size as 564 /// ValueVTs and it records, for each value, what the type of the assigned 565 /// register or registers are. (Individual values are never synthesized 566 /// from more than one type of register.) 567 /// 568 /// With virtual registers, the contents of RegVTs is redundant with TLI's 569 /// getRegisterType member function, however when with physical registers 570 /// it is necessary to have a separate record of the types. 571 /// 572 SmallVector<EVT, 4> RegVTs; 573 574 /// Regs - This list holds the registers assigned to the values. 575 /// Each legal or promoted value requires one register, and each 576 /// expanded value requires multiple registers. 577 /// 578 SmallVector<unsigned, 4> Regs; 579 580 RegsForValue() {} 581 582 RegsForValue(const SmallVector<unsigned, 4> ®s, 583 EVT regvt, EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 587 unsigned Reg, Type *Ty) { 588 ComputeValueVTs(tli, Ty, ValueVTs); 589 590 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 591 EVT ValueVT = ValueVTs[Value]; 592 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 593 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 594 for (unsigned i = 0; i != NumRegs; ++i) 595 Regs.push_back(Reg + i); 596 RegVTs.push_back(RegisterVT); 597 Reg += NumRegs; 598 } 599 } 600 601 /// areValueTypesLegal - Return true if types of all the values are legal. 602 bool areValueTypesLegal(const TargetLowering &TLI) { 603 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 604 EVT RegisterVT = RegVTs[Value]; 605 if (!TLI.isTypeLegal(RegisterVT)) 606 return false; 607 } 608 return true; 609 } 610 611 /// append - Add the specified values to this one. 612 void append(const RegsForValue &RHS) { 613 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 614 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 615 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 616 } 617 618 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 619 /// this value and returns the result as a ValueVTs value. This uses 620 /// Chain/Flag as the input and updates them for the output Chain/Flag. 621 /// If the Flag pointer is NULL, no flag is used. 622 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 623 DebugLoc dl, 624 SDValue &Chain, SDValue *Flag) const; 625 626 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 627 /// specified value into the registers specified by this object. This uses 628 /// Chain/Flag as the input and updates them for the output Chain/Flag. 629 /// If the Flag pointer is NULL, no flag is used. 630 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 631 SDValue &Chain, SDValue *Flag) const; 632 633 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 634 /// operand list. This adds the code marker, matching input operand index 635 /// (if applicable), and includes the number of values added into it. 636 void AddInlineAsmOperands(unsigned Kind, 637 bool HasMatching, unsigned MatchingIdx, 638 SelectionDAG &DAG, 639 std::vector<SDValue> &Ops) const; 640 }; 641 } 642 643 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 644 /// this value and returns the result as a ValueVT value. This uses 645 /// Chain/Flag as the input and updates them for the output Chain/Flag. 646 /// If the Flag pointer is NULL, no flag is used. 647 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 648 FunctionLoweringInfo &FuncInfo, 649 DebugLoc dl, 650 SDValue &Chain, SDValue *Flag) const { 651 // A Value with type {} or [0 x %t] needs no registers. 652 if (ValueVTs.empty()) 653 return SDValue(); 654 655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 656 657 // Assemble the legal parts into the final values. 658 SmallVector<SDValue, 4> Values(ValueVTs.size()); 659 SmallVector<SDValue, 8> Parts; 660 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 661 // Copy the legal parts from the registers. 662 EVT ValueVT = ValueVTs[Value]; 663 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 664 EVT RegisterVT = RegVTs[Value]; 665 666 Parts.resize(NumRegs); 667 for (unsigned i = 0; i != NumRegs; ++i) { 668 SDValue P; 669 if (Flag == 0) { 670 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 671 } else { 672 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 673 *Flag = P.getValue(2); 674 } 675 676 Chain = P.getValue(1); 677 Parts[i] = P; 678 679 // If the source register was virtual and if we know something about it, 680 // add an assert node. 681 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 682 !RegisterVT.isInteger() || RegisterVT.isVector()) 683 continue; 684 685 const FunctionLoweringInfo::LiveOutInfo *LOI = 686 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 687 if (!LOI) 688 continue; 689 690 unsigned RegSize = RegisterVT.getSizeInBits(); 691 unsigned NumSignBits = LOI->NumSignBits; 692 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 693 694 // FIXME: We capture more information than the dag can represent. For 695 // now, just use the tightest assertzext/assertsext possible. 696 bool isSExt = true; 697 EVT FromVT(MVT::Other); 698 if (NumSignBits == RegSize) 699 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 700 else if (NumZeroBits >= RegSize-1) 701 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 702 else if (NumSignBits > RegSize-8) 703 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 704 else if (NumZeroBits >= RegSize-8) 705 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 706 else if (NumSignBits > RegSize-16) 707 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 708 else if (NumZeroBits >= RegSize-16) 709 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 710 else if (NumSignBits > RegSize-32) 711 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 712 else if (NumZeroBits >= RegSize-32) 713 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 714 else 715 continue; 716 717 // Add an assertion node. 718 assert(FromVT != MVT::Other); 719 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 720 RegisterVT, P, DAG.getValueType(FromVT)); 721 } 722 723 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 724 NumRegs, RegisterVT, ValueVT); 725 Part += NumRegs; 726 Parts.clear(); 727 } 728 729 return DAG.getNode(ISD::MERGE_VALUES, dl, 730 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 731 &Values[0], ValueVTs.size()); 732 } 733 734 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 735 /// specified value into the registers specified by this object. This uses 736 /// Chain/Flag as the input and updates them for the output Chain/Flag. 737 /// If the Flag pointer is NULL, no flag is used. 738 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 739 SDValue &Chain, SDValue *Flag) const { 740 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 741 742 // Get the list of the values's legal parts. 743 unsigned NumRegs = Regs.size(); 744 SmallVector<SDValue, 8> Parts(NumRegs); 745 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 746 EVT ValueVT = ValueVTs[Value]; 747 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 748 EVT RegisterVT = RegVTs[Value]; 749 750 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 751 &Parts[Part], NumParts, RegisterVT); 752 Part += NumParts; 753 } 754 755 // Copy the parts into the registers. 756 SmallVector<SDValue, 8> Chains(NumRegs); 757 for (unsigned i = 0; i != NumRegs; ++i) { 758 SDValue Part; 759 if (Flag == 0) { 760 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 761 } else { 762 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 763 *Flag = Part.getValue(1); 764 } 765 766 Chains[i] = Part.getValue(0); 767 } 768 769 if (NumRegs == 1 || Flag) 770 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 771 // flagged to it. That is the CopyToReg nodes and the user are considered 772 // a single scheduling unit. If we create a TokenFactor and return it as 773 // chain, then the TokenFactor is both a predecessor (operand) of the 774 // user as well as a successor (the TF operands are flagged to the user). 775 // c1, f1 = CopyToReg 776 // c2, f2 = CopyToReg 777 // c3 = TokenFactor c1, c2 778 // ... 779 // = op c3, ..., f2 780 Chain = Chains[NumRegs-1]; 781 else 782 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 783 } 784 785 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 786 /// operand list. This adds the code marker and includes the number of 787 /// values added into it. 788 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 789 unsigned MatchingIdx, 790 SelectionDAG &DAG, 791 std::vector<SDValue> &Ops) const { 792 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 793 794 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 795 if (HasMatching) 796 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 797 else if (!Regs.empty() && 798 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 799 // Put the register class of the virtual registers in the flag word. That 800 // way, later passes can recompute register class constraints for inline 801 // assembly as well as normal instructions. 802 // Don't do this for tied operands that can use the regclass information 803 // from the def. 804 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 805 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 806 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 807 } 808 809 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 810 Ops.push_back(Res); 811 812 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 813 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 814 EVT RegisterVT = RegVTs[Value]; 815 for (unsigned i = 0; i != NumRegs; ++i) { 816 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 817 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 818 } 819 } 820 } 821 822 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 823 const TargetLibraryInfo *li) { 824 AA = &aa; 825 GFI = gfi; 826 LibInfo = li; 827 TD = DAG.getTarget().getTargetData(); 828 LPadToCallSiteMap.clear(); 829 } 830 831 /// clear - Clear out the current SelectionDAG and the associated 832 /// state and prepare this SelectionDAGBuilder object to be used 833 /// for a new block. This doesn't clear out information about 834 /// additional blocks that are needed to complete switch lowering 835 /// or PHI node updating; that information is cleared out as it is 836 /// consumed. 837 void SelectionDAGBuilder::clear() { 838 NodeMap.clear(); 839 UnusedArgNodeMap.clear(); 840 PendingLoads.clear(); 841 PendingExports.clear(); 842 CurDebugLoc = DebugLoc(); 843 HasTailCall = false; 844 } 845 846 /// clearDanglingDebugInfo - Clear the dangling debug information 847 /// map. This function is seperated from the clear so that debug 848 /// information that is dangling in a basic block can be properly 849 /// resolved in a different basic block. This allows the 850 /// SelectionDAG to resolve dangling debug information attached 851 /// to PHI nodes. 852 void SelectionDAGBuilder::clearDanglingDebugInfo() { 853 DanglingDebugInfoMap.clear(); 854 } 855 856 /// getRoot - Return the current virtual root of the Selection DAG, 857 /// flushing any PendingLoad items. This must be done before emitting 858 /// a store or any other node that may need to be ordered after any 859 /// prior load instructions. 860 /// 861 SDValue SelectionDAGBuilder::getRoot() { 862 if (PendingLoads.empty()) 863 return DAG.getRoot(); 864 865 if (PendingLoads.size() == 1) { 866 SDValue Root = PendingLoads[0]; 867 DAG.setRoot(Root); 868 PendingLoads.clear(); 869 return Root; 870 } 871 872 // Otherwise, we have to make a token factor node. 873 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 874 &PendingLoads[0], PendingLoads.size()); 875 PendingLoads.clear(); 876 DAG.setRoot(Root); 877 return Root; 878 } 879 880 /// getControlRoot - Similar to getRoot, but instead of flushing all the 881 /// PendingLoad items, flush all the PendingExports items. It is necessary 882 /// to do this before emitting a terminator instruction. 883 /// 884 SDValue SelectionDAGBuilder::getControlRoot() { 885 SDValue Root = DAG.getRoot(); 886 887 if (PendingExports.empty()) 888 return Root; 889 890 // Turn all of the CopyToReg chains into one factored node. 891 if (Root.getOpcode() != ISD::EntryToken) { 892 unsigned i = 0, e = PendingExports.size(); 893 for (; i != e; ++i) { 894 assert(PendingExports[i].getNode()->getNumOperands() > 1); 895 if (PendingExports[i].getNode()->getOperand(0) == Root) 896 break; // Don't add the root if we already indirectly depend on it. 897 } 898 899 if (i == e) 900 PendingExports.push_back(Root); 901 } 902 903 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 904 &PendingExports[0], 905 PendingExports.size()); 906 PendingExports.clear(); 907 DAG.setRoot(Root); 908 return Root; 909 } 910 911 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 912 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 913 DAG.AssignOrdering(Node, SDNodeOrder); 914 915 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 916 AssignOrderingToNode(Node->getOperand(I).getNode()); 917 } 918 919 void SelectionDAGBuilder::visit(const Instruction &I) { 920 // Set up outgoing PHI node register values before emitting the terminator. 921 if (isa<TerminatorInst>(&I)) 922 HandlePHINodesInSuccessorBlocks(I.getParent()); 923 924 CurDebugLoc = I.getDebugLoc(); 925 926 visit(I.getOpcode(), I); 927 928 if (!isa<TerminatorInst>(&I) && !HasTailCall) 929 CopyToExportRegsIfNeeded(&I); 930 931 CurDebugLoc = DebugLoc(); 932 } 933 934 void SelectionDAGBuilder::visitPHI(const PHINode &) { 935 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 936 } 937 938 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 939 // Note: this doesn't use InstVisitor, because it has to work with 940 // ConstantExpr's in addition to instructions. 941 switch (Opcode) { 942 default: llvm_unreachable("Unknown instruction type encountered!"); 943 // Build the switch statement using the Instruction.def file. 944 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 945 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 946 #include "llvm/Instruction.def" 947 } 948 949 // Assign the ordering to the freshly created DAG nodes. 950 if (NodeMap.count(&I)) { 951 ++SDNodeOrder; 952 AssignOrderingToNode(getValue(&I).getNode()); 953 } 954 } 955 956 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 957 // generate the debug data structures now that we've seen its definition. 958 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 959 SDValue Val) { 960 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 961 if (DDI.getDI()) { 962 const DbgValueInst *DI = DDI.getDI(); 963 DebugLoc dl = DDI.getdl(); 964 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 965 MDNode *Variable = DI->getVariable(); 966 uint64_t Offset = DI->getOffset(); 967 SDDbgValue *SDV; 968 if (Val.getNode()) { 969 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 970 SDV = DAG.getDbgValue(Variable, Val.getNode(), 971 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 972 DAG.AddDbgValue(SDV, Val.getNode(), false); 973 } 974 } else 975 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 976 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 977 } 978 } 979 980 /// getValue - Return an SDValue for the given Value. 981 SDValue SelectionDAGBuilder::getValue(const Value *V) { 982 // If we already have an SDValue for this value, use it. It's important 983 // to do this first, so that we don't create a CopyFromReg if we already 984 // have a regular SDValue. 985 SDValue &N = NodeMap[V]; 986 if (N.getNode()) return N; 987 988 // If there's a virtual register allocated and initialized for this 989 // value, use it. 990 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 991 if (It != FuncInfo.ValueMap.end()) { 992 unsigned InReg = It->second; 993 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 994 SDValue Chain = DAG.getEntryNode(); 995 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 996 resolveDanglingDebugInfo(V, N); 997 return N; 998 } 999 1000 // Otherwise create a new SDValue and remember it. 1001 SDValue Val = getValueImpl(V); 1002 NodeMap[V] = Val; 1003 resolveDanglingDebugInfo(V, Val); 1004 return Val; 1005 } 1006 1007 /// getNonRegisterValue - Return an SDValue for the given Value, but 1008 /// don't look in FuncInfo.ValueMap for a virtual register. 1009 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1010 // If we already have an SDValue for this value, use it. 1011 SDValue &N = NodeMap[V]; 1012 if (N.getNode()) return N; 1013 1014 // Otherwise create a new SDValue and remember it. 1015 SDValue Val = getValueImpl(V); 1016 NodeMap[V] = Val; 1017 resolveDanglingDebugInfo(V, Val); 1018 return Val; 1019 } 1020 1021 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1022 /// Create an SDValue for the given value. 1023 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1024 if (const Constant *C = dyn_cast<Constant>(V)) { 1025 EVT VT = TLI.getValueType(V->getType(), true); 1026 1027 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1028 return DAG.getConstant(*CI, VT); 1029 1030 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1031 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1032 1033 if (isa<ConstantPointerNull>(C)) 1034 return DAG.getConstant(0, TLI.getPointerTy()); 1035 1036 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1037 return DAG.getConstantFP(*CFP, VT); 1038 1039 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1040 return DAG.getUNDEF(VT); 1041 1042 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1043 visit(CE->getOpcode(), *CE); 1044 SDValue N1 = NodeMap[V]; 1045 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1046 return N1; 1047 } 1048 1049 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1050 SmallVector<SDValue, 4> Constants; 1051 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1052 OI != OE; ++OI) { 1053 SDNode *Val = getValue(*OI).getNode(); 1054 // If the operand is an empty aggregate, there are no values. 1055 if (!Val) continue; 1056 // Add each leaf value from the operand to the Constants list 1057 // to form a flattened list of all the values. 1058 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1059 Constants.push_back(SDValue(Val, i)); 1060 } 1061 1062 return DAG.getMergeValues(&Constants[0], Constants.size(), 1063 getCurDebugLoc()); 1064 } 1065 1066 if (const ConstantDataSequential *CDS = 1067 dyn_cast<ConstantDataSequential>(C)) { 1068 SmallVector<SDValue, 4> Ops; 1069 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1070 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1071 // Add each leaf value from the operand to the Constants list 1072 // to form a flattened list of all the values. 1073 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1074 Ops.push_back(SDValue(Val, i)); 1075 } 1076 1077 if (isa<ArrayType>(CDS->getType())) 1078 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc()); 1079 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1080 VT, &Ops[0], Ops.size()); 1081 } 1082 1083 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1084 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1085 "Unknown struct or array constant!"); 1086 1087 SmallVector<EVT, 4> ValueVTs; 1088 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1089 unsigned NumElts = ValueVTs.size(); 1090 if (NumElts == 0) 1091 return SDValue(); // empty struct 1092 SmallVector<SDValue, 4> Constants(NumElts); 1093 for (unsigned i = 0; i != NumElts; ++i) { 1094 EVT EltVT = ValueVTs[i]; 1095 if (isa<UndefValue>(C)) 1096 Constants[i] = DAG.getUNDEF(EltVT); 1097 else if (EltVT.isFloatingPoint()) 1098 Constants[i] = DAG.getConstantFP(0, EltVT); 1099 else 1100 Constants[i] = DAG.getConstant(0, EltVT); 1101 } 1102 1103 return DAG.getMergeValues(&Constants[0], NumElts, 1104 getCurDebugLoc()); 1105 } 1106 1107 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1108 return DAG.getBlockAddress(BA, VT); 1109 1110 VectorType *VecTy = cast<VectorType>(V->getType()); 1111 unsigned NumElements = VecTy->getNumElements(); 1112 1113 // Now that we know the number and type of the elements, get that number of 1114 // elements into the Ops array based on what kind of constant it is. 1115 SmallVector<SDValue, 16> Ops; 1116 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1117 for (unsigned i = 0; i != NumElements; ++i) 1118 Ops.push_back(getValue(CV->getOperand(i))); 1119 } else { 1120 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1121 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1122 1123 SDValue Op; 1124 if (EltVT.isFloatingPoint()) 1125 Op = DAG.getConstantFP(0, EltVT); 1126 else 1127 Op = DAG.getConstant(0, EltVT); 1128 Ops.assign(NumElements, Op); 1129 } 1130 1131 // Create a BUILD_VECTOR node. 1132 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1133 VT, &Ops[0], Ops.size()); 1134 } 1135 1136 // If this is a static alloca, generate it as the frameindex instead of 1137 // computation. 1138 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1139 DenseMap<const AllocaInst*, int>::iterator SI = 1140 FuncInfo.StaticAllocaMap.find(AI); 1141 if (SI != FuncInfo.StaticAllocaMap.end()) 1142 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1143 } 1144 1145 // If this is an instruction which fast-isel has deferred, select it now. 1146 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1147 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1148 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1149 SDValue Chain = DAG.getEntryNode(); 1150 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1151 } 1152 1153 llvm_unreachable("Can't get register for value!"); 1154 } 1155 1156 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1157 SDValue Chain = getControlRoot(); 1158 SmallVector<ISD::OutputArg, 8> Outs; 1159 SmallVector<SDValue, 8> OutVals; 1160 1161 if (!FuncInfo.CanLowerReturn) { 1162 unsigned DemoteReg = FuncInfo.DemoteRegister; 1163 const Function *F = I.getParent()->getParent(); 1164 1165 // Emit a store of the return value through the virtual register. 1166 // Leave Outs empty so that LowerReturn won't try to load return 1167 // registers the usual way. 1168 SmallVector<EVT, 1> PtrValueVTs; 1169 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1170 PtrValueVTs); 1171 1172 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1173 SDValue RetOp = getValue(I.getOperand(0)); 1174 1175 SmallVector<EVT, 4> ValueVTs; 1176 SmallVector<uint64_t, 4> Offsets; 1177 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1178 unsigned NumValues = ValueVTs.size(); 1179 1180 SmallVector<SDValue, 4> Chains(NumValues); 1181 for (unsigned i = 0; i != NumValues; ++i) { 1182 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1183 RetPtr.getValueType(), RetPtr, 1184 DAG.getIntPtrConstant(Offsets[i])); 1185 Chains[i] = 1186 DAG.getStore(Chain, getCurDebugLoc(), 1187 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1188 // FIXME: better loc info would be nice. 1189 Add, MachinePointerInfo(), false, false, 0); 1190 } 1191 1192 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1193 MVT::Other, &Chains[0], NumValues); 1194 } else if (I.getNumOperands() != 0) { 1195 SmallVector<EVT, 4> ValueVTs; 1196 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1197 unsigned NumValues = ValueVTs.size(); 1198 if (NumValues) { 1199 SDValue RetOp = getValue(I.getOperand(0)); 1200 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1201 EVT VT = ValueVTs[j]; 1202 1203 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1204 1205 const Function *F = I.getParent()->getParent(); 1206 if (F->paramHasAttr(0, Attribute::SExt)) 1207 ExtendKind = ISD::SIGN_EXTEND; 1208 else if (F->paramHasAttr(0, Attribute::ZExt)) 1209 ExtendKind = ISD::ZERO_EXTEND; 1210 1211 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1212 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1213 1214 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1215 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1216 SmallVector<SDValue, 4> Parts(NumParts); 1217 getCopyToParts(DAG, getCurDebugLoc(), 1218 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1219 &Parts[0], NumParts, PartVT, ExtendKind); 1220 1221 // 'inreg' on function refers to return value 1222 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1223 if (F->paramHasAttr(0, Attribute::InReg)) 1224 Flags.setInReg(); 1225 1226 // Propagate extension type if any 1227 if (ExtendKind == ISD::SIGN_EXTEND) 1228 Flags.setSExt(); 1229 else if (ExtendKind == ISD::ZERO_EXTEND) 1230 Flags.setZExt(); 1231 1232 for (unsigned i = 0; i < NumParts; ++i) { 1233 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1234 /*isfixed=*/true)); 1235 OutVals.push_back(Parts[i]); 1236 } 1237 } 1238 } 1239 } 1240 1241 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1242 CallingConv::ID CallConv = 1243 DAG.getMachineFunction().getFunction()->getCallingConv(); 1244 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1245 Outs, OutVals, getCurDebugLoc(), DAG); 1246 1247 // Verify that the target's LowerReturn behaved as expected. 1248 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1249 "LowerReturn didn't return a valid chain!"); 1250 1251 // Update the DAG with the new chain value resulting from return lowering. 1252 DAG.setRoot(Chain); 1253 } 1254 1255 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1256 /// created for it, emit nodes to copy the value into the virtual 1257 /// registers. 1258 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1259 // Skip empty types 1260 if (V->getType()->isEmptyTy()) 1261 return; 1262 1263 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1264 if (VMI != FuncInfo.ValueMap.end()) { 1265 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1266 CopyValueToVirtualRegister(V, VMI->second); 1267 } 1268 } 1269 1270 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1271 /// the current basic block, add it to ValueMap now so that we'll get a 1272 /// CopyTo/FromReg. 1273 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1274 // No need to export constants. 1275 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1276 1277 // Already exported? 1278 if (FuncInfo.isExportedInst(V)) return; 1279 1280 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1281 CopyValueToVirtualRegister(V, Reg); 1282 } 1283 1284 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1285 const BasicBlock *FromBB) { 1286 // The operands of the setcc have to be in this block. We don't know 1287 // how to export them from some other block. 1288 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1289 // Can export from current BB. 1290 if (VI->getParent() == FromBB) 1291 return true; 1292 1293 // Is already exported, noop. 1294 return FuncInfo.isExportedInst(V); 1295 } 1296 1297 // If this is an argument, we can export it if the BB is the entry block or 1298 // if it is already exported. 1299 if (isa<Argument>(V)) { 1300 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1301 return true; 1302 1303 // Otherwise, can only export this if it is already exported. 1304 return FuncInfo.isExportedInst(V); 1305 } 1306 1307 // Otherwise, constants can always be exported. 1308 return true; 1309 } 1310 1311 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1312 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1313 const MachineBasicBlock *Dst) const { 1314 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1315 if (!BPI) 1316 return 0; 1317 const BasicBlock *SrcBB = Src->getBasicBlock(); 1318 const BasicBlock *DstBB = Dst->getBasicBlock(); 1319 return BPI->getEdgeWeight(SrcBB, DstBB); 1320 } 1321 1322 void SelectionDAGBuilder:: 1323 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1324 uint32_t Weight /* = 0 */) { 1325 if (!Weight) 1326 Weight = getEdgeWeight(Src, Dst); 1327 Src->addSuccessor(Dst, Weight); 1328 } 1329 1330 1331 static bool InBlock(const Value *V, const BasicBlock *BB) { 1332 if (const Instruction *I = dyn_cast<Instruction>(V)) 1333 return I->getParent() == BB; 1334 return true; 1335 } 1336 1337 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1338 /// This function emits a branch and is used at the leaves of an OR or an 1339 /// AND operator tree. 1340 /// 1341 void 1342 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1343 MachineBasicBlock *TBB, 1344 MachineBasicBlock *FBB, 1345 MachineBasicBlock *CurBB, 1346 MachineBasicBlock *SwitchBB) { 1347 const BasicBlock *BB = CurBB->getBasicBlock(); 1348 1349 // If the leaf of the tree is a comparison, merge the condition into 1350 // the caseblock. 1351 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1352 // The operands of the cmp have to be in this block. We don't know 1353 // how to export them from some other block. If this is the first block 1354 // of the sequence, no exporting is needed. 