1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "FunctionLoweringInfo.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/Module.h" 32 #include "llvm/CodeGen/FastISel.h" 33 #include "llvm/CodeGen/GCStrategy.h" 34 #include "llvm/CodeGen/GCMetadata.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineInstrBuilder.h" 38 #include "llvm/CodeGen/MachineJumpTableInfo.h" 39 #include "llvm/CodeGen/MachineModuleInfo.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/PseudoSourceValue.h" 42 #include "llvm/CodeGen/SelectionDAG.h" 43 #include "llvm/CodeGen/DwarfWriter.h" 44 #include "llvm/Analysis/DebugInfo.h" 45 #include "llvm/Target/TargetRegisterInfo.h" 46 #include "llvm/Target/TargetData.h" 47 #include "llvm/Target/TargetFrameInfo.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetIntrinsicInfo.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetOptions.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 using namespace llvm; 60 61 /// LimitFloatPrecision - Generate low-precision inline sequences for 62 /// some float libcalls (6, 8 or 12 bits). 63 static unsigned LimitFloatPrecision; 64 65 static cl::opt<unsigned, true> 66 LimitFPPrecision("limit-float-precision", 67 cl::desc("Generate low-precision inline sequences " 68 "for some float libcalls"), 69 cl::location(LimitFloatPrecision), 70 cl::init(0)); 71 72 namespace { 73 /// RegsForValue - This struct represents the registers (physical or virtual) 74 /// that a particular set of values is assigned, and the type information 75 /// about the value. The most common situation is to represent one value at a 76 /// time, but struct or array values are handled element-wise as multiple 77 /// values. The splitting of aggregates is performed recursively, so that we 78 /// never have aggregate-typed registers. The values at this point do not 79 /// necessarily have legal types, so each value may require one or more 80 /// registers of some legal type. 81 /// 82 struct RegsForValue { 83 /// TLI - The TargetLowering object. 84 /// 85 const TargetLowering *TLI; 86 87 /// ValueVTs - The value types of the values, which may not be legal, and 88 /// may need be promoted or synthesized from one or more registers. 89 /// 90 SmallVector<EVT, 4> ValueVTs; 91 92 /// RegVTs - The value types of the registers. This is the same size as 93 /// ValueVTs and it records, for each value, what the type of the assigned 94 /// register or registers are. (Individual values are never synthesized 95 /// from more than one type of register.) 96 /// 97 /// With virtual registers, the contents of RegVTs is redundant with TLI's 98 /// getRegisterType member function, however when with physical registers 99 /// it is necessary to have a separate record of the types. 100 /// 101 SmallVector<EVT, 4> RegVTs; 102 103 /// Regs - This list holds the registers assigned to the values. 104 /// Each legal or promoted value requires one register, and each 105 /// expanded value requires multiple registers. 106 /// 107 SmallVector<unsigned, 4> Regs; 108 109 RegsForValue() : TLI(0) {} 110 111 RegsForValue(const TargetLowering &tli, 112 const SmallVector<unsigned, 4> ®s, 113 EVT regvt, EVT valuevt) 114 : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 115 RegsForValue(const TargetLowering &tli, 116 const SmallVector<unsigned, 4> ®s, 117 const SmallVector<EVT, 4> ®vts, 118 const SmallVector<EVT, 4> &valuevts) 119 : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} 120 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 121 unsigned Reg, const Type *Ty) : TLI(&tli) { 122 ComputeValueVTs(tli, Ty, ValueVTs); 123 124 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 125 EVT ValueVT = ValueVTs[Value]; 126 unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT); 127 EVT RegisterVT = TLI->getRegisterType(Context, ValueVT); 128 for (unsigned i = 0; i != NumRegs; ++i) 129 Regs.push_back(Reg + i); 130 RegVTs.push_back(RegisterVT); 131 Reg += NumRegs; 132 } 133 } 134 135 /// areValueTypesLegal - Return true if types of all the values are legal. 136 bool areValueTypesLegal() { 137 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 138 EVT RegisterVT = RegVTs[Value]; 139 if (!TLI->isTypeLegal(RegisterVT)) 140 return false; 141 } 142 return true; 143 } 144 145 146 /// append - Add the specified values to this one. 147 void append(const RegsForValue &RHS) { 148 TLI = RHS.TLI; 149 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 150 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 151 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 152 } 153 154 155 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 156 /// this value and returns the result as a ValueVTs value. This uses 157 /// Chain/Flag as the input and updates them for the output Chain/Flag. 158 /// If the Flag pointer is NULL, no flag is used. 159 SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 160 SDValue &Chain, SDValue *Flag) const; 161 162 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 163 /// specified value into the registers specified by this object. This uses 164 /// Chain/Flag as the input and updates them for the output Chain/Flag. 165 /// If the Flag pointer is NULL, no flag is used. 166 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 167 SDValue &Chain, SDValue *Flag) const; 168 169 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 170 /// operand list. This adds the code marker, matching input operand index 171 /// (if applicable), and includes the number of values added into it. 172 void AddInlineAsmOperands(unsigned Code, 173 bool HasMatching, unsigned MatchingIdx, 174 SelectionDAG &DAG, 175 std::vector<SDValue> &Ops) const; 176 }; 177 } 178 179 /// getCopyFromParts - Create a value that contains the specified legal parts 180 /// combined into the value they represent. If the parts combine to a type 181 /// larger then ValueVT then AssertOp can be used to specify whether the extra 182 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 183 /// (ISD::AssertSext). 184 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, 185 const SDValue *Parts, 186 unsigned NumParts, EVT PartVT, EVT ValueVT, 187 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 188 assert(NumParts > 0 && "No parts to assemble!"); 189 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 190 SDValue Val = Parts[0]; 191 192 if (NumParts > 1) { 193 // Assemble the value from multiple parts. 194 if (!ValueVT.isVector() && ValueVT.isInteger()) { 195 unsigned PartBits = PartVT.getSizeInBits(); 196 unsigned ValueBits = ValueVT.getSizeInBits(); 197 198 // Assemble the power of 2 part. 199 unsigned RoundParts = NumParts & (NumParts - 1) ? 200 1 << Log2_32(NumParts) : NumParts; 201 unsigned RoundBits = PartBits * RoundParts; 202 EVT RoundVT = RoundBits == ValueBits ? 203 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 204 SDValue Lo, Hi; 205 206 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 207 208 if (RoundParts > 2) { 209 Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2, 210 PartVT, HalfVT); 211 Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2, 212 RoundParts / 2, PartVT, HalfVT); 213 } else { 214 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]); 215 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]); 216 } 217 218 if (TLI.isBigEndian()) 219 std::swap(Lo, Hi); 220 221 Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi); 222 223 if (RoundParts < NumParts) { 224 // Assemble the trailing non-power-of-2 part. 225 unsigned OddParts = NumParts - RoundParts; 226 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 227 Hi = getCopyFromParts(DAG, dl, 228 Parts + RoundParts, OddParts, PartVT, OddVT); 229 230 // Combine the round and odd parts. 231 Lo = Val; 232 if (TLI.isBigEndian()) 233 std::swap(Lo, Hi); 234 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 235 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi); 236 Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi, 237 DAG.getConstant(Lo.getValueType().getSizeInBits(), 238 TLI.getPointerTy())); 239 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo); 240 Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi); 241 } 242 } else if (ValueVT.isVector()) { 243 // Handle a multi-element vector. 244 EVT IntermediateVT, RegisterVT; 245 unsigned NumIntermediates; 246 unsigned NumRegs = 247 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 248 NumIntermediates, RegisterVT); 249 assert(NumRegs == NumParts 250 && "Part count doesn't match vector breakdown!"); 251 NumParts = NumRegs; // Silence a compiler warning. 252 assert(RegisterVT == PartVT 253 && "Part type doesn't match vector breakdown!"); 254 assert(RegisterVT == Parts[0].getValueType() && 255 "Part type doesn't match part!"); 256 257 // Assemble the parts into intermediate operands. 258 SmallVector<SDValue, 8> Ops(NumIntermediates); 259 if (NumIntermediates == NumParts) { 260 // If the register was not expanded, truncate or copy the value, 261 // as appropriate. 262 for (unsigned i = 0; i != NumParts; ++i) 263 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1, 264 PartVT, IntermediateVT); 265 } else if (NumParts > 0) { 266 // If the intermediate type was expanded, build the intermediate 267 // operands from the parts. 268 assert(NumParts % NumIntermediates == 0 && 269 "Must expand into a divisible number of parts!"); 270 unsigned Factor = NumParts / NumIntermediates; 271 for (unsigned i = 0; i != NumIntermediates; ++i) 272 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor, 273 PartVT, IntermediateVT); 274 } 275 276 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 277 // intermediate operands. 278 Val = DAG.getNode(IntermediateVT.isVector() ? 279 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl, 280 ValueVT, &Ops[0], NumIntermediates); 281 } else if (PartVT.isFloatingPoint()) { 282 // FP split into multiple FP parts (for ppcf128) 283 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 284 "Unexpected split"); 285 SDValue Lo, Hi; 286 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]); 287 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]); 288 if (TLI.isBigEndian()) 289 std::swap(Lo, Hi); 290 Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi); 291 } else { 292 // FP split into integer parts (soft fp) 293 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 294 !PartVT.isVector() && "Unexpected split"); 295 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 296 Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT); 297 } 298 } 299 300 // There is now one part, held in Val. Correct it to match ValueVT. 301 PartVT = Val.getValueType(); 302 303 if (PartVT == ValueVT) 304 return Val; 305 306 if (PartVT.isVector()) { 307 assert(ValueVT.isVector() && "Unknown vector conversion!"); 308 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 309 } 310 311 if (ValueVT.isVector()) { 312 assert(ValueVT.getVectorElementType() == PartVT && 313 ValueVT.getVectorNumElements() == 1 && 314 "Only trivial scalar-to-vector conversions should get here!"); 315 return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val); 316 } 317 318 if (PartVT.isInteger() && 319 ValueVT.isInteger()) { 320 if (ValueVT.bitsLT(PartVT)) { 321 // For a truncate, see if we have any information to 322 // indicate whether the truncated bits will always be 323 // zero or sign-extension. 324 if (AssertOp != ISD::DELETED_NODE) 325 Val = DAG.getNode(AssertOp, dl, PartVT, Val, 326 DAG.getValueType(ValueVT)); 327 return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 328 } else { 329 return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val); 330 } 331 } 332 333 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 334 if (ValueVT.bitsLT(Val.getValueType())) { 335 // FP_ROUND's are always exact here. 336 return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val, 337 DAG.getIntPtrConstant(1)); 338 } 339 340 return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val); 341 } 342 343 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 344 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 345 346 llvm_unreachable("Unknown mismatch!"); 347 return SDValue(); 348 } 349 350 /// getCopyToParts - Create a series of nodes that contain the specified value 351 /// split into legal parts. If the parts contain more bits than Val, then, for 352 /// integers, ExtendKind can be used to specify how to generate the extra bits. 353 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, 354 SDValue Val, SDValue *Parts, unsigned NumParts, 355 EVT PartVT, 356 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 358 EVT PtrVT = TLI.getPointerTy(); 359 EVT ValueVT = Val.getValueType(); 360 unsigned PartBits = PartVT.getSizeInBits(); 361 unsigned OrigNumParts = NumParts; 362 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 363 364 if (!NumParts) 365 return; 366 367 if (!ValueVT.isVector()) { 368 if (PartVT == ValueVT) { 369 assert(NumParts == 1 && "No-op copy with multiple parts!"); 370 Parts[0] = Val; 371 return; 372 } 373 374 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 375 // If the parts cover more bits than the value has, promote the value. 376 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 377 assert(NumParts == 1 && "Do not know what to promote to!"); 378 Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val); 379 } else if (PartVT.isInteger() && ValueVT.isInteger()) { 380 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 381 Val = DAG.getNode(ExtendKind, dl, ValueVT, Val); 382 } else { 383 llvm_unreachable("Unknown mismatch!"); 384 } 385 } else if (PartBits == ValueVT.getSizeInBits()) { 386 // Different types of the same size. 387 assert(NumParts == 1 && PartVT != ValueVT); 388 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 389 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 390 // If the parts cover less bits than value has, truncate the value. 391 if (PartVT.isInteger() && ValueVT.isInteger()) { 392 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 393 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 394 } else { 395 llvm_unreachable("Unknown mismatch!"); 396 } 397 } 398 399 // The value may have changed - recompute ValueVT. 400 ValueVT = Val.getValueType(); 401 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 402 "Failed to tile the value with PartVT!"); 403 404 if (NumParts == 1) { 405 assert(PartVT == ValueVT && "Type conversion failed!"); 406 Parts[0] = Val; 407 return; 408 } 409 410 // Expand the value into multiple parts. 411 if (NumParts & (NumParts - 1)) { 412 // The number of parts is not a power of 2. Split off and copy the tail. 413 assert(PartVT.isInteger() && ValueVT.isInteger() && 414 "Do not know what to expand to!"); 415 unsigned RoundParts = 1 << Log2_32(NumParts); 416 unsigned RoundBits = RoundParts * PartBits; 417 unsigned OddParts = NumParts - RoundParts; 418 SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val, 419 DAG.getConstant(RoundBits, 420 TLI.getPointerTy())); 421 getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, 422 OddParts, PartVT); 423 424 if (TLI.isBigEndian()) 425 // The odd parts were reversed by getCopyToParts - unreverse them. 426 std::reverse(Parts + RoundParts, Parts + NumParts); 427 428 NumParts = RoundParts; 429 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 430 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 431 } 432 433 // The number of parts is a power of 2. Repeatedly bisect the value using 434 // EXTRACT_ELEMENT. 435 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl, 436 EVT::getIntegerVT(*DAG.getContext(), 437 ValueVT.getSizeInBits()), 438 Val); 439 440 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 441 for (unsigned i = 0; i < NumParts; i += StepSize) { 442 unsigned ThisBits = StepSize * PartBits / 2; 443 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 444 SDValue &Part0 = Parts[i]; 445 SDValue &Part1 = Parts[i+StepSize/2]; 446 447 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 448 ThisVT, Part0, 449 DAG.getConstant(1, PtrVT)); 450 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 451 ThisVT, Part0, 452 DAG.getConstant(0, PtrVT)); 453 454 if (ThisBits == PartBits && ThisVT != PartVT) { 455 Part0 = DAG.getNode(ISD::BIT_CONVERT, dl, 456 PartVT, Part0); 457 Part1 = DAG.getNode(ISD::BIT_CONVERT, dl, 458 PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 466 return; 467 } 468 469 // Vector ValueVT. 470 if (NumParts == 1) { 471 if (PartVT != ValueVT) { 472 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 473 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 474 } else { 475 assert(ValueVT.getVectorElementType() == PartVT && 476 ValueVT.getVectorNumElements() == 1 && 477 "Only trivial vector-to-scalar conversions should get here!"); 478 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 479 PartVT, Val, 480 DAG.getConstant(0, PtrVT)); 481 } 482 } 483 484 Parts[0] = Val; 485 return; 486 } 487 488 // Handle a multi-element vector. 489 EVT IntermediateVT, RegisterVT; 490 unsigned NumIntermediates; 491 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 492 IntermediateVT, NumIntermediates, RegisterVT); 493 unsigned NumElements = ValueVT.getVectorNumElements(); 494 495 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 496 NumParts = NumRegs; // Silence a compiler warning. 497 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 498 499 // Split the vector into intermediate operands. 500 SmallVector<SDValue, 8> Ops(NumIntermediates); 501 for (unsigned i = 0; i != NumIntermediates; ++i) { 502 if (IntermediateVT.isVector()) 503 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, 504 IntermediateVT, Val, 505 DAG.getConstant(i * (NumElements / NumIntermediates), 506 PtrVT)); 507 else 508 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 509 IntermediateVT, Val, 510 DAG.getConstant(i, PtrVT)); 511 } 512 513 // Split the intermediate operands into legal parts. 514 if (NumParts == NumIntermediates) { 515 // If the register was not expanded, promote or copy the value, 516 // as appropriate. 517 for (unsigned i = 0; i != NumParts; ++i) 518 getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT); 519 } else if (NumParts > 0) { 520 // If the intermediate type was expanded, split each the value into 521 // legal parts. 522 assert(NumParts % NumIntermediates == 0 && 523 "Must expand into a divisible number of parts!"); 524 unsigned Factor = NumParts / NumIntermediates; 525 for (unsigned i = 0; i != NumIntermediates; ++i) 526 getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT); 527 } 528 } 529 530 531 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 532 AA = &aa; 533 GFI = gfi; 534 TD = DAG.getTarget().getTargetData(); 535 } 536 537 /// clear - Clear out the curret SelectionDAG and the associated 538 /// state and prepare this SelectionDAGBuilder object to be used 539 /// for a new block. This doesn't clear out information about 540 /// additional blocks that are needed to complete switch lowering 541 /// or PHI node updating; that information is cleared out as it is 542 /// consumed. 543 void SelectionDAGBuilder::clear() { 544 NodeMap.clear(); 545 PendingLoads.clear(); 546 PendingExports.clear(); 547 EdgeMapping.clear(); 548 DAG.clear(); 549 CurDebugLoc = DebugLoc::getUnknownLoc(); 550 HasTailCall = false; 551 } 552 553 /// getRoot - Return the current virtual root of the Selection DAG, 554 /// flushing any PendingLoad items. This must be done before emitting 555 /// a store or any other node that may need to be ordered after any 556 /// prior load instructions. 557 /// 558 SDValue SelectionDAGBuilder::getRoot() { 559 if (PendingLoads.empty()) 560 return DAG.getRoot(); 561 562 if (PendingLoads.size() == 1) { 563 SDValue Root = PendingLoads[0]; 564 DAG.setRoot(Root); 565 PendingLoads.clear(); 566 return Root; 567 } 568 569 // Otherwise, we have to make a token factor node. 570 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 571 &PendingLoads[0], PendingLoads.size()); 572 PendingLoads.clear(); 573 DAG.setRoot(Root); 574 return Root; 575 } 576 577 /// getControlRoot - Similar to getRoot, but instead of flushing all the 578 /// PendingLoad items, flush all the PendingExports items. It is necessary 579 /// to do this before emitting a terminator instruction. 580 /// 581 SDValue SelectionDAGBuilder::getControlRoot() { 582 SDValue Root = DAG.getRoot(); 583 584 if (PendingExports.empty()) 585 return Root; 586 587 // Turn all of the CopyToReg chains into one factored node. 588 if (Root.getOpcode() != ISD::EntryToken) { 589 unsigned i = 0, e = PendingExports.size(); 590 for (; i != e; ++i) { 591 assert(PendingExports[i].getNode()->getNumOperands() > 1); 592 if (PendingExports[i].getNode()->getOperand(0) == Root) 593 break; // Don't add the root if we already indirectly depend on it. 594 } 595 596 if (i == e) 597 PendingExports.push_back(Root); 598 } 599 600 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 601 &PendingExports[0], 602 PendingExports.size()); 603 PendingExports.clear(); 604 DAG.setRoot(Root); 605 return Root; 606 } 607 608 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 609 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 610 DAG.AssignOrdering(Node, SDNodeOrder); 611 612 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 613 AssignOrderingToNode(Node->getOperand(I).getNode()); 614 } 615 616 void SelectionDAGBuilder::visit(Instruction &I) { 617 visit(I.getOpcode(), I); 618 } 619 620 void SelectionDAGBuilder::visit(unsigned Opcode, User &I) { 621 // Note: this doesn't use InstVisitor, because it has to work with 622 // ConstantExpr's in addition to instructions. 623 switch (Opcode) { 624 default: llvm_unreachable("Unknown instruction type encountered!"); 625 // Build the switch statement using the Instruction.def file. 626 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 627 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 628 #include "llvm/Instruction.def" 629 } 630 631 // Assign the ordering to the freshly created DAG nodes. 632 if (NodeMap.count(&I)) { 633 ++SDNodeOrder; 634 AssignOrderingToNode(getValue(&I).getNode()); 635 } 636 } 637 638 SDValue SelectionDAGBuilder::getValue(const Value *V) { 639 SDValue &N = NodeMap[V]; 640 if (N.getNode()) return N; 641 642 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) { 643 EVT VT = TLI.getValueType(V->getType(), true); 644 645 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 646 return N = DAG.getConstant(*CI, VT); 647 648 if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) 649 return N = DAG.getGlobalAddress(GV, VT); 650 651 if (isa<ConstantPointerNull>(C)) 652 return N = DAG.getConstant(0, TLI.getPointerTy()); 653 654 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 655 return N = DAG.getConstantFP(*CFP, VT); 656 657 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 658 return N = DAG.getUNDEF(VT); 659 660 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 661 visit(CE->getOpcode(), *CE); 662 SDValue N1 = NodeMap[V]; 663 assert(N1.getNode() && "visit didn't populate the ValueMap!"); 664 return N1; 665 } 666 667 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 668 SmallVector<SDValue, 4> Constants; 669 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 670 OI != OE; ++OI) { 671 SDNode *Val = getValue(*OI).getNode(); 672 // If the operand is an empty aggregate, there are no values. 673 if (!Val) continue; 674 // Add each leaf value from the operand to the Constants list 675 // to form a flattened list of all the values. 676 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 677 Constants.push_back(SDValue(Val, i)); 678 } 679 680 return DAG.getMergeValues(&Constants[0], Constants.size(), 681 getCurDebugLoc()); 682 } 683 684 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 685 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 686 "Unknown struct or array constant!"); 687 688 SmallVector<EVT, 4> ValueVTs; 689 ComputeValueVTs(TLI, C->getType(), ValueVTs); 690 unsigned NumElts = ValueVTs.size(); 691 if (NumElts == 0) 692 return SDValue(); // empty struct 693 SmallVector<SDValue, 4> Constants(NumElts); 694 for (unsigned i = 0; i != NumElts; ++i) { 695 EVT EltVT = ValueVTs[i]; 696 if (isa<UndefValue>(C)) 697 Constants[i] = DAG.getUNDEF(EltVT); 698 else if (EltVT.isFloatingPoint()) 699 Constants[i] = DAG.getConstantFP(0, EltVT); 700 else 701 Constants[i] = DAG.getConstant(0, EltVT); 702 } 703 704 return DAG.getMergeValues(&Constants[0], NumElts, 705 getCurDebugLoc()); 706 } 707 708 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 709 return DAG.getBlockAddress(BA, VT); 710 711 const VectorType *VecTy = cast<VectorType>(V->getType()); 712 unsigned NumElements = VecTy->getNumElements(); 713 714 // Now that we know the number and type of the elements, get that number of 715 // elements into the Ops array based on what kind of constant it is. 716 SmallVector<SDValue, 16> Ops; 717 if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 718 for (unsigned i = 0; i != NumElements; ++i) 719 Ops.push_back(getValue(CP->getOperand(i))); 720 } else { 721 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 722 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 723 724 SDValue Op; 725 if (EltVT.isFloatingPoint()) 726 Op = DAG.getConstantFP(0, EltVT); 727 else 728 Op = DAG.getConstant(0, EltVT); 729 Ops.assign(NumElements, Op); 730 } 731 732 // Create a BUILD_VECTOR node. 733 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 734 VT, &Ops[0], Ops.size()); 735 } 736 737 // If this is a static alloca, generate it as the frameindex instead of 738 // computation. 739 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 740 DenseMap<const AllocaInst*, int>::iterator SI = 741 FuncInfo.StaticAllocaMap.find(AI); 742 if (SI != FuncInfo.StaticAllocaMap.end()) 743 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 744 } 745 746 unsigned InReg = FuncInfo.ValueMap[V]; 747 assert(InReg && "Value not in map!"); 748 749 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 750 SDValue Chain = DAG.getEntryNode(); 751 return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL); 752 } 753 754 /// Get the EVTs and ArgFlags collections that represent the legalized return 755 /// type of the given function. This does not require a DAG or a return value, 756 /// and is suitable for use before any DAGs for the function are constructed. 757 static void getReturnInfo(const Type* ReturnType, 758 Attributes attr, SmallVectorImpl<EVT> &OutVTs, 759 SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags, 760 TargetLowering &TLI, 761 SmallVectorImpl<uint64_t> *Offsets = 0) { 762 SmallVector<EVT, 4> ValueVTs; 763 ComputeValueVTs(TLI, ReturnType, ValueVTs); 764 unsigned NumValues = ValueVTs.size(); 765 if (NumValues == 0) return; 766 unsigned Offset = 0; 767 768 for (unsigned j = 0, f = NumValues; j != f; ++j) { 769 EVT VT = ValueVTs[j]; 770 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 771 772 if (attr & Attribute::SExt) 773 ExtendKind = ISD::SIGN_EXTEND; 774 else if (attr & Attribute::ZExt) 775 ExtendKind = ISD::ZERO_EXTEND; 776 777 // FIXME: C calling convention requires the return type to be promoted to 778 // at least 32-bit. But this is not necessary for non-C calling 779 // conventions. The frontend should mark functions whose return values 780 // require promoting with signext or zeroext attributes. 781 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 782 EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 783 if (VT.bitsLT(MinVT)) 784 VT = MinVT; 785 } 786 787 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); 788 EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); 789 unsigned PartSize = TLI.getTargetData()->getTypeAllocSize( 790 PartVT.getTypeForEVT(ReturnType->getContext())); 791 792 // 'inreg' on function refers to return value 793 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 794 if (attr & Attribute::InReg) 795 Flags.setInReg(); 796 797 // Propagate extension type if any 798 if (attr & Attribute::SExt) 799 Flags.setSExt(); 800 else if (attr & Attribute::ZExt) 801 Flags.setZExt(); 802 803 for (unsigned i = 0; i < NumParts; ++i) { 804 OutVTs.push_back(PartVT); 805 OutFlags.push_back(Flags); 806 if (Offsets) 807 { 808 Offsets->push_back(Offset); 809 Offset += PartSize; 810 } 811 } 812 } 813 } 814 815 void SelectionDAGBuilder::visitRet(ReturnInst &I) { 816 SDValue Chain = getControlRoot(); 817 SmallVector<ISD::OutputArg, 8> Outs; 818 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 819 820 if (!FLI.CanLowerReturn) { 821 unsigned DemoteReg = FLI.DemoteRegister; 822 const Function *F = I.getParent()->getParent(); 823 824 // Emit a store of the return value through the virtual register. 