1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 /// LimitFloatPrecision - Generate low-precision inline sequences for 72 /// some float libcalls (6, 8 or 12 bits). 73 static unsigned LimitFloatPrecision; 74 75 static cl::opt<unsigned, true> 76 LimitFPPrecision("limit-float-precision", 77 cl::desc("Generate low-precision inline sequences " 78 "for some float libcalls"), 79 cl::location(LimitFloatPrecision), 80 cl::init(0)); 81 82 // Limit the width of DAG chains. This is important in general to prevent 83 // prevent DAG-based analysis from blowing up. For example, alias analysis and 84 // load clustering may not complete in reasonable time. It is difficult to 85 // recognize and avoid this situation within each individual analysis, and 86 // future analyses are likely to have the same behavior. Limiting DAG width is 87 // the safe approach, and will be especially important with global DAGs. 88 // 89 // MaxParallelChains default is arbitrarily high to avoid affecting 90 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 91 // sequence over this should have been converted to llvm.memcpy by the 92 // frontend. It easy to induce this behavior with .ll code such as: 93 // %buffer = alloca [4096 x i8] 94 // %data = load [4096 x i8]* %argPtr 95 // store [4096 x i8] %data, [4096 x i8]* %buffer 96 static const unsigned MaxParallelChains = 64; 97 98 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 99 const SDValue *Parts, unsigned NumParts, 100 MVT PartVT, EVT ValueVT, const Value *V); 101 102 /// getCopyFromParts - Create a value that contains the specified legal parts 103 /// combined into the value they represent. If the parts combine to a type 104 /// larger then ValueVT then AssertOp can be used to specify whether the extra 105 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 106 /// (ISD::AssertSext). 107 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 108 const SDValue *Parts, 109 unsigned NumParts, MVT PartVT, EVT ValueVT, 110 const Value *V, 111 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 112 if (ValueVT.isVector()) 113 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 114 PartVT, ValueVT, V); 115 116 assert(NumParts > 0 && "No parts to assemble!"); 117 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 118 SDValue Val = Parts[0]; 119 120 if (NumParts > 1) { 121 // Assemble the value from multiple parts. 122 if (ValueVT.isInteger()) { 123 unsigned PartBits = PartVT.getSizeInBits(); 124 unsigned ValueBits = ValueVT.getSizeInBits(); 125 126 // Assemble the power of 2 part. 127 unsigned RoundParts = NumParts & (NumParts - 1) ? 128 1 << Log2_32(NumParts) : NumParts; 129 unsigned RoundBits = PartBits * RoundParts; 130 EVT RoundVT = RoundBits == ValueBits ? 131 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 132 SDValue Lo, Hi; 133 134 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 135 136 if (RoundParts > 2) { 137 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 138 PartVT, HalfVT, V); 139 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 140 RoundParts / 2, PartVT, HalfVT, V); 141 } else { 142 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 143 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 144 } 145 146 if (TLI.isBigEndian()) 147 std::swap(Lo, Hi); 148 149 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 150 151 if (RoundParts < NumParts) { 152 // Assemble the trailing non-power-of-2 part. 153 unsigned OddParts = NumParts - RoundParts; 154 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 155 Hi = getCopyFromParts(DAG, DL, 156 Parts + RoundParts, OddParts, PartVT, OddVT, V); 157 158 // Combine the round and odd parts. 159 Lo = Val; 160 if (TLI.isBigEndian()) 161 std::swap(Lo, Hi); 162 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 163 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 164 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 165 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 166 TLI.getPointerTy())); 167 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 168 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 169 } 170 } else if (PartVT.isFloatingPoint()) { 171 // FP split into multiple FP parts (for ppcf128) 172 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 173 "Unexpected split"); 174 SDValue Lo, Hi; 175 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 176 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 177 if (TLI.hasBigEndianPartOrdering(ValueVT)) 178 std::swap(Lo, Hi); 179 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 180 } else { 181 // FP split into integer parts (soft fp) 182 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 183 !PartVT.isVector() && "Unexpected split"); 184 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 185 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 186 } 187 } 188 189 // There is now one part, held in Val. Correct it to match ValueVT. 190 EVT PartEVT = Val.getValueType(); 191 192 if (PartEVT == ValueVT) 193 return Val; 194 195 if (PartEVT.isInteger() && ValueVT.isInteger()) { 196 if (ValueVT.bitsLT(PartEVT)) { 197 // For a truncate, see if we have any information to 198 // indicate whether the truncated bits will always be 199 // zero or sign-extension. 200 if (AssertOp != ISD::DELETED_NODE) 201 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 202 DAG.getValueType(ValueVT)); 203 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 204 } 205 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 206 } 207 208 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 209 // FP_ROUND's are always exact here. 210 if (ValueVT.bitsLT(Val.getValueType())) 211 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 212 DAG.getTargetConstant(1, DL, TLI.getPointerTy())); 213 214 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 215 } 216 217 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 218 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 219 220 llvm_unreachable("Unknown mismatch!"); 221 } 222 223 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 224 const Twine &ErrMsg) { 225 const Instruction *I = dyn_cast_or_null<Instruction>(V); 226 if (!V) 227 return Ctx.emitError(ErrMsg); 228 229 const char *AsmError = ", possible invalid constraint for vector type"; 230 if (const CallInst *CI = dyn_cast<CallInst>(I)) 231 if (isa<InlineAsm>(CI->getCalledValue())) 232 return Ctx.emitError(I, ErrMsg + AsmError); 233 234 return Ctx.emitError(I, ErrMsg); 235 } 236 237 /// getCopyFromPartsVector - Create a value that contains the specified legal 238 /// parts combined into the value they represent. If the parts combine to a 239 /// type larger then ValueVT then AssertOp can be used to specify whether the 240 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 241 /// ValueVT (ISD::AssertSext). 242 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 243 const SDValue *Parts, unsigned NumParts, 244 MVT PartVT, EVT ValueVT, const Value *V) { 245 assert(ValueVT.isVector() && "Not a vector value"); 246 assert(NumParts > 0 && "No parts to assemble!"); 247 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 248 SDValue Val = Parts[0]; 249 250 // Handle a multi-element vector. 251 if (NumParts > 1) { 252 EVT IntermediateVT; 253 MVT RegisterVT; 254 unsigned NumIntermediates; 255 unsigned NumRegs = 256 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 257 NumIntermediates, RegisterVT); 258 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 259 NumParts = NumRegs; // Silence a compiler warning. 260 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 261 assert(RegisterVT == Parts[0].getSimpleValueType() && 262 "Part type doesn't match part!"); 263 264 // Assemble the parts into intermediate operands. 265 SmallVector<SDValue, 8> Ops(NumIntermediates); 266 if (NumIntermediates == NumParts) { 267 // If the register was not expanded, truncate or copy the value, 268 // as appropriate. 269 for (unsigned i = 0; i != NumParts; ++i) 270 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 271 PartVT, IntermediateVT, V); 272 } else if (NumParts > 0) { 273 // If the intermediate type was expanded, build the intermediate 274 // operands from the parts. 275 assert(NumParts % NumIntermediates == 0 && 276 "Must expand into a divisible number of parts!"); 277 unsigned Factor = NumParts / NumIntermediates; 278 for (unsigned i = 0; i != NumIntermediates; ++i) 279 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 280 PartVT, IntermediateVT, V); 281 } 282 283 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 284 // intermediate operands. 285 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 286 : ISD::BUILD_VECTOR, 287 DL, ValueVT, Ops); 288 } 289 290 // There is now one part, held in Val. Correct it to match ValueVT. 291 EVT PartEVT = Val.getValueType(); 292 293 if (PartEVT == ValueVT) 294 return Val; 295 296 if (PartEVT.isVector()) { 297 // If the element type of the source/dest vectors are the same, but the 298 // parts vector has more elements than the value vector, then we have a 299 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 300 // elements we want. 301 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 302 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 303 "Cannot narrow, it would be a lossy transformation"); 304 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 305 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 306 } 307 308 // Vector/Vector bitcast. 309 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 310 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 311 312 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 313 "Cannot handle this kind of promotion"); 314 // Promoted vector extract 315 bool Smaller = ValueVT.bitsLE(PartEVT); 316 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 317 DL, ValueVT, Val); 318 319 } 320 321 // Trivial bitcast if the types are the same size and the destination 322 // vector type is legal. 323 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 324 TLI.isTypeLegal(ValueVT)) 325 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 326 327 // Handle cases such as i8 -> <1 x i1> 328 if (ValueVT.getVectorNumElements() != 1) { 329 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 330 "non-trivial scalar-to-vector conversion"); 331 return DAG.getUNDEF(ValueVT); 332 } 333 334 if (ValueVT.getVectorNumElements() == 1 && 335 ValueVT.getVectorElementType() != PartEVT) { 336 bool Smaller = ValueVT.bitsLE(PartEVT); 337 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 338 DL, ValueVT.getScalarType(), Val); 339 } 340 341 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 342 } 343 344 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 345 SDValue Val, SDValue *Parts, unsigned NumParts, 346 MVT PartVT, const Value *V); 347 348 /// getCopyToParts - Create a series of nodes that contain the specified value 349 /// split into legal parts. If the parts contain more bits than Val, then, for 350 /// integers, ExtendKind can be used to specify how to generate the extra bits. 351 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 352 SDValue Val, SDValue *Parts, unsigned NumParts, 353 MVT PartVT, const Value *V, 354 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 355 EVT ValueVT = Val.getValueType(); 356 357 // Handle the vector case separately. 358 if (ValueVT.isVector()) 359 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 360 361 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 362 unsigned PartBits = PartVT.getSizeInBits(); 363 unsigned OrigNumParts = NumParts; 364 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 365 366 if (NumParts == 0) 367 return; 368 369 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 370 EVT PartEVT = PartVT; 371 if (PartEVT == ValueVT) { 372 assert(NumParts == 1 && "No-op copy with multiple parts!"); 373 Parts[0] = Val; 374 return; 375 } 376 377 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 378 // If the parts cover more bits than the value has, promote the value. 379 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 380 assert(NumParts == 1 && "Do not know what to promote to!"); 381 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 382 } else { 383 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 384 ValueVT.isInteger() && 385 "Unknown mismatch!"); 386 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 387 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 388 if (PartVT == MVT::x86mmx) 389 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 390 } 391 } else if (PartBits == ValueVT.getSizeInBits()) { 392 // Different types of the same size. 393 assert(NumParts == 1 && PartEVT != ValueVT); 394 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 395 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 396 // If the parts cover less bits than value has, truncate the value. 397 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 398 ValueVT.isInteger() && 399 "Unknown mismatch!"); 400 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 401 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 402 if (PartVT == MVT::x86mmx) 403 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 404 } 405 406 // The value may have changed - recompute ValueVT. 407 ValueVT = Val.getValueType(); 408 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 409 "Failed to tile the value with PartVT!"); 410 411 if (NumParts == 1) { 412 if (PartEVT != ValueVT) 413 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 414 "scalar-to-vector conversion failed"); 415 416 Parts[0] = Val; 417 return; 418 } 419 420 // Expand the value into multiple parts. 421 if (NumParts & (NumParts - 1)) { 422 // The number of parts is not a power of 2. Split off and copy the tail. 423 assert(PartVT.isInteger() && ValueVT.isInteger() && 424 "Do not know what to expand to!"); 425 unsigned RoundParts = 1 << Log2_32(NumParts); 426 unsigned RoundBits = RoundParts * PartBits; 427 unsigned OddParts = NumParts - RoundParts; 428 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 429 DAG.getIntPtrConstant(RoundBits, DL)); 430 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 431 432 if (TLI.isBigEndian()) 433 // The odd parts were reversed by getCopyToParts - unreverse them. 434 std::reverse(Parts + RoundParts, Parts + NumParts); 435 436 NumParts = RoundParts; 437 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 438 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 439 } 440 441 // The number of parts is a power of 2. Repeatedly bisect the value using 442 // EXTRACT_ELEMENT. 443 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 444 EVT::getIntegerVT(*DAG.getContext(), 445 ValueVT.getSizeInBits()), 446 Val); 447 448 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 449 for (unsigned i = 0; i < NumParts; i += StepSize) { 450 unsigned ThisBits = StepSize * PartBits / 2; 451 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 452 SDValue &Part0 = Parts[i]; 453 SDValue &Part1 = Parts[i+StepSize/2]; 454 455 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 456 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 457 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 458 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 459 460 if (ThisBits == PartBits && ThisVT != PartVT) { 461 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 462 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 463 } 464 } 465 } 466 467 if (TLI.isBigEndian()) 468 std::reverse(Parts, Parts + OrigNumParts); 469 } 470 471 472 /// getCopyToPartsVector - Create a series of nodes that contain the specified 473 /// value split into legal parts. 474 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 475 SDValue Val, SDValue *Parts, unsigned NumParts, 476 MVT PartVT, const Value *V) { 477 EVT ValueVT = Val.getValueType(); 478 assert(ValueVT.isVector() && "Not a vector"); 479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 480 481 if (NumParts == 1) { 482 EVT PartEVT = PartVT; 483 if (PartEVT == ValueVT) { 484 // Nothing to do. 485 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 486 // Bitconvert vector->vector case. 487 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 488 } else if (PartVT.isVector() && 489 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 490 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 491 EVT ElementVT = PartVT.getVectorElementType(); 492 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 493 // undef elements. 494 SmallVector<SDValue, 16> Ops; 495 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 496 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 497 ElementVT, Val, DAG.getConstant(i, DL, 498 TLI.getVectorIdxTy()))); 499 500 for (unsigned i = ValueVT.getVectorNumElements(), 501 e = PartVT.getVectorNumElements(); i != e; ++i) 502 Ops.push_back(DAG.getUNDEF(ElementVT)); 503 504 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 505 506 // FIXME: Use CONCAT for 2x -> 4x. 507 508 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 509 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 510 } else if (PartVT.isVector() && 511 PartEVT.getVectorElementType().bitsGE( 512 ValueVT.getVectorElementType()) && 513 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 514 515 // Promoted vector extract 516 bool Smaller = PartEVT.bitsLE(ValueVT); 517 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 518 DL, PartVT, Val); 519 } else{ 520 // Vector -> scalar conversion. 521 assert(ValueVT.getVectorNumElements() == 1 && 522 "Only trivial vector-to-scalar conversions should get here!"); 523 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 524 PartVT, Val, 525 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 526 527 bool Smaller = ValueVT.bitsLE(PartVT); 528 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 529 DL, PartVT, Val); 530 } 531 532 Parts[0] = Val; 533 return; 534 } 535 536 // Handle a multi-element vector. 537 EVT IntermediateVT; 538 MVT RegisterVT; 539 unsigned NumIntermediates; 540 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 541 IntermediateVT, 542 NumIntermediates, RegisterVT); 543 unsigned NumElements = ValueVT.getVectorNumElements(); 544 545 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 546 NumParts = NumRegs; // Silence a compiler warning. 547 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 548 549 // Split the vector into intermediate operands. 550 SmallVector<SDValue, 8> Ops(NumIntermediates); 551 for (unsigned i = 0; i != NumIntermediates; ++i) { 552 if (IntermediateVT.isVector()) 553 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 554 IntermediateVT, Val, 555 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 556 TLI.getVectorIdxTy())); 557 else 558 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 559 IntermediateVT, Val, 560 DAG.getConstant(i, DL, TLI.getVectorIdxTy())); 561 } 562 563 // Split the intermediate operands into legal parts. 564 if (NumParts == NumIntermediates) { 565 // If the register was not expanded, promote or copy the value, 566 // as appropriate. 567 for (unsigned i = 0; i != NumParts; ++i) 568 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 569 } else if (NumParts > 0) { 570 // If the intermediate type was expanded, split each the value into 571 // legal parts. 572 assert(NumIntermediates != 0 && "division by zero"); 573 assert(NumParts % NumIntermediates == 0 && 574 "Must expand into a divisible number of parts!"); 575 unsigned Factor = NumParts / NumIntermediates; 576 for (unsigned i = 0; i != NumIntermediates; ++i) 577 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 578 } 579 } 580 581 namespace { 582 /// RegsForValue - This struct represents the registers (physical or virtual) 583 /// that a particular set of values is assigned, and the type information 584 /// about the value. The most common situation is to represent one value at a 585 /// time, but struct or array values are handled element-wise as multiple 586 /// values. The splitting of aggregates is performed recursively, so that we 587 /// never have aggregate-typed registers. The values at this point do not 588 /// necessarily have legal types, so each value may require one or more 589 /// registers of some legal type. 590 /// 591 struct RegsForValue { 592 /// ValueVTs - The value types of the values, which may not be legal, and 593 /// may need be promoted or synthesized from one or more registers. 594 /// 595 SmallVector<EVT, 4> ValueVTs; 596 597 /// RegVTs - The value types of the registers. This is the same size as 598 /// ValueVTs and it records, for each value, what the type of the assigned 599 /// register or registers are. (Individual values are never synthesized 600 /// from more than one type of register.) 601 /// 602 /// With virtual registers, the contents of RegVTs is redundant with TLI's 603 /// getRegisterType member function, however when with physical registers 604 /// it is necessary to have a separate record of the types. 605 /// 606 SmallVector<MVT, 4> RegVTs; 607 608 /// Regs - This list holds the registers assigned to the values. 609 /// Each legal or promoted value requires one register, and each 610 /// expanded value requires multiple registers. 611 /// 612 SmallVector<unsigned, 4> Regs; 613 614 RegsForValue() {} 615 616 RegsForValue(const SmallVector<unsigned, 4> ®s, 617 MVT regvt, EVT valuevt) 618 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 619 620 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 621 unsigned Reg, Type *Ty) { 622 ComputeValueVTs(tli, Ty, ValueVTs); 623 624 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 625 EVT ValueVT = ValueVTs[Value]; 626 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 627 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 628 for (unsigned i = 0; i != NumRegs; ++i) 629 Regs.push_back(Reg + i); 630 RegVTs.push_back(RegisterVT); 631 Reg += NumRegs; 632 } 633 } 634 635 /// append - Add the specified values to this one. 636 void append(const RegsForValue &RHS) { 637 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 638 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 639 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 640 } 641 642 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 643 /// this value and returns the result as a ValueVTs value. This uses 644 /// Chain/Flag as the input and updates them for the output Chain/Flag. 645 /// If the Flag pointer is NULL, no flag is used. 646 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 647 SDLoc dl, 648 SDValue &Chain, SDValue *Flag, 649 const Value *V = nullptr) const; 650 651 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 652 /// specified value into the registers specified by this object. This uses 653 /// Chain/Flag as the input and updates them for the output Chain/Flag. 654 /// If the Flag pointer is NULL, no flag is used. 655 void 656 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 657 SDValue *Flag, const Value *V, 658 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 659 660 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 661 /// operand list. This adds the code marker, matching input operand index 662 /// (if applicable), and includes the number of values added into it. 663 void AddInlineAsmOperands(unsigned Kind, 664 bool HasMatching, unsigned MatchingIdx, SDLoc dl, 665 SelectionDAG &DAG, 666 std::vector<SDValue> &Ops) const; 667 }; 668 } 669 670 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 671 /// this value and returns the result as a ValueVT value. This uses 672 /// Chain/Flag as the input and updates them for the output Chain/Flag. 673 /// If the Flag pointer is NULL, no flag is used. 674 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 675 FunctionLoweringInfo &FuncInfo, 676 SDLoc dl, 677 SDValue &Chain, SDValue *Flag, 678 const Value *V) const { 679 // A Value with type {} or [0 x %t] needs no registers. 680 if (ValueVTs.empty()) 681 return SDValue(); 682 683 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 684 685 // Assemble the legal parts into the final values. 686 SmallVector<SDValue, 4> Values(ValueVTs.size()); 687 SmallVector<SDValue, 8> Parts; 688 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 689 // Copy the legal parts from the registers. 690 EVT ValueVT = ValueVTs[Value]; 691 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 692 MVT RegisterVT = RegVTs[Value]; 693 694 Parts.resize(NumRegs); 695 for (unsigned i = 0; i != NumRegs; ++i) { 696 SDValue P; 697 if (!Flag) { 698 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 699 } else { 700 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 701 *Flag = P.getValue(2); 702 } 703 704 Chain = P.getValue(1); 705 Parts[i] = P; 706 707 // If the source register was virtual and if we know something about it, 708 // add an assert node. 709 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 710 !RegisterVT.isInteger() || RegisterVT.isVector()) 711 continue; 712 713 const FunctionLoweringInfo::LiveOutInfo *LOI = 714 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 715 if (!LOI) 716 continue; 717 718 unsigned RegSize = RegisterVT.getSizeInBits(); 719 unsigned NumSignBits = LOI->NumSignBits; 720 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 721 722 if (NumZeroBits == RegSize) { 723 // The current value is a zero. 724 // Explicitly express that as it would be easier for 725 // optimizations to kick in. 726 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 727 continue; 728 } 729 730 // FIXME: We capture more information than the dag can represent. For 731 // now, just use the tightest assertzext/assertsext possible. 732 bool isSExt = true; 733 EVT FromVT(MVT::Other); 734 if (NumSignBits == RegSize) 735 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 736 else if (NumZeroBits >= RegSize-1) 737 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 738 else if (NumSignBits > RegSize-8) 739 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 740 else if (NumZeroBits >= RegSize-8) 741 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 742 else if (NumSignBits > RegSize-16) 743 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 744 else if (NumZeroBits >= RegSize-16) 745 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 746 else if (NumSignBits > RegSize-32) 747 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 748 else if (NumZeroBits >= RegSize-32) 749 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 750 else 751 continue; 752 753 // Add an assertion node. 754 assert(FromVT != MVT::Other); 755 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 756 RegisterVT, P, DAG.getValueType(FromVT)); 757 } 758 759 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 760 NumRegs, RegisterVT, ValueVT, V); 761 Part += NumRegs; 762 Parts.clear(); 763 } 764 765 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 766 } 767 768 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 769 /// specified value into the registers specified by this object. This uses 770 /// Chain/Flag as the input and updates them for the output Chain/Flag. 771 /// If the Flag pointer is NULL, no flag is used. 772 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 773 SDValue &Chain, SDValue *Flag, const Value *V, 774 ISD::NodeType PreferredExtendType) const { 775 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 776 ISD::NodeType ExtendKind = PreferredExtendType; 777 778 // Get the list of the values's legal parts. 779 unsigned NumRegs = Regs.size(); 780 SmallVector<SDValue, 8> Parts(NumRegs); 781 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 782 EVT ValueVT = ValueVTs[Value]; 783 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 784 MVT RegisterVT = RegVTs[Value]; 785 786 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 787 ExtendKind = ISD::ZERO_EXTEND; 788 789 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 790 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 791 Part += NumParts; 792 } 793 794 // Copy the parts into the registers. 795 SmallVector<SDValue, 8> Chains(NumRegs); 796 for (unsigned i = 0; i != NumRegs; ++i) { 797 SDValue Part; 798 if (!Flag) { 799 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 800 } else { 801 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 802 *Flag = Part.getValue(1); 803 } 804 805 Chains[i] = Part.getValue(0); 806 } 807 808 if (NumRegs == 1 || Flag) 809 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 810 // flagged to it. That is the CopyToReg nodes and the user are considered 811 // a single scheduling unit. If we create a TokenFactor and return it as 812 // chain, then the TokenFactor is both a predecessor (operand) of the 813 // user as well as a successor (the TF operands are flagged to the user). 814 // c1, f1 = CopyToReg 815 // c2, f2 = CopyToReg 816 // c3 = TokenFactor c1, c2 817 // ... 818 // = op c3, ..., f2 819 Chain = Chains[NumRegs-1]; 820 else 821 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 822 } 823 824 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 825 /// operand list. This adds the code marker and includes the number of 826 /// values added into it. 827 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 828 unsigned MatchingIdx, SDLoc dl, 829 SelectionDAG &DAG, 830 std::vector<SDValue> &Ops) const { 831 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 832 833 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 834 if (HasMatching) 835 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 836 else if (!Regs.empty() && 837 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 838 // Put the register class of the virtual registers in the flag word. That 839 // way, later passes can recompute register class constraints for inline 840 // assembly as well as normal instructions. 841 // Don't do this for tied operands that can use the regclass information 842 // from the def. 843 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 844 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 845 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 846 } 847 848 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 849 Ops.push_back(Res); 850 851 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 852 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 853 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 854 MVT RegisterVT = RegVTs[Value]; 855 for (unsigned i = 0; i != NumRegs; ++i) { 856 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 857 unsigned TheReg = Regs[Reg++]; 858 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 859 860 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 861 // If we clobbered the stack pointer, MFI should know about it. 862 assert(DAG.getMachineFunction().getFrameInfo()-> 863 hasInlineAsmWithSPAdjust()); 864 } 865 } 866 } 867 } 868 869 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 870 const TargetLibraryInfo *li) { 871 AA = &aa; 872 GFI = gfi; 873 LibInfo = li; 874 DL = DAG.getTarget().getDataLayout(); 875 Context = DAG.getContext(); 876 LPadToCallSiteMap.clear(); 877 } 878 879 /// clear - Clear out the current SelectionDAG and the associated 880 /// state and prepare this SelectionDAGBuilder object to be used 881 /// for a new block. This doesn't clear out information about 882 /// additional blocks that are needed to complete switch lowering 883 /// or PHI node updating; that information is cleared out as it is 884 /// consumed. 885 void SelectionDAGBuilder::clear() { 886 NodeMap.clear(); 887 UnusedArgNodeMap.clear(); 888 PendingLoads.clear(); 889 PendingExports.clear(); 890 CurInst = nullptr; 891 HasTailCall = false; 892 SDNodeOrder = LowestSDNodeOrder; 893 StatepointLowering.clear(); 894 } 895 896 /// clearDanglingDebugInfo - Clear the dangling debug information 897 /// map. This function is separated from the clear so that debug 898 /// information that is dangling in a basic block can be properly 899 /// resolved in a different basic block. This allows the 900 /// SelectionDAG to resolve dangling debug information attached 901 /// to PHI nodes. 902 void SelectionDAGBuilder::clearDanglingDebugInfo() { 903 DanglingDebugInfoMap.clear(); 904 } 905 906 /// getRoot - Return the current virtual root of the Selection DAG, 907 /// flushing any PendingLoad items. This must be done before emitting 908 /// a store or any other node that may need to be ordered after any 909 /// prior load instructions. 910 /// 911 SDValue SelectionDAGBuilder::getRoot() { 912 if (PendingLoads.empty()) 913 return DAG.getRoot(); 914 915 if (PendingLoads.size() == 1) { 916 SDValue Root = PendingLoads[0]; 917 DAG.setRoot(Root); 918 PendingLoads.clear(); 919 return Root; 920 } 921 922 // Otherwise, we have to make a token factor node. 923 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 924 PendingLoads); 925 PendingLoads.clear(); 926 DAG.setRoot(Root); 927 return Root; 928 } 929 930 /// getControlRoot - Similar to getRoot, but instead of flushing all the 931 /// PendingLoad items, flush all the PendingExports items. It is necessary 932 /// to do this before emitting a terminator instruction. 933 /// 934 SDValue SelectionDAGBuilder::getControlRoot() { 935 SDValue Root = DAG.getRoot(); 936 937 if (PendingExports.empty()) 938 return Root; 939 940 // Turn all of the CopyToReg chains into one factored node. 941 if (Root.getOpcode() != ISD::EntryToken) { 942 unsigned i = 0, e = PendingExports.size(); 943 for (; i != e; ++i) { 944 assert(PendingExports[i].getNode()->getNumOperands() > 1); 945 if (PendingExports[i].getNode()->getOperand(0) == Root) 946 break; // Don't add the root if we already indirectly depend on it. 947 } 948 949 if (i == e) 950 PendingExports.push_back(Root); 951 } 952 953 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 954 PendingExports); 955 PendingExports.clear(); 956 DAG.setRoot(Root); 957 return Root; 958 } 959 960 void SelectionDAGBuilder::visit(const Instruction &I) { 961 // Set up outgoing PHI node register values before emitting the terminator. 962 if (isa<TerminatorInst>(&I)) 963 HandlePHINodesInSuccessorBlocks(I.getParent()); 964 965 ++SDNodeOrder; 966 967 CurInst = &I; 968 969 visit(I.getOpcode(), I); 970 971 if (!isa<TerminatorInst>(&I) && !HasTailCall) 972 CopyToExportRegsIfNeeded(&I); 973 974 CurInst = nullptr; 975 } 976 977 void SelectionDAGBuilder::visitPHI(const PHINode &) { 978 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 979 } 980 981 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 982 // Note: this doesn't use InstVisitor, because it has to work with 983 // ConstantExpr's in addition to instructions. 984 switch (Opcode) { 985 default: llvm_unreachable("Unknown instruction type encountered!"); 986 // Build the switch statement using the Instruction.def file. 987 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 988 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 989 #include "llvm/IR/Instruction.def" 990 } 991 } 992 993 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 994 // generate the debug data structures now that we've seen its definition. 