1355 if (CurBB == SwitchBB || 1356 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1357 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1358 ISD::CondCode Condition; 1359 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1360 Condition = getICmpCondCode(IC->getPredicate()); 1361 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1362 Condition = getFCmpCondCode(FC->getPredicate()); 1363 if (TM.Options.NoNaNsFPMath) 1364 Condition = getFCmpCodeWithoutNaN(Condition); 1365 } else { 1366 Condition = ISD::SETEQ; // silence warning. 1367 llvm_unreachable("Unknown compare instruction"); 1368 } 1369 1370 CaseBlock CB(Condition, BOp->getOperand(0), 1371 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1372 SwitchCases.push_back(CB); 1373 return; 1374 } 1375 } 1376 1377 // Create a CaseBlock record representing this branch. 1378 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1379 NULL, TBB, FBB, CurBB); 1380 SwitchCases.push_back(CB); 1381 } 1382 1383 /// FindMergedConditions - If Cond is an expression like 1384 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1385 MachineBasicBlock *TBB, 1386 MachineBasicBlock *FBB, 1387 MachineBasicBlock *CurBB, 1388 MachineBasicBlock *SwitchBB, 1389 unsigned Opc) { 1390 // If this node is not part of the or/and tree, emit it as a branch. 1391 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1392 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1393 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1394 BOp->getParent() != CurBB->getBasicBlock() || 1395 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1396 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1397 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1398 return; 1399 } 1400 1401 // Create TmpBB after CurBB. 1402 MachineFunction::iterator BBI = CurBB; 1403 MachineFunction &MF = DAG.getMachineFunction(); 1404 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1405 CurBB->getParent()->insert(++BBI, TmpBB); 1406 1407 if (Opc == Instruction::Or) { 1408 // Codegen X | Y as: 1409 // jmp_if_X TBB 1410 // jmp TmpBB 1411 // TmpBB: 1412 // jmp_if_Y TBB 1413 // jmp FBB 1414 // 1415 1416 // Emit the LHS condition. 1417 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1418 1419 // Emit the RHS condition into TmpBB. 1420 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1421 } else { 1422 assert(Opc == Instruction::And && "Unknown merge op!"); 1423 // Codegen X & Y as: 1424 // jmp_if_X TmpBB 1425 // jmp FBB 1426 // TmpBB: 1427 // jmp_if_Y TBB 1428 // jmp FBB 1429 // 1430 // This requires creation of TmpBB after CurBB. 1431 1432 // Emit the LHS condition. 1433 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1434 1435 // Emit the RHS condition into TmpBB. 1436 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1437 } 1438 } 1439 1440 /// If the set of cases should be emitted as a series of branches, return true. 1441 /// If we should emit this as a bunch of and/or'd together conditions, return 1442 /// false. 1443 bool 1444 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1445 if (Cases.size() != 2) return true; 1446 1447 // If this is two comparisons of the same values or'd or and'd together, they 1448 // will get folded into a single comparison, so don't emit two blocks. 1449 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1450 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1451 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1452 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1453 return false; 1454 } 1455 1456 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1457 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1458 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1459 Cases[0].CC == Cases[1].CC && 1460 isa<Constant>(Cases[0].CmpRHS) && 1461 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1462 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1463 return false; 1464 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1465 return false; 1466 } 1467 1468 return true; 1469 } 1470 1471 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1472 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1473 1474 // Update machine-CFG edges. 1475 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1476 1477 // Figure out which block is immediately after the current one. 1478 MachineBasicBlock *NextBlock = 0; 1479 MachineFunction::iterator BBI = BrMBB; 1480 if (++BBI != FuncInfo.MF->end()) 1481 NextBlock = BBI; 1482 1483 if (I.isUnconditional()) { 1484 // Update machine-CFG edges. 1485 BrMBB->addSuccessor(Succ0MBB); 1486 1487 // If this is not a fall-through branch, emit the branch. 1488 if (Succ0MBB != NextBlock) 1489 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1490 MVT::Other, getControlRoot(), 1491 DAG.getBasicBlock(Succ0MBB))); 1492 1493 return; 1494 } 1495 1496 // If this condition is one of the special cases we handle, do special stuff 1497 // now. 1498 const Value *CondVal = I.getCondition(); 1499 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1500 1501 // If this is a series of conditions that are or'd or and'd together, emit 1502 // this as a sequence of branches instead of setcc's with and/or operations. 1503 // As long as jumps are not expensive, this should improve performance. 1504 // For example, instead of something like: 1505 // cmp A, B 1506 // C = seteq 1507 // cmp D, E 1508 // F = setle 1509 // or C, F 1510 // jnz foo 1511 // Emit: 1512 // cmp A, B 1513 // je foo 1514 // cmp D, E 1515 // jle foo 1516 // 1517 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1518 if (!TLI.isJumpExpensive() && 1519 BOp->hasOneUse() && 1520 (BOp->getOpcode() == Instruction::And || 1521 BOp->getOpcode() == Instruction::Or)) { 1522 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1523 BOp->getOpcode()); 1524 // If the compares in later blocks need to use values not currently 1525 // exported from this block, export them now. This block should always 1526 // be the first entry. 1527 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1528 1529 // Allow some cases to be rejected. 1530 if (ShouldEmitAsBranches(SwitchCases)) { 1531 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1532 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1533 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1534 } 1535 1536 // Emit the branch for this block. 1537 visitSwitchCase(SwitchCases[0], BrMBB); 1538 SwitchCases.erase(SwitchCases.begin()); 1539 return; 1540 } 1541 1542 // Okay, we decided not to do this, remove any inserted MBB's and clear 1543 // SwitchCases. 1544 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1545 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1546 1547 SwitchCases.clear(); 1548 } 1549 } 1550 1551 // Create a CaseBlock record representing this branch. 1552 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1553 NULL, Succ0MBB, Succ1MBB, BrMBB); 1554 1555 // Use visitSwitchCase to actually insert the fast branch sequence for this 1556 // cond branch. 1557 visitSwitchCase(CB, BrMBB); 1558 } 1559 1560 /// visitSwitchCase - Emits the necessary code to represent a single node in 1561 /// the binary search tree resulting from lowering a switch instruction. 1562 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1563 MachineBasicBlock *SwitchBB) { 1564 SDValue Cond; 1565 SDValue CondLHS = getValue(CB.CmpLHS); 1566 DebugLoc dl = getCurDebugLoc(); 1567 1568 // Build the setcc now. 1569 if (CB.CmpMHS == NULL) { 1570 // Fold "(X == true)" to X and "(X == false)" to !X to 1571 // handle common cases produced by branch lowering. 1572 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1573 CB.CC == ISD::SETEQ) 1574 Cond = CondLHS; 1575 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1576 CB.CC == ISD::SETEQ) { 1577 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1578 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1579 } else 1580 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1581 } else { 1582 assert(CB.CC == ISD::SETCC_INVALID && 1583 "Condition is undefined for to-the-range belonging check."); 1584 1585 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1586 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1587 1588 SDValue CmpOp = getValue(CB.CmpMHS); 1589 EVT VT = CmpOp.getValueType(); 1590 1591 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) { 1592 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1593 ISD::SETULE); 1594 } else { 1595 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1596 VT, CmpOp, DAG.getConstant(Low, VT)); 1597 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1598 DAG.getConstant(High-Low, VT), ISD::SETULE); 1599 } 1600 } 1601 1602 // Update successor info 1603 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1604 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1605 1606 // Set NextBlock to be the MBB immediately after the current one, if any. 1607 // This is used to avoid emitting unnecessary branches to the next block. 1608 MachineBasicBlock *NextBlock = 0; 1609 MachineFunction::iterator BBI = SwitchBB; 1610 if (++BBI != FuncInfo.MF->end()) 1611 NextBlock = BBI; 1612 1613 // If the lhs block is the next block, invert the condition so that we can 1614 // fall through to the lhs instead of the rhs block. 1615 if (CB.TrueBB == NextBlock) { 1616 std::swap(CB.TrueBB, CB.FalseBB); 1617 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1618 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1619 } 1620 1621 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1622 MVT::Other, getControlRoot(), Cond, 1623 DAG.getBasicBlock(CB.TrueBB)); 1624 1625 // Insert the false branch. Do this even if it's a fall through branch, 1626 // this makes it easier to do DAG optimizations which require inverting 1627 // the branch condition. 1628 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1629 DAG.getBasicBlock(CB.FalseBB)); 1630 1631 DAG.setRoot(BrCond); 1632 } 1633 1634 /// visitJumpTable - Emit JumpTable node in the current MBB 1635 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1636 // Emit the code for the jump table 1637 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1638 EVT PTy = TLI.getPointerTy(); 1639 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1640 JT.Reg, PTy); 1641 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1642 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1643 MVT::Other, Index.getValue(1), 1644 Table, Index); 1645 DAG.setRoot(BrJumpTable); 1646 } 1647 1648 /// visitJumpTableHeader - This function emits necessary code to produce index 1649 /// in the JumpTable from switch case. 1650 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1651 JumpTableHeader &JTH, 1652 MachineBasicBlock *SwitchBB) { 1653 // Subtract the lowest switch case value from the value being switched on and 1654 // conditional branch to default mbb if the result is greater than the 1655 // difference between smallest and largest cases. 1656 SDValue SwitchOp = getValue(JTH.SValue); 1657 EVT VT = SwitchOp.getValueType(); 1658 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1659 DAG.getConstant(JTH.First, VT)); 1660 1661 // The SDNode we just created, which holds the value being switched on minus 1662 // the smallest case value, needs to be copied to a virtual register so it 1663 // can be used as an index into the jump table in a subsequent basic block. 1664 // This value may be smaller or larger than the target's pointer type, and 1665 // therefore require extension or truncating. 1666 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1667 1668 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1669 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1670 JumpTableReg, SwitchOp); 1671 JT.Reg = JumpTableReg; 1672 1673 // Emit the range check for the jump table, and branch to the default block 1674 // for the switch statement if the value being switched on exceeds the largest 1675 // case in the switch. 1676 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1677 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1678 DAG.getConstant(JTH.Last-JTH.First,VT), 1679 ISD::SETUGT); 1680 1681 // Set NextBlock to be the MBB immediately after the current one, if any. 1682 // This is used to avoid emitting unnecessary branches to the next block. 1683 MachineBasicBlock *NextBlock = 0; 1684 MachineFunction::iterator BBI = SwitchBB; 1685 1686 if (++BBI != FuncInfo.MF->end()) 1687 NextBlock = BBI; 1688 1689 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1690 MVT::Other, CopyTo, CMP, 1691 DAG.getBasicBlock(JT.Default)); 1692 1693 if (JT.MBB != NextBlock) 1694 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1695 DAG.getBasicBlock(JT.MBB)); 1696 1697 DAG.setRoot(BrCond); 1698 } 1699 1700 /// visitBitTestHeader - This function emits necessary code to produce value 1701 /// suitable for "bit tests" 1702 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1703 MachineBasicBlock *SwitchBB) { 1704 // Subtract the minimum value 1705 SDValue SwitchOp = getValue(B.SValue); 1706 EVT VT = SwitchOp.getValueType(); 1707 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1708 DAG.getConstant(B.First, VT)); 1709 1710 // Check range 1711 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1712 TLI.getSetCCResultType(Sub.getValueType()), 1713 Sub, DAG.getConstant(B.Range, VT), 1714 ISD::SETUGT); 1715 1716 // Determine the type of the test operands. 1717 bool UsePtrType = false; 1718 if (!TLI.isTypeLegal(VT)) 1719 UsePtrType = true; 1720 else { 1721 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1722 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1723 // Switch table case range are encoded into series of masks. 1724 // Just use pointer type, it's guaranteed to fit. 1725 UsePtrType = true; 1726 break; 1727 } 1728 } 1729 if (UsePtrType) { 1730 VT = TLI.getPointerTy(); 1731 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1732 } 1733 1734 B.RegVT = VT; 1735 B.Reg = FuncInfo.CreateReg(VT); 1736 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1737 B.Reg, Sub); 1738 1739 // Set NextBlock to be the MBB immediately after the current one, if any. 1740 // This is used to avoid emitting unnecessary branches to the next block. 1741 MachineBasicBlock *NextBlock = 0; 1742 MachineFunction::iterator BBI = SwitchBB; 1743 if (++BBI != FuncInfo.MF->end()) 1744 NextBlock = BBI; 1745 1746 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1747 1748 addSuccessorWithWeight(SwitchBB, B.Default); 1749 addSuccessorWithWeight(SwitchBB, MBB); 1750 1751 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1752 MVT::Other, CopyTo, RangeCmp, 1753 DAG.getBasicBlock(B.Default)); 1754 1755 if (MBB != NextBlock) 1756 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1757 DAG.getBasicBlock(MBB)); 1758 1759 DAG.setRoot(BrRange); 1760 } 1761 1762 /// visitBitTestCase - this function produces one "bit test" 1763 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1764 MachineBasicBlock* NextMBB, 1765 unsigned Reg, 1766 BitTestCase &B, 1767 MachineBasicBlock *SwitchBB) { 1768 EVT VT = BB.RegVT; 1769 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1770 Reg, VT); 1771 SDValue Cmp; 1772 unsigned PopCount = CountPopulation_64(B.Mask); 1773 if (PopCount == 1) { 1774 // Testing for a single bit; just compare the shift count with what it 1775 // would need to be to shift a 1 bit in that position. 1776 Cmp = DAG.getSetCC(getCurDebugLoc(), 1777 TLI.getSetCCResultType(VT), 1778 ShiftOp, 1779 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1780 ISD::SETEQ); 1781 } else if (PopCount == BB.Range) { 1782 // There is only one zero bit in the range, test for it directly. 1783 Cmp = DAG.getSetCC(getCurDebugLoc(), 1784 TLI.getSetCCResultType(VT), 1785 ShiftOp, 1786 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1787 ISD::SETNE); 1788 } else { 1789 // Make desired shift 1790 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1791 DAG.getConstant(1, VT), ShiftOp); 1792 1793 // Emit bit tests and jumps 1794 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1795 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1796 Cmp = DAG.getSetCC(getCurDebugLoc(), 1797 TLI.getSetCCResultType(VT), 1798 AndOp, DAG.getConstant(0, VT), 1799 ISD::SETNE); 1800 } 1801 1802 addSuccessorWithWeight(SwitchBB, B.TargetBB); 1803 addSuccessorWithWeight(SwitchBB, NextMBB); 1804 1805 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1806 MVT::Other, getControlRoot(), 1807 Cmp, DAG.getBasicBlock(B.TargetBB)); 1808 1809 // Set NextBlock to be the MBB immediately after the current one, if any. 1810 // This is used to avoid emitting unnecessary branches to the next block. 1811 MachineBasicBlock *NextBlock = 0; 1812 MachineFunction::iterator BBI = SwitchBB; 1813 if (++BBI != FuncInfo.MF->end()) 1814 NextBlock = BBI; 1815 1816 if (NextMBB != NextBlock) 1817 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1818 DAG.getBasicBlock(NextMBB)); 1819 1820 DAG.setRoot(BrAnd); 1821 } 1822 1823 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1824 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1825 1826 // Retrieve successors. 1827 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1828 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1829 1830 const Value *Callee(I.getCalledValue()); 1831 if (isa<InlineAsm>(Callee)) 1832 visitInlineAsm(&I); 1833 else 1834 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1835 1836 // If the value of the invoke is used outside of its defining block, make it 1837 // available as a virtual register. 1838 CopyToExportRegsIfNeeded(&I); 1839 1840 // Update successor info 1841 addSuccessorWithWeight(InvokeMBB, Return); 1842 addSuccessorWithWeight(InvokeMBB, LandingPad); 1843 1844 // Drop into normal successor. 1845 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1846 MVT::Other, getControlRoot(), 1847 DAG.getBasicBlock(Return))); 1848 } 1849 1850 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1851 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1852 } 1853 1854 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1855 assert(FuncInfo.MBB->isLandingPad() && 1856 "Call to landingpad not in landing pad!"); 1857 1858 MachineBasicBlock *MBB = FuncInfo.MBB; 1859 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1860 AddLandingPadInfo(LP, MMI, MBB); 1861 1862 // If there aren't registers to copy the values into (e.g., during SjLj 1863 // exceptions), then don't bother to create these DAG nodes. 1864 if (TLI.getExceptionPointerRegister() == 0 && 1865 TLI.getExceptionSelectorRegister() == 0) 1866 return; 1867 1868 SmallVector<EVT, 2> ValueVTs; 1869 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 1870 1871 // Insert the EXCEPTIONADDR instruction. 1872 assert(FuncInfo.MBB->isLandingPad() && 1873 "Call to eh.exception not in landing pad!"); 1874 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1875 SDValue Ops[2]; 1876 Ops[0] = DAG.getRoot(); 1877 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1); 1878 SDValue Chain = Op1.getValue(1); 1879 1880 // Insert the EHSELECTION instruction. 1881 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1882 Ops[0] = Op1; 1883 Ops[1] = Chain; 1884 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2); 1885 Chain = Op2.getValue(1); 1886 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32); 1887 1888 Ops[0] = Op1; 1889 Ops[1] = Op2; 1890 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 1891 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1892 &Ops[0], 2); 1893 1894 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); 1895 setValue(&LP, RetPair.first); 1896 DAG.setRoot(RetPair.second); 1897 } 1898 1899 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1900 /// small case ranges). 1901 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1902 CaseRecVector& WorkList, 1903 const Value* SV, 1904 MachineBasicBlock *Default, 1905 MachineBasicBlock *SwitchBB) { 1906 Case& BackCase = *(CR.Range.second-1); 1907 1908 // Size is the number of Cases represented by this range. 1909 size_t Size = CR.Range.second - CR.Range.first; 1910 if (Size > 3) 1911 return false; 1912 1913 // Get the MachineFunction which holds the current MBB. This is used when 1914 // inserting any additional MBBs necessary to represent the switch. 1915 MachineFunction *CurMF = FuncInfo.MF; 1916 1917 // Figure out which block is immediately after the current one. 1918 MachineBasicBlock *NextBlock = 0; 1919 MachineFunction::iterator BBI = CR.CaseBB; 1920 1921 if (++BBI != FuncInfo.MF->end()) 1922 NextBlock = BBI; 1923 1924 // If any two of the cases has the same destination, and if one value 1925 // is the same as the other, but has one bit unset that the other has set, 1926 // use bit manipulation to do two compares at once. For example: 1927 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1928 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1929 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1930 if (Size == 2 && CR.CaseBB == SwitchBB) { 1931 Case &Small = *CR.Range.first; 1932 Case &Big = *(CR.Range.second-1); 1933 1934 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1935 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1936 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1937 1938 // Check that there is only one bit different. 1939 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1940 (SmallValue | BigValue) == BigValue) { 1941 // Isolate the common bit. 1942 APInt CommonBit = BigValue & ~SmallValue; 1943 assert((SmallValue | CommonBit) == BigValue && 1944 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1945 1946 SDValue CondLHS = getValue(SV); 1947 EVT VT = CondLHS.getValueType(); 1948 DebugLoc DL = getCurDebugLoc(); 1949 1950 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1951 DAG.getConstant(CommonBit, VT)); 1952 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1953 Or, DAG.getConstant(BigValue, VT), 1954 ISD::SETEQ); 1955 1956 // Update successor info. 1957 addSuccessorWithWeight(SwitchBB, Small.BB); 1958 addSuccessorWithWeight(SwitchBB, Default); 1959 1960 // Insert the true branch. 1961 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1962 getControlRoot(), Cond, 1963 DAG.getBasicBlock(Small.BB)); 1964 1965 // Insert the false branch. 1966 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1967 DAG.getBasicBlock(Default)); 1968 1969 DAG.setRoot(BrCond); 1970 return true; 1971 } 1972 } 1973 } 1974 1975 // Rearrange the case blocks so that the last one falls through if possible. 1976 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1977 // The last case block won't fall through into 'NextBlock' if we emit the 1978 // branches in this order. See if rearranging a case value would help. 1979 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1980 if (I->BB == NextBlock) { 1981 std::swap(*I, BackCase); 1982 break; 1983 } 1984 } 1985 } 1986 1987 // Create a CaseBlock record representing a conditional branch to 1988 // the Case's target mbb if the value being switched on SV is equal 1989 // to C. 1990 MachineBasicBlock *CurBlock = CR.CaseBB; 1991 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1992 MachineBasicBlock *FallThrough; 1993 if (I != E-1) { 1994 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1995 CurMF->insert(BBI, FallThrough); 1996 1997 // Put SV in a virtual register to make it available from the new blocks. 1998 ExportFromCurrentBlock(SV); 1999 } else { 2000 // If the last case doesn't match, go to the default block. 2001 FallThrough = Default; 2002 } 2003 2004 const Value *RHS, *LHS, *MHS; 2005 ISD::CondCode CC; 2006 if (I->High == I->Low) { 2007 // This is just small small case range :) containing exactly 1 case 2008 CC = ISD::SETEQ; 2009 LHS = SV; RHS = I->High; MHS = NULL; 2010 } else { 2011 CC = ISD::SETCC_INVALID; 2012 LHS = I->Low; MHS = SV; RHS = I->High; 2013 } 2014 2015 uint32_t ExtraWeight = I->ExtraWeight; 2016 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2017 /* me */ CurBlock, 2018 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2); 2019 2020 // If emitting the first comparison, just call visitSwitchCase to emit the 2021 // code into the current block. Otherwise, push the CaseBlock onto the 2022 // vector to be later processed by SDISel, and insert the node's MBB 2023 // before the next MBB. 2024 if (CurBlock == SwitchBB) 2025 visitSwitchCase(CB, SwitchBB); 2026 else 2027 SwitchCases.push_back(CB); 2028 2029 CurBlock = FallThrough; 2030 } 2031 2032 return true; 2033 } 2034 2035 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2036 return !TLI.getTargetMachine().Options.DisableJumpTables && 2037 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2038 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2039 } 2040 2041 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2042 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2043 APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth); 2044 return (LastExt - FirstExt + 1ULL); 2045 } 2046 2047 /// handleJTSwitchCase - Emit jumptable for current switch case range 2048 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2049 CaseRecVector &WorkList, 2050 const Value *SV, 2051 MachineBasicBlock *Default, 2052 MachineBasicBlock *SwitchBB) { 2053 Case& FrontCase = *CR.Range.first; 2054 Case& BackCase = *(CR.Range.second-1); 2055 2056 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2057 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2058 2059 APInt TSize(First.getBitWidth(), 0); 2060 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2061 TSize += I->size(); 2062 2063 if (!areJTsAllowed(TLI) || TSize.ult(4)) 2064 return false; 2065 2066 APInt Range = ComputeRange(First, Last); 2067 // The density is TSize / Range. Require at least 40%. 2068 // It should not be possible for IntTSize to saturate for sane code, but make 2069 // sure we handle Range saturation correctly. 2070 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2071 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2072 if (IntTSize * 10 < IntRange * 4) 2073 return false; 2074 2075 DEBUG(dbgs() << "Lowering jump table\n" 2076 << "First entry: " << First << ". Last entry: " << Last << '\n' 2077 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2078 2079 // Get the MachineFunction which holds the current MBB. This is used when 2080 // inserting any additional MBBs necessary to represent the switch. 2081 MachineFunction *CurMF = FuncInfo.MF; 2082 2083 // Figure out which block is immediately after the current one. 2084 MachineFunction::iterator BBI = CR.CaseBB; 2085 ++BBI; 2086 2087 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2088 2089 // Create a new basic block to hold the code for loading the address 2090 // of the jump table, and jumping to it. Update successor information; 2091 // we will either branch to the default case for the switch, or the jump 2092 // table. 2093 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2094 CurMF->insert(BBI, JumpTableBB); 2095 2096 addSuccessorWithWeight(CR.CaseBB, Default); 2097 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2098 2099 // Build a vector of destination BBs, corresponding to each target 2100 // of the jump table. If the value of the jump table slot corresponds to 2101 // a case statement, push the case's BB onto the vector, otherwise, push 2102 // the default BB. 2103 std::vector<MachineBasicBlock*> DestBBs; 2104 APInt TEI = First; 2105 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2106 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2107 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2108 2109 if (Low.ule(TEI) && TEI.ule(High)) { 2110 DestBBs.push_back(I->BB); 2111 if (TEI==High) 2112 ++I; 2113 } else { 2114 DestBBs.push_back(Default); 2115 } 2116 } 2117 2118 // Update successor info. Add one edge to each unique successor. 2119 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2120 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2121 E = DestBBs.end(); I != E; ++I) { 2122 if (!SuccsHandled[(*I)->getNumber()]) { 2123 SuccsHandled[(*I)->getNumber()] = true; 2124 addSuccessorWithWeight(JumpTableBB, *I); 2125 } 2126 } 2127 2128 // Create a jump table index for this jump table. 2129 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2130 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2131 ->createJumpTableIndex(DestBBs); 2132 2133 // Set the jump table information so that we can codegen it as a second 2134 // MachineBasicBlock 2135 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2136 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2137 if (CR.CaseBB == SwitchBB) 2138 visitJumpTableHeader(JT, JTH, SwitchBB); 2139 2140 JTCases.push_back(JumpTableBlock(JTH, JT)); 2141 return true; 2142 } 2143 2144 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2145 /// 2 subtrees. 