825 // Leave Outs empty so that LowerReturn won't try to load return 826 // registers the usual way. 827 SmallVector<EVT, 1> PtrValueVTs; 828 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 829 PtrValueVTs); 830 831 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 832 SDValue RetOp = getValue(I.getOperand(0)); 833 834 SmallVector<EVT, 4> ValueVTs; 835 SmallVector<uint64_t, 4> Offsets; 836 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 837 unsigned NumValues = ValueVTs.size(); 838 839 SmallVector<SDValue, 4> Chains(NumValues); 840 EVT PtrVT = PtrValueVTs[0]; 841 for (unsigned i = 0; i != NumValues; ++i) { 842 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr, 843 DAG.getConstant(Offsets[i], PtrVT)); 844 Chains[i] = 845 DAG.getStore(Chain, getCurDebugLoc(), 846 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 847 Add, NULL, Offsets[i], false, false, 0); 848 } 849 850 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 851 MVT::Other, &Chains[0], NumValues); 852 } else if (I.getNumOperands() != 0) { 853 SmallVector<EVT, 4> ValueVTs; 854 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 855 unsigned NumValues = ValueVTs.size(); 856 if (NumValues) { 857 SDValue RetOp = getValue(I.getOperand(0)); 858 for (unsigned j = 0, f = NumValues; j != f; ++j) { 859 EVT VT = ValueVTs[j]; 860 861 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 862 863 const Function *F = I.getParent()->getParent(); 864 if (F->paramHasAttr(0, Attribute::SExt)) 865 ExtendKind = ISD::SIGN_EXTEND; 866 else if (F->paramHasAttr(0, Attribute::ZExt)) 867 ExtendKind = ISD::ZERO_EXTEND; 868 869 // FIXME: C calling convention requires the return type to be promoted 870 // to at least 32-bit. But this is not necessary for non-C calling 871 // conventions. The frontend should mark functions whose return values 872 // require promoting with signext or zeroext attributes. 873 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 874 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 875 if (VT.bitsLT(MinVT)) 876 VT = MinVT; 877 } 878 879 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 880 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 881 SmallVector<SDValue, 4> Parts(NumParts); 882 getCopyToParts(DAG, getCurDebugLoc(), 883 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 884 &Parts[0], NumParts, PartVT, ExtendKind); 885 886 // 'inreg' on function refers to return value 887 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 888 if (F->paramHasAttr(0, Attribute::InReg)) 889 Flags.setInReg(); 890 891 // Propagate extension type if any 892 if (F->paramHasAttr(0, Attribute::SExt)) 893 Flags.setSExt(); 894 else if (F->paramHasAttr(0, Attribute::ZExt)) 895 Flags.setZExt(); 896 897 for (unsigned i = 0; i < NumParts; ++i) 898 Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true)); 899 } 900 } 901 } 902 903 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 904 CallingConv::ID CallConv = 905 DAG.getMachineFunction().getFunction()->getCallingConv(); 906 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 907 Outs, getCurDebugLoc(), DAG); 908 909 // Verify that the target's LowerReturn behaved as expected. 910 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 911 "LowerReturn didn't return a valid chain!"); 912 913 // Update the DAG with the new chain value resulting from return lowering. 914 DAG.setRoot(Chain); 915 } 916 917 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 918 /// created for it, emit nodes to copy the value into the virtual 919 /// registers. 920 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) { 921 if (!V->use_empty()) { 922 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 923 if (VMI != FuncInfo.ValueMap.end()) 924 CopyValueToVirtualRegister(V, VMI->second); 925 } 926 } 927 928 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 929 /// the current basic block, add it to ValueMap now so that we'll get a 930 /// CopyTo/FromReg. 931 void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) { 932 // No need to export constants. 933 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 934 935 // Already exported? 936 if (FuncInfo.isExportedInst(V)) return; 937 938 unsigned Reg = FuncInfo.InitializeRegForValue(V); 939 CopyValueToVirtualRegister(V, Reg); 940 } 941 942 bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V, 943 const BasicBlock *FromBB) { 944 // The operands of the setcc have to be in this block. We don't know 945 // how to export them from some other block. 946 if (Instruction *VI = dyn_cast<Instruction>(V)) { 947 // Can export from current BB. 948 if (VI->getParent() == FromBB) 949 return true; 950 951 // Is already exported, noop. 952 return FuncInfo.isExportedInst(V); 953 } 954 955 // If this is an argument, we can export it if the BB is the entry block or 956 // if it is already exported. 957 if (isa<Argument>(V)) { 958 if (FromBB == &FromBB->getParent()->getEntryBlock()) 959 return true; 960 961 // Otherwise, can only export this if it is already exported. 962 return FuncInfo.isExportedInst(V); 963 } 964 965 // Otherwise, constants can always be exported. 966 return true; 967 } 968 969 static bool InBlock(const Value *V, const BasicBlock *BB) { 970 if (const Instruction *I = dyn_cast<Instruction>(V)) 971 return I->getParent() == BB; 972 return true; 973 } 974 975 /// getFCmpCondCode - Return the ISD condition code corresponding to 976 /// the given LLVM IR floating-point condition code. This includes 977 /// consideration of global floating-point math flags. 978 /// 979 static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) { 980 ISD::CondCode FPC, FOC; 981 switch (Pred) { 982 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; 983 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; 984 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; 985 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; 986 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; 987 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; 988 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; 989 case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; 990 case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; 991 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; 992 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; 993 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; 994 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; 995 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; 996 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; 997 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; 998 default: 999 llvm_unreachable("Invalid FCmp predicate opcode!"); 1000 FOC = FPC = ISD::SETFALSE; 1001 break; 1002 } 1003 if (FiniteOnlyFPMath()) 1004 return FOC; 1005 else 1006 return FPC; 1007 } 1008 1009 /// getICmpCondCode - Return the ISD condition code corresponding to 1010 /// the given LLVM IR integer condition code. 1011 /// 1012 static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) { 1013 switch (Pred) { 1014 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 1015 case ICmpInst::ICMP_NE: return ISD::SETNE; 1016 case ICmpInst::ICMP_SLE: return ISD::SETLE; 1017 case ICmpInst::ICMP_ULE: return ISD::SETULE; 1018 case ICmpInst::ICMP_SGE: return ISD::SETGE; 1019 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 1020 case ICmpInst::ICMP_SLT: return ISD::SETLT; 1021 case ICmpInst::ICMP_ULT: return ISD::SETULT; 1022 case ICmpInst::ICMP_SGT: return ISD::SETGT; 1023 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 1024 default: 1025 llvm_unreachable("Invalid ICmp predicate opcode!"); 1026 return ISD::SETNE; 1027 } 1028 } 1029 1030 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1031 /// This function emits a branch and is used at the leaves of an OR or an 1032 /// AND operator tree. 1033 /// 1034 void 1035 SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond, 1036 MachineBasicBlock *TBB, 1037 MachineBasicBlock *FBB, 1038 MachineBasicBlock *CurBB) { 1039 const BasicBlock *BB = CurBB->getBasicBlock(); 1040 1041 // If the leaf of the tree is a comparison, merge the condition into 1042 // the caseblock. 1043 if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1044 // The operands of the cmp have to be in this block. We don't know 1045 // how to export them from some other block. If this is the first block 1046 // of the sequence, no exporting is needed. 1047 if (CurBB == CurMBB || 1048 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1049 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1050 ISD::CondCode Condition; 1051 if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1052 Condition = getICmpCondCode(IC->getPredicate()); 1053 } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1054 Condition = getFCmpCondCode(FC->getPredicate()); 1055 } else { 1056 Condition = ISD::SETEQ; // silence warning. 1057 llvm_unreachable("Unknown compare instruction"); 1058 } 1059 1060 CaseBlock CB(Condition, BOp->getOperand(0), 1061 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1062 SwitchCases.push_back(CB); 1063 return; 1064 } 1065 } 1066 1067 // Create a CaseBlock record representing this branch. 1068 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1069 NULL, TBB, FBB, CurBB); 1070 SwitchCases.push_back(CB); 1071 } 1072 1073 /// FindMergedConditions - If Cond is an expression like 1074 void SelectionDAGBuilder::FindMergedConditions(Value *Cond, 1075 MachineBasicBlock *TBB, 1076 MachineBasicBlock *FBB, 1077 MachineBasicBlock *CurBB, 1078 unsigned Opc) { 1079 // If this node is not part of the or/and tree, emit it as a branch. 1080 Instruction *BOp = dyn_cast<Instruction>(Cond); 1081 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1082 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1083 BOp->getParent() != CurBB->getBasicBlock() || 1084 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1085 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1086 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB); 1087 return; 1088 } 1089 1090 // Create TmpBB after CurBB. 1091 MachineFunction::iterator BBI = CurBB; 1092 MachineFunction &MF = DAG.getMachineFunction(); 1093 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1094 CurBB->getParent()->insert(++BBI, TmpBB); 1095 1096 if (Opc == Instruction::Or) { 1097 // Codegen X | Y as: 1098 // jmp_if_X TBB 1099 // jmp TmpBB 1100 // TmpBB: 1101 // jmp_if_Y TBB 1102 // jmp FBB 1103 // 1104 1105 // Emit the LHS condition. 1106 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc); 1107 1108 // Emit the RHS condition into TmpBB. 1109 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); 1110 } else { 1111 assert(Opc == Instruction::And && "Unknown merge op!"); 1112 // Codegen X & Y as: 1113 // jmp_if_X TmpBB 1114 // jmp FBB 1115 // TmpBB: 1116 // jmp_if_Y TBB 1117 // jmp FBB 1118 // 1119 // This requires creation of TmpBB after CurBB. 1120 1121 // Emit the LHS condition. 1122 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc); 1123 1124 // Emit the RHS condition into TmpBB. 1125 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); 1126 } 1127 } 1128 1129 /// If the set of cases should be emitted as a series of branches, return true. 1130 /// If we should emit this as a bunch of and/or'd together conditions, return 1131 /// false. 1132 bool 1133 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1134 if (Cases.size() != 2) return true; 1135 1136 // If this is two comparisons of the same values or'd or and'd together, they 1137 // will get folded into a single comparison, so don't emit two blocks. 1138 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1139 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1140 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1141 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1142 return false; 1143 } 1144 1145 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1146 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1147 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1148 Cases[0].CC == Cases[1].CC && 1149 isa<Constant>(Cases[0].CmpRHS) && 1150 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1151 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1152 return false; 1153 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1154 return false; 1155 } 1156 1157 return true; 1158 } 1159 1160 void SelectionDAGBuilder::visitBr(BranchInst &I) { 1161 // Update machine-CFG edges. 1162 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1163 1164 // Figure out which block is immediately after the current one. 1165 MachineBasicBlock *NextBlock = 0; 1166 MachineFunction::iterator BBI = CurMBB; 1167 if (++BBI != FuncInfo.MF->end()) 1168 NextBlock = BBI; 1169 1170 if (I.isUnconditional()) { 1171 // Update machine-CFG edges. 1172 CurMBB->addSuccessor(Succ0MBB); 1173 1174 // If this is not a fall-through branch, emit the branch. 1175 if (Succ0MBB != NextBlock) 1176 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1177 MVT::Other, getControlRoot(), 1178 DAG.getBasicBlock(Succ0MBB))); 1179 1180 return; 1181 } 1182 1183 // If this condition is one of the special cases we handle, do special stuff 1184 // now. 1185 Value *CondVal = I.getCondition(); 1186 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1187 1188 // If this is a series of conditions that are or'd or and'd together, emit 1189 // this as a sequence of branches instead of setcc's with and/or operations. 1190 // For example, instead of something like: 1191 // cmp A, B 1192 // C = seteq 1193 // cmp D, E 1194 // F = setle 1195 // or C, F 1196 // jnz foo 1197 // Emit: 1198 // cmp A, B 1199 // je foo 1200 // cmp D, E 1201 // jle foo 1202 // 1203 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1204 if (BOp->hasOneUse() && 1205 (BOp->getOpcode() == Instruction::And || 1206 BOp->getOpcode() == Instruction::Or)) { 1207 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode()); 1208 // If the compares in later blocks need to use values not currently 1209 // exported from this block, export them now. This block should always 1210 // be the first entry. 1211 assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!"); 1212 1213 // Allow some cases to be rejected. 1214 if (ShouldEmitAsBranches(SwitchCases)) { 1215 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1216 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1217 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1218 } 1219 1220 // Emit the branch for this block. 1221 visitSwitchCase(SwitchCases[0]); 1222 SwitchCases.erase(SwitchCases.begin()); 1223 return; 1224 } 1225 1226 // Okay, we decided not to do this, remove any inserted MBB's and clear 1227 // SwitchCases. 1228 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1229 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1230 1231 SwitchCases.clear(); 1232 } 1233 } 1234 1235 // Create a CaseBlock record representing this branch. 1236 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1237 NULL, Succ0MBB, Succ1MBB, CurMBB); 1238 1239 // Use visitSwitchCase to actually insert the fast branch sequence for this 1240 // cond branch. 1241 visitSwitchCase(CB); 1242 } 1243 1244 /// visitSwitchCase - Emits the necessary code to represent a single node in 1245 /// the binary search tree resulting from lowering a switch instruction. 1246 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) { 1247 SDValue Cond; 1248 SDValue CondLHS = getValue(CB.CmpLHS); 1249 DebugLoc dl = getCurDebugLoc(); 1250 1251 // Build the setcc now. 1252 if (CB.CmpMHS == NULL) { 1253 // Fold "(X == true)" to X and "(X == false)" to !X to 1254 // handle common cases produced by branch lowering. 1255 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1256 CB.CC == ISD::SETEQ) 1257 Cond = CondLHS; 1258 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1259 CB.CC == ISD::SETEQ) { 1260 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1261 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1262 } else 1263 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1264 } else { 1265 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1266 1267 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1268 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1269 1270 SDValue CmpOp = getValue(CB.CmpMHS); 1271 EVT VT = CmpOp.getValueType(); 1272 1273 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1274 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1275 ISD::SETLE); 1276 } else { 1277 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1278 VT, CmpOp, DAG.getConstant(Low, VT)); 1279 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1280 DAG.getConstant(High-Low, VT), ISD::SETULE); 1281 } 1282 } 1283 1284 // Update successor info 1285 CurMBB->addSuccessor(CB.TrueBB); 1286 CurMBB->addSuccessor(CB.FalseBB); 1287 1288 // Set NextBlock to be the MBB immediately after the current one, if any. 1289 // This is used to avoid emitting unnecessary branches to the next block. 1290 MachineBasicBlock *NextBlock = 0; 1291 MachineFunction::iterator BBI = CurMBB; 1292 if (++BBI != FuncInfo.MF->end()) 1293 NextBlock = BBI; 1294 1295 // If the lhs block is the next block, invert the condition so that we can 1296 // fall through to the lhs instead of the rhs block. 1297 if (CB.TrueBB == NextBlock) { 1298 std::swap(CB.TrueBB, CB.FalseBB); 1299 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1300 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1301 } 1302 1303 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1304 MVT::Other, getControlRoot(), Cond, 1305 DAG.getBasicBlock(CB.TrueBB)); 1306 1307 // If the branch was constant folded, fix up the CFG. 1308 if (BrCond.getOpcode() == ISD::BR) { 1309 CurMBB->removeSuccessor(CB.FalseBB); 1310 } else { 1311 // Otherwise, go ahead and insert the false branch. 1312 if (BrCond == getControlRoot()) 1313 CurMBB->removeSuccessor(CB.TrueBB); 1314 1315 if (CB.FalseBB != NextBlock) 1316 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1317 DAG.getBasicBlock(CB.FalseBB)); 1318 } 1319 1320 DAG.setRoot(BrCond); 1321 } 1322 1323 /// visitJumpTable - Emit JumpTable node in the current MBB 1324 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1325 // Emit the code for the jump table 1326 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1327 EVT PTy = TLI.getPointerTy(); 1328 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1329 JT.Reg, PTy); 1330 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1331 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1332 MVT::Other, Index.getValue(1), 1333 Table, Index); 1334 DAG.setRoot(BrJumpTable); 1335 } 1336 1337 /// visitJumpTableHeader - This function emits necessary code to produce index 1338 /// in the JumpTable from switch case. 1339 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1340 JumpTableHeader &JTH) { 1341 // Subtract the lowest switch case value from the value being switched on and 1342 // conditional branch to default mbb if the result is greater than the 1343 // difference between smallest and largest cases. 1344 SDValue SwitchOp = getValue(JTH.SValue); 1345 EVT VT = SwitchOp.getValueType(); 1346 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1347 DAG.getConstant(JTH.First, VT)); 1348 1349 // The SDNode we just created, which holds the value being switched on minus 1350 // the smallest case value, needs to be copied to a virtual register so it 1351 // can be used as an index into the jump table in a subsequent basic block. 1352 // This value may be smaller or larger than the target's pointer type, and 1353 // therefore require extension or truncating. 1354 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1355 1356 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); 1357 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1358 JumpTableReg, SwitchOp); 1359 JT.Reg = JumpTableReg; 1360 1361 // Emit the range check for the jump table, and branch to the default block 1362 // for the switch statement if the value being switched on exceeds the largest 1363 // case in the switch. 1364 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1365 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1366 DAG.getConstant(JTH.Last-JTH.First,VT), 1367 ISD::SETUGT); 1368 1369 // Set NextBlock to be the MBB immediately after the current one, if any. 1370 // This is used to avoid emitting unnecessary branches to the next block. 1371 MachineBasicBlock *NextBlock = 0; 1372 MachineFunction::iterator BBI = CurMBB; 1373 1374 if (++BBI != FuncInfo.MF->end()) 1375 NextBlock = BBI; 1376 1377 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1378 MVT::Other, CopyTo, CMP, 1379 DAG.getBasicBlock(JT.Default)); 1380 1381 if (JT.MBB != NextBlock) 1382 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1383 DAG.getBasicBlock(JT.MBB)); 1384 1385 DAG.setRoot(BrCond); 1386 } 1387 1388 /// visitBitTestHeader - This function emits necessary code to produce value 1389 /// suitable for "bit tests" 1390 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) { 1391 // Subtract the minimum value 1392 SDValue SwitchOp = getValue(B.SValue); 1393 EVT VT = SwitchOp.getValueType(); 1394 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1395 DAG.getConstant(B.First, VT)); 1396 1397 // Check range 1398 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1399 TLI.getSetCCResultType(Sub.getValueType()), 1400 Sub, DAG.getConstant(B.Range, VT), 1401 ISD::SETUGT); 1402 1403 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1404 TLI.getPointerTy()); 1405 1406 B.Reg = FuncInfo.MakeReg(TLI.getPointerTy()); 1407 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1408 B.Reg, ShiftOp); 1409 1410 // Set NextBlock to be the MBB immediately after the current one, if any. 1411 // This is used to avoid emitting unnecessary branches to the next block. 1412 MachineBasicBlock *NextBlock = 0; 1413 MachineFunction::iterator BBI = CurMBB; 1414 if (++BBI != FuncInfo.MF->end()) 1415 NextBlock = BBI; 1416 1417 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1418 1419 CurMBB->addSuccessor(B.Default); 1420 CurMBB->addSuccessor(MBB); 1421 1422 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1423 MVT::Other, CopyTo, RangeCmp, 1424 DAG.getBasicBlock(B.Default)); 1425 1426 if (MBB != NextBlock) 1427 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1428 DAG.getBasicBlock(MBB)); 1429 1430 DAG.setRoot(BrRange); 1431 } 1432 1433 /// visitBitTestCase - this function produces one "bit test" 1434 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1435 unsigned Reg, 1436 BitTestCase &B) { 1437 // Make desired shift 1438 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1439 TLI.getPointerTy()); 1440 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1441 TLI.getPointerTy(), 1442 DAG.getConstant(1, TLI.getPointerTy()), 1443 ShiftOp); 1444 1445 // Emit bit tests and jumps 1446 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1447 TLI.getPointerTy(), SwitchVal, 1448 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1449 SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(), 1450 TLI.getSetCCResultType(AndOp.getValueType()), 1451 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1452 ISD::SETNE); 1453 1454 CurMBB->addSuccessor(B.TargetBB); 1455 CurMBB->addSuccessor(NextMBB); 1456 1457 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1458 MVT::Other, getControlRoot(), 1459 AndCmp, DAG.getBasicBlock(B.TargetBB)); 1460 1461 // Set NextBlock to be the MBB immediately after the current one, if any. 1462 // This is used to avoid emitting unnecessary branches to the next block. 1463 MachineBasicBlock *NextBlock = 0; 1464 MachineFunction::iterator BBI = CurMBB; 1465 if (++BBI != FuncInfo.MF->end()) 1466 NextBlock = BBI; 1467 1468 if (NextMBB != NextBlock) 1469 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1470 DAG.getBasicBlock(NextMBB)); 1471 1472 DAG.setRoot(BrAnd); 1473 } 1474 1475 void SelectionDAGBuilder::visitInvoke(InvokeInst &I) { 1476 // Retrieve successors. 1477 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1478 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1479 1480 const Value *Callee(I.getCalledValue()); 1481 if (isa<InlineAsm>(Callee)) 1482 visitInlineAsm(&I); 1483 else 1484 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1485 1486 // If the value of the invoke is used outside of its defining block, make it 1487 // available as a virtual register. 1488 CopyToExportRegsIfNeeded(&I); 1489 1490 // Update successor info 1491 CurMBB->addSuccessor(Return); 1492 CurMBB->addSuccessor(LandingPad); 1493 1494 // Drop into normal successor. 1495 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1496 MVT::Other, getControlRoot(), 1497 DAG.getBasicBlock(Return))); 1498 } 1499 1500 void SelectionDAGBuilder::visitUnwind(UnwindInst &I) { 1501 } 1502 1503 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1504 /// small case ranges). 1505 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1506 CaseRecVector& WorkList, 1507 Value* SV, 1508 MachineBasicBlock* Default) { 1509 Case& BackCase = *(CR.Range.second-1); 1510 1511 // Size is the number of Cases represented by this range. 1512 size_t Size = CR.Range.second - CR.Range.first; 1513 if (Size > 3) 1514 return false; 1515 1516 // Get the MachineFunction which holds the current MBB. This is used when 1517 // inserting any additional MBBs necessary to represent the switch. 1518 MachineFunction *CurMF = FuncInfo.MF; 1519 1520 // Figure out which block is immediately after the current one. 1521 MachineBasicBlock *NextBlock = 0; 1522 MachineFunction::iterator BBI = CR.CaseBB; 1523 1524 if (++BBI != FuncInfo.MF->end()) 1525 NextBlock = BBI; 1526 1527 // TODO: If any two of the cases has the same destination, and if one value 1528 // is the same as the other, but has one bit unset that the other has set, 1529 // use bit manipulation to do two compares at once. For example: 1530 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1531 1532 // Rearrange the case blocks so that the last one falls through if possible. 1533 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1534 // The last case block won't fall through into 'NextBlock' if we emit the 1535 // branches in this order. See if rearranging a case value would help. 1536 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1537 if (I->BB == NextBlock) { 1538 std::swap(*I, BackCase); 1539 break; 1540 } 1541 } 1542 } 1543 1544 // Create a CaseBlock record representing a conditional branch to 1545 // the Case's target mbb if the value being switched on SV is equal 1546 // to C. 1547 MachineBasicBlock *CurBlock = CR.CaseBB; 1548 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1549 MachineBasicBlock *FallThrough; 1550 if (I != E-1) { 1551 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1552 CurMF->insert(BBI, FallThrough); 1553 1554 // Put SV in a virtual register to make it available from the new blocks. 1555 ExportFromCurrentBlock(SV); 1556 } else { 1557 // If the last case doesn't match, go to the default block. 1558 FallThrough = Default; 1559 } 1560 1561 Value *RHS, *LHS, *MHS; 1562 ISD::CondCode CC; 1563 if (I->High == I->Low) { 1564 // This is just small small case range :) containing exactly 1 case 1565 CC = ISD::SETEQ; 1566 LHS = SV; RHS = I->High; MHS = NULL; 1567 } else { 1568 CC = ISD::SETLE; 1569 LHS = I->Low; MHS = SV; RHS = I->High; 1570 } 1571 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1572 1573 // If emitting the first comparison, just call visitSwitchCase to emit the 1574 // code into the current block. Otherwise, push the CaseBlock onto the 1575 // vector to be later processed by SDISel, and insert the node's MBB 1576 // before the next MBB. 1577 if (CurBlock == CurMBB) 1578 visitSwitchCase(CB); 1579 else 1580 SwitchCases.push_back(CB); 1581 1582 CurBlock = FallThrough; 1583 } 1584 1585 return true; 1586 } 1587 1588 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1589 return !DisableJumpTables && 1590 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1591 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1592 } 1593 1594 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1595 APInt LastExt(Last), FirstExt(First); 1596 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1597 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1598 return (LastExt - FirstExt + 1ULL); 1599 } 1600 1601 /// handleJTSwitchCase - Emit jumptable for current switch case range 1602 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1603 CaseRecVector& WorkList, 1604 Value* SV, 1605 MachineBasicBlock* Default) { 1606 Case& FrontCase = *CR.Range.first; 1607 Case& BackCase = *(CR.Range.second-1); 1608 1609 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1610 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1611 1612 APInt TSize(First.getBitWidth(), 0); 1613 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1614 I!