995 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 996 SDValue Val) { 997 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 998 if (DDI.getDI()) { 999 const DbgValueInst *DI = DDI.getDI(); 1000 DebugLoc dl = DDI.getdl(); 1001 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1002 DILocalVariable *Variable = DI->getVariable(); 1003 DIExpression *Expr = DI->getExpression(); 1004 assert(Variable->isValidLocationForIntrinsic(dl) && 1005 "Expected inlined-at fields to agree"); 1006 uint64_t Offset = DI->getOffset(); 1007 // A dbg.value for an alloca is always indirect. 1008 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1009 SDDbgValue *SDV; 1010 if (Val.getNode()) { 1011 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 1012 Val)) { 1013 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1014 IsIndirect, Offset, dl, DbgSDNodeOrder); 1015 DAG.AddDbgValue(SDV, Val.getNode(), false); 1016 } 1017 } else 1018 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1019 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1020 } 1021 } 1022 1023 /// getCopyFromRegs - If there was virtual register allocated for the value V 1024 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1025 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1026 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1027 SDValue res; 1028 1029 if (It != FuncInfo.ValueMap.end()) { 1030 unsigned InReg = It->second; 1031 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1032 Ty); 1033 SDValue Chain = DAG.getEntryNode(); 1034 res = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1035 resolveDanglingDebugInfo(V, res); 1036 } 1037 1038 return res; 1039 } 1040 1041 /// getValue - Return an SDValue for the given Value. 1042 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1043 // If we already have an SDValue for this value, use it. It's important 1044 // to do this first, so that we don't create a CopyFromReg if we already 1045 // have a regular SDValue. 1046 SDValue &N = NodeMap[V]; 1047 if (N.getNode()) return N; 1048 1049 // If there's a virtual register allocated and initialized for this 1050 // value, use it. 1051 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 1052 if (copyFromReg.getNode()) { 1053 return copyFromReg; 1054 } 1055 1056 // Otherwise create a new SDValue and remember it. 1057 SDValue Val = getValueImpl(V); 1058 NodeMap[V] = Val; 1059 resolveDanglingDebugInfo(V, Val); 1060 return Val; 1061 } 1062 1063 // Return true if SDValue exists for the given Value 1064 bool SelectionDAGBuilder::findValue(const Value *V) const { 1065 return (NodeMap.find(V) != NodeMap.end()) || 1066 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1067 } 1068 1069 /// getNonRegisterValue - Return an SDValue for the given Value, but 1070 /// don't look in FuncInfo.ValueMap for a virtual register. 1071 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1072 // If we already have an SDValue for this value, use it. 1073 SDValue &N = NodeMap[V]; 1074 if (N.getNode()) return N; 1075 1076 // Otherwise create a new SDValue and remember it. 1077 SDValue Val = getValueImpl(V); 1078 NodeMap[V] = Val; 1079 resolveDanglingDebugInfo(V, Val); 1080 return Val; 1081 } 1082 1083 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1084 /// Create an SDValue for the given value. 1085 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1087 1088 if (const Constant *C = dyn_cast<Constant>(V)) { 1089 EVT VT = TLI.getValueType(V->getType(), true); 1090 1091 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1092 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1093 1094 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1095 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1096 1097 if (isa<ConstantPointerNull>(C)) { 1098 unsigned AS = V->getType()->getPointerAddressSpace(); 1099 return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(AS)); 1100 } 1101 1102 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1103 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1104 1105 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1106 return DAG.getUNDEF(VT); 1107 1108 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1109 visit(CE->getOpcode(), *CE); 1110 SDValue N1 = NodeMap[V]; 1111 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1112 return N1; 1113 } 1114 1115 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1116 SmallVector<SDValue, 4> Constants; 1117 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1118 OI != OE; ++OI) { 1119 SDNode *Val = getValue(*OI).getNode(); 1120 // If the operand is an empty aggregate, there are no values. 1121 if (!Val) continue; 1122 // Add each leaf value from the operand to the Constants list 1123 // to form a flattened list of all the values. 1124 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1125 Constants.push_back(SDValue(Val, i)); 1126 } 1127 1128 return DAG.getMergeValues(Constants, getCurSDLoc()); 1129 } 1130 1131 if (const ConstantDataSequential *CDS = 1132 dyn_cast<ConstantDataSequential>(C)) { 1133 SmallVector<SDValue, 4> Ops; 1134 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1135 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1136 // Add each leaf value from the operand to the Constants list 1137 // to form a flattened list of all the values. 1138 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1139 Ops.push_back(SDValue(Val, i)); 1140 } 1141 1142 if (isa<ArrayType>(CDS->getType())) 1143 return DAG.getMergeValues(Ops, getCurSDLoc()); 1144 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1145 VT, Ops); 1146 } 1147 1148 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1149 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1150 "Unknown struct or array constant!"); 1151 1152 SmallVector<EVT, 4> ValueVTs; 1153 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1154 unsigned NumElts = ValueVTs.size(); 1155 if (NumElts == 0) 1156 return SDValue(); // empty struct 1157 SmallVector<SDValue, 4> Constants(NumElts); 1158 for (unsigned i = 0; i != NumElts; ++i) { 1159 EVT EltVT = ValueVTs[i]; 1160 if (isa<UndefValue>(C)) 1161 Constants[i] = DAG.getUNDEF(EltVT); 1162 else if (EltVT.isFloatingPoint()) 1163 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1164 else 1165 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1166 } 1167 1168 return DAG.getMergeValues(Constants, getCurSDLoc()); 1169 } 1170 1171 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1172 return DAG.getBlockAddress(BA, VT); 1173 1174 VectorType *VecTy = cast<VectorType>(V->getType()); 1175 unsigned NumElements = VecTy->getNumElements(); 1176 1177 // Now that we know the number and type of the elements, get that number of 1178 // elements into the Ops array based on what kind of constant it is. 1179 SmallVector<SDValue, 16> Ops; 1180 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1181 for (unsigned i = 0; i != NumElements; ++i) 1182 Ops.push_back(getValue(CV->getOperand(i))); 1183 } else { 1184 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1185 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1186 1187 SDValue Op; 1188 if (EltVT.isFloatingPoint()) 1189 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1190 else 1191 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1192 Ops.assign(NumElements, Op); 1193 } 1194 1195 // Create a BUILD_VECTOR node. 1196 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1197 } 1198 1199 // If this is a static alloca, generate it as the frameindex instead of 1200 // computation. 1201 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1202 DenseMap<const AllocaInst*, int>::iterator SI = 1203 FuncInfo.StaticAllocaMap.find(AI); 1204 if (SI != FuncInfo.StaticAllocaMap.end()) 1205 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1206 } 1207 1208 // If this is an instruction which fast-isel has deferred, select it now. 1209 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1210 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1211 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1212 SDValue Chain = DAG.getEntryNode(); 1213 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1214 } 1215 1216 llvm_unreachable("Can't get register for value!"); 1217 } 1218 1219 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1220 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1221 SDValue Chain = getControlRoot(); 1222 SmallVector<ISD::OutputArg, 8> Outs; 1223 SmallVector<SDValue, 8> OutVals; 1224 1225 if (!FuncInfo.CanLowerReturn) { 1226 unsigned DemoteReg = FuncInfo.DemoteRegister; 1227 const Function *F = I.getParent()->getParent(); 1228 1229 // Emit a store of the return value through the virtual register. 1230 // Leave Outs empty so that LowerReturn won't try to load return 1231 // registers the usual way. 1232 SmallVector<EVT, 1> PtrValueVTs; 1233 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1234 PtrValueVTs); 1235 1236 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1237 SDValue RetOp = getValue(I.getOperand(0)); 1238 1239 SmallVector<EVT, 4> ValueVTs; 1240 SmallVector<uint64_t, 4> Offsets; 1241 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1242 unsigned NumValues = ValueVTs.size(); 1243 1244 SmallVector<SDValue, 4> Chains(NumValues); 1245 for (unsigned i = 0; i != NumValues; ++i) { 1246 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1247 RetPtr.getValueType(), RetPtr, 1248 DAG.getIntPtrConstant(Offsets[i], 1249 getCurSDLoc())); 1250 Chains[i] = 1251 DAG.getStore(Chain, getCurSDLoc(), 1252 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1253 // FIXME: better loc info would be nice. 1254 Add, MachinePointerInfo(), false, false, 0); 1255 } 1256 1257 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1258 MVT::Other, Chains); 1259 } else if (I.getNumOperands() != 0) { 1260 SmallVector<EVT, 4> ValueVTs; 1261 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1262 unsigned NumValues = ValueVTs.size(); 1263 if (NumValues) { 1264 SDValue RetOp = getValue(I.getOperand(0)); 1265 1266 const Function *F = I.getParent()->getParent(); 1267 1268 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1269 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1270 Attribute::SExt)) 1271 ExtendKind = ISD::SIGN_EXTEND; 1272 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1273 Attribute::ZExt)) 1274 ExtendKind = ISD::ZERO_EXTEND; 1275 1276 LLVMContext &Context = F->getContext(); 1277 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1278 Attribute::InReg); 1279 1280 for (unsigned j = 0; j != NumValues; ++j) { 1281 EVT VT = ValueVTs[j]; 1282 1283 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1284 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1285 1286 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1287 MVT PartVT = TLI.getRegisterType(Context, VT); 1288 SmallVector<SDValue, 4> Parts(NumParts); 1289 getCopyToParts(DAG, getCurSDLoc(), 1290 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1291 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1292 1293 // 'inreg' on function refers to return value 1294 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1295 if (RetInReg) 1296 Flags.setInReg(); 1297 1298 // Propagate extension type if any 1299 if (ExtendKind == ISD::SIGN_EXTEND) 1300 Flags.setSExt(); 1301 else if (ExtendKind == ISD::ZERO_EXTEND) 1302 Flags.setZExt(); 1303 1304 for (unsigned i = 0; i < NumParts; ++i) { 1305 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1306 VT, /*isfixed=*/true, 0, 0)); 1307 OutVals.push_back(Parts[i]); 1308 } 1309 } 1310 } 1311 } 1312 1313 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1314 CallingConv::ID CallConv = 1315 DAG.getMachineFunction().getFunction()->getCallingConv(); 1316 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1317 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1318 1319 // Verify that the target's LowerReturn behaved as expected. 1320 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1321 "LowerReturn didn't return a valid chain!"); 1322 1323 // Update the DAG with the new chain value resulting from return lowering. 1324 DAG.setRoot(Chain); 1325 } 1326 1327 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1328 /// created for it, emit nodes to copy the value into the virtual 1329 /// registers. 1330 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1331 // Skip empty types 1332 if (V->getType()->isEmptyTy()) 1333 return; 1334 1335 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1336 if (VMI != FuncInfo.ValueMap.end()) { 1337 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1338 CopyValueToVirtualRegister(V, VMI->second); 1339 } 1340 } 1341 1342 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1343 /// the current basic block, add it to ValueMap now so that we'll get a 1344 /// CopyTo/FromReg. 1345 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1346 // No need to export constants. 1347 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1348 1349 // Already exported? 1350 if (FuncInfo.isExportedInst(V)) return; 1351 1352 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1353 CopyValueToVirtualRegister(V, Reg); 1354 } 1355 1356 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1357 const BasicBlock *FromBB) { 1358 // The operands of the setcc have to be in this block. We don't know 1359 // how to export them from some other block. 1360 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1361 // Can export from current BB. 1362 if (VI->getParent() == FromBB) 1363 return true; 1364 1365 // Is already exported, noop. 1366 return FuncInfo.isExportedInst(V); 1367 } 1368 1369 // If this is an argument, we can export it if the BB is the entry block or 1370 // if it is already exported. 1371 if (isa<Argument>(V)) { 1372 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1373 return true; 1374 1375 // Otherwise, can only export this if it is already exported. 1376 return FuncInfo.isExportedInst(V); 1377 } 1378 1379 // Otherwise, constants can always be exported. 1380 return true; 1381 } 1382 1383 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1384 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1385 const MachineBasicBlock *Dst) const { 1386 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1387 if (!BPI) 1388 return 0; 1389 const BasicBlock *SrcBB = Src->getBasicBlock(); 1390 const BasicBlock *DstBB = Dst->getBasicBlock(); 1391 return BPI->getEdgeWeight(SrcBB, DstBB); 1392 } 1393 1394 void SelectionDAGBuilder:: 1395 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1396 uint32_t Weight /* = 0 */) { 1397 if (!Weight) 1398 Weight = getEdgeWeight(Src, Dst); 1399 Src->addSuccessor(Dst, Weight); 1400 } 1401 1402 1403 static bool InBlock(const Value *V, const BasicBlock *BB) { 1404 if (const Instruction *I = dyn_cast<Instruction>(V)) 1405 return I->getParent() == BB; 1406 return true; 1407 } 1408 1409 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1410 /// This function emits a branch and is used at the leaves of an OR or an 1411 /// AND operator tree. 1412 /// 1413 void 1414 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1415 MachineBasicBlock *TBB, 1416 MachineBasicBlock *FBB, 1417 MachineBasicBlock *CurBB, 1418 MachineBasicBlock *SwitchBB, 1419 uint32_t TWeight, 1420 uint32_t FWeight) { 1421 const BasicBlock *BB = CurBB->getBasicBlock(); 1422 1423 // If the leaf of the tree is a comparison, merge the condition into 1424 // the caseblock. 1425 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1426 // The operands of the cmp have to be in this block. We don't know 1427 // how to export them from some other block. If this is the first block 1428 // of the sequence, no exporting is needed. 1429 if (CurBB == SwitchBB || 1430 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1431 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1432 ISD::CondCode Condition; 1433 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1434 Condition = getICmpCondCode(IC->getPredicate()); 1435 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1436 Condition = getFCmpCondCode(FC->getPredicate()); 1437 if (TM.Options.NoNaNsFPMath) 1438 Condition = getFCmpCodeWithoutNaN(Condition); 1439 } else { 1440 (void)Condition; // silence warning. 1441 llvm_unreachable("Unknown compare instruction"); 1442 } 1443 1444 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1445 TBB, FBB, CurBB, TWeight, FWeight); 1446 SwitchCases.push_back(CB); 1447 return; 1448 } 1449 } 1450 1451 // Create a CaseBlock record representing this branch. 1452 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1453 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1454 SwitchCases.push_back(CB); 1455 } 1456 1457 /// Scale down both weights to fit into uint32_t. 1458 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1459 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1460 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1461 NewTrue = NewTrue / Scale; 1462 NewFalse = NewFalse / Scale; 1463 } 1464 1465 /// FindMergedConditions - If Cond is an expression like 1466 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1467 MachineBasicBlock *TBB, 1468 MachineBasicBlock *FBB, 1469 MachineBasicBlock *CurBB, 1470 MachineBasicBlock *SwitchBB, 1471 unsigned Opc, uint32_t TWeight, 1472 uint32_t FWeight) { 1473 // If this node is not part of the or/and tree, emit it as a branch. 1474 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1475 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1476 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1477 BOp->getParent() != CurBB->getBasicBlock() || 1478 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1479 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1480 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1481 TWeight, FWeight); 1482 return; 1483 } 1484 1485 // Create TmpBB after CurBB. 1486 MachineFunction::iterator BBI = CurBB; 1487 MachineFunction &MF = DAG.getMachineFunction(); 1488 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1489 CurBB->getParent()->insert(++BBI, TmpBB); 1490 1491 if (Opc == Instruction::Or) { 1492 // Codegen X | Y as: 1493 // BB1: 1494 // jmp_if_X TBB 1495 // jmp TmpBB 1496 // TmpBB: 1497 // jmp_if_Y TBB 1498 // jmp FBB 1499 // 1500 1501 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1502 // The requirement is that 1503 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1504 // = TrueProb for orignal BB. 1505 // Assuming the orignal weights are A and B, one choice is to set BB1's 1506 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1507 // assumes that 1508 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1509 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1510 // TmpBB, but the math is more complicated. 1511 1512 uint64_t NewTrueWeight = TWeight; 1513 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1514 ScaleWeights(NewTrueWeight, NewFalseWeight); 1515 // Emit the LHS condition. 1516 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1517 NewTrueWeight, NewFalseWeight); 1518 1519 NewTrueWeight = TWeight; 1520 NewFalseWeight = 2 * (uint64_t)FWeight; 1521 ScaleWeights(NewTrueWeight, NewFalseWeight); 1522 // Emit the RHS condition into TmpBB. 1523 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1524 NewTrueWeight, NewFalseWeight); 1525 } else { 1526 assert(Opc == Instruction::And && "Unknown merge op!"); 1527 // Codegen X & Y as: 1528 // BB1: 1529 // jmp_if_X TmpBB 1530 // jmp FBB 1531 // TmpBB: 1532 // jmp_if_Y TBB 1533 // jmp FBB 1534 // 1535 // This requires creation of TmpBB after CurBB. 1536 1537 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1538 // The requirement is that 1539 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1540 // = FalseProb for orignal BB. 1541 // Assuming the orignal weights are A and B, one choice is to set BB1's 1542 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1543 // assumes that 1544 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1545 1546 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1547 uint64_t NewFalseWeight = FWeight; 1548 ScaleWeights(NewTrueWeight, NewFalseWeight); 1549 // Emit the LHS condition. 1550 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1551 NewTrueWeight, NewFalseWeight); 1552 1553 NewTrueWeight = 2 * (uint64_t)TWeight; 1554 NewFalseWeight = FWeight; 1555 ScaleWeights(NewTrueWeight, NewFalseWeight); 1556 // Emit the RHS condition into TmpBB. 1557 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1558 NewTrueWeight, NewFalseWeight); 1559 } 1560 } 1561 1562 /// If the set of cases should be emitted as a series of branches, return true. 1563 /// If we should emit this as a bunch of and/or'd together conditions, return 1564 /// false. 1565 bool 1566 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1567 if (Cases.size() != 2) return true; 1568 1569 // If this is two comparisons of the same values or'd or and'd together, they 1570 // will get folded into a single comparison, so don't emit two blocks. 1571 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1572 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1573 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1574 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1575 return false; 1576 } 1577 1578 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1579 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1580 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1581 Cases[0].CC == Cases[1].CC && 1582 isa<Constant>(Cases[0].CmpRHS) && 1583 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1584 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1585 return false; 1586 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1587 return false; 1588 } 1589 1590 return true; 1591 } 1592 1593 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1594 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1595 1596 // Update machine-CFG edges. 1597 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1598 1599 if (I.isUnconditional()) { 1600 // Update machine-CFG edges. 1601 BrMBB->addSuccessor(Succ0MBB); 1602 1603 // If this is not a fall-through branch or optimizations are switched off, 1604 // emit the branch. 1605 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1606 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1607 MVT::Other, getControlRoot(), 1608 DAG.getBasicBlock(Succ0MBB))); 1609 1610 return; 1611 } 1612 1613 // If this condition is one of the special cases we handle, do special stuff 1614 // now. 1615 const Value *CondVal = I.getCondition(); 1616 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1617 1618 // If this is a series of conditions that are or'd or and'd together, emit 1619 // this as a sequence of branches instead of setcc's with and/or operations. 1620 // As long as jumps are not expensive, this should improve performance. 1621 // For example, instead of something like: 1622 // cmp A, B 1623 // C = seteq 1624 // cmp D, E 1625 // F = setle 1626 // or C, F 1627 // jnz foo 1628 // Emit: 1629 // cmp A, B 1630 // je foo 1631 // cmp D, E 1632 // jle foo 1633 // 1634 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1635 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1636 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1637 BOp->getOpcode() == Instruction::Or)) { 1638 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1639 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1640 getEdgeWeight(BrMBB, Succ1MBB)); 1641 // If the compares in later blocks need to use values not currently 1642 // exported from this block, export them now. This block should always 1643 // be the first entry. 1644 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1645 1646 // Allow some cases to be rejected. 1647 if (ShouldEmitAsBranches(SwitchCases)) { 1648 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1649 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1650 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1651 } 1652 1653 // Emit the branch for this block. 1654 visitSwitchCase(SwitchCases[0], BrMBB); 1655 SwitchCases.erase(SwitchCases.begin()); 1656 return; 1657 } 1658 1659 // Okay, we decided not to do this, remove any inserted MBB's and clear 1660 // SwitchCases. 1661 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1662 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1663 1664 SwitchCases.clear(); 1665 } 1666 } 1667 1668 // Create a CaseBlock record representing this branch. 1669 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1670 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1671 1672 // Use visitSwitchCase to actually insert the fast branch sequence for this 1673 // cond branch. 1674 visitSwitchCase(CB, BrMBB); 1675 } 1676 1677 /// visitSwitchCase - Emits the necessary code to represent a single node in 1678 /// the binary search tree resulting from lowering a switch instruction. 1679 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1680 MachineBasicBlock *SwitchBB) { 1681 SDValue Cond; 1682 SDValue CondLHS = getValue(CB.CmpLHS); 1683 SDLoc dl = getCurSDLoc(); 1684 1685 // Build the setcc now. 1686 if (!CB.CmpMHS) { 1687 // Fold "(X == true)" to X and "(X == false)" to !X to 1688 // handle common cases produced by branch lowering. 1689 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1690 CB.CC == ISD::SETEQ) 1691 Cond = CondLHS; 1692 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1693 CB.CC == ISD::SETEQ) { 1694 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1695 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1696 } else 1697 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1698 } else { 1699 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1700 1701 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1702 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1703 1704 SDValue CmpOp = getValue(CB.CmpMHS); 1705 EVT VT = CmpOp.getValueType(); 1706 1707 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1708 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1709 ISD::SETLE); 1710 } else { 1711 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1712 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1713 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1714 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1715 } 1716 } 1717 1718 // Update successor info 1719 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1720 // TrueBB and FalseBB are always different unless the incoming IR is 1721 // degenerate. This only happens when running llc on weird IR. 1722 if (CB.TrueBB != CB.FalseBB) 1723 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1724 1725 // If the lhs block is the next block, invert the condition so that we can 1726 // fall through to the lhs instead of the rhs block. 1727 if (CB.TrueBB == NextBlock(SwitchBB)) { 1728 std::swap(CB.TrueBB, CB.FalseBB); 1729 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1730 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1731 } 1732 1733 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1734 MVT::Other, getControlRoot(), Cond, 1735 DAG.getBasicBlock(CB.TrueBB)); 1736 1737 // Insert the false branch. Do this even if it's a fall through branch, 1738 // this makes it easier to do DAG optimizations which require inverting 1739 // the branch condition. 1740 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1741 DAG.getBasicBlock(CB.FalseBB)); 1742 1743 DAG.setRoot(BrCond); 1744 } 1745 1746 /// visitJumpTable - Emit JumpTable node in the current MBB 1747 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1748 // Emit the code for the jump table 1749 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1750 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1751 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1752 JT.Reg, PTy); 1753 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1754 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1755 MVT::Other, Index.getValue(1), 1756 Table, Index); 1757 DAG.setRoot(BrJumpTable); 1758 } 1759 1760 /// visitJumpTableHeader - This function emits necessary code to produce index 1761 /// in the JumpTable from switch case. 1762 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1763 JumpTableHeader &JTH, 1764 MachineBasicBlock *SwitchBB) { 1765 SDLoc dl = getCurSDLoc(); 1766 1767 // Subtract the lowest switch case value from the value being switched on and 1768 // conditional branch to default mbb if the result is greater than the 1769 // difference between smallest and largest cases. 1770 SDValue SwitchOp = getValue(JTH.SValue); 1771 EVT VT = SwitchOp.getValueType(); 1772 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1773 DAG.getConstant(JTH.First, dl, VT)); 1774 1775 // The SDNode we just created, which holds the value being switched on minus 1776 // the smallest case value, needs to be copied to a virtual register so it 1777 // can be used as an index into the jump table in a subsequent basic block. 1778 // This value may be smaller or larger than the target's pointer type, and 1779 // therefore require extension or truncating. 1780 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1781 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy()); 1782 1783 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1784 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1785 JumpTableReg, SwitchOp); 1786 JT.Reg = JumpTableReg; 1787 1788 // Emit the range check for the jump table, and branch to the default block 1789 // for the switch statement if the value being switched on exceeds the largest 1790 // case in the switch. 1791 SDValue CMP = 1792 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1793 Sub.getValueType()), 1794 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), 1795 ISD::SETUGT); 1796 1797 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1798 MVT::Other, CopyTo, CMP, 1799 DAG.getBasicBlock(JT.Default)); 1800 1801 // Avoid emitting unnecessary branches to the next block. 1802 if (JT.MBB != NextBlock(SwitchBB)) 1803 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1804 DAG.getBasicBlock(JT.MBB)); 1805 1806 DAG.setRoot(BrCond); 1807 } 1808 1809 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1810 /// tail spliced into a stack protector check success bb. 1811 /// 1812 /// For a high level explanation of how this fits into the stack protector 1813 /// generation see the comment on the declaration of class 1814 /// StackProtectorDescriptor. 1815 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1816 MachineBasicBlock *ParentBB) { 1817 1818 // First create the loads to the guard/stack slot for the comparison. 1819 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1820 EVT PtrTy = TLI.getPointerTy(); 1821 1822 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1823 int FI = MFI->getStackProtectorIndex(); 1824 1825 const Value *IRGuard = SPD.getGuard(); 1826 SDValue GuardPtr = getValue(IRGuard); 1827 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1828 1829 unsigned Align = 1830 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1831 1832 SDValue Guard; 1833 SDLoc dl = getCurSDLoc(); 1834 1835 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1836 // guard value from the virtual register holding the value. Otherwise, emit a 1837 // volatile load to retrieve the stack guard value. 1838 unsigned GuardReg = SPD.getGuardReg(); 1839 1840 if (GuardReg && TLI.useLoadStackGuardNode()) 1841 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1842 PtrTy); 1843 else 1844 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1845 GuardPtr, MachinePointerInfo(IRGuard, 0), 1846 true, false, false, Align); 1847 1848 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1849 StackSlotPtr, 1850 MachinePointerInfo::getFixedStack(FI), 1851 true, false, false, Align); 1852 1853 // Perform the comparison via a subtract/getsetcc. 1854 EVT VT = Guard.getValueType(); 1855 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1856 1857 SDValue Cmp = 1858 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1859 Sub.getValueType()), 1860 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1861 1862 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1863 // branch to failure MBB. 1864 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1865 MVT::Other, StackSlot.getOperand(0), 1866 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1867 // Otherwise branch to success MBB. 1868 SDValue Br = DAG.getNode(ISD::BR, dl, 1869 MVT::Other, BrCond, 1870 DAG.getBasicBlock(SPD.getSuccessMBB())); 1871 1872 DAG.setRoot(Br); 1873 } 1874 1875 /// Codegen the failure basic block for a stack protector check. 1876 /// 1877 /// A failure stack protector machine basic block consists simply of a call to 1878 /// __stack_chk_fail(). 1879 /// 1880 /// For a high level explanation of how this fits into the stack protector 1881 /// generation see the comment on the declaration of class 1882 /// StackProtectorDescriptor. 1883 void 1884 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1886 SDValue Chain = 1887 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1888 nullptr, 0, false, getCurSDLoc(), false, false).second; 1889 DAG.setRoot(Chain); 1890 } 1891 1892 /// visitBitTestHeader - This function emits necessary code to produce value 1893 /// suitable for "bit tests" 1894 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1895 MachineBasicBlock *SwitchBB) { 1896 SDLoc dl = getCurSDLoc(); 1897 1898 // Subtract the minimum value 1899 SDValue SwitchOp = getValue(B.SValue); 1900 EVT VT = SwitchOp.getValueType(); 1901 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1902 DAG.getConstant(B.First, dl, VT)); 1903 1904 // Check range 1905 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1906 SDValue RangeCmp = 1907 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1908 Sub.getValueType()), 1909 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1910 1911 // Determine the type of the test operands. 1912 bool UsePtrType = false; 1913 if (!TLI.isTypeLegal(VT)) 1914 UsePtrType = true; 1915 else { 1916 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1917 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1918 // Switch table case range are encoded into series of masks. 1919 // Just use pointer type, it's guaranteed to fit. 1920 UsePtrType = true; 1921 break; 1922 } 1923 } 1924 if (UsePtrType) { 1925 VT = TLI.getPointerTy(); 1926 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1927 } 1928 1929 B.RegVT = VT.getSimpleVT(); 1930 B.Reg = FuncInfo.CreateReg(B.RegVT); 1931 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1932 1933 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1934 1935 addSuccessorWithWeight(SwitchBB, B.Default); 1936 addSuccessorWithWeight(SwitchBB, MBB); 1937 1938 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1939 MVT::Other, CopyTo, RangeCmp, 1940 DAG.getBasicBlock(B.Default)); 1941 1942 // Avoid emitting unnecessary branches to the next block. 