2146 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2147 CaseRecVector& WorkList, 2148 const Value* SV, 2149 MachineBasicBlock *Default, 2150 MachineBasicBlock *SwitchBB) { 2151 // Get the MachineFunction which holds the current MBB. This is used when 2152 // inserting any additional MBBs necessary to represent the switch. 2153 MachineFunction *CurMF = FuncInfo.MF; 2154 2155 // Figure out which block is immediately after the current one. 2156 MachineFunction::iterator BBI = CR.CaseBB; 2157 ++BBI; 2158 2159 Case& FrontCase = *CR.Range.first; 2160 Case& BackCase = *(CR.Range.second-1); 2161 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2162 2163 // Size is the number of Cases represented by this range. 2164 unsigned Size = CR.Range.second - CR.Range.first; 2165 2166 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2167 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2168 double FMetric = 0; 2169 CaseItr Pivot = CR.Range.first + Size/2; 2170 2171 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2172 // (heuristically) allow us to emit JumpTable's later. 2173 APInt TSize(First.getBitWidth(), 0); 2174 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2175 I!=E; ++I) 2176 TSize += I->size(); 2177 2178 APInt LSize = FrontCase.size(); 2179 APInt RSize = TSize-LSize; 2180 DEBUG(dbgs() << "Selecting best pivot: \n" 2181 << "First: " << First << ", Last: " << Last <<'\n' 2182 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2183 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2184 J!=E; ++I, ++J) { 2185 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2186 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2187 APInt Range = ComputeRange(LEnd, RBegin); 2188 assert((Range - 2ULL).isNonNegative() && 2189 "Invalid case distance"); 2190 // Use volatile double here to avoid excess precision issues on some hosts, 2191 // e.g. that use 80-bit X87 registers. 2192 volatile double LDensity = 2193 (double)LSize.roundToDouble() / 2194 (LEnd - First + 1ULL).roundToDouble(); 2195 volatile double RDensity = 2196 (double)RSize.roundToDouble() / 2197 (Last - RBegin + 1ULL).roundToDouble(); 2198 double Metric = Range.logBase2()*(LDensity+RDensity); 2199 // Should always split in some non-trivial place 2200 DEBUG(dbgs() <<"=>Step\n" 2201 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2202 << "LDensity: " << LDensity 2203 << ", RDensity: " << RDensity << '\n' 2204 << "Metric: " << Metric << '\n'); 2205 if (FMetric < Metric) { 2206 Pivot = J; 2207 FMetric = Metric; 2208 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2209 } 2210 2211 LSize += J->size(); 2212 RSize -= J->size(); 2213 } 2214 if (areJTsAllowed(TLI)) { 2215 // If our case is dense we *really* should handle it earlier! 2216 assert((FMetric > 0) && "Should handle dense range earlier!"); 2217 } else { 2218 Pivot = CR.Range.first + Size/2; 2219 } 2220 2221 CaseRange LHSR(CR.Range.first, Pivot); 2222 CaseRange RHSR(Pivot, CR.Range.second); 2223 const Constant *C = Pivot->Low; 2224 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2225 2226 // We know that we branch to the LHS if the Value being switched on is 2227 // less than the Pivot value, C. We use this to optimize our binary 2228 // tree a bit, by recognizing that if SV is greater than or equal to the 2229 // LHS's Case Value, and that Case Value is exactly one less than the 2230 // Pivot's Value, then we can branch directly to the LHS's Target, 2231 // rather than creating a leaf node for it. 2232 if ((LHSR.second - LHSR.first) == 1 && 2233 LHSR.first->High == CR.GE && 2234 cast<ConstantInt>(C)->getValue() == 2235 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2236 TrueBB = LHSR.first->BB; 2237 } else { 2238 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2239 CurMF->insert(BBI, TrueBB); 2240 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2241 2242 // Put SV in a virtual register to make it available from the new blocks. 2243 ExportFromCurrentBlock(SV); 2244 } 2245 2246 // Similar to the optimization above, if the Value being switched on is 2247 // known to be less than the Constant CR.LT, and the current Case Value 2248 // is CR.LT - 1, then we can branch directly to the target block for 2249 // the current Case Value, rather than emitting a RHS leaf node for it. 2250 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2251 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2252 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2253 FalseBB = RHSR.first->BB; 2254 } else { 2255 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2256 CurMF->insert(BBI, FalseBB); 2257 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2258 2259 // Put SV in a virtual register to make it available from the new blocks. 2260 ExportFromCurrentBlock(SV); 2261 } 2262 2263 // Create a CaseBlock record representing a conditional branch to 2264 // the LHS node if the value being switched on SV is less than C. 2265 // Otherwise, branch to LHS. 2266 CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2267 2268 if (CR.CaseBB == SwitchBB) 2269 visitSwitchCase(CB, SwitchBB); 2270 else 2271 SwitchCases.push_back(CB); 2272 2273 return true; 2274 } 2275 2276 /// handleBitTestsSwitchCase - if current case range has few destination and 2277 /// range span less, than machine word bitwidth, encode case range into series 2278 /// of masks and emit bit tests with these masks. 2279 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2280 CaseRecVector& WorkList, 2281 const Value* SV, 2282 MachineBasicBlock* Default, 2283 MachineBasicBlock *SwitchBB){ 2284 EVT PTy = TLI.getPointerTy(); 2285 unsigned IntPtrBits = PTy.getSizeInBits(); 2286 2287 Case& FrontCase = *CR.Range.first; 2288 Case& BackCase = *(CR.Range.second-1); 2289 2290 // Get the MachineFunction which holds the current MBB. This is used when 2291 // inserting any additional MBBs necessary to represent the switch. 2292 MachineFunction *CurMF = FuncInfo.MF; 2293 2294 // If target does not have legal shift left, do not emit bit tests at all. 2295 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2296 return false; 2297 2298 size_t numCmps = 0; 2299 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2300 I!=E; ++I) { 2301 // Single case counts one, case range - two. 2302 numCmps += (I->Low == I->High ? 1 : 2); 2303 } 2304 2305 // Count unique destinations 2306 SmallSet<MachineBasicBlock*, 4> Dests; 2307 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2308 Dests.insert(I->BB); 2309 if (Dests.size() > 3) 2310 // Don't bother the code below, if there are too much unique destinations 2311 return false; 2312 } 2313 DEBUG(dbgs() << "Total number of unique destinations: " 2314 << Dests.size() << '\n' 2315 << "Total number of comparisons: " << numCmps << '\n'); 2316 2317 // Compute span of values. 2318 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2319 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2320 APInt cmpRange = maxValue - minValue; 2321 2322 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2323 << "Low bound: " << minValue << '\n' 2324 << "High bound: " << maxValue << '\n'); 2325 2326 if (cmpRange.uge(IntPtrBits) || 2327 (!(Dests.size() == 1 && numCmps >= 3) && 2328 !(Dests.size() == 2 && numCmps >= 5) && 2329 !(Dests.size() >= 3 && numCmps >= 6))) 2330 return false; 2331 2332 DEBUG(dbgs() << "Emitting bit tests\n"); 2333 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2334 2335 // Optimize the case where all the case values fit in a 2336 // word without having to subtract minValue. In this case, 2337 // we can optimize away the subtraction. 2338 if (maxValue.ult(IntPtrBits)) { 2339 cmpRange = maxValue; 2340 } else { 2341 lowBound = minValue; 2342 } 2343 2344 CaseBitsVector CasesBits; 2345 unsigned i, count = 0; 2346 2347 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2348 MachineBasicBlock* Dest = I->BB; 2349 for (i = 0; i < count; ++i) 2350 if (Dest == CasesBits[i].BB) 2351 break; 2352 2353 if (i == count) { 2354 assert((count < 3) && "Too much destinations to test!"); 2355 CasesBits.push_back(CaseBits(0, Dest, 0)); 2356 count++; 2357 } 2358 2359 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2360 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2361 2362 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2363 uint64_t hi = (highValue - lowBound).getZExtValue(); 2364 2365 for (uint64_t j = lo; j <= hi; j++) { 2366 CasesBits[i].Mask |= 1ULL << j; 2367 CasesBits[i].Bits++; 2368 } 2369 2370 } 2371 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2372 2373 BitTestInfo BTC; 2374 2375 // Figure out which block is immediately after the current one. 2376 MachineFunction::iterator BBI = CR.CaseBB; 2377 ++BBI; 2378 2379 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2380 2381 DEBUG(dbgs() << "Cases:\n"); 2382 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2383 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2384 << ", Bits: " << CasesBits[i].Bits 2385 << ", BB: " << CasesBits[i].BB << '\n'); 2386 2387 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2388 CurMF->insert(BBI, CaseBB); 2389 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2390 CaseBB, 2391 CasesBits[i].BB)); 2392 2393 // Put SV in a virtual register to make it available from the new blocks. 2394 ExportFromCurrentBlock(SV); 2395 } 2396 2397 BitTestBlock BTB(lowBound, cmpRange, SV, 2398 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2399 CR.CaseBB, Default, BTC); 2400 2401 if (CR.CaseBB == SwitchBB) 2402 visitBitTestHeader(BTB, SwitchBB); 2403 2404 BitTestCases.push_back(BTB); 2405 2406 return true; 2407 } 2408 2409 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2410 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2411 const SwitchInst& SI) { 2412 2413 /// Use a shorter form of declaration, and also 2414 /// show the we want to use CRSBuilder as Clusterifier. 2415 typedef CRSBuilderBase<MachineBasicBlock, true> Clusterifier; 2416 2417 Clusterifier TheClusterifier; 2418 2419 // Start with "simple" cases 2420 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2421 i != e; ++i) { 2422 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2423 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2424 2425 TheClusterifier.add(i.getCaseValueEx(), SMBB); 2426 } 2427 2428 TheClusterifier.optimize(); 2429 2430 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2431 size_t numCmps = 0; 2432 for (Clusterifier::RangeIterator i = TheClusterifier.begin(), 2433 e = TheClusterifier.end(); i != e; ++i, ++numCmps) { 2434 Clusterifier::Cluster &C = *i; 2435 unsigned W = 0; 2436 if (BPI) { 2437 W = BPI->getEdgeWeight(SI.getParent(), C.second->getBasicBlock()); 2438 if (!W) 2439 W = 16; 2440 W *= C.first.Weight; 2441 BPI->setEdgeWeight(SI.getParent(), C.second->getBasicBlock(), W); 2442 } 2443 2444 Cases.push_back(Case(C.first.Low, C.first.High, C.second, W)); 2445 2446 if (C.first.Low != C.first.High) 2447 // A range counts double, since it requires two compares. 2448 ++numCmps; 2449 } 2450 2451 return numCmps; 2452 } 2453 2454 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2455 MachineBasicBlock *Last) { 2456 // Update JTCases. 2457 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2458 if (JTCases[i].first.HeaderBB == First) 2459 JTCases[i].first.HeaderBB = Last; 2460 2461 // Update BitTestCases. 2462 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2463 if (BitTestCases[i].Parent == First) 2464 BitTestCases[i].Parent = Last; 2465 } 2466 2467 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2468 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2469 2470 // Figure out which block is immediately after the current one. 2471 MachineBasicBlock *NextBlock = 0; 2472 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2473 2474 // If there is only the default destination, branch to it if it is not the 2475 // next basic block. Otherwise, just fall through. 2476 if (!SI.getNumCases()) { 2477 // Update machine-CFG edges. 2478 2479 // If this is not a fall-through branch, emit the branch. 2480 SwitchMBB->addSuccessor(Default); 2481 if (Default != NextBlock) 2482 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2483 MVT::Other, getControlRoot(), 2484 DAG.getBasicBlock(Default))); 2485 2486 return; 2487 } 2488 2489 // If there are any non-default case statements, create a vector of Cases 2490 // representing each one, and sort the vector so that we can efficiently 2491 // create a binary search tree from them. 2492 CaseVector Cases; 2493 size_t numCmps = Clusterify(Cases, SI); 2494 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2495 << ". Total compares: " << numCmps << '\n'); 2496 (void)numCmps; 2497 2498 // Get the Value to be switched on and default basic blocks, which will be 2499 // inserted into CaseBlock records, representing basic blocks in the binary 2500 // search tree. 2501 const Value *SV = SI.getCondition(); 2502 2503 // Push the initial CaseRec onto the worklist 2504 CaseRecVector WorkList; 2505 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2506 CaseRange(Cases.begin(),Cases.end()))); 2507 2508 while (!WorkList.empty()) { 2509 // Grab a record representing a case range to process off the worklist 2510 CaseRec CR = WorkList.back(); 2511 WorkList.pop_back(); 2512 2513 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2514 continue; 2515 2516 // If the range has few cases (two or less) emit a series of specific 2517 // tests. 2518 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2519 continue; 2520 2521 // If the switch has more than 5 blocks, and at least 40% dense, and the 2522 // target supports indirect branches, then emit a jump table rather than 2523 // lowering the switch to a binary tree of conditional branches. 2524 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2525 continue; 2526 2527 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2528 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2529 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2530 } 2531 } 2532 2533 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2534 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2535 2536 // Update machine-CFG edges with unique successors. 2537 SmallVector<BasicBlock*, 32> succs; 2538 succs.reserve(I.getNumSuccessors()); 2539 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2540 succs.push_back(I.getSuccessor(i)); 2541 array_pod_sort(succs.begin(), succs.end()); 2542 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2543 for (unsigned i = 0, e = succs.size(); i != e; ++i) { 2544 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]]; 2545 addSuccessorWithWeight(IndirectBrMBB, Succ); 2546 } 2547 2548 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2549 MVT::Other, getControlRoot(), 2550 getValue(I.getAddress()))); 2551 } 2552 2553 void SelectionDAGBuilder::visitFSub(const User &I) { 2554 // -0.0 - X --> fneg 2555 Type *Ty = I.getType(); 2556 if (isa<Constant>(I.getOperand(0)) && 2557 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2558 SDValue Op2 = getValue(I.getOperand(1)); 2559 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2560 Op2.getValueType(), Op2)); 2561 return; 2562 } 2563 2564 visitBinary(I, ISD::FSUB); 2565 } 2566 2567 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2568 SDValue Op1 = getValue(I.getOperand(0)); 2569 SDValue Op2 = getValue(I.getOperand(1)); 2570 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2571 Op1.getValueType(), Op1, Op2)); 2572 } 2573 2574 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2575 SDValue Op1 = getValue(I.getOperand(0)); 2576 SDValue Op2 = getValue(I.getOperand(1)); 2577 2578 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2579 2580 // Coerce the shift amount to the right type if we can. 2581 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2582 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2583 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2584 DebugLoc DL = getCurDebugLoc(); 2585 2586 // If the operand is smaller than the shift count type, promote it. 2587 if (ShiftSize > Op2Size) 2588 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2589 2590 // If the operand is larger than the shift count type but the shift 2591 // count type has enough bits to represent any shift value, truncate 2592 // it now. This is a common case and it exposes the truncate to 2593 // optimization early. 2594 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2595 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2596 // Otherwise we'll need to temporarily settle for some other convenient 2597 // type. Type legalization will make adjustments once the shiftee is split. 2598 else 2599 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2600 } 2601 2602 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2603 Op1.getValueType(), Op1, Op2)); 2604 } 2605 2606 void SelectionDAGBuilder::visitSDiv(const User &I) { 2607 SDValue Op1 = getValue(I.getOperand(0)); 2608 SDValue Op2 = getValue(I.getOperand(1)); 2609 2610 // Turn exact SDivs into multiplications. 2611 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2612 // exact bit. 2613 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2614 !isa<ConstantSDNode>(Op1) && 2615 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2616 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2617 else 2618 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2619 Op1, Op2)); 2620 } 2621 2622 void SelectionDAGBuilder::visitICmp(const User &I) { 2623 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2624 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2625 predicate = IC->getPredicate(); 2626 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2627 predicate = ICmpInst::Predicate(IC->getPredicate()); 2628 SDValue Op1 = getValue(I.getOperand(0)); 2629 SDValue Op2 = getValue(I.getOperand(1)); 2630 ISD::CondCode Opcode = getICmpCondCode(predicate); 2631 2632 EVT DestVT = TLI.getValueType(I.getType()); 2633 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2634 } 2635 2636 void SelectionDAGBuilder::visitFCmp(const User &I) { 2637 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2638 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2639 predicate = FC->getPredicate(); 2640 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2641 predicate = FCmpInst::Predicate(FC->getPredicate()); 2642 SDValue Op1 = getValue(I.getOperand(0)); 2643 SDValue Op2 = getValue(I.getOperand(1)); 2644 ISD::CondCode Condition = getFCmpCondCode(predicate); 2645 if (TM.Options.NoNaNsFPMath) 2646 Condition = getFCmpCodeWithoutNaN(Condition); 2647 EVT DestVT = TLI.getValueType(I.getType()); 2648 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2649 } 2650 2651 void SelectionDAGBuilder::visitSelect(const User &I) { 2652 SmallVector<EVT, 4> ValueVTs; 2653 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2654 unsigned NumValues = ValueVTs.size(); 2655 if (NumValues == 0) return; 2656 2657 SmallVector<SDValue, 4> Values(NumValues); 2658 SDValue Cond = getValue(I.getOperand(0)); 2659 SDValue TrueVal = getValue(I.getOperand(1)); 2660 SDValue FalseVal = getValue(I.getOperand(2)); 2661 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2662 ISD::VSELECT : ISD::SELECT; 2663 2664 for (unsigned i = 0; i != NumValues; ++i) 2665 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(), 2666 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2667 Cond, 2668 SDValue(TrueVal.getNode(), 2669 TrueVal.getResNo() + i), 2670 SDValue(FalseVal.getNode(), 2671 FalseVal.getResNo() + i)); 2672 2673 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2674 DAG.getVTList(&ValueVTs[0], NumValues), 2675 &Values[0], NumValues)); 2676 } 2677 2678 void SelectionDAGBuilder::visitTrunc(const User &I) { 2679 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2680 SDValue N = getValue(I.getOperand(0)); 2681 EVT DestVT = TLI.getValueType(I.getType()); 2682 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2683 } 2684 2685 void SelectionDAGBuilder::visitZExt(const User &I) { 2686 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2687 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2688 SDValue N = getValue(I.getOperand(0)); 2689 EVT DestVT = TLI.getValueType(I.getType()); 2690 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2691 } 2692 2693 void SelectionDAGBuilder::visitSExt(const User &I) { 2694 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2695 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2696 SDValue N = getValue(I.getOperand(0)); 2697 EVT DestVT = TLI.getValueType(I.getType()); 2698 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2699 } 2700 2701 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2702 // FPTrunc is never a no-op cast, no need to check 2703 SDValue N = getValue(I.getOperand(0)); 2704 EVT DestVT = TLI.getValueType(I.getType()); 2705 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2706 DestVT, N, 2707 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2708 } 2709 2710 void SelectionDAGBuilder::visitFPExt(const User &I){ 2711 // FPExt is never a no-op cast, no need to check 2712 SDValue N = getValue(I.getOperand(0)); 2713 EVT DestVT = TLI.getValueType(I.getType()); 2714 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2715 } 2716 2717 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2718 // FPToUI is never a no-op cast, no need to check 2719 SDValue N = getValue(I.getOperand(0)); 2720 EVT DestVT = TLI.getValueType(I.getType()); 2721 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2722 } 2723 2724 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2725 // FPToSI is never a no-op cast, no need to check 2726 SDValue N = getValue(I.getOperand(0)); 2727 EVT DestVT = TLI.getValueType(I.getType()); 2728 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2729 } 2730 2731 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2732 // UIToFP is never a no-op cast, no need to check 2733 SDValue N = getValue(I.getOperand(0)); 2734 EVT DestVT = TLI.getValueType(I.getType()); 2735 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2736 } 2737 2738 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2739 // SIToFP is never a no-op cast, no need to check 2740 SDValue N = getValue(I.getOperand(0)); 2741 EVT DestVT = TLI.getValueType(I.getType()); 2742 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2743 } 2744 2745 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2746 // What to do depends on the size of the integer and the size of the pointer. 2747 // We can either truncate, zero extend, or no-op, accordingly. 2748 SDValue N = getValue(I.getOperand(0)); 2749 EVT DestVT = TLI.getValueType(I.getType()); 2750 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2751 } 2752 2753 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2754 // What to do depends on the size of the integer and the size of the pointer. 2755 // We can either truncate, zero extend, or no-op, accordingly. 2756 SDValue N = getValue(I.getOperand(0)); 2757 EVT DestVT = TLI.getValueType(I.getType()); 2758 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2759 } 2760 2761 void SelectionDAGBuilder::visitBitCast(const User &I) { 2762 SDValue N = getValue(I.getOperand(0)); 2763 EVT DestVT = TLI.getValueType(I.getType()); 2764 2765 // BitCast assures us that source and destination are the same size so this is 2766 // either a BITCAST or a no-op. 2767 if (DestVT != N.getValueType()) 2768 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2769 DestVT, N)); // convert types. 2770 else 2771 setValue(&I, N); // noop cast. 2772 } 2773 2774 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2775 SDValue InVec = getValue(I.getOperand(0)); 2776 SDValue InVal = getValue(I.getOperand(1)); 2777 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2778 TLI.getPointerTy(), 2779 getValue(I.getOperand(2))); 2780 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2781 TLI.getValueType(I.getType()), 2782 InVec, InVal, InIdx)); 2783 } 2784 2785 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2786 SDValue InVec = getValue(I.getOperand(0)); 2787 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2788 TLI.getPointerTy(), 2789 getValue(I.getOperand(1))); 2790 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2791 TLI.getValueType(I.getType()), InVec, InIdx)); 2792 } 2793 2794 // Utility for visitShuffleVector - Return true if every element in Mask, 2795 // begining from position Pos and ending in Pos+Size, falls within the 2796 // specified sequential range [L, L+Pos). or is undef. 2797 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2798 unsigned Pos, unsigned Size, int Low) { 2799 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2800 if (Mask[i] >= 0 && Mask[i] != Low) 2801 return false; 2802 return true; 2803 } 2804 2805 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2806 SDValue Src1 = getValue(I.getOperand(0)); 2807 SDValue Src2 = getValue(I.getOperand(1)); 2808 2809 SmallVector<int, 8> Mask; 2810 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2811 unsigned MaskNumElts = Mask.size(); 2812 2813 EVT VT = TLI.getValueType(I.getType()); 2814 EVT SrcVT = Src1.getValueType(); 2815 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2816 2817 if (SrcNumElts == MaskNumElts) { 2818 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2819 &Mask[0])); 2820 return; 2821 } 2822 2823 // Normalize the shuffle vector since mask and vector length don't match. 2824 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2825 // Mask is longer than the source vectors and is a multiple of the source 2826 // vectors. We can use concatenate vector to make the mask and vectors 2827 // lengths match. 2828 if (SrcNumElts*2 == MaskNumElts) { 2829 // First check for Src1 in low and Src2 in high 2830 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2831 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2832 // The shuffle is concatenating two vectors together. 2833 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2834 VT, Src1, Src2)); 2835 return; 2836 } 2837 // Then check for Src2 in low and Src1 in high 2838 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2839 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2840 // The shuffle is concatenating two vectors together. 2841 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2842 VT, Src2, Src1)); 2843 return; 2844 } 2845 } 2846 2847 // Pad both vectors with undefs to make them the same length as the mask. 2848 unsigned NumConcat = MaskNumElts / SrcNumElts; 2849 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2850 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2851 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2852 2853 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2854 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2855 MOps1[0] = Src1; 2856 MOps2[0] = Src2; 2857 2858 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2859 getCurDebugLoc(), VT, 2860 &MOps1[0], NumConcat); 2861 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2862 getCurDebugLoc(), VT, 2863 &MOps2[0], NumConcat); 2864 2865 // Readjust mask for new input vector length. 2866 SmallVector<int, 8> MappedOps; 2867 for (unsigned i = 0; i != MaskNumElts; ++i) { 2868 int Idx = Mask[i]; 2869 if (Idx >= (int)SrcNumElts) 2870 Idx -= SrcNumElts - MaskNumElts; 2871 MappedOps.push_back(Idx); 2872 } 2873 2874 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2875 &MappedOps[0])); 2876 return; 2877 } 2878 2879 if (SrcNumElts > MaskNumElts) { 2880 // Analyze the access pattern of the vector to see if we can extract 2881 // two subvectors and do the shuffle. The analysis is done by calculating 2882 // the range of elements the mask access on both vectors. 2883 int MinRange[2] = { static_cast<int>(SrcNumElts), 2884 static_cast<int>(SrcNumElts)}; 2885 int MaxRange[2] = {-1, -1}; 2886 2887 for (unsigned i = 0; i != MaskNumElts; ++i) { 2888 int Idx = Mask[i]; 2889 unsigned Input = 0; 2890 if (Idx < 0) 2891 continue; 2892 2893 if (Idx >= (int)SrcNumElts) { 2894 Input = 1; 2895 Idx -= SrcNumElts; 2896 } 2897 if (Idx > MaxRange[Input]) 2898 MaxRange[Input] = Idx; 2899 if (Idx < MinRange[Input]) 2900 MinRange[Input] = Idx; 2901 } 2902 2903 // Check if the access is smaller than the vector size and can we find 2904 // a reasonable extract index. 2905 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2906 // Extract. 2907 int StartIdx[2]; // StartIdx to extract from 2908 for (unsigned Input = 0; Input < 2; ++Input) { 2909 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2910 RangeUse[Input] = 0; // Unused 2911 StartIdx[Input] = 0; 2912 continue; 2913 } 2914 2915 // Find a good start index that is a multiple of the mask length. Then 2916 // see if the rest of the elements are in range. 