=E; ++I) 1615 TSize += I->size(); 1616 1617 if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4))) 1618 return false; 1619 1620 APInt Range = ComputeRange(First, Last); 1621 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1622 if (Density < 0.4) 1623 return false; 1624 1625 DEBUG(dbgs() << "Lowering jump table\n" 1626 << "First entry: " << First << ". Last entry: " << Last << '\n' 1627 << "Range: " << Range 1628 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1629 1630 // Get the MachineFunction which holds the current MBB. This is used when 1631 // inserting any additional MBBs necessary to represent the switch. 1632 MachineFunction *CurMF = FuncInfo.MF; 1633 1634 // Figure out which block is immediately after the current one. 1635 MachineFunction::iterator BBI = CR.CaseBB; 1636 ++BBI; 1637 1638 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1639 1640 // Create a new basic block to hold the code for loading the address 1641 // of the jump table, and jumping to it. Update successor information; 1642 // we will either branch to the default case for the switch, or the jump 1643 // table. 1644 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1645 CurMF->insert(BBI, JumpTableBB); 1646 CR.CaseBB->addSuccessor(Default); 1647 CR.CaseBB->addSuccessor(JumpTableBB); 1648 1649 // Build a vector of destination BBs, corresponding to each target 1650 // of the jump table. If the value of the jump table slot corresponds to 1651 // a case statement, push the case's BB onto the vector, otherwise, push 1652 // the default BB. 1653 std::vector<MachineBasicBlock*> DestBBs; 1654 APInt TEI = First; 1655 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1656 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1657 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1658 1659 if (Low.sle(TEI) && TEI.sle(High)) { 1660 DestBBs.push_back(I->BB); 1661 if (TEI==High) 1662 ++I; 1663 } else { 1664 DestBBs.push_back(Default); 1665 } 1666 } 1667 1668 // Update successor info. Add one edge to each unique successor. 1669 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1670 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1671 E = DestBBs.end(); I != E; ++I) { 1672 if (!SuccsHandled[(*I)->getNumber()]) { 1673 SuccsHandled[(*I)->getNumber()] = true; 1674 JumpTableBB->addSuccessor(*I); 1675 } 1676 } 1677 1678 // Create a jump table index for this jump table. 1679 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1680 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1681 ->createJumpTableIndex(DestBBs); 1682 1683 // Set the jump table information so that we can codegen it as a second 1684 // MachineBasicBlock 1685 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1686 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB)); 1687 if (CR.CaseBB == CurMBB) 1688 visitJumpTableHeader(JT, JTH); 1689 1690 JTCases.push_back(JumpTableBlock(JTH, JT)); 1691 1692 return true; 1693 } 1694 1695 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1696 /// 2 subtrees. 1697 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1698 CaseRecVector& WorkList, 1699 Value* SV, 1700 MachineBasicBlock* Default) { 1701 // Get the MachineFunction which holds the current MBB. This is used when 1702 // inserting any additional MBBs necessary to represent the switch. 1703 MachineFunction *CurMF = FuncInfo.MF; 1704 1705 // Figure out which block is immediately after the current one. 1706 MachineFunction::iterator BBI = CR.CaseBB; 1707 ++BBI; 1708 1709 Case& FrontCase = *CR.Range.first; 1710 Case& BackCase = *(CR.Range.second-1); 1711 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1712 1713 // Size is the number of Cases represented by this range. 1714 unsigned Size = CR.Range.second - CR.Range.first; 1715 1716 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1717 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1718 double FMetric = 0; 1719 CaseItr Pivot = CR.Range.first + Size/2; 1720 1721 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1722 // (heuristically) allow us to emit JumpTable's later. 1723 APInt TSize(First.getBitWidth(), 0); 1724 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1725 I!=E; ++I) 1726 TSize += I->size(); 1727 1728 APInt LSize = FrontCase.size(); 1729 APInt RSize = TSize-LSize; 1730 DEBUG(dbgs() << "Selecting best pivot: \n" 1731 << "First: " << First << ", Last: " << Last <<'\n' 1732 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1733 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1734 J!=E; ++I, ++J) { 1735 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1736 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1737 APInt Range = ComputeRange(LEnd, RBegin); 1738 assert((Range - 2ULL).isNonNegative() && 1739 "Invalid case distance"); 1740 double LDensity = (double)LSize.roundToDouble() / 1741 (LEnd - First + 1ULL).roundToDouble(); 1742 double RDensity = (double)RSize.roundToDouble() / 1743 (Last - RBegin + 1ULL).roundToDouble(); 1744 double Metric = Range.logBase2()*(LDensity+RDensity); 1745 // Should always split in some non-trivial place 1746 DEBUG(dbgs() <<"=>Step\n" 1747 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1748 << "LDensity: " << LDensity 1749 << ", RDensity: " << RDensity << '\n' 1750 << "Metric: " << Metric << '\n'); 1751 if (FMetric < Metric) { 1752 Pivot = J; 1753 FMetric = Metric; 1754 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 1755 } 1756 1757 LSize += J->size(); 1758 RSize -= J->size(); 1759 } 1760 if (areJTsAllowed(TLI)) { 1761 // If our case is dense we *really* should handle it earlier! 1762 assert((FMetric > 0) && "Should handle dense range earlier!"); 1763 } else { 1764 Pivot = CR.Range.first + Size/2; 1765 } 1766 1767 CaseRange LHSR(CR.Range.first, Pivot); 1768 CaseRange RHSR(Pivot, CR.Range.second); 1769 Constant *C = Pivot->Low; 1770 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1771 1772 // We know that we branch to the LHS if the Value being switched on is 1773 // less than the Pivot value, C. We use this to optimize our binary 1774 // tree a bit, by recognizing that if SV is greater than or equal to the 1775 // LHS's Case Value, and that Case Value is exactly one less than the 1776 // Pivot's Value, then we can branch directly to the LHS's Target, 1777 // rather than creating a leaf node for it. 1778 if ((LHSR.second - LHSR.first) == 1 && 1779 LHSR.first->High == CR.GE && 1780 cast<ConstantInt>(C)->getValue() == 1781 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 1782 TrueBB = LHSR.first->BB; 1783 } else { 1784 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1785 CurMF->insert(BBI, TrueBB); 1786 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 1787 1788 // Put SV in a virtual register to make it available from the new blocks. 1789 ExportFromCurrentBlock(SV); 1790 } 1791 1792 // Similar to the optimization above, if the Value being switched on is 1793 // known to be less than the Constant CR.LT, and the current Case Value 1794 // is CR.LT - 1, then we can branch directly to the target block for 1795 // the current Case Value, rather than emitting a RHS leaf node for it. 1796 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 1797 cast<ConstantInt>(RHSR.first->Low)->getValue() == 1798 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 1799 FalseBB = RHSR.first->BB; 1800 } else { 1801 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1802 CurMF->insert(BBI, FalseBB); 1803 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 1804 1805 // Put SV in a virtual register to make it available from the new blocks. 1806 ExportFromCurrentBlock(SV); 1807 } 1808 1809 // Create a CaseBlock record representing a conditional branch to 1810 // the LHS node if the value being switched on SV is less than C. 1811 // Otherwise, branch to LHS. 1812 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 1813 1814 if (CR.CaseBB == CurMBB) 1815 visitSwitchCase(CB); 1816 else 1817 SwitchCases.push_back(CB); 1818 1819 return true; 1820 } 1821 1822 /// handleBitTestsSwitchCase - if current case range has few destination and 1823 /// range span less, than machine word bitwidth, encode case range into series 1824 /// of masks and emit bit tests with these masks. 1825 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 1826 CaseRecVector& WorkList, 1827 Value* SV, 1828 MachineBasicBlock* Default){ 1829 EVT PTy = TLI.getPointerTy(); 1830 unsigned IntPtrBits = PTy.getSizeInBits(); 1831 1832 Case& FrontCase = *CR.Range.first; 1833 Case& BackCase = *(CR.Range.second-1); 1834 1835 // Get the MachineFunction which holds the current MBB. This is used when 1836 // inserting any additional MBBs necessary to represent the switch. 1837 MachineFunction *CurMF = FuncInfo.MF; 1838 1839 // If target does not have legal shift left, do not emit bit tests at all. 1840 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 1841 return false; 1842 1843 size_t numCmps = 0; 1844 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1845 I!=E; ++I) { 1846 // Single case counts one, case range - two. 1847 numCmps += (I->Low == I->High ? 1 : 2); 1848 } 1849 1850 // Count unique destinations 1851 SmallSet<MachineBasicBlock*, 4> Dests; 1852 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1853 Dests.insert(I->BB); 1854 if (Dests.size() > 3) 1855 // Don't bother the code below, if there are too much unique destinations 1856 return false; 1857 } 1858 DEBUG(dbgs() << "Total number of unique destinations: " 1859 << Dests.size() << '\n' 1860 << "Total number of comparisons: " << numCmps << '\n'); 1861 1862 // Compute span of values. 1863 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 1864 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 1865 APInt cmpRange = maxValue - minValue; 1866 1867 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 1868 << "Low bound: " << minValue << '\n' 1869 << "High bound: " << maxValue << '\n'); 1870 1871 if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) || 1872 (!(Dests.size() == 1 && numCmps >= 3) && 1873 !(Dests.size() == 2 && numCmps >= 5) && 1874 !(Dests.size() >= 3 && numCmps >= 6))) 1875 return false; 1876 1877 DEBUG(dbgs() << "Emitting bit tests\n"); 1878 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 1879 1880 // Optimize the case where all the case values fit in a 1881 // word without having to subtract minValue. In this case, 1882 // we can optimize away the subtraction. 1883 if (minValue.isNonNegative() && 1884 maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) { 1885 cmpRange = maxValue; 1886 } else { 1887 lowBound = minValue; 1888 } 1889 1890 CaseBitsVector CasesBits; 1891 unsigned i, count = 0; 1892 1893 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1894 MachineBasicBlock* Dest = I->BB; 1895 for (i = 0; i < count; ++i) 1896 if (Dest == CasesBits[i].BB) 1897 break; 1898 1899 if (i == count) { 1900 assert((count < 3) && "Too much destinations to test!"); 1901 CasesBits.push_back(CaseBits(0, Dest, 0)); 1902 count++; 1903 } 1904 1905 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 1906 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 1907 1908 uint64_t lo = (lowValue - lowBound).getZExtValue(); 1909 uint64_t hi = (highValue - lowBound).getZExtValue(); 1910 1911 for (uint64_t j = lo; j <= hi; j++) { 1912 CasesBits[i].Mask |= 1ULL << j; 1913 CasesBits[i].Bits++; 1914 } 1915 1916 } 1917 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 1918 1919 BitTestInfo BTC; 1920 1921 // Figure out which block is immediately after the current one. 1922 MachineFunction::iterator BBI = CR.CaseBB; 1923 ++BBI; 1924 1925 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1926 1927 DEBUG(dbgs() << "Cases:\n"); 1928 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 1929 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 1930 << ", Bits: " << CasesBits[i].Bits 1931 << ", BB: " << CasesBits[i].BB << '\n'); 1932 1933 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1934 CurMF->insert(BBI, CaseBB); 1935 BTC.push_back(BitTestCase(CasesBits[i].Mask, 1936 CaseBB, 1937 CasesBits[i].BB)); 1938 1939 // Put SV in a virtual register to make it available from the new blocks. 1940 ExportFromCurrentBlock(SV); 1941 } 1942 1943 BitTestBlock BTB(lowBound, cmpRange, SV, 1944 -1U, (CR.CaseBB == CurMBB), 1945 CR.CaseBB, Default, BTC); 1946 1947 if (CR.CaseBB == CurMBB) 1948 visitBitTestHeader(BTB); 1949 1950 BitTestCases.push_back(BTB); 1951 1952 return true; 1953 } 1954 1955 /// Clusterify - Transform simple list of Cases into list of CaseRange's 1956 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 1957 const SwitchInst& SI) { 1958 size_t numCmps = 0; 1959 1960 // Start with "simple" cases 1961 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 1962 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 1963 Cases.push_back(Case(SI.getSuccessorValue(i), 1964 SI.getSuccessorValue(i), 1965 SMBB)); 1966 } 1967 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 1968 1969 // Merge case into clusters 1970 if (Cases.size() >= 2) 1971 // Must recompute end() each iteration because it may be 1972 // invalidated by erase if we hold on to it 1973 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 1974 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 1975 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 1976 MachineBasicBlock* nextBB = J->BB; 1977 MachineBasicBlock* currentBB = I->BB; 1978 1979 // If the two neighboring cases go to the same destination, merge them 1980 // into a single case. 1981 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 1982 I->High = J->High; 1983 J = Cases.erase(J); 1984 } else { 1985 I = J++; 1986 } 1987 } 1988 1989 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 1990 if (I->Low != I->High) 1991 // A range counts double, since it requires two compares. 1992 ++numCmps; 1993 } 1994 1995 return numCmps; 1996 } 1997 1998 void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) { 1999 // Figure out which block is immediately after the current one. 2000 MachineBasicBlock *NextBlock = 0; 2001 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2002 2003 // If there is only the default destination, branch to it if it is not the 2004 // next basic block. Otherwise, just fall through. 2005 if (SI.getNumOperands() == 2) { 2006 // Update machine-CFG edges. 2007 2008 // If this is not a fall-through branch, emit the branch. 2009 CurMBB->addSuccessor(Default); 2010 if (Default != NextBlock) 2011 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2012 MVT::Other, getControlRoot(), 2013 DAG.getBasicBlock(Default))); 2014 2015 return; 2016 } 2017 2018 // If there are any non-default case statements, create a vector of Cases 2019 // representing each one, and sort the vector so that we can efficiently 2020 // create a binary search tree from them. 2021 CaseVector Cases; 2022 size_t numCmps = Clusterify(Cases, SI); 2023 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2024 << ". Total compares: " << numCmps << '\n'); 2025 numCmps = 0; 2026 2027 // Get the Value to be switched on and default basic blocks, which will be 2028 // inserted into CaseBlock records, representing basic blocks in the binary 2029 // search tree. 2030 Value *SV = SI.getOperand(0); 2031 2032 // Push the initial CaseRec onto the worklist 2033 CaseRecVector WorkList; 2034 WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end()))); 2035 2036 while (!WorkList.empty()) { 2037 // Grab a record representing a case range to process off the worklist 2038 CaseRec CR = WorkList.back(); 2039 WorkList.pop_back(); 2040 2041 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default)) 2042 continue; 2043 2044 // If the range has few cases (two or less) emit a series of specific 2045 // tests. 2046 if (handleSmallSwitchRange(CR, WorkList, SV, Default)) 2047 continue; 2048 2049 // If the switch has more than 5 blocks, and at least 40% dense, and the 2050 // target supports indirect branches, then emit a jump table rather than 2051 // lowering the switch to a binary tree of conditional branches. 2052 if (handleJTSwitchCase(CR, WorkList, SV, Default)) 2053 continue; 2054 2055 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2056 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2057 handleBTSplitSwitchCase(CR, WorkList, SV, Default); 2058 } 2059 } 2060 2061 void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) { 2062 // Update machine-CFG edges with unique successors. 2063 SmallVector<BasicBlock*, 32> succs; 2064 succs.reserve(I.getNumSuccessors()); 2065 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2066 succs.push_back(I.getSuccessor(i)); 2067 array_pod_sort(succs.begin(), succs.end()); 2068 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2069 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2070 CurMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2071 2072 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2073 MVT::Other, getControlRoot(), 2074 getValue(I.getAddress()))); 2075 } 2076 2077 void SelectionDAGBuilder::visitFSub(User &I) { 2078 // -0.0 - X --> fneg 2079 const Type *Ty = I.getType(); 2080 if (Ty->isVectorTy()) { 2081 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2082 const VectorType *DestTy = cast<VectorType>(I.getType()); 2083 const Type *ElTy = DestTy->getElementType(); 2084 unsigned VL = DestTy->getNumElements(); 2085 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2086 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2087 if (CV == CNZ) { 2088 SDValue Op2 = getValue(I.getOperand(1)); 2089 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2090 Op2.getValueType(), Op2)); 2091 return; 2092 } 2093 } 2094 } 2095 2096 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2097 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2098 SDValue Op2 = getValue(I.getOperand(1)); 2099 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2100 Op2.getValueType(), Op2)); 2101 return; 2102 } 2103 2104 visitBinary(I, ISD::FSUB); 2105 } 2106 2107 void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) { 2108 SDValue Op1 = getValue(I.getOperand(0)); 2109 SDValue Op2 = getValue(I.getOperand(1)); 2110 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2111 Op1.getValueType(), Op1, Op2)); 2112 } 2113 2114 void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) { 2115 SDValue Op1 = getValue(I.getOperand(0)); 2116 SDValue Op2 = getValue(I.getOperand(1)); 2117 if (!I.getType()->isVectorTy() && 2118 Op2.getValueType() != TLI.getShiftAmountTy()) { 2119 // If the operand is smaller than the shift count type, promote it. 2120 EVT PTy = TLI.getPointerTy(); 2121 EVT STy = TLI.getShiftAmountTy(); 2122 if (STy.bitsGT(Op2.getValueType())) 2123 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2124 TLI.getShiftAmountTy(), Op2); 2125 // If the operand is larger than the shift count type but the shift 2126 // count type has enough bits to represent any shift value, truncate 2127 // it now. This is a common case and it exposes the truncate to 2128 // optimization early. 2129 else if (STy.getSizeInBits() >= 2130 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2131 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2132 TLI.getShiftAmountTy(), Op2); 2133 // Otherwise we'll need to temporarily settle for some other 2134 // convenient type; type legalization will make adjustments as 2135 // needed. 2136 else if (PTy.bitsLT(Op2.getValueType())) 2137 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2138 TLI.getPointerTy(), Op2); 2139 else if (PTy.bitsGT(Op2.getValueType())) 2140 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2141 TLI.getPointerTy(), Op2); 2142 } 2143 2144 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2145 Op1.getValueType(), Op1, Op2)); 2146 } 2147 2148 void SelectionDAGBuilder::visitICmp(User &I) { 2149 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2150 if (ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2151 predicate = IC->getPredicate(); 2152 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2153 predicate = ICmpInst::Predicate(IC->getPredicate()); 2154 SDValue Op1 = getValue(I.getOperand(0)); 2155 SDValue Op2 = getValue(I.getOperand(1)); 2156 ISD::CondCode Opcode = getICmpCondCode(predicate); 2157 2158 EVT DestVT = TLI.getValueType(I.getType()); 2159 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2160 } 2161 2162 void SelectionDAGBuilder::visitFCmp(User &I) { 2163 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2164 if (FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2165 predicate = FC->getPredicate(); 2166 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2167 predicate = FCmpInst::Predicate(FC->getPredicate()); 2168 SDValue Op1 = getValue(I.getOperand(0)); 2169 SDValue Op2 = getValue(I.getOperand(1)); 2170 ISD::CondCode Condition = getFCmpCondCode(predicate); 2171 EVT DestVT = TLI.getValueType(I.getType()); 2172 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2173 } 2174 2175 void SelectionDAGBuilder::visitSelect(User &I) { 2176 SmallVector<EVT, 4> ValueVTs; 2177 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2178 unsigned NumValues = ValueVTs.size(); 2179 if (NumValues == 0) return; 2180 2181 SmallVector<SDValue, 4> Values(NumValues); 2182 SDValue Cond = getValue(I.getOperand(0)); 2183 SDValue TrueVal = getValue(I.getOperand(1)); 2184 SDValue FalseVal = getValue(I.getOperand(2)); 2185 2186 for (unsigned i = 0; i != NumValues; ++i) 2187 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2188 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2189 Cond, 2190 SDValue(TrueVal.getNode(), 2191 TrueVal.getResNo() + i), 2192 SDValue(FalseVal.getNode(), 2193 FalseVal.getResNo() + i)); 2194 2195 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2196 DAG.getVTList(&ValueVTs[0], NumValues), 2197 &Values[0], NumValues)); 2198 } 2199 2200 void SelectionDAGBuilder::visitTrunc(User &I) { 2201 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2202 SDValue N = getValue(I.getOperand(0)); 2203 EVT DestVT = TLI.getValueType(I.getType()); 2204 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2205 } 2206 2207 void SelectionDAGBuilder::visitZExt(User &I) { 2208 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2209 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2210 SDValue N = getValue(I.getOperand(0)); 2211 EVT DestVT = TLI.getValueType(I.getType()); 2212 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2213 } 2214 2215 void SelectionDAGBuilder::visitSExt(User &I) { 2216 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2217 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2218 SDValue N = getValue(I.getOperand(0)); 2219 EVT DestVT = TLI.getValueType(I.getType()); 2220 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2221 } 2222 2223 void SelectionDAGBuilder::visitFPTrunc(User &I) { 2224 // FPTrunc is never a no-op cast, no need to check 2225 SDValue N = getValue(I.getOperand(0)); 2226 EVT DestVT = TLI.getValueType(I.getType()); 2227 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2228 DestVT, N, DAG.getIntPtrConstant(0))); 2229 } 2230 2231 void SelectionDAGBuilder::visitFPExt(User &I){ 2232 // FPTrunc is never a no-op cast, no need to check 2233 SDValue N = getValue(I.getOperand(0)); 2234 EVT DestVT = TLI.getValueType(I.getType()); 2235 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2236 } 2237 2238 void SelectionDAGBuilder::visitFPToUI(User &I) { 2239 // FPToUI is never a no-op cast, no need to check 2240 SDValue N = getValue(I.getOperand(0)); 2241 EVT DestVT = TLI.getValueType(I.getType()); 2242 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2243 } 2244 2245 void SelectionDAGBuilder::visitFPToSI(User &I) { 2246 // FPToSI is never a no-op cast, no need to check 2247 SDValue N = getValue(I.getOperand(0)); 2248 EVT DestVT = TLI.getValueType(I.getType()); 2249 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2250 } 2251 2252 void SelectionDAGBuilder::visitUIToFP(User &I) { 2253 // UIToFP is never a no-op cast, no need to check 2254 SDValue N = getValue(I.getOperand(0)); 2255 EVT DestVT = TLI.getValueType(I.getType()); 2256 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2257 } 2258 2259 void SelectionDAGBuilder::visitSIToFP(User &I){ 2260 // SIToFP is never a no-op cast, no need to check 2261 SDValue N = getValue(I.getOperand(0)); 2262 EVT DestVT = TLI.getValueType(I.getType()); 2263 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2264 } 2265 2266 void SelectionDAGBuilder::visitPtrToInt(User &I) { 2267 // What to do depends on the size of the integer and the size of the pointer. 2268 // We can either truncate, zero extend, or no-op, accordingly. 2269 SDValue N = getValue(I.getOperand(0)); 2270 EVT SrcVT = N.getValueType(); 2271 EVT DestVT = TLI.getValueType(I.getType()); 2272 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2273 } 2274 2275 void SelectionDAGBuilder::visitIntToPtr(User &I) { 2276 // What to do depends on the size of the integer and the size of the pointer. 2277 // We can either truncate, zero extend, or no-op, accordingly. 2278 SDValue N = getValue(I.getOperand(0)); 2279 EVT SrcVT = N.getValueType(); 2280 EVT DestVT = TLI.getValueType(I.getType()); 2281 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2282 } 2283 2284 void SelectionDAGBuilder::visitBitCast(User &I) { 2285 SDValue N = getValue(I.getOperand(0)); 2286 EVT DestVT = TLI.getValueType(I.getType()); 2287 2288 // BitCast assures us that source and destination are the same size so this is 2289 // either a BIT_CONVERT or a no-op. 2290 if (DestVT != N.getValueType()) 2291 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2292 DestVT, N)); // convert types. 2293 else 2294 setValue(&I, N); // noop cast. 2295 } 2296 2297 void SelectionDAGBuilder::visitInsertElement(User &I) { 2298 SDValue InVec = getValue(I.getOperand(0)); 2299 SDValue InVal = getValue(I.getOperand(1)); 2300 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2301 TLI.getPointerTy(), 2302 getValue(I.getOperand(2))); 2303 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2304 TLI.getValueType(I.getType()), 2305 InVec, InVal, InIdx)); 2306 } 2307 2308 void SelectionDAGBuilder::visitExtractElement(User &I) { 2309 SDValue InVec = getValue(I.getOperand(0)); 2310 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2311 TLI.getPointerTy(), 2312 getValue(I.getOperand(1))); 2313 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2314 TLI.getValueType(I.getType()), InVec, InIdx)); 2315 } 2316 2317 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2318 // from SIndx and increasing to the element length (undefs are allowed). 2319 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2320 unsigned MaskNumElts = Mask.size(); 2321 for (unsigned i = 0; i != MaskNumElts; ++i) 2322 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2323 return false; 2324 return true; 2325 } 2326 2327 void SelectionDAGBuilder::visitShuffleVector(User &I) { 2328 SmallVector<int, 8> Mask; 2329 SDValue Src1 = getValue(I.getOperand(0)); 2330 SDValue Src2 = getValue(I.getOperand(1)); 2331 2332 // Convert the ConstantVector mask operand into an array of ints, with -1 2333 // representing undef values. 2334 SmallVector<Constant*, 8> MaskElts; 2335 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2336 unsigned MaskNumElts = MaskElts.size(); 2337 for (unsigned i = 0; i != MaskNumElts; ++i) { 2338 if (isa<UndefValue>(MaskElts[i])) 2339 Mask.push_back(-1); 2340 else 2341 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2342 } 2343 2344 EVT VT = TLI.getValueType(I.getType()); 2345 EVT SrcVT = Src1.getValueType(); 2346 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2347 2348 if (SrcNumElts == MaskNumElts) { 2349 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2350 &Mask[0])); 2351 return; 2352 } 2353 2354 // Normalize the shuffle vector since mask and vector length don't match. 