1943 if (MBB != NextBlock(SwitchBB)) 1944 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1945 DAG.getBasicBlock(MBB)); 1946 1947 DAG.setRoot(BrRange); 1948 } 1949 1950 /// visitBitTestCase - this function produces one "bit test" 1951 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1952 MachineBasicBlock* NextMBB, 1953 uint32_t BranchWeightToNext, 1954 unsigned Reg, 1955 BitTestCase &B, 1956 MachineBasicBlock *SwitchBB) { 1957 SDLoc dl = getCurSDLoc(); 1958 MVT VT = BB.RegVT; 1959 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1960 SDValue Cmp; 1961 unsigned PopCount = countPopulation(B.Mask); 1962 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1963 if (PopCount == 1) { 1964 // Testing for a single bit; just compare the shift count with what it 1965 // would need to be to shift a 1 bit in that position. 1966 Cmp = DAG.getSetCC( 1967 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1968 DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ); 1969 } else if (PopCount == BB.Range) { 1970 // There is only one zero bit in the range, test for it directly. 1971 Cmp = DAG.getSetCC( 1972 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1973 DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE); 1974 } else { 1975 // Make desired shift 1976 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1977 DAG.getConstant(1, dl, VT), ShiftOp); 1978 1979 // Emit bit tests and jumps 1980 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1981 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1982 Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1983 DAG.getConstant(0, dl, VT), ISD::SETNE); 1984 } 1985 1986 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1987 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1988 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1989 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1990 1991 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1992 MVT::Other, getControlRoot(), 1993 Cmp, DAG.getBasicBlock(B.TargetBB)); 1994 1995 // Avoid emitting unnecessary branches to the next block. 1996 if (NextMBB != NextBlock(SwitchBB)) 1997 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1998 DAG.getBasicBlock(NextMBB)); 1999 2000 DAG.setRoot(BrAnd); 2001 } 2002 2003 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2004 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2005 2006 // Retrieve successors. 2007 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2008 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2009 2010 const Value *Callee(I.getCalledValue()); 2011 const Function *Fn = dyn_cast<Function>(Callee); 2012 if (isa<InlineAsm>(Callee)) 2013 visitInlineAsm(&I); 2014 else if (Fn && Fn->isIntrinsic()) { 2015 switch (Fn->getIntrinsicID()) { 2016 default: 2017 llvm_unreachable("Cannot invoke this intrinsic"); 2018 case Intrinsic::donothing: 2019 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2020 break; 2021 case Intrinsic::experimental_patchpoint_void: 2022 case Intrinsic::experimental_patchpoint_i64: 2023 visitPatchpoint(&I, LandingPad); 2024 break; 2025 case Intrinsic::experimental_gc_statepoint: 2026 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 2027 break; 2028 } 2029 } else 2030 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2031 2032 // If the value of the invoke is used outside of its defining block, make it 2033 // available as a virtual register. 2034 // We already took care of the exported value for the statepoint instruction 2035 // during call to the LowerStatepoint. 2036 if (!isStatepoint(I)) { 2037 CopyToExportRegsIfNeeded(&I); 2038 } 2039 2040 // Update successor info 2041 addSuccessorWithWeight(InvokeMBB, Return); 2042 addSuccessorWithWeight(InvokeMBB, LandingPad); 2043 2044 // Drop into normal successor. 2045 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2046 MVT::Other, getControlRoot(), 2047 DAG.getBasicBlock(Return))); 2048 } 2049 2050 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2051 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2052 } 2053 2054 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2055 assert(FuncInfo.MBB->isLandingPad() && 2056 "Call to landingpad not in landing pad!"); 2057 2058 MachineBasicBlock *MBB = FuncInfo.MBB; 2059 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2060 AddLandingPadInfo(LP, MMI, MBB); 2061 2062 // If there aren't registers to copy the values into (e.g., during SjLj 2063 // exceptions), then don't bother to create these DAG nodes. 2064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2065 if (TLI.getExceptionPointerRegister() == 0 && 2066 TLI.getExceptionSelectorRegister() == 0) 2067 return; 2068 2069 SmallVector<EVT, 2> ValueVTs; 2070 SDLoc dl = getCurSDLoc(); 2071 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2072 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2073 2074 // Get the two live-in registers as SDValues. The physregs have already been 2075 // copied into virtual registers. 2076 SDValue Ops[2]; 2077 if (FuncInfo.ExceptionPointerVirtReg) { 2078 Ops[0] = DAG.getZExtOrTrunc( 2079 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2080 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2081 dl, ValueVTs[0]); 2082 } else { 2083 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy()); 2084 } 2085 Ops[1] = DAG.getZExtOrTrunc( 2086 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2087 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2088 dl, ValueVTs[1]); 2089 2090 // Merge into one. 2091 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2092 DAG.getVTList(ValueVTs), Ops); 2093 setValue(&LP, Res); 2094 } 2095 2096 unsigned 2097 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2098 MachineBasicBlock *LPadBB) { 2099 SDValue Chain = getControlRoot(); 2100 SDLoc dl = getCurSDLoc(); 2101 2102 // Get the typeid that we will dispatch on later. 2103 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2104 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2105 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2106 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2107 SDValue Sel = DAG.getConstant(TypeID, dl, TLI.getPointerTy()); 2108 Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel); 2109 2110 // Branch to the main landing pad block. 2111 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2112 ClauseMBB->addSuccessor(LPadBB); 2113 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain, 2114 DAG.getBasicBlock(LPadBB))); 2115 return VReg; 2116 } 2117 2118 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2119 #ifndef NDEBUG 2120 for (const CaseCluster &CC : Clusters) 2121 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2122 #endif 2123 2124 std::sort(Clusters.begin(), Clusters.end(), 2125 [](const CaseCluster &a, const CaseCluster &b) { 2126 return a.Low->getValue().slt(b.Low->getValue()); 2127 }); 2128 2129 // Merge adjacent clusters with the same destination. 2130 const unsigned N = Clusters.size(); 2131 unsigned DstIndex = 0; 2132 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2133 CaseCluster &CC = Clusters[SrcIndex]; 2134 const ConstantInt *CaseVal = CC.Low; 2135 MachineBasicBlock *Succ = CC.MBB; 2136 2137 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2138 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2139 // If this case has the same successor and is a neighbour, merge it into 2140 // the previous cluster. 2141 Clusters[DstIndex - 1].High = CaseVal; 2142 Clusters[DstIndex - 1].Weight += CC.Weight; 2143 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2144 } else { 2145 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2146 sizeof(Clusters[SrcIndex])); 2147 } 2148 } 2149 Clusters.resize(DstIndex); 2150 } 2151 2152 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2153 MachineBasicBlock *Last) { 2154 // Update JTCases. 2155 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2156 if (JTCases[i].first.HeaderBB == First) 2157 JTCases[i].first.HeaderBB = Last; 2158 2159 // Update BitTestCases. 2160 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2161 if (BitTestCases[i].Parent == First) 2162 BitTestCases[i].Parent = Last; 2163 } 2164 2165 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2166 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2167 2168 // Update machine-CFG edges with unique successors. 2169 SmallSet<BasicBlock*, 32> Done; 2170 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2171 BasicBlock *BB = I.getSuccessor(i); 2172 bool Inserted = Done.insert(BB).second; 2173 if (!Inserted) 2174 continue; 2175 2176 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2177 addSuccessorWithWeight(IndirectBrMBB, Succ); 2178 } 2179 2180 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2181 MVT::Other, getControlRoot(), 2182 getValue(I.getAddress()))); 2183 } 2184 2185 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2186 if (DAG.getTarget().Options.TrapUnreachable) 2187 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2188 } 2189 2190 void SelectionDAGBuilder::visitFSub(const User &I) { 2191 // -0.0 - X --> fneg 2192 Type *Ty = I.getType(); 2193 if (isa<Constant>(I.getOperand(0)) && 2194 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2195 SDValue Op2 = getValue(I.getOperand(1)); 2196 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2197 Op2.getValueType(), Op2)); 2198 return; 2199 } 2200 2201 visitBinary(I, ISD::FSUB); 2202 } 2203 2204 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2205 SDValue Op1 = getValue(I.getOperand(0)); 2206 SDValue Op2 = getValue(I.getOperand(1)); 2207 2208 bool nuw = false; 2209 bool nsw = false; 2210 bool exact = false; 2211 if (const OverflowingBinaryOperator *OFBinOp = 2212 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2213 nuw = OFBinOp->hasNoUnsignedWrap(); 2214 nsw = OFBinOp->hasNoSignedWrap(); 2215 } 2216 if (const PossiblyExactOperator *ExactOp = 2217 dyn_cast<const PossiblyExactOperator>(&I)) 2218 exact = ExactOp->isExact(); 2219 2220 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2221 Op1, Op2, nuw, nsw, exact); 2222 setValue(&I, BinNodeValue); 2223 } 2224 2225 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2226 SDValue Op1 = getValue(I.getOperand(0)); 2227 SDValue Op2 = getValue(I.getOperand(1)); 2228 2229 EVT ShiftTy = 2230 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2231 2232 // Coerce the shift amount to the right type if we can. 2233 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2234 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2235 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2236 SDLoc DL = getCurSDLoc(); 2237 2238 // If the operand is smaller than the shift count type, promote it. 2239 if (ShiftSize > Op2Size) 2240 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2241 2242 // If the operand is larger than the shift count type but the shift 2243 // count type has enough bits to represent any shift value, truncate 2244 // it now. This is a common case and it exposes the truncate to 2245 // optimization early. 2246 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2247 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2248 // Otherwise we'll need to temporarily settle for some other convenient 2249 // type. Type legalization will make adjustments once the shiftee is split. 2250 else 2251 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2252 } 2253 2254 bool nuw = false; 2255 bool nsw = false; 2256 bool exact = false; 2257 2258 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2259 2260 if (const OverflowingBinaryOperator *OFBinOp = 2261 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2262 nuw = OFBinOp->hasNoUnsignedWrap(); 2263 nsw = OFBinOp->hasNoSignedWrap(); 2264 } 2265 if (const PossiblyExactOperator *ExactOp = 2266 dyn_cast<const PossiblyExactOperator>(&I)) 2267 exact = ExactOp->isExact(); 2268 } 2269 2270 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2271 nuw, nsw, exact); 2272 setValue(&I, Res); 2273 } 2274 2275 void SelectionDAGBuilder::visitSDiv(const User &I) { 2276 SDValue Op1 = getValue(I.getOperand(0)); 2277 SDValue Op2 = getValue(I.getOperand(1)); 2278 2279 // Turn exact SDivs into multiplications. 2280 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2281 // exact bit. 2282 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2283 !isa<ConstantSDNode>(Op1) && 2284 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2285 setValue(&I, DAG.getTargetLoweringInfo() 2286 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2287 else 2288 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2289 Op1, Op2)); 2290 } 2291 2292 void SelectionDAGBuilder::visitICmp(const User &I) { 2293 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2294 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2295 predicate = IC->getPredicate(); 2296 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2297 predicate = ICmpInst::Predicate(IC->getPredicate()); 2298 SDValue Op1 = getValue(I.getOperand(0)); 2299 SDValue Op2 = getValue(I.getOperand(1)); 2300 ISD::CondCode Opcode = getICmpCondCode(predicate); 2301 2302 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2303 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2304 } 2305 2306 void SelectionDAGBuilder::visitFCmp(const User &I) { 2307 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2308 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2309 predicate = FC->getPredicate(); 2310 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2311 predicate = FCmpInst::Predicate(FC->getPredicate()); 2312 SDValue Op1 = getValue(I.getOperand(0)); 2313 SDValue Op2 = getValue(I.getOperand(1)); 2314 ISD::CondCode Condition = getFCmpCondCode(predicate); 2315 if (TM.Options.NoNaNsFPMath) 2316 Condition = getFCmpCodeWithoutNaN(Condition); 2317 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2318 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2319 } 2320 2321 void SelectionDAGBuilder::visitSelect(const User &I) { 2322 SmallVector<EVT, 4> ValueVTs; 2323 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2324 unsigned NumValues = ValueVTs.size(); 2325 if (NumValues == 0) return; 2326 2327 SmallVector<SDValue, 4> Values(NumValues); 2328 SDValue Cond = getValue(I.getOperand(0)); 2329 SDValue TrueVal = getValue(I.getOperand(1)); 2330 SDValue FalseVal = getValue(I.getOperand(2)); 2331 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2332 ISD::VSELECT : ISD::SELECT; 2333 2334 for (unsigned i = 0; i != NumValues; ++i) 2335 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2336 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2337 Cond, 2338 SDValue(TrueVal.getNode(), 2339 TrueVal.getResNo() + i), 2340 SDValue(FalseVal.getNode(), 2341 FalseVal.getResNo() + i)); 2342 2343 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2344 DAG.getVTList(ValueVTs), Values)); 2345 } 2346 2347 void SelectionDAGBuilder::visitTrunc(const User &I) { 2348 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2349 SDValue N = getValue(I.getOperand(0)); 2350 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2351 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2352 } 2353 2354 void SelectionDAGBuilder::visitZExt(const User &I) { 2355 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2356 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2357 SDValue N = getValue(I.getOperand(0)); 2358 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2359 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2360 } 2361 2362 void SelectionDAGBuilder::visitSExt(const User &I) { 2363 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2364 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2365 SDValue N = getValue(I.getOperand(0)); 2366 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2367 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2368 } 2369 2370 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2371 // FPTrunc is never a no-op cast, no need to check 2372 SDValue N = getValue(I.getOperand(0)); 2373 SDLoc dl = getCurSDLoc(); 2374 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2375 EVT DestVT = TLI.getValueType(I.getType()); 2376 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2377 DAG.getTargetConstant(0, dl, TLI.getPointerTy()))); 2378 } 2379 2380 void SelectionDAGBuilder::visitFPExt(const User &I) { 2381 // FPExt is never a no-op cast, no need to check 2382 SDValue N = getValue(I.getOperand(0)); 2383 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2384 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2385 } 2386 2387 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2388 // FPToUI is never a no-op cast, no need to check 2389 SDValue N = getValue(I.getOperand(0)); 2390 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2391 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2392 } 2393 2394 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2395 // FPToSI is never a no-op cast, no need to check 2396 SDValue N = getValue(I.getOperand(0)); 2397 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2398 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2399 } 2400 2401 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2402 // UIToFP is never a no-op cast, no need to check 2403 SDValue N = getValue(I.getOperand(0)); 2404 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2405 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2406 } 2407 2408 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2409 // SIToFP is never a no-op cast, no need to check 2410 SDValue N = getValue(I.getOperand(0)); 2411 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2412 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2413 } 2414 2415 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2416 // What to do depends on the size of the integer and the size of the pointer. 2417 // We can either truncate, zero extend, or no-op, accordingly. 2418 SDValue N = getValue(I.getOperand(0)); 2419 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2420 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2421 } 2422 2423 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2424 // What to do depends on the size of the integer and the size of the pointer. 2425 // We can either truncate, zero extend, or no-op, accordingly. 2426 SDValue N = getValue(I.getOperand(0)); 2427 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2428 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2429 } 2430 2431 void SelectionDAGBuilder::visitBitCast(const User &I) { 2432 SDValue N = getValue(I.getOperand(0)); 2433 SDLoc dl = getCurSDLoc(); 2434 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2435 2436 // BitCast assures us that source and destination are the same size so this is 2437 // either a BITCAST or a no-op. 2438 if (DestVT != N.getValueType()) 2439 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2440 DestVT, N)); // convert types. 2441 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2442 // might fold any kind of constant expression to an integer constant and that 2443 // is not what we are looking for. Only regcognize a bitcast of a genuine 2444 // constant integer as an opaque constant. 2445 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2446 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2447 /*isOpaque*/true)); 2448 else 2449 setValue(&I, N); // noop cast. 2450 } 2451 2452 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2453 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2454 const Value *SV = I.getOperand(0); 2455 SDValue N = getValue(SV); 2456 EVT DestVT = TLI.getValueType(I.getType()); 2457 2458 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2459 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2460 2461 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2462 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2463 2464 setValue(&I, N); 2465 } 2466 2467 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2468 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2469 SDValue InVec = getValue(I.getOperand(0)); 2470 SDValue InVal = getValue(I.getOperand(1)); 2471 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2472 getCurSDLoc(), TLI.getVectorIdxTy()); 2473 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2474 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 2475 } 2476 2477 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2479 SDValue InVec = getValue(I.getOperand(0)); 2480 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2481 getCurSDLoc(), TLI.getVectorIdxTy()); 2482 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2483 TLI.getValueType(I.getType()), InVec, InIdx)); 2484 } 2485 2486 // Utility for visitShuffleVector - Return true if every element in Mask, 2487 // beginning from position Pos and ending in Pos+Size, falls within the 2488 // specified sequential range [L, L+Pos). or is undef. 2489 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2490 unsigned Pos, unsigned Size, int Low) { 2491 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2492 if (Mask[i] >= 0 && Mask[i] != Low) 2493 return false; 2494 return true; 2495 } 2496 2497 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2498 SDValue Src1 = getValue(I.getOperand(0)); 2499 SDValue Src2 = getValue(I.getOperand(1)); 2500 2501 SmallVector<int, 8> Mask; 2502 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2503 unsigned MaskNumElts = Mask.size(); 2504 2505 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2506 EVT VT = TLI.getValueType(I.getType()); 2507 EVT SrcVT = Src1.getValueType(); 2508 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2509 2510 if (SrcNumElts == MaskNumElts) { 2511 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2512 &Mask[0])); 2513 return; 2514 } 2515 2516 // Normalize the shuffle vector since mask and vector length don't match. 2517 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2518 // Mask is longer than the source vectors and is a multiple of the source 2519 // vectors. We can use concatenate vector to make the mask and vectors 2520 // lengths match. 2521 if (SrcNumElts*2 == MaskNumElts) { 2522 // First check for Src1 in low and Src2 in high 2523 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2524 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2525 // The shuffle is concatenating two vectors together. 2526 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2527 VT, Src1, Src2)); 2528 return; 2529 } 2530 // Then check for Src2 in low and Src1 in high 2531 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2532 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2533 // The shuffle is concatenating two vectors together. 2534 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2535 VT, Src2, Src1)); 2536 return; 2537 } 2538 } 2539 2540 // Pad both vectors with undefs to make them the same length as the mask. 2541 unsigned NumConcat = MaskNumElts / SrcNumElts; 2542 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2543 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2544 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2545 2546 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2547 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2548 MOps1[0] = Src1; 2549 MOps2[0] = Src2; 2550 2551 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2552 getCurSDLoc(), VT, MOps1); 2553 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2554 getCurSDLoc(), VT, MOps2); 2555 2556 // Readjust mask for new input vector length. 2557 SmallVector<int, 8> MappedOps; 2558 for (unsigned i = 0; i != MaskNumElts; ++i) { 2559 int Idx = Mask[i]; 2560 if (Idx >= (int)SrcNumElts) 2561 Idx -= SrcNumElts - MaskNumElts; 2562 MappedOps.push_back(Idx); 2563 } 2564 2565 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2566 &MappedOps[0])); 2567 return; 2568 } 2569 2570 if (SrcNumElts > MaskNumElts) { 2571 // Analyze the access pattern of the vector to see if we can extract 2572 // two subvectors and do the shuffle. The analysis is done by calculating 2573 // the range of elements the mask access on both vectors. 2574 int MinRange[2] = { static_cast<int>(SrcNumElts), 2575 static_cast<int>(SrcNumElts)}; 2576 int MaxRange[2] = {-1, -1}; 2577 2578 for (unsigned i = 0; i != MaskNumElts; ++i) { 2579 int Idx = Mask[i]; 2580 unsigned Input = 0; 2581 if (Idx < 0) 2582 continue; 2583 2584 if (Idx >= (int)SrcNumElts) { 2585 Input = 1; 2586 Idx -= SrcNumElts; 2587 } 2588 if (Idx > MaxRange[Input]) 2589 MaxRange[Input] = Idx; 2590 if (Idx < MinRange[Input]) 2591 MinRange[Input] = Idx; 2592 } 2593 2594 // Check if the access is smaller than the vector size and can we find 2595 // a reasonable extract index. 2596 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2597 // Extract. 2598 int StartIdx[2]; // StartIdx to extract from 2599 for (unsigned Input = 0; Input < 2; ++Input) { 2600 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2601 RangeUse[Input] = 0; // Unused 2602 StartIdx[Input] = 0; 2603 continue; 2604 } 2605 2606 // Find a good start index that is a multiple of the mask length. Then 2607 // see if the rest of the elements are in range. 2608 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2609 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2610 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2611 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2612 } 2613 2614 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2615 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2616 return; 2617 } 2618 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2619 // Extract appropriate subvector and generate a vector shuffle 2620 for (unsigned Input = 0; Input < 2; ++Input) { 2621 SDValue &Src = Input == 0 ? Src1 : Src2; 2622 if (RangeUse[Input] == 0) 2623 Src = DAG.getUNDEF(VT); 2624 else { 2625 SDLoc dl = getCurSDLoc(); 2626 Src = DAG.getNode( 2627 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2628 DAG.getConstant(StartIdx[Input], dl, TLI.getVectorIdxTy())); 2629 } 2630 } 2631 2632 // Calculate new mask. 2633 SmallVector<int, 8> MappedOps; 2634 for (unsigned i = 0; i != MaskNumElts; ++i) { 2635 int Idx = Mask[i]; 2636 if (Idx >= 0) { 2637 if (Idx < (int)SrcNumElts) 2638 Idx -= StartIdx[0]; 2639 else 2640 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2641 } 2642 MappedOps.push_back(Idx); 2643 } 2644 2645 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2646 &MappedOps[0])); 2647 return; 2648 } 2649 } 2650 2651 // We can't use either concat vectors or extract subvectors so fall back to 2652 // replacing the shuffle with extract and build vector. 2653 // to insert and build vector. 2654 EVT EltVT = VT.getVectorElementType(); 2655 EVT IdxVT = TLI.getVectorIdxTy(); 2656 SDLoc dl = getCurSDLoc(); 2657 SmallVector<SDValue,8> Ops; 2658 for (unsigned i = 0; i != MaskNumElts; ++i) { 2659 int Idx = Mask[i]; 2660 SDValue Res; 2661 2662 if (Idx < 0) { 2663 Res = DAG.getUNDEF(EltVT); 2664 } else { 2665 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2666 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2667 2668 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2669 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2670 } 2671 2672 Ops.push_back(Res); 2673 } 2674 2675 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2676 } 2677 2678 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2679 const Value *Op0 = I.getOperand(0); 2680 const Value *Op1 = I.getOperand(1); 2681 Type *AggTy = I.getType(); 2682 Type *ValTy = Op1->getType(); 2683 bool IntoUndef = isa<UndefValue>(Op0); 2684 bool FromUndef = isa<UndefValue>(Op1); 2685 2686 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2687 2688 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2689 SmallVector<EVT, 4> AggValueVTs; 2690 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2691 SmallVector<EVT, 4> ValValueVTs; 2692 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2693 2694 unsigned NumAggValues = AggValueVTs.size(); 2695 unsigned NumValValues = ValValueVTs.size(); 2696 SmallVector<SDValue, 4> Values(NumAggValues); 2697 2698 // Ignore an insertvalue that produces an empty object 2699 if (!NumAggValues) { 2700 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2701 return; 2702 } 2703 2704 SDValue Agg = getValue(Op0); 2705 unsigned i = 0; 2706 // Copy the beginning value(s) from the original aggregate. 2707 for (; i != LinearIndex; ++i) 2708 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2709 SDValue(Agg.getNode(), Agg.getResNo() + i); 2710 // Copy values from the inserted value(s). 2711 if (NumValValues) { 2712 SDValue Val = getValue(Op1); 2713 for (; i != LinearIndex + NumValValues; ++i) 2714 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2715 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2716 } 2717 // Copy remaining value(s) from the original aggregate. 2718 for (; i != NumAggValues; ++i) 2719 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2720 SDValue(Agg.getNode(), Agg.getResNo() + i); 2721 2722 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2723 DAG.getVTList(AggValueVTs), Values)); 2724 } 2725 2726 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2727 const Value *Op0 = I.getOperand(0); 2728 Type *AggTy = Op0->getType(); 2729 Type *ValTy = I.getType(); 2730 bool OutOfUndef = isa<UndefValue>(Op0); 2731 2732 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2733 2734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2735 SmallVector<EVT, 4> ValValueVTs; 2736 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2737 2738 unsigned NumValValues = ValValueVTs.size(); 2739 2740 // Ignore a extractvalue that produces an empty object 2741 if (!NumValValues) { 2742 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2743 return; 2744 } 2745 2746 SmallVector<SDValue, 4> Values(NumValValues); 2747 2748 SDValue Agg = getValue(Op0); 2749 // Copy out the selected value(s). 2750 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2751 Values[i - LinearIndex] = 2752 OutOfUndef ? 2753 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2754 SDValue(Agg.getNode(), Agg.getResNo() + i); 2755 2756 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2757 DAG.getVTList(ValValueVTs), Values)); 2758 } 2759 2760 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2761 Value *Op0 = I.getOperand(0); 2762 // Note that the pointer operand may be a vector of pointers. Take the scalar 2763 // element which holds a pointer. 2764 Type *Ty = Op0->getType()->getScalarType(); 2765 unsigned AS = Ty->getPointerAddressSpace(); 2766 SDValue N = getValue(Op0); 2767 SDLoc dl = getCurSDLoc(); 2768 2769 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2770 OI != E; ++OI) { 2771 const Value *Idx = *OI; 2772 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2773 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2774 if (Field) { 2775 // N = N + Offset 2776 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2777 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2778 DAG.getConstant(Offset, dl, N.getValueType())); 2779 } 2780 2781 Ty = StTy->getElementType(Field); 2782 } else { 2783 Ty = cast<SequentialType>(Ty)->getElementType(); 2784 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 2785 unsigned PtrSize = PtrTy.getSizeInBits(); 2786 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2787 2788 // If this is a constant subscript, handle it quickly. 2789 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 2790 if (CI->isZero()) 2791 continue; 2792 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2793 SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy); 2794 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2795 continue; 2796 } 2797 2798 // N = N + Idx * ElementSize; 2799 SDValue IdxN = getValue(Idx); 2800 2801 // If the index is smaller or larger than intptr_t, truncate or extend 2802 // it. 2803 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2804 2805 // If this is a multiply by a power of two, turn it into a shl 2806 // immediately. This is a very common case. 2807 if (ElementSize != 1) { 2808 if (ElementSize.isPowerOf2()) { 2809 unsigned Amt = ElementSize.logBase2(); 2810 IdxN = DAG.getNode(ISD::SHL, dl, 2811 N.getValueType(), IdxN, 2812 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2813 } else { 2814 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2815 IdxN = DAG.getNode(ISD::MUL, dl, 2816 N.getValueType(), IdxN, Scale); 2817 } 2818 } 2819 2820 N = DAG.getNode(ISD::ADD, dl, 2821 N.getValueType(), N, IdxN); 2822 } 2823 } 2824 2825 setValue(&I, N); 2826 } 2827 2828 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2829 // If this is a fixed sized alloca in the entry block of the function, 2830 // allocate it statically on the stack. 2831 if (FuncInfo.StaticAllocaMap.count(&I)) 2832 return; // getValue will auto-populate this. 2833 2834 SDLoc dl = getCurSDLoc(); 2835 Type *Ty = I.getAllocatedType(); 2836 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2837 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 2838 unsigned Align = 2839 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 2840 I.getAlignment()); 2841 2842 SDValue AllocSize = getValue(I.getArraySize()); 2843 2844 EVT IntPtr = TLI.getPointerTy(); 2845 if (AllocSize.getValueType() != IntPtr) 2846 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2847 2848 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2849 AllocSize, 2850 DAG.getConstant(TySize, dl, IntPtr)); 2851 2852 // Handle alignment. If the requested alignment is less than or equal to 2853 // the stack alignment, ignore it. If the size is greater than or equal to 2854 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2855 unsigned StackAlign = 2856 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2857 if (Align <= StackAlign) 2858 Align = 0; 2859 2860 // Round the size of the allocation up to the stack alignment size 2861 // by add SA-1 to the size. 2862 AllocSize = DAG.getNode(ISD::ADD, dl, 2863 AllocSize.getValueType(), AllocSize, 2864 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2865 2866 // Mask out the low bits for alignment purposes. 