2917 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2918 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2919 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2920 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2921 } 2922 2923 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2924 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2925 return; 2926 } 2927 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2928 // Extract appropriate subvector and generate a vector shuffle 2929 for (unsigned Input = 0; Input < 2; ++Input) { 2930 SDValue &Src = Input == 0 ? Src1 : Src2; 2931 if (RangeUse[Input] == 0) 2932 Src = DAG.getUNDEF(VT); 2933 else 2934 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2935 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2936 } 2937 2938 // Calculate new mask. 2939 SmallVector<int, 8> MappedOps; 2940 for (unsigned i = 0; i != MaskNumElts; ++i) { 2941 int Idx = Mask[i]; 2942 if (Idx >= 0) { 2943 if (Idx < (int)SrcNumElts) 2944 Idx -= StartIdx[0]; 2945 else 2946 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2947 } 2948 MappedOps.push_back(Idx); 2949 } 2950 2951 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2952 &MappedOps[0])); 2953 return; 2954 } 2955 } 2956 2957 // We can't use either concat vectors or extract subvectors so fall back to 2958 // replacing the shuffle with extract and build vector. 2959 // to insert and build vector. 2960 EVT EltVT = VT.getVectorElementType(); 2961 EVT PtrVT = TLI.getPointerTy(); 2962 SmallVector<SDValue,8> Ops; 2963 for (unsigned i = 0; i != MaskNumElts; ++i) { 2964 int Idx = Mask[i]; 2965 SDValue Res; 2966 2967 if (Idx < 0) { 2968 Res = DAG.getUNDEF(EltVT); 2969 } else { 2970 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2971 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2972 2973 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2974 EltVT, Src, DAG.getConstant(Idx, PtrVT)); 2975 } 2976 2977 Ops.push_back(Res); 2978 } 2979 2980 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2981 VT, &Ops[0], Ops.size())); 2982 } 2983 2984 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2985 const Value *Op0 = I.getOperand(0); 2986 const Value *Op1 = I.getOperand(1); 2987 Type *AggTy = I.getType(); 2988 Type *ValTy = Op1->getType(); 2989 bool IntoUndef = isa<UndefValue>(Op0); 2990 bool FromUndef = isa<UndefValue>(Op1); 2991 2992 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2993 2994 SmallVector<EVT, 4> AggValueVTs; 2995 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2996 SmallVector<EVT, 4> ValValueVTs; 2997 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2998 2999 unsigned NumAggValues = AggValueVTs.size(); 3000 unsigned NumValValues = ValValueVTs.size(); 3001 SmallVector<SDValue, 4> Values(NumAggValues); 3002 3003 SDValue Agg = getValue(Op0); 3004 unsigned i = 0; 3005 // Copy the beginning value(s) from the original aggregate. 3006 for (; i != LinearIndex; ++i) 3007 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3008 SDValue(Agg.getNode(), Agg.getResNo() + i); 3009 // Copy values from the inserted value(s). 3010 if (NumValValues) { 3011 SDValue Val = getValue(Op1); 3012 for (; i != LinearIndex + NumValValues; ++i) 3013 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3014 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3015 } 3016 // Copy remaining value(s) from the original aggregate. 3017 for (; i != NumAggValues; ++i) 3018 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3019 SDValue(Agg.getNode(), Agg.getResNo() + i); 3020 3021 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3022 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3023 &Values[0], NumAggValues)); 3024 } 3025 3026 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3027 const Value *Op0 = I.getOperand(0); 3028 Type *AggTy = Op0->getType(); 3029 Type *ValTy = I.getType(); 3030 bool OutOfUndef = isa<UndefValue>(Op0); 3031 3032 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3033 3034 SmallVector<EVT, 4> ValValueVTs; 3035 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3036 3037 unsigned NumValValues = ValValueVTs.size(); 3038 3039 // Ignore a extractvalue that produces an empty object 3040 if (!NumValValues) { 3041 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3042 return; 3043 } 3044 3045 SmallVector<SDValue, 4> Values(NumValValues); 3046 3047 SDValue Agg = getValue(Op0); 3048 // Copy out the selected value(s). 3049 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3050 Values[i - LinearIndex] = 3051 OutOfUndef ? 3052 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3053 SDValue(Agg.getNode(), Agg.getResNo() + i); 3054 3055 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3056 DAG.getVTList(&ValValueVTs[0], NumValValues), 3057 &Values[0], NumValValues)); 3058 } 3059 3060 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3061 SDValue N = getValue(I.getOperand(0)); 3062 // Note that the pointer operand may be a vector of pointers. Take the scalar 3063 // element which holds a pointer. 3064 Type *Ty = I.getOperand(0)->getType()->getScalarType(); 3065 3066 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3067 OI != E; ++OI) { 3068 const Value *Idx = *OI; 3069 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3070 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 3071 if (Field) { 3072 // N = N + Offset 3073 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3074 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3075 DAG.getIntPtrConstant(Offset)); 3076 } 3077 3078 Ty = StTy->getElementType(Field); 3079 } else { 3080 Ty = cast<SequentialType>(Ty)->getElementType(); 3081 3082 // If this is a constant subscript, handle it quickly. 3083 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3084 if (CI->isZero()) continue; 3085 uint64_t Offs = 3086 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3087 SDValue OffsVal; 3088 EVT PTy = TLI.getPointerTy(); 3089 unsigned PtrBits = PTy.getSizeInBits(); 3090 if (PtrBits < 64) 3091 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 3092 TLI.getPointerTy(), 3093 DAG.getConstant(Offs, MVT::i64)); 3094 else 3095 OffsVal = DAG.getIntPtrConstant(Offs); 3096 3097 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3098 OffsVal); 3099 continue; 3100 } 3101 3102 // N = N + Idx * ElementSize; 3103 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3104 TD->getTypeAllocSize(Ty)); 3105 SDValue IdxN = getValue(Idx); 3106 3107 // If the index is smaller or larger than intptr_t, truncate or extend 3108 // it. 3109 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3110 3111 // If this is a multiply by a power of two, turn it into a shl 3112 // immediately. This is a very common case. 3113 if (ElementSize != 1) { 3114 if (ElementSize.isPowerOf2()) { 3115 unsigned Amt = ElementSize.logBase2(); 3116 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3117 N.getValueType(), IdxN, 3118 DAG.getConstant(Amt, IdxN.getValueType())); 3119 } else { 3120 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 3121 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3122 N.getValueType(), IdxN, Scale); 3123 } 3124 } 3125 3126 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3127 N.getValueType(), N, IdxN); 3128 } 3129 } 3130 3131 setValue(&I, N); 3132 } 3133 3134 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3135 // If this is a fixed sized alloca in the entry block of the function, 3136 // allocate it statically on the stack. 3137 if (FuncInfo.StaticAllocaMap.count(&I)) 3138 return; // getValue will auto-populate this. 3139 3140 Type *Ty = I.getAllocatedType(); 3141 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 3142 unsigned Align = 3143 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 3144 I.getAlignment()); 3145 3146 SDValue AllocSize = getValue(I.getArraySize()); 3147 3148 EVT IntPtr = TLI.getPointerTy(); 3149 if (AllocSize.getValueType() != IntPtr) 3150 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3151 3152 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3153 AllocSize, 3154 DAG.getConstant(TySize, IntPtr)); 3155 3156 // Handle alignment. If the requested alignment is less than or equal to 3157 // the stack alignment, ignore it. If the size is greater than or equal to 3158 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3159 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3160 if (Align <= StackAlign) 3161 Align = 0; 3162 3163 // Round the size of the allocation up to the stack alignment size 3164 // by add SA-1 to the size. 3165 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3166 AllocSize.getValueType(), AllocSize, 3167 DAG.getIntPtrConstant(StackAlign-1)); 3168 3169 // Mask out the low bits for alignment purposes. 3170 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3171 AllocSize.getValueType(), AllocSize, 3172 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3173 3174 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3175 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3176 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3177 VTs, Ops, 3); 3178 setValue(&I, DSA); 3179 DAG.setRoot(DSA.getValue(1)); 3180 3181 // Inform the Frame Information that we have just allocated a variable-sized 3182 // object. 3183 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3184 } 3185 3186 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3187 if (I.isAtomic()) 3188 return visitAtomicLoad(I); 3189 3190 const Value *SV = I.getOperand(0); 3191 SDValue Ptr = getValue(SV); 3192 3193 Type *Ty = I.getType(); 3194 3195 bool isVolatile = I.isVolatile(); 3196 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3197 bool isInvariant = I.getMetadata("invariant.load") != 0; 3198 unsigned Alignment = I.getAlignment(); 3199 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3200 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3201 3202 SmallVector<EVT, 4> ValueVTs; 3203 SmallVector<uint64_t, 4> Offsets; 3204 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3205 unsigned NumValues = ValueVTs.size(); 3206 if (NumValues == 0) 3207 return; 3208 3209 SDValue Root; 3210 bool ConstantMemory = false; 3211 if (I.isVolatile() || NumValues > MaxParallelChains) 3212 // Serialize volatile loads with other side effects. 3213 Root = getRoot(); 3214 else if (AA->pointsToConstantMemory( 3215 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3216 // Do not serialize (non-volatile) loads of constant memory with anything. 3217 Root = DAG.getEntryNode(); 3218 ConstantMemory = true; 3219 } else { 3220 // Do not serialize non-volatile loads against each other. 3221 Root = DAG.getRoot(); 3222 } 3223 3224 SmallVector<SDValue, 4> Values(NumValues); 3225 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3226 NumValues)); 3227 EVT PtrVT = Ptr.getValueType(); 3228 unsigned ChainI = 0; 3229 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3230 // Serializing loads here may result in excessive register pressure, and 3231 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3232 // could recover a bit by hoisting nodes upward in the chain by recognizing 3233 // they are side-effect free or do not alias. The optimizer should really 3234 // avoid this case by converting large object/array copies to llvm.memcpy 3235 // (MaxParallelChains should always remain as failsafe). 3236 if (ChainI == MaxParallelChains) { 3237 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3238 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3239 MVT::Other, &Chains[0], ChainI); 3240 Root = Chain; 3241 ChainI = 0; 3242 } 3243 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3244 PtrVT, Ptr, 3245 DAG.getConstant(Offsets[i], PtrVT)); 3246 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3247 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3248 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3249 Ranges); 3250 3251 Values[i] = L; 3252 Chains[ChainI] = L.getValue(1); 3253 } 3254 3255 if (!ConstantMemory) { 3256 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3257 MVT::Other, &Chains[0], ChainI); 3258 if (isVolatile) 3259 DAG.setRoot(Chain); 3260 else 3261 PendingLoads.push_back(Chain); 3262 } 3263 3264 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3265 DAG.getVTList(&ValueVTs[0], NumValues), 3266 &Values[0], NumValues)); 3267 } 3268 3269 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3270 if (I.isAtomic()) 3271 return visitAtomicStore(I); 3272 3273 const Value *SrcV = I.getOperand(0); 3274 const Value *PtrV = I.getOperand(1); 3275 3276 SmallVector<EVT, 4> ValueVTs; 3277 SmallVector<uint64_t, 4> Offsets; 3278 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3279 unsigned NumValues = ValueVTs.size(); 3280 if (NumValues == 0) 3281 return; 3282 3283 // Get the lowered operands. Note that we do this after 3284 // checking if NumResults is zero, because with zero results 3285 // the operands won't have values in the map. 3286 SDValue Src = getValue(SrcV); 3287 SDValue Ptr = getValue(PtrV); 3288 3289 SDValue Root = getRoot(); 3290 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3291 NumValues)); 3292 EVT PtrVT = Ptr.getValueType(); 3293 bool isVolatile = I.isVolatile(); 3294 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3295 unsigned Alignment = I.getAlignment(); 3296 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3297 3298 unsigned ChainI = 0; 3299 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3300 // See visitLoad comments. 3301 if (ChainI == MaxParallelChains) { 3302 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3303 MVT::Other, &Chains[0], ChainI); 3304 Root = Chain; 3305 ChainI = 0; 3306 } 3307 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3308 DAG.getConstant(Offsets[i], PtrVT)); 3309 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3310 SDValue(Src.getNode(), Src.getResNo() + i), 3311 Add, MachinePointerInfo(PtrV, Offsets[i]), 3312 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3313 Chains[ChainI] = St; 3314 } 3315 3316 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3317 MVT::Other, &Chains[0], ChainI); 3318 ++SDNodeOrder; 3319 AssignOrderingToNode(StoreNode.getNode()); 3320 DAG.setRoot(StoreNode); 3321 } 3322 3323 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3324 SynchronizationScope Scope, 3325 bool Before, DebugLoc dl, 3326 SelectionDAG &DAG, 3327 const TargetLowering &TLI) { 3328 // Fence, if necessary 3329 if (Before) { 3330 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3331 Order = Release; 3332 else if (Order == Acquire || Order == Monotonic) 3333 return Chain; 3334 } else { 3335 if (Order == AcquireRelease) 3336 Order = Acquire; 3337 else if (Order == Release || Order == Monotonic) 3338 return Chain; 3339 } 3340 SDValue Ops[3]; 3341 Ops[0] = Chain; 3342 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3343 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3344 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3345 } 3346 3347 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3348 DebugLoc dl = getCurDebugLoc(); 3349 AtomicOrdering Order = I.getOrdering(); 3350 SynchronizationScope Scope = I.getSynchScope(); 3351 3352 SDValue InChain = getRoot(); 3353 3354 if (TLI.getInsertFencesForAtomic()) 3355 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3356 DAG, TLI); 3357 3358 SDValue L = 3359 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3360 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3361 InChain, 3362 getValue(I.getPointerOperand()), 3363 getValue(I.getCompareOperand()), 3364 getValue(I.getNewValOperand()), 3365 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3366 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3367 Scope); 3368 3369 SDValue OutChain = L.getValue(1); 3370 3371 if (TLI.getInsertFencesForAtomic()) 3372 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3373 DAG, TLI); 3374 3375 setValue(&I, L); 3376 DAG.setRoot(OutChain); 3377 } 3378 3379 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3380 DebugLoc dl = getCurDebugLoc(); 3381 ISD::NodeType NT; 3382 switch (I.getOperation()) { 3383 default: llvm_unreachable("Unknown atomicrmw operation"); 3384 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3385 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3386 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3387 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3388 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3389 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3390 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3391 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3392 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3393 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3394 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3395 } 3396 AtomicOrdering Order = I.getOrdering(); 3397 SynchronizationScope Scope = I.getSynchScope(); 3398 3399 SDValue InChain = getRoot(); 3400 3401 if (TLI.getInsertFencesForAtomic()) 3402 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3403 DAG, TLI); 3404 3405 SDValue L = 3406 DAG.getAtomic(NT, dl, 3407 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3408 InChain, 3409 getValue(I.getPointerOperand()), 3410 getValue(I.getValOperand()), 3411 I.getPointerOperand(), 0 /* Alignment */, 3412 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3413 Scope); 3414 3415 SDValue OutChain = L.getValue(1); 3416 3417 if (TLI.getInsertFencesForAtomic()) 3418 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3419 DAG, TLI); 3420 3421 setValue(&I, L); 3422 DAG.setRoot(OutChain); 3423 } 3424 3425 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3426 DebugLoc dl = getCurDebugLoc(); 3427 SDValue Ops[3]; 3428 Ops[0] = getRoot(); 3429 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3430 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3431 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3432 } 3433 3434 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3435 DebugLoc dl = getCurDebugLoc(); 3436 AtomicOrdering Order = I.getOrdering(); 3437 SynchronizationScope Scope = I.getSynchScope(); 3438 3439 SDValue InChain = getRoot(); 3440 3441 EVT VT = EVT::getEVT(I.getType()); 3442 3443 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3444 report_fatal_error("Cannot generate unaligned atomic load"); 3445 3446 SDValue L = 3447 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3448 getValue(I.getPointerOperand()), 3449 I.getPointerOperand(), I.getAlignment(), 3450 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3451 Scope); 3452 3453 SDValue OutChain = L.getValue(1); 3454 3455 if (TLI.getInsertFencesForAtomic()) 3456 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3457 DAG, TLI); 3458 3459 setValue(&I, L); 3460 DAG.setRoot(OutChain); 3461 } 3462 3463 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3464 DebugLoc dl = getCurDebugLoc(); 3465 3466 AtomicOrdering Order = I.getOrdering(); 3467 SynchronizationScope Scope = I.getSynchScope(); 3468 3469 SDValue InChain = getRoot(); 3470 3471 EVT VT = EVT::getEVT(I.getValueOperand()->getType()); 3472 3473 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3474 report_fatal_error("Cannot generate unaligned atomic store"); 3475 3476 if (TLI.getInsertFencesForAtomic()) 3477 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3478 DAG, TLI); 3479 3480 SDValue OutChain = 3481 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3482 InChain, 3483 getValue(I.getPointerOperand()), 3484 getValue(I.getValueOperand()), 3485 I.getPointerOperand(), I.getAlignment(), 3486 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3487 Scope); 3488 3489 if (TLI.getInsertFencesForAtomic()) 3490 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3491 DAG, TLI); 3492 3493 DAG.setRoot(OutChain); 3494 } 3495 3496 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3497 /// node. 3498 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3499 unsigned Intrinsic) { 3500 bool HasChain = !I.doesNotAccessMemory(); 3501 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3502 3503 // Build the operand list. 3504 SmallVector<SDValue, 8> Ops; 3505 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3506 if (OnlyLoad) { 3507 // We don't need to serialize loads against other loads. 3508 Ops.push_back(DAG.getRoot()); 3509 } else { 3510 Ops.push_back(getRoot()); 3511 } 3512 } 3513 3514 // Info is set by getTgtMemInstrinsic 3515 TargetLowering::IntrinsicInfo Info; 3516 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3517 3518 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3519 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3520 Info.opc == ISD::INTRINSIC_W_CHAIN) 3521 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3522 3523 // Add all operands of the call to the operand list. 3524 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3525 SDValue Op = getValue(I.getArgOperand(i)); 3526 Ops.push_back(Op); 3527 } 3528 3529 SmallVector<EVT, 4> ValueVTs; 3530 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3531 3532 if (HasChain) 3533 ValueVTs.push_back(MVT::Other); 3534 3535 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3536 3537 // Create the node. 3538 SDValue Result; 3539 if (IsTgtIntrinsic) { 3540 // This is target intrinsic that touches memory 3541 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3542 VTs, &Ops[0], Ops.size(), 3543 Info.memVT, 3544 MachinePointerInfo(Info.ptrVal, Info.offset), 3545 Info.align, Info.vol, 3546 Info.readMem, Info.writeMem); 3547 } else if (!HasChain) { 3548 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3549 VTs, &Ops[0], Ops.size()); 3550 } else if (!I.getType()->isVoidTy()) { 3551 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3552 VTs, &Ops[0], Ops.size()); 3553 } else { 3554 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3555 VTs, &Ops[0], Ops.size()); 3556 } 3557 3558 if (HasChain) { 3559 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3560 if (OnlyLoad) 3561 PendingLoads.push_back(Chain); 3562 else 3563 DAG.setRoot(Chain); 3564 } 3565 3566 if (!I.getType()->isVoidTy()) { 3567 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3568 EVT VT = TLI.getValueType(PTy); 3569 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3570 } 3571 3572 setValue(&I, Result); 3573 } else { 3574 // Assign order to result here. If the intrinsic does not produce a result, 3575 // it won't be mapped to a SDNode and visit() will not assign it an order 3576 // number. 3577 ++SDNodeOrder; 3578 AssignOrderingToNode(Result.getNode()); 3579 } 3580 } 3581 3582 /// GetSignificand - Get the significand and build it into a floating-point 3583 /// number with exponent of 1: 3584 /// 3585 /// Op = (Op & 0x007fffff) | 0x3f800000; 3586 /// 3587 /// where Op is the hexidecimal representation of floating point value. 3588 static SDValue 3589 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3590 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3591 DAG.getConstant(0x007fffff, MVT::i32)); 3592 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3593 DAG.getConstant(0x3f800000, MVT::i32)); 3594 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3595 } 3596 3597 /// GetExponent - Get the exponent: 3598 /// 3599 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3600 /// 3601 /// where Op is the hexidecimal representation of floating point value. 3602 static SDValue 3603 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3604 DebugLoc dl) { 3605 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3606 DAG.getConstant(0x7f800000, MVT::i32)); 3607 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3608 DAG.getConstant(23, TLI.getPointerTy())); 3609 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3610 DAG.getConstant(127, MVT::i32)); 3611 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3612 } 3613 3614 /// getF32Constant - Get 32-bit floating point constant. 3615 static SDValue 3616 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3617 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3618 } 3619 3620 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3621 /// limited-precision mode. 3622 void 3623 SelectionDAGBuilder::visitExp(const CallInst &I) { 3624 SDValue result; 3625 DebugLoc dl = getCurDebugLoc(); 3626 3627 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3628 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3629 SDValue Op = getValue(I.getArgOperand(0)); 3630 3631 // Put the exponent in the right bit position for later addition to the 3632 // final result: 3633 // 3634 // #define LOG2OFe 1.4426950f 3635 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3636 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3637 getF32Constant(DAG, 0x3fb8aa3b)); 3638 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3639 3640 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3641 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3642 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3643 3644 // IntegerPartOfX <<= 23; 3645 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3646 DAG.getConstant(23, TLI.getPointerTy())); 3647 3648 if (LimitFloatPrecision <= 6) { 3649 // For floating-point precision of 6: 3650 // 3651 // TwoToFractionalPartOfX = 3652 // 0.997535578f + 3653 // (0.735607626f + 0.252464424f * x) * x; 3654 // 3655 // error 0.0144103317, which is 6 bits 3656 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3657 getF32Constant(DAG, 0x3e814304)); 3658 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3659 getF32Constant(DAG, 0x3f3c50c8)); 3660 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3661 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3662 getF32Constant(DAG, 0x3f7f5e7e)); 3663 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3664 3665 // Add the exponent into the result in integer domain. 3666 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3667 TwoToFracPartOfX, IntegerPartOfX); 3668 3669 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3670 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3671 // For floating-point precision of 12: 3672 // 3673 // TwoToFractionalPartOfX = 3674 // 0.999892986f + 3675 // (0.696457318f + 3676 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3677 // 3678 // 0.000107046256 error, which is 13 to 14 bits 3679 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3680 getF32Constant(DAG, 0x3da235e3)); 3681 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3682 getF32Constant(DAG, 0x3e65b8f3)); 3683 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3684 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3685 getF32Constant(DAG, 0x3f324b07)); 3686 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3687 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3688 getF32Constant(DAG, 0x3f7ff8fd)); 3689 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3690 3691 // Add the exponent into the result in integer domain. 3692 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3693 TwoToFracPartOfX, IntegerPartOfX); 3694 3695 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3696 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3697 // For floating-point precision of 18: 3698 // 3699 // TwoToFractionalPartOfX = 3700 // 0.999999982f + 3701 // (0.693148872f + 3702 // (0.240227044f + 3703 // (0.554906021e-1f + 3704 // (0.961591928e-2f + 3705 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3706 // 3707 // error 2.47208000*10^(-7), which is better than 18 bits 3708 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3709 getF32Constant(DAG, 0x3924b03e)); 3710 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3711 getF32Constant(DAG, 0x3ab24b87)); 3712 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3713 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3714 getF32Constant(DAG, 0x3c1d8c17)); 3715 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3716 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3717 getF32Constant(DAG, 0x3d634a1d)); 3718 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3719 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3720 getF32Constant(DAG, 0x3e75fe14)); 3721 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3722 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3723 getF32Constant(DAG, 0x3f317234)); 3724 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3725 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3726 getF32Constant(DAG, 0x3f800000)); 3727 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3728 MVT::i32, t13); 3729 3730 // Add the exponent into the result in integer domain. 