2355 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2356 // Mask is longer than the source vectors and is a multiple of the source 2357 // vectors. We can use concatenate vector to make the mask and vectors 2358 // lengths match. 2359 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2360 // The shuffle is concatenating two vectors together. 2361 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2362 VT, Src1, Src2)); 2363 return; 2364 } 2365 2366 // Pad both vectors with undefs to make them the same length as the mask. 2367 unsigned NumConcat = MaskNumElts / SrcNumElts; 2368 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2369 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2370 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2371 2372 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2373 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2374 MOps1[0] = Src1; 2375 MOps2[0] = Src2; 2376 2377 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2378 getCurDebugLoc(), VT, 2379 &MOps1[0], NumConcat); 2380 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2381 getCurDebugLoc(), VT, 2382 &MOps2[0], NumConcat); 2383 2384 // Readjust mask for new input vector length. 2385 SmallVector<int, 8> MappedOps; 2386 for (unsigned i = 0; i != MaskNumElts; ++i) { 2387 int Idx = Mask[i]; 2388 if (Idx < (int)SrcNumElts) 2389 MappedOps.push_back(Idx); 2390 else 2391 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2392 } 2393 2394 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2395 &MappedOps[0])); 2396 return; 2397 } 2398 2399 if (SrcNumElts > MaskNumElts) { 2400 // Analyze the access pattern of the vector to see if we can extract 2401 // two subvectors and do the shuffle. The analysis is done by calculating 2402 // the range of elements the mask access on both vectors. 2403 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2404 int MaxRange[2] = {-1, -1}; 2405 2406 for (unsigned i = 0; i != MaskNumElts; ++i) { 2407 int Idx = Mask[i]; 2408 int Input = 0; 2409 if (Idx < 0) 2410 continue; 2411 2412 if (Idx >= (int)SrcNumElts) { 2413 Input = 1; 2414 Idx -= SrcNumElts; 2415 } 2416 if (Idx > MaxRange[Input]) 2417 MaxRange[Input] = Idx; 2418 if (Idx < MinRange[Input]) 2419 MinRange[Input] = Idx; 2420 } 2421 2422 // Check if the access is smaller than the vector size and can we find 2423 // a reasonable extract index. 2424 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2425 // Extract. 2426 int StartIdx[2]; // StartIdx to extract from 2427 for (int Input=0; Input < 2; ++Input) { 2428 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2429 RangeUse[Input] = 0; // Unused 2430 StartIdx[Input] = 0; 2431 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2432 // Fits within range but we should see if we can find a good 2433 // start index that is a multiple of the mask length. 2434 if (MaxRange[Input] < (int)MaskNumElts) { 2435 RangeUse[Input] = 1; // Extract from beginning of the vector 2436 StartIdx[Input] = 0; 2437 } else { 2438 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2439 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2440 StartIdx[Input] + MaskNumElts < SrcNumElts) 2441 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2442 } 2443 } 2444 } 2445 2446 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2447 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2448 return; 2449 } 2450 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2451 // Extract appropriate subvector and generate a vector shuffle 2452 for (int Input=0; Input < 2; ++Input) { 2453 SDValue &Src = Input == 0 ? Src1 : Src2; 2454 if (RangeUse[Input] == 0) 2455 Src = DAG.getUNDEF(VT); 2456 else 2457 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2458 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2459 } 2460 2461 // Calculate new mask. 2462 SmallVector<int, 8> MappedOps; 2463 for (unsigned i = 0; i != MaskNumElts; ++i) { 2464 int Idx = Mask[i]; 2465 if (Idx < 0) 2466 MappedOps.push_back(Idx); 2467 else if (Idx < (int)SrcNumElts) 2468 MappedOps.push_back(Idx - StartIdx[0]); 2469 else 2470 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2471 } 2472 2473 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2474 &MappedOps[0])); 2475 return; 2476 } 2477 } 2478 2479 // We can't use either concat vectors or extract subvectors so fall back to 2480 // replacing the shuffle with extract and build vector. 2481 // to insert and build vector. 2482 EVT EltVT = VT.getVectorElementType(); 2483 EVT PtrVT = TLI.getPointerTy(); 2484 SmallVector<SDValue,8> Ops; 2485 for (unsigned i = 0; i != MaskNumElts; ++i) { 2486 if (Mask[i] < 0) { 2487 Ops.push_back(DAG.getUNDEF(EltVT)); 2488 } else { 2489 int Idx = Mask[i]; 2490 SDValue Res; 2491 2492 if (Idx < (int)SrcNumElts) 2493 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2494 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2495 else 2496 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2497 EltVT, Src2, 2498 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2499 2500 Ops.push_back(Res); 2501 } 2502 } 2503 2504 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2505 VT, &Ops[0], Ops.size())); 2506 } 2507 2508 void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) { 2509 const Value *Op0 = I.getOperand(0); 2510 const Value *Op1 = I.getOperand(1); 2511 const Type *AggTy = I.getType(); 2512 const Type *ValTy = Op1->getType(); 2513 bool IntoUndef = isa<UndefValue>(Op0); 2514 bool FromUndef = isa<UndefValue>(Op1); 2515 2516 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2517 I.idx_begin(), I.idx_end()); 2518 2519 SmallVector<EVT, 4> AggValueVTs; 2520 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2521 SmallVector<EVT, 4> ValValueVTs; 2522 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2523 2524 unsigned NumAggValues = AggValueVTs.size(); 2525 unsigned NumValValues = ValValueVTs.size(); 2526 SmallVector<SDValue, 4> Values(NumAggValues); 2527 2528 SDValue Agg = getValue(Op0); 2529 SDValue Val = getValue(Op1); 2530 unsigned i = 0; 2531 // Copy the beginning value(s) from the original aggregate. 2532 for (; i != LinearIndex; ++i) 2533 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2534 SDValue(Agg.getNode(), Agg.getResNo() + i); 2535 // Copy values from the inserted value(s). 2536 for (; i != LinearIndex + NumValValues; ++i) 2537 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2538 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2539 // Copy remaining value(s) from the original aggregate. 2540 for (; i != NumAggValues; ++i) 2541 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2542 SDValue(Agg.getNode(), Agg.getResNo() + i); 2543 2544 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2545 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2546 &Values[0], NumAggValues)); 2547 } 2548 2549 void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) { 2550 const Value *Op0 = I.getOperand(0); 2551 const Type *AggTy = Op0->getType(); 2552 const Type *ValTy = I.getType(); 2553 bool OutOfUndef = isa<UndefValue>(Op0); 2554 2555 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2556 I.idx_begin(), I.idx_end()); 2557 2558 SmallVector<EVT, 4> ValValueVTs; 2559 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2560 2561 unsigned NumValValues = ValValueVTs.size(); 2562 SmallVector<SDValue, 4> Values(NumValValues); 2563 2564 SDValue Agg = getValue(Op0); 2565 // Copy out the selected value(s). 2566 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2567 Values[i - LinearIndex] = 2568 OutOfUndef ? 2569 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2570 SDValue(Agg.getNode(), Agg.getResNo() + i); 2571 2572 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2573 DAG.getVTList(&ValValueVTs[0], NumValValues), 2574 &Values[0], NumValValues)); 2575 } 2576 2577 void SelectionDAGBuilder::visitGetElementPtr(User &I) { 2578 SDValue N = getValue(I.getOperand(0)); 2579 const Type *Ty = I.getOperand(0)->getType(); 2580 2581 for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); 2582 OI != E; ++OI) { 2583 Value *Idx = *OI; 2584 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2585 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2586 if (Field) { 2587 // N = N + Offset 2588 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2589 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2590 DAG.getIntPtrConstant(Offset)); 2591 } 2592 2593 Ty = StTy->getElementType(Field); 2594 } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) { 2595 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2596 2597 // Offset canonically 0 for unions, but type changes 2598 Ty = UnTy->getElementType(Field); 2599 } else { 2600 Ty = cast<SequentialType>(Ty)->getElementType(); 2601 2602 // If this is a constant subscript, handle it quickly. 2603 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2604 if (CI->getZExtValue() == 0) continue; 2605 uint64_t Offs = 2606 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2607 SDValue OffsVal; 2608 EVT PTy = TLI.getPointerTy(); 2609 unsigned PtrBits = PTy.getSizeInBits(); 2610 if (PtrBits < 64) 2611 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2612 TLI.getPointerTy(), 2613 DAG.getConstant(Offs, MVT::i64)); 2614 else 2615 OffsVal = DAG.getIntPtrConstant(Offs); 2616 2617 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2618 OffsVal); 2619 continue; 2620 } 2621 2622 // N = N + Idx * ElementSize; 2623 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2624 TD->getTypeAllocSize(Ty)); 2625 SDValue IdxN = getValue(Idx); 2626 2627 // If the index is smaller or larger than intptr_t, truncate or extend 2628 // it. 2629 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2630 2631 // If this is a multiply by a power of two, turn it into a shl 2632 // immediately. This is a very common case. 2633 if (ElementSize != 1) { 2634 if (ElementSize.isPowerOf2()) { 2635 unsigned Amt = ElementSize.logBase2(); 2636 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2637 N.getValueType(), IdxN, 2638 DAG.getConstant(Amt, TLI.getPointerTy())); 2639 } else { 2640 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2641 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2642 N.getValueType(), IdxN, Scale); 2643 } 2644 } 2645 2646 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2647 N.getValueType(), N, IdxN); 2648 } 2649 } 2650 2651 setValue(&I, N); 2652 } 2653 2654 void SelectionDAGBuilder::visitAlloca(AllocaInst &I) { 2655 // If this is a fixed sized alloca in the entry block of the function, 2656 // allocate it statically on the stack. 2657 if (FuncInfo.StaticAllocaMap.count(&I)) 2658 return; // getValue will auto-populate this. 2659 2660 const Type *Ty = I.getAllocatedType(); 2661 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2662 unsigned Align = 2663 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2664 I.getAlignment()); 2665 2666 SDValue AllocSize = getValue(I.getArraySize()); 2667 2668 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(), 2669 AllocSize, 2670 DAG.getConstant(TySize, AllocSize.getValueType())); 2671 2672 EVT IntPtr = TLI.getPointerTy(); 2673 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2674 2675 // Handle alignment. If the requested alignment is less than or equal to 2676 // the stack alignment, ignore it. If the size is greater than or equal to 2677 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2678 unsigned StackAlign = 2679 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 2680 if (Align <= StackAlign) 2681 Align = 0; 2682 2683 // Round the size of the allocation up to the stack alignment size 2684 // by add SA-1 to the size. 2685 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2686 AllocSize.getValueType(), AllocSize, 2687 DAG.getIntPtrConstant(StackAlign-1)); 2688 2689 // Mask out the low bits for alignment purposes. 2690 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2691 AllocSize.getValueType(), AllocSize, 2692 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2693 2694 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2695 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2696 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2697 VTs, Ops, 3); 2698 setValue(&I, DSA); 2699 DAG.setRoot(DSA.getValue(1)); 2700 2701 // Inform the Frame Information that we have just allocated a variable-sized 2702 // object. 2703 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(); 2704 } 2705 2706 void SelectionDAGBuilder::visitLoad(LoadInst &I) { 2707 const Value *SV = I.getOperand(0); 2708 SDValue Ptr = getValue(SV); 2709 2710 const Type *Ty = I.getType(); 2711 2712 bool isVolatile = I.isVolatile(); 2713 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2714 unsigned Alignment = I.getAlignment(); 2715 2716 SmallVector<EVT, 4> ValueVTs; 2717 SmallVector<uint64_t, 4> Offsets; 2718 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2719 unsigned NumValues = ValueVTs.size(); 2720 if (NumValues == 0) 2721 return; 2722 2723 SDValue Root; 2724 bool ConstantMemory = false; 2725 if (I.isVolatile()) 2726 // Serialize volatile loads with other side effects. 2727 Root = getRoot(); 2728 else if (AA->pointsToConstantMemory(SV)) { 2729 // Do not serialize (non-volatile) loads of constant memory with anything. 2730 Root = DAG.getEntryNode(); 2731 ConstantMemory = true; 2732 } else { 2733 // Do not serialize non-volatile loads against each other. 2734 Root = DAG.getRoot(); 2735 } 2736 2737 SmallVector<SDValue, 4> Values(NumValues); 2738 SmallVector<SDValue, 4> Chains(NumValues); 2739 EVT PtrVT = Ptr.getValueType(); 2740 for (unsigned i = 0; i != NumValues; ++i) { 2741 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2742 PtrVT, Ptr, 2743 DAG.getConstant(Offsets[i], PtrVT)); 2744 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 2745 A, SV, Offsets[i], isVolatile, 2746 isNonTemporal, Alignment); 2747 2748 Values[i] = L; 2749 Chains[i] = L.getValue(1); 2750 } 2751 2752 if (!ConstantMemory) { 2753 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2754 MVT::Other, &Chains[0], NumValues); 2755 if (isVolatile) 2756 DAG.setRoot(Chain); 2757 else 2758 PendingLoads.push_back(Chain); 2759 } 2760 2761 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2762 DAG.getVTList(&ValueVTs[0], NumValues), 2763 &Values[0], NumValues)); 2764 } 2765 2766 void SelectionDAGBuilder::visitStore(StoreInst &I) { 2767 Value *SrcV = I.getOperand(0); 2768 Value *PtrV = I.getOperand(1); 2769 2770 SmallVector<EVT, 4> ValueVTs; 2771 SmallVector<uint64_t, 4> Offsets; 2772 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2773 unsigned NumValues = ValueVTs.size(); 2774 if (NumValues == 0) 2775 return; 2776 2777 // Get the lowered operands. Note that we do this after 2778 // checking if NumResults is zero, because with zero results 2779 // the operands won't have values in the map. 2780 SDValue Src = getValue(SrcV); 2781 SDValue Ptr = getValue(PtrV); 2782 2783 SDValue Root = getRoot(); 2784 SmallVector<SDValue, 4> Chains(NumValues); 2785 EVT PtrVT = Ptr.getValueType(); 2786 bool isVolatile = I.isVolatile(); 2787 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2788 unsigned Alignment = I.getAlignment(); 2789 2790 for (unsigned i = 0; i != NumValues; ++i) { 2791 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 2792 DAG.getConstant(Offsets[i], PtrVT)); 2793 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 2794 SDValue(Src.getNode(), Src.getResNo() + i), 2795 Add, PtrV, Offsets[i], isVolatile, 2796 isNonTemporal, Alignment); 2797 } 2798 2799 DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2800 MVT::Other, &Chains[0], NumValues)); 2801 } 2802 2803 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 2804 /// node. 2805 void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I, 2806 unsigned Intrinsic) { 2807 bool HasChain = !I.doesNotAccessMemory(); 2808 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 2809 2810 // Build the operand list. 2811 SmallVector<SDValue, 8> Ops; 2812 if (HasChain) { // If this intrinsic has side-effects, chainify it. 2813 if (OnlyLoad) { 2814 // We don't need to serialize loads against other loads. 2815 Ops.push_back(DAG.getRoot()); 2816 } else { 2817 Ops.push_back(getRoot()); 2818 } 2819 } 2820 2821 // Info is set by getTgtMemInstrinsic 2822 TargetLowering::IntrinsicInfo Info; 2823 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 2824 2825 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 2826 if (!IsTgtIntrinsic) 2827 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 2828 2829 // Add all operands of the call to the operand list. 2830 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 2831 SDValue Op = getValue(I.getOperand(i)); 2832 assert(TLI.isTypeLegal(Op.getValueType()) && 2833 "Intrinsic uses a non-legal type?"); 2834 Ops.push_back(Op); 2835 } 2836 2837 SmallVector<EVT, 4> ValueVTs; 2838 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2839 #ifndef NDEBUG 2840 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 2841 assert(TLI.isTypeLegal(ValueVTs[Val]) && 2842 "Intrinsic uses a non-legal type?"); 2843 } 2844 #endif // NDEBUG 2845 2846 if (HasChain) 2847 ValueVTs.push_back(MVT::Other); 2848 2849 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 2850 2851 // Create the node. 2852 SDValue Result; 2853 if (IsTgtIntrinsic) { 2854 // This is target intrinsic that touches memory 2855 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 2856 VTs, &Ops[0], Ops.size(), 2857 Info.memVT, Info.ptrVal, Info.offset, 2858 Info.align, Info.vol, 2859 Info.readMem, Info.writeMem); 2860 } else if (!HasChain) { 2861 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 2862 VTs, &Ops[0], Ops.size()); 2863 } else if (!I.getType()->isVoidTy()) { 2864 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 2865 VTs, &Ops[0], Ops.size()); 2866 } else { 2867 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 2868 VTs, &Ops[0], Ops.size()); 2869 } 2870 2871 if (HasChain) { 2872 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 2873 if (OnlyLoad) 2874 PendingLoads.push_back(Chain); 2875 else 2876 DAG.setRoot(Chain); 2877 } 2878 2879 if (!I.getType()->isVoidTy()) { 2880 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 2881 EVT VT = TLI.getValueType(PTy); 2882 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 2883 } 2884 2885 setValue(&I, Result); 2886 } 2887 } 2888 2889 /// GetSignificand - Get the significand and build it into a floating-point 2890 /// number with exponent of 1: 2891 /// 2892 /// Op = (Op & 0x007fffff) | 0x3f800000; 2893 /// 2894 /// where Op is the hexidecimal representation of floating point value. 2895 static SDValue 2896 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 2897 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 2898 DAG.getConstant(0x007fffff, MVT::i32)); 2899 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 2900 DAG.getConstant(0x3f800000, MVT::i32)); 2901 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 2902 } 2903 2904 /// GetExponent - Get the exponent: 2905 /// 2906 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 2907 /// 2908 /// where Op is the hexidecimal representation of floating point value. 2909 static SDValue 2910 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 2911 DebugLoc dl) { 2912 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 2913 DAG.getConstant(0x7f800000, MVT::i32)); 2914 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 2915 DAG.getConstant(23, TLI.getPointerTy())); 2916 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 2917 DAG.getConstant(127, MVT::i32)); 2918 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 2919 } 2920 2921 /// getF32Constant - Get 32-bit floating point constant. 2922 static SDValue 2923 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 2924 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 2925 } 2926 2927 /// Inlined utility function to implement binary input atomic intrinsics for 2928 /// visitIntrinsicCall: I is a call instruction 2929 /// Op is the associated NodeType for I 2930 const char * 2931 SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) { 2932 SDValue Root = getRoot(); 2933 SDValue L = 2934 DAG.getAtomic(Op, getCurDebugLoc(), 2935 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 2936 Root, 2937 getValue(I.getOperand(1)), 2938 getValue(I.getOperand(2)), 2939 I.getOperand(1)); 2940 setValue(&I, L); 2941 DAG.setRoot(L.getValue(1)); 2942 return 0; 2943 } 2944 2945 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 2946 const char * 2947 SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) { 2948 SDValue Op1 = getValue(I.getOperand(1)); 2949 SDValue Op2 = getValue(I.getOperand(2)); 2950 2951 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 2952 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 2953 return 0; 2954 } 2955 2956 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 2957 /// limited-precision mode. 2958 void 2959 SelectionDAGBuilder::visitExp(CallInst &I) { 2960 SDValue result; 2961 DebugLoc dl = getCurDebugLoc(); 2962 2963 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 2964 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 2965 SDValue Op = getValue(I.getOperand(1)); 2966 2967 // Put the exponent in the right bit position for later addition to the 2968 // final result: 2969 // 2970 // #define LOG2OFe 1.4426950f 2971 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 2972 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 2973 getF32Constant(DAG, 0x3fb8aa3b)); 2974 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 2975 2976 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 2977 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 2978 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 2979 2980 // IntegerPartOfX <<= 23; 2981 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 2982 DAG.getConstant(23, TLI.getPointerTy())); 2983 2984 if (LimitFloatPrecision <= 6) { 2985 // For floating-point precision of 6: 2986 // 2987 // TwoToFractionalPartOfX = 2988 // 0.997535578f + 2989 // (0.735607626f + 0.252464424f * x) * x; 2990 // 2991 // error 0.0144103317, which is 6 bits 2992 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 2993 getF32Constant(DAG, 0x3e814304)); 2994 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 2995 getF32Constant(DAG, 0x3f3c50c8)); 2996 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 2997 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 2998 getF32Constant(DAG, 0x3f7f5e7e)); 2999 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 3000 3001 // Add the exponent into the result in integer domain. 3002 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3003 TwoToFracPartOfX, IntegerPartOfX); 3004 3005 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 3006 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3007 // For floating-point precision of 12: 3008 // 3009 // TwoToFractionalPartOfX = 3010 // 0.999892986f + 3011 // (0.696457318f + 3012 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3013 // 3014 // 0.000107046256 error, which is 13 to 14 bits 3015 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3016 getF32Constant(DAG, 0x3da235e3)); 3017 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3018 getF32Constant(DAG, 0x3e65b8f3)); 3019 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3020 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3021 getF32Constant(DAG, 0x3f324b07)); 3022 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3023 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3024 getF32Constant(DAG, 0x3f7ff8fd)); 3025 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 3026 3027 // Add the exponent into the result in integer domain. 3028 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3029 TwoToFracPartOfX, IntegerPartOfX); 3030 3031 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 3032 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3033 // For floating-point precision of 18: 3034 // 3035 // TwoToFractionalPartOfX = 3036 // 0.999999982f + 3037 // (0.693148872f + 3038 // (0.240227044f + 3039 // (0.554906021e-1f + 3040 // (0.961591928e-2f + 3041 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3042 // 3043 // error 2.47208000*10^(-7), which is better than 18 bits 3044 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3045 getF32Constant(DAG, 0x3924b03e)); 3046 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3047 getF32Constant(DAG, 0x3ab24b87)); 3048 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3049 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3050 getF32Constant(DAG, 0x3c1d8c17)); 3051 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3052 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3053 getF32Constant(DAG, 0x3d634a1d)); 3054 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3055 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3056 getF32Constant(DAG, 0x3e75fe14)); 3057 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3058 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3059 getF32Constant(DAG, 0x3f317234)); 3060 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3061 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3062 getF32Constant(DAG, 0x3f800000)); 3063 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 3064 MVT::i32, t13); 3065 3066 // Add the exponent into the result in integer domain. 3067 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3068 TwoToFracPartOfX, IntegerPartOfX); 3069 3070 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 3071 } 3072 } else { 3073 // No special expansion. 3074 result = DAG.getNode(ISD::FEXP, dl, 3075 getValue(I.getOperand(1)).getValueType(), 3076 getValue(I.getOperand(1))); 3077 } 3078 3079 setValue(&I, result); 3080 } 3081 3082 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3083 /// limited-precision mode. 3084 void 3085 SelectionDAGBuilder::visitLog(CallInst &I) { 3086 SDValue result; 3087 DebugLoc dl = getCurDebugLoc(); 3088 3089 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3090 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3091 SDValue Op = getValue(I.getOperand(1)); 3092 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3093 3094 // Scale the exponent by log(2) [0.69314718f]. 3095 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3096 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3097 getF32Constant(DAG, 0x3f317218)); 3098 3099 // Get the significand and build it into a floating-point number with 3100 // exponent of 1. 3101 SDValue X = GetSignificand(DAG, Op1, dl); 3102 3103 if (LimitFloatPrecision <= 6) { 3104 // For floating-point precision of 6: 3105 // 3106 // LogofMantissa = 3107 // -1.1609546f + 3108 // (1.4034025f - 0.23903021f * x) * x; 3109 // 3110 // error 0.0034276066, which is better than 8 bits 3111 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3112 getF32Constant(DAG, 0xbe74c456)); 3113 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3114 getF32Constant(DAG, 0x3fb3a2b1)); 3115 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3116 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3117 getF32Constant(DAG, 0x3f949a29)); 3118 3119 result = DAG.getNode(ISD::FADD, dl, 3120 MVT::f32, LogOfExponent, LogOfMantissa); 3121 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3122 // For floating-point precision of 12: 3123 // 3124 // LogOfMantissa = 3125 // -1.7417939f + 3126 // (2.8212026f + 3127 // (-1.4699568f + 3128 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3129 // 3130 // error 0.000061011436, which is 14 bits 3131 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3132 getF32Constant(DAG, 0xbd67b6d6)); 3133 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3134 getF32Constant(DAG, 0x3ee4f4b8)); 3135 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3136 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3137 getF32Constant(DAG, 0x3fbc278b)); 3138 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3139 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3140 getF32Constant(DAG, 0x40348e95)); 3141 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3142 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3143 getF32Constant(DAG, 0x3fdef31a)); 3144 3145 result = DAG.getNode(ISD::FADD, dl, 3146 MVT::f32, LogOfExponent, LogOfMantissa); 3147 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3148 // For floating-point precision of 18: 3149 // 3150 // LogOfMantissa = 3151 // -2.1072184f + 3152 // (4.2372794f + 3153 // (-3.7029485f + 3154 // (2.2781945f + 3155 // (-0.87823314f + 3156 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3157 // 3158 // error 0.0000023660568, which is better than 18 bits 3159 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3160 getF32Constant(DAG, 0xbc91e5ac)); 3161 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3162 getF32Constant(DAG, 0x3e4350aa)); 3163 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3164 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3165 getF32Constant(DAG, 0x3f60d3e3)); 3166 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3167 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3168 getF32Constant(DAG, 0x4011cdf0)); 3169 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3170 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3171 getF32Constant(DAG, 0x406cfd1c)); 3172 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3173 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3174 getF32Constant(DAG, 0x408797cb)); 3175 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3176 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3177 getF32Constant(DAG, 0x4006dcab)); 3178 3179 result = DAG.getNode(ISD::FADD, dl, 3180 MVT::f32, LogOfExponent, LogOfMantissa); 3181 } 3182 } else { 3183 // No special expansion. 