2867 AllocSize = DAG.getNode(ISD::AND, dl, 2868 AllocSize.getValueType(), AllocSize, 2869 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2870 dl)); 2871 2872 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2873 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2874 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2875 setValue(&I, DSA); 2876 DAG.setRoot(DSA.getValue(1)); 2877 2878 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2879 } 2880 2881 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2882 if (I.isAtomic()) 2883 return visitAtomicLoad(I); 2884 2885 const Value *SV = I.getOperand(0); 2886 SDValue Ptr = getValue(SV); 2887 2888 Type *Ty = I.getType(); 2889 2890 bool isVolatile = I.isVolatile(); 2891 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2892 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2893 unsigned Alignment = I.getAlignment(); 2894 2895 AAMDNodes AAInfo; 2896 I.getAAMetadata(AAInfo); 2897 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2898 2899 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2900 SmallVector<EVT, 4> ValueVTs; 2901 SmallVector<uint64_t, 4> Offsets; 2902 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2903 unsigned NumValues = ValueVTs.size(); 2904 if (NumValues == 0) 2905 return; 2906 2907 SDValue Root; 2908 bool ConstantMemory = false; 2909 if (isVolatile || NumValues > MaxParallelChains) 2910 // Serialize volatile loads with other side effects. 2911 Root = getRoot(); 2912 else if (AA->pointsToConstantMemory( 2913 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2914 // Do not serialize (non-volatile) loads of constant memory with anything. 2915 Root = DAG.getEntryNode(); 2916 ConstantMemory = true; 2917 } else { 2918 // Do not serialize non-volatile loads against each other. 2919 Root = DAG.getRoot(); 2920 } 2921 2922 SDLoc dl = getCurSDLoc(); 2923 2924 if (isVolatile) 2925 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2926 2927 SmallVector<SDValue, 4> Values(NumValues); 2928 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2929 NumValues)); 2930 EVT PtrVT = Ptr.getValueType(); 2931 unsigned ChainI = 0; 2932 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2933 // Serializing loads here may result in excessive register pressure, and 2934 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2935 // could recover a bit by hoisting nodes upward in the chain by recognizing 2936 // they are side-effect free or do not alias. The optimizer should really 2937 // avoid this case by converting large object/array copies to llvm.memcpy 2938 // (MaxParallelChains should always remain as failsafe). 2939 if (ChainI == MaxParallelChains) { 2940 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2941 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2942 makeArrayRef(Chains.data(), ChainI)); 2943 Root = Chain; 2944 ChainI = 0; 2945 } 2946 SDValue A = DAG.getNode(ISD::ADD, dl, 2947 PtrVT, Ptr, 2948 DAG.getConstant(Offsets[i], dl, PtrVT)); 2949 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2950 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2951 isNonTemporal, isInvariant, Alignment, AAInfo, 2952 Ranges); 2953 2954 Values[i] = L; 2955 Chains[ChainI] = L.getValue(1); 2956 } 2957 2958 if (!ConstantMemory) { 2959 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2960 makeArrayRef(Chains.data(), ChainI)); 2961 if (isVolatile) 2962 DAG.setRoot(Chain); 2963 else 2964 PendingLoads.push_back(Chain); 2965 } 2966 2967 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2968 DAG.getVTList(ValueVTs), Values)); 2969 } 2970 2971 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2972 if (I.isAtomic()) 2973 return visitAtomicStore(I); 2974 2975 const Value *SrcV = I.getOperand(0); 2976 const Value *PtrV = I.getOperand(1); 2977 2978 SmallVector<EVT, 4> ValueVTs; 2979 SmallVector<uint64_t, 4> Offsets; 2980 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 2981 ValueVTs, &Offsets); 2982 unsigned NumValues = ValueVTs.size(); 2983 if (NumValues == 0) 2984 return; 2985 2986 // Get the lowered operands. Note that we do this after 2987 // checking if NumResults is zero, because with zero results 2988 // the operands won't have values in the map. 2989 SDValue Src = getValue(SrcV); 2990 SDValue Ptr = getValue(PtrV); 2991 2992 SDValue Root = getRoot(); 2993 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2994 NumValues)); 2995 EVT PtrVT = Ptr.getValueType(); 2996 bool isVolatile = I.isVolatile(); 2997 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2998 unsigned Alignment = I.getAlignment(); 2999 SDLoc dl = getCurSDLoc(); 3000 3001 AAMDNodes AAInfo; 3002 I.getAAMetadata(AAInfo); 3003 3004 unsigned ChainI = 0; 3005 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3006 // See visitLoad comments. 3007 if (ChainI == MaxParallelChains) { 3008 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3009 makeArrayRef(Chains.data(), ChainI)); 3010 Root = Chain; 3011 ChainI = 0; 3012 } 3013 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3014 DAG.getConstant(Offsets[i], dl, PtrVT)); 3015 SDValue St = DAG.getStore(Root, dl, 3016 SDValue(Src.getNode(), Src.getResNo() + i), 3017 Add, MachinePointerInfo(PtrV, Offsets[i]), 3018 isVolatile, isNonTemporal, Alignment, AAInfo); 3019 Chains[ChainI] = St; 3020 } 3021 3022 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3023 makeArrayRef(Chains.data(), ChainI)); 3024 DAG.setRoot(StoreNode); 3025 } 3026 3027 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3028 SDLoc sdl = getCurSDLoc(); 3029 3030 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3031 Value *PtrOperand = I.getArgOperand(1); 3032 SDValue Ptr = getValue(PtrOperand); 3033 SDValue Src0 = getValue(I.getArgOperand(0)); 3034 SDValue Mask = getValue(I.getArgOperand(3)); 3035 EVT VT = Src0.getValueType(); 3036 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3037 if (!Alignment) 3038 Alignment = DAG.getEVTAlignment(VT); 3039 3040 AAMDNodes AAInfo; 3041 I.getAAMetadata(AAInfo); 3042 3043 MachineMemOperand *MMO = 3044 DAG.getMachineFunction(). 3045 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3046 MachineMemOperand::MOStore, VT.getStoreSize(), 3047 Alignment, AAInfo); 3048 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3049 MMO, false); 3050 DAG.setRoot(StoreNode); 3051 setValue(&I, StoreNode); 3052 } 3053 3054 // Gather/scatter receive a vector of pointers. 3055 // This vector of pointers may be represented as a base pointer + vector of 3056 // indices, it depends on GEP and instruction preceeding GEP 3057 // that calculates indices 3058 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3059 SelectionDAGBuilder* SDB) { 3060 3061 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3062 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3063 if (!Gep || Gep->getNumOperands() > 2) 3064 return false; 3065 ShuffleVectorInst *ShuffleInst = 3066 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3067 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3068 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3069 Instruction::InsertElement) 3070 return false; 3071 3072 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3073 3074 SelectionDAG& DAG = SDB->DAG; 3075 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3076 // Check is the Ptr is inside current basic block 3077 // If not, look for the shuffle instruction 3078 if (SDB->findValue(Ptr)) 3079 Base = SDB->getValue(Ptr); 3080 else if (SDB->findValue(ShuffleInst)) { 3081 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3082 SDLoc sdl = ShuffleNode; 3083 Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, 3084 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3085 DAG.getConstant(0, sdl, TLI.getVectorIdxTy())); 3086 SDB->setValue(Ptr, Base); 3087 } 3088 else 3089 return false; 3090 3091 Value *IndexVal = Gep->getOperand(1); 3092 if (SDB->findValue(IndexVal)) { 3093 Index = SDB->getValue(IndexVal); 3094 3095 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3096 IndexVal = Sext->getOperand(0); 3097 if (SDB->findValue(IndexVal)) 3098 Index = SDB->getValue(IndexVal); 3099 } 3100 return true; 3101 } 3102 return false; 3103 } 3104 3105 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3106 SDLoc sdl = getCurSDLoc(); 3107 3108 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3109 Value *Ptr = I.getArgOperand(1); 3110 SDValue Src0 = getValue(I.getArgOperand(0)); 3111 SDValue Mask = getValue(I.getArgOperand(3)); 3112 EVT VT = Src0.getValueType(); 3113 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3114 if (!Alignment) 3115 Alignment = DAG.getEVTAlignment(VT); 3116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3117 3118 AAMDNodes AAInfo; 3119 I.getAAMetadata(AAInfo); 3120 3121 SDValue Base; 3122 SDValue Index; 3123 Value *BasePtr = Ptr; 3124 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3125 3126 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3127 MachineMemOperand *MMO = DAG.getMachineFunction(). 3128 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3129 MachineMemOperand::MOStore, VT.getStoreSize(), 3130 Alignment, AAInfo); 3131 if (!UniformBase) { 3132 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3133 Index = getValue(Ptr); 3134 } 3135 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3136 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3137 Ops, MMO); 3138 DAG.setRoot(Scatter); 3139 setValue(&I, Scatter); 3140 } 3141 3142 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3143 SDLoc sdl = getCurSDLoc(); 3144 3145 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3146 Value *PtrOperand = I.getArgOperand(0); 3147 SDValue Ptr = getValue(PtrOperand); 3148 SDValue Src0 = getValue(I.getArgOperand(3)); 3149 SDValue Mask = getValue(I.getArgOperand(2)); 3150 3151 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3152 EVT VT = TLI.getValueType(I.getType()); 3153 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3154 if (!Alignment) 3155 Alignment = DAG.getEVTAlignment(VT); 3156 3157 AAMDNodes AAInfo; 3158 I.getAAMetadata(AAInfo); 3159 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3160 3161 SDValue InChain = DAG.getRoot(); 3162 if (AA->pointsToConstantMemory( 3163 AliasAnalysis::Location(PtrOperand, 3164 AA->getTypeStoreSize(I.getType()), 3165 AAInfo))) { 3166 // Do not serialize (non-volatile) loads of constant memory with anything. 3167 InChain = DAG.getEntryNode(); 3168 } 3169 3170 MachineMemOperand *MMO = 3171 DAG.getMachineFunction(). 3172 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3173 MachineMemOperand::MOLoad, VT.getStoreSize(), 3174 Alignment, AAInfo, Ranges); 3175 3176 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3177 ISD::NON_EXTLOAD); 3178 SDValue OutChain = Load.getValue(1); 3179 DAG.setRoot(OutChain); 3180 setValue(&I, Load); 3181 } 3182 3183 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3184 SDLoc sdl = getCurSDLoc(); 3185 3186 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3187 Value *Ptr = I.getArgOperand(0); 3188 SDValue Src0 = getValue(I.getArgOperand(3)); 3189 SDValue Mask = getValue(I.getArgOperand(2)); 3190 3191 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3192 EVT VT = TLI.getValueType(I.getType()); 3193 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3194 if (!Alignment) 3195 Alignment = DAG.getEVTAlignment(VT); 3196 3197 AAMDNodes AAInfo; 3198 I.getAAMetadata(AAInfo); 3199 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3200 3201 SDValue Root = DAG.getRoot(); 3202 SDValue Base; 3203 SDValue Index; 3204 Value *BasePtr = Ptr; 3205 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3206 bool ConstantMemory = false; 3207 if (UniformBase && AA->pointsToConstantMemory( 3208 AliasAnalysis::Location(BasePtr, 3209 AA->getTypeStoreSize(I.getType()), 3210 AAInfo))) { 3211 // Do not serialize (non-volatile) loads of constant memory with anything. 3212 Root = DAG.getEntryNode(); 3213 ConstantMemory = true; 3214 } 3215 3216 MachineMemOperand *MMO = 3217 DAG.getMachineFunction(). 3218 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3219 MachineMemOperand::MOLoad, VT.getStoreSize(), 3220 Alignment, AAInfo, Ranges); 3221 3222 if (!UniformBase) { 3223 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3224 Index = getValue(Ptr); 3225 } 3226 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3227 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3228 Ops, MMO); 3229 3230 SDValue OutChain = Gather.getValue(1); 3231 if (!ConstantMemory) 3232 PendingLoads.push_back(OutChain); 3233 setValue(&I, Gather); 3234 } 3235 3236 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3237 SDLoc dl = getCurSDLoc(); 3238 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3239 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3240 SynchronizationScope Scope = I.getSynchScope(); 3241 3242 SDValue InChain = getRoot(); 3243 3244 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3245 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3246 SDValue L = DAG.getAtomicCmpSwap( 3247 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3248 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3249 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3250 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3251 3252 SDValue OutChain = L.getValue(2); 3253 3254 setValue(&I, L); 3255 DAG.setRoot(OutChain); 3256 } 3257 3258 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3259 SDLoc dl = getCurSDLoc(); 3260 ISD::NodeType NT; 3261 switch (I.getOperation()) { 3262 default: llvm_unreachable("Unknown atomicrmw operation"); 3263 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3264 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3265 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3266 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3267 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3268 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3269 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3270 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3271 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3272 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3273 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3274 } 3275 AtomicOrdering Order = I.getOrdering(); 3276 SynchronizationScope Scope = I.getSynchScope(); 3277 3278 SDValue InChain = getRoot(); 3279 3280 SDValue L = 3281 DAG.getAtomic(NT, dl, 3282 getValue(I.getValOperand()).getSimpleValueType(), 3283 InChain, 3284 getValue(I.getPointerOperand()), 3285 getValue(I.getValOperand()), 3286 I.getPointerOperand(), 3287 /* Alignment=*/ 0, Order, Scope); 3288 3289 SDValue OutChain = L.getValue(1); 3290 3291 setValue(&I, L); 3292 DAG.setRoot(OutChain); 3293 } 3294 3295 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3296 SDLoc dl = getCurSDLoc(); 3297 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3298 SDValue Ops[3]; 3299 Ops[0] = getRoot(); 3300 Ops[1] = DAG.getConstant(I.getOrdering(), dl, TLI.getPointerTy()); 3301 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, TLI.getPointerTy()); 3302 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3303 } 3304 3305 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3306 SDLoc dl = getCurSDLoc(); 3307 AtomicOrdering Order = I.getOrdering(); 3308 SynchronizationScope Scope = I.getSynchScope(); 3309 3310 SDValue InChain = getRoot(); 3311 3312 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3313 EVT VT = TLI.getValueType(I.getType()); 3314 3315 if (I.getAlignment() < VT.getSizeInBits() / 8) 3316 report_fatal_error("Cannot generate unaligned atomic load"); 3317 3318 MachineMemOperand *MMO = 3319 DAG.getMachineFunction(). 3320 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3321 MachineMemOperand::MOVolatile | 3322 MachineMemOperand::MOLoad, 3323 VT.getStoreSize(), 3324 I.getAlignment() ? I.getAlignment() : 3325 DAG.getEVTAlignment(VT)); 3326 3327 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3328 SDValue L = 3329 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3330 getValue(I.getPointerOperand()), MMO, 3331 Order, Scope); 3332 3333 SDValue OutChain = L.getValue(1); 3334 3335 setValue(&I, L); 3336 DAG.setRoot(OutChain); 3337 } 3338 3339 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3340 SDLoc dl = getCurSDLoc(); 3341 3342 AtomicOrdering Order = I.getOrdering(); 3343 SynchronizationScope Scope = I.getSynchScope(); 3344 3345 SDValue InChain = getRoot(); 3346 3347 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3348 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3349 3350 if (I.getAlignment() < VT.getSizeInBits() / 8) 3351 report_fatal_error("Cannot generate unaligned atomic store"); 3352 3353 SDValue OutChain = 3354 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3355 InChain, 3356 getValue(I.getPointerOperand()), 3357 getValue(I.getValueOperand()), 3358 I.getPointerOperand(), I.getAlignment(), 3359 Order, Scope); 3360 3361 DAG.setRoot(OutChain); 3362 } 3363 3364 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3365 /// node. 3366 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3367 unsigned Intrinsic) { 3368 bool HasChain = !I.doesNotAccessMemory(); 3369 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3370 3371 // Build the operand list. 3372 SmallVector<SDValue, 8> Ops; 3373 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3374 if (OnlyLoad) { 3375 // We don't need to serialize loads against other loads. 3376 Ops.push_back(DAG.getRoot()); 3377 } else { 3378 Ops.push_back(getRoot()); 3379 } 3380 } 3381 3382 // Info is set by getTgtMemInstrinsic 3383 TargetLowering::IntrinsicInfo Info; 3384 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3385 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3386 3387 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3388 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3389 Info.opc == ISD::INTRINSIC_W_CHAIN) 3390 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3391 TLI.getPointerTy())); 3392 3393 // Add all operands of the call to the operand list. 3394 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3395 SDValue Op = getValue(I.getArgOperand(i)); 3396 Ops.push_back(Op); 3397 } 3398 3399 SmallVector<EVT, 4> ValueVTs; 3400 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3401 3402 if (HasChain) 3403 ValueVTs.push_back(MVT::Other); 3404 3405 SDVTList VTs = DAG.getVTList(ValueVTs); 3406 3407 // Create the node. 3408 SDValue Result; 3409 if (IsTgtIntrinsic) { 3410 // This is target intrinsic that touches memory 3411 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3412 VTs, Ops, Info.memVT, 3413 MachinePointerInfo(Info.ptrVal, Info.offset), 3414 Info.align, Info.vol, 3415 Info.readMem, Info.writeMem, Info.size); 3416 } else if (!HasChain) { 3417 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3418 } else if (!I.getType()->isVoidTy()) { 3419 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3420 } else { 3421 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3422 } 3423 3424 if (HasChain) { 3425 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3426 if (OnlyLoad) 3427 PendingLoads.push_back(Chain); 3428 else 3429 DAG.setRoot(Chain); 3430 } 3431 3432 if (!I.getType()->isVoidTy()) { 3433 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3434 EVT VT = TLI.getValueType(PTy); 3435 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3436 } 3437 3438 setValue(&I, Result); 3439 } 3440 } 3441 3442 /// GetSignificand - Get the significand and build it into a floating-point 3443 /// number with exponent of 1: 3444 /// 3445 /// Op = (Op & 0x007fffff) | 0x3f800000; 3446 /// 3447 /// where Op is the hexadecimal representation of floating point value. 3448 static SDValue 3449 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3450 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3451 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3452 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3453 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3454 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3455 } 3456 3457 /// GetExponent - Get the exponent: 3458 /// 3459 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3460 /// 3461 /// where Op is the hexadecimal representation of floating point value. 3462 static SDValue 3463 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3464 SDLoc dl) { 3465 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3466 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3467 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3468 DAG.getConstant(23, dl, TLI.getPointerTy())); 3469 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3470 DAG.getConstant(127, dl, MVT::i32)); 3471 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3472 } 3473 3474 /// getF32Constant - Get 32-bit floating point constant. 3475 static SDValue 3476 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3477 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3478 MVT::f32); 3479 } 3480 3481 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3482 SelectionDAG &DAG) { 3483 // IntegerPartOfX = ((int32_t)(t0); 3484 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3485 3486 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3487 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3488 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3489 3490 // IntegerPartOfX <<= 23; 3491 IntegerPartOfX = DAG.getNode( 3492 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3493 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy())); 3494 3495 SDValue TwoToFractionalPartOfX; 3496 if (LimitFloatPrecision <= 6) { 3497 // For floating-point precision of 6: 3498 // 3499 // TwoToFractionalPartOfX = 3500 // 0.997535578f + 3501 // (0.735607626f + 0.252464424f * x) * x; 3502 // 3503 // error 0.0144103317, which is 6 bits 3504 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3505 getF32Constant(DAG, 0x3e814304, dl)); 3506 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3507 getF32Constant(DAG, 0x3f3c50c8, dl)); 3508 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3509 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3510 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3511 } else if (LimitFloatPrecision <= 12) { 3512 // For floating-point precision of 12: 3513 // 3514 // TwoToFractionalPartOfX = 3515 // 0.999892986f + 3516 // (0.696457318f + 3517 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3518 // 3519 // error 0.000107046256, which is 13 to 14 bits 3520 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3521 getF32Constant(DAG, 0x3da235e3, dl)); 3522 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3523 getF32Constant(DAG, 0x3e65b8f3, dl)); 3524 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3525 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3526 getF32Constant(DAG, 0x3f324b07, dl)); 3527 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3528 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3529 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3530 } else { // LimitFloatPrecision <= 18 3531 // For floating-point precision of 18: 3532 // 3533 // TwoToFractionalPartOfX = 3534 // 0.999999982f + 3535 // (0.693148872f + 3536 // (0.240227044f + 3537 // (0.554906021e-1f + 3538 // (0.961591928e-2f + 3539 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3540 // error 2.47208000*10^(-7), which is better than 18 bits 3541 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3542 getF32Constant(DAG, 0x3924b03e, dl)); 3543 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3544 getF32Constant(DAG, 0x3ab24b87, dl)); 3545 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3546 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3547 getF32Constant(DAG, 0x3c1d8c17, dl)); 3548 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3549 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3550 getF32Constant(DAG, 0x3d634a1d, dl)); 3551 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3552 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3553 getF32Constant(DAG, 0x3e75fe14, dl)); 3554 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3555 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3556 getF32Constant(DAG, 0x3f317234, dl)); 3557 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3558 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3559 getF32Constant(DAG, 0x3f800000, dl)); 3560 } 3561 3562 // Add the exponent into the result in integer domain. 3563 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3564 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3565 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3566 } 3567 3568 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3569 /// limited-precision mode. 3570 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3571 const TargetLowering &TLI) { 3572 if (Op.getValueType() == MVT::f32 && 3573 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3574 3575 // Put the exponent in the right bit position for later addition to the 3576 // final result: 3577 // 3578 // #define LOG2OFe 1.4426950f 3579 // t0 = Op * LOG2OFe 3580 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3581 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3582 return getLimitedPrecisionExp2(t0, dl, DAG); 3583 } 3584 3585 // No special expansion. 3586 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3587 } 3588 3589 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3590 /// limited-precision mode. 3591 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3592 const TargetLowering &TLI) { 3593 if (Op.getValueType() == MVT::f32 && 3594 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3595 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3596 3597 // Scale the exponent by log(2) [0.69314718f]. 3598 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3599 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3600 getF32Constant(DAG, 0x3f317218, dl)); 3601 3602 // Get the significand and build it into a floating-point number with 3603 // exponent of 1. 3604 SDValue X = GetSignificand(DAG, Op1, dl); 3605 3606 SDValue LogOfMantissa; 3607 if (LimitFloatPrecision <= 6) { 3608 // For floating-point precision of 6: 3609 // 3610 // LogofMantissa = 3611 // -1.1609546f + 3612 // (1.4034025f - 0.23903021f * x) * x; 3613 // 3614 // error 0.0034276066, which is better than 8 bits 3615 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3616 getF32Constant(DAG, 0xbe74c456, dl)); 3617 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3618 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3619 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3620 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3621 getF32Constant(DAG, 0x3f949a29, dl)); 3622 } else if (LimitFloatPrecision <= 12) { 3623 // For floating-point precision of 12: 3624 // 3625 // LogOfMantissa = 3626 // -1.7417939f + 3627 // (2.8212026f + 3628 // (-1.4699568f + 3629 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3630 // 3631 // error 0.000061011436, which is 14 bits 3632 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3633 getF32Constant(DAG, 0xbd67b6d6, dl)); 3634 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3635 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3636 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3637 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3638 getF32Constant(DAG, 0x3fbc278b, dl)); 3639 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3640 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3641 getF32Constant(DAG, 0x40348e95, dl)); 3642 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3643 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3644 getF32Constant(DAG, 0x3fdef31a, dl)); 3645 } else { // LimitFloatPrecision <= 18 3646 // For floating-point precision of 18: 3647 // 3648 // LogOfMantissa = 3649 // -2.1072184f + 3650 // (4.2372794f + 3651 // (-3.7029485f + 3652 // (2.2781945f + 3653 // (-0.87823314f + 3654 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3655 // 3656 // error 0.0000023660568, which is better than 18 bits 3657 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3658 getF32Constant(DAG, 0xbc91e5ac, dl)); 3659 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3660 getF32Constant(DAG, 0x3e4350aa, dl)); 3661 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3662 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3663 getF32Constant(DAG, 0x3f60d3e3, dl)); 3664 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3665 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3666 getF32Constant(DAG, 0x4011cdf0, dl)); 3667 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3668 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3669 getF32Constant(DAG, 0x406cfd1c, dl)); 3670 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3671 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3672 getF32Constant(DAG, 0x408797cb, dl)); 3673 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3674 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3675 getF32Constant(DAG, 0x4006dcab, dl)); 3676 } 3677 3678 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3679 } 3680 3681 // No special expansion. 3682 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3683 } 3684 3685 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3686 /// limited-precision mode. 3687 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3688 const TargetLowering &TLI) { 3689 if (Op.getValueType() == MVT::f32 && 3690 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3691 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3692 3693 // Get the exponent. 3694 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3695 3696 // Get the significand and build it into a floating-point number with 3697 // exponent of 1. 3698 SDValue X = GetSignificand(DAG, Op1, dl); 3699 3700 // Different possible minimax approximations of significand in 3701 // floating-point for various degrees of accuracy over [1,2]. 3702 SDValue Log2ofMantissa; 3703 if (LimitFloatPrecision <= 6) { 3704 // For floating-point precision of 6: 3705 // 3706 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3707 // 3708 // error 0.0049451742, which is more than 7 bits 3709 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3710 getF32Constant(DAG, 0xbeb08fe0, dl)); 3711 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3712 getF32Constant(DAG, 0x40019463, dl)); 3713 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3714 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3715 getF32Constant(DAG, 0x3fd6633d, dl)); 3716 } else if (LimitFloatPrecision <= 12) { 3717 // For floating-point precision of 12: 3718 // 3719 // Log2ofMantissa = 3720 // -2.51285454f + 3721 // (4.07009056f + 3722 // (-2.12067489f + 3723 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3724 // 3725 // error 0.0000876136000, which is better than 13 bits 3726 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3727 getF32Constant(DAG, 0xbda7262e, dl)); 3728 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3729 getF32Constant(DAG, 0x3f25280b, dl)); 3730 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3731 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3732 getF32Constant(DAG, 0x4007b923, dl)); 3733 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3734 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3735 getF32Constant(DAG, 0x40823e2f, dl)); 3736 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3737 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3738 getF32Constant(DAG, 0x4020d29c, dl)); 3739 } else { // LimitFloatPrecision <= 18 3740 // For floating-point precision of 18: 3741 // 3742 // Log2ofMantissa = 3743 // -3.0400495f + 3744 // (6.1129976f + 3745 // (-5.3420409f + 3746 // (3.2865683f + 3747 // (-1.2669343f + 3748 // (0.27515199f - 3749 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3750 // 3751 // error 0.0000018516, which is better than 18 bits 3752 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3753 getF32Constant(DAG, 0xbcd2769e, dl)); 3754 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3755 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3756 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3757 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3758 getF32Constant(DAG, 0x3fa22ae7, dl)); 3759 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3760 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3761 getF32Constant(DAG, 0x40525723, dl)); 3762 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3763 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3764 getF32Constant(DAG, 0x40aaf200, dl)); 3765 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3766 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3767 getF32Constant(DAG, 0x40c39dad, dl)); 3768 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3769 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3770 getF32Constant(DAG, 0x4042902c, dl)); 3771 } 3772 3773 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3774 } 3775 3776 // No special expansion. 3777 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3778 } 3779 3780 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3781 /// limited-precision mode. 3782 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3783 const TargetLowering &TLI) { 3784 if (Op.getValueType() == MVT::f32 && 3785 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3786 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3787 3788 // Scale the exponent by log10(2) [0.30102999f]. 3789 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3790 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3791 getF32Constant(DAG, 0x3e9a209a, dl)); 3792 3793 // Get the significand and build it into a floating-point number with 3794 // exponent of 1. 3795 SDValue X = GetSignificand(DAG, Op1, dl); 3796 3797 SDValue Log10ofMantissa; 3798 if (LimitFloatPrecision <= 6) { 3799 // For floating-point precision of 6: 3800 // 3801 // Log10ofMantissa = 3802 // -0.50419619f + 3803 // (0.60948995f - 0.10380950f * x) * x; 3804 // 3805 // error 0.0014886165, which is 6 bits 3806 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3807 getF32Constant(DAG, 0xbdd49a13, dl)); 3808 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3809 getF32Constant(DAG, 0x3f1c0789, dl)); 3810 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3811 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3812 getF32Constant(DAG, 0x3f011300, dl)); 3813 } else if (LimitFloatPrecision <= 12) { 3814 // For floating-point precision of 12: 3815 // 3816 // Log10ofMantissa = 3817 // -0.64831180f + 3818 // (0.91751397f + 3819 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3820 // 3821 // error 0.00019228036, which is better than 12 bits 3822 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3823 getF32Constant(DAG, 0x3d431f31, dl)); 3824 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3825 getF32Constant(DAG, 0x3ea21fb2, dl)); 3826 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3827 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3828 getF32Constant(DAG, 0x3f6ae232, dl)); 3829 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3830 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3831 getF32Constant(DAG, 0x3f25f7c3, dl)); 3832 } else { // LimitFloatPrecision <= 18 3833 // For floating-point precision of 18: 3834 // 3835 // Log10ofMantissa = 3836 // -0.84299375f + 3837 // (1.5327582f + 3838 // (-1.0688956f + 3839 // (0.49102474f + 3840 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3841 // 3842 // error 0.0000037995730, which is better than 18 bits 3843 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3844 getF32Constant(DAG, 0x3c5d51ce, dl)); 3845 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3846 getF32Constant(DAG, 0x3e00685a, dl)); 3847 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3848 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3849 getF32Constant(DAG, 0x3efb6798, dl)); 3850 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3851 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3852 getF32Constant(DAG, 0x3f88d192, dl)); 3853 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3854 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3855 getF32Constant(DAG, 0x3fc4316c, dl)); 3856 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3857 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3858 getF32Constant(DAG, 0x3f57ce70, dl)); 3859 } 3860 3861 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3862 } 3863 3864 // No special expansion. 