3731 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3732 TwoToFracPartOfX, IntegerPartOfX); 3733 3734 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3735 } 3736 } else { 3737 // No special expansion. 3738 result = DAG.getNode(ISD::FEXP, dl, 3739 getValue(I.getArgOperand(0)).getValueType(), 3740 getValue(I.getArgOperand(0))); 3741 } 3742 3743 setValue(&I, result); 3744 } 3745 3746 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3747 /// limited-precision mode. 3748 void 3749 SelectionDAGBuilder::visitLog(const CallInst &I) { 3750 SDValue result; 3751 DebugLoc dl = getCurDebugLoc(); 3752 3753 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3754 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3755 SDValue Op = getValue(I.getArgOperand(0)); 3756 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3757 3758 // Scale the exponent by log(2) [0.69314718f]. 3759 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3760 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3761 getF32Constant(DAG, 0x3f317218)); 3762 3763 // Get the significand and build it into a floating-point number with 3764 // exponent of 1. 3765 SDValue X = GetSignificand(DAG, Op1, dl); 3766 3767 if (LimitFloatPrecision <= 6) { 3768 // For floating-point precision of 6: 3769 // 3770 // LogofMantissa = 3771 // -1.1609546f + 3772 // (1.4034025f - 0.23903021f * x) * x; 3773 // 3774 // error 0.0034276066, which is better than 8 bits 3775 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3776 getF32Constant(DAG, 0xbe74c456)); 3777 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3778 getF32Constant(DAG, 0x3fb3a2b1)); 3779 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3780 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3781 getF32Constant(DAG, 0x3f949a29)); 3782 3783 result = DAG.getNode(ISD::FADD, dl, 3784 MVT::f32, LogOfExponent, LogOfMantissa); 3785 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3786 // For floating-point precision of 12: 3787 // 3788 // LogOfMantissa = 3789 // -1.7417939f + 3790 // (2.8212026f + 3791 // (-1.4699568f + 3792 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3793 // 3794 // error 0.000061011436, which is 14 bits 3795 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3796 getF32Constant(DAG, 0xbd67b6d6)); 3797 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3798 getF32Constant(DAG, 0x3ee4f4b8)); 3799 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3800 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3801 getF32Constant(DAG, 0x3fbc278b)); 3802 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3803 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3804 getF32Constant(DAG, 0x40348e95)); 3805 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3806 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3807 getF32Constant(DAG, 0x3fdef31a)); 3808 3809 result = DAG.getNode(ISD::FADD, dl, 3810 MVT::f32, LogOfExponent, LogOfMantissa); 3811 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3812 // For floating-point precision of 18: 3813 // 3814 // LogOfMantissa = 3815 // -2.1072184f + 3816 // (4.2372794f + 3817 // (-3.7029485f + 3818 // (2.2781945f + 3819 // (-0.87823314f + 3820 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3821 // 3822 // error 0.0000023660568, which is better than 18 bits 3823 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3824 getF32Constant(DAG, 0xbc91e5ac)); 3825 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3826 getF32Constant(DAG, 0x3e4350aa)); 3827 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3828 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3829 getF32Constant(DAG, 0x3f60d3e3)); 3830 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3831 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3832 getF32Constant(DAG, 0x4011cdf0)); 3833 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3834 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3835 getF32Constant(DAG, 0x406cfd1c)); 3836 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3837 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3838 getF32Constant(DAG, 0x408797cb)); 3839 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3840 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3841 getF32Constant(DAG, 0x4006dcab)); 3842 3843 result = DAG.getNode(ISD::FADD, dl, 3844 MVT::f32, LogOfExponent, LogOfMantissa); 3845 } 3846 } else { 3847 // No special expansion. 3848 result = DAG.getNode(ISD::FLOG, dl, 3849 getValue(I.getArgOperand(0)).getValueType(), 3850 getValue(I.getArgOperand(0))); 3851 } 3852 3853 setValue(&I, result); 3854 } 3855 3856 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3857 /// limited-precision mode. 3858 void 3859 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3860 SDValue result; 3861 DebugLoc dl = getCurDebugLoc(); 3862 3863 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3864 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3865 SDValue Op = getValue(I.getArgOperand(0)); 3866 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3867 3868 // Get the exponent. 3869 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3870 3871 // Get the significand and build it into a floating-point number with 3872 // exponent of 1. 3873 SDValue X = GetSignificand(DAG, Op1, dl); 3874 3875 // Different possible minimax approximations of significand in 3876 // floating-point for various degrees of accuracy over [1,2]. 3877 if (LimitFloatPrecision <= 6) { 3878 // For floating-point precision of 6: 3879 // 3880 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3881 // 3882 // error 0.0049451742, which is more than 7 bits 3883 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3884 getF32Constant(DAG, 0xbeb08fe0)); 3885 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3886 getF32Constant(DAG, 0x40019463)); 3887 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3888 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3889 getF32Constant(DAG, 0x3fd6633d)); 3890 3891 result = DAG.getNode(ISD::FADD, dl, 3892 MVT::f32, LogOfExponent, Log2ofMantissa); 3893 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3894 // For floating-point precision of 12: 3895 // 3896 // Log2ofMantissa = 3897 // -2.51285454f + 3898 // (4.07009056f + 3899 // (-2.12067489f + 3900 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3901 // 3902 // error 0.0000876136000, which is better than 13 bits 3903 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3904 getF32Constant(DAG, 0xbda7262e)); 3905 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3906 getF32Constant(DAG, 0x3f25280b)); 3907 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3908 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3909 getF32Constant(DAG, 0x4007b923)); 3910 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3911 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3912 getF32Constant(DAG, 0x40823e2f)); 3913 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3914 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3915 getF32Constant(DAG, 0x4020d29c)); 3916 3917 result = DAG.getNode(ISD::FADD, dl, 3918 MVT::f32, LogOfExponent, Log2ofMantissa); 3919 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3920 // For floating-point precision of 18: 3921 // 3922 // Log2ofMantissa = 3923 // -3.0400495f + 3924 // (6.1129976f + 3925 // (-5.3420409f + 3926 // (3.2865683f + 3927 // (-1.2669343f + 3928 // (0.27515199f - 3929 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3930 // 3931 // error 0.0000018516, which is better than 18 bits 3932 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3933 getF32Constant(DAG, 0xbcd2769e)); 3934 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3935 getF32Constant(DAG, 0x3e8ce0b9)); 3936 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3937 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3938 getF32Constant(DAG, 0x3fa22ae7)); 3939 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3940 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3941 getF32Constant(DAG, 0x40525723)); 3942 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3943 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3944 getF32Constant(DAG, 0x40aaf200)); 3945 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3946 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3947 getF32Constant(DAG, 0x40c39dad)); 3948 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3949 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3950 getF32Constant(DAG, 0x4042902c)); 3951 3952 result = DAG.getNode(ISD::FADD, dl, 3953 MVT::f32, LogOfExponent, Log2ofMantissa); 3954 } 3955 } else { 3956 // No special expansion. 3957 result = DAG.getNode(ISD::FLOG2, dl, 3958 getValue(I.getArgOperand(0)).getValueType(), 3959 getValue(I.getArgOperand(0))); 3960 } 3961 3962 setValue(&I, result); 3963 } 3964 3965 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3966 /// limited-precision mode. 3967 void 3968 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3969 SDValue result; 3970 DebugLoc dl = getCurDebugLoc(); 3971 3972 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3973 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3974 SDValue Op = getValue(I.getArgOperand(0)); 3975 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3976 3977 // Scale the exponent by log10(2) [0.30102999f]. 3978 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3979 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3980 getF32Constant(DAG, 0x3e9a209a)); 3981 3982 // Get the significand and build it into a floating-point number with 3983 // exponent of 1. 3984 SDValue X = GetSignificand(DAG, Op1, dl); 3985 3986 if (LimitFloatPrecision <= 6) { 3987 // For floating-point precision of 6: 3988 // 3989 // Log10ofMantissa = 3990 // -0.50419619f + 3991 // (0.60948995f - 0.10380950f * x) * x; 3992 // 3993 // error 0.0014886165, which is 6 bits 3994 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3995 getF32Constant(DAG, 0xbdd49a13)); 3996 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3997 getF32Constant(DAG, 0x3f1c0789)); 3998 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3999 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4000 getF32Constant(DAG, 0x3f011300)); 4001 4002 result = DAG.getNode(ISD::FADD, dl, 4003 MVT::f32, LogOfExponent, Log10ofMantissa); 4004 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4005 // For floating-point precision of 12: 4006 // 4007 // Log10ofMantissa = 4008 // -0.64831180f + 4009 // (0.91751397f + 4010 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4011 // 4012 // error 0.00019228036, which is better than 12 bits 4013 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4014 getF32Constant(DAG, 0x3d431f31)); 4015 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4016 getF32Constant(DAG, 0x3ea21fb2)); 4017 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4018 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4019 getF32Constant(DAG, 0x3f6ae232)); 4020 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4021 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4022 getF32Constant(DAG, 0x3f25f7c3)); 4023 4024 result = DAG.getNode(ISD::FADD, dl, 4025 MVT::f32, LogOfExponent, Log10ofMantissa); 4026 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4027 // For floating-point precision of 18: 4028 // 4029 // Log10ofMantissa = 4030 // -0.84299375f + 4031 // (1.5327582f + 4032 // (-1.0688956f + 4033 // (0.49102474f + 4034 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4035 // 4036 // error 0.0000037995730, which is better than 18 bits 4037 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4038 getF32Constant(DAG, 0x3c5d51ce)); 4039 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4040 getF32Constant(DAG, 0x3e00685a)); 4041 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4042 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4043 getF32Constant(DAG, 0x3efb6798)); 4044 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4045 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4046 getF32Constant(DAG, 0x3f88d192)); 4047 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4048 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4049 getF32Constant(DAG, 0x3fc4316c)); 4050 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4051 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4052 getF32Constant(DAG, 0x3f57ce70)); 4053 4054 result = DAG.getNode(ISD::FADD, dl, 4055 MVT::f32, LogOfExponent, Log10ofMantissa); 4056 } 4057 } else { 4058 // No special expansion. 4059 result = DAG.getNode(ISD::FLOG10, dl, 4060 getValue(I.getArgOperand(0)).getValueType(), 4061 getValue(I.getArgOperand(0))); 4062 } 4063 4064 setValue(&I, result); 4065 } 4066 4067 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4068 /// limited-precision mode. 4069 void 4070 SelectionDAGBuilder::visitExp2(const CallInst &I) { 4071 SDValue result; 4072 DebugLoc dl = getCurDebugLoc(); 4073 4074 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 4075 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4076 SDValue Op = getValue(I.getArgOperand(0)); 4077 4078 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4079 4080 // FractionalPartOfX = x - (float)IntegerPartOfX; 4081 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4082 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4083 4084 // IntegerPartOfX <<= 23; 4085 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4086 DAG.getConstant(23, TLI.getPointerTy())); 4087 4088 if (LimitFloatPrecision <= 6) { 4089 // For floating-point precision of 6: 4090 // 4091 // TwoToFractionalPartOfX = 4092 // 0.997535578f + 4093 // (0.735607626f + 0.252464424f * x) * x; 4094 // 4095 // error 0.0144103317, which is 6 bits 4096 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4097 getF32Constant(DAG, 0x3e814304)); 4098 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4099 getF32Constant(DAG, 0x3f3c50c8)); 4100 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4101 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4102 getF32Constant(DAG, 0x3f7f5e7e)); 4103 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4104 SDValue TwoToFractionalPartOfX = 4105 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4106 4107 result = DAG.getNode(ISD::BITCAST, dl, 4108 MVT::f32, TwoToFractionalPartOfX); 4109 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4110 // For floating-point precision of 12: 4111 // 4112 // TwoToFractionalPartOfX = 4113 // 0.999892986f + 4114 // (0.696457318f + 4115 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4116 // 4117 // error 0.000107046256, which is 13 to 14 bits 4118 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4119 getF32Constant(DAG, 0x3da235e3)); 4120 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4121 getF32Constant(DAG, 0x3e65b8f3)); 4122 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4123 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4124 getF32Constant(DAG, 0x3f324b07)); 4125 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4126 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4127 getF32Constant(DAG, 0x3f7ff8fd)); 4128 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4129 SDValue TwoToFractionalPartOfX = 4130 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4131 4132 result = DAG.getNode(ISD::BITCAST, dl, 4133 MVT::f32, TwoToFractionalPartOfX); 4134 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4135 // For floating-point precision of 18: 4136 // 4137 // TwoToFractionalPartOfX = 4138 // 0.999999982f + 4139 // (0.693148872f + 4140 // (0.240227044f + 4141 // (0.554906021e-1f + 4142 // (0.961591928e-2f + 4143 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4144 // error 2.47208000*10^(-7), which is better than 18 bits 4145 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4146 getF32Constant(DAG, 0x3924b03e)); 4147 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4148 getF32Constant(DAG, 0x3ab24b87)); 4149 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4150 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4151 getF32Constant(DAG, 0x3c1d8c17)); 4152 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4153 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4154 getF32Constant(DAG, 0x3d634a1d)); 4155 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4156 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4157 getF32Constant(DAG, 0x3e75fe14)); 4158 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4159 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4160 getF32Constant(DAG, 0x3f317234)); 4161 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4162 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4163 getF32Constant(DAG, 0x3f800000)); 4164 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4165 SDValue TwoToFractionalPartOfX = 4166 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4167 4168 result = DAG.getNode(ISD::BITCAST, dl, 4169 MVT::f32, TwoToFractionalPartOfX); 4170 } 4171 } else { 4172 // No special expansion. 4173 result = DAG.getNode(ISD::FEXP2, dl, 4174 getValue(I.getArgOperand(0)).getValueType(), 4175 getValue(I.getArgOperand(0))); 4176 } 4177 4178 setValue(&I, result); 4179 } 4180 4181 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4182 /// limited-precision mode with x == 10.0f. 4183 void 4184 SelectionDAGBuilder::visitPow(const CallInst &I) { 4185 SDValue result; 4186 const Value *Val = I.getArgOperand(0); 4187 DebugLoc dl = getCurDebugLoc(); 4188 bool IsExp10 = false; 4189 4190 if (getValue(Val).getValueType() == MVT::f32 && 4191 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 4192 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4193 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 4194 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 4195 APFloat Ten(10.0f); 4196 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 4197 } 4198 } 4199 } 4200 4201 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4202 SDValue Op = getValue(I.getArgOperand(1)); 4203 4204 // Put the exponent in the right bit position for later addition to the 4205 // final result: 4206 // 4207 // #define LOG2OF10 3.3219281f 4208 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4209 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4210 getF32Constant(DAG, 0x40549a78)); 4211 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4212 4213 // FractionalPartOfX = x - (float)IntegerPartOfX; 4214 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4215 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4216 4217 // IntegerPartOfX <<= 23; 4218 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4219 DAG.getConstant(23, TLI.getPointerTy())); 4220 4221 if (LimitFloatPrecision <= 6) { 4222 // For floating-point precision of 6: 4223 // 4224 // twoToFractionalPartOfX = 4225 // 0.997535578f + 4226 // (0.735607626f + 0.252464424f * x) * x; 4227 // 4228 // error 0.0144103317, which is 6 bits 4229 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4230 getF32Constant(DAG, 0x3e814304)); 4231 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4232 getF32Constant(DAG, 0x3f3c50c8)); 4233 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4234 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4235 getF32Constant(DAG, 0x3f7f5e7e)); 4236 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4237 SDValue TwoToFractionalPartOfX = 4238 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4239 4240 result = DAG.getNode(ISD::BITCAST, dl, 4241 MVT::f32, TwoToFractionalPartOfX); 4242 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4243 // For floating-point precision of 12: 4244 // 4245 // TwoToFractionalPartOfX = 4246 // 0.999892986f + 4247 // (0.696457318f + 4248 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4249 // 4250 // error 0.000107046256, which is 13 to 14 bits 4251 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4252 getF32Constant(DAG, 0x3da235e3)); 4253 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4254 getF32Constant(DAG, 0x3e65b8f3)); 4255 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4256 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4257 getF32Constant(DAG, 0x3f324b07)); 4258 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4259 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4260 getF32Constant(DAG, 0x3f7ff8fd)); 4261 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4262 SDValue TwoToFractionalPartOfX = 4263 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4264 4265 result = DAG.getNode(ISD::BITCAST, dl, 4266 MVT::f32, TwoToFractionalPartOfX); 4267 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4268 // For floating-point precision of 18: 4269 // 4270 // TwoToFractionalPartOfX = 4271 // 0.999999982f + 4272 // (0.693148872f + 4273 // (0.240227044f + 4274 // (0.554906021e-1f + 4275 // (0.961591928e-2f + 4276 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4277 // error 2.47208000*10^(-7), which is better than 18 bits 4278 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4279 getF32Constant(DAG, 0x3924b03e)); 4280 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4281 getF32Constant(DAG, 0x3ab24b87)); 4282 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4283 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4284 getF32Constant(DAG, 0x3c1d8c17)); 4285 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4286 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4287 getF32Constant(DAG, 0x3d634a1d)); 4288 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4289 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4290 getF32Constant(DAG, 0x3e75fe14)); 4291 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4292 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4293 getF32Constant(DAG, 0x3f317234)); 4294 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4295 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4296 getF32Constant(DAG, 0x3f800000)); 4297 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4298 SDValue TwoToFractionalPartOfX = 4299 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4300 4301 result = DAG.getNode(ISD::BITCAST, dl, 4302 MVT::f32, TwoToFractionalPartOfX); 4303 } 4304 } else { 4305 // No special expansion. 4306 result = DAG.getNode(ISD::FPOW, dl, 4307 getValue(I.getArgOperand(0)).getValueType(), 4308 getValue(I.getArgOperand(0)), 4309 getValue(I.getArgOperand(1))); 4310 } 4311 4312 setValue(&I, result); 4313 } 4314 4315 4316 /// ExpandPowI - Expand a llvm.powi intrinsic. 4317 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4318 SelectionDAG &DAG) { 4319 // If RHS is a constant, we can expand this out to a multiplication tree, 4320 // otherwise we end up lowering to a call to __powidf2 (for example). When 4321 // optimizing for size, we only want to do this if the expansion would produce 4322 // a small number of multiplies, otherwise we do the full expansion. 4323 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4324 // Get the exponent as a positive value. 4325 unsigned Val = RHSC->getSExtValue(); 4326 if ((int)Val < 0) Val = -Val; 4327 4328 // powi(x, 0) -> 1.0 4329 if (Val == 0) 4330 return DAG.getConstantFP(1.0, LHS.getValueType()); 4331 4332 const Function *F = DAG.getMachineFunction().getFunction(); 4333 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 4334 // If optimizing for size, don't insert too many multiplies. This 4335 // inserts up to 5 multiplies. 4336 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4337 // We use the simple binary decomposition method to generate the multiply 4338 // sequence. There are more optimal ways to do this (for example, 4339 // powi(x,15) generates one more multiply than it should), but this has 4340 // the benefit of being both really simple and much better than a libcall. 4341 SDValue Res; // Logically starts equal to 1.0 4342 SDValue CurSquare = LHS; 4343 while (Val) { 4344 if (Val & 1) { 4345 if (Res.getNode()) 4346 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4347 else 4348 Res = CurSquare; // 1.0*CurSquare. 4349 } 4350 4351 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4352 CurSquare, CurSquare); 4353 Val >>= 1; 4354 } 4355 4356 // If the original was negative, invert the result, producing 1/(x*x*x). 4357 if (RHSC->getSExtValue() < 0) 4358 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4359 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4360 return Res; 4361 } 4362 } 4363 4364 // Otherwise, expand to a libcall. 4365 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4366 } 4367 4368 // getTruncatedArgReg - Find underlying register used for an truncated 4369 // argument. 4370 static unsigned getTruncatedArgReg(const SDValue &N) { 4371 if (N.getOpcode() != ISD::TRUNCATE) 4372 return 0; 4373 4374 const SDValue &Ext = N.getOperand(0); 4375 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4376 const SDValue &CFR = Ext.getOperand(0); 4377 if (CFR.getOpcode() == ISD::CopyFromReg) 4378 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4379 if (CFR.getOpcode() == ISD::TRUNCATE) 4380 return getTruncatedArgReg(CFR); 4381 } 4382 return 0; 4383 } 4384 4385 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4386 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4387 /// At the end of instruction selection, they will be inserted to the entry BB. 4388 bool 4389 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4390 int64_t Offset, 4391 const SDValue &N) { 4392 const Argument *Arg = dyn_cast<Argument>(V); 4393 if (!Arg) 4394 return false; 4395 4396 MachineFunction &MF = DAG.getMachineFunction(); 4397 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4398 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4399 4400 // Ignore inlined function arguments here. 4401 DIVariable DV(Variable); 4402 if (DV.isInlinedFnArgument(MF.getFunction())) 4403 return false; 4404 4405 unsigned Reg = 0; 4406 // Some arguments' frame index is recorded during argument lowering. 4407 Offset = FuncInfo.getArgumentFrameIndex(Arg); 4408 if (Offset) 4409 Reg = TRI->getFrameRegister(MF); 4410 4411 if (!Reg && N.getNode()) { 4412 if (N.getOpcode() == ISD::CopyFromReg) 4413 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4414 else 4415 Reg = getTruncatedArgReg(N); 4416 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4417 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4418 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4419 if (PR) 4420 Reg = PR; 4421 } 4422 } 4423 4424 if (!Reg) { 4425 // Check if ValueMap has reg number. 4426 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4427 if (VMI != FuncInfo.ValueMap.end()) 4428 Reg = VMI->second; 4429 } 4430 4431 if (!Reg && N.getNode()) { 4432 // Check if frame index is available. 4433 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4434 if (FrameIndexSDNode *FINode = 4435 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4436 Reg = TRI->getFrameRegister(MF); 4437 Offset = FINode->getIndex(); 4438 } 4439 } 4440 4441 if (!Reg) 4442 return false; 4443 4444 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4445 TII->get(TargetOpcode::DBG_VALUE)) 4446 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4447 FuncInfo.ArgDbgValues.push_back(&*MIB); 4448 return true; 4449 } 4450 4451 // VisualStudio defines setjmp as _setjmp 4452 #if defined(_MSC_VER) && defined(setjmp) && \ 4453 !defined(setjmp_undefined_for_msvc) 4454 # pragma push_macro("setjmp") 4455 # undef setjmp 4456 # define setjmp_undefined_for_msvc 4457 #endif 4458 4459 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4460 /// we want to emit this as a call to a named external function, return the name 4461 /// otherwise lower it and return null. 4462 const char * 4463 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4464 DebugLoc dl = getCurDebugLoc(); 4465 SDValue Res; 4466 4467 switch (Intrinsic) { 4468 default: 4469 // By default, turn this into a target intrinsic node. 4470 visitTargetIntrinsic(I, Intrinsic); 4471 return 0; 4472 case Intrinsic::vastart: visitVAStart(I); return 0; 4473 case Intrinsic::vaend: visitVAEnd(I); return 0; 4474 case Intrinsic::vacopy: visitVACopy(I); return 0; 4475 case Intrinsic::returnaddress: 4476 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4477 getValue(I.getArgOperand(0)))); 4478 return 0; 4479 case Intrinsic::frameaddress: 4480 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4481 getValue(I.getArgOperand(0)))); 4482 return 0; 4483 case Intrinsic::setjmp: 4484 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4485 case Intrinsic::longjmp: 4486 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4487 case Intrinsic::memcpy: { 4488 // Assert for address < 256 since we support only user defined address 4489 // spaces. 