3184 result = DAG.getNode(ISD::FLOG, dl, 3185 getValue(I.getOperand(1)).getValueType(), 3186 getValue(I.getOperand(1))); 3187 } 3188 3189 setValue(&I, result); 3190 } 3191 3192 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3193 /// limited-precision mode. 3194 void 3195 SelectionDAGBuilder::visitLog2(CallInst &I) { 3196 SDValue result; 3197 DebugLoc dl = getCurDebugLoc(); 3198 3199 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3200 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3201 SDValue Op = getValue(I.getOperand(1)); 3202 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3203 3204 // Get the exponent. 3205 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3206 3207 // Get the significand and build it into a floating-point number with 3208 // exponent of 1. 3209 SDValue X = GetSignificand(DAG, Op1, dl); 3210 3211 // Different possible minimax approximations of significand in 3212 // floating-point for various degrees of accuracy over [1,2]. 3213 if (LimitFloatPrecision <= 6) { 3214 // For floating-point precision of 6: 3215 // 3216 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3217 // 3218 // error 0.0049451742, which is more than 7 bits 3219 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3220 getF32Constant(DAG, 0xbeb08fe0)); 3221 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3222 getF32Constant(DAG, 0x40019463)); 3223 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3224 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3225 getF32Constant(DAG, 0x3fd6633d)); 3226 3227 result = DAG.getNode(ISD::FADD, dl, 3228 MVT::f32, LogOfExponent, Log2ofMantissa); 3229 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3230 // For floating-point precision of 12: 3231 // 3232 // Log2ofMantissa = 3233 // -2.51285454f + 3234 // (4.07009056f + 3235 // (-2.12067489f + 3236 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3237 // 3238 // error 0.0000876136000, which is better than 13 bits 3239 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3240 getF32Constant(DAG, 0xbda7262e)); 3241 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3242 getF32Constant(DAG, 0x3f25280b)); 3243 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3244 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3245 getF32Constant(DAG, 0x4007b923)); 3246 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3247 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3248 getF32Constant(DAG, 0x40823e2f)); 3249 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3250 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3251 getF32Constant(DAG, 0x4020d29c)); 3252 3253 result = DAG.getNode(ISD::FADD, dl, 3254 MVT::f32, LogOfExponent, Log2ofMantissa); 3255 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3256 // For floating-point precision of 18: 3257 // 3258 // Log2ofMantissa = 3259 // -3.0400495f + 3260 // (6.1129976f + 3261 // (-5.3420409f + 3262 // (3.2865683f + 3263 // (-1.2669343f + 3264 // (0.27515199f - 3265 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3266 // 3267 // error 0.0000018516, which is better than 18 bits 3268 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3269 getF32Constant(DAG, 0xbcd2769e)); 3270 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3271 getF32Constant(DAG, 0x3e8ce0b9)); 3272 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3273 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3274 getF32Constant(DAG, 0x3fa22ae7)); 3275 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3276 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3277 getF32Constant(DAG, 0x40525723)); 3278 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3279 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3280 getF32Constant(DAG, 0x40aaf200)); 3281 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3282 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3283 getF32Constant(DAG, 0x40c39dad)); 3284 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3285 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3286 getF32Constant(DAG, 0x4042902c)); 3287 3288 result = DAG.getNode(ISD::FADD, dl, 3289 MVT::f32, LogOfExponent, Log2ofMantissa); 3290 } 3291 } else { 3292 // No special expansion. 3293 result = DAG.getNode(ISD::FLOG2, dl, 3294 getValue(I.getOperand(1)).getValueType(), 3295 getValue(I.getOperand(1))); 3296 } 3297 3298 setValue(&I, result); 3299 } 3300 3301 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3302 /// limited-precision mode. 3303 void 3304 SelectionDAGBuilder::visitLog10(CallInst &I) { 3305 SDValue result; 3306 DebugLoc dl = getCurDebugLoc(); 3307 3308 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3309 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3310 SDValue Op = getValue(I.getOperand(1)); 3311 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3312 3313 // Scale the exponent by log10(2) [0.30102999f]. 3314 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3315 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3316 getF32Constant(DAG, 0x3e9a209a)); 3317 3318 // Get the significand and build it into a floating-point number with 3319 // exponent of 1. 3320 SDValue X = GetSignificand(DAG, Op1, dl); 3321 3322 if (LimitFloatPrecision <= 6) { 3323 // For floating-point precision of 6: 3324 // 3325 // Log10ofMantissa = 3326 // -0.50419619f + 3327 // (0.60948995f - 0.10380950f * x) * x; 3328 // 3329 // error 0.0014886165, which is 6 bits 3330 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3331 getF32Constant(DAG, 0xbdd49a13)); 3332 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3333 getF32Constant(DAG, 0x3f1c0789)); 3334 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3335 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3336 getF32Constant(DAG, 0x3f011300)); 3337 3338 result = DAG.getNode(ISD::FADD, dl, 3339 MVT::f32, LogOfExponent, Log10ofMantissa); 3340 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3341 // For floating-point precision of 12: 3342 // 3343 // Log10ofMantissa = 3344 // -0.64831180f + 3345 // (0.91751397f + 3346 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3347 // 3348 // error 0.00019228036, which is better than 12 bits 3349 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3350 getF32Constant(DAG, 0x3d431f31)); 3351 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3352 getF32Constant(DAG, 0x3ea21fb2)); 3353 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3354 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3355 getF32Constant(DAG, 0x3f6ae232)); 3356 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3357 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3358 getF32Constant(DAG, 0x3f25f7c3)); 3359 3360 result = DAG.getNode(ISD::FADD, dl, 3361 MVT::f32, LogOfExponent, Log10ofMantissa); 3362 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3363 // For floating-point precision of 18: 3364 // 3365 // Log10ofMantissa = 3366 // -0.84299375f + 3367 // (1.5327582f + 3368 // (-1.0688956f + 3369 // (0.49102474f + 3370 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3371 // 3372 // error 0.0000037995730, which is better than 18 bits 3373 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3374 getF32Constant(DAG, 0x3c5d51ce)); 3375 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3376 getF32Constant(DAG, 0x3e00685a)); 3377 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3378 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3379 getF32Constant(DAG, 0x3efb6798)); 3380 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3381 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3382 getF32Constant(DAG, 0x3f88d192)); 3383 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3384 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3385 getF32Constant(DAG, 0x3fc4316c)); 3386 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3387 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3388 getF32Constant(DAG, 0x3f57ce70)); 3389 3390 result = DAG.getNode(ISD::FADD, dl, 3391 MVT::f32, LogOfExponent, Log10ofMantissa); 3392 } 3393 } else { 3394 // No special expansion. 3395 result = DAG.getNode(ISD::FLOG10, dl, 3396 getValue(I.getOperand(1)).getValueType(), 3397 getValue(I.getOperand(1))); 3398 } 3399 3400 setValue(&I, result); 3401 } 3402 3403 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3404 /// limited-precision mode. 3405 void 3406 SelectionDAGBuilder::visitExp2(CallInst &I) { 3407 SDValue result; 3408 DebugLoc dl = getCurDebugLoc(); 3409 3410 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3411 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3412 SDValue Op = getValue(I.getOperand(1)); 3413 3414 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3415 3416 // FractionalPartOfX = x - (float)IntegerPartOfX; 3417 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3418 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3419 3420 // IntegerPartOfX <<= 23; 3421 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3422 DAG.getConstant(23, TLI.getPointerTy())); 3423 3424 if (LimitFloatPrecision <= 6) { 3425 // For floating-point precision of 6: 3426 // 3427 // TwoToFractionalPartOfX = 3428 // 0.997535578f + 3429 // (0.735607626f + 0.252464424f * x) * x; 3430 // 3431 // error 0.0144103317, which is 6 bits 3432 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3433 getF32Constant(DAG, 0x3e814304)); 3434 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3435 getF32Constant(DAG, 0x3f3c50c8)); 3436 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3437 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3438 getF32Constant(DAG, 0x3f7f5e7e)); 3439 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3440 SDValue TwoToFractionalPartOfX = 3441 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3442 3443 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3444 MVT::f32, TwoToFractionalPartOfX); 3445 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3446 // For floating-point precision of 12: 3447 // 3448 // TwoToFractionalPartOfX = 3449 // 0.999892986f + 3450 // (0.696457318f + 3451 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3452 // 3453 // error 0.000107046256, which is 13 to 14 bits 3454 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3455 getF32Constant(DAG, 0x3da235e3)); 3456 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3457 getF32Constant(DAG, 0x3e65b8f3)); 3458 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3459 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3460 getF32Constant(DAG, 0x3f324b07)); 3461 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3462 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3463 getF32Constant(DAG, 0x3f7ff8fd)); 3464 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3465 SDValue TwoToFractionalPartOfX = 3466 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3467 3468 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3469 MVT::f32, TwoToFractionalPartOfX); 3470 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3471 // For floating-point precision of 18: 3472 // 3473 // TwoToFractionalPartOfX = 3474 // 0.999999982f + 3475 // (0.693148872f + 3476 // (0.240227044f + 3477 // (0.554906021e-1f + 3478 // (0.961591928e-2f + 3479 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3480 // error 2.47208000*10^(-7), which is better than 18 bits 3481 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3482 getF32Constant(DAG, 0x3924b03e)); 3483 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3484 getF32Constant(DAG, 0x3ab24b87)); 3485 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3486 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3487 getF32Constant(DAG, 0x3c1d8c17)); 3488 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3489 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3490 getF32Constant(DAG, 0x3d634a1d)); 3491 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3492 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3493 getF32Constant(DAG, 0x3e75fe14)); 3494 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3495 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3496 getF32Constant(DAG, 0x3f317234)); 3497 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3498 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3499 getF32Constant(DAG, 0x3f800000)); 3500 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3501 SDValue TwoToFractionalPartOfX = 3502 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3503 3504 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3505 MVT::f32, TwoToFractionalPartOfX); 3506 } 3507 } else { 3508 // No special expansion. 3509 result = DAG.getNode(ISD::FEXP2, dl, 3510 getValue(I.getOperand(1)).getValueType(), 3511 getValue(I.getOperand(1))); 3512 } 3513 3514 setValue(&I, result); 3515 } 3516 3517 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3518 /// limited-precision mode with x == 10.0f. 3519 void 3520 SelectionDAGBuilder::visitPow(CallInst &I) { 3521 SDValue result; 3522 Value *Val = I.getOperand(1); 3523 DebugLoc dl = getCurDebugLoc(); 3524 bool IsExp10 = false; 3525 3526 if (getValue(Val).getValueType() == MVT::f32 && 3527 getValue(I.getOperand(2)).getValueType() == MVT::f32 && 3528 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3529 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3530 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3531 APFloat Ten(10.0f); 3532 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3533 } 3534 } 3535 } 3536 3537 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3538 SDValue Op = getValue(I.getOperand(2)); 3539 3540 // Put the exponent in the right bit position for later addition to the 3541 // final result: 3542 // 3543 // #define LOG2OF10 3.3219281f 3544 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3545 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3546 getF32Constant(DAG, 0x40549a78)); 3547 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3548 3549 // FractionalPartOfX = x - (float)IntegerPartOfX; 3550 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3551 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3552 3553 // IntegerPartOfX <<= 23; 3554 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3555 DAG.getConstant(23, TLI.getPointerTy())); 3556 3557 if (LimitFloatPrecision <= 6) { 3558 // For floating-point precision of 6: 3559 // 3560 // twoToFractionalPartOfX = 3561 // 0.997535578f + 3562 // (0.735607626f + 0.252464424f * x) * x; 3563 // 3564 // error 0.0144103317, which is 6 bits 3565 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3566 getF32Constant(DAG, 0x3e814304)); 3567 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3568 getF32Constant(DAG, 0x3f3c50c8)); 3569 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3570 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3571 getF32Constant(DAG, 0x3f7f5e7e)); 3572 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3573 SDValue TwoToFractionalPartOfX = 3574 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3575 3576 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3577 MVT::f32, TwoToFractionalPartOfX); 3578 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3579 // For floating-point precision of 12: 3580 // 3581 // TwoToFractionalPartOfX = 3582 // 0.999892986f + 3583 // (0.696457318f + 3584 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3585 // 3586 // error 0.000107046256, which is 13 to 14 bits 3587 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3588 getF32Constant(DAG, 0x3da235e3)); 3589 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3590 getF32Constant(DAG, 0x3e65b8f3)); 3591 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3592 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3593 getF32Constant(DAG, 0x3f324b07)); 3594 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3595 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3596 getF32Constant(DAG, 0x3f7ff8fd)); 3597 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3598 SDValue TwoToFractionalPartOfX = 3599 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3600 3601 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3602 MVT::f32, TwoToFractionalPartOfX); 3603 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3604 // For floating-point precision of 18: 3605 // 3606 // TwoToFractionalPartOfX = 3607 // 0.999999982f + 3608 // (0.693148872f + 3609 // (0.240227044f + 3610 // (0.554906021e-1f + 3611 // (0.961591928e-2f + 3612 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3613 // error 2.47208000*10^(-7), which is better than 18 bits 3614 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3615 getF32Constant(DAG, 0x3924b03e)); 3616 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3617 getF32Constant(DAG, 0x3ab24b87)); 3618 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3619 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3620 getF32Constant(DAG, 0x3c1d8c17)); 3621 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3622 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3623 getF32Constant(DAG, 0x3d634a1d)); 3624 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3625 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3626 getF32Constant(DAG, 0x3e75fe14)); 3627 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3628 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3629 getF32Constant(DAG, 0x3f317234)); 3630 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3631 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3632 getF32Constant(DAG, 0x3f800000)); 3633 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3634 SDValue TwoToFractionalPartOfX = 3635 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3636 3637 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3638 MVT::f32, TwoToFractionalPartOfX); 3639 } 3640 } else { 3641 // No special expansion. 3642 result = DAG.getNode(ISD::FPOW, dl, 3643 getValue(I.getOperand(1)).getValueType(), 3644 getValue(I.getOperand(1)), 3645 getValue(I.getOperand(2))); 3646 } 3647 3648 setValue(&I, result); 3649 } 3650 3651 3652 /// ExpandPowI - Expand a llvm.powi intrinsic. 3653 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3654 SelectionDAG &DAG) { 3655 // If RHS is a constant, we can expand this out to a multiplication tree, 3656 // otherwise we end up lowering to a call to __powidf2 (for example). When 3657 // optimizing for size, we only want to do this if the expansion would produce 3658 // a small number of multiplies, otherwise we do the full expansion. 3659 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3660 // Get the exponent as a positive value. 3661 unsigned Val = RHSC->getSExtValue(); 3662 if ((int)Val < 0) Val = -Val; 3663 3664 // powi(x, 0) -> 1.0 3665 if (Val == 0) 3666 return DAG.getConstantFP(1.0, LHS.getValueType()); 3667 3668 Function *F = DAG.getMachineFunction().getFunction(); 3669 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3670 // If optimizing for size, don't insert too many multiplies. This 3671 // inserts up to 5 multiplies. 3672 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3673 // We use the simple binary decomposition method to generate the multiply 3674 // sequence. There are more optimal ways to do this (for example, 3675 // powi(x,15) generates one more multiply than it should), but this has 3676 // the benefit of being both really simple and much better than a libcall. 3677 SDValue Res; // Logically starts equal to 1.0 3678 SDValue CurSquare = LHS; 3679 while (Val) { 3680 if (Val & 1) { 3681 if (Res.getNode()) 3682 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3683 else 3684 Res = CurSquare; // 1.0*CurSquare. 3685 } 3686 3687 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3688 CurSquare, CurSquare); 3689 Val >>= 1; 3690 } 3691 3692 // If the original was negative, invert the result, producing 1/(x*x*x). 3693 if (RHSC->getSExtValue() < 0) 3694 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3695 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 3696 return Res; 3697 } 3698 } 3699 3700 // Otherwise, expand to a libcall. 3701 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3702 } 3703 3704 3705 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3706 /// we want to emit this as a call to a named external function, return the name 3707 /// otherwise lower it and return null. 3708 const char * 3709 SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { 3710 DebugLoc dl = getCurDebugLoc(); 3711 SDValue Res; 3712 3713 switch (Intrinsic) { 3714 default: 3715 // By default, turn this into a target intrinsic node. 3716 visitTargetIntrinsic(I, Intrinsic); 3717 return 0; 3718 case Intrinsic::vastart: visitVAStart(I); return 0; 3719 case Intrinsic::vaend: visitVAEnd(I); return 0; 3720 case Intrinsic::vacopy: visitVACopy(I); return 0; 3721 case Intrinsic::returnaddress: 3722 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 3723 getValue(I.getOperand(1)))); 3724 return 0; 3725 case Intrinsic::frameaddress: 3726 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 3727 getValue(I.getOperand(1)))); 3728 return 0; 3729 case Intrinsic::setjmp: 3730 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 3731 case Intrinsic::longjmp: 3732 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 3733 case Intrinsic::memcpy: { 3734 // Assert for address < 256 since we support only user defined address 3735 // spaces. 3736 assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace() 3737 < 256 && 3738 cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace() 3739 < 256 && 3740 "Unknown address space"); 3741 SDValue Op1 = getValue(I.getOperand(1)); 3742 SDValue Op2 = getValue(I.getOperand(2)); 3743 SDValue Op3 = getValue(I.getOperand(3)); 3744 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3745 bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue(); 3746 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 3747 I.getOperand(1), 0, I.getOperand(2), 0)); 3748 return 0; 3749 } 3750 case Intrinsic::memset: { 3751 // Assert for address < 256 since we support only user defined address 3752 // spaces. 3753 assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace() 3754 < 256 && 3755 "Unknown address space"); 3756 SDValue Op1 = getValue(I.getOperand(1)); 3757 SDValue Op2 = getValue(I.getOperand(2)); 3758 SDValue Op3 = getValue(I.getOperand(3)); 3759 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3760 bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue(); 3761 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 3762 I.getOperand(1), 0)); 3763 return 0; 3764 } 3765 case Intrinsic::memmove: { 3766 // Assert for address < 256 since we support only user defined address 3767 // spaces. 3768 assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace() 3769 < 256 && 3770 cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace() 3771 < 256 && 3772 "Unknown address space"); 3773 SDValue Op1 = getValue(I.getOperand(1)); 3774 SDValue Op2 = getValue(I.getOperand(2)); 3775 SDValue Op3 = getValue(I.getOperand(3)); 3776 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3777 bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue(); 3778 3779 // If the source and destination are known to not be aliases, we can 3780 // lower memmove as memcpy. 3781 uint64_t Size = -1ULL; 3782 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 3783 Size = C->getZExtValue(); 3784 if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) == 3785 AliasAnalysis::NoAlias) { 3786 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 3787 false, I.getOperand(1), 0, I.getOperand(2), 0)); 3788 return 0; 3789 } 3790 3791 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 3792 I.getOperand(1), 0, I.getOperand(2), 0)); 3793 return 0; 3794 } 3795 case Intrinsic::dbg_declare: { 3796 // FIXME: currently, we get here only if OptLevel != CodeGenOpt::None. 3797 // The real handling of this intrinsic is in FastISel. 3798 if (OptLevel != CodeGenOpt::None) 3799 // FIXME: Variable debug info is not supported here. 3800 return 0; 3801 DwarfWriter *DW = DAG.getDwarfWriter(); 3802 if (!DW) 3803 return 0; 3804 DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 3805 if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None)) 3806 return 0; 3807 3808 MDNode *Variable = DI.getVariable(); 3809 Value *Address = DI.getAddress(); 3810 if (!Address) 3811 return 0; 3812 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 3813 Address = BCI->getOperand(0); 3814 AllocaInst *AI = dyn_cast<AllocaInst>(Address); 3815 // Don't handle byval struct arguments or VLAs, for example. 3816 if (!AI) 3817 return 0; 3818 DenseMap<const AllocaInst*, int>::iterator SI = 3819 FuncInfo.StaticAllocaMap.find(AI); 3820 if (SI == FuncInfo.StaticAllocaMap.end()) 3821 return 0; // VLAs. 3822 int FI = SI->second; 3823 3824 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) 3825 if (MDNode *Dbg = DI.getDbgMetadata()) 3826 MMI->setVariableDbgInfo(Variable, FI, Dbg); 3827 return 0; 3828 } 3829 case Intrinsic::dbg_value: { 3830 DwarfWriter *DW = DAG.getDwarfWriter(); 3831 if (!DW) 3832 return 0; 3833 DbgValueInst &DI = cast<DbgValueInst>(I); 3834 if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None)) 3835 return 0; 3836 3837 MDNode *Variable = DI.getVariable(); 3838 uint64_t Offset = DI.getOffset(); 3839 Value *V = DI.getValue(); 3840 if (!V) 3841 return 0; 3842 3843 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 3844 // but do not always have a corresponding SDNode built. The SDNodeOrder 3845 // absolute, but not relative, values are different depending on whether 3846 // debug info exists. 3847 ++SDNodeOrder; 3848 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 3849 DAG.AddDbgValue(DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder)); 3850 } else { 3851 SDValue &N = NodeMap[V]; 3852 if (N.getNode()) 3853 DAG.AddDbgValue(DAG.getDbgValue(Variable, N.getNode(), 3854 N.getResNo(), Offset, dl, SDNodeOrder), 3855 N.getNode()); 3856 else 3857 // We may expand this to cover more cases. One case where we have no 3858 // data available is an unreferenced parameter; we need this fallback. 3859 DAG.AddDbgValue(DAG.getDbgValue(Variable, 3860 UndefValue::get(V->getType()), 3861 Offset, dl, SDNodeOrder)); 3862 } 3863 3864 // Build a debug info table entry. 3865 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 3866 V = BCI->getOperand(0); 3867 AllocaInst *AI = dyn_cast<AllocaInst>(V); 3868 // Don't handle byval struct arguments or VLAs, for example. 3869 if (!AI) 3870 return 0; 3871 DenseMap<const AllocaInst*, int>::iterator SI = 3872 FuncInfo.StaticAllocaMap.find(AI); 3873 if (SI == FuncInfo.StaticAllocaMap.end()) 3874 return 0; // VLAs. 3875 int FI = SI->second; 3876 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) 3877 if (MDNode *Dbg = DI.getDbgMetadata()) 3878 MMI->setVariableDbgInfo(Variable, FI, Dbg); 3879 return 0; 3880 } 3881 case Intrinsic::eh_exception: { 3882 // Insert the EXCEPTIONADDR instruction. 