3865 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3866 } 3867 3868 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3869 /// limited-precision mode. 3870 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3871 const TargetLowering &TLI) { 3872 if (Op.getValueType() == MVT::f32 && 3873 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3874 return getLimitedPrecisionExp2(Op, dl, DAG); 3875 3876 // No special expansion. 3877 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3878 } 3879 3880 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3881 /// limited-precision mode with x == 10.0f. 3882 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3883 SelectionDAG &DAG, const TargetLowering &TLI) { 3884 bool IsExp10 = false; 3885 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3886 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3887 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3888 APFloat Ten(10.0f); 3889 IsExp10 = LHSC->isExactlyValue(Ten); 3890 } 3891 } 3892 3893 if (IsExp10) { 3894 // Put the exponent in the right bit position for later addition to the 3895 // final result: 3896 // 3897 // #define LOG2OF10 3.3219281f 3898 // t0 = Op * LOG2OF10; 3899 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3900 getF32Constant(DAG, 0x40549a78, dl)); 3901 return getLimitedPrecisionExp2(t0, dl, DAG); 3902 } 3903 3904 // No special expansion. 3905 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3906 } 3907 3908 3909 /// ExpandPowI - Expand a llvm.powi intrinsic. 3910 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3911 SelectionDAG &DAG) { 3912 // If RHS is a constant, we can expand this out to a multiplication tree, 3913 // otherwise we end up lowering to a call to __powidf2 (for example). When 3914 // optimizing for size, we only want to do this if the expansion would produce 3915 // a small number of multiplies, otherwise we do the full expansion. 3916 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3917 // Get the exponent as a positive value. 3918 unsigned Val = RHSC->getSExtValue(); 3919 if ((int)Val < 0) Val = -Val; 3920 3921 // powi(x, 0) -> 1.0 3922 if (Val == 0) 3923 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3924 3925 const Function *F = DAG.getMachineFunction().getFunction(); 3926 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3927 // If optimizing for size, don't insert too many multiplies. This 3928 // inserts up to 5 multiplies. 3929 countPopulation(Val) + Log2_32(Val) < 7) { 3930 // We use the simple binary decomposition method to generate the multiply 3931 // sequence. There are more optimal ways to do this (for example, 3932 // powi(x,15) generates one more multiply than it should), but this has 3933 // the benefit of being both really simple and much better than a libcall. 3934 SDValue Res; // Logically starts equal to 1.0 3935 SDValue CurSquare = LHS; 3936 while (Val) { 3937 if (Val & 1) { 3938 if (Res.getNode()) 3939 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3940 else 3941 Res = CurSquare; // 1.0*CurSquare. 3942 } 3943 3944 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3945 CurSquare, CurSquare); 3946 Val >>= 1; 3947 } 3948 3949 // If the original was negative, invert the result, producing 1/(x*x*x). 3950 if (RHSC->getSExtValue() < 0) 3951 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3952 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3953 return Res; 3954 } 3955 } 3956 3957 // Otherwise, expand to a libcall. 3958 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3959 } 3960 3961 // getTruncatedArgReg - Find underlying register used for an truncated 3962 // argument. 3963 static unsigned getTruncatedArgReg(const SDValue &N) { 3964 if (N.getOpcode() != ISD::TRUNCATE) 3965 return 0; 3966 3967 const SDValue &Ext = N.getOperand(0); 3968 if (Ext.getOpcode() == ISD::AssertZext || 3969 Ext.getOpcode() == ISD::AssertSext) { 3970 const SDValue &CFR = Ext.getOperand(0); 3971 if (CFR.getOpcode() == ISD::CopyFromReg) 3972 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3973 if (CFR.getOpcode() == ISD::TRUNCATE) 3974 return getTruncatedArgReg(CFR); 3975 } 3976 return 0; 3977 } 3978 3979 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3980 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3981 /// At the end of instruction selection, they will be inserted to the entry BB. 3982 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 3983 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 3984 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 3985 const Argument *Arg = dyn_cast<Argument>(V); 3986 if (!Arg) 3987 return false; 3988 3989 MachineFunction &MF = DAG.getMachineFunction(); 3990 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 3991 3992 // Ignore inlined function arguments here. 3993 // 3994 // FIXME: Should we be checking DL->inlinedAt() to determine this? 3995 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 3996 return false; 3997 3998 Optional<MachineOperand> Op; 3999 // Some arguments' frame index is recorded during argument lowering. 4000 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4001 Op = MachineOperand::CreateFI(FI); 4002 4003 if (!Op && N.getNode()) { 4004 unsigned Reg; 4005 if (N.getOpcode() == ISD::CopyFromReg) 4006 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4007 else 4008 Reg = getTruncatedArgReg(N); 4009 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4010 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4011 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4012 if (PR) 4013 Reg = PR; 4014 } 4015 if (Reg) 4016 Op = MachineOperand::CreateReg(Reg, false); 4017 } 4018 4019 if (!Op) { 4020 // Check if ValueMap has reg number. 4021 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4022 if (VMI != FuncInfo.ValueMap.end()) 4023 Op = MachineOperand::CreateReg(VMI->second, false); 4024 } 4025 4026 if (!Op && N.getNode()) 4027 // Check if frame index is available. 4028 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4029 if (FrameIndexSDNode *FINode = 4030 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4031 Op = MachineOperand::CreateFI(FINode->getIndex()); 4032 4033 if (!Op) 4034 return false; 4035 4036 assert(Variable->isValidLocationForIntrinsic(DL) && 4037 "Expected inlined-at fields to agree"); 4038 if (Op->isReg()) 4039 FuncInfo.ArgDbgValues.push_back( 4040 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4041 Op->getReg(), Offset, Variable, Expr)); 4042 else 4043 FuncInfo.ArgDbgValues.push_back( 4044 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4045 .addOperand(*Op) 4046 .addImm(Offset) 4047 .addMetadata(Variable) 4048 .addMetadata(Expr)); 4049 4050 return true; 4051 } 4052 4053 // VisualStudio defines setjmp as _setjmp 4054 #if defined(_MSC_VER) && defined(setjmp) && \ 4055 !defined(setjmp_undefined_for_msvc) 4056 # pragma push_macro("setjmp") 4057 # undef setjmp 4058 # define setjmp_undefined_for_msvc 4059 #endif 4060 4061 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4062 /// we want to emit this as a call to a named external function, return the name 4063 /// otherwise lower it and return null. 4064 const char * 4065 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4066 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4067 SDLoc sdl = getCurSDLoc(); 4068 DebugLoc dl = getCurDebugLoc(); 4069 SDValue Res; 4070 4071 switch (Intrinsic) { 4072 default: 4073 // By default, turn this into a target intrinsic node. 4074 visitTargetIntrinsic(I, Intrinsic); 4075 return nullptr; 4076 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4077 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4078 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4079 case Intrinsic::returnaddress: 4080 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4081 getValue(I.getArgOperand(0)))); 4082 return nullptr; 4083 case Intrinsic::frameaddress: 4084 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4085 getValue(I.getArgOperand(0)))); 4086 return nullptr; 4087 case Intrinsic::read_register: { 4088 Value *Reg = I.getArgOperand(0); 4089 SDValue RegName = 4090 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4091 EVT VT = TLI.getValueType(I.getType()); 4092 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4093 return nullptr; 4094 } 4095 case Intrinsic::write_register: { 4096 Value *Reg = I.getArgOperand(0); 4097 Value *RegValue = I.getArgOperand(1); 4098 SDValue Chain = getValue(RegValue).getOperand(0); 4099 SDValue RegName = 4100 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4101 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4102 RegName, getValue(RegValue))); 4103 return nullptr; 4104 } 4105 case Intrinsic::setjmp: 4106 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4107 case Intrinsic::longjmp: 4108 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4109 case Intrinsic::memcpy: { 4110 // FIXME: this definition of "user defined address space" is x86-specific 4111 // Assert for address < 256 since we support only user defined address 4112 // spaces. 4113 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4114 < 256 && 4115 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4116 < 256 && 4117 "Unknown address space"); 4118 SDValue Op1 = getValue(I.getArgOperand(0)); 4119 SDValue Op2 = getValue(I.getArgOperand(1)); 4120 SDValue Op3 = getValue(I.getArgOperand(2)); 4121 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4122 if (!Align) 4123 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4124 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4125 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4126 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4127 false, isTC, 4128 MachinePointerInfo(I.getArgOperand(0)), 4129 MachinePointerInfo(I.getArgOperand(1))); 4130 updateDAGForMaybeTailCall(MC); 4131 return nullptr; 4132 } 4133 case Intrinsic::memset: { 4134 // FIXME: this definition of "user defined address space" is x86-specific 4135 // Assert for address < 256 since we support only user defined address 4136 // spaces. 4137 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4138 < 256 && 4139 "Unknown address space"); 4140 SDValue Op1 = getValue(I.getArgOperand(0)); 4141 SDValue Op2 = getValue(I.getArgOperand(1)); 4142 SDValue Op3 = getValue(I.getArgOperand(2)); 4143 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4144 if (!Align) 4145 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4146 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4147 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4148 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4149 isTC, MachinePointerInfo(I.getArgOperand(0))); 4150 updateDAGForMaybeTailCall(MS); 4151 return nullptr; 4152 } 4153 case Intrinsic::memmove: { 4154 // FIXME: this definition of "user defined address space" is x86-specific 4155 // Assert for address < 256 since we support only user defined address 4156 // spaces. 4157 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4158 < 256 && 4159 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4160 < 256 && 4161 "Unknown address space"); 4162 SDValue Op1 = getValue(I.getArgOperand(0)); 4163 SDValue Op2 = getValue(I.getArgOperand(1)); 4164 SDValue Op3 = getValue(I.getArgOperand(2)); 4165 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4166 if (!Align) 4167 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4168 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4169 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4170 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4171 isTC, MachinePointerInfo(I.getArgOperand(0)), 4172 MachinePointerInfo(I.getArgOperand(1))); 4173 updateDAGForMaybeTailCall(MM); 4174 return nullptr; 4175 } 4176 case Intrinsic::dbg_declare: { 4177 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4178 DILocalVariable *Variable = DI.getVariable(); 4179 DIExpression *Expression = DI.getExpression(); 4180 const Value *Address = DI.getAddress(); 4181 assert(Variable && "Missing variable"); 4182 if (!Address) { 4183 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4184 return nullptr; 4185 } 4186 4187 // Check if address has undef value. 4188 if (isa<UndefValue>(Address) || 4189 (Address->use_empty() && !isa<Argument>(Address))) { 4190 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4191 return nullptr; 4192 } 4193 4194 SDValue &N = NodeMap[Address]; 4195 if (!N.getNode() && isa<Argument>(Address)) 4196 // Check unused arguments map. 4197 N = UnusedArgNodeMap[Address]; 4198 SDDbgValue *SDV; 4199 if (N.getNode()) { 4200 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4201 Address = BCI->getOperand(0); 4202 // Parameters are handled specially. 4203 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4204 isa<Argument>(Address); 4205 4206 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4207 4208 if (isParameter && !AI) { 4209 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4210 if (FINode) 4211 // Byval parameter. We have a frame index at this point. 4212 SDV = DAG.getFrameIndexDbgValue( 4213 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4214 else { 4215 // Address is an argument, so try to emit its dbg value using 4216 // virtual register info from the FuncInfo.ValueMap. 4217 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4218 N); 4219 return nullptr; 4220 } 4221 } else if (AI) 4222 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4223 true, 0, dl, SDNodeOrder); 4224 else { 4225 // Can't do anything with other non-AI cases yet. 4226 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4227 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4228 DEBUG(Address->dump()); 4229 return nullptr; 4230 } 4231 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4232 } else { 4233 // If Address is an argument then try to emit its dbg value using 4234 // virtual register info from the FuncInfo.ValueMap. 4235 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4236 N)) { 4237 // If variable is pinned by a alloca in dominating bb then 4238 // use StaticAllocaMap. 4239 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4240 if (AI->getParent() != DI.getParent()) { 4241 DenseMap<const AllocaInst*, int>::iterator SI = 4242 FuncInfo.StaticAllocaMap.find(AI); 4243 if (SI != FuncInfo.StaticAllocaMap.end()) { 4244 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4245 0, dl, SDNodeOrder); 4246 DAG.AddDbgValue(SDV, nullptr, false); 4247 return nullptr; 4248 } 4249 } 4250 } 4251 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4252 } 4253 } 4254 return nullptr; 4255 } 4256 case Intrinsic::dbg_value: { 4257 const DbgValueInst &DI = cast<DbgValueInst>(I); 4258 assert(DI.getVariable() && "Missing variable"); 4259 4260 DILocalVariable *Variable = DI.getVariable(); 4261 DIExpression *Expression = DI.getExpression(); 4262 uint64_t Offset = DI.getOffset(); 4263 const Value *V = DI.getValue(); 4264 if (!V) 4265 return nullptr; 4266 4267 SDDbgValue *SDV; 4268 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4269 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4270 SDNodeOrder); 4271 DAG.AddDbgValue(SDV, nullptr, false); 4272 } else { 4273 // Do not use getValue() in here; we don't want to generate code at 4274 // this point if it hasn't been done yet. 4275 SDValue N = NodeMap[V]; 4276 if (!N.getNode() && isa<Argument>(V)) 4277 // Check unused arguments map. 4278 N = UnusedArgNodeMap[V]; 4279 if (N.getNode()) { 4280 // A dbg.value for an alloca is always indirect. 4281 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4282 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4283 IsIndirect, N)) { 4284 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4285 IsIndirect, Offset, dl, SDNodeOrder); 4286 DAG.AddDbgValue(SDV, N.getNode(), false); 4287 } 4288 } else if (!V->use_empty() ) { 4289 // Do not call getValue(V) yet, as we don't want to generate code. 4290 // Remember it for later. 4291 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4292 DanglingDebugInfoMap[V] = DDI; 4293 } else { 4294 // We may expand this to cover more cases. One case where we have no 4295 // data available is an unreferenced parameter. 4296 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4297 } 4298 } 4299 4300 // Build a debug info table entry. 4301 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4302 V = BCI->getOperand(0); 4303 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4304 // Don't handle byval struct arguments or VLAs, for example. 4305 if (!AI) { 4306 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4307 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4308 return nullptr; 4309 } 4310 DenseMap<const AllocaInst*, int>::iterator SI = 4311 FuncInfo.StaticAllocaMap.find(AI); 4312 if (SI == FuncInfo.StaticAllocaMap.end()) 4313 return nullptr; // VLAs. 4314 return nullptr; 4315 } 4316 4317 case Intrinsic::eh_typeid_for: { 4318 // Find the type id for the given typeinfo. 4319 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4320 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4321 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4322 setValue(&I, Res); 4323 return nullptr; 4324 } 4325 4326 case Intrinsic::eh_return_i32: 4327 case Intrinsic::eh_return_i64: 4328 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4329 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4330 MVT::Other, 4331 getControlRoot(), 4332 getValue(I.getArgOperand(0)), 4333 getValue(I.getArgOperand(1)))); 4334 return nullptr; 4335 case Intrinsic::eh_unwind_init: 4336 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4337 return nullptr; 4338 case Intrinsic::eh_dwarf_cfa: { 4339 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4340 TLI.getPointerTy()); 4341 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4342 CfaArg.getValueType(), 4343 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4344 CfaArg.getValueType()), 4345 CfaArg); 4346 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4347 DAG.getConstant(0, sdl, TLI.getPointerTy())); 4348 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4349 FA, Offset)); 4350 return nullptr; 4351 } 4352 case Intrinsic::eh_sjlj_callsite: { 4353 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4354 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4355 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4356 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4357 4358 MMI.setCurrentCallSite(CI->getZExtValue()); 4359 return nullptr; 4360 } 4361 case Intrinsic::eh_sjlj_functioncontext: { 4362 // Get and store the index of the function context. 4363 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4364 AllocaInst *FnCtx = 4365 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4366 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4367 MFI->setFunctionContextIndex(FI); 4368 return nullptr; 4369 } 4370 case Intrinsic::eh_sjlj_setjmp: { 4371 SDValue Ops[2]; 4372 Ops[0] = getRoot(); 4373 Ops[1] = getValue(I.getArgOperand(0)); 4374 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4375 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4376 setValue(&I, Op.getValue(0)); 4377 DAG.setRoot(Op.getValue(1)); 4378 return nullptr; 4379 } 4380 case Intrinsic::eh_sjlj_longjmp: { 4381 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4382 getRoot(), getValue(I.getArgOperand(0)))); 4383 return nullptr; 4384 } 4385 4386 case Intrinsic::masked_gather: 4387 visitMaskedGather(I); 4388 return nullptr; 4389 case Intrinsic::masked_load: 4390 visitMaskedLoad(I); 4391 return nullptr; 4392 case Intrinsic::masked_scatter: 4393 visitMaskedScatter(I); 4394 return nullptr; 4395 case Intrinsic::masked_store: 4396 visitMaskedStore(I); 4397 return nullptr; 4398 case Intrinsic::x86_mmx_pslli_w: 4399 case Intrinsic::x86_mmx_pslli_d: 4400 case Intrinsic::x86_mmx_pslli_q: 4401 case Intrinsic::x86_mmx_psrli_w: 4402 case Intrinsic::x86_mmx_psrli_d: 4403 case Intrinsic::x86_mmx_psrli_q: 4404 case Intrinsic::x86_mmx_psrai_w: 4405 case Intrinsic::x86_mmx_psrai_d: { 4406 SDValue ShAmt = getValue(I.getArgOperand(1)); 4407 if (isa<ConstantSDNode>(ShAmt)) { 4408 visitTargetIntrinsic(I, Intrinsic); 4409 return nullptr; 4410 } 4411 unsigned NewIntrinsic = 0; 4412 EVT ShAmtVT = MVT::v2i32; 4413 switch (Intrinsic) { 4414 case Intrinsic::x86_mmx_pslli_w: 4415 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4416 break; 4417 case Intrinsic::x86_mmx_pslli_d: 4418 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4419 break; 4420 case Intrinsic::x86_mmx_pslli_q: 4421 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4422 break; 4423 case Intrinsic::x86_mmx_psrli_w: 4424 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4425 break; 4426 case Intrinsic::x86_mmx_psrli_d: 4427 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4428 break; 4429 case Intrinsic::x86_mmx_psrli_q: 4430 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4431 break; 4432 case Intrinsic::x86_mmx_psrai_w: 4433 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4434 break; 4435 case Intrinsic::x86_mmx_psrai_d: 4436 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4437 break; 4438 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4439 } 4440 4441 // The vector shift intrinsics with scalars uses 32b shift amounts but 4442 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4443 // to be zero. 4444 // We must do this early because v2i32 is not a legal type. 4445 SDValue ShOps[2]; 4446 ShOps[0] = ShAmt; 4447 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4448 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4449 EVT DestVT = TLI.getValueType(I.getType()); 4450 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4451 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4452 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4453 getValue(I.getArgOperand(0)), ShAmt); 4454 setValue(&I, Res); 4455 return nullptr; 4456 } 4457 case Intrinsic::convertff: 4458 case Intrinsic::convertfsi: 4459 case Intrinsic::convertfui: 4460 case Intrinsic::convertsif: 4461 case Intrinsic::convertuif: 4462 case Intrinsic::convertss: 4463 case Intrinsic::convertsu: 4464 case Intrinsic::convertus: 4465 case Intrinsic::convertuu: { 4466 ISD::CvtCode Code = ISD::CVT_INVALID; 4467 switch (Intrinsic) { 4468 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4469 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4470 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4471 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4472 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4473 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4474 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4475 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4476 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4477 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4478 } 4479 EVT DestVT = TLI.getValueType(I.getType()); 4480 const Value *Op1 = I.getArgOperand(0); 4481 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4482 DAG.getValueType(DestVT), 4483 DAG.getValueType(getValue(Op1).getValueType()), 4484 getValue(I.getArgOperand(1)), 4485 getValue(I.getArgOperand(2)), 4486 Code); 4487 setValue(&I, Res); 4488 return nullptr; 4489 } 4490 case Intrinsic::powi: 4491 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4492 getValue(I.getArgOperand(1)), DAG)); 4493 return nullptr; 4494 case Intrinsic::log: 4495 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4496 return nullptr; 4497 case Intrinsic::log2: 4498 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4499 return nullptr; 4500 case Intrinsic::log10: 4501 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4502 return nullptr; 4503 case Intrinsic::exp: 4504 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4505 return nullptr; 4506 case Intrinsic::exp2: 4507 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4508 return nullptr; 4509 case Intrinsic::pow: 4510 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4511 getValue(I.getArgOperand(1)), DAG, TLI)); 4512 return nullptr; 4513 case Intrinsic::sqrt: 4514 case Intrinsic::fabs: 4515 case Intrinsic::sin: 4516 case Intrinsic::cos: 4517 case Intrinsic::floor: 4518 case Intrinsic::ceil: 4519 case Intrinsic::trunc: 4520 case Intrinsic::rint: 4521 case Intrinsic::nearbyint: 4522 case Intrinsic::round: { 4523 unsigned Opcode; 4524 switch (Intrinsic) { 4525 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4526 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4527 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4528 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4529 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4530 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4531 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4532 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4533 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4534 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4535 case Intrinsic::round: Opcode = ISD::FROUND; break; 4536 } 4537 4538 setValue(&I, DAG.getNode(Opcode, sdl, 4539 getValue(I.getArgOperand(0)).getValueType(), 4540 getValue(I.getArgOperand(0)))); 4541 return nullptr; 4542 } 4543 case Intrinsic::minnum: 4544 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4545 getValue(I.getArgOperand(0)).getValueType(), 4546 getValue(I.getArgOperand(0)), 4547 getValue(I.getArgOperand(1)))); 4548 return nullptr; 4549 case Intrinsic::maxnum: 4550 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4551 getValue(I.getArgOperand(0)).getValueType(), 4552 getValue(I.getArgOperand(0)), 4553 getValue(I.getArgOperand(1)))); 4554 return nullptr; 4555 case Intrinsic::copysign: 4556 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4557 getValue(I.getArgOperand(0)).getValueType(), 4558 getValue(I.getArgOperand(0)), 4559 getValue(I.getArgOperand(1)))); 4560 return nullptr; 4561 case Intrinsic::fma: 4562 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4563 getValue(I.getArgOperand(0)).getValueType(), 4564 getValue(I.getArgOperand(0)), 4565 getValue(I.getArgOperand(1)), 4566 getValue(I.getArgOperand(2)))); 4567 return nullptr; 4568 case Intrinsic::fmuladd: { 4569 EVT VT = TLI.getValueType(I.getType()); 4570 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4571 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4572 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4573 getValue(I.getArgOperand(0)).getValueType(), 4574 getValue(I.getArgOperand(0)), 4575 getValue(I.getArgOperand(1)), 4576 getValue(I.getArgOperand(2)))); 4577 } else { 4578 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4579 getValue(I.getArgOperand(0)).getValueType(), 4580 getValue(I.getArgOperand(0)), 4581 getValue(I.getArgOperand(1))); 4582 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4583 getValue(I.getArgOperand(0)).getValueType(), 4584 Mul, 4585 getValue(I.getArgOperand(2))); 4586 setValue(&I, Add); 4587 } 4588 return nullptr; 4589 } 4590 case Intrinsic::convert_to_fp16: 4591 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4592 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4593 getValue(I.getArgOperand(0)), 4594 DAG.getTargetConstant(0, sdl, 4595 MVT::i32)))); 4596 return nullptr; 4597 case Intrinsic::convert_from_fp16: 4598 setValue(&I, 4599 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 4600 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4601 getValue(I.getArgOperand(0))))); 4602 return nullptr; 4603 case Intrinsic::pcmarker: { 4604 SDValue Tmp = getValue(I.getArgOperand(0)); 4605 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4606 return nullptr; 4607 } 4608 case Intrinsic::readcyclecounter: { 4609 SDValue Op = getRoot(); 4610 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4611 DAG.getVTList(MVT::i64, MVT::Other), Op); 4612 setValue(&I, Res); 4613 DAG.setRoot(Res.getValue(1)); 4614 return nullptr; 4615 } 4616 case Intrinsic::bswap: 4617 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4618 getValue(I.getArgOperand(0)).getValueType(), 4619 getValue(I.getArgOperand(0)))); 4620 return nullptr; 4621 case Intrinsic::cttz: { 4622 SDValue Arg = getValue(I.getArgOperand(0)); 4623 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4624 EVT Ty = Arg.getValueType(); 4625 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4626 sdl, Ty, Arg)); 4627 return nullptr; 4628 } 4629 case Intrinsic::ctlz: { 4630 SDValue Arg = getValue(I.getArgOperand(0)); 4631 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4632 EVT Ty = Arg.getValueType(); 4633 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4634 sdl, Ty, Arg)); 4635 return nullptr; 4636 } 4637 case Intrinsic::ctpop: { 4638 SDValue Arg = getValue(I.getArgOperand(0)); 4639 EVT Ty = Arg.getValueType(); 4640 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4641 return nullptr; 4642 } 4643 case Intrinsic::stacksave: { 4644 SDValue Op = getRoot(); 4645 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4646 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 4647 setValue(&I, Res); 4648 DAG.setRoot(Res.getValue(1)); 4649 return nullptr; 4650 } 4651 case Intrinsic::stackrestore: { 4652 Res = getValue(I.getArgOperand(0)); 4653 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4654 return nullptr; 4655 } 4656 case Intrinsic::stackprotector: { 4657 // Emit code into the DAG to store the stack guard onto the stack. 4658 MachineFunction &MF = DAG.getMachineFunction(); 4659 MachineFrameInfo *MFI = MF.getFrameInfo(); 4660 EVT PtrTy = TLI.getPointerTy(); 4661 SDValue Src, Chain = getRoot(); 4662 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4663 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4664 4665 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4666 // global variable __stack_chk_guard. 4667 if (!GV) 4668 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4669 if (BC->getOpcode() == Instruction::BitCast) 4670 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4671 4672 if (GV && TLI.useLoadStackGuardNode()) { 4673 // Emit a LOAD_STACK_GUARD node. 4674 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4675 sdl, PtrTy, Chain); 4676 MachinePointerInfo MPInfo(GV); 4677 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4678 unsigned Flags = MachineMemOperand::MOLoad | 4679 MachineMemOperand::MOInvariant; 4680 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4681 PtrTy.getSizeInBits() / 8, 4682 DAG.getEVTAlignment(PtrTy)); 4683 Node->setMemRefs(MemRefs, MemRefs + 1); 4684 4685 // Copy the guard value to a virtual register so that it can be 4686 // retrieved in the epilogue. 4687 Src = SDValue(Node, 0); 4688 const TargetRegisterClass *RC = 4689 TLI.getRegClassFor(Src.getSimpleValueType()); 4690 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4691 4692 SPDescriptor.setGuardReg(Reg); 4693 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4694 } else { 4695 Src = getValue(I.getArgOperand(0)); // The guard's value. 4696 } 4697 4698 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4699 4700 int FI = FuncInfo.StaticAllocaMap[Slot]; 4701 MFI->setStackProtectorIndex(FI); 4702 4703 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4704 4705 // Store the stack protector onto the stack. 