4490 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4491 < 256 && 4492 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4493 < 256 && 4494 "Unknown address space"); 4495 SDValue Op1 = getValue(I.getArgOperand(0)); 4496 SDValue Op2 = getValue(I.getArgOperand(1)); 4497 SDValue Op3 = getValue(I.getArgOperand(2)); 4498 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4499 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4500 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4501 MachinePointerInfo(I.getArgOperand(0)), 4502 MachinePointerInfo(I.getArgOperand(1)))); 4503 return 0; 4504 } 4505 case Intrinsic::memset: { 4506 // Assert for address < 256 since we support only user defined address 4507 // spaces. 4508 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4509 < 256 && 4510 "Unknown address space"); 4511 SDValue Op1 = getValue(I.getArgOperand(0)); 4512 SDValue Op2 = getValue(I.getArgOperand(1)); 4513 SDValue Op3 = getValue(I.getArgOperand(2)); 4514 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4515 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4516 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4517 MachinePointerInfo(I.getArgOperand(0)))); 4518 return 0; 4519 } 4520 case Intrinsic::memmove: { 4521 // Assert for address < 256 since we support only user defined address 4522 // spaces. 4523 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4524 < 256 && 4525 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4526 < 256 && 4527 "Unknown address space"); 4528 SDValue Op1 = getValue(I.getArgOperand(0)); 4529 SDValue Op2 = getValue(I.getArgOperand(1)); 4530 SDValue Op3 = getValue(I.getArgOperand(2)); 4531 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4532 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4533 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4534 MachinePointerInfo(I.getArgOperand(0)), 4535 MachinePointerInfo(I.getArgOperand(1)))); 4536 return 0; 4537 } 4538 case Intrinsic::dbg_declare: { 4539 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4540 MDNode *Variable = DI.getVariable(); 4541 const Value *Address = DI.getAddress(); 4542 if (!Address || !DIVariable(Variable).Verify()) { 4543 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4544 return 0; 4545 } 4546 4547 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4548 // but do not always have a corresponding SDNode built. The SDNodeOrder 4549 // absolute, but not relative, values are different depending on whether 4550 // debug info exists. 4551 ++SDNodeOrder; 4552 4553 // Check if address has undef value. 4554 if (isa<UndefValue>(Address) || 4555 (Address->use_empty() && !isa<Argument>(Address))) { 4556 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4557 return 0; 4558 } 4559 4560 SDValue &N = NodeMap[Address]; 4561 if (!N.getNode() && isa<Argument>(Address)) 4562 // Check unused arguments map. 4563 N = UnusedArgNodeMap[Address]; 4564 SDDbgValue *SDV; 4565 if (N.getNode()) { 4566 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4567 Address = BCI->getOperand(0); 4568 // Parameters are handled specially. 4569 bool isParameter = 4570 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4571 isa<Argument>(Address)); 4572 4573 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4574 4575 if (isParameter && !AI) { 4576 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4577 if (FINode) 4578 // Byval parameter. We have a frame index at this point. 4579 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4580 0, dl, SDNodeOrder); 4581 else { 4582 // Address is an argument, so try to emit its dbg value using 4583 // virtual register info from the FuncInfo.ValueMap. 4584 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4585 return 0; 4586 } 4587 } else if (AI) 4588 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4589 0, dl, SDNodeOrder); 4590 else { 4591 // Can't do anything with other non-AI cases yet. 4592 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4593 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4594 DEBUG(Address->dump()); 4595 return 0; 4596 } 4597 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4598 } else { 4599 // If Address is an argument then try to emit its dbg value using 4600 // virtual register info from the FuncInfo.ValueMap. 4601 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4602 // If variable is pinned by a alloca in dominating bb then 4603 // use StaticAllocaMap. 4604 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4605 if (AI->getParent() != DI.getParent()) { 4606 DenseMap<const AllocaInst*, int>::iterator SI = 4607 FuncInfo.StaticAllocaMap.find(AI); 4608 if (SI != FuncInfo.StaticAllocaMap.end()) { 4609 SDV = DAG.getDbgValue(Variable, SI->second, 4610 0, dl, SDNodeOrder); 4611 DAG.AddDbgValue(SDV, 0, false); 4612 return 0; 4613 } 4614 } 4615 } 4616 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4617 } 4618 } 4619 return 0; 4620 } 4621 case Intrinsic::dbg_value: { 4622 const DbgValueInst &DI = cast<DbgValueInst>(I); 4623 if (!DIVariable(DI.getVariable()).Verify()) 4624 return 0; 4625 4626 MDNode *Variable = DI.getVariable(); 4627 uint64_t Offset = DI.getOffset(); 4628 const Value *V = DI.getValue(); 4629 if (!V) 4630 return 0; 4631 4632 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4633 // but do not always have a corresponding SDNode built. The SDNodeOrder 4634 // absolute, but not relative, values are different depending on whether 4635 // debug info exists. 4636 ++SDNodeOrder; 4637 SDDbgValue *SDV; 4638 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4639 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4640 DAG.AddDbgValue(SDV, 0, false); 4641 } else { 4642 // Do not use getValue() in here; we don't want to generate code at 4643 // this point if it hasn't been done yet. 4644 SDValue N = NodeMap[V]; 4645 if (!N.getNode() && isa<Argument>(V)) 4646 // Check unused arguments map. 4647 N = UnusedArgNodeMap[V]; 4648 if (N.getNode()) { 4649 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4650 SDV = DAG.getDbgValue(Variable, N.getNode(), 4651 N.getResNo(), Offset, dl, SDNodeOrder); 4652 DAG.AddDbgValue(SDV, N.getNode(), false); 4653 } 4654 } else if (!V->use_empty() ) { 4655 // Do not call getValue(V) yet, as we don't want to generate code. 4656 // Remember it for later. 4657 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4658 DanglingDebugInfoMap[V] = DDI; 4659 } else { 4660 // We may expand this to cover more cases. One case where we have no 4661 // data available is an unreferenced parameter. 4662 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4663 } 4664 } 4665 4666 // Build a debug info table entry. 4667 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4668 V = BCI->getOperand(0); 4669 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4670 // Don't handle byval struct arguments or VLAs, for example. 4671 if (!AI) { 4672 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4673 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4674 return 0; 4675 } 4676 DenseMap<const AllocaInst*, int>::iterator SI = 4677 FuncInfo.StaticAllocaMap.find(AI); 4678 if (SI == FuncInfo.StaticAllocaMap.end()) 4679 return 0; // VLAs. 4680 int FI = SI->second; 4681 4682 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4683 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4684 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4685 return 0; 4686 } 4687 4688 case Intrinsic::eh_typeid_for: { 4689 // Find the type id for the given typeinfo. 4690 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4691 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4692 Res = DAG.getConstant(TypeID, MVT::i32); 4693 setValue(&I, Res); 4694 return 0; 4695 } 4696 4697 case Intrinsic::eh_return_i32: 4698 case Intrinsic::eh_return_i64: 4699 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4700 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4701 MVT::Other, 4702 getControlRoot(), 4703 getValue(I.getArgOperand(0)), 4704 getValue(I.getArgOperand(1)))); 4705 return 0; 4706 case Intrinsic::eh_unwind_init: 4707 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4708 return 0; 4709 case Intrinsic::eh_dwarf_cfa: { 4710 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4711 TLI.getPointerTy()); 4712 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4713 TLI.getPointerTy(), 4714 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4715 TLI.getPointerTy()), 4716 CfaArg); 4717 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4718 TLI.getPointerTy(), 4719 DAG.getConstant(0, TLI.getPointerTy())); 4720 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4721 FA, Offset)); 4722 return 0; 4723 } 4724 case Intrinsic::eh_sjlj_callsite: { 4725 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4726 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4727 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4728 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4729 4730 MMI.setCurrentCallSite(CI->getZExtValue()); 4731 return 0; 4732 } 4733 case Intrinsic::eh_sjlj_functioncontext: { 4734 // Get and store the index of the function context. 4735 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4736 AllocaInst *FnCtx = 4737 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4738 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4739 MFI->setFunctionContextIndex(FI); 4740 return 0; 4741 } 4742 case Intrinsic::eh_sjlj_setjmp: { 4743 SDValue Ops[2]; 4744 Ops[0] = getRoot(); 4745 Ops[1] = getValue(I.getArgOperand(0)); 4746 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, 4747 DAG.getVTList(MVT::i32, MVT::Other), 4748 Ops, 2); 4749 setValue(&I, Op.getValue(0)); 4750 DAG.setRoot(Op.getValue(1)); 4751 return 0; 4752 } 4753 case Intrinsic::eh_sjlj_longjmp: { 4754 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4755 getRoot(), getValue(I.getArgOperand(0)))); 4756 return 0; 4757 } 4758 4759 case Intrinsic::x86_mmx_pslli_w: 4760 case Intrinsic::x86_mmx_pslli_d: 4761 case Intrinsic::x86_mmx_pslli_q: 4762 case Intrinsic::x86_mmx_psrli_w: 4763 case Intrinsic::x86_mmx_psrli_d: 4764 case Intrinsic::x86_mmx_psrli_q: 4765 case Intrinsic::x86_mmx_psrai_w: 4766 case Intrinsic::x86_mmx_psrai_d: { 4767 SDValue ShAmt = getValue(I.getArgOperand(1)); 4768 if (isa<ConstantSDNode>(ShAmt)) { 4769 visitTargetIntrinsic(I, Intrinsic); 4770 return 0; 4771 } 4772 unsigned NewIntrinsic = 0; 4773 EVT ShAmtVT = MVT::v2i32; 4774 switch (Intrinsic) { 4775 case Intrinsic::x86_mmx_pslli_w: 4776 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4777 break; 4778 case Intrinsic::x86_mmx_pslli_d: 4779 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4780 break; 4781 case Intrinsic::x86_mmx_pslli_q: 4782 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4783 break; 4784 case Intrinsic::x86_mmx_psrli_w: 4785 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4786 break; 4787 case Intrinsic::x86_mmx_psrli_d: 4788 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4789 break; 4790 case Intrinsic::x86_mmx_psrli_q: 4791 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4792 break; 4793 case Intrinsic::x86_mmx_psrai_w: 4794 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4795 break; 4796 case Intrinsic::x86_mmx_psrai_d: 4797 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4798 break; 4799 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4800 } 4801 4802 // The vector shift intrinsics with scalars uses 32b shift amounts but 4803 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4804 // to be zero. 4805 // We must do this early because v2i32 is not a legal type. 4806 DebugLoc dl = getCurDebugLoc(); 4807 SDValue ShOps[2]; 4808 ShOps[0] = ShAmt; 4809 ShOps[1] = DAG.getConstant(0, MVT::i32); 4810 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4811 EVT DestVT = TLI.getValueType(I.getType()); 4812 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4813 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4814 DAG.getConstant(NewIntrinsic, MVT::i32), 4815 getValue(I.getArgOperand(0)), ShAmt); 4816 setValue(&I, Res); 4817 return 0; 4818 } 4819 case Intrinsic::x86_avx_vinsertf128_pd_256: 4820 case Intrinsic::x86_avx_vinsertf128_ps_256: 4821 case Intrinsic::x86_avx_vinsertf128_si_256: 4822 case Intrinsic::x86_avx2_vinserti128: { 4823 DebugLoc dl = getCurDebugLoc(); 4824 EVT DestVT = TLI.getValueType(I.getType()); 4825 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 4826 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4827 ElVT.getVectorNumElements(); 4828 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT, 4829 getValue(I.getArgOperand(0)), 4830 getValue(I.getArgOperand(1)), 4831 DAG.getConstant(Idx, MVT::i32)); 4832 setValue(&I, Res); 4833 return 0; 4834 } 4835 case Intrinsic::convertff: 4836 case Intrinsic::convertfsi: 4837 case Intrinsic::convertfui: 4838 case Intrinsic::convertsif: 4839 case Intrinsic::convertuif: 4840 case Intrinsic::convertss: 4841 case Intrinsic::convertsu: 4842 case Intrinsic::convertus: 4843 case Intrinsic::convertuu: { 4844 ISD::CvtCode Code = ISD::CVT_INVALID; 4845 switch (Intrinsic) { 4846 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4847 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4848 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4849 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4850 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4851 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4852 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4853 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4854 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4855 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4856 } 4857 EVT DestVT = TLI.getValueType(I.getType()); 4858 const Value *Op1 = I.getArgOperand(0); 4859 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4860 DAG.getValueType(DestVT), 4861 DAG.getValueType(getValue(Op1).getValueType()), 4862 getValue(I.getArgOperand(1)), 4863 getValue(I.getArgOperand(2)), 4864 Code); 4865 setValue(&I, Res); 4866 return 0; 4867 } 4868 case Intrinsic::sqrt: 4869 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4870 getValue(I.getArgOperand(0)).getValueType(), 4871 getValue(I.getArgOperand(0)))); 4872 return 0; 4873 case Intrinsic::powi: 4874 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4875 getValue(I.getArgOperand(1)), DAG)); 4876 return 0; 4877 case Intrinsic::sin: 4878 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4879 getValue(I.getArgOperand(0)).getValueType(), 4880 getValue(I.getArgOperand(0)))); 4881 return 0; 4882 case Intrinsic::cos: 4883 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4884 getValue(I.getArgOperand(0)).getValueType(), 4885 getValue(I.getArgOperand(0)))); 4886 return 0; 4887 case Intrinsic::log: 4888 visitLog(I); 4889 return 0; 4890 case Intrinsic::log2: 4891 visitLog2(I); 4892 return 0; 4893 case Intrinsic::log10: 4894 visitLog10(I); 4895 return 0; 4896 case Intrinsic::exp: 4897 visitExp(I); 4898 return 0; 4899 case Intrinsic::exp2: 4900 visitExp2(I); 4901 return 0; 4902 case Intrinsic::pow: 4903 visitPow(I); 4904 return 0; 4905 case Intrinsic::fma: 4906 setValue(&I, DAG.getNode(ISD::FMA, dl, 4907 getValue(I.getArgOperand(0)).getValueType(), 4908 getValue(I.getArgOperand(0)), 4909 getValue(I.getArgOperand(1)), 4910 getValue(I.getArgOperand(2)))); 4911 return 0; 4912 case Intrinsic::convert_to_fp16: 4913 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4914 MVT::i16, getValue(I.getArgOperand(0)))); 4915 return 0; 4916 case Intrinsic::convert_from_fp16: 4917 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4918 MVT::f32, getValue(I.getArgOperand(0)))); 4919 return 0; 4920 case Intrinsic::pcmarker: { 4921 SDValue Tmp = getValue(I.getArgOperand(0)); 4922 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4923 return 0; 4924 } 4925 case Intrinsic::readcyclecounter: { 4926 SDValue Op = getRoot(); 4927 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4928 DAG.getVTList(MVT::i64, MVT::Other), 4929 &Op, 1); 4930 setValue(&I, Res); 4931 DAG.setRoot(Res.getValue(1)); 4932 return 0; 4933 } 4934 case Intrinsic::bswap: 4935 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4936 getValue(I.getArgOperand(0)).getValueType(), 4937 getValue(I.getArgOperand(0)))); 4938 return 0; 4939 case Intrinsic::cttz: { 4940 SDValue Arg = getValue(I.getArgOperand(0)); 4941 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4942 EVT Ty = Arg.getValueType(); 4943 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4944 dl, Ty, Arg)); 4945 return 0; 4946 } 4947 case Intrinsic::ctlz: { 4948 SDValue Arg = getValue(I.getArgOperand(0)); 4949 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4950 EVT Ty = Arg.getValueType(); 4951 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4952 dl, Ty, Arg)); 4953 return 0; 4954 } 4955 case Intrinsic::ctpop: { 4956 SDValue Arg = getValue(I.getArgOperand(0)); 4957 EVT Ty = Arg.getValueType(); 4958 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4959 return 0; 4960 } 4961 case Intrinsic::stacksave: { 4962 SDValue Op = getRoot(); 4963 Res = DAG.getNode(ISD::STACKSAVE, dl, 4964 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4965 setValue(&I, Res); 4966 DAG.setRoot(Res.getValue(1)); 4967 return 0; 4968 } 4969 case Intrinsic::stackrestore: { 4970 Res = getValue(I.getArgOperand(0)); 4971 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4972 return 0; 4973 } 4974 case Intrinsic::stackprotector: { 4975 // Emit code into the DAG to store the stack guard onto the stack. 4976 MachineFunction &MF = DAG.getMachineFunction(); 4977 MachineFrameInfo *MFI = MF.getFrameInfo(); 4978 EVT PtrTy = TLI.getPointerTy(); 4979 4980 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4981 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4982 4983 int FI = FuncInfo.StaticAllocaMap[Slot]; 4984 MFI->setStackProtectorIndex(FI); 4985 4986 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4987 4988 // Store the stack protector onto the stack. 4989 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4990 MachinePointerInfo::getFixedStack(FI), 4991 true, false, 0); 4992 setValue(&I, Res); 4993 DAG.setRoot(Res); 4994 return 0; 4995 } 4996 case Intrinsic::objectsize: { 4997 // If we don't know by now, we're never going to know. 4998 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4999 5000 assert(CI && "Non-constant type in __builtin_object_size?"); 5001 5002 SDValue Arg = getValue(I.getCalledValue()); 5003 EVT Ty = Arg.getValueType(); 5004 5005 if (CI->isZero()) 5006 Res = DAG.getConstant(-1ULL, Ty); 5007 else 5008 Res = DAG.getConstant(0, Ty); 5009 5010 setValue(&I, Res); 5011 return 0; 5012 } 5013 case Intrinsic::var_annotation: 5014 // Discard annotate attributes 5015 return 0; 5016 5017 case Intrinsic::init_trampoline: { 5018 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5019 5020 SDValue Ops[6]; 5021 Ops[0] = getRoot(); 5022 Ops[1] = getValue(I.getArgOperand(0)); 5023 Ops[2] = getValue(I.getArgOperand(1)); 5024 Ops[3] = getValue(I.getArgOperand(2)); 5025 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5026 Ops[5] = DAG.getSrcValue(F); 5027 5028 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6); 5029 5030 DAG.setRoot(Res); 5031 return 0; 5032 } 5033 case Intrinsic::adjust_trampoline: { 5034 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl, 5035 TLI.getPointerTy(), 5036 getValue(I.getArgOperand(0)))); 5037 return 0; 5038 } 5039 case Intrinsic::gcroot: 5040 if (GFI) { 5041 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5042 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5043 5044 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5045 GFI->addStackRoot(FI->getIndex(), TypeMap); 5046 } 5047 return 0; 5048 case Intrinsic::gcread: 5049 case Intrinsic::gcwrite: 5050 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5051 case Intrinsic::flt_rounds: 5052 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 5053 return 0; 5054 5055 case Intrinsic::expect: { 5056 // Just replace __builtin_expect(exp, c) with EXP. 5057 setValue(&I, getValue(I.getArgOperand(0))); 5058 return 0; 5059 } 5060 5061 case Intrinsic::trap: { 5062 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5063 if (TrapFuncName.empty()) { 5064 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 5065 return 0; 5066 } 5067 TargetLowering::ArgListTy Args; 5068 TargetLowering:: 5069 CallLoweringInfo CLI(getRoot(), I.getType(), 5070 false, false, false, false, 0, CallingConv::C, 5071 /*isTailCall=*/false, 5072 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5073 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5074 Args, DAG, getCurDebugLoc()); 5075 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5076 DAG.setRoot(Result.second); 5077 return 0; 5078 } 5079 case Intrinsic::debugtrap: { 5080 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, dl,MVT::Other, getRoot())); 5081 return 0; 5082 } 5083 case Intrinsic::uadd_with_overflow: 5084 case Intrinsic::sadd_with_overflow: 5085 case Intrinsic::usub_with_overflow: 5086 case Intrinsic::ssub_with_overflow: 5087 case Intrinsic::umul_with_overflow: 5088 case Intrinsic::smul_with_overflow: { 5089 ISD::NodeType Op; 5090 switch (Intrinsic) { 5091 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5092 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5093 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5094 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5095 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5096 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5097 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5098 } 5099 SDValue Op1 = getValue(I.getArgOperand(0)); 5100 SDValue Op2 = getValue(I.getArgOperand(1)); 5101 5102 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5103 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 5104 return 0; 5105 } 5106 case Intrinsic::prefetch: { 5107 SDValue Ops[5]; 5108 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5109 Ops[0] = getRoot(); 5110 Ops[1] = getValue(I.getArgOperand(0)); 5111 Ops[2] = getValue(I.getArgOperand(1)); 5112 Ops[3] = getValue(I.getArgOperand(2)); 5113 Ops[4] = getValue(I.getArgOperand(3)); 5114 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 5115 DAG.getVTList(MVT::Other), 5116 &Ops[0], 5, 5117 EVT::getIntegerVT(*Context, 8), 5118 MachinePointerInfo(I.getArgOperand(0)), 5119 0, /* align */ 5120 false, /* volatile */ 5121 rw==0, /* read */ 5122 rw==1)); /* write */ 5123 return 0; 5124 } 5125 5126 case Intrinsic::invariant_start: 5127 case Intrinsic::lifetime_start: 5128 // Discard region information. 5129 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5130 return 0; 5131 case Intrinsic::invariant_end: 5132 case Intrinsic::lifetime_end: 5133 // Discard region information. 5134 return 0; 5135 } 5136 } 5137 5138 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5139 bool isTailCall, 5140 MachineBasicBlock *LandingPad) { 5141 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5142 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5143 Type *RetTy = FTy->getReturnType(); 5144 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5145 MCSymbol *BeginLabel = 0; 5146 5147 TargetLowering::ArgListTy Args; 5148 TargetLowering::ArgListEntry Entry; 5149 Args.reserve(CS.arg_size()); 5150 5151 // Check whether the function can return without sret-demotion. 5152 SmallVector<ISD::OutputArg, 4> Outs; 5153 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 5154 Outs, TLI); 5155 5156 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 5157 DAG.getMachineFunction(), 5158 FTy->isVarArg(), Outs, 5159 FTy->getContext()); 5160 5161 SDValue DemoteStackSlot; 5162 int DemoteStackIdx = -100; 5163 5164 if (!CanLowerReturn) { 5165 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 5166 FTy->getReturnType()); 5167 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 5168 FTy->getReturnType()); 5169 MachineFunction &MF = DAG.getMachineFunction(); 5170 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5171 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5172 5173 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 5174 Entry.Node = DemoteStackSlot; 5175 Entry.Ty = StackSlotPtrType; 5176 Entry.isSExt = false; 5177 Entry.isZExt = false; 5178 Entry.isInReg = false; 5179 Entry.isSRet = true; 5180 Entry.isNest = false; 5181 Entry.isByVal = false; 5182 Entry.Alignment = Align; 5183 Args.push_back(Entry); 5184 RetTy = Type::getVoidTy(FTy->getContext()); 5185 } 5186 5187 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5188 i != e; ++i) { 5189 const Value *V = *i; 5190 5191 // Skip empty types 5192 if (V->getType()->isEmptyTy()) 5193 continue; 5194 5195 SDValue ArgNode = getValue(V); 5196 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5197 5198 unsigned attrInd = i - CS.arg_begin() + 1; 5199 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5200 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5201 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5202 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5203 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5204 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5205 Entry.Alignment = CS.getParamAlignment(attrInd); 5206 Args.push_back(Entry); 5207 } 5208 5209 if (LandingPad) { 5210 // Insert a label before the invoke call to mark the try range. This can be 5211 // used to detect deletion of the invoke via the MachineModuleInfo. 5212 BeginLabel = MMI.getContext().CreateTempSymbol(); 5213 5214 // For SjLj, keep track of which landing pads go with which invokes 5215 // so as to maintain the ordering of pads in the LSDA. 5216 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5217 if (CallSiteIndex) { 5218 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5219 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5220 5221 // Now that the call site is handled, stop tracking it. 5222 MMI.setCurrentCallSite(0); 5223 } 5224 5225 // Both PendingLoads and PendingExports must be flushed here; 5226 // this call might not return. 5227 (void)getRoot(); 5228 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5229 } 5230 5231 // Check if target-independent constraints permit a tail call here. 5232 // Target-dependent constraints are checked within TLI.LowerCallTo. 5233 if (isTailCall && 5234 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5235 isTailCall = false; 5236 5237 // If there's a possibility that fast-isel has already selected some amount 5238 // of the current basic block, don't emit a tail call. 5239 if (isTailCall && TM.Options.EnableFastISel) 5240 isTailCall = false; 5241 5242 TargetLowering:: 5243 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5244 getCurDebugLoc(), CS); 5245 std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI); 5246 assert((isTailCall || Result.second.getNode()) && 5247 "Non-null chain expected with non-tail call!"); 5248 assert((Result.second.getNode() || !Result.first.getNode()) && 5249 "Null value expected with tail call!"); 5250 if (Result.first.getNode()) { 5251 setValue(CS.getInstruction(), Result.first); 5252 } else if (!CanLowerReturn && Result.second.getNode()) { 5253 // The instruction result is the result of loading from the 5254 // hidden sret parameter. 5255 SmallVector<EVT, 1> PVTs; 5256 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5257 5258 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5259 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5260 EVT PtrVT = PVTs[0]; 5261 5262 SmallVector<EVT, 4> RetTys; 5263 SmallVector<uint64_t, 4> Offsets; 5264 RetTy = FTy->getReturnType(); 5265 ComputeValueVTs(TLI, RetTy, RetTys, &Offsets); 5266 5267 unsigned NumValues = RetTys.size(); 5268 SmallVector<SDValue, 4> Values(NumValues); 5269 SmallVector<SDValue, 4> Chains(NumValues); 5270 5271 for (unsigned i = 0; i < NumValues; ++i) { 5272 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5273 DemoteStackSlot, 5274 DAG.getConstant(Offsets[i], PtrVT)); 5275 SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add, 5276 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5277 false, false, false, 1); 5278 Values[i] = L; 5279 Chains[i] = L.getValue(1); 5280 } 5281 5282 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5283 MVT::Other, &Chains[0], NumValues); 5284 PendingLoads.push_back(Chain); 5285 5286 setValue(CS.getInstruction(), 5287 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5288 DAG.getVTList(&RetTys[0], RetTys.size()), 5289 &Values[0], Values.size())); 5290 } 5291 5292 // Assign order to nodes here. If the call does not produce a result, it won't 5293 // be mapped to a SDNode and visit() will not assign it an order number. 