3883 assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!"); 3884 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 3885 SDValue Ops[1]; 3886 Ops[0] = DAG.getRoot(); 3887 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 3888 setValue(&I, Op); 3889 DAG.setRoot(Op.getValue(1)); 3890 return 0; 3891 } 3892 3893 case Intrinsic::eh_selector: { 3894 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3895 3896 if (CurMBB->isLandingPad()) 3897 AddCatchInfo(I, MMI, CurMBB); 3898 else { 3899 #ifndef NDEBUG 3900 FuncInfo.CatchInfoLost.insert(&I); 3901 #endif 3902 // FIXME: Mark exception selector register as live in. Hack for PR1508. 3903 unsigned Reg = TLI.getExceptionSelectorRegister(); 3904 if (Reg) CurMBB->addLiveIn(Reg); 3905 } 3906 3907 // Insert the EHSELECTION instruction. 3908 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 3909 SDValue Ops[2]; 3910 Ops[0] = getValue(I.getOperand(1)); 3911 Ops[1] = getRoot(); 3912 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 3913 DAG.setRoot(Op.getValue(1)); 3914 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 3915 return 0; 3916 } 3917 3918 case Intrinsic::eh_typeid_for: { 3919 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3920 3921 if (MMI) { 3922 // Find the type id for the given typeinfo. 3923 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); 3924 unsigned TypeID = MMI->getTypeIDFor(GV); 3925 Res = DAG.getConstant(TypeID, MVT::i32); 3926 } else { 3927 // Return something different to eh_selector. 3928 Res = DAG.getConstant(1, MVT::i32); 3929 } 3930 3931 setValue(&I, Res); 3932 return 0; 3933 } 3934 3935 case Intrinsic::eh_return_i32: 3936 case Intrinsic::eh_return_i64: 3937 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { 3938 MMI->setCallsEHReturn(true); 3939 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 3940 MVT::Other, 3941 getControlRoot(), 3942 getValue(I.getOperand(1)), 3943 getValue(I.getOperand(2)))); 3944 } else { 3945 setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); 3946 } 3947 3948 return 0; 3949 case Intrinsic::eh_unwind_init: 3950 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { 3951 MMI->setCallsUnwindInit(true); 3952 } 3953 return 0; 3954 case Intrinsic::eh_dwarf_cfa: { 3955 EVT VT = getValue(I.getOperand(1)).getValueType(); 3956 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl, 3957 TLI.getPointerTy()); 3958 SDValue Offset = DAG.getNode(ISD::ADD, dl, 3959 TLI.getPointerTy(), 3960 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 3961 TLI.getPointerTy()), 3962 CfaArg); 3963 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 3964 TLI.getPointerTy(), 3965 DAG.getConstant(0, TLI.getPointerTy())); 3966 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 3967 FA, Offset)); 3968 return 0; 3969 } 3970 case Intrinsic::eh_sjlj_callsite: { 3971 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3972 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1)); 3973 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 3974 assert(MMI->getCurrentCallSite() == 0 && "Overlapping call sites!"); 3975 3976 MMI->setCurrentCallSite(CI->getZExtValue()); 3977 return 0; 3978 } 3979 3980 case Intrinsic::convertff: 3981 case Intrinsic::convertfsi: 3982 case Intrinsic::convertfui: 3983 case Intrinsic::convertsif: 3984 case Intrinsic::convertuif: 3985 case Intrinsic::convertss: 3986 case Intrinsic::convertsu: 3987 case Intrinsic::convertus: 3988 case Intrinsic::convertuu: { 3989 ISD::CvtCode Code = ISD::CVT_INVALID; 3990 switch (Intrinsic) { 3991 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 3992 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 3993 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 3994 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 3995 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 3996 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 3997 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 3998 case Intrinsic::convertus: Code = ISD::CVT_US; break; 3999 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4000 } 4001 EVT DestVT = TLI.getValueType(I.getType()); 4002 Value *Op1 = I.getOperand(1); 4003 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4004 DAG.getValueType(DestVT), 4005 DAG.getValueType(getValue(Op1).getValueType()), 4006 getValue(I.getOperand(2)), 4007 getValue(I.getOperand(3)), 4008 Code); 4009 setValue(&I, Res); 4010 return 0; 4011 } 4012 case Intrinsic::sqrt: 4013 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4014 getValue(I.getOperand(1)).getValueType(), 4015 getValue(I.getOperand(1)))); 4016 return 0; 4017 case Intrinsic::powi: 4018 setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)), 4019 getValue(I.getOperand(2)), DAG)); 4020 return 0; 4021 case Intrinsic::sin: 4022 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4023 getValue(I.getOperand(1)).getValueType(), 4024 getValue(I.getOperand(1)))); 4025 return 0; 4026 case Intrinsic::cos: 4027 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4028 getValue(I.getOperand(1)).getValueType(), 4029 getValue(I.getOperand(1)))); 4030 return 0; 4031 case Intrinsic::log: 4032 visitLog(I); 4033 return 0; 4034 case Intrinsic::log2: 4035 visitLog2(I); 4036 return 0; 4037 case Intrinsic::log10: 4038 visitLog10(I); 4039 return 0; 4040 case Intrinsic::exp: 4041 visitExp(I); 4042 return 0; 4043 case Intrinsic::exp2: 4044 visitExp2(I); 4045 return 0; 4046 case Intrinsic::pow: 4047 visitPow(I); 4048 return 0; 4049 case Intrinsic::convert_to_fp16: 4050 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4051 MVT::i16, getValue(I.getOperand(1)))); 4052 return 0; 4053 case Intrinsic::convert_from_fp16: 4054 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4055 MVT::f32, getValue(I.getOperand(1)))); 4056 return 0; 4057 case Intrinsic::pcmarker: { 4058 SDValue Tmp = getValue(I.getOperand(1)); 4059 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4060 return 0; 4061 } 4062 case Intrinsic::readcyclecounter: { 4063 SDValue Op = getRoot(); 4064 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4065 DAG.getVTList(MVT::i64, MVT::Other), 4066 &Op, 1); 4067 setValue(&I, Res); 4068 DAG.setRoot(Res.getValue(1)); 4069 return 0; 4070 } 4071 case Intrinsic::bswap: 4072 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4073 getValue(I.getOperand(1)).getValueType(), 4074 getValue(I.getOperand(1)))); 4075 return 0; 4076 case Intrinsic::cttz: { 4077 SDValue Arg = getValue(I.getOperand(1)); 4078 EVT Ty = Arg.getValueType(); 4079 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4080 return 0; 4081 } 4082 case Intrinsic::ctlz: { 4083 SDValue Arg = getValue(I.getOperand(1)); 4084 EVT Ty = Arg.getValueType(); 4085 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4086 return 0; 4087 } 4088 case Intrinsic::ctpop: { 4089 SDValue Arg = getValue(I.getOperand(1)); 4090 EVT Ty = Arg.getValueType(); 4091 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4092 return 0; 4093 } 4094 case Intrinsic::stacksave: { 4095 SDValue Op = getRoot(); 4096 Res = DAG.getNode(ISD::STACKSAVE, dl, 4097 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4098 setValue(&I, Res); 4099 DAG.setRoot(Res.getValue(1)); 4100 return 0; 4101 } 4102 case Intrinsic::stackrestore: { 4103 Res = getValue(I.getOperand(1)); 4104 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4105 return 0; 4106 } 4107 case Intrinsic::stackprotector: { 4108 // Emit code into the DAG to store the stack guard onto the stack. 4109 MachineFunction &MF = DAG.getMachineFunction(); 4110 MachineFrameInfo *MFI = MF.getFrameInfo(); 4111 EVT PtrTy = TLI.getPointerTy(); 4112 4113 SDValue Src = getValue(I.getOperand(1)); // The guard's value. 4114 AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2)); 4115 4116 int FI = FuncInfo.StaticAllocaMap[Slot]; 4117 MFI->setStackProtectorIndex(FI); 4118 4119 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4120 4121 // Store the stack protector onto the stack. 4122 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4123 PseudoSourceValue::getFixedStack(FI), 4124 0, true, false, 0); 4125 setValue(&I, Res); 4126 DAG.setRoot(Res); 4127 return 0; 4128 } 4129 case Intrinsic::objectsize: { 4130 // If we don't know by now, we're never going to know. 4131 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2)); 4132 4133 assert(CI && "Non-constant type in __builtin_object_size?"); 4134 4135 SDValue Arg = getValue(I.getOperand(0)); 4136 EVT Ty = Arg.getValueType(); 4137 4138 if (CI->getZExtValue() == 0) 4139 Res = DAG.getConstant(-1ULL, Ty); 4140 else 4141 Res = DAG.getConstant(0, Ty); 4142 4143 setValue(&I, Res); 4144 return 0; 4145 } 4146 case Intrinsic::var_annotation: 4147 // Discard annotate attributes 4148 return 0; 4149 4150 case Intrinsic::init_trampoline: { 4151 const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts()); 4152 4153 SDValue Ops[6]; 4154 Ops[0] = getRoot(); 4155 Ops[1] = getValue(I.getOperand(1)); 4156 Ops[2] = getValue(I.getOperand(2)); 4157 Ops[3] = getValue(I.getOperand(3)); 4158 Ops[4] = DAG.getSrcValue(I.getOperand(1)); 4159 Ops[5] = DAG.getSrcValue(F); 4160 4161 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4162 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4163 Ops, 6); 4164 4165 setValue(&I, Res); 4166 DAG.setRoot(Res.getValue(1)); 4167 return 0; 4168 } 4169 case Intrinsic::gcroot: 4170 if (GFI) { 4171 Value *Alloca = I.getOperand(1); 4172 Constant *TypeMap = cast<Constant>(I.getOperand(2)); 4173 4174 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4175 GFI->addStackRoot(FI->getIndex(), TypeMap); 4176 } 4177 return 0; 4178 case Intrinsic::gcread: 4179 case Intrinsic::gcwrite: 4180 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4181 return 0; 4182 case Intrinsic::flt_rounds: 4183 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4184 return 0; 4185 case Intrinsic::trap: 4186 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4187 return 0; 4188 case Intrinsic::uadd_with_overflow: 4189 return implVisitAluOverflow(I, ISD::UADDO); 4190 case Intrinsic::sadd_with_overflow: 4191 return implVisitAluOverflow(I, ISD::SADDO); 4192 case Intrinsic::usub_with_overflow: 4193 return implVisitAluOverflow(I, ISD::USUBO); 4194 case Intrinsic::ssub_with_overflow: 4195 return implVisitAluOverflow(I, ISD::SSUBO); 4196 case Intrinsic::umul_with_overflow: 4197 return implVisitAluOverflow(I, ISD::UMULO); 4198 case Intrinsic::smul_with_overflow: 4199 return implVisitAluOverflow(I, ISD::SMULO); 4200 4201 case Intrinsic::prefetch: { 4202 SDValue Ops[4]; 4203 Ops[0] = getRoot(); 4204 Ops[1] = getValue(I.getOperand(1)); 4205 Ops[2] = getValue(I.getOperand(2)); 4206 Ops[3] = getValue(I.getOperand(3)); 4207 DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); 4208 return 0; 4209 } 4210 4211 case Intrinsic::memory_barrier: { 4212 SDValue Ops[6]; 4213 Ops[0] = getRoot(); 4214 for (int x = 1; x < 6; ++x) 4215 Ops[x] = getValue(I.getOperand(x)); 4216 4217 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4218 return 0; 4219 } 4220 case Intrinsic::atomic_cmp_swap: { 4221 SDValue Root = getRoot(); 4222 SDValue L = 4223 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4224 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 4225 Root, 4226 getValue(I.getOperand(1)), 4227 getValue(I.getOperand(2)), 4228 getValue(I.getOperand(3)), 4229 I.getOperand(1)); 4230 setValue(&I, L); 4231 DAG.setRoot(L.getValue(1)); 4232 return 0; 4233 } 4234 case Intrinsic::atomic_load_add: 4235 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4236 case Intrinsic::atomic_load_sub: 4237 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4238 case Intrinsic::atomic_load_or: 4239 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4240 case Intrinsic::atomic_load_xor: 4241 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4242 case Intrinsic::atomic_load_and: 4243 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4244 case Intrinsic::atomic_load_nand: 4245 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4246 case Intrinsic::atomic_load_max: 4247 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4248 case Intrinsic::atomic_load_min: 4249 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4250 case Intrinsic::atomic_load_umin: 4251 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4252 case Intrinsic::atomic_load_umax: 4253 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4254 case Intrinsic::atomic_swap: 4255 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4256 4257 case Intrinsic::invariant_start: 4258 case Intrinsic::lifetime_start: 4259 // Discard region information. 4260 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4261 return 0; 4262 case Intrinsic::invariant_end: 4263 case Intrinsic::lifetime_end: 4264 // Discard region information. 4265 return 0; 4266 } 4267 } 4268 4269 /// Test if the given instruction is in a position to be optimized 4270 /// with a tail-call. This roughly means that it's in a block with 4271 /// a return and there's nothing that needs to be scheduled 4272 /// between it and the return. 4273 /// 4274 /// This function only tests target-independent requirements. 4275 static bool 4276 isInTailCallPosition(CallSite CS, Attributes CalleeRetAttr, 4277 const TargetLowering &TLI) { 4278 const Instruction *I = CS.getInstruction(); 4279 const BasicBlock *ExitBB = I->getParent(); 4280 const TerminatorInst *Term = ExitBB->getTerminator(); 4281 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 4282 const Function *F = ExitBB->getParent(); 4283 4284 // The block must end in a return statement or unreachable. 4285 // 4286 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 4287 // an unreachable, for now. The way tailcall optimization is currently 4288 // implemented means it will add an epilogue followed by a jump. That is 4289 // not profitable. Also, if the callee is a special function (e.g. 4290 // longjmp on x86), it can end up causing miscompilation that has not 4291 // been fully understood. 4292 if (!Ret && 4293 (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false; 4294 4295 // If I will have a chain, make sure no other instruction that will have a 4296 // chain interposes between I and the return. 4297 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 4298 !I->isSafeToSpeculativelyExecute()) 4299 for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; 4300 --BBI) { 4301 if (&*BBI == I) 4302 break; 4303 // Debug info intrinsics do not get in the way of tail call optimization. 4304 if (isa<DbgInfoIntrinsic>(BBI)) 4305 continue; 4306 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 4307 !BBI->isSafeToSpeculativelyExecute()) 4308 return false; 4309 } 4310 4311 // If the block ends with a void return or unreachable, it doesn't matter 4312 // what the call's return type is. 4313 if (!Ret || Ret->getNumOperands() == 0) return true; 4314 4315 // If the return value is undef, it doesn't matter what the call's 4316 // return type is. 4317 if (isa<UndefValue>(Ret->getOperand(0))) return true; 4318 4319 // Conservatively require the attributes of the call to match those of 4320 // the return. Ignore noalias because it doesn't affect the call sequence. 4321 unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); 4322 if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) 4323 return false; 4324 4325 // It's not safe to eliminate the sign / zero extension of the return value. 4326 if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt)) 4327 return false; 4328 4329 // Otherwise, make sure the unmodified return value of I is the return value. 4330 for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ; 4331 U = dyn_cast<Instruction>(U->getOperand(0))) { 4332 if (!U) 4333 return false; 4334 if (!U->hasOneUse()) 4335 return false; 4336 if (U == I) 4337 break; 4338 // Check for a truly no-op truncate. 4339 if (isa<TruncInst>(U) && 4340 TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) 4341 continue; 4342 // Check for a truly no-op bitcast. 4343 if (isa<BitCastInst>(U) && 4344 (U->getOperand(0)->getType() == U->getType() || 4345 (U->getOperand(0)->getType()->isPointerTy() && 4346 U->getType()->isPointerTy()))) 4347 continue; 4348 // Otherwise it's not a true no-op. 4349 return false; 4350 } 4351 4352 return true; 4353 } 4354 4355 void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee, 4356 bool isTailCall, 4357 MachineBasicBlock *LandingPad) { 4358 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4359 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4360 const Type *RetTy = FTy->getReturnType(); 4361 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 4362 MCSymbol *BeginLabel = 0; 4363 4364 TargetLowering::ArgListTy Args; 4365 TargetLowering::ArgListEntry Entry; 4366 Args.reserve(CS.arg_size()); 4367 4368 // Check whether the function can return without sret-demotion. 4369 SmallVector<EVT, 4> OutVTs; 4370 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 4371 SmallVector<uint64_t, 4> Offsets; 4372 getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4373 OutVTs, OutsFlags, TLI, &Offsets); 4374 4375 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4376 FTy->isVarArg(), OutVTs, OutsFlags, DAG); 4377 4378 SDValue DemoteStackSlot; 4379 4380 if (!CanLowerReturn) { 4381 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4382 FTy->getReturnType()); 4383 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4384 FTy->getReturnType()); 4385 MachineFunction &MF = DAG.getMachineFunction(); 4386 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4387 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4388 4389 DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4390 Entry.Node = DemoteStackSlot; 4391 Entry.Ty = StackSlotPtrType; 4392 Entry.isSExt = false; 4393 Entry.isZExt = false; 4394 Entry.isInReg = false; 4395 Entry.isSRet = true; 4396 Entry.isNest = false; 4397 Entry.isByVal = false; 4398 Entry.Alignment = Align; 4399 Args.push_back(Entry); 4400 RetTy = Type::getVoidTy(FTy->getContext()); 4401 } 4402 4403 for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4404 i != e; ++i) { 4405 SDValue ArgNode = getValue(*i); 4406 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4407 4408 unsigned attrInd = i - CS.arg_begin() + 1; 4409 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4410 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4411 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4412 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4413 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4414 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4415 Entry.Alignment = CS.getParamAlignment(attrInd); 4416 Args.push_back(Entry); 4417 } 4418 4419 if (LandingPad && MMI) { 4420 // Insert a label before the invoke call to mark the try range. This can be 4421 // used to detect deletion of the invoke via the MachineModuleInfo. 4422 BeginLabel = MMI->getContext().CreateTempSymbol(); 4423 4424 // For SjLj, keep track of which landing pads go with which invokes 4425 // so as to maintain the ordering of pads in the LSDA. 4426 unsigned CallSiteIndex = MMI->getCurrentCallSite(); 4427 if (CallSiteIndex) { 4428 MMI->setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4429 // Now that the call site is handled, stop tracking it. 4430 MMI->setCurrentCallSite(0); 4431 } 4432 4433 // Both PendingLoads and PendingExports must be flushed here; 4434 // this call might not return. 4435 (void)getRoot(); 4436 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4437 } 4438 4439 // Check if target-independent constraints permit a tail call here. 4440 // Target-dependent constraints are checked within TLI.LowerCallTo. 4441 if (isTailCall && 4442 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4443 isTailCall = false; 4444 4445 std::pair<SDValue,SDValue> Result = 4446 TLI.LowerCallTo(getRoot(), RetTy, 4447 CS.paramHasAttr(0, Attribute::SExt), 4448 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4449 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4450 CS.getCallingConv(), 4451 isTailCall, 4452 !CS.getInstruction()->use_empty(), 4453 Callee, Args, DAG, getCurDebugLoc()); 4454 assert((isTailCall || Result.second.getNode()) && 4455 "Non-null chain expected with non-tail call!"); 4456 assert((Result.second.getNode() || !Result.first.getNode()) && 4457 "Null value expected with tail call!"); 4458 if (Result.first.getNode()) { 4459 setValue(CS.getInstruction(), Result.first); 4460 } else if (!CanLowerReturn && Result.second.getNode()) { 4461 // The instruction result is the result of loading from the 4462 // hidden sret parameter. 4463 SmallVector<EVT, 1> PVTs; 4464 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4465 4466 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4467 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4468 EVT PtrVT = PVTs[0]; 4469 unsigned NumValues = OutVTs.size(); 4470 SmallVector<SDValue, 4> Values(NumValues); 4471 SmallVector<SDValue, 4> Chains(NumValues); 4472 4473 for (unsigned i = 0; i < NumValues; ++i) { 4474 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4475 DemoteStackSlot, 4476 DAG.getConstant(Offsets[i], PtrVT)); 4477 SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second, 4478 Add, NULL, Offsets[i], false, false, 1); 4479 Values[i] = L; 4480 Chains[i] = L.getValue(1); 4481 } 4482 4483 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4484 MVT::Other, &Chains[0], NumValues); 4485 PendingLoads.push_back(Chain); 4486 4487 // Collect the legal value parts into potentially illegal values 4488 // that correspond to the original function's return values. 4489 SmallVector<EVT, 4> RetTys; 4490 RetTy = FTy->getReturnType(); 4491 ComputeValueVTs(TLI, RetTy, RetTys); 4492 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4493 SmallVector<SDValue, 4> ReturnValues; 4494 unsigned CurReg = 0; 4495 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4496 EVT VT = RetTys[I]; 4497 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4498 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4499 4500 SDValue ReturnValue = 4501 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4502 RegisterVT, VT, AssertOp); 4503 ReturnValues.push_back(ReturnValue); 4504 CurReg += NumRegs; 4505 } 4506 4507 setValue(CS.getInstruction(), 4508 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4509 DAG.getVTList(&RetTys[0], RetTys.size()), 4510 &ReturnValues[0], ReturnValues.size())); 4511 4512 } 4513 4514 // As a special case, a null chain means that a tail call has been emitted and 4515 // the DAG root is already updated. 4516 if (Result.second.getNode()) 4517 DAG.setRoot(Result.second); 4518 else 4519 HasTailCall = true; 4520 4521 if (LandingPad && MMI) { 4522 // Insert a label at the end of the invoke call to mark the try range. This 4523 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4524 MCSymbol *EndLabel = MMI->getContext().CreateTempSymbol(); 4525 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4526 4527 // Inform MachineModuleInfo of range. 4528 MMI->addInvoke(LandingPad, BeginLabel, EndLabel); 4529 } 4530 } 4531 4532 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4533 /// value is equal or not-equal to zero. 4534 static bool IsOnlyUsedInZeroEqualityComparison(Value *V) { 4535 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); 4536 UI != E; ++UI) { 4537 if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4538 if (IC->isEquality()) 4539 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4540 if (C->isNullValue()) 4541 continue; 4542 // Unknown instruction. 4543 return false; 4544 } 4545 return true; 4546 } 4547 4548 static SDValue getMemCmpLoad(Value *PtrVal, MVT LoadVT, const Type *LoadTy, 4549 SelectionDAGBuilder &Builder) { 4550 4551 // Check to see if this load can be trivially constant folded, e.g. if the 4552 // input is from a string literal. 4553 if (Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4554 // Cast pointer to the type we really want to load. 4555 LoadInput = ConstantExpr::getBitCast(LoadInput, 4556 PointerType::getUnqual(LoadTy)); 4557 4558 if (Constant *LoadCst = ConstantFoldLoadFromConstPtr(LoadInput, Builder.TD)) 4559 return Builder.getValue(LoadCst); 4560 } 4561 4562 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4563 // still constant memory, the input chain can be the entry node. 4564 SDValue Root; 4565 bool ConstantMemory = false; 4566 4567 // Do not serialize (non-volatile) loads of constant memory with anything. 4568 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4569 Root = Builder.DAG.getEntryNode(); 4570 ConstantMemory = true; 4571 } else { 4572 // Do not serialize non-volatile loads against each other. 4573 Root = Builder.DAG.getRoot(); 4574 } 4575 4576 SDValue Ptr = Builder.getValue(PtrVal); 4577 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 4578 Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/, 4579 false /*volatile*/, 4580 false /*nontemporal*/, 1 /* align=1 */); 4581 4582 if (!ConstantMemory) 4583 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 4584 return LoadVal; 4585 } 4586 4587 4588 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 4589 /// If so, return true and lower it, otherwise return false and it will be 4590 /// lowered like a normal call. 4591 bool SelectionDAGBuilder::visitMemCmpCall(CallInst &I) { 4592 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 4593 if (I.getNumOperands() != 4) 4594 return false; 4595 4596 Value *LHS = I.getOperand(1), *RHS = I.getOperand(2); 4597 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 4598 !I.getOperand(3)->getType()->isIntegerTy() || 4599 !I.getType()->isIntegerTy()) 4600 return false; 4601 4602 ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3)); 4603 4604 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 4605 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 4606 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 4607 bool ActuallyDoIt = true; 4608 MVT LoadVT; 4609 const Type *LoadTy; 4610 switch (Size->getZExtValue()) { 4611 default: 4612 LoadVT = MVT::Other; 4613 LoadTy = 0; 4614 ActuallyDoIt = false; 4615 break; 4616 case 2: 4617 LoadVT = MVT::i16; 4618 LoadTy = Type::getInt16Ty(Size->getContext()); 4619 break; 4620 case 4: 4621 LoadVT = MVT::i32; 4622 LoadTy = Type::getInt32Ty(Size->getContext()); 4623 break; 4624 case 8: 4625 LoadVT = MVT::i64; 4626 LoadTy = Type::getInt64Ty(Size->getContext()); 4627 break; 4628 /* 4629 case 16: 4630 LoadVT = MVT::v4i32; 4631 LoadTy = Type::getInt32Ty(Size->getContext()); 4632 LoadTy = VectorType::get(LoadTy, 4); 4633 break; 4634 */ 4635 } 4636 4637 // This turns into unaligned loads. We only do this if the target natively 4638 // supports the MVT we'll be loading or if it is small enough (<= 4) that 4639 // we'll only produce a small number of byte loads. 4640 4641 // Require that we can find a legal MVT, and only do this if the target 4642 // supports unaligned loads of that type. Expanding into byte loads would 4643 // bloat the code. 4644 if (ActuallyDoIt && Size->getZExtValue() > 4) { 4645 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 4646 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 4647 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 4648 ActuallyDoIt = false; 4649 } 4650 4651 if (ActuallyDoIt) { 4652 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 4653 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 4654 4655 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 4656 ISD::SETNE); 4657 EVT CallVT = TLI.getValueType(I.getType(), true); 4658 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 4659 return true; 4660 } 4661 } 4662 4663 4664 return false; 4665 } 4666 4667 4668 void SelectionDAGBuilder::visitCall(CallInst &I) { 4669 const char *RenameFn = 0; 4670 if (Function *F = I.getCalledFunction()) { 4671 if (F->isDeclaration()) { 4672 const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo(); 4673 if (II) { 4674 if (unsigned IID = II->getIntrinsicID(F)) { 4675 RenameFn = visitIntrinsicCall(I, IID); 4676 if (!RenameFn) 4677 return; 4678 } 4679 } 4680 if (unsigned IID = F->getIntrinsicID()) { 4681 RenameFn = visitIntrinsicCall(I, IID); 4682 if (!RenameFn) 4683 return; 4684 } 4685 } 4686 4687 // Check for well-known libc/libm calls. If the function is internal, it 4688 // can't be a library call. 4689 if (!F->hasLocalLinkage() && F->hasName()) { 4690 StringRef Name = F->getName(); 4691 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 4692 if (I.getNumOperands() == 3 && // Basic sanity checks. 4693 I.getOperand(1)->getType()->isFloatingPointTy() && 4694 I.getType() == I.getOperand(1)->getType() && 4695 I.getType() == I.getOperand(2)->getType()) { 4696 SDValue LHS = getValue(I.getOperand(1)); 4697 SDValue RHS = getValue(I.getOperand(2)); 4698 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 4699 LHS.getValueType(), LHS, RHS)); 4700 return; 4701 } 4702 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 4703 if (I.getNumOperands() == 2 && // Basic sanity checks. 