4706 Res = DAG.getStore(Chain, sdl, Src, FIN, 4707 MachinePointerInfo::getFixedStack(FI), 4708 true, false, 0); 4709 setValue(&I, Res); 4710 DAG.setRoot(Res); 4711 return nullptr; 4712 } 4713 case Intrinsic::objectsize: { 4714 // If we don't know by now, we're never going to know. 4715 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4716 4717 assert(CI && "Non-constant type in __builtin_object_size?"); 4718 4719 SDValue Arg = getValue(I.getCalledValue()); 4720 EVT Ty = Arg.getValueType(); 4721 4722 if (CI->isZero()) 4723 Res = DAG.getConstant(-1ULL, sdl, Ty); 4724 else 4725 Res = DAG.getConstant(0, sdl, Ty); 4726 4727 setValue(&I, Res); 4728 return nullptr; 4729 } 4730 case Intrinsic::annotation: 4731 case Intrinsic::ptr_annotation: 4732 // Drop the intrinsic, but forward the value 4733 setValue(&I, getValue(I.getOperand(0))); 4734 return nullptr; 4735 case Intrinsic::assume: 4736 case Intrinsic::var_annotation: 4737 // Discard annotate attributes and assumptions 4738 return nullptr; 4739 4740 case Intrinsic::init_trampoline: { 4741 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4742 4743 SDValue Ops[6]; 4744 Ops[0] = getRoot(); 4745 Ops[1] = getValue(I.getArgOperand(0)); 4746 Ops[2] = getValue(I.getArgOperand(1)); 4747 Ops[3] = getValue(I.getArgOperand(2)); 4748 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4749 Ops[5] = DAG.getSrcValue(F); 4750 4751 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4752 4753 DAG.setRoot(Res); 4754 return nullptr; 4755 } 4756 case Intrinsic::adjust_trampoline: { 4757 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4758 TLI.getPointerTy(), 4759 getValue(I.getArgOperand(0)))); 4760 return nullptr; 4761 } 4762 case Intrinsic::gcroot: 4763 if (GFI) { 4764 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4765 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4766 4767 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4768 GFI->addStackRoot(FI->getIndex(), TypeMap); 4769 } 4770 return nullptr; 4771 case Intrinsic::gcread: 4772 case Intrinsic::gcwrite: 4773 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4774 case Intrinsic::flt_rounds: 4775 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4776 return nullptr; 4777 4778 case Intrinsic::expect: { 4779 // Just replace __builtin_expect(exp, c) with EXP. 4780 setValue(&I, getValue(I.getArgOperand(0))); 4781 return nullptr; 4782 } 4783 4784 case Intrinsic::debugtrap: 4785 case Intrinsic::trap: { 4786 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 4787 if (TrapFuncName.empty()) { 4788 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4789 ISD::TRAP : ISD::DEBUGTRAP; 4790 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4791 return nullptr; 4792 } 4793 TargetLowering::ArgListTy Args; 4794 4795 TargetLowering::CallLoweringInfo CLI(DAG); 4796 CLI.setDebugLoc(sdl).setChain(getRoot()) 4797 .setCallee(CallingConv::C, I.getType(), 4798 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4799 std::move(Args), 0); 4800 4801 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4802 DAG.setRoot(Result.second); 4803 return nullptr; 4804 } 4805 4806 case Intrinsic::uadd_with_overflow: 4807 case Intrinsic::sadd_with_overflow: 4808 case Intrinsic::usub_with_overflow: 4809 case Intrinsic::ssub_with_overflow: 4810 case Intrinsic::umul_with_overflow: 4811 case Intrinsic::smul_with_overflow: { 4812 ISD::NodeType Op; 4813 switch (Intrinsic) { 4814 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4815 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4816 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4817 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4818 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4819 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4820 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4821 } 4822 SDValue Op1 = getValue(I.getArgOperand(0)); 4823 SDValue Op2 = getValue(I.getArgOperand(1)); 4824 4825 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4826 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4827 return nullptr; 4828 } 4829 case Intrinsic::prefetch: { 4830 SDValue Ops[5]; 4831 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4832 Ops[0] = getRoot(); 4833 Ops[1] = getValue(I.getArgOperand(0)); 4834 Ops[2] = getValue(I.getArgOperand(1)); 4835 Ops[3] = getValue(I.getArgOperand(2)); 4836 Ops[4] = getValue(I.getArgOperand(3)); 4837 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4838 DAG.getVTList(MVT::Other), Ops, 4839 EVT::getIntegerVT(*Context, 8), 4840 MachinePointerInfo(I.getArgOperand(0)), 4841 0, /* align */ 4842 false, /* volatile */ 4843 rw==0, /* read */ 4844 rw==1)); /* write */ 4845 return nullptr; 4846 } 4847 case Intrinsic::lifetime_start: 4848 case Intrinsic::lifetime_end: { 4849 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4850 // Stack coloring is not enabled in O0, discard region information. 4851 if (TM.getOptLevel() == CodeGenOpt::None) 4852 return nullptr; 4853 4854 SmallVector<Value *, 4> Allocas; 4855 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4856 4857 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4858 E = Allocas.end(); Object != E; ++Object) { 4859 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4860 4861 // Could not find an Alloca. 4862 if (!LifetimeObject) 4863 continue; 4864 4865 // First check that the Alloca is static, otherwise it won't have a 4866 // valid frame index. 4867 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4868 if (SI == FuncInfo.StaticAllocaMap.end()) 4869 return nullptr; 4870 4871 int FI = SI->second; 4872 4873 SDValue Ops[2]; 4874 Ops[0] = getRoot(); 4875 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 4876 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4877 4878 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4879 DAG.setRoot(Res); 4880 } 4881 return nullptr; 4882 } 4883 case Intrinsic::invariant_start: 4884 // Discard region information. 4885 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4886 return nullptr; 4887 case Intrinsic::invariant_end: 4888 // Discard region information. 4889 return nullptr; 4890 case Intrinsic::stackprotectorcheck: { 4891 // Do not actually emit anything for this basic block. Instead we initialize 4892 // the stack protector descriptor and export the guard variable so we can 4893 // access it in FinishBasicBlock. 4894 const BasicBlock *BB = I.getParent(); 4895 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4896 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4897 4898 // Flush our exports since we are going to process a terminator. 4899 (void)getControlRoot(); 4900 return nullptr; 4901 } 4902 case Intrinsic::clear_cache: 4903 return TLI.getClearCacheBuiltinName(); 4904 case Intrinsic::eh_actions: 4905 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4906 return nullptr; 4907 case Intrinsic::donothing: 4908 // ignore 4909 return nullptr; 4910 case Intrinsic::experimental_stackmap: { 4911 visitStackmap(I); 4912 return nullptr; 4913 } 4914 case Intrinsic::experimental_patchpoint_void: 4915 case Intrinsic::experimental_patchpoint_i64: { 4916 visitPatchpoint(&I); 4917 return nullptr; 4918 } 4919 case Intrinsic::experimental_gc_statepoint: { 4920 visitStatepoint(I); 4921 return nullptr; 4922 } 4923 case Intrinsic::experimental_gc_result_int: 4924 case Intrinsic::experimental_gc_result_float: 4925 case Intrinsic::experimental_gc_result_ptr: 4926 case Intrinsic::experimental_gc_result: { 4927 visitGCResult(I); 4928 return nullptr; 4929 } 4930 case Intrinsic::experimental_gc_relocate: { 4931 visitGCRelocate(I); 4932 return nullptr; 4933 } 4934 case Intrinsic::instrprof_increment: 4935 llvm_unreachable("instrprof failed to lower an increment"); 4936 4937 case Intrinsic::frameescape: { 4938 MachineFunction &MF = DAG.getMachineFunction(); 4939 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4940 4941 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 4942 // is the same on all targets. 4943 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4944 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4945 if (isa<ConstantPointerNull>(Arg)) 4946 continue; // Skip null pointers. They represent a hole in index space. 4947 AllocaInst *Slot = cast<AllocaInst>(Arg); 4948 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4949 "can only escape static allocas"); 4950 int FI = FuncInfo.StaticAllocaMap[Slot]; 4951 MCSymbol *FrameAllocSym = 4952 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4953 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4954 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4955 TII->get(TargetOpcode::FRAME_ALLOC)) 4956 .addSym(FrameAllocSym) 4957 .addFrameIndex(FI); 4958 } 4959 4960 return nullptr; 4961 } 4962 4963 case Intrinsic::framerecover: { 4964 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 4965 MachineFunction &MF = DAG.getMachineFunction(); 4966 MVT PtrVT = TLI.getPointerTy(0); 4967 4968 // Get the symbol that defines the frame offset. 4969 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 4970 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 4971 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 4972 MCSymbol *FrameAllocSym = 4973 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4974 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 4975 4976 // Create a TargetExternalSymbol for the label to avoid any target lowering 4977 // that would make this PC relative. 4978 StringRef Name = FrameAllocSym->getName(); 4979 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 4980 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 4981 SDValue OffsetVal = 4982 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 4983 4984 // Add the offset to the FP. 4985 Value *FP = I.getArgOperand(1); 4986 SDValue FPVal = getValue(FP); 4987 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 4988 setValue(&I, Add); 4989 4990 return nullptr; 4991 } 4992 case Intrinsic::eh_begincatch: 4993 case Intrinsic::eh_endcatch: 4994 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 4995 case Intrinsic::eh_exceptioncode: { 4996 unsigned Reg = TLI.getExceptionPointerRegister(); 4997 assert(Reg && "cannot get exception code on this platform"); 4998 MVT PtrVT = TLI.getPointerTy(); 4999 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5000 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5001 SDValue N = 5002 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5003 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5004 setValue(&I, N); 5005 return nullptr; 5006 } 5007 } 5008 } 5009 5010 std::pair<SDValue, SDValue> 5011 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5012 MachineBasicBlock *LandingPad) { 5013 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5014 MCSymbol *BeginLabel = nullptr; 5015 5016 if (LandingPad) { 5017 // Insert a label before the invoke call to mark the try range. This can be 5018 // used to detect deletion of the invoke via the MachineModuleInfo. 5019 BeginLabel = MMI.getContext().CreateTempSymbol(); 5020 5021 // For SjLj, keep track of which landing pads go with which invokes 5022 // so as to maintain the ordering of pads in the LSDA. 5023 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5024 if (CallSiteIndex) { 5025 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5026 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5027 5028 // Now that the call site is handled, stop tracking it. 5029 MMI.setCurrentCallSite(0); 5030 } 5031 5032 // Both PendingLoads and PendingExports must be flushed here; 5033 // this call might not return. 5034 (void)getRoot(); 5035 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5036 5037 CLI.setChain(getRoot()); 5038 } 5039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5040 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5041 5042 assert((CLI.IsTailCall || Result.second.getNode()) && 5043 "Non-null chain expected with non-tail call!"); 5044 assert((Result.second.getNode() || !Result.first.getNode()) && 5045 "Null value expected with tail call!"); 5046 5047 if (!Result.second.getNode()) { 5048 // As a special case, a null chain means that a tail call has been emitted 5049 // and the DAG root is already updated. 5050 HasTailCall = true; 5051 5052 // Since there's no actual continuation from this block, nothing can be 5053 // relying on us setting vregs for them. 5054 PendingExports.clear(); 5055 } else { 5056 DAG.setRoot(Result.second); 5057 } 5058 5059 if (LandingPad) { 5060 // Insert a label at the end of the invoke call to mark the try range. This 5061 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5062 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5063 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5064 5065 // Inform MachineModuleInfo of range. 5066 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5067 } 5068 5069 return Result; 5070 } 5071 5072 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5073 bool isTailCall, 5074 MachineBasicBlock *LandingPad) { 5075 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5076 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5077 Type *RetTy = FTy->getReturnType(); 5078 5079 TargetLowering::ArgListTy Args; 5080 TargetLowering::ArgListEntry Entry; 5081 Args.reserve(CS.arg_size()); 5082 5083 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5084 i != e; ++i) { 5085 const Value *V = *i; 5086 5087 // Skip empty types 5088 if (V->getType()->isEmptyTy()) 5089 continue; 5090 5091 SDValue ArgNode = getValue(V); 5092 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5093 5094 // Skip the first return-type Attribute to get to params. 5095 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5096 Args.push_back(Entry); 5097 5098 // If we have an explicit sret argument that is an Instruction, (i.e., it 5099 // might point to function-local memory), we can't meaningfully tail-call. 5100 if (Entry.isSRet && isa<Instruction>(V)) 5101 isTailCall = false; 5102 } 5103 5104 // Check if target-independent constraints permit a tail call here. 5105 // Target-dependent constraints are checked within TLI->LowerCallTo. 5106 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5107 isTailCall = false; 5108 5109 TargetLowering::CallLoweringInfo CLI(DAG); 5110 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5111 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5112 .setTailCall(isTailCall); 5113 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5114 5115 if (Result.first.getNode()) 5116 setValue(CS.getInstruction(), Result.first); 5117 } 5118 5119 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5120 /// value is equal or not-equal to zero. 5121 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5122 for (const User *U : V->users()) { 5123 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5124 if (IC->isEquality()) 5125 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5126 if (C->isNullValue()) 5127 continue; 5128 // Unknown instruction. 5129 return false; 5130 } 5131 return true; 5132 } 5133 5134 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5135 Type *LoadTy, 5136 SelectionDAGBuilder &Builder) { 5137 5138 // Check to see if this load can be trivially constant folded, e.g. if the 5139 // input is from a string literal. 5140 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5141 // Cast pointer to the type we really want to load. 5142 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5143 PointerType::getUnqual(LoadTy)); 5144 5145 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5146 const_cast<Constant *>(LoadInput), *Builder.DL)) 5147 return Builder.getValue(LoadCst); 5148 } 5149 5150 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5151 // still constant memory, the input chain can be the entry node. 5152 SDValue Root; 5153 bool ConstantMemory = false; 5154 5155 // Do not serialize (non-volatile) loads of constant memory with anything. 5156 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5157 Root = Builder.DAG.getEntryNode(); 5158 ConstantMemory = true; 5159 } else { 5160 // Do not serialize non-volatile loads against each other. 5161 Root = Builder.DAG.getRoot(); 5162 } 5163 5164 SDValue Ptr = Builder.getValue(PtrVal); 5165 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5166 Ptr, MachinePointerInfo(PtrVal), 5167 false /*volatile*/, 5168 false /*nontemporal*/, 5169 false /*isinvariant*/, 1 /* align=1 */); 5170 5171 if (!ConstantMemory) 5172 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5173 return LoadVal; 5174 } 5175 5176 /// processIntegerCallValue - Record the value for an instruction that 5177 /// produces an integer result, converting the type where necessary. 5178 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5179 SDValue Value, 5180 bool IsSigned) { 5181 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5182 if (IsSigned) 5183 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5184 else 5185 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5186 setValue(&I, Value); 5187 } 5188 5189 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5190 /// If so, return true and lower it, otherwise return false and it will be 5191 /// lowered like a normal call. 5192 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5193 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5194 if (I.getNumArgOperands() != 3) 5195 return false; 5196 5197 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5198 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5199 !I.getArgOperand(2)->getType()->isIntegerTy() || 5200 !I.getType()->isIntegerTy()) 5201 return false; 5202 5203 const Value *Size = I.getArgOperand(2); 5204 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5205 if (CSize && CSize->getZExtValue() == 0) { 5206 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5207 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5208 return true; 5209 } 5210 5211 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5212 std::pair<SDValue, SDValue> Res = 5213 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5214 getValue(LHS), getValue(RHS), getValue(Size), 5215 MachinePointerInfo(LHS), 5216 MachinePointerInfo(RHS)); 5217 if (Res.first.getNode()) { 5218 processIntegerCallValue(I, Res.first, true); 5219 PendingLoads.push_back(Res.second); 5220 return true; 5221 } 5222 5223 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5224 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5225 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5226 bool ActuallyDoIt = true; 5227 MVT LoadVT; 5228 Type *LoadTy; 5229 switch (CSize->getZExtValue()) { 5230 default: 5231 LoadVT = MVT::Other; 5232 LoadTy = nullptr; 5233 ActuallyDoIt = false; 5234 break; 5235 case 2: 5236 LoadVT = MVT::i16; 5237 LoadTy = Type::getInt16Ty(CSize->getContext()); 5238 break; 5239 case 4: 5240 LoadVT = MVT::i32; 5241 LoadTy = Type::getInt32Ty(CSize->getContext()); 5242 break; 5243 case 8: 5244 LoadVT = MVT::i64; 5245 LoadTy = Type::getInt64Ty(CSize->getContext()); 5246 break; 5247 /* 5248 case 16: 5249 LoadVT = MVT::v4i32; 5250 LoadTy = Type::getInt32Ty(CSize->getContext()); 5251 LoadTy = VectorType::get(LoadTy, 4); 5252 break; 5253 */ 5254 } 5255 5256 // This turns into unaligned loads. We only do this if the target natively 5257 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5258 // we'll only produce a small number of byte loads. 5259 5260 // Require that we can find a legal MVT, and only do this if the target 5261 // supports unaligned loads of that type. Expanding into byte loads would 5262 // bloat the code. 5263 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5264 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5265 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5266 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5267 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5268 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5269 // TODO: Check alignment of src and dest ptrs. 5270 if (!TLI.isTypeLegal(LoadVT) || 5271 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5272 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5273 ActuallyDoIt = false; 5274 } 5275 5276 if (ActuallyDoIt) { 5277 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5278 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5279 5280 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5281 ISD::SETNE); 5282 processIntegerCallValue(I, Res, false); 5283 return true; 5284 } 5285 } 5286 5287 5288 return false; 5289 } 5290 5291 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5292 /// form. If so, return true and lower it, otherwise return false and it 5293 /// will be lowered like a normal call. 5294 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5295 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5296 if (I.getNumArgOperands() != 3) 5297 return false; 5298 5299 const Value *Src = I.getArgOperand(0); 5300 const Value *Char = I.getArgOperand(1); 5301 const Value *Length = I.getArgOperand(2); 5302 if (!Src->getType()->isPointerTy() || 5303 !Char->getType()->isIntegerTy() || 5304 !Length->getType()->isIntegerTy() || 5305 !I.getType()->isPointerTy()) 5306 return false; 5307 5308 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5309 std::pair<SDValue, SDValue> Res = 5310 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5311 getValue(Src), getValue(Char), getValue(Length), 5312 MachinePointerInfo(Src)); 5313 if (Res.first.getNode()) { 5314 setValue(&I, Res.first); 5315 PendingLoads.push_back(Res.second); 5316 return true; 5317 } 5318 5319 return false; 5320 } 5321 5322 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5323 /// optimized form. If so, return true and lower it, otherwise return false 5324 /// and it will be lowered like a normal call. 5325 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5326 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5327 if (I.getNumArgOperands() != 2) 5328 return false; 5329 5330 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5331 if (!Arg0->getType()->isPointerTy() || 5332 !Arg1->getType()->isPointerTy() || 5333 !I.getType()->isPointerTy()) 5334 return false; 5335 5336 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5337 std::pair<SDValue, SDValue> Res = 5338 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5339 getValue(Arg0), getValue(Arg1), 5340 MachinePointerInfo(Arg0), 5341 MachinePointerInfo(Arg1), isStpcpy); 5342 if (Res.first.getNode()) { 5343 setValue(&I, Res.first); 5344 DAG.setRoot(Res.second); 5345 return true; 5346 } 5347 5348 return false; 5349 } 5350 5351 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5352 /// If so, return true and lower it, otherwise return false and it will be 5353 /// lowered like a normal call. 5354 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5355 // Verify that the prototype makes sense. int strcmp(void*,void*) 5356 if (I.getNumArgOperands() != 2) 5357 return false; 5358 5359 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5360 if (!Arg0->getType()->isPointerTy() || 5361 !Arg1->getType()->isPointerTy() || 5362 !I.getType()->isIntegerTy()) 5363 return false; 5364 5365 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5366 std::pair<SDValue, SDValue> Res = 5367 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5368 getValue(Arg0), getValue(Arg1), 5369 MachinePointerInfo(Arg0), 5370 MachinePointerInfo(Arg1)); 5371 if (Res.first.getNode()) { 5372 processIntegerCallValue(I, Res.first, true); 5373 PendingLoads.push_back(Res.second); 5374 return true; 5375 } 5376 5377 return false; 5378 } 5379 5380 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5381 /// form. If so, return true and lower it, otherwise return false and it 5382 /// will be lowered like a normal call. 5383 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5384 // Verify that the prototype makes sense. size_t strlen(char *) 5385 if (I.getNumArgOperands() != 1) 5386 return false; 5387 5388 const Value *Arg0 = I.getArgOperand(0); 5389 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5390 return false; 5391 5392 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5393 std::pair<SDValue, SDValue> Res = 5394 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5395 getValue(Arg0), MachinePointerInfo(Arg0)); 5396 if (Res.first.getNode()) { 5397 processIntegerCallValue(I, Res.first, false); 5398 PendingLoads.push_back(Res.second); 5399 return true; 5400 } 5401 5402 return false; 5403 } 5404 5405 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5406 /// form. If so, return true and lower it, otherwise return false and it 5407 /// will be lowered like a normal call. 5408 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5409 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5410 if (I.getNumArgOperands() != 2) 5411 return false; 5412 5413 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5414 if (!Arg0->getType()->isPointerTy() || 5415 !Arg1->getType()->isIntegerTy() || 5416 !I.getType()->isIntegerTy()) 5417 return false; 5418 5419 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5420 std::pair<SDValue, SDValue> Res = 5421 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5422 getValue(Arg0), getValue(Arg1), 5423 MachinePointerInfo(Arg0)); 5424 if (Res.first.getNode()) { 5425 processIntegerCallValue(I, Res.first, false); 5426 PendingLoads.push_back(Res.second); 5427 return true; 5428 } 5429 5430 return false; 5431 } 5432 5433 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5434 /// operation (as expected), translate it to an SDNode with the specified opcode 5435 /// and return true. 5436 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5437 unsigned Opcode) { 5438 // Sanity check that it really is a unary floating-point call. 5439 if (I.getNumArgOperands() != 1 || 5440 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5441 I.getType() != I.getArgOperand(0)->getType() || 5442 !I.onlyReadsMemory()) 5443 return false; 5444 5445 SDValue Tmp = getValue(I.getArgOperand(0)); 5446 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5447 return true; 5448 } 5449 5450 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5451 /// operation (as expected), translate it to an SDNode with the specified opcode 5452 /// and return true. 5453 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5454 unsigned Opcode) { 5455 // Sanity check that it really is a binary floating-point call. 5456 if (I.getNumArgOperands() != 2 || 5457 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5458 I.getType() != I.getArgOperand(0)->getType() || 5459 I.getType() != I.getArgOperand(1)->getType() || 5460 !I.onlyReadsMemory()) 5461 return false; 5462 5463 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5464 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5465 EVT VT = Tmp0.getValueType(); 5466 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5467 return true; 5468 } 5469 5470 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5471 // Handle inline assembly differently. 5472 if (isa<InlineAsm>(I.getCalledValue())) { 5473 visitInlineAsm(&I); 5474 return; 5475 } 5476 5477 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5478 ComputeUsesVAFloatArgument(I, &MMI); 5479 5480 const char *RenameFn = nullptr; 5481 if (Function *F = I.getCalledFunction()) { 5482 if (F->isDeclaration()) { 5483 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5484 if (unsigned IID = II->getIntrinsicID(F)) { 5485 RenameFn = visitIntrinsicCall(I, IID); 5486 if (!RenameFn) 5487 return; 5488 } 5489 } 5490 if (unsigned IID = F->getIntrinsicID()) { 5491 RenameFn = visitIntrinsicCall(I, IID); 5492 if (!RenameFn) 5493 return; 5494 } 5495 } 5496 5497 // Check for well-known libc/libm calls. If the function is internal, it 5498 // can't be a library call. 5499 LibFunc::Func Func; 5500 if (!F->hasLocalLinkage() && F->hasName() && 5501 LibInfo->getLibFunc(F->getName(), Func) && 5502 LibInfo->hasOptimizedCodeGen(Func)) { 5503 switch (Func) { 5504 default: break; 5505 case LibFunc::copysign: 5506 case LibFunc::copysignf: 5507 case LibFunc::copysignl: 5508 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5509 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5510 I.getType() == I.getArgOperand(0)->getType() && 5511 I.getType() == I.getArgOperand(1)->getType() && 5512 I.onlyReadsMemory()) { 5513 SDValue LHS = getValue(I.getArgOperand(0)); 5514 SDValue RHS = getValue(I.getArgOperand(1)); 5515 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5516 LHS.getValueType(), LHS, RHS)); 5517 return; 5518 } 5519 break; 5520 case LibFunc::fabs: 5521 case LibFunc::fabsf: 5522 case LibFunc::fabsl: 5523 if (visitUnaryFloatCall(I, ISD::FABS)) 5524 return; 5525 break; 5526 case LibFunc::fmin: 5527 case LibFunc::fminf: 5528 case LibFunc::fminl: 5529 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5530 return; 5531 break; 5532 case LibFunc::fmax: 5533 case LibFunc::fmaxf: 5534 case LibFunc::fmaxl: 5535 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5536 return; 5537 break; 5538 case LibFunc::sin: 5539 case LibFunc::sinf: 5540 case LibFunc::sinl: 5541 if (visitUnaryFloatCall(I, ISD::FSIN)) 5542 return; 5543 break; 5544 case LibFunc::cos: 5545 case LibFunc::cosf: 5546 case LibFunc::cosl: 5547 if (visitUnaryFloatCall(I, ISD::FCOS)) 5548 return; 5549 break; 5550 case LibFunc::sqrt: 5551 case LibFunc::sqrtf: 5552 case LibFunc::sqrtl: 5553 case LibFunc::sqrt_finite: 5554 case LibFunc::sqrtf_finite: 5555 case LibFunc::sqrtl_finite: 5556 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5557 return; 5558 break; 5559 case LibFunc::floor: 5560 case LibFunc::floorf: 5561 case LibFunc::floorl: 5562 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5563 return; 5564 break; 5565 case LibFunc::nearbyint: 5566 case LibFunc::nearbyintf: 5567 case LibFunc::nearbyintl: 5568 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5569 return; 5570 break; 5571 case LibFunc::ceil: 5572 case LibFunc::ceilf: 5573 case LibFunc::ceill: 5574 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5575 return; 5576 break; 5577 case LibFunc::rint: 5578 case LibFunc::rintf: 5579 case LibFunc::rintl: 5580 if (visitUnaryFloatCall(I, ISD::FRINT)) 5581 return; 5582 break; 5583 case LibFunc::round: 5584 case LibFunc::roundf: 5585 case LibFunc::roundl: 5586 if (visitUnaryFloatCall(I, ISD::FROUND)) 5587 return; 5588 break; 5589 case LibFunc::trunc: 5590 case LibFunc::truncf: 5591 case LibFunc::truncl: 5592 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5593 return; 5594 break; 5595 case LibFunc::log2: 5596 case LibFunc::log2f: 5597 case LibFunc::log2l: 5598 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5599 return; 5600 break; 5601 case LibFunc::exp2: 5602 case LibFunc::exp2f: 5603 case LibFunc::exp2l: 5604 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5605 return; 5606 break; 5607 case LibFunc::memcmp: 5608 if (visitMemCmpCall(I)) 5609 return; 5610 break; 5611 case LibFunc::memchr: 5612 if (visitMemChrCall(I)) 5613 return; 5614 break; 5615 case LibFunc::strcpy: 5616 if (visitStrCpyCall(I, false)) 5617 return; 5618 break; 5619 case LibFunc::stpcpy: 5620 if (visitStrCpyCall(I, true)) 5621 return; 5622 break; 5623 case LibFunc::strcmp: 5624 if (visitStrCmpCall(I)) 5625 return; 5626 break; 5627 case LibFunc::strlen: 5628 if (visitStrLenCall(I)) 5629 return; 5630 break; 5631 case LibFunc::strnlen: 5632 if (visitStrNLenCall(I)) 5633 return; 5634 break; 5635 } 5636 } 5637 } 5638 5639 SDValue Callee; 5640 if (!RenameFn) 5641 Callee = getValue(I.getCalledValue()); 5642 else 5643 Callee = DAG.getExternalSymbol(RenameFn, 5644 DAG.getTargetLoweringInfo().getPointerTy()); 5645 5646 // Check if we can potentially perform a tail call. More detailed checking is 5647 // be done within LowerCallTo, after more information about the call is known. 5648 LowerCallTo(&I, Callee, I.isTailCall()); 5649 } 5650 5651 namespace { 5652 5653 /// AsmOperandInfo - This contains information for each constraint that we are 5654 /// lowering. 5655 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5656 public: 5657 /// CallOperand - If this is the result output operand or a clobber 5658 /// this is null, otherwise it is the incoming operand to the CallInst. 5659 /// This gets modified as the asm is processed. 5660 SDValue CallOperand; 5661 5662 /// AssignedRegs - If this is a register or register class operand, this 5663 /// contains the set of register corresponding to the operand. 5664 RegsForValue AssignedRegs; 5665 5666 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5667 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5668 } 5669 5670 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5671 /// corresponds to. If there is no Value* for this operand, it returns 5672 /// MVT::Other. 5673 EVT getCallOperandValEVT(LLVMContext &Context, 5674 const TargetLowering &TLI, 5675 const DataLayout *DL) const { 5676 if (!CallOperandVal) return MVT::Other; 5677 5678 if (isa<BasicBlock>(CallOperandVal)) 5679 return TLI.getPointerTy(); 5680 5681 llvm::Type *OpTy = CallOperandVal->getType(); 5682 5683 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5684 // If this is an indirect operand, the operand is a pointer to the 5685 // accessed type. 5686 if (isIndirect) { 5687 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5688 if (!PtrTy) 5689 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5690 OpTy = PtrTy->getElementType(); 5691 } 5692 5693 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5694 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5695 if (STy->getNumElements() == 1) 5696 OpTy = STy->getElementType(0); 5697 5698 // If OpTy is not a single value, it may be a struct/union that we 5699 // can tile with integers. 5700 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5701 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 5702 switch (BitSize) { 5703 default: break; 5704 case 1: 5705 case 8: 5706 case 16: 5707 case 32: 5708 case 64: 5709 case 128: 5710 OpTy = IntegerType::get(Context, BitSize); 5711 break; 5712 } 5713 } 5714 5715 return TLI.getValueType(OpTy, true); 5716 } 5717 }; 5718 5719 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5720 5721 } // end anonymous namespace 5722 5723 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5724 /// specified operand. We prefer to assign virtual registers, to allow the 5725 /// register allocator to handle the assignment process. However, if the asm 5726 /// uses features that we can't model on machineinstrs, we have SDISel do the 5727 /// allocation. This produces generally horrible, but correct, code. 5728 /// 5729 /// OpInfo describes the operand. 5730 /// 5731 static void GetRegistersForValue(SelectionDAG &DAG, 5732 const TargetLowering &TLI, 5733 SDLoc DL, 5734 SDISelAsmOperandInfo &OpInfo) { 5735 LLVMContext &Context = *DAG.getContext(); 5736 5737 MachineFunction &MF = DAG.getMachineFunction(); 5738 SmallVector<unsigned, 4> Regs; 5739 5740 // If this is a constraint for a single physreg, or a constraint for a 5741 // register class, find it. 5742 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5743 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5744 OpInfo.ConstraintCode, 5745 OpInfo.ConstraintVT); 5746 5747 unsigned NumRegs = 1; 5748 if (OpInfo.ConstraintVT != MVT::Other) { 5749 // If this is a FP input in an integer register (or visa versa) insert a bit 5750 // cast of the input value. More generally, handle any case where the input 5751 // value disagrees with the register class we plan to stick this in. 5752 if (OpInfo.Type == InlineAsm::isInput && 5753 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5754 // Try to convert to the first EVT that the reg class contains. If the 5755 // types are identical size, use a bitcast to convert (e.g. two differing 5756 // vector types). 5757 MVT RegVT = *PhysReg.second->vt_begin(); 5758 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5759 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5760 RegVT, OpInfo.CallOperand); 5761 OpInfo.ConstraintVT = RegVT; 5762 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5763 // If the input is a FP value and we want it in FP registers, do a 5764 // bitcast to the corresponding integer type. This turns an f64 value 5765 // into i64, which can be passed with two i32 values on a 32-bit 5766 // machine. 5767 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5768 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5769 RegVT, OpInfo.CallOperand); 5770 OpInfo.ConstraintVT = RegVT; 5771 } 5772 } 5773 5774 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5775 } 5776 5777 MVT RegVT; 5778 EVT ValueVT = OpInfo.ConstraintVT; 5779 5780 // If this is a constraint for a specific physical register, like {r17}, 5781 // assign it now. 5782 if (unsigned AssignedReg = PhysReg.first) { 5783 const TargetRegisterClass *RC = PhysReg.second; 5784 if (OpInfo.ConstraintVT == MVT::Other) 5785 ValueVT = *RC->vt_begin(); 5786 5787 // Get the actual register value type. This is important, because the user 5788 // may have asked for (e.g.) the AX register in i32 type. We need to 5789 // remember that AX is actually i16 to get the right extension. 5790 RegVT = *RC->vt_begin(); 5791 5792 // This is a explicit reference to a physical register. 