5294 if (!Result.second.getNode()) { 5295 // As a special case, a null chain means that a tail call has been emitted and 5296 // the DAG root is already updated. 5297 HasTailCall = true; 5298 ++SDNodeOrder; 5299 AssignOrderingToNode(DAG.getRoot().getNode()); 5300 } else { 5301 DAG.setRoot(Result.second); 5302 ++SDNodeOrder; 5303 AssignOrderingToNode(Result.second.getNode()); 5304 } 5305 5306 if (LandingPad) { 5307 // Insert a label at the end of the invoke call to mark the try range. This 5308 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5309 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5310 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5311 5312 // Inform MachineModuleInfo of range. 5313 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5314 } 5315 } 5316 5317 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5318 /// value is equal or not-equal to zero. 5319 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5320 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5321 UI != E; ++UI) { 5322 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5323 if (IC->isEquality()) 5324 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5325 if (C->isNullValue()) 5326 continue; 5327 // Unknown instruction. 5328 return false; 5329 } 5330 return true; 5331 } 5332 5333 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5334 Type *LoadTy, 5335 SelectionDAGBuilder &Builder) { 5336 5337 // Check to see if this load can be trivially constant folded, e.g. if the 5338 // input is from a string literal. 5339 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5340 // Cast pointer to the type we really want to load. 5341 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5342 PointerType::getUnqual(LoadTy)); 5343 5344 if (const Constant *LoadCst = 5345 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5346 Builder.TD)) 5347 return Builder.getValue(LoadCst); 5348 } 5349 5350 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5351 // still constant memory, the input chain can be the entry node. 5352 SDValue Root; 5353 bool ConstantMemory = false; 5354 5355 // Do not serialize (non-volatile) loads of constant memory with anything. 5356 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5357 Root = Builder.DAG.getEntryNode(); 5358 ConstantMemory = true; 5359 } else { 5360 // Do not serialize non-volatile loads against each other. 5361 Root = Builder.DAG.getRoot(); 5362 } 5363 5364 SDValue Ptr = Builder.getValue(PtrVal); 5365 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5366 Ptr, MachinePointerInfo(PtrVal), 5367 false /*volatile*/, 5368 false /*nontemporal*/, 5369 false /*isinvariant*/, 1 /* align=1 */); 5370 5371 if (!ConstantMemory) 5372 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5373 return LoadVal; 5374 } 5375 5376 5377 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5378 /// If so, return true and lower it, otherwise return false and it will be 5379 /// lowered like a normal call. 5380 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5381 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5382 if (I.getNumArgOperands() != 3) 5383 return false; 5384 5385 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5386 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5387 !I.getArgOperand(2)->getType()->isIntegerTy() || 5388 !I.getType()->isIntegerTy()) 5389 return false; 5390 5391 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5392 5393 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5394 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5395 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5396 bool ActuallyDoIt = true; 5397 MVT LoadVT; 5398 Type *LoadTy; 5399 switch (Size->getZExtValue()) { 5400 default: 5401 LoadVT = MVT::Other; 5402 LoadTy = 0; 5403 ActuallyDoIt = false; 5404 break; 5405 case 2: 5406 LoadVT = MVT::i16; 5407 LoadTy = Type::getInt16Ty(Size->getContext()); 5408 break; 5409 case 4: 5410 LoadVT = MVT::i32; 5411 LoadTy = Type::getInt32Ty(Size->getContext()); 5412 break; 5413 case 8: 5414 LoadVT = MVT::i64; 5415 LoadTy = Type::getInt64Ty(Size->getContext()); 5416 break; 5417 /* 5418 case 16: 5419 LoadVT = MVT::v4i32; 5420 LoadTy = Type::getInt32Ty(Size->getContext()); 5421 LoadTy = VectorType::get(LoadTy, 4); 5422 break; 5423 */ 5424 } 5425 5426 // This turns into unaligned loads. We only do this if the target natively 5427 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5428 // we'll only produce a small number of byte loads. 5429 5430 // Require that we can find a legal MVT, and only do this if the target 5431 // supports unaligned loads of that type. Expanding into byte loads would 5432 // bloat the code. 5433 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5434 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5435 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5436 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5437 ActuallyDoIt = false; 5438 } 5439 5440 if (ActuallyDoIt) { 5441 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5442 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5443 5444 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5445 ISD::SETNE); 5446 EVT CallVT = TLI.getValueType(I.getType(), true); 5447 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5448 return true; 5449 } 5450 } 5451 5452 5453 return false; 5454 } 5455 5456 5457 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5458 // Handle inline assembly differently. 5459 if (isa<InlineAsm>(I.getCalledValue())) { 5460 visitInlineAsm(&I); 5461 return; 5462 } 5463 5464 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5465 ComputeUsesVAFloatArgument(I, &MMI); 5466 5467 const char *RenameFn = 0; 5468 if (Function *F = I.getCalledFunction()) { 5469 if (F->isDeclaration()) { 5470 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5471 if (unsigned IID = II->getIntrinsicID(F)) { 5472 RenameFn = visitIntrinsicCall(I, IID); 5473 if (!RenameFn) 5474 return; 5475 } 5476 } 5477 if (unsigned IID = F->getIntrinsicID()) { 5478 RenameFn = visitIntrinsicCall(I, IID); 5479 if (!RenameFn) 5480 return; 5481 } 5482 } 5483 5484 // Check for well-known libc/libm calls. If the function is internal, it 5485 // can't be a library call. 5486 if (!F->hasLocalLinkage() && F->hasName()) { 5487 StringRef Name = F->getName(); 5488 if ((LibInfo->has(LibFunc::copysign) && Name == "copysign") || 5489 (LibInfo->has(LibFunc::copysignf) && Name == "copysignf") || 5490 (LibInfo->has(LibFunc::copysignl) && Name == "copysignl")) { 5491 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5492 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5493 I.getType() == I.getArgOperand(0)->getType() && 5494 I.getType() == I.getArgOperand(1)->getType()) { 5495 SDValue LHS = getValue(I.getArgOperand(0)); 5496 SDValue RHS = getValue(I.getArgOperand(1)); 5497 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5498 LHS.getValueType(), LHS, RHS)); 5499 return; 5500 } 5501 } else if ((LibInfo->has(LibFunc::fabs) && Name == "fabs") || 5502 (LibInfo->has(LibFunc::fabsf) && Name == "fabsf") || 5503 (LibInfo->has(LibFunc::fabsl) && Name == "fabsl")) { 5504 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5505 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5506 I.getType() == I.getArgOperand(0)->getType()) { 5507 SDValue Tmp = getValue(I.getArgOperand(0)); 5508 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5509 Tmp.getValueType(), Tmp)); 5510 return; 5511 } 5512 } else if ((LibInfo->has(LibFunc::sin) && Name == "sin") || 5513 (LibInfo->has(LibFunc::sinf) && Name == "sinf") || 5514 (LibInfo->has(LibFunc::sinl) && Name == "sinl")) { 5515 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5516 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5517 I.getType() == I.getArgOperand(0)->getType() && 5518 I.onlyReadsMemory()) { 5519 SDValue Tmp = getValue(I.getArgOperand(0)); 5520 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5521 Tmp.getValueType(), Tmp)); 5522 return; 5523 } 5524 } else if ((LibInfo->has(LibFunc::cos) && Name == "cos") || 5525 (LibInfo->has(LibFunc::cosf) && Name == "cosf") || 5526 (LibInfo->has(LibFunc::cosl) && Name == "cosl")) { 5527 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5528 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5529 I.getType() == I.getArgOperand(0)->getType() && 5530 I.onlyReadsMemory()) { 5531 SDValue Tmp = getValue(I.getArgOperand(0)); 5532 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5533 Tmp.getValueType(), Tmp)); 5534 return; 5535 } 5536 } else if ((LibInfo->has(LibFunc::sqrt) && Name == "sqrt") || 5537 (LibInfo->has(LibFunc::sqrtf) && Name == "sqrtf") || 5538 (LibInfo->has(LibFunc::sqrtl) && Name == "sqrtl")) { 5539 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5540 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5541 I.getType() == I.getArgOperand(0)->getType() && 5542 I.onlyReadsMemory()) { 5543 SDValue Tmp = getValue(I.getArgOperand(0)); 5544 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5545 Tmp.getValueType(), Tmp)); 5546 return; 5547 } 5548 } else if ((LibInfo->has(LibFunc::floor) && Name == "floor") || 5549 (LibInfo->has(LibFunc::floorf) && Name == "floorf") || 5550 (LibInfo->has(LibFunc::floorl) && Name == "floorl")) { 5551 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5552 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5553 I.getType() == I.getArgOperand(0)->getType()) { 5554 SDValue Tmp = getValue(I.getArgOperand(0)); 5555 setValue(&I, DAG.getNode(ISD::FFLOOR, getCurDebugLoc(), 5556 Tmp.getValueType(), Tmp)); 5557 return; 5558 } 5559 } else if ((LibInfo->has(LibFunc::nearbyint) && Name == "nearbyint") || 5560 (LibInfo->has(LibFunc::nearbyintf) && Name == "nearbyintf") || 5561 (LibInfo->has(LibFunc::nearbyintl) && Name == "nearbyintl")) { 5562 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5563 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5564 I.getType() == I.getArgOperand(0)->getType()) { 5565 SDValue Tmp = getValue(I.getArgOperand(0)); 5566 setValue(&I, DAG.getNode(ISD::FNEARBYINT, getCurDebugLoc(), 5567 Tmp.getValueType(), Tmp)); 5568 return; 5569 } 5570 } else if ((LibInfo->has(LibFunc::ceil) && Name == "ceil") || 5571 (LibInfo->has(LibFunc::ceilf) && Name == "ceilf") || 5572 (LibInfo->has(LibFunc::ceill) && Name == "ceill")) { 5573 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5574 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5575 I.getType() == I.getArgOperand(0)->getType()) { 5576 SDValue Tmp = getValue(I.getArgOperand(0)); 5577 setValue(&I, DAG.getNode(ISD::FCEIL, getCurDebugLoc(), 5578 Tmp.getValueType(), Tmp)); 5579 return; 5580 } 5581 } else if ((LibInfo->has(LibFunc::rint) && Name == "rint") || 5582 (LibInfo->has(LibFunc::rintf) && Name == "rintf") || 5583 (LibInfo->has(LibFunc::rintl) && Name == "rintl")) { 5584 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5585 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5586 I.getType() == I.getArgOperand(0)->getType()) { 5587 SDValue Tmp = getValue(I.getArgOperand(0)); 5588 setValue(&I, DAG.getNode(ISD::FRINT, getCurDebugLoc(), 5589 Tmp.getValueType(), Tmp)); 5590 return; 5591 } 5592 } else if ((LibInfo->has(LibFunc::trunc) && Name == "trunc") || 5593 (LibInfo->has(LibFunc::truncf) && Name == "truncf") || 5594 (LibInfo->has(LibFunc::truncl) && Name == "truncl")) { 5595 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5596 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5597 I.getType() == I.getArgOperand(0)->getType()) { 5598 SDValue Tmp = getValue(I.getArgOperand(0)); 5599 setValue(&I, DAG.getNode(ISD::FTRUNC, getCurDebugLoc(), 5600 Tmp.getValueType(), Tmp)); 5601 return; 5602 } 5603 } else if ((LibInfo->has(LibFunc::log2) && Name == "log2") || 5604 (LibInfo->has(LibFunc::log2f) && Name == "log2f") || 5605 (LibInfo->has(LibFunc::log2l) && Name == "log2l")) { 5606 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5607 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5608 I.getType() == I.getArgOperand(0)->getType() && 5609 I.onlyReadsMemory()) { 5610 SDValue Tmp = getValue(I.getArgOperand(0)); 5611 setValue(&I, DAG.getNode(ISD::FLOG2, getCurDebugLoc(), 5612 Tmp.getValueType(), Tmp)); 5613 return; 5614 } 5615 } else if ((LibInfo->has(LibFunc::exp2) && Name == "exp2") || 5616 (LibInfo->has(LibFunc::exp2f) && Name == "exp2f") || 5617 (LibInfo->has(LibFunc::exp2l) && Name == "exp2l")) { 5618 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5619 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5620 I.getType() == I.getArgOperand(0)->getType() && 5621 I.onlyReadsMemory()) { 5622 SDValue Tmp = getValue(I.getArgOperand(0)); 5623 setValue(&I, DAG.getNode(ISD::FEXP2, getCurDebugLoc(), 5624 Tmp.getValueType(), Tmp)); 5625 return; 5626 } 5627 } else if (Name == "memcmp") { 5628 if (visitMemCmpCall(I)) 5629 return; 5630 } 5631 } 5632 } 5633 5634 SDValue Callee; 5635 if (!RenameFn) 5636 Callee = getValue(I.getCalledValue()); 5637 else 5638 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5639 5640 // Check if we can potentially perform a tail call. More detailed checking is 5641 // be done within LowerCallTo, after more information about the call is known. 5642 LowerCallTo(&I, Callee, I.isTailCall()); 5643 } 5644 5645 namespace { 5646 5647 /// AsmOperandInfo - This contains information for each constraint that we are 5648 /// lowering. 5649 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5650 public: 5651 /// CallOperand - If this is the result output operand or a clobber 5652 /// this is null, otherwise it is the incoming operand to the CallInst. 5653 /// This gets modified as the asm is processed. 5654 SDValue CallOperand; 5655 5656 /// AssignedRegs - If this is a register or register class operand, this 5657 /// contains the set of register corresponding to the operand. 5658 RegsForValue AssignedRegs; 5659 5660 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5661 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5662 } 5663 5664 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5665 /// corresponds to. If there is no Value* for this operand, it returns 5666 /// MVT::Other. 5667 EVT getCallOperandValEVT(LLVMContext &Context, 5668 const TargetLowering &TLI, 5669 const TargetData *TD) const { 5670 if (CallOperandVal == 0) return MVT::Other; 5671 5672 if (isa<BasicBlock>(CallOperandVal)) 5673 return TLI.getPointerTy(); 5674 5675 llvm::Type *OpTy = CallOperandVal->getType(); 5676 5677 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5678 // If this is an indirect operand, the operand is a pointer to the 5679 // accessed type. 5680 if (isIndirect) { 5681 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5682 if (!PtrTy) 5683 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5684 OpTy = PtrTy->getElementType(); 5685 } 5686 5687 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5688 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5689 if (STy->getNumElements() == 1) 5690 OpTy = STy->getElementType(0); 5691 5692 // If OpTy is not a single value, it may be a struct/union that we 5693 // can tile with integers. 5694 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5695 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5696 switch (BitSize) { 5697 default: break; 5698 case 1: 5699 case 8: 5700 case 16: 5701 case 32: 5702 case 64: 5703 case 128: 5704 OpTy = IntegerType::get(Context, BitSize); 5705 break; 5706 } 5707 } 5708 5709 return TLI.getValueType(OpTy, true); 5710 } 5711 }; 5712 5713 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5714 5715 } // end anonymous namespace 5716 5717 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5718 /// specified operand. We prefer to assign virtual registers, to allow the 5719 /// register allocator to handle the assignment process. However, if the asm 5720 /// uses features that we can't model on machineinstrs, we have SDISel do the 5721 /// allocation. This produces generally horrible, but correct, code. 5722 /// 5723 /// OpInfo describes the operand. 5724 /// 5725 static void GetRegistersForValue(SelectionDAG &DAG, 5726 const TargetLowering &TLI, 5727 DebugLoc DL, 5728 SDISelAsmOperandInfo &OpInfo) { 5729 LLVMContext &Context = *DAG.getContext(); 5730 5731 MachineFunction &MF = DAG.getMachineFunction(); 5732 SmallVector<unsigned, 4> Regs; 5733 5734 // If this is a constraint for a single physreg, or a constraint for a 5735 // register class, find it. 5736 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5737 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5738 OpInfo.ConstraintVT); 5739 5740 unsigned NumRegs = 1; 5741 if (OpInfo.ConstraintVT != MVT::Other) { 5742 // If this is a FP input in an integer register (or visa versa) insert a bit 5743 // cast of the input value. More generally, handle any case where the input 5744 // value disagrees with the register class we plan to stick this in. 5745 if (OpInfo.Type == InlineAsm::isInput && 5746 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5747 // Try to convert to the first EVT that the reg class contains. If the 5748 // types are identical size, use a bitcast to convert (e.g. two differing 5749 // vector types). 5750 EVT RegVT = *PhysReg.second->vt_begin(); 5751 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5752 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5753 RegVT, OpInfo.CallOperand); 5754 OpInfo.ConstraintVT = RegVT; 5755 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5756 // If the input is a FP value and we want it in FP registers, do a 5757 // bitcast to the corresponding integer type. This turns an f64 value 5758 // into i64, which can be passed with two i32 values on a 32-bit 5759 // machine. 5760 RegVT = EVT::getIntegerVT(Context, 5761 OpInfo.ConstraintVT.getSizeInBits()); 5762 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5763 RegVT, OpInfo.CallOperand); 5764 OpInfo.ConstraintVT = RegVT; 5765 } 5766 } 5767 5768 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5769 } 5770 5771 EVT RegVT; 5772 EVT ValueVT = OpInfo.ConstraintVT; 5773 5774 // If this is a constraint for a specific physical register, like {r17}, 5775 // assign it now. 5776 if (unsigned AssignedReg = PhysReg.first) { 5777 const TargetRegisterClass *RC = PhysReg.second; 5778 if (OpInfo.ConstraintVT == MVT::Other) 5779 ValueVT = *RC->vt_begin(); 5780 5781 // Get the actual register value type. This is important, because the user 5782 // may have asked for (e.g.) the AX register in i32 type. We need to 5783 // remember that AX is actually i16 to get the right extension. 5784 RegVT = *RC->vt_begin(); 5785 5786 // This is a explicit reference to a physical register. 5787 Regs.push_back(AssignedReg); 5788 5789 // If this is an expanded reference, add the rest of the regs to Regs. 5790 if (NumRegs != 1) { 5791 TargetRegisterClass::iterator I = RC->begin(); 5792 for (; *I != AssignedReg; ++I) 5793 assert(I != RC->end() && "Didn't find reg!"); 5794 5795 // Already added the first reg. 5796 --NumRegs; ++I; 5797 for (; NumRegs; --NumRegs, ++I) { 5798 assert(I != RC->end() && "Ran out of registers to allocate!"); 5799 Regs.push_back(*I); 5800 } 5801 } 5802 5803 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5804 return; 5805 } 5806 5807 // Otherwise, if this was a reference to an LLVM register class, create vregs 5808 // for this reference. 5809 if (const TargetRegisterClass *RC = PhysReg.second) { 5810 RegVT = *RC->vt_begin(); 5811 if (OpInfo.ConstraintVT == MVT::Other) 5812 ValueVT = RegVT; 5813 5814 // Create the appropriate number of virtual registers. 5815 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5816 for (; NumRegs; --NumRegs) 5817 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5818 5819 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5820 return; 5821 } 5822 5823 // Otherwise, we couldn't allocate enough registers for this. 5824 } 5825 5826 /// visitInlineAsm - Handle a call to an InlineAsm object. 5827 /// 5828 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5829 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5830 5831 /// ConstraintOperands - Information about all of the constraints. 5832 SDISelAsmOperandInfoVector ConstraintOperands; 5833 5834 TargetLowering::AsmOperandInfoVector 5835 TargetConstraints = TLI.ParseConstraints(CS); 5836 5837 bool hasMemory = false; 5838 5839 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5840 unsigned ResNo = 0; // ResNo - The result number of the next output. 5841 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5842 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5843 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5844 5845 EVT OpVT = MVT::Other; 5846 5847 // Compute the value type for each operand. 5848 switch (OpInfo.Type) { 5849 case InlineAsm::isOutput: 5850 // Indirect outputs just consume an argument. 5851 if (OpInfo.isIndirect) { 5852 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5853 break; 5854 } 5855 5856 // The return value of the call is this value. As such, there is no 5857 // corresponding argument. 5858 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5859 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5860 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5861 } else { 5862 assert(ResNo == 0 && "Asm only has one result!"); 5863 OpVT = TLI.getValueType(CS.getType()); 5864 } 5865 ++ResNo; 5866 break; 5867 case InlineAsm::isInput: 5868 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5869 break; 5870 case InlineAsm::isClobber: 5871 // Nothing to do. 5872 break; 5873 } 5874 5875 // If this is an input or an indirect output, process the call argument. 5876 // BasicBlocks are labels, currently appearing only in asm's. 5877 if (OpInfo.CallOperandVal) { 5878 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5879 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5880 } else { 5881 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5882 } 5883 5884 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5885 } 5886 5887 OpInfo.ConstraintVT = OpVT; 5888 5889 // Indirect operand accesses access memory. 5890 if (OpInfo.isIndirect) 5891 hasMemory = true; 5892 else { 5893 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5894 TargetLowering::ConstraintType 5895 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5896 if (CType == TargetLowering::C_Memory) { 5897 hasMemory = true; 5898 break; 5899 } 5900 } 5901 } 5902 } 5903 5904 SDValue Chain, Flag; 5905 5906 // We won't need to flush pending loads if this asm doesn't touch 5907 // memory and is nonvolatile. 5908 if (hasMemory || IA->hasSideEffects()) 5909 Chain = getRoot(); 5910 else 5911 Chain = DAG.getRoot(); 5912 5913 // Second pass over the constraints: compute which constraint option to use 5914 // and assign registers to constraints that want a specific physreg. 5915 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5916 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5917 5918 // If this is an output operand with a matching input operand, look up the 5919 // matching input. If their types mismatch, e.g. one is an integer, the 5920 // other is floating point, or their sizes are different, flag it as an 5921 // error. 5922 if (OpInfo.hasMatchingInput()) { 5923 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5924 5925 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5926 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 5927 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5928 OpInfo.ConstraintVT); 5929 std::pair<unsigned, const TargetRegisterClass*> InputRC = 5930 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 5931 Input.ConstraintVT); 5932 if ((OpInfo.ConstraintVT.isInteger() != 5933 Input.ConstraintVT.isInteger()) || 5934 (MatchRC.second != InputRC.second)) { 5935 report_fatal_error("Unsupported asm: input constraint" 5936 " with a matching output constraint of" 5937 " incompatible type!"); 5938 } 5939 Input.ConstraintVT = OpInfo.ConstraintVT; 5940 } 5941 } 5942 5943 // Compute the constraint code and ConstraintType to use. 5944 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5945 5946 // If this is a memory input, and if the operand is not indirect, do what we 5947 // need to to provide an address for the memory input. 5948 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5949 !OpInfo.isIndirect) { 5950 assert((OpInfo.isMultipleAlternative || 5951 (OpInfo.Type == InlineAsm::isInput)) && 5952 "Can only indirectify direct input operands!"); 5953 5954 // Memory operands really want the address of the value. If we don't have 5955 // an indirect input, put it in the constpool if we can, otherwise spill 5956 // it to a stack slot. 5957 // TODO: This isn't quite right. We need to handle these according to 5958 // the addressing mode that the constraint wants. Also, this may take 5959 // an additional register for the computation and we don't want that 5960 // either. 5961 5962 // If the operand is a float, integer, or vector constant, spill to a 5963 // constant pool entry to get its address. 5964 const Value *OpVal = OpInfo.CallOperandVal; 5965 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5966 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5967 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5968 TLI.getPointerTy()); 5969 } else { 5970 // Otherwise, create a stack slot and emit a store to it before the 5971 // asm. 5972 Type *Ty = OpVal->getType(); 5973 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5974 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5975 MachineFunction &MF = DAG.getMachineFunction(); 5976 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5977 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5978 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5979 OpInfo.CallOperand, StackSlot, 5980 MachinePointerInfo::getFixedStack(SSFI), 5981 false, false, 0); 5982 OpInfo.CallOperand = StackSlot; 5983 } 5984 5985 // There is no longer a Value* corresponding to this operand. 5986 OpInfo.CallOperandVal = 0; 5987 5988 // It is now an indirect operand. 5989 OpInfo.isIndirect = true; 5990 } 5991 5992 // If this constraint is for a specific register, allocate it before 5993 // anything else. 5994 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5995 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 5996 } 5997 5998 // Second pass - Loop over all of the operands, assigning virtual or physregs 5999 // to register class operands. 6000 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6001 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6002 6003 // C_Register operands have already been allocated, Other/Memory don't need 6004 // to be. 6005 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6006 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 6007 } 6008 6009 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6010 std::vector<SDValue> AsmNodeOperands; 6011 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6012 AsmNodeOperands.push_back( 6013 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6014 TLI.getPointerTy())); 6015 6016 // If we have a !srcloc metadata node associated with it, we want to attach 6017 // this to the ultimately generated inline asm machineinstr. To do this, we 6018 // pass in the third operand as this (potentially null) inline asm MDNode. 6019 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6020 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6021 6022 // Remember the HasSideEffect and AlignStack bits as operand 3. 6023 unsigned ExtraInfo = 0; 6024 if (IA->hasSideEffects()) 6025 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6026 if (IA->isAlignStack()) 6027 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6028 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6029 TLI.getPointerTy())); 6030 6031 // Loop over all of the inputs, copying the operand values into the 6032 // appropriate registers and processing the output regs. 6033 RegsForValue RetValRegs; 6034 6035 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6036 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6037 6038 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6039 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6040 6041 switch (OpInfo.Type) { 6042 case InlineAsm::isOutput: { 6043 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6044 OpInfo.ConstraintType != TargetLowering::C_Register) { 6045 // Memory output, or 'other' output (e.g. 'X' constraint). 6046 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6047 6048 // Add information to the INLINEASM node to know about this output. 6049 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6050 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6051 TLI.getPointerTy())); 6052 AsmNodeOperands.push_back(OpInfo.CallOperand); 6053 break; 6054 } 6055 6056 // Otherwise, this is a register or register class output. 6057 6058 // Copy the output from the appropriate register. Find a register that 6059 // we can use. 6060 if (OpInfo.AssignedRegs.Regs.empty()) { 6061 LLVMContext &Ctx = *DAG.getContext(); 6062 Ctx.emitError(CS.getInstruction(), 6063 "couldn't allocate output register for constraint '" + 6064 Twine(OpInfo.ConstraintCode) + "'"); 6065 break; 6066 } 6067 6068 // If this is an indirect operand, store through the pointer after the 6069 // asm. 6070 if (OpInfo.isIndirect) { 6071 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6072 OpInfo.CallOperandVal)); 6073 } else { 6074 // This is the result value of the call. 6075 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6076 // Concatenate this output onto the outputs list. 6077 RetValRegs.append(OpInfo.AssignedRegs); 6078 } 6079 6080 // Add information to the INLINEASM node to know that this register is 6081 // set. 6082 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6083 InlineAsm::Kind_RegDefEarlyClobber : 6084 InlineAsm::Kind_RegDef, 6085 false, 6086 0, 6087 DAG, 6088 AsmNodeOperands); 6089 break; 6090 } 6091 case InlineAsm::isInput: { 6092 SDValue InOperandVal = OpInfo.CallOperand; 6093 6094 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6095 // If this is required to match an output register we have already set, 6096 // just use its register. 6097 unsigned OperandNo = OpInfo.getMatchedOperand(); 6098 6099 // Scan until we find the definition we already emitted of this operand. 6100 // When we find it, create a RegsForValue operand. 6101 unsigned CurOp = InlineAsm::Op_FirstOperand; 6102 for (; OperandNo; --OperandNo) { 6103 // Advance to the next operand. 6104 unsigned OpFlag = 6105 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6106 assert((InlineAsm::isRegDefKind(OpFlag) || 6107 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6108 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6109 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6110 } 6111 6112 unsigned OpFlag = 6113 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6114 if (InlineAsm::isRegDefKind(OpFlag) || 6115 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6116 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6117 if (OpInfo.isIndirect) { 6118 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6119 LLVMContext &Ctx = *DAG.getContext(); 6120 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6121 " don't know how to handle tied " 6122 "indirect register inputs"); 6123 } 6124 6125 RegsForValue MatchedRegs; 6126 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6127 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 6128 MatchedRegs.RegVTs.push_back(RegVT); 6129 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6130 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6131 i != e; ++i) 6132 MatchedRegs.Regs.push_back 6133 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 6134 6135 // Use the produced MatchedRegs object to 6136 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6137 Chain, &Flag); 6138 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6139 true, OpInfo.getMatchedOperand(), 6140 DAG, AsmNodeOperands); 6141 break; 6142 } 6143 6144 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6145 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6146 "Unexpected number of operands"); 6147 // Add information to the INLINEASM node to know about this input. 6148 // See InlineAsm.h isUseOperandTiedToDef. 6149 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6150 OpInfo.getMatchedOperand()); 6151 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6152 TLI.getPointerTy())); 6153 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6154 break; 6155 } 6156 6157 // Treat indirect 'X' constraint as memory. 6158 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6159 OpInfo.isIndirect) 6160 OpInfo.ConstraintType = TargetLowering::C_Memory; 6161 6162 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6163 std::vector<SDValue> Ops; 6164 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6165 Ops, DAG); 6166 if (Ops.empty()) { 6167 LLVMContext &Ctx = *DAG.getContext(); 6168 Ctx.emitError(CS.getInstruction(), 6169 "invalid operand for inline asm constraint '" + 6170 Twine(OpInfo.ConstraintCode) + "'"); 6171 break; 6172 } 6173 6174 // Add information to the INLINEASM node to know about this input. 6175 unsigned ResOpType = 6176 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6177 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6178 TLI.getPointerTy())); 6179 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6180 break; 6181 } 6182 6183 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6184 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6185 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6186 "Memory operands expect pointer values"); 6187 6188 // Add information to the INLINEASM node to know about this input. 6189 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6190 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6191 TLI.getPointerTy())); 6192 AsmNodeOperands.push_back(InOperandVal); 6193 break; 6194 } 6195 6196 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6197 OpInfo.ConstraintType == TargetLowering::C_Register) && 6198 "Unknown constraint type!"); 6199 assert(!OpInfo.isIndirect && 6200 "Don't know how to handle indirect register inputs yet!"); 6201 6202 // Copy the input into the appropriate registers. 6203 if (OpInfo.AssignedRegs.Regs.empty()) { 6204 LLVMContext &Ctx = *DAG.getContext(); 6205 Ctx.emitError(CS.getInstruction(), 6206 "couldn't allocate input reg for constraint '" + 6207 Twine(OpInfo.ConstraintCode) + "'"); 6208 break; 6209 } 6210 6211 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6212 Chain, &Flag); 6213 6214 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6215 DAG, AsmNodeOperands); 6216 break; 6217 } 6218 case InlineAsm::isClobber: { 6219 // Add the clobbered value to the operand list, so that the register 6220 // allocator is aware that the physreg got clobbered. 6221 if (!OpInfo.AssignedRegs.Regs.empty()) 6222 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6223 false, 0, DAG, 6224 AsmNodeOperands); 6225 break; 6226 } 6227 } 6228 } 6229 6230 // Finish up input operands. Set the input chain and add the flag last. 6231 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6232 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6233 6234 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6235 DAG.getVTList(MVT::Other, MVT::Glue), 6236 &AsmNodeOperands[0], AsmNodeOperands.size()); 6237 Flag = Chain.getValue(1); 6238 6239 // If this asm returns a register value, copy the result from that register 6240 // and set it as the value of the call. 6241 if (!RetValRegs.Regs.empty()) { 6242 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6243 Chain, &Flag); 6244 6245 // FIXME: Why don't we do this for inline asms with MRVs? 6246 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6247 EVT ResultType = TLI.getValueType(CS.getType()); 6248 6249 // If any of the results of the inline asm is a vector, it may have the 6250 // wrong width/num elts. This can happen for register classes that can 6251 // contain multiple different value types. The preg or vreg allocated may 6252 // not have the same VT as was expected. Convert it to the right type 6253 // with bit_convert. 6254 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6255 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6256 ResultType, Val); 6257 6258 } else if (ResultType != Val.getValueType() && 6259 ResultType.isInteger() && Val.getValueType().isInteger()) { 6260 // If a result value was tied to an input value, the computed result may 6261 // have a wider width than the expected result. Extract the relevant 6262 // portion. 6263 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6264 } 6265 6266 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6267 } 6268 6269 setValue(CS.getInstruction(), Val); 6270 // Don't need to use this as a chain in this case. 6271 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6272 return; 6273 } 6274 6275 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6276 6277 // Process indirect outputs, first output all of the flagged copies out of 6278 // physregs. 6279 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6280 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6281 const Value *Ptr = IndirectStoresToEmit[i].second; 6282 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6283 Chain, &Flag); 6284 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6285 } 6286 6287 // Emit the non-flagged stores from the physregs. 6288 SmallVector<SDValue, 8> OutChains; 6289 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6290 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6291 StoresToEmit[i].first, 6292 getValue(StoresToEmit[i].second), 6293 MachinePointerInfo(StoresToEmit[i].second), 6294 false, false, 0); 6295 OutChains.push_back(Val); 6296 } 6297 6298 if (!OutChains.empty()) 6299 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6300 &OutChains[0], OutChains.size()); 6301 6302 DAG.setRoot(Chain); 6303 } 6304 6305 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6306 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6307 MVT::Other, getRoot(), 6308 getValue(I.getArgOperand(0)), 6309 DAG.getSrcValue(I.getArgOperand(0)))); 6310 } 6311 6312 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6313 const TargetData &TD = *TLI.getTargetData(); 6314 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6315 getRoot(), getValue(I.getOperand(0)), 6316 DAG.getSrcValue(I.getOperand(0)), 6317 TD.getABITypeAlignment(I.getType())); 6318 setValue(&I, V); 6319 DAG.setRoot(V.getValue(1)); 6320 } 6321 6322 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6323 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6324 MVT::Other, getRoot(), 6325 getValue(I.getArgOperand(0)), 6326 DAG.getSrcValue(I.getArgOperand(0)))); 6327 } 6328 6329 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6330 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6331 MVT::Other, getRoot(), 6332 getValue(I.getArgOperand(0)), 6333 getValue(I.getArgOperand(1)), 6334 DAG.getSrcValue(I.getArgOperand(0)), 6335 DAG.getSrcValue(I.getArgOperand(1)))); 6336 } 6337 6338 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6339 /// implementation, which just calls LowerCall. 6340 /// FIXME: When all targets are 6341 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6342 std::pair<SDValue, SDValue> 6343 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6344 // Handle all of the outgoing arguments. 6345 CLI.Outs.clear(); 6346 CLI.OutVals.clear(); 6347 ArgListTy &Args = CLI.Args; 6348 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6349 SmallVector<EVT, 4> ValueVTs; 6350 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6351 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6352 Value != NumValues; ++Value) { 6353 EVT VT = ValueVTs[Value]; 6354 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6355 SDValue Op = SDValue(Args[i].Node.getNode(), 6356 Args[i].Node.getResNo() + Value); 6357 ISD::ArgFlagsTy Flags; 6358 unsigned OriginalAlignment = 6359 getTargetData()->getABITypeAlignment(ArgTy); 6360 6361 if (Args[i].isZExt) 6362 Flags.setZExt(); 6363 if (Args[i].isSExt) 6364 Flags.setSExt(); 6365 if (Args[i].isInReg) 6366 Flags.setInReg(); 6367 if (Args[i].isSRet) 6368 Flags.setSRet(); 6369 if (Args[i].isByVal) { 6370 Flags.setByVal(); 6371 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6372 Type *ElementTy = Ty->getElementType(); 6373 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy)); 6374 // For ByVal, alignment should come from FE. BE will guess if this 6375 // info is not there but there are cases it cannot get right. 6376 unsigned FrameAlign; 6377 if (Args[i].Alignment) 6378 FrameAlign = Args[i].Alignment; 6379 else 6380 FrameAlign = getByValTypeAlignment(ElementTy); 6381 Flags.setByValAlign(FrameAlign); 6382 } 6383 if (Args[i].isNest) 6384 Flags.setNest(); 6385 Flags.setOrigAlign(OriginalAlignment); 6386 6387 EVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6388 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6389 SmallVector<SDValue, 4> Parts(NumParts); 6390 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6391 6392 if (Args[i].isSExt) 6393 ExtendKind = ISD::SIGN_EXTEND; 6394 else if (Args[i].isZExt) 6395 ExtendKind = ISD::ZERO_EXTEND; 6396 6397 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, 6398 PartVT, ExtendKind); 6399 6400 for (unsigned j = 0; j != NumParts; ++j) { 6401 // if it isn't first piece, alignment must be 1 6402 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6403 i < CLI.NumFixedArgs); 6404 if (NumParts > 1 && j == 0) 6405 MyFlags.Flags.setSplit(); 6406 else if (j != 0) 6407 MyFlags.Flags.setOrigAlign(1); 6408 6409 CLI.Outs.push_back(MyFlags); 6410 CLI.OutVals.push_back(Parts[j]); 6411 } 6412 } 6413 } 6414 6415 // Handle the incoming return values from the call. 6416 CLI.Ins.clear(); 6417 SmallVector<EVT, 4> RetTys; 6418 ComputeValueVTs(*this, CLI.RetTy, RetTys); 6419 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6420 EVT VT = RetTys[I]; 6421 EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6422 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6423 for (unsigned i = 0; i != NumRegs; ++i) { 6424 ISD::InputArg MyFlags; 6425 MyFlags.VT = RegisterVT.getSimpleVT(); 6426 MyFlags.Used = CLI.IsReturnValueUsed; 6427 if (CLI.RetSExt) 6428 MyFlags.Flags.setSExt(); 6429 if (CLI.RetZExt) 6430 MyFlags.Flags.setZExt(); 6431 if (CLI.IsInReg) 6432 MyFlags.Flags.setInReg(); 6433 CLI.Ins.push_back(MyFlags); 6434 } 6435 } 6436 6437 SmallVector<SDValue, 4> InVals; 6438 CLI.Chain = LowerCall(CLI, InVals); 6439 6440 // Verify that the target's LowerCall behaved as expected. 6441 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6442 "LowerCall didn't return a valid chain!"); 6443 assert((!CLI.IsTailCall || InVals.empty()) && 6444 "LowerCall emitted a return value for a tail call!"); 6445 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6446 "LowerCall didn't emit the correct number of values!"); 6447 6448 // For a tail call, the return value is merely live-out and there aren't 6449 // any nodes in the DAG representing it. Return a special value to 6450 // indicate that a tail call has been emitted and no more Instructions 6451 // should be processed in the current block. 6452 if (CLI.IsTailCall) { 6453 CLI.DAG.setRoot(CLI.Chain); 6454 return std::make_pair(SDValue(), SDValue()); 6455 } 6456 6457 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6458 assert(InVals[i].getNode() && 6459 "LowerCall emitted a null value!"); 6460 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6461 "LowerCall emitted a value with the wrong type!"); 6462 }); 6463 6464 // Collect the legal value parts into potentially illegal values 6465 // that correspond to the original function's return values. 6466 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6467 if (CLI.RetSExt) 6468 AssertOp = ISD::AssertSext; 6469 else if (CLI.RetZExt) 6470 AssertOp = ISD::AssertZext; 6471 SmallVector<SDValue, 4> ReturnValues; 6472 unsigned CurReg = 0; 6473 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6474 EVT VT = RetTys[I]; 6475 EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6476 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6477 6478 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6479 NumRegs, RegisterVT, VT, 6480 AssertOp)); 6481 CurReg += NumRegs; 6482 } 6483 6484 // For a function returning void, there is no return value. We can't create 6485 // such a node, so we just return a null return value in that case. In 6486 // that case, nothing will actually look at the value. 6487 if (ReturnValues.empty()) 6488 return std::make_pair(SDValue(), CLI.Chain); 6489 6490 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6491 CLI.DAG.getVTList(&RetTys[0], RetTys.size()), 6492 &ReturnValues[0], ReturnValues.size()); 6493 return std::make_pair(Res, CLI.Chain); 6494 } 6495 6496 void TargetLowering::LowerOperationWrapper(SDNode *N, 6497 SmallVectorImpl<SDValue> &Results, 6498 SelectionDAG &DAG) const { 6499 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6500 if (Res.getNode()) 6501 Results.push_back(Res); 6502 } 6503 6504 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6505 llvm_unreachable("LowerOperation not implemented for this target!"); 6506 } 6507 6508 void 6509 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6510 SDValue Op = getNonRegisterValue(V); 6511 assert((Op.getOpcode() != ISD::CopyFromReg || 6512 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6513 "Copy from a reg to the same reg!"); 6514 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6515 6516 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6517 SDValue Chain = DAG.getEntryNode(); 6518 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6519 PendingExports.push_back(Chain); 6520 } 6521 6522 #include "llvm/CodeGen/SelectionDAGISel.h" 6523 6524 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6525 /// entry block, return true. This includes arguments used by switches, since 6526 /// the switch may expand into multiple basic blocks. 6527 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6528 // With FastISel active, we may be splitting blocks, so force creation 6529 // of virtual registers for all non-dead arguments. 6530 if (FastISel) 6531 return A->use_empty(); 6532 6533 const BasicBlock *Entry = A->getParent()->begin(); 6534 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6535 UI != E; ++UI) { 6536 const User *U = *UI; 6537 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6538 return false; // Use not in entry block. 6539 } 6540 return true; 6541 } 6542 6543 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6544 // If this is the entry block, emit arguments. 6545 const Function &F = *LLVMBB->getParent(); 6546 SelectionDAG &DAG = SDB->DAG; 6547 DebugLoc dl = SDB->getCurDebugLoc(); 6548 const TargetData *TD = TLI.getTargetData(); 6549 SmallVector<ISD::InputArg, 16> Ins; 6550 6551 // Check whether the function can return without sret-demotion. 6552 SmallVector<ISD::OutputArg, 4> Outs; 6553 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6554 Outs, TLI); 6555 6556 if (!FuncInfo->CanLowerReturn) { 6557 // Put in an sret pointer parameter before all the other parameters. 6558 SmallVector<EVT, 1> ValueVTs; 6559 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6560 6561 // NOTE: Assuming that a pointer will never break down to more than one VT 6562 // or one register. 6563 ISD::ArgFlagsTy Flags; 6564 Flags.setSRet(); 6565 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6566 ISD::InputArg RetArg(Flags, RegisterVT, true); 6567 Ins.push_back(RetArg); 6568 } 6569 6570 // Set up the incoming argument description vector. 6571 unsigned Idx = 1; 6572 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6573 I != E; ++I, ++Idx) { 6574 SmallVector<EVT, 4> ValueVTs; 6575 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6576 bool isArgValueUsed = !I->use_empty(); 6577 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6578 Value != NumValues; ++Value) { 6579 EVT VT = ValueVTs[Value]; 6580 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6581 ISD::ArgFlagsTy Flags; 6582 unsigned OriginalAlignment = 6583 TD->getABITypeAlignment(ArgTy); 6584 6585 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6586 Flags.setZExt(); 6587 if (F.paramHasAttr(Idx, Attribute::SExt)) 6588 Flags.setSExt(); 6589 if (F.paramHasAttr(Idx, Attribute::InReg)) 6590 Flags.setInReg(); 6591 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6592 Flags.setSRet(); 6593 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6594 Flags.setByVal(); 6595 PointerType *Ty = cast<PointerType>(I->getType()); 6596 Type *ElementTy = Ty->getElementType(); 6597 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6598 // For ByVal, alignment should be passed from FE. BE will guess if 6599 // this info is not there but there are cases it cannot get right. 6600 unsigned FrameAlign; 6601 if (F.getParamAlignment(Idx)) 6602 FrameAlign = F.getParamAlignment(Idx); 6603 else 6604 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6605 Flags.setByValAlign(FrameAlign); 6606 } 6607 if (F.paramHasAttr(Idx, Attribute::Nest)) 6608 Flags.setNest(); 6609 Flags.setOrigAlign(OriginalAlignment); 6610 6611 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6612 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6613 for (unsigned i = 0; i != NumRegs; ++i) { 6614 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6615 if (NumRegs > 1 && i == 0) 6616 MyFlags.Flags.setSplit(); 6617 // if it isn't first piece, alignment must be 1 6618 else if (i > 0) 6619 MyFlags.Flags.setOrigAlign(1); 6620 Ins.push_back(MyFlags); 6621 } 6622 } 6623 } 6624 6625 // Call the target to set up the argument values. 6626 SmallVector<SDValue, 8> InVals; 6627 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6628 F.isVarArg(), Ins, 6629 dl, DAG, InVals); 6630 6631 // Verify that the target's LowerFormalArguments behaved as expected. 6632 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6633 "LowerFormalArguments didn't return a valid chain!"); 6634 assert(InVals.size() == Ins.size() && 6635 "LowerFormalArguments didn't emit the correct number of values!"); 6636 DEBUG({ 6637 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6638 assert(InVals[i].getNode() && 6639 "LowerFormalArguments emitted a null value!"); 6640 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6641 "LowerFormalArguments emitted a value with the wrong type!"); 6642 } 6643 }); 6644 6645 // Update the DAG with the new chain value resulting from argument lowering. 6646 DAG.setRoot(NewRoot); 6647 6648 // Set up the argument values. 6649 unsigned i = 0; 6650 Idx = 1; 6651 if (!FuncInfo->CanLowerReturn) { 6652 // Create a virtual register for the sret pointer, and put in a copy 6653 // from the sret argument into it. 6654 SmallVector<EVT, 1> ValueVTs; 6655 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6656 EVT VT = ValueVTs[0]; 6657 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6658 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6659 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6660 RegVT, VT, AssertOp); 6661 6662 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6663 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6664 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6665 FuncInfo->DemoteRegister = SRetReg; 6666 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6667 SRetReg, ArgValue); 6668 DAG.setRoot(NewRoot); 6669 6670 // i indexes lowered arguments. Bump it past the hidden sret argument. 6671 // Idx indexes LLVM arguments. Don't touch it. 6672 ++i; 6673 } 6674 6675 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6676 ++I, ++Idx) { 6677 SmallVector<SDValue, 4> ArgValues; 6678 SmallVector<EVT, 4> ValueVTs; 6679 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6680 unsigned NumValues = ValueVTs.size(); 6681 6682 // If this argument is unused then remember its value. It is used to generate 6683 // debugging information. 6684 if (I->use_empty() && NumValues) 6685 SDB->setUnusedArgValue(I, InVals[i]); 6686 6687 for (unsigned Val = 0; Val != NumValues; ++Val) { 6688 EVT VT = ValueVTs[Val]; 6689 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6690 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6691 6692 if (!I->use_empty()) { 6693 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6694 if (F.paramHasAttr(Idx, Attribute::SExt)) 6695 AssertOp = ISD::AssertSext; 6696 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6697 AssertOp = ISD::AssertZext; 6698 6699 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6700 NumParts, PartVT, VT, 6701 AssertOp)); 6702 } 6703 6704 i += NumParts; 6705 } 6706 6707 // We don't need to do anything else for unused arguments. 6708 if (ArgValues.empty()) 6709 continue; 6710 6711 // Note down frame index. 6712 if (FrameIndexSDNode *FI = 6713 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6714 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6715 6716 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6717 SDB->getCurDebugLoc()); 6718 6719 SDB->setValue(I, Res); 6720 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 6721 if (LoadSDNode *LNode = 6722 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 6723 if (FrameIndexSDNode *FI = 6724 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6725 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6726 } 6727 6728 // If this argument is live outside of the entry block, insert a copy from 6729 // wherever we got it to the vreg that other BB's will reference it as. 6730 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6731 // If we can, though, try to skip creating an unnecessary vreg. 6732 // FIXME: This isn't very clean... it would be nice to make this more 6733 // general. It's also subtly incompatible with the hacks FastISel 6734 // uses with vregs. 6735 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6736 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6737 FuncInfo->ValueMap[I] = Reg; 6738 continue; 6739 } 6740 } 6741 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 6742 FuncInfo->InitializeRegForValue(I); 6743 SDB->CopyToExportRegsIfNeeded(I); 6744 } 6745 } 6746 6747 assert(i == InVals.size() && "Argument register count mismatch!"); 6748 6749 // Finally, if the target has anything special to do, allow it to do so. 6750 // FIXME: this should insert code into the DAG! 6751 EmitFunctionEntryCode(); 6752 } 6753 6754 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6755 /// ensure constants are generated when needed. Remember the virtual registers 6756 /// that need to be added to the Machine PHI nodes as input. We cannot just 6757 /// directly add them, because expansion might result in multiple MBB's for one 6758 /// BB. As such, the start of the BB might correspond to a different MBB than 6759 /// the end. 6760 /// 6761 void 6762 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6763 const TerminatorInst *TI = LLVMBB->getTerminator(); 6764 6765 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6766 6767 // Check successor nodes' PHI nodes that expect a constant to be available 6768 // from this block. 6769 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6770 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6771 if (!isa<PHINode>(SuccBB->begin())) continue; 6772 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6773 6774 // If this terminator has multiple identical successors (common for 6775 // switches), only handle each succ once. 6776 if (!SuccsHandled.insert(SuccMBB)) continue; 6777 6778 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6779 6780 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6781 // nodes and Machine PHI nodes, but the incoming operands have not been 6782 // emitted yet. 6783 for (BasicBlock::const_iterator I = SuccBB->begin(); 6784 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6785 // Ignore dead phi's. 6786 if (PN->use_empty()) continue; 6787 6788 // Skip empty types 6789 if (PN->getType()->isEmptyTy()) 6790 continue; 6791 6792 unsigned Reg; 6793 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6794 6795 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6796 unsigned &RegOut = ConstantsOut[C]; 6797 if (RegOut == 0) { 6798 RegOut = FuncInfo.CreateRegs(C->getType()); 6799 CopyValueToVirtualRegister(C, RegOut); 6800 } 6801 Reg = RegOut; 6802 } else { 6803 DenseMap<const Value *, unsigned>::iterator I = 6804 FuncInfo.ValueMap.find(PHIOp); 6805 if (I != FuncInfo.ValueMap.end()) 6806 Reg = I->second; 6807 else { 6808 assert(isa<AllocaInst>(PHIOp) && 6809 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6810 "Didn't codegen value into a register!??"); 6811 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6812 CopyValueToVirtualRegister(PHIOp, Reg); 6813 } 6814 } 6815 6816 // Remember that this register needs to added to the machine PHI node as 6817 // the input for this MBB. 6818 SmallVector<EVT, 4> ValueVTs; 6819 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6820 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6821 EVT VT = ValueVTs[vti]; 6822 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6823 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6824 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6825 Reg += NumRegisters; 6826 } 6827 } 6828 } 6829 ConstantsOut.clear(); 6830 } 6831