4704 I.getOperand(1)->getType()->isFloatingPointTy() && 4705 I.getType() == I.getOperand(1)->getType()) { 4706 SDValue Tmp = getValue(I.getOperand(1)); 4707 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 4708 Tmp.getValueType(), Tmp)); 4709 return; 4710 } 4711 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 4712 if (I.getNumOperands() == 2 && // Basic sanity checks. 4713 I.getOperand(1)->getType()->isFloatingPointTy() && 4714 I.getType() == I.getOperand(1)->getType() && 4715 I.onlyReadsMemory()) { 4716 SDValue Tmp = getValue(I.getOperand(1)); 4717 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 4718 Tmp.getValueType(), Tmp)); 4719 return; 4720 } 4721 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 4722 if (I.getNumOperands() == 2 && // Basic sanity checks. 4723 I.getOperand(1)->getType()->isFloatingPointTy() && 4724 I.getType() == I.getOperand(1)->getType() && 4725 I.onlyReadsMemory()) { 4726 SDValue Tmp = getValue(I.getOperand(1)); 4727 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 4728 Tmp.getValueType(), Tmp)); 4729 return; 4730 } 4731 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 4732 if (I.getNumOperands() == 2 && // Basic sanity checks. 4733 I.getOperand(1)->getType()->isFloatingPointTy() && 4734 I.getType() == I.getOperand(1)->getType() && 4735 I.onlyReadsMemory()) { 4736 SDValue Tmp = getValue(I.getOperand(1)); 4737 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 4738 Tmp.getValueType(), Tmp)); 4739 return; 4740 } 4741 } else if (Name == "memcmp") { 4742 if (visitMemCmpCall(I)) 4743 return; 4744 } 4745 } 4746 } else if (isa<InlineAsm>(I.getOperand(0))) { 4747 visitInlineAsm(&I); 4748 return; 4749 } 4750 4751 SDValue Callee; 4752 if (!RenameFn) 4753 Callee = getValue(I.getOperand(0)); 4754 else 4755 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 4756 4757 // Check if we can potentially perform a tail call. More detailed checking is 4758 // be done within LowerCallTo, after more information about the call is known. 4759 LowerCallTo(&I, Callee, I.isTailCall()); 4760 } 4761 4762 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 4763 /// this value and returns the result as a ValueVT value. This uses 4764 /// Chain/Flag as the input and updates them for the output Chain/Flag. 4765 /// If the Flag pointer is NULL, no flag is used. 4766 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 4767 SDValue &Chain, SDValue *Flag) const { 4768 // Assemble the legal parts into the final values. 4769 SmallVector<SDValue, 4> Values(ValueVTs.size()); 4770 SmallVector<SDValue, 8> Parts; 4771 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 4772 // Copy the legal parts from the registers. 4773 EVT ValueVT = ValueVTs[Value]; 4774 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 4775 EVT RegisterVT = RegVTs[Value]; 4776 4777 Parts.resize(NumRegs); 4778 for (unsigned i = 0; i != NumRegs; ++i) { 4779 SDValue P; 4780 if (Flag == 0) { 4781 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 4782 } else { 4783 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 4784 *Flag = P.getValue(2); 4785 } 4786 4787 Chain = P.getValue(1); 4788 4789 // If the source register was virtual and if we know something about it, 4790 // add an assert node. 4791 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 4792 RegisterVT.isInteger() && !RegisterVT.isVector()) { 4793 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 4794 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 4795 if (FLI.LiveOutRegInfo.size() > SlotNo) { 4796 FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo]; 4797 4798 unsigned RegSize = RegisterVT.getSizeInBits(); 4799 unsigned NumSignBits = LOI.NumSignBits; 4800 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 4801 4802 // FIXME: We capture more information than the dag can represent. For 4803 // now, just use the tightest assertzext/assertsext possible. 4804 bool isSExt = true; 4805 EVT FromVT(MVT::Other); 4806 if (NumSignBits == RegSize) 4807 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 4808 else if (NumZeroBits >= RegSize-1) 4809 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 4810 else if (NumSignBits > RegSize-8) 4811 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 4812 else if (NumZeroBits >= RegSize-8) 4813 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 4814 else if (NumSignBits > RegSize-16) 4815 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 4816 else if (NumZeroBits >= RegSize-16) 4817 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 4818 else if (NumSignBits > RegSize-32) 4819 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 4820 else if (NumZeroBits >= RegSize-32) 4821 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 4822 4823 if (FromVT != MVT::Other) 4824 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 4825 RegisterVT, P, DAG.getValueType(FromVT)); 4826 } 4827 } 4828 4829 Parts[i] = P; 4830 } 4831 4832 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 4833 NumRegs, RegisterVT, ValueVT); 4834 Part += NumRegs; 4835 Parts.clear(); 4836 } 4837 4838 return DAG.getNode(ISD::MERGE_VALUES, dl, 4839 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 4840 &Values[0], ValueVTs.size()); 4841 } 4842 4843 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 4844 /// specified value into the registers specified by this object. This uses 4845 /// Chain/Flag as the input and updates them for the output Chain/Flag. 4846 /// If the Flag pointer is NULL, no flag is used. 4847 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 4848 SDValue &Chain, SDValue *Flag) const { 4849 // Get the list of the values's legal parts. 4850 unsigned NumRegs = Regs.size(); 4851 SmallVector<SDValue, 8> Parts(NumRegs); 4852 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 4853 EVT ValueVT = ValueVTs[Value]; 4854 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 4855 EVT RegisterVT = RegVTs[Value]; 4856 4857 getCopyToParts(DAG, dl, 4858 Val.getValue(Val.getResNo() + Value), 4859 &Parts[Part], NumParts, RegisterVT); 4860 Part += NumParts; 4861 } 4862 4863 // Copy the parts into the registers. 4864 SmallVector<SDValue, 8> Chains(NumRegs); 4865 for (unsigned i = 0; i != NumRegs; ++i) { 4866 SDValue Part; 4867 if (Flag == 0) { 4868 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 4869 } else { 4870 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 4871 *Flag = Part.getValue(1); 4872 } 4873 4874 Chains[i] = Part.getValue(0); 4875 } 4876 4877 if (NumRegs == 1 || Flag) 4878 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 4879 // flagged to it. That is the CopyToReg nodes and the user are considered 4880 // a single scheduling unit. If we create a TokenFactor and return it as 4881 // chain, then the TokenFactor is both a predecessor (operand) of the 4882 // user as well as a successor (the TF operands are flagged to the user). 4883 // c1, f1 = CopyToReg 4884 // c2, f2 = CopyToReg 4885 // c3 = TokenFactor c1, c2 4886 // ... 4887 // = op c3, ..., f2 4888 Chain = Chains[NumRegs-1]; 4889 else 4890 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 4891 } 4892 4893 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 4894 /// operand list. This adds the code marker and includes the number of 4895 /// values added into it. 4896 void RegsForValue::AddInlineAsmOperands(unsigned Code, 4897 bool HasMatching,unsigned MatchingIdx, 4898 SelectionDAG &DAG, 4899 std::vector<SDValue> &Ops) const { 4900 assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!"); 4901 unsigned Flag = Code | (Regs.size() << 3); 4902 if (HasMatching) 4903 Flag |= 0x80000000 | (MatchingIdx << 16); 4904 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 4905 Ops.push_back(Res); 4906 4907 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 4908 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 4909 EVT RegisterVT = RegVTs[Value]; 4910 for (unsigned i = 0; i != NumRegs; ++i) { 4911 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 4912 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 4913 } 4914 } 4915 } 4916 4917 /// isAllocatableRegister - If the specified register is safe to allocate, 4918 /// i.e. it isn't a stack pointer or some other special register, return the 4919 /// register class for the register. Otherwise, return null. 4920 static const TargetRegisterClass * 4921 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 4922 const TargetLowering &TLI, 4923 const TargetRegisterInfo *TRI) { 4924 EVT FoundVT = MVT::Other; 4925 const TargetRegisterClass *FoundRC = 0; 4926 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 4927 E = TRI->regclass_end(); RCI != E; ++RCI) { 4928 EVT ThisVT = MVT::Other; 4929 4930 const TargetRegisterClass *RC = *RCI; 4931 // If none of the value types for this register class are valid, we 4932 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4933 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 4934 I != E; ++I) { 4935 if (TLI.isTypeLegal(*I)) { 4936 // If we have already found this register in a different register class, 4937 // choose the one with the largest VT specified. For example, on 4938 // PowerPC, we favor f64 register classes over f32. 4939 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 4940 ThisVT = *I; 4941 break; 4942 } 4943 } 4944 } 4945 4946 if (ThisVT == MVT::Other) continue; 4947 4948 // NOTE: This isn't ideal. In particular, this might allocate the 4949 // frame pointer in functions that need it (due to them not being taken 4950 // out of allocation, because a variable sized allocation hasn't been seen 4951 // yet). This is a slight code pessimization, but should still work. 4952 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 4953 E = RC->allocation_order_end(MF); I != E; ++I) 4954 if (*I == Reg) { 4955 // We found a matching register class. Keep looking at others in case 4956 // we find one with larger registers that this physreg is also in. 4957 FoundRC = RC; 4958 FoundVT = ThisVT; 4959 break; 4960 } 4961 } 4962 return FoundRC; 4963 } 4964 4965 4966 namespace llvm { 4967 /// AsmOperandInfo - This contains information for each constraint that we are 4968 /// lowering. 4969 class VISIBILITY_HIDDEN SDISelAsmOperandInfo : 4970 public TargetLowering::AsmOperandInfo { 4971 public: 4972 /// CallOperand - If this is the result output operand or a clobber 4973 /// this is null, otherwise it is the incoming operand to the CallInst. 4974 /// This gets modified as the asm is processed. 4975 SDValue CallOperand; 4976 4977 /// AssignedRegs - If this is a register or register class operand, this 4978 /// contains the set of register corresponding to the operand. 4979 RegsForValue AssignedRegs; 4980 4981 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) 4982 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 4983 } 4984 4985 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 4986 /// busy in OutputRegs/InputRegs. 4987 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 4988 std::set<unsigned> &OutputRegs, 4989 std::set<unsigned> &InputRegs, 4990 const TargetRegisterInfo &TRI) const { 4991 if (isOutReg) { 4992 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4993 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 4994 } 4995 if (isInReg) { 4996 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4997 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 4998 } 4999 } 5000 5001 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5002 /// corresponds to. If there is no Value* for this operand, it returns 5003 /// MVT::Other. 5004 EVT getCallOperandValEVT(LLVMContext &Context, 5005 const TargetLowering &TLI, 5006 const TargetData *TD) const { 5007 if (CallOperandVal == 0) return MVT::Other; 5008 5009 if (isa<BasicBlock>(CallOperandVal)) 5010 return TLI.getPointerTy(); 5011 5012 const llvm::Type *OpTy = CallOperandVal->getType(); 5013 5014 // If this is an indirect operand, the operand is a pointer to the 5015 // accessed type. 5016 if (isIndirect) { 5017 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5018 if (!PtrTy) 5019 llvm_report_error("Indirect operand for inline asm not a pointer!"); 5020 OpTy = PtrTy->getElementType(); 5021 } 5022 5023 // If OpTy is not a single value, it may be a struct/union that we 5024 // can tile with integers. 5025 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5026 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5027 switch (BitSize) { 5028 default: break; 5029 case 1: 5030 case 8: 5031 case 16: 5032 case 32: 5033 case 64: 5034 case 128: 5035 OpTy = IntegerType::get(Context, BitSize); 5036 break; 5037 } 5038 } 5039 5040 return TLI.getValueType(OpTy, true); 5041 } 5042 5043 private: 5044 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5045 /// specified set. 5046 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5047 const TargetRegisterInfo &TRI) { 5048 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5049 Regs.insert(Reg); 5050 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5051 for (; *Aliases; ++Aliases) 5052 Regs.insert(*Aliases); 5053 } 5054 }; 5055 } // end llvm namespace. 5056 5057 5058 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5059 /// specified operand. We prefer to assign virtual registers, to allow the 5060 /// register allocator to handle the assignment process. However, if the asm 5061 /// uses features that we can't model on machineinstrs, we have SDISel do the 5062 /// allocation. This produces generally horrible, but correct, code. 5063 /// 5064 /// OpInfo describes the operand. 5065 /// Input and OutputRegs are the set of already allocated physical registers. 5066 /// 5067 void SelectionDAGBuilder:: 5068 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 5069 std::set<unsigned> &OutputRegs, 5070 std::set<unsigned> &InputRegs) { 5071 LLVMContext &Context = FuncInfo.Fn->getContext(); 5072 5073 // Compute whether this value requires an input register, an output register, 5074 // or both. 5075 bool isOutReg = false; 5076 bool isInReg = false; 5077 switch (OpInfo.Type) { 5078 case InlineAsm::isOutput: 5079 isOutReg = true; 5080 5081 // If there is an input constraint that matches this, we need to reserve 5082 // the input register so no other inputs allocate to it. 5083 isInReg = OpInfo.hasMatchingInput(); 5084 break; 5085 case InlineAsm::isInput: 5086 isInReg = true; 5087 isOutReg = false; 5088 break; 5089 case InlineAsm::isClobber: 5090 isOutReg = true; 5091 isInReg = true; 5092 break; 5093 } 5094 5095 5096 MachineFunction &MF = DAG.getMachineFunction(); 5097 SmallVector<unsigned, 4> Regs; 5098 5099 // If this is a constraint for a single physreg, or a constraint for a 5100 // register class, find it. 5101 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5102 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5103 OpInfo.ConstraintVT); 5104 5105 unsigned NumRegs = 1; 5106 if (OpInfo.ConstraintVT != MVT::Other) { 5107 // If this is a FP input in an integer register (or visa versa) insert a bit 5108 // cast of the input value. More generally, handle any case where the input 5109 // value disagrees with the register class we plan to stick this in. 5110 if (OpInfo.Type == InlineAsm::isInput && 5111 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5112 // Try to convert to the first EVT that the reg class contains. If the 5113 // types are identical size, use a bitcast to convert (e.g. two differing 5114 // vector types). 5115 EVT RegVT = *PhysReg.second->vt_begin(); 5116 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5117 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5118 RegVT, OpInfo.CallOperand); 5119 OpInfo.ConstraintVT = RegVT; 5120 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5121 // If the input is a FP value and we want it in FP registers, do a 5122 // bitcast to the corresponding integer type. This turns an f64 value 5123 // into i64, which can be passed with two i32 values on a 32-bit 5124 // machine. 5125 RegVT = EVT::getIntegerVT(Context, 5126 OpInfo.ConstraintVT.getSizeInBits()); 5127 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5128 RegVT, OpInfo.CallOperand); 5129 OpInfo.ConstraintVT = RegVT; 5130 } 5131 } 5132 5133 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5134 } 5135 5136 EVT RegVT; 5137 EVT ValueVT = OpInfo.ConstraintVT; 5138 5139 // If this is a constraint for a specific physical register, like {r17}, 5140 // assign it now. 5141 if (unsigned AssignedReg = PhysReg.first) { 5142 const TargetRegisterClass *RC = PhysReg.second; 5143 if (OpInfo.ConstraintVT == MVT::Other) 5144 ValueVT = *RC->vt_begin(); 5145 5146 // Get the actual register value type. This is important, because the user 5147 // may have asked for (e.g.) the AX register in i32 type. We need to 5148 // remember that AX is actually i16 to get the right extension. 5149 RegVT = *RC->vt_begin(); 5150 5151 // This is a explicit reference to a physical register. 5152 Regs.push_back(AssignedReg); 5153 5154 // If this is an expanded reference, add the rest of the regs to Regs. 5155 if (NumRegs != 1) { 5156 TargetRegisterClass::iterator I = RC->begin(); 5157 for (; *I != AssignedReg; ++I) 5158 assert(I != RC->end() && "Didn't find reg!"); 5159 5160 // Already added the first reg. 5161 --NumRegs; ++I; 5162 for (; NumRegs; --NumRegs, ++I) { 5163 assert(I != RC->end() && "Ran out of registers to allocate!"); 5164 Regs.push_back(*I); 5165 } 5166 } 5167 5168 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 5169 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5170 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5171 return; 5172 } 5173 5174 // Otherwise, if this was a reference to an LLVM register class, create vregs 5175 // for this reference. 5176 if (const TargetRegisterClass *RC = PhysReg.second) { 5177 RegVT = *RC->vt_begin(); 5178 if (OpInfo.ConstraintVT == MVT::Other) 5179 ValueVT = RegVT; 5180 5181 // Create the appropriate number of virtual registers. 5182 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5183 for (; NumRegs; --NumRegs) 5184 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5185 5186 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 5187 return; 5188 } 5189 5190 // This is a reference to a register class that doesn't directly correspond 5191 // to an LLVM register class. Allocate NumRegs consecutive, available, 5192 // registers from the class. 5193 std::vector<unsigned> RegClassRegs 5194 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5195 OpInfo.ConstraintVT); 5196 5197 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5198 unsigned NumAllocated = 0; 5199 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5200 unsigned Reg = RegClassRegs[i]; 5201 // See if this register is available. 5202 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5203 (isInReg && InputRegs.count(Reg))) { // Already used. 5204 // Make sure we find consecutive registers. 5205 NumAllocated = 0; 5206 continue; 5207 } 5208 5209 // Check to see if this register is allocatable (i.e. don't give out the 5210 // stack pointer). 5211 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5212 if (!RC) { // Couldn't allocate this register. 5213 // Reset NumAllocated to make sure we return consecutive registers. 5214 NumAllocated = 0; 5215 continue; 5216 } 5217 5218 // Okay, this register is good, we can use it. 5219 ++NumAllocated; 5220 5221 // If we allocated enough consecutive registers, succeed. 5222 if (NumAllocated == NumRegs) { 5223 unsigned RegStart = (i-NumAllocated)+1; 5224 unsigned RegEnd = i+1; 5225 // Mark all of the allocated registers used. 5226 for (unsigned i = RegStart; i != RegEnd; ++i) 5227 Regs.push_back(RegClassRegs[i]); 5228 5229 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), 5230 OpInfo.ConstraintVT); 5231 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5232 return; 5233 } 5234 } 5235 5236 // Otherwise, we couldn't allocate enough registers for this. 5237 } 5238 5239 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 5240 /// processed uses a memory 'm' constraint. 5241 static bool 5242 hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos, 5243 const TargetLowering &TLI) { 5244 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 5245 InlineAsm::ConstraintInfo &CI = CInfos[i]; 5246 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 5247 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 5248 if (CType == TargetLowering::C_Memory) 5249 return true; 5250 } 5251 5252 // Indirect operand accesses access memory. 5253 if (CI.isIndirect) 5254 return true; 5255 } 5256 5257 return false; 5258 } 5259 5260 /// visitInlineAsm - Handle a call to an InlineAsm object. 5261 /// 5262 void SelectionDAGBuilder::visitInlineAsm(CallSite CS) { 5263 InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5264 5265 /// ConstraintOperands - Information about all of the constraints. 5266 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 5267 5268 std::set<unsigned> OutputRegs, InputRegs; 5269 5270 // Do a prepass over the constraints, canonicalizing them, and building up the 5271 // ConstraintOperands list. 5272 std::vector<InlineAsm::ConstraintInfo> 5273 ConstraintInfos = IA->ParseConstraints(); 5274 5275 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); 5276 5277 SDValue Chain, Flag; 5278 5279 // We won't need to flush pending loads if this asm doesn't touch 5280 // memory and is nonvolatile. 5281 if (hasMemory || IA->hasSideEffects()) 5282 Chain = getRoot(); 5283 else 5284 Chain = DAG.getRoot(); 5285 5286 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5287 unsigned ResNo = 0; // ResNo - The result number of the next output. 5288 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5289 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); 5290 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5291 5292 EVT OpVT = MVT::Other; 5293 5294 // Compute the value type for each operand. 5295 switch (OpInfo.Type) { 5296 case InlineAsm::isOutput: 5297 // Indirect outputs just consume an argument. 5298 if (OpInfo.isIndirect) { 5299 OpInfo.CallOperandVal = CS.getArgument(ArgNo++); 5300 break; 5301 } 5302 5303 // The return value of the call is this value. As such, there is no 5304 // corresponding argument. 5305 assert(!CS.getType()->isVoidTy() && 5306 "Bad inline asm!"); 5307 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5308 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5309 } else { 5310 assert(ResNo == 0 && "Asm only has one result!"); 5311 OpVT = TLI.getValueType(CS.getType()); 5312 } 5313 ++ResNo; 5314 break; 5315 case InlineAsm::isInput: 5316 OpInfo.CallOperandVal = CS.getArgument(ArgNo++); 5317 break; 5318 case InlineAsm::isClobber: 5319 // Nothing to do. 5320 break; 5321 } 5322 5323 // If this is an input or an indirect output, process the call argument. 5324 // BasicBlocks are labels, currently appearing only in asm's. 5325 if (OpInfo.CallOperandVal) { 5326 // Strip bitcasts, if any. This mostly comes up for functions. 5327 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 5328 5329 if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5330 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5331 } else { 5332 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5333 } 5334 5335 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5336 } 5337 5338 OpInfo.ConstraintVT = OpVT; 5339 } 5340 5341 // Second pass over the constraints: compute which constraint option to use 5342 // and assign registers to constraints that want a specific physreg. 5343 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5344 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5345 5346 // If this is an output operand with a matching input operand, look up the 5347 // matching input. If their types mismatch, e.g. one is an integer, the 5348 // other is floating point, or their sizes are different, flag it as an 5349 // error. 5350 if (OpInfo.hasMatchingInput()) { 5351 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5352 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5353 if ((OpInfo.ConstraintVT.isInteger() != 5354 Input.ConstraintVT.isInteger()) || 5355 (OpInfo.ConstraintVT.getSizeInBits() != 5356 Input.ConstraintVT.getSizeInBits())) { 5357 llvm_report_error("Unsupported asm: input constraint" 5358 " with a matching output constraint of incompatible" 5359 " type!"); 5360 } 5361 Input.ConstraintVT = OpInfo.ConstraintVT; 5362 } 5363 } 5364 5365 // Compute the constraint code and ConstraintType to use. 5366 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG); 5367 5368 // If this is a memory input, and if the operand is not indirect, do what we 5369 // need to to provide an address for the memory input. 5370 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5371 !OpInfo.isIndirect) { 5372 assert(OpInfo.Type == InlineAsm::isInput && 5373 "Can only indirectify direct input operands!"); 5374 5375 // Memory operands really want the address of the value. If we don't have 5376 // an indirect input, put it in the constpool if we can, otherwise spill 5377 // it to a stack slot. 5378 5379 // If the operand is a float, integer, or vector constant, spill to a 5380 // constant pool entry to get its address. 5381 Value *OpVal = OpInfo.CallOperandVal; 5382 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5383 isa<ConstantVector>(OpVal)) { 5384 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5385 TLI.getPointerTy()); 5386 } else { 5387 // Otherwise, create a stack slot and emit a store to it before the 5388 // asm. 5389 const Type *Ty = OpVal->getType(); 5390 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5391 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5392 MachineFunction &MF = DAG.getMachineFunction(); 5393 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5394 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5395 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5396 OpInfo.CallOperand, StackSlot, NULL, 0, 5397 false, false, 0); 5398 OpInfo.CallOperand = StackSlot; 5399 } 5400 5401 // There is no longer a Value* corresponding to this operand. 5402 OpInfo.CallOperandVal = 0; 5403 5404 // It is now an indirect operand. 5405 OpInfo.isIndirect = true; 5406 } 5407 5408 // If this constraint is for a specific register, allocate it before 5409 // anything else. 5410 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5411 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5412 } 5413 5414 ConstraintInfos.clear(); 5415 5416 // Second pass - Loop over all of the operands, assigning virtual or physregs 5417 // to register class operands. 5418 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5419 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5420 5421 // C_Register operands have already been allocated, Other/Memory don't need 5422 // to be. 5423 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5424 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5425 } 5426 5427 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5428 std::vector<SDValue> AsmNodeOperands; 5429 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5430 AsmNodeOperands.push_back( 5431 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5432 TLI.getPointerTy())); 5433 5434 5435 // Loop over all of the inputs, copying the operand values into the 5436 // appropriate registers and processing the output regs. 5437 RegsForValue RetValRegs; 5438 5439 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5440 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5441 5442 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5443 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5444 5445 switch (OpInfo.Type) { 5446 case InlineAsm::isOutput: { 5447 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5448 OpInfo.ConstraintType != TargetLowering::C_Register) { 5449 // Memory output, or 'other' output (e.g. 'X' constraint). 5450 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5451 5452 // Add information to the INLINEASM node to know about this output. 5453 unsigned ResOpType = 4/*MEM*/ | (1<<3); 5454 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5455 TLI.getPointerTy())); 5456 AsmNodeOperands.push_back(OpInfo.CallOperand); 5457 break; 5458 } 5459 5460 // Otherwise, this is a register or register class output. 5461 5462 // Copy the output from the appropriate register. Find a register that 5463 // we can use. 5464 if (OpInfo.AssignedRegs.Regs.empty()) { 5465 llvm_report_error("Couldn't allocate output reg for" 5466 " constraint '" + OpInfo.ConstraintCode + "'!"); 5467 } 5468 5469 // If this is an indirect operand, store through the pointer after the 5470 // asm. 5471 if (OpInfo.isIndirect) { 5472 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5473 OpInfo.CallOperandVal)); 5474 } else { 5475 // This is the result value of the call. 5476 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5477 // Concatenate this output onto the outputs list. 5478 RetValRegs.append(OpInfo.AssignedRegs); 5479 } 5480 5481 // Add information to the INLINEASM node to know that this register is 5482 // set. 5483 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5484 6 /* EARLYCLOBBER REGDEF */ : 5485 2 /* REGDEF */ , 5486 false, 5487 0, 5488 DAG, 5489 AsmNodeOperands); 5490 break; 5491 } 5492 case InlineAsm::isInput: { 5493 SDValue InOperandVal = OpInfo.CallOperand; 5494 5495 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5496 // If this is required to match an output register we have already set, 5497 // just use its register. 5498 unsigned OperandNo = OpInfo.getMatchedOperand(); 5499 5500 // Scan until we find the definition we already emitted of this operand. 5501 // When we find it, create a RegsForValue operand. 5502 unsigned CurOp = 2; // The first operand. 5503 for (; OperandNo; --OperandNo) { 5504 // Advance to the next operand. 5505 unsigned OpFlag = 5506 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5507 assert(((OpFlag & 7) == 2 /*REGDEF*/ || 5508 (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ || 5509 (OpFlag & 7) == 4 /*MEM*/) && 5510 "Skipped past definitions?"); 5511 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5512 } 5513 5514 unsigned OpFlag = 5515 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5516 if ((OpFlag & 7) == 2 /*REGDEF*/ 5517 || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) { 5518 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5519 if (OpInfo.isIndirect) { 5520 llvm_report_error("Don't know how to handle tied indirect " 5521 "register inputs yet!"); 5522 } 5523 RegsForValue MatchedRegs; 5524 MatchedRegs.TLI = &TLI; 5525 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5526 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5527 MatchedRegs.RegVTs.push_back(RegVT); 5528 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5529 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5530 i != e; ++i) 5531 MatchedRegs.Regs.push_back 5532 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5533 5534 // Use the produced MatchedRegs object to 5535 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5536 Chain, &Flag); 5537 MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, 5538 true, OpInfo.getMatchedOperand(), 5539 DAG, AsmNodeOperands); 5540 break; 5541 } else { 5542 assert(((OpFlag & 7) == 4) && "Unknown matching constraint!"); 5543 assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 && 5544 "Unexpected number of operands"); 5545 // Add information to the INLINEASM node to know about this input. 5546 // See InlineAsm.h isUseOperandTiedToDef. 5547 OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16); 5548 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5549 TLI.getPointerTy())); 5550 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5551 break; 5552 } 5553 } 5554 5555 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5556 assert(!OpInfo.isIndirect && 5557 "Don't know how to handle indirect other inputs yet!"); 5558 5559 std::vector<SDValue> Ops; 5560 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5561 hasMemory, Ops, DAG); 5562 if (Ops.empty()) { 5563 llvm_report_error("Invalid operand for inline asm" 5564 " constraint '" + OpInfo.ConstraintCode + "'!"); 5565 } 5566 5567 // Add information to the INLINEASM node to know about this input. 5568 unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3); 5569 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5570 TLI.getPointerTy())); 5571 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5572 break; 5573 } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5574 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5575 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5576 "Memory operands expect pointer values"); 5577 5578 // Add information to the INLINEASM node to know about this input. 5579 unsigned ResOpType = 4/*MEM*/ | (1<<3); 5580 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5581 TLI.getPointerTy())); 5582 AsmNodeOperands.push_back(InOperandVal); 5583 break; 5584 } 5585 5586 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5587 OpInfo.ConstraintType == TargetLowering::C_Register) && 5588 "Unknown constraint type!"); 5589 assert(!OpInfo.isIndirect && 5590 "Don't know how to handle indirect register inputs yet!"); 5591 5592 // Copy the input into the appropriate registers. 5593 if (OpInfo.AssignedRegs.Regs.empty() || 5594 !OpInfo.AssignedRegs.areValueTypesLegal()) { 5595 llvm_report_error("Couldn't allocate input reg for" 5596 " constraint '"+ OpInfo.ConstraintCode +"'!"); 5597 } 5598 5599 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5600 Chain, &Flag); 5601 5602 OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0, 5603 DAG, AsmNodeOperands); 5604 break; 5605 } 5606 case InlineAsm::isClobber: { 5607 // Add the clobbered value to the operand list, so that the register 5608 // allocator is aware that the physreg got clobbered. 5609 if (!OpInfo.AssignedRegs.Regs.empty()) 5610 OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */, 5611 false, 0, DAG, 5612 AsmNodeOperands); 5613 break; 5614 } 5615 } 5616 } 5617 5618 // Finish up input operands. 5619 AsmNodeOperands[0] = Chain; 5620 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5621 5622 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5623 DAG.getVTList(MVT::Other, MVT::Flag), 5624 &AsmNodeOperands[0], AsmNodeOperands.size()); 5625 Flag = Chain.getValue(1); 5626 5627 // If this asm returns a register value, copy the result from that register 5628 // and set it as the value of the call. 5629 if (!RetValRegs.Regs.empty()) { 5630 SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5631 Chain, &Flag); 5632 5633 // FIXME: Why don't we do this for inline asms with MRVs? 5634 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5635 EVT ResultType = TLI.getValueType(CS.getType()); 5636 5637 // If any of the results of the inline asm is a vector, it may have the 5638 // wrong width/num elts. This can happen for register classes that can 5639 // contain multiple different value types. The preg or vreg allocated may 5640 // not have the same VT as was expected. Convert it to the right type 5641 // with bit_convert. 5642 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5643 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5644 ResultType, Val); 5645 5646 } else if (ResultType != Val.getValueType() && 5647 ResultType.isInteger() && Val.getValueType().isInteger()) { 5648 // If a result value was tied to an input value, the computed result may 5649 // have a wider width than the expected result. Extract the relevant 5650 // portion. 5651 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5652 } 5653 5654 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5655 } 5656 5657 setValue(CS.getInstruction(), Val); 5658 // Don't need to use this as a chain in this case. 5659 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5660 return; 5661 } 5662 5663 std::vector<std::pair<SDValue, Value*> > StoresToEmit; 5664 5665 // Process indirect outputs, first output all of the flagged copies out of 5666 // physregs. 5667 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5668 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5669 Value *Ptr = IndirectStoresToEmit[i].second; 5670 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5671 Chain, &Flag); 5672 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5673 5674 } 5675 5676 // Emit the non-flagged stores from the physregs. 5677 SmallVector<SDValue, 8> OutChains; 5678 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5679 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5680 StoresToEmit[i].first, 5681 getValue(StoresToEmit[i].second), 5682 StoresToEmit[i].second, 0, 5683 false, false, 0); 5684 OutChains.push_back(Val); 5685 } 5686 5687 if (!OutChains.empty()) 5688 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5689 &OutChains[0], OutChains.size()); 5690 5691 DAG.setRoot(Chain); 5692 } 5693 5694 void SelectionDAGBuilder::visitVAStart(CallInst &I) { 5695 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5696 MVT::Other, getRoot(), 5697 getValue(I.getOperand(1)), 5698 DAG.getSrcValue(I.getOperand(1)))); 5699 } 5700 5701 void SelectionDAGBuilder::visitVAArg(VAArgInst &I) { 5702 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5703 getRoot(), getValue(I.getOperand(0)), 5704 DAG.getSrcValue(I.getOperand(0))); 5705 setValue(&I, V); 5706 DAG.setRoot(V.getValue(1)); 5707 } 5708 5709 void SelectionDAGBuilder::visitVAEnd(CallInst &I) { 5710 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5711 MVT::Other, getRoot(), 5712 getValue(I.getOperand(1)), 5713 DAG.getSrcValue(I.getOperand(1)))); 5714 } 5715 5716 void SelectionDAGBuilder::visitVACopy(CallInst &I) { 5717 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5718 MVT::Other, getRoot(), 5719 getValue(I.getOperand(1)), 5720 getValue(I.getOperand(2)), 5721 DAG.getSrcValue(I.getOperand(1)), 5722 DAG.getSrcValue(I.getOperand(2)))); 5723 } 5724 5725 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5726 /// implementation, which just calls LowerCall. 5727 /// FIXME: When all targets are 5728 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5729 std::pair<SDValue, SDValue> 5730 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5731 bool RetSExt, bool RetZExt, bool isVarArg, 5732 bool isInreg, unsigned NumFixedArgs, 5733 CallingConv::ID CallConv, bool isTailCall, 5734 bool isReturnValueUsed, 5735 SDValue Callee, 5736 ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) { 5737 // Handle all of the outgoing arguments. 5738 SmallVector<ISD::OutputArg, 32> Outs; 5739 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 5740 SmallVector<EVT, 4> ValueVTs; 5741 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 5742 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5743 Value != NumValues; ++Value) { 5744 EVT VT = ValueVTs[Value]; 5745 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 5746 SDValue Op = SDValue(Args[i].Node.getNode(), 5747 Args[i].Node.getResNo() + Value); 5748 ISD::ArgFlagsTy Flags; 5749 unsigned OriginalAlignment = 5750 getTargetData()->getABITypeAlignment(ArgTy); 5751 5752 if (Args[i].isZExt) 5753 Flags.setZExt(); 5754 if (Args[i].isSExt) 5755 Flags.setSExt(); 5756 if (Args[i].isInReg) 5757 Flags.setInReg(); 5758 if (Args[i].isSRet) 5759 Flags.setSRet(); 5760 if (Args[i].isByVal) { 5761 Flags.setByVal(); 5762 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 5763 const Type *ElementTy = Ty->getElementType(); 5764 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 5765 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 5766 // For ByVal, alignment should come from FE. BE will guess if this 5767 // info is not there but there are cases it cannot get right. 5768 if (Args[i].Alignment) 5769 FrameAlign = Args[i].Alignment; 5770 Flags.setByValAlign(FrameAlign); 5771 Flags.setByValSize(FrameSize); 5772 } 5773 if (Args[i].isNest) 5774 Flags.setNest(); 5775 Flags.setOrigAlign(OriginalAlignment); 5776 5777 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 5778 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 5779 SmallVector<SDValue, 4> Parts(NumParts); 5780 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 5781 5782 if (Args[i].isSExt) 5783 ExtendKind = ISD::SIGN_EXTEND; 5784 else if (Args[i].isZExt) 5785 ExtendKind = ISD::ZERO_EXTEND; 5786 5787 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 5788 PartVT, ExtendKind); 5789 5790 for (unsigned j = 0; j != NumParts; ++j) { 5791 // if it isn't first piece, alignment must be 1 5792 ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs); 5793 if (NumParts > 1 && j == 0) 5794 MyFlags.Flags.setSplit(); 5795 else if (j != 0) 5796 MyFlags.Flags.setOrigAlign(1); 5797 5798 Outs.push_back(MyFlags); 5799 } 5800 } 5801 } 5802 5803 // Handle the incoming return values from the call. 5804 SmallVector<ISD::InputArg, 32> Ins; 5805 SmallVector<EVT, 4> RetTys; 5806 ComputeValueVTs(*this, RetTy, RetTys); 5807 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5808 EVT VT = RetTys[I]; 5809 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5810 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5811 for (unsigned i = 0; i != NumRegs; ++i) { 5812 ISD::InputArg MyFlags; 5813 MyFlags.VT = RegisterVT; 5814 MyFlags.Used = isReturnValueUsed; 5815 if (RetSExt) 5816 MyFlags.Flags.setSExt(); 5817 if (RetZExt) 5818 MyFlags.Flags.setZExt(); 5819 if (isInreg) 5820 MyFlags.Flags.setInReg(); 5821 Ins.push_back(MyFlags); 5822 } 5823 } 5824 5825 SmallVector<SDValue, 4> InVals; 5826 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 5827 Outs, Ins, dl, DAG, InVals); 5828 5829 // Verify that the target's LowerCall behaved as expected. 5830 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 5831 "LowerCall didn't return a valid chain!"); 5832 assert((!isTailCall || InVals.empty()) && 5833 "LowerCall emitted a return value for a tail call!"); 5834 assert((isTailCall || InVals.size() == Ins.size()) && 5835 "LowerCall didn't emit the correct number of values!"); 5836 5837 // For a tail call, the return value is merely live-out and there aren't 5838 // any nodes in the DAG representing it. Return a special value to 5839 // indicate that a tail call has been emitted and no more Instructions 5840 // should be processed in the current block. 5841 if (isTailCall) { 5842 DAG.setRoot(Chain); 5843 return std::make_pair(SDValue(), SDValue()); 5844 } 5845 5846 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5847 assert(InVals[i].getNode() && 5848 "LowerCall emitted a null value!"); 5849 assert(Ins[i].VT == InVals[i].getValueType() && 5850 "LowerCall emitted a value with the wrong type!"); 5851 }); 5852 5853 // Collect the legal value parts into potentially illegal values 5854 // that correspond to the original function's return values. 5855 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5856 if (RetSExt) 5857 AssertOp = ISD::AssertSext; 5858 else if (RetZExt) 5859 AssertOp = ISD::AssertZext; 5860 SmallVector<SDValue, 4> ReturnValues; 5861 unsigned CurReg = 0; 5862 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5863 EVT VT = RetTys[I]; 5864 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5865 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5866 5867 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 5868 NumRegs, RegisterVT, VT, 5869 AssertOp)); 5870 CurReg += NumRegs; 5871 } 5872 5873 // For a function returning void, there is no return value. We can't create 5874 // such a node, so we just return a null return value in that case. In 5875 // that case, nothing will actualy look at the value. 5876 if (ReturnValues.empty()) 5877 return std::make_pair(SDValue(), Chain); 5878 5879 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 5880 DAG.getVTList(&RetTys[0], RetTys.size()), 5881 &ReturnValues[0], ReturnValues.size()); 5882 return std::make_pair(Res, Chain); 5883 } 5884 5885 void TargetLowering::LowerOperationWrapper(SDNode *N, 5886 SmallVectorImpl<SDValue> &Results, 5887 SelectionDAG &DAG) { 5888 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 5889 if (Res.getNode()) 5890 Results.push_back(Res); 5891 } 5892 5893 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { 5894 llvm_unreachable("LowerOperation not implemented for this target!"); 5895 return SDValue(); 5896 } 5897 5898 void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) { 5899 SDValue Op = getValue(V); 5900 assert((Op.getOpcode() != ISD::CopyFromReg || 5901 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 5902 "Copy from a reg to the same reg!"); 5903 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 5904 5905 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 5906 SDValue Chain = DAG.getEntryNode(); 5907 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 5908 PendingExports.push_back(Chain); 5909 } 5910 5911 #include "llvm/CodeGen/SelectionDAGISel.h" 5912 5913 void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) { 5914 // If this is the entry block, emit arguments. 5915 Function &F = *LLVMBB->getParent(); 5916 SelectionDAG &DAG = SDB->DAG; 5917 SDValue OldRoot = DAG.getRoot(); 5918 DebugLoc dl = SDB->getCurDebugLoc(); 5919 const TargetData *TD = TLI.getTargetData(); 5920 SmallVector<ISD::InputArg, 16> Ins; 5921 5922 // Check whether the function can return without sret-demotion. 5923 SmallVector<EVT, 4> OutVTs; 5924 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 5925 getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 5926 OutVTs, OutsFlags, TLI); 5927 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 5928 5929 FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(), 5930 OutVTs, OutsFlags, DAG); 5931 if (!FLI.CanLowerReturn) { 5932 // Put in an sret pointer parameter before all the other parameters. 5933 SmallVector<EVT, 1> ValueVTs; 5934 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5935 5936 // NOTE: Assuming that a pointer will never break down to more than one VT 5937 // or one register. 5938 ISD::ArgFlagsTy Flags; 5939 Flags.setSRet(); 5940 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]); 5941 ISD::InputArg RetArg(Flags, RegisterVT, true); 5942 Ins.push_back(RetArg); 5943 } 5944 5945 // Set up the incoming argument description vector. 5946 unsigned Idx = 1; 5947 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); 5948 I != E; ++I, ++Idx) { 5949 SmallVector<EVT, 4> ValueVTs; 5950 ComputeValueVTs(TLI, I->getType(), ValueVTs); 5951 bool isArgValueUsed = !I->use_empty(); 5952 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5953 Value != NumValues; ++Value) { 5954 EVT VT = ValueVTs[Value]; 5955 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 5956 ISD::ArgFlagsTy Flags; 5957 unsigned OriginalAlignment = 5958 TD->getABITypeAlignment(ArgTy); 5959 5960 if (F.paramHasAttr(Idx, Attribute::ZExt)) 5961 Flags.setZExt(); 5962 if (F.paramHasAttr(Idx, Attribute::SExt)) 5963 Flags.setSExt(); 5964 if (F.paramHasAttr(Idx, Attribute::InReg)) 5965 Flags.setInReg(); 5966 if (F.paramHasAttr(Idx, Attribute::StructRet)) 5967 Flags.setSRet(); 5968 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 5969 Flags.setByVal(); 5970 const PointerType *Ty = cast<PointerType>(I->getType()); 5971 const Type *ElementTy = Ty->getElementType(); 5972 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 5973 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 5974 // For ByVal, alignment should be passed from FE. BE will guess if 5975 // this info is not there but there are cases it cannot get right. 5976 if (F.getParamAlignment(Idx)) 5977 FrameAlign = F.getParamAlignment(Idx); 5978 Flags.setByValAlign(FrameAlign); 5979 Flags.setByValSize(FrameSize); 5980 } 5981 if (F.paramHasAttr(Idx, Attribute::Nest)) 5982 Flags.setNest(); 5983 Flags.setOrigAlign(OriginalAlignment); 5984 5985 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5986 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 5987 for (unsigned i = 0; i != NumRegs; ++i) { 5988 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 5989 if (NumRegs > 1 && i == 0) 5990 MyFlags.Flags.setSplit(); 5991 // if it isn't first piece, alignment must be 1 5992 else if (i > 0) 5993 MyFlags.Flags.setOrigAlign(1); 5994 Ins.push_back(MyFlags); 5995 } 5996 } 5997 } 5998 5999 // Call the target to set up the argument values. 6000 SmallVector<SDValue, 8> InVals; 6001 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6002 F.isVarArg(), Ins, 6003 dl, DAG, InVals); 6004 6005 // Verify that the target's LowerFormalArguments behaved as expected. 6006 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6007 "LowerFormalArguments didn't return a valid chain!"); 6008 assert(InVals.size() == Ins.size() && 6009 "LowerFormalArguments didn't emit the correct number of values!"); 6010 DEBUG({ 6011 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6012 assert(InVals[i].getNode() && 6013 "LowerFormalArguments emitted a null value!"); 6014 assert(Ins[i].VT == InVals[i].getValueType() && 6015 "LowerFormalArguments emitted a value with the wrong type!"); 6016 } 6017 }); 6018 6019 // Update the DAG with the new chain value resulting from argument lowering. 6020 DAG.setRoot(NewRoot); 6021 6022 // Set up the argument values. 6023 unsigned i = 0; 6024 Idx = 1; 6025 if (!FLI.CanLowerReturn) { 6026 // Create a virtual register for the sret pointer, and put in a copy 6027 // from the sret argument into it. 6028 SmallVector<EVT, 1> ValueVTs; 6029 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6030 EVT VT = ValueVTs[0]; 6031 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6032 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6033 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6034 RegVT, VT, AssertOp); 6035 6036 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6037 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6038 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6039 FLI.DemoteRegister = SRetReg; 6040 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6041 SRetReg, ArgValue); 6042 DAG.setRoot(NewRoot); 6043 6044 // i indexes lowered arguments. Bump it past the hidden sret argument. 6045 // Idx indexes LLVM arguments. Don't touch it. 6046 ++i; 6047 } 6048 6049 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6050 ++I, ++Idx) { 6051 SmallVector<SDValue, 4> ArgValues; 6052 SmallVector<EVT, 4> ValueVTs; 6053 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6054 unsigned NumValues = ValueVTs.size(); 6055 for (unsigned Value = 0; Value != NumValues; ++Value) { 6056 EVT VT = ValueVTs[Value]; 6057 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6058 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6059 6060 if (!I->use_empty()) { 6061 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6062 if (F.paramHasAttr(Idx, Attribute::SExt)) 6063 AssertOp = ISD::AssertSext; 6064 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6065 AssertOp = ISD::AssertZext; 6066 6067 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6068 NumParts, PartVT, VT, 6069 AssertOp)); 6070 } 6071 6072 i += NumParts; 6073 } 6074 6075 if (!I->use_empty()) { 6076 SDValue Res; 6077 if (!ArgValues.empty()) 6078 Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6079 SDB->getCurDebugLoc()); 6080 SDB->setValue(I, Res); 6081 6082 // If this argument is live outside of the entry block, insert a copy from 6083 // whereever we got it to the vreg that other BB's will reference it as. 6084 SDB->CopyToExportRegsIfNeeded(I); 6085 } 6086 } 6087 6088 assert(i == InVals.size() && "Argument register count mismatch!"); 6089 6090 // Finally, if the target has anything special to do, allow it to do so. 6091 // FIXME: this should insert code into the DAG! 6092 EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction()); 6093 } 6094 6095 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6096 /// ensure constants are generated when needed. Remember the virtual registers 6097 /// that need to be added to the Machine PHI nodes as input. We cannot just 6098 /// directly add them, because expansion might result in multiple MBB's for one 6099 /// BB. As such, the start of the BB might correspond to a different MBB than 6100 /// the end. 6101 /// 6102 void 6103 SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) { 6104 TerminatorInst *TI = LLVMBB->getTerminator(); 6105 6106 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6107 6108 // Check successor nodes' PHI nodes that expect a constant to be available 6109 // from this block. 6110 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6111 BasicBlock *SuccBB = TI->getSuccessor(succ); 6112 if (!isa<PHINode>(SuccBB->begin())) continue; 6113 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; 6114 6115 // If this terminator has multiple identical successors (common for 6116 // switches), only handle each succ once. 6117 if (!SuccsHandled.insert(SuccMBB)) continue; 6118 6119 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6120 PHINode *PN; 6121 6122 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6123 // nodes and Machine PHI nodes, but the incoming operands have not been 6124 // emitted yet. 6125 for (BasicBlock::iterator I = SuccBB->begin(); 6126 (PN = dyn_cast<PHINode>(I)); ++I) { 6127 // Ignore dead phi's. 6128 if (PN->use_empty()) continue; 6129 6130 unsigned Reg; 6131 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6132 6133 if (Constant *C = dyn_cast<Constant>(PHIOp)) { 6134 unsigned &RegOut = SDB->ConstantsOut[C]; 6135 if (RegOut == 0) { 6136 RegOut = FuncInfo->CreateRegForValue(C); 6137 SDB->CopyValueToVirtualRegister(C, RegOut); 6138 } 6139 Reg = RegOut; 6140 } else { 6141 Reg = FuncInfo->ValueMap[PHIOp]; 6142 if (Reg == 0) { 6143 assert(isa<AllocaInst>(PHIOp) && 6144 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6145 "Didn't codegen value into a register!??"); 6146 Reg = FuncInfo->CreateRegForValue(PHIOp); 6147 SDB->CopyValueToVirtualRegister(PHIOp, Reg); 6148 } 6149 } 6150 6151 // Remember that this register needs to added to the machine PHI node as 6152 // the input for this MBB. 6153 SmallVector<EVT, 4> ValueVTs; 6154 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6155 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6156 EVT VT = ValueVTs[vti]; 6157 unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6158 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6159 SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6160 Reg += NumRegisters; 6161 } 6162 } 6163 } 6164 SDB->ConstantsOut.clear(); 6165 } 6166 6167 /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only 6168 /// supports legal types, and it emits MachineInstrs directly instead of 6169 /// creating SelectionDAG nodes. 6170 /// 6171 bool 6172 SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB, 6173 FastISel *F) { 6174 TerminatorInst *TI = LLVMBB->getTerminator(); 6175 6176 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6177 unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size(); 6178 6179 // Check successor nodes' PHI nodes that expect a constant to be available 6180 // from this block. 6181 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6182 BasicBlock *SuccBB = TI->getSuccessor(succ); 6183 if (!isa<PHINode>(SuccBB->begin())) continue; 6184 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; 6185 6186 // If this terminator has multiple identical successors (common for 6187 // switches), only handle each succ once. 6188 if (!SuccsHandled.insert(SuccMBB)) continue; 6189 6190 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6191 PHINode *PN; 6192 6193 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6194 // nodes and Machine PHI nodes, but the incoming operands have not been 6195 // emitted yet. 6196 for (BasicBlock::iterator I = SuccBB->begin(); 6197 (PN = dyn_cast<PHINode>(I)); ++I) { 6198 // Ignore dead phi's. 6199 if (PN->use_empty()) continue; 6200 6201 // Only handle legal types. Two interesting things to note here. First, 6202 // by bailing out early, we may leave behind some dead instructions, 6203 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 6204 // own moves. Second, this check is necessary becuase FastISel doesn't 6205 // use CreateRegForValue to create registers, so it always creates 6206 // exactly one register for each non-void instruction. 6207 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 6208 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 6209 // Promote MVT::i1. 6210 if (VT == MVT::i1) 6211 VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT); 6212 else { 6213 SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 6214 return false; 6215 } 6216 } 6217 6218 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6219 6220 unsigned Reg = F->getRegForValue(PHIOp); 6221 if (Reg == 0) { 6222 SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 6223 return false; 6224 } 6225 SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 6226 } 6227 } 6228 6229 return true; 6230 } 6231