5793 Regs.push_back(AssignedReg); 5794 5795 // If this is an expanded reference, add the rest of the regs to Regs. 5796 if (NumRegs != 1) { 5797 TargetRegisterClass::iterator I = RC->begin(); 5798 for (; *I != AssignedReg; ++I) 5799 assert(I != RC->end() && "Didn't find reg!"); 5800 5801 // Already added the first reg. 5802 --NumRegs; ++I; 5803 for (; NumRegs; --NumRegs, ++I) { 5804 assert(I != RC->end() && "Ran out of registers to allocate!"); 5805 Regs.push_back(*I); 5806 } 5807 } 5808 5809 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5810 return; 5811 } 5812 5813 // Otherwise, if this was a reference to an LLVM register class, create vregs 5814 // for this reference. 5815 if (const TargetRegisterClass *RC = PhysReg.second) { 5816 RegVT = *RC->vt_begin(); 5817 if (OpInfo.ConstraintVT == MVT::Other) 5818 ValueVT = RegVT; 5819 5820 // Create the appropriate number of virtual registers. 5821 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5822 for (; NumRegs; --NumRegs) 5823 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5824 5825 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5826 return; 5827 } 5828 5829 // Otherwise, we couldn't allocate enough registers for this. 5830 } 5831 5832 /// visitInlineAsm - Handle a call to an InlineAsm object. 5833 /// 5834 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5835 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5836 5837 /// ConstraintOperands - Information about all of the constraints. 5838 SDISelAsmOperandInfoVector ConstraintOperands; 5839 5840 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5841 TargetLowering::AsmOperandInfoVector TargetConstraints = 5842 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 5843 5844 bool hasMemory = false; 5845 5846 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5847 unsigned ResNo = 0; // ResNo - The result number of the next output. 5848 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5849 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5850 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5851 5852 MVT OpVT = MVT::Other; 5853 5854 // Compute the value type for each operand. 5855 switch (OpInfo.Type) { 5856 case InlineAsm::isOutput: 5857 // Indirect outputs just consume an argument. 5858 if (OpInfo.isIndirect) { 5859 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5860 break; 5861 } 5862 5863 // The return value of the call is this value. As such, there is no 5864 // corresponding argument. 5865 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5866 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5867 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 5868 } else { 5869 assert(ResNo == 0 && "Asm only has one result!"); 5870 OpVT = TLI.getSimpleValueType(CS.getType()); 5871 } 5872 ++ResNo; 5873 break; 5874 case InlineAsm::isInput: 5875 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5876 break; 5877 case InlineAsm::isClobber: 5878 // Nothing to do. 5879 break; 5880 } 5881 5882 // If this is an input or an indirect output, process the call argument. 5883 // BasicBlocks are labels, currently appearing only in asm's. 5884 if (OpInfo.CallOperandVal) { 5885 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5886 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5887 } else { 5888 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5889 } 5890 5891 OpVT = 5892 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 5893 } 5894 5895 OpInfo.ConstraintVT = OpVT; 5896 5897 // Indirect operand accesses access memory. 5898 if (OpInfo.isIndirect) 5899 hasMemory = true; 5900 else { 5901 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5902 TargetLowering::ConstraintType 5903 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5904 if (CType == TargetLowering::C_Memory) { 5905 hasMemory = true; 5906 break; 5907 } 5908 } 5909 } 5910 } 5911 5912 SDValue Chain, Flag; 5913 5914 // We won't need to flush pending loads if this asm doesn't touch 5915 // memory and is nonvolatile. 5916 if (hasMemory || IA->hasSideEffects()) 5917 Chain = getRoot(); 5918 else 5919 Chain = DAG.getRoot(); 5920 5921 // Second pass over the constraints: compute which constraint option to use 5922 // and assign registers to constraints that want a specific physreg. 5923 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5924 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5925 5926 // If this is an output operand with a matching input operand, look up the 5927 // matching input. If their types mismatch, e.g. one is an integer, the 5928 // other is floating point, or their sizes are different, flag it as an 5929 // error. 5930 if (OpInfo.hasMatchingInput()) { 5931 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5932 5933 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5934 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5935 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5936 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5937 OpInfo.ConstraintVT); 5938 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5939 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5940 Input.ConstraintVT); 5941 if ((OpInfo.ConstraintVT.isInteger() != 5942 Input.ConstraintVT.isInteger()) || 5943 (MatchRC.second != InputRC.second)) { 5944 report_fatal_error("Unsupported asm: input constraint" 5945 " with a matching output constraint of" 5946 " incompatible type!"); 5947 } 5948 Input.ConstraintVT = OpInfo.ConstraintVT; 5949 } 5950 } 5951 5952 // Compute the constraint code and ConstraintType to use. 5953 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5954 5955 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5956 OpInfo.Type == InlineAsm::isClobber) 5957 continue; 5958 5959 // If this is a memory input, and if the operand is not indirect, do what we 5960 // need to to provide an address for the memory input. 5961 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5962 !OpInfo.isIndirect) { 5963 assert((OpInfo.isMultipleAlternative || 5964 (OpInfo.Type == InlineAsm::isInput)) && 5965 "Can only indirectify direct input operands!"); 5966 5967 // Memory operands really want the address of the value. If we don't have 5968 // an indirect input, put it in the constpool if we can, otherwise spill 5969 // it to a stack slot. 5970 // TODO: This isn't quite right. We need to handle these according to 5971 // the addressing mode that the constraint wants. Also, this may take 5972 // an additional register for the computation and we don't want that 5973 // either. 5974 5975 // If the operand is a float, integer, or vector constant, spill to a 5976 // constant pool entry to get its address. 5977 const Value *OpVal = OpInfo.CallOperandVal; 5978 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5979 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5980 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5981 TLI.getPointerTy()); 5982 } else { 5983 // Otherwise, create a stack slot and emit a store to it before the 5984 // asm. 5985 Type *Ty = OpVal->getType(); 5986 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 5987 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 5988 MachineFunction &MF = DAG.getMachineFunction(); 5989 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5990 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5991 Chain = DAG.getStore(Chain, getCurSDLoc(), 5992 OpInfo.CallOperand, StackSlot, 5993 MachinePointerInfo::getFixedStack(SSFI), 5994 false, false, 0); 5995 OpInfo.CallOperand = StackSlot; 5996 } 5997 5998 // There is no longer a Value* corresponding to this operand. 5999 OpInfo.CallOperandVal = nullptr; 6000 6001 // It is now an indirect operand. 6002 OpInfo.isIndirect = true; 6003 } 6004 6005 // If this constraint is for a specific register, allocate it before 6006 // anything else. 6007 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6008 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6009 } 6010 6011 // Second pass - Loop over all of the operands, assigning virtual or physregs 6012 // to register class operands. 6013 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6014 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6015 6016 // C_Register operands have already been allocated, Other/Memory don't need 6017 // to be. 6018 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6019 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6020 } 6021 6022 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6023 std::vector<SDValue> AsmNodeOperands; 6024 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6025 AsmNodeOperands.push_back( 6026 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6027 TLI.getPointerTy())); 6028 6029 // If we have a !srcloc metadata node associated with it, we want to attach 6030 // this to the ultimately generated inline asm machineinstr. To do this, we 6031 // pass in the third operand as this (potentially null) inline asm MDNode. 6032 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6033 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6034 6035 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6036 // bits as operand 3. 6037 unsigned ExtraInfo = 0; 6038 if (IA->hasSideEffects()) 6039 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6040 if (IA->isAlignStack()) 6041 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6042 // Set the asm dialect. 6043 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6044 6045 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6046 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6047 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6048 6049 // Compute the constraint code and ConstraintType to use. 6050 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6051 6052 // Ideally, we would only check against memory constraints. However, the 6053 // meaning of an other constraint can be target-specific and we can't easily 6054 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6055 // for other constriants as well. 6056 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6057 OpInfo.ConstraintType == TargetLowering::C_Other) { 6058 if (OpInfo.Type == InlineAsm::isInput) 6059 ExtraInfo |= InlineAsm::Extra_MayLoad; 6060 else if (OpInfo.Type == InlineAsm::isOutput) 6061 ExtraInfo |= InlineAsm::Extra_MayStore; 6062 else if (OpInfo.Type == InlineAsm::isClobber) 6063 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6064 } 6065 } 6066 6067 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, getCurSDLoc(), 6068 TLI.getPointerTy())); 6069 6070 // Loop over all of the inputs, copying the operand values into the 6071 // appropriate registers and processing the output regs. 6072 RegsForValue RetValRegs; 6073 6074 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6075 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6076 6077 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6078 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6079 6080 switch (OpInfo.Type) { 6081 case InlineAsm::isOutput: { 6082 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6083 OpInfo.ConstraintType != TargetLowering::C_Register) { 6084 // Memory output, or 'other' output (e.g. 'X' constraint). 6085 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6086 6087 unsigned ConstraintID = 6088 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6089 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6090 "Failed to convert memory constraint code to constraint id."); 6091 6092 // Add information to the INLINEASM node to know about this output. 6093 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6094 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6095 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6096 MVT::i32)); 6097 AsmNodeOperands.push_back(OpInfo.CallOperand); 6098 break; 6099 } 6100 6101 // Otherwise, this is a register or register class output. 6102 6103 // Copy the output from the appropriate register. Find a register that 6104 // we can use. 6105 if (OpInfo.AssignedRegs.Regs.empty()) { 6106 LLVMContext &Ctx = *DAG.getContext(); 6107 Ctx.emitError(CS.getInstruction(), 6108 "couldn't allocate output register for constraint '" + 6109 Twine(OpInfo.ConstraintCode) + "'"); 6110 return; 6111 } 6112 6113 // If this is an indirect operand, store through the pointer after the 6114 // asm. 6115 if (OpInfo.isIndirect) { 6116 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6117 OpInfo.CallOperandVal)); 6118 } else { 6119 // This is the result value of the call. 6120 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6121 // Concatenate this output onto the outputs list. 6122 RetValRegs.append(OpInfo.AssignedRegs); 6123 } 6124 6125 // Add information to the INLINEASM node to know that this register is 6126 // set. 6127 OpInfo.AssignedRegs 6128 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6129 ? InlineAsm::Kind_RegDefEarlyClobber 6130 : InlineAsm::Kind_RegDef, 6131 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6132 break; 6133 } 6134 case InlineAsm::isInput: { 6135 SDValue InOperandVal = OpInfo.CallOperand; 6136 6137 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6138 // If this is required to match an output register we have already set, 6139 // just use its register. 6140 unsigned OperandNo = OpInfo.getMatchedOperand(); 6141 6142 // Scan until we find the definition we already emitted of this operand. 6143 // When we find it, create a RegsForValue operand. 6144 unsigned CurOp = InlineAsm::Op_FirstOperand; 6145 for (; OperandNo; --OperandNo) { 6146 // Advance to the next operand. 6147 unsigned OpFlag = 6148 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6149 assert((InlineAsm::isRegDefKind(OpFlag) || 6150 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6151 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6152 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6153 } 6154 6155 unsigned OpFlag = 6156 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6157 if (InlineAsm::isRegDefKind(OpFlag) || 6158 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6159 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6160 if (OpInfo.isIndirect) { 6161 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6162 LLVMContext &Ctx = *DAG.getContext(); 6163 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6164 " don't know how to handle tied " 6165 "indirect register inputs"); 6166 return; 6167 } 6168 6169 RegsForValue MatchedRegs; 6170 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6171 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6172 MatchedRegs.RegVTs.push_back(RegVT); 6173 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6174 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6175 i != e; ++i) { 6176 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6177 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6178 else { 6179 LLVMContext &Ctx = *DAG.getContext(); 6180 Ctx.emitError(CS.getInstruction(), 6181 "inline asm error: This value" 6182 " type register class is not natively supported!"); 6183 return; 6184 } 6185 } 6186 SDLoc dl = getCurSDLoc(); 6187 // Use the produced MatchedRegs object to 6188 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6189 Chain, &Flag, CS.getInstruction()); 6190 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6191 true, OpInfo.getMatchedOperand(), dl, 6192 DAG, AsmNodeOperands); 6193 break; 6194 } 6195 6196 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6197 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6198 "Unexpected number of operands"); 6199 // Add information to the INLINEASM node to know about this input. 6200 // See InlineAsm.h isUseOperandTiedToDef. 6201 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6202 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6203 OpInfo.getMatchedOperand()); 6204 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, getCurSDLoc(), 6205 TLI.getPointerTy())); 6206 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6207 break; 6208 } 6209 6210 // Treat indirect 'X' constraint as memory. 6211 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6212 OpInfo.isIndirect) 6213 OpInfo.ConstraintType = TargetLowering::C_Memory; 6214 6215 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6216 std::vector<SDValue> Ops; 6217 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6218 Ops, DAG); 6219 if (Ops.empty()) { 6220 LLVMContext &Ctx = *DAG.getContext(); 6221 Ctx.emitError(CS.getInstruction(), 6222 "invalid operand for inline asm constraint '" + 6223 Twine(OpInfo.ConstraintCode) + "'"); 6224 return; 6225 } 6226 6227 // Add information to the INLINEASM node to know about this input. 6228 unsigned ResOpType = 6229 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6230 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6231 getCurSDLoc(), 6232 TLI.getPointerTy())); 6233 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6234 break; 6235 } 6236 6237 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6238 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6239 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6240 "Memory operands expect pointer values"); 6241 6242 unsigned ConstraintID = 6243 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6244 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6245 "Failed to convert memory constraint code to constraint id."); 6246 6247 // Add information to the INLINEASM node to know about this input. 6248 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6249 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6250 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6251 getCurSDLoc(), 6252 MVT::i32)); 6253 AsmNodeOperands.push_back(InOperandVal); 6254 break; 6255 } 6256 6257 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6258 OpInfo.ConstraintType == TargetLowering::C_Register) && 6259 "Unknown constraint type!"); 6260 6261 // TODO: Support this. 6262 if (OpInfo.isIndirect) { 6263 LLVMContext &Ctx = *DAG.getContext(); 6264 Ctx.emitError(CS.getInstruction(), 6265 "Don't know how to handle indirect register inputs yet " 6266 "for constraint '" + 6267 Twine(OpInfo.ConstraintCode) + "'"); 6268 return; 6269 } 6270 6271 // Copy the input into the appropriate registers. 6272 if (OpInfo.AssignedRegs.Regs.empty()) { 6273 LLVMContext &Ctx = *DAG.getContext(); 6274 Ctx.emitError(CS.getInstruction(), 6275 "couldn't allocate input reg for constraint '" + 6276 Twine(OpInfo.ConstraintCode) + "'"); 6277 return; 6278 } 6279 6280 SDLoc dl = getCurSDLoc(); 6281 6282 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6283 Chain, &Flag, CS.getInstruction()); 6284 6285 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6286 dl, DAG, AsmNodeOperands); 6287 break; 6288 } 6289 case InlineAsm::isClobber: { 6290 // Add the clobbered value to the operand list, so that the register 6291 // allocator is aware that the physreg got clobbered. 6292 if (!OpInfo.AssignedRegs.Regs.empty()) 6293 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6294 false, 0, getCurSDLoc(), DAG, 6295 AsmNodeOperands); 6296 break; 6297 } 6298 } 6299 } 6300 6301 // Finish up input operands. Set the input chain and add the flag last. 6302 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6303 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6304 6305 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6306 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6307 Flag = Chain.getValue(1); 6308 6309 // If this asm returns a register value, copy the result from that register 6310 // and set it as the value of the call. 6311 if (!RetValRegs.Regs.empty()) { 6312 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6313 Chain, &Flag, CS.getInstruction()); 6314 6315 // FIXME: Why don't we do this for inline asms with MRVs? 6316 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6317 EVT ResultType = TLI.getValueType(CS.getType()); 6318 6319 // If any of the results of the inline asm is a vector, it may have the 6320 // wrong width/num elts. This can happen for register classes that can 6321 // contain multiple different value types. The preg or vreg allocated may 6322 // not have the same VT as was expected. Convert it to the right type 6323 // with bit_convert. 6324 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6325 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6326 ResultType, Val); 6327 6328 } else if (ResultType != Val.getValueType() && 6329 ResultType.isInteger() && Val.getValueType().isInteger()) { 6330 // If a result value was tied to an input value, the computed result may 6331 // have a wider width than the expected result. Extract the relevant 6332 // portion. 6333 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6334 } 6335 6336 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6337 } 6338 6339 setValue(CS.getInstruction(), Val); 6340 // Don't need to use this as a chain in this case. 6341 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6342 return; 6343 } 6344 6345 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6346 6347 // Process indirect outputs, first output all of the flagged copies out of 6348 // physregs. 6349 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6350 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6351 const Value *Ptr = IndirectStoresToEmit[i].second; 6352 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6353 Chain, &Flag, IA); 6354 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6355 } 6356 6357 // Emit the non-flagged stores from the physregs. 6358 SmallVector<SDValue, 8> OutChains; 6359 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6360 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6361 StoresToEmit[i].first, 6362 getValue(StoresToEmit[i].second), 6363 MachinePointerInfo(StoresToEmit[i].second), 6364 false, false, 0); 6365 OutChains.push_back(Val); 6366 } 6367 6368 if (!OutChains.empty()) 6369 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6370 6371 DAG.setRoot(Chain); 6372 } 6373 6374 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6375 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6376 MVT::Other, getRoot(), 6377 getValue(I.getArgOperand(0)), 6378 DAG.getSrcValue(I.getArgOperand(0)))); 6379 } 6380 6381 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6382 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6383 const DataLayout &DL = *TLI.getDataLayout(); 6384 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6385 getRoot(), getValue(I.getOperand(0)), 6386 DAG.getSrcValue(I.getOperand(0)), 6387 DL.getABITypeAlignment(I.getType())); 6388 setValue(&I, V); 6389 DAG.setRoot(V.getValue(1)); 6390 } 6391 6392 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6393 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6394 MVT::Other, getRoot(), 6395 getValue(I.getArgOperand(0)), 6396 DAG.getSrcValue(I.getArgOperand(0)))); 6397 } 6398 6399 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6400 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6401 MVT::Other, getRoot(), 6402 getValue(I.getArgOperand(0)), 6403 getValue(I.getArgOperand(1)), 6404 DAG.getSrcValue(I.getArgOperand(0)), 6405 DAG.getSrcValue(I.getArgOperand(1)))); 6406 } 6407 6408 /// \brief Lower an argument list according to the target calling convention. 6409 /// 6410 /// \return A tuple of <return-value, token-chain> 6411 /// 6412 /// This is a helper for lowering intrinsics that follow a target calling 6413 /// convention or require stack pointer adjustment. Only a subset of the 6414 /// intrinsic's operands need to participate in the calling convention. 6415 std::pair<SDValue, SDValue> 6416 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6417 unsigned NumArgs, SDValue Callee, 6418 bool UseVoidTy, 6419 MachineBasicBlock *LandingPad, 6420 bool IsPatchPoint) { 6421 TargetLowering::ArgListTy Args; 6422 Args.reserve(NumArgs); 6423 6424 // Populate the argument list. 6425 // Attributes for args start at offset 1, after the return attribute. 6426 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6427 ArgI != ArgE; ++ArgI) { 6428 const Value *V = CS->getOperand(ArgI); 6429 6430 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6431 6432 TargetLowering::ArgListEntry Entry; 6433 Entry.Node = getValue(V); 6434 Entry.Ty = V->getType(); 6435 Entry.setAttributes(&CS, AttrI); 6436 Args.push_back(Entry); 6437 } 6438 6439 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6440 TargetLowering::CallLoweringInfo CLI(DAG); 6441 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6442 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6443 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6444 6445 return lowerInvokable(CLI, LandingPad); 6446 } 6447 6448 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6449 /// or patchpoint target node's operand list. 6450 /// 6451 /// Constants are converted to TargetConstants purely as an optimization to 6452 /// avoid constant materialization and register allocation. 6453 /// 6454 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6455 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6456 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6457 /// address materialization and register allocation, but may also be required 6458 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6459 /// alloca in the entry block, then the runtime may assume that the alloca's 6460 /// StackMap location can be read immediately after compilation and that the 6461 /// location is valid at any point during execution (this is similar to the 6462 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6463 /// only available in a register, then the runtime would need to trap when 6464 /// execution reaches the StackMap in order to read the alloca's location. 6465 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6466 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6467 SelectionDAGBuilder &Builder) { 6468 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6469 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6470 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6471 Ops.push_back( 6472 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6473 Ops.push_back( 6474 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6475 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6476 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6477 Ops.push_back( 6478 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6479 } else 6480 Ops.push_back(OpVal); 6481 } 6482 } 6483 6484 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6485 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6486 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6487 // [live variables...]) 6488 6489 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6490 6491 SDValue Chain, InFlag, Callee, NullPtr; 6492 SmallVector<SDValue, 32> Ops; 6493 6494 SDLoc DL = getCurSDLoc(); 6495 Callee = getValue(CI.getCalledValue()); 6496 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6497 6498 // The stackmap intrinsic only records the live variables (the arguemnts 6499 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6500 // intrinsic, this won't be lowered to a function call. This means we don't 6501 // have to worry about calling conventions and target specific lowering code. 6502 // Instead we perform the call lowering right here. 6503 // 6504 // chain, flag = CALLSEQ_START(chain, 0) 6505 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6506 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6507 // 6508 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6509 InFlag = Chain.getValue(1); 6510 6511 // Add the <id> and <numBytes> constants. 6512 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6513 Ops.push_back(DAG.getTargetConstant( 6514 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6515 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6516 Ops.push_back(DAG.getTargetConstant( 6517 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6518 MVT::i32)); 6519 6520 // Push live variables for the stack map. 6521 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6522 6523 // We are not pushing any register mask info here on the operands list, 6524 // because the stackmap doesn't clobber anything. 6525 6526 // Push the chain and the glue flag. 6527 Ops.push_back(Chain); 6528 Ops.push_back(InFlag); 6529 6530 // Create the STACKMAP node. 6531 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6532 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6533 Chain = SDValue(SM, 0); 6534 InFlag = Chain.getValue(1); 6535 6536 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6537 6538 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6539 6540 // Set the root to the target-lowered call chain. 6541 DAG.setRoot(Chain); 6542 6543 // Inform the Frame Information that we have a stackmap in this function. 6544 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6545 } 6546 6547 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6548 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6549 MachineBasicBlock *LandingPad) { 6550 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6551 // i32 <numBytes>, 6552 // i8* <target>, 6553 // i32 <numArgs>, 6554 // [Args...], 6555 // [live variables...]) 6556 6557 CallingConv::ID CC = CS.getCallingConv(); 6558 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6559 bool HasDef = !CS->getType()->isVoidTy(); 6560 SDLoc dl = getCurSDLoc(); 6561 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6562 6563 // Handle immediate and symbolic callees. 6564 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6565 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6566 /*isTarget=*/true); 6567 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6568 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6569 SDLoc(SymbolicCallee), 6570 SymbolicCallee->getValueType(0)); 6571 6572 // Get the real number of arguments participating in the call <numArgs> 6573 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6574 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6575 6576 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6577 // Intrinsics include all meta-operands up to but not including CC. 6578 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6579 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6580 "Not enough arguments provided to the patchpoint intrinsic"); 6581 6582 // For AnyRegCC the arguments are lowered later on manually. 6583 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6584 std::pair<SDValue, SDValue> Result = 6585 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 6586 LandingPad, true); 6587 6588 SDNode *CallEnd = Result.second.getNode(); 6589 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6590 CallEnd = CallEnd->getOperand(0).getNode(); 6591 6592 /// Get a call instruction from the call sequence chain. 6593 /// Tail calls are not allowed. 6594 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6595 "Expected a callseq node."); 6596 SDNode *Call = CallEnd->getOperand(0).getNode(); 6597 bool HasGlue = Call->getGluedNode(); 6598 6599 // Replace the target specific call node with the patchable intrinsic. 6600 SmallVector<SDValue, 8> Ops; 6601 6602 // Add the <id> and <numBytes> constants. 6603 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6604 Ops.push_back(DAG.getTargetConstant( 6605 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6606 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6607 Ops.push_back(DAG.getTargetConstant( 6608 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6609 MVT::i32)); 6610 6611 // Add the callee. 6612 Ops.push_back(Callee); 6613 6614 // Adjust <numArgs> to account for any arguments that have been passed on the 6615 // stack instead. 6616 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6617 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6618 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6619 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6620 6621 // Add the calling convention 6622 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6623 6624 // Add the arguments we omitted previously. The register allocator should 6625 // place these in any free register. 6626 if (IsAnyRegCC) 6627 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6628 Ops.push_back(getValue(CS.getArgument(i))); 6629 6630 // Push the arguments from the call instruction up to the register mask. 6631 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6632 Ops.append(Call->op_begin() + 2, e); 6633 6634 // Push live variables for the stack map. 6635 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6636 6637 // Push the register mask info. 6638 if (HasGlue) 6639 Ops.push_back(*(Call->op_end()-2)); 6640 else 6641 Ops.push_back(*(Call->op_end()-1)); 6642 6643 // Push the chain (this is originally the first operand of the call, but 6644 // becomes now the last or second to last operand). 6645 Ops.push_back(*(Call->op_begin())); 6646 6647 // Push the glue flag (last operand). 6648 if (HasGlue) 6649 Ops.push_back(*(Call->op_end()-1)); 6650 6651 SDVTList NodeTys; 6652 if (IsAnyRegCC && HasDef) { 6653 // Create the return types based on the intrinsic definition 6654 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6655 SmallVector<EVT, 3> ValueVTs; 6656 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 6657 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6658 6659 // There is always a chain and a glue type at the end 6660 ValueVTs.push_back(MVT::Other); 6661 ValueVTs.push_back(MVT::Glue); 6662 NodeTys = DAG.getVTList(ValueVTs); 6663 } else 6664 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6665 6666 // Replace the target specific call node with a PATCHPOINT node. 6667 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6668 dl, NodeTys, Ops); 6669 6670 // Update the NodeMap. 6671 if (HasDef) { 6672 if (IsAnyRegCC) 6673 setValue(CS.getInstruction(), SDValue(MN, 0)); 6674 else 6675 setValue(CS.getInstruction(), Result.first); 6676 } 6677 6678 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6679 // call sequence. Furthermore the location of the chain and glue can change 6680 // when the AnyReg calling convention is used and the intrinsic returns a 6681 // value. 6682 if (IsAnyRegCC && HasDef) { 6683 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6684 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6685 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6686 } else 6687 DAG.ReplaceAllUsesWith(Call, MN); 6688 DAG.DeleteNode(Call); 6689 6690 // Inform the Frame Information that we have a patchpoint in this function. 6691 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6692 } 6693 6694 /// Returns an AttributeSet representing the attributes applied to the return 6695 /// value of the given call. 6696 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6697 SmallVector<Attribute::AttrKind, 2> Attrs; 6698 if (CLI.RetSExt) 6699 Attrs.push_back(Attribute::SExt); 6700 if (CLI.RetZExt) 6701 Attrs.push_back(Attribute::ZExt); 6702 if (CLI.IsInReg) 6703 Attrs.push_back(Attribute::InReg); 6704 6705 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6706 Attrs); 6707 } 6708 6709 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6710 /// implementation, which just calls LowerCall. 6711 /// FIXME: When all targets are 6712 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6713 std::pair<SDValue, SDValue> 6714 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6715 // Handle the incoming return values from the call. 6716 CLI.Ins.clear(); 6717 Type *OrigRetTy = CLI.RetTy; 6718 SmallVector<EVT, 4> RetTys; 6719 SmallVector<uint64_t, 4> Offsets; 6720 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 6721 6722 SmallVector<ISD::OutputArg, 4> Outs; 6723 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 6724 6725 bool CanLowerReturn = 6726 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6727 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6728 6729 SDValue DemoteStackSlot; 6730 int DemoteStackIdx = -100; 6731 if (!CanLowerReturn) { 6732 // FIXME: equivalent assert? 6733 // assert(!CS.hasInAllocaArgument() && 6734 // "sret demotion is incompatible with inalloca"); 6735 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 6736 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 6737 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6738 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6739 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6740 6741 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 6742 ArgListEntry Entry; 6743 Entry.Node = DemoteStackSlot; 6744 Entry.Ty = StackSlotPtrType; 6745 Entry.isSExt = false; 6746 Entry.isZExt = false; 6747 Entry.isInReg = false; 6748 Entry.isSRet = true; 6749 Entry.isNest = false; 6750 Entry.isByVal = false; 6751 Entry.isReturned = false; 6752 Entry.Alignment = Align; 6753 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6754 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6755 6756 // sret demotion isn't compatible with tail-calls, since the sret argument 6757 // points into the callers stack frame. 6758 CLI.IsTailCall = false; 6759 } else { 6760 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6761 EVT VT = RetTys[I]; 6762 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6763 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6764 for (unsigned i = 0; i != NumRegs; ++i) { 6765 ISD::InputArg MyFlags; 6766 MyFlags.VT = RegisterVT; 6767 MyFlags.ArgVT = VT; 6768 MyFlags.Used = CLI.IsReturnValueUsed; 6769 if (CLI.RetSExt) 6770 MyFlags.Flags.setSExt(); 6771 if (CLI.RetZExt) 6772 MyFlags.Flags.setZExt(); 6773 if (CLI.IsInReg) 6774 MyFlags.Flags.setInReg(); 6775 CLI.Ins.push_back(MyFlags); 6776 } 6777 } 6778 } 6779 6780 // Handle all of the outgoing arguments. 6781 CLI.Outs.clear(); 6782 CLI.OutVals.clear(); 6783 ArgListTy &Args = CLI.getArgs(); 6784 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6785 SmallVector<EVT, 4> ValueVTs; 6786 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6787 Type *FinalType = Args[i].Ty; 6788 if (Args[i].isByVal) 6789 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6790 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6791 FinalType, CLI.CallConv, CLI.IsVarArg); 6792 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6793 ++Value) { 6794 EVT VT = ValueVTs[Value]; 6795 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6796 SDValue Op = SDValue(Args[i].Node.getNode(), 6797 Args[i].Node.getResNo() + Value); 6798 ISD::ArgFlagsTy Flags; 6799 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 6800 6801 if (Args[i].isZExt) 6802 Flags.setZExt(); 6803 if (Args[i].isSExt) 6804 Flags.setSExt(); 6805 if (Args[i].isInReg) 6806 Flags.setInReg(); 6807 if (Args[i].isSRet) 6808 Flags.setSRet(); 6809 if (Args[i].isByVal) 6810 Flags.setByVal(); 6811 if (Args[i].isInAlloca) { 6812 Flags.setInAlloca(); 6813 // Set the byval flag for CCAssignFn callbacks that don't know about 6814 // inalloca. This way we can know how many bytes we should've allocated 6815 // and how many bytes a callee cleanup function will pop. If we port 6816 // inalloca to more targets, we'll have to add custom inalloca handling 6817 // in the various CC lowering callbacks. 6818 Flags.setByVal(); 6819 } 6820 if (Args[i].isByVal || Args[i].isInAlloca) { 6821 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6822 Type *ElementTy = Ty->getElementType(); 6823 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6824 // For ByVal, alignment should come from FE. BE will guess if this 6825 // info is not there but there are cases it cannot get right. 6826 unsigned FrameAlign; 6827 if (Args[i].Alignment) 6828 FrameAlign = Args[i].Alignment; 6829 else 6830 FrameAlign = getByValTypeAlignment(ElementTy); 6831 Flags.setByValAlign(FrameAlign); 6832 } 6833 if (Args[i].isNest) 6834 Flags.setNest(); 6835 if (NeedsRegBlock) 6836 Flags.setInConsecutiveRegs(); 6837 Flags.setOrigAlign(OriginalAlignment); 6838 6839 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6840 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6841 SmallVector<SDValue, 4> Parts(NumParts); 6842 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6843 6844 if (Args[i].isSExt) 6845 ExtendKind = ISD::SIGN_EXTEND; 6846 else if (Args[i].isZExt) 6847 ExtendKind = ISD::ZERO_EXTEND; 6848 6849 // Conservatively only handle 'returned' on non-vectors for now 6850 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6851 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6852 "unexpected use of 'returned'"); 6853 // Before passing 'returned' to the target lowering code, ensure that 6854 // either the register MVT and the actual EVT are the same size or that 6855 // the return value and argument are extended in the same way; in these 6856 // cases it's safe to pass the argument register value unchanged as the 6857 // return register value (although it's at the target's option whether 6858 // to do so) 6859 // TODO: allow code generation to take advantage of partially preserved 6860 // registers rather than clobbering the entire register when the 6861 // parameter extension method is not compatible with the return 6862 // extension method 6863 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6864 (ExtendKind != ISD::ANY_EXTEND && 6865 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6866 Flags.setReturned(); 6867 } 6868 6869 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6870 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6871 6872 for (unsigned j = 0; j != NumParts; ++j) { 6873 // if it isn't first piece, alignment must be 1 6874 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6875 i < CLI.NumFixedArgs, 6876 i, j*Parts[j].getValueType().getStoreSize()); 6877 if (NumParts > 1 && j == 0) 6878 MyFlags.Flags.setSplit(); 6879 else if (j != 0) 6880 MyFlags.Flags.setOrigAlign(1); 6881 6882 CLI.Outs.push_back(MyFlags); 6883 CLI.OutVals.push_back(Parts[j]); 6884 } 6885 6886 if (NeedsRegBlock && Value == NumValues - 1) 6887 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6888 } 6889 } 6890 6891 SmallVector<SDValue, 4> InVals; 6892 CLI.Chain = LowerCall(CLI, InVals); 6893 6894 // Verify that the target's LowerCall behaved as expected. 6895 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6896 "LowerCall didn't return a valid chain!"); 6897 assert((!CLI.IsTailCall || InVals.empty()) && 6898 "LowerCall emitted a return value for a tail call!"); 6899 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6900 "LowerCall didn't emit the correct number of values!"); 6901 6902 // For a tail call, the return value is merely live-out and there aren't 6903 // any nodes in the DAG representing it. Return a special value to 6904 // indicate that a tail call has been emitted and no more Instructions 6905 // should be processed in the current block. 6906 if (CLI.IsTailCall) { 6907 CLI.DAG.setRoot(CLI.Chain); 6908 return std::make_pair(SDValue(), SDValue()); 6909 } 6910 6911 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6912 assert(InVals[i].getNode() && 6913 "LowerCall emitted a null value!"); 6914 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6915 "LowerCall emitted a value with the wrong type!"); 6916 }); 6917 6918 SmallVector<SDValue, 4> ReturnValues; 6919 if (!CanLowerReturn) { 6920 // The instruction result is the result of loading from the 6921 // hidden sret parameter. 6922 SmallVector<EVT, 1> PVTs; 6923 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6924 6925 ComputeValueVTs(*this, PtrRetTy, PVTs); 6926 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6927 EVT PtrVT = PVTs[0]; 6928 6929 unsigned NumValues = RetTys.size(); 6930 ReturnValues.resize(NumValues); 6931 SmallVector<SDValue, 4> Chains(NumValues); 6932 6933 for (unsigned i = 0; i < NumValues; ++i) { 6934 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6935 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6936 PtrVT)); 6937 SDValue L = CLI.DAG.getLoad( 6938 RetTys[i], CLI.DL, CLI.Chain, Add, 6939 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6940 false, false, 1); 6941 ReturnValues[i] = L; 6942 Chains[i] = L.getValue(1); 6943 } 6944 6945 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6946 } else { 6947 // Collect the legal value parts into potentially illegal values 6948 // that correspond to the original function's return values. 6949 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6950 if (CLI.RetSExt) 6951 AssertOp = ISD::AssertSext; 6952 else if (CLI.RetZExt) 6953 AssertOp = ISD::AssertZext; 6954 unsigned CurReg = 0; 6955 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6956 EVT VT = RetTys[I]; 6957 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6958 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6959 6960 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6961 NumRegs, RegisterVT, VT, nullptr, 6962 AssertOp)); 6963 CurReg += NumRegs; 6964 } 6965 6966 // For a function returning void, there is no return value. We can't create 6967 // such a node, so we just return a null return value in that case. In 6968 // that case, nothing will actually look at the value. 6969 if (ReturnValues.empty()) 6970 return std::make_pair(SDValue(), CLI.Chain); 6971 } 6972 6973 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6974 CLI.DAG.getVTList(RetTys), ReturnValues); 6975 return std::make_pair(Res, CLI.Chain); 6976 } 6977 6978 void TargetLowering::LowerOperationWrapper(SDNode *N, 6979 SmallVectorImpl<SDValue> &Results, 6980 SelectionDAG &DAG) const { 6981 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6982 if (Res.getNode()) 6983 Results.push_back(Res); 6984 } 6985 6986 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6987 llvm_unreachable("LowerOperation not implemented for this target!"); 6988 } 6989 6990 void 6991 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6992 SDValue Op = getNonRegisterValue(V); 6993 assert((Op.getOpcode() != ISD::CopyFromReg || 6994 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6995 "Copy from a reg to the same reg!"); 6996 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6997 6998 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6999 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7000 SDValue Chain = DAG.getEntryNode(); 7001 7002 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7003 FuncInfo.PreferredExtendType.end()) 7004 ? ISD::ANY_EXTEND 7005 : FuncInfo.PreferredExtendType[V]; 7006 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7007 PendingExports.push_back(Chain); 7008 } 7009 7010 #include "llvm/CodeGen/SelectionDAGISel.h" 7011 7012 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7013 /// entry block, return true. This includes arguments used by switches, since 7014 /// the switch may expand into multiple basic blocks. 7015 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7016 // With FastISel active, we may be splitting blocks, so force creation 7017 // of virtual registers for all non-dead arguments. 7018 if (FastISel) 7019 return A->use_empty(); 7020 7021 const BasicBlock *Entry = A->getParent()->begin(); 7022 for (const User *U : A->users()) 7023 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7024 return false; // Use not in entry block. 7025 7026 return true; 7027 } 7028 7029 void SelectionDAGISel::LowerArguments(const Function &F) { 7030 SelectionDAG &DAG = SDB->DAG; 7031 SDLoc dl = SDB->getCurSDLoc(); 7032 const DataLayout *DL = TLI->getDataLayout(); 7033 SmallVector<ISD::InputArg, 16> Ins; 7034 7035 if (!FuncInfo->CanLowerReturn) { 7036 // Put in an sret pointer parameter before all the other parameters. 7037 SmallVector<EVT, 1> ValueVTs; 7038 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7039 7040 // NOTE: Assuming that a pointer will never break down to more than one VT 7041 // or one register. 7042 ISD::ArgFlagsTy Flags; 7043 Flags.setSRet(); 7044 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7045 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7046 ISD::InputArg::NoArgIndex, 0); 7047 Ins.push_back(RetArg); 7048 } 7049 7050 // Set up the incoming argument description vector. 7051 unsigned Idx = 1; 7052 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7053 I != E; ++I, ++Idx) { 7054 SmallVector<EVT, 4> ValueVTs; 7055 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7056 bool isArgValueUsed = !I->use_empty(); 7057 unsigned PartBase = 0; 7058 Type *FinalType = I->getType(); 7059 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7060 FinalType = cast<PointerType>(FinalType)->getElementType(); 7061 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7062 FinalType, F.getCallingConv(), F.isVarArg()); 7063 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7064 Value != NumValues; ++Value) { 7065 EVT VT = ValueVTs[Value]; 7066 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7067 ISD::ArgFlagsTy Flags; 7068 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7069 7070 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7071 Flags.setZExt(); 7072 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7073 Flags.setSExt(); 7074 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7075 Flags.setInReg(); 7076 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7077 Flags.setSRet(); 7078 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7079 Flags.setByVal(); 7080 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7081 Flags.setInAlloca(); 7082 // Set the byval flag for CCAssignFn callbacks that don't know about 7083 // inalloca. This way we can know how many bytes we should've allocated 7084 // and how many bytes a callee cleanup function will pop. If we port 7085 // inalloca to more targets, we'll have to add custom inalloca handling 7086 // in the various CC lowering callbacks. 7087 Flags.setByVal(); 7088 } 7089 if (Flags.isByVal() || Flags.isInAlloca()) { 7090 PointerType *Ty = cast<PointerType>(I->getType()); 7091 Type *ElementTy = Ty->getElementType(); 7092 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7093 // For ByVal, alignment should be passed from FE. BE will guess if 7094 // this info is not there but there are cases it cannot get right. 7095 unsigned FrameAlign; 7096 if (F.getParamAlignment(Idx)) 7097 FrameAlign = F.getParamAlignment(Idx); 7098 else 7099 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7100 Flags.setByValAlign(FrameAlign); 7101 } 7102 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7103 Flags.setNest(); 7104 if (NeedsRegBlock) 7105 Flags.setInConsecutiveRegs(); 7106 Flags.setOrigAlign(OriginalAlignment); 7107 7108 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7109 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7110 for (unsigned i = 0; i != NumRegs; ++i) { 7111 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7112 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7113 if (NumRegs > 1 && i == 0) 7114 MyFlags.Flags.setSplit(); 7115 // if it isn't first piece, alignment must be 1 7116 else if (i > 0) 7117 MyFlags.Flags.setOrigAlign(1); 7118 Ins.push_back(MyFlags); 7119 } 7120 if (NeedsRegBlock && Value == NumValues - 1) 7121 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7122 PartBase += VT.getStoreSize(); 7123 } 7124 } 7125 7126 // Call the target to set up the argument values. 7127 SmallVector<SDValue, 8> InVals; 7128 SDValue NewRoot = TLI->LowerFormalArguments( 7129 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7130 7131 // Verify that the target's LowerFormalArguments behaved as expected. 7132 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7133 "LowerFormalArguments didn't return a valid chain!"); 7134 assert(InVals.size() == Ins.size() && 7135 "LowerFormalArguments didn't emit the correct number of values!"); 7136 DEBUG({ 7137 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7138 assert(InVals[i].getNode() && 7139 "LowerFormalArguments emitted a null value!"); 7140 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7141 "LowerFormalArguments emitted a value with the wrong type!"); 7142 } 7143 }); 7144 7145 // Update the DAG with the new chain value resulting from argument lowering. 7146 DAG.setRoot(NewRoot); 7147 7148 // Set up the argument values. 7149 unsigned i = 0; 7150 Idx = 1; 7151 if (!FuncInfo->CanLowerReturn) { 7152 // Create a virtual register for the sret pointer, and put in a copy 7153 // from the sret argument into it. 7154 SmallVector<EVT, 1> ValueVTs; 7155 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7156 MVT VT = ValueVTs[0].getSimpleVT(); 7157 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7158 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7159 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7160 RegVT, VT, nullptr, AssertOp); 7161 7162 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7163 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7164 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7165 FuncInfo->DemoteRegister = SRetReg; 7166 NewRoot = 7167 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7168 DAG.setRoot(NewRoot); 7169 7170 // i indexes lowered arguments. Bump it past the hidden sret argument. 7171 // Idx indexes LLVM arguments. Don't touch it. 7172 ++i; 7173 } 7174 7175 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7176 ++I, ++Idx) { 7177 SmallVector<SDValue, 4> ArgValues; 7178 SmallVector<EVT, 4> ValueVTs; 7179 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7180 unsigned NumValues = ValueVTs.size(); 7181 7182 // If this argument is unused then remember its value. It is used to generate 7183 // debugging information. 7184 if (I->use_empty() && NumValues) { 7185 SDB->setUnusedArgValue(I, InVals[i]); 7186 7187 // Also remember any frame index for use in FastISel. 7188 if (FrameIndexSDNode *FI = 7189 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7190 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7191 } 7192 7193 for (unsigned Val = 0; Val != NumValues; ++Val) { 7194 EVT VT = ValueVTs[Val]; 7195 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7196 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7197 7198 if (!I->use_empty()) { 7199 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7200 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7201 AssertOp = ISD::AssertSext; 7202 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7203 AssertOp = ISD::AssertZext; 7204 7205 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7206 NumParts, PartVT, VT, 7207 nullptr, AssertOp)); 7208 } 7209 7210 i += NumParts; 7211 } 7212 7213 // We don't need to do anything else for unused arguments. 7214 if (ArgValues.empty()) 7215 continue; 7216 7217 // Note down frame index. 7218 if (FrameIndexSDNode *FI = 7219 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7220 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7221 7222 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7223 SDB->getCurSDLoc()); 7224 7225 SDB->setValue(I, Res); 7226 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7227 if (LoadSDNode *LNode = 7228 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7229 if (FrameIndexSDNode *FI = 7230 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7231 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7232 } 7233 7234 // If this argument is live outside of the entry block, insert a copy from 7235 // wherever we got it to the vreg that other BB's will reference it as. 7236 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7237 // If we can, though, try to skip creating an unnecessary vreg. 7238 // FIXME: This isn't very clean... it would be nice to make this more 7239 // general. It's also subtly incompatible with the hacks FastISel 7240 // uses with vregs. 7241 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7242 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7243 FuncInfo->ValueMap[I] = Reg; 7244 continue; 7245 } 7246 } 7247 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7248 FuncInfo->InitializeRegForValue(I); 7249 SDB->CopyToExportRegsIfNeeded(I); 7250 } 7251 } 7252 7253 assert(i == InVals.size() && "Argument register count mismatch!"); 7254 7255 // Finally, if the target has anything special to do, allow it to do so. 7256 EmitFunctionEntryCode(); 7257 } 7258 7259 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7260 /// ensure constants are generated when needed. Remember the virtual registers 7261 /// that need to be added to the Machine PHI nodes as input. We cannot just 7262 /// directly add them, because expansion might result in multiple MBB's for one 7263 /// BB. As such, the start of the BB might correspond to a different MBB than 7264 /// the end. 7265 /// 7266 void 7267 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7268 const TerminatorInst *TI = LLVMBB->getTerminator(); 7269 7270 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7271 7272 // Check PHI nodes in successors that expect a value to be available from this 7273 // block. 7274 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7275 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7276 if (!isa<PHINode>(SuccBB->begin())) continue; 7277 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7278 7279 // If this terminator has multiple identical successors (common for 7280 // switches), only handle each succ once. 7281 if (!SuccsHandled.insert(SuccMBB).second) 7282 continue; 7283 7284 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7285 7286 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7287 // nodes and Machine PHI nodes, but the incoming operands have not been 7288 // emitted yet. 7289 for (BasicBlock::const_iterator I = SuccBB->begin(); 7290 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7291 // Ignore dead phi's. 7292 if (PN->use_empty()) continue; 7293 7294 // Skip empty types 7295 if (PN->getType()->isEmptyTy()) 7296 continue; 7297 7298 unsigned Reg; 7299 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7300 7301 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7302 unsigned &RegOut = ConstantsOut[C]; 7303 if (RegOut == 0) { 7304 RegOut = FuncInfo.CreateRegs(C->getType()); 7305 CopyValueToVirtualRegister(C, RegOut); 7306 } 7307 Reg = RegOut; 7308 } else { 7309 DenseMap<const Value *, unsigned>::iterator I = 7310 FuncInfo.ValueMap.find(PHIOp); 7311 if (I != FuncInfo.ValueMap.end()) 7312 Reg = I->second; 7313 else { 7314 assert(isa<AllocaInst>(PHIOp) && 7315 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7316 "Didn't codegen value into a register!??"); 7317 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7318 CopyValueToVirtualRegister(PHIOp, Reg); 7319 } 7320 } 7321 7322 // Remember that this register needs to added to the machine PHI node as 7323 // the input for this MBB. 7324 SmallVector<EVT, 4> ValueVTs; 7325 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7326 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7327 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7328 EVT VT = ValueVTs[vti]; 7329 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7330 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7331 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7332 Reg += NumRegisters; 7333 } 7334 } 7335 } 7336 7337 ConstantsOut.clear(); 7338 } 7339 7340 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7341 /// is 0. 7342 MachineBasicBlock * 7343 SelectionDAGBuilder::StackProtectorDescriptor:: 7344 AddSuccessorMBB(const BasicBlock *BB, 7345 MachineBasicBlock *ParentMBB, 7346 bool IsLikely, 7347 MachineBasicBlock *SuccMBB) { 7348 // If SuccBB has not been created yet, create it. 7349 if (!SuccMBB) { 7350 MachineFunction *MF = ParentMBB->getParent(); 7351 MachineFunction::iterator BBI = ParentMBB; 7352 SuccMBB = MF->CreateMachineBasicBlock(BB); 7353 MF->insert(++BBI, SuccMBB); 7354 } 7355 // Add it as a successor of ParentMBB. 7356 ParentMBB->addSuccessor( 7357 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7358 return SuccMBB; 7359 } 7360 7361 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7362 MachineFunction::iterator I = MBB; 7363 if (++I == FuncInfo.MF->end()) 7364 return nullptr; 7365 return I; 7366 } 7367 7368 /// During lowering new call nodes can be created (such as memset, etc.). 7369 /// Those will become new roots of the current DAG, but complications arise 7370 /// when they are tail calls. In such cases, the call lowering will update 7371 /// the root, but the builder still needs to know that a tail call has been 7372 /// lowered in order to avoid generating an additional return. 7373 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7374 // If the node is null, we do have a tail call. 7375 if (MaybeTC.getNode() != nullptr) 7376 DAG.setRoot(MaybeTC); 7377 else 7378 HasTailCall = true; 7379 } 7380 7381 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7382 unsigned *TotalCases, unsigned First, 7383 unsigned Last) { 7384 assert(Last >= First); 7385 assert(TotalCases[Last] >= TotalCases[First]); 7386 7387 APInt LowCase = Clusters[First].Low->getValue(); 7388 APInt HighCase = Clusters[Last].High->getValue(); 7389 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7390 7391 // FIXME: A range of consecutive cases has 100% density, but only requires one 7392 // comparison to lower. We should discriminate against such consecutive ranges 7393 // in jump tables. 7394 7395 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7396 uint64_t Range = Diff + 1; 7397 7398 uint64_t NumCases = 7399 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7400 7401 assert(NumCases < UINT64_MAX / 100); 7402 assert(Range >= NumCases); 7403 7404 return NumCases * 100 >= Range * MinJumpTableDensity; 7405 } 7406 7407 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7408 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7409 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7410 } 7411 7412 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7413 unsigned First, unsigned Last, 7414 const SwitchInst *SI, 7415 MachineBasicBlock *DefaultMBB, 7416 CaseCluster &JTCluster) { 7417 assert(First <= Last); 7418 7419 uint32_t Weight = 0; 7420 unsigned NumCmps = 0; 7421 std::vector<MachineBasicBlock*> Table; 7422 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7423 for (unsigned I = First; I <= Last; ++I) { 7424 assert(Clusters[I].Kind == CC_Range); 7425 Weight += Clusters[I].Weight; 7426 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7427 APInt Low = Clusters[I].Low->getValue(); 7428 APInt High = Clusters[I].High->getValue(); 7429 NumCmps += (Low == High) ? 1 : 2; 7430 if (I != First) { 7431 // Fill the gap between this and the previous cluster. 7432 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7433 assert(PreviousHigh.slt(Low)); 7434 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7435 for (uint64_t J = 0; J < Gap; J++) 7436 Table.push_back(DefaultMBB); 7437 } 7438 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7439 for (uint64_t J = 0; J < ClusterSize; ++J) 7440 Table.push_back(Clusters[I].MBB); 7441 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7442 } 7443 7444 unsigned NumDests = JTWeights.size(); 7445 if (isSuitableForBitTests(NumDests, NumCmps, 7446 Clusters[First].Low->getValue(), 7447 Clusters[Last].High->getValue())) { 7448 // Clusters[First..Last] should be lowered as bit tests instead. 7449 return false; 7450 } 7451 7452 // Create the MBB that will load from and jump through the table. 7453 // Note: We create it here, but it's not inserted into the function yet. 7454 MachineFunction *CurMF = FuncInfo.MF; 7455 MachineBasicBlock *JumpTableMBB = 7456 CurMF->CreateMachineBasicBlock(SI->getParent()); 7457 7458 // Add successors. Note: use table order for determinism. 7459 SmallPtrSet<MachineBasicBlock *, 8> Done; 7460 for (MachineBasicBlock *Succ : Table) { 7461 if (Done.count(Succ)) 7462 continue; 7463 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7464 Done.insert(Succ); 7465 } 7466 7467 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7468 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7469 ->createJumpTableIndex(Table); 7470 7471 // Set up the jump table info. 7472 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7473 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7474 Clusters[Last].High->getValue(), SI->getCondition(), 7475 nullptr, false); 7476 JTCases.push_back(JumpTableBlock(JTH, JT)); 7477 7478 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7479 JTCases.size() - 1, Weight); 7480 return true; 7481 } 7482 7483 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7484 const SwitchInst *SI, 7485 MachineBasicBlock *DefaultMBB) { 7486 #ifndef NDEBUG 7487 // Clusters must be non-empty, sorted, and only contain Range clusters. 7488 assert(!Clusters.empty()); 7489 for (CaseCluster &C : Clusters) 7490 assert(C.Kind == CC_Range); 7491 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7492 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7493 #endif 7494 7495 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7496 if (!areJTsAllowed(TLI)) 7497 return; 7498 7499 const int64_t N = Clusters.size(); 7500 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7501 7502 // Split Clusters into minimum number of dense partitions. The algorithm uses 7503 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7504 // for the Case Statement'" (1994), but builds the MinPartitions array in 7505 // reverse order to make it easier to reconstruct the partitions in ascending 7506 // order. In the choice between two optimal partitionings, it picks the one 7507 // which yields more jump tables. 7508 7509 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7510 SmallVector<unsigned, 8> MinPartitions(N); 7511 // LastElement[i] is the last element of the partition starting at i. 7512 SmallVector<unsigned, 8> LastElement(N); 7513 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7514 SmallVector<unsigned, 8> NumTables(N); 7515 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7516 SmallVector<unsigned, 8> TotalCases(N); 7517 7518 for (unsigned i = 0; i < N; ++i) { 7519 APInt Hi = Clusters[i].High->getValue(); 7520 APInt Lo = Clusters[i].Low->getValue(); 7521 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7522 if (i != 0) 7523 TotalCases[i] += TotalCases[i - 1]; 7524 } 7525 7526 // Base case: There is only one way to partition Clusters[N-1]. 7527 MinPartitions[N - 1] = 1; 7528 LastElement[N - 1] = N - 1; 7529 assert(MinJumpTableSize > 1); 7530 NumTables[N - 1] = 0; 7531 7532 // Note: loop indexes are signed to avoid underflow. 7533 for (int64_t i = N - 2; i >= 0; i--) { 7534 // Find optimal partitioning of Clusters[i..N-1]. 7535 // Baseline: Put Clusters[i] into a partition on its own. 7536 MinPartitions[i] = MinPartitions[i + 1] + 1; 7537 LastElement[i] = i; 7538 NumTables[i] = NumTables[i + 1]; 7539 7540 // Search for a solution that results in fewer partitions. 7541 for (int64_t j = N - 1; j > i; j--) { 7542 // Try building a partition from Clusters[i..j]. 7543 if (isDense(Clusters, &TotalCases[0], i, j)) { 7544 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7545 bool IsTable = j - i + 1 >= MinJumpTableSize; 7546 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7547 7548 // If this j leads to fewer partitions, or same number of partitions 7549 // with more lookup tables, it is a better partitioning. 7550 if (NumPartitions < MinPartitions[i] || 7551 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7552 MinPartitions[i] = NumPartitions; 7553 LastElement[i] = j; 7554 NumTables[i] = Tables; 7555 } 7556 } 7557 } 7558 } 7559 7560 // Iterate over the partitions, replacing some with jump tables in-place. 7561 unsigned DstIndex = 0; 7562 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7563 Last = LastElement[First]; 7564 assert(Last >= First); 7565 assert(DstIndex <= First); 7566 unsigned NumClusters = Last - First + 1; 7567 7568 CaseCluster JTCluster; 7569 if (NumClusters >= MinJumpTableSize && 7570 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7571 Clusters[DstIndex++] = JTCluster; 7572 } else { 7573 for (unsigned I = First; I <= Last; ++I) 7574 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7575 } 7576 } 7577 Clusters.resize(DstIndex); 7578 } 7579 7580 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7581 // FIXME: Using the pointer type doesn't seem ideal. 7582 uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7583 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7584 return Range <= BW; 7585 } 7586 7587 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7588 unsigned NumCmps, 7589 const APInt &Low, 7590 const APInt &High) { 7591 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7592 // range of cases both require only one branch to lower. Just looking at the 7593 // number of clusters and destinations should be enough to decide whether to 7594 // build bit tests. 7595 7596 // To lower a range with bit tests, the range must fit the bitwidth of a 7597 // machine word. 7598 if (!rangeFitsInWord(Low, High)) 7599 return false; 7600 7601 // Decide whether it's profitable to lower this range with bit tests. Each 7602 // destination requires a bit test and branch, and there is an overall range 7603 // check branch. For a small number of clusters, separate comparisons might be 7604 // cheaper, and for many destinations, splitting the range might be better. 7605 return (NumDests == 1 && NumCmps >= 3) || 7606 (NumDests == 2 && NumCmps >= 5) || 7607 (NumDests == 3 && NumCmps >= 6); 7608 } 7609 7610 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7611 unsigned First, unsigned Last, 7612 const SwitchInst *SI, 7613 CaseCluster &BTCluster) { 7614 assert(First <= Last); 7615 if (First == Last) 7616 return false; 7617 7618 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7619 unsigned NumCmps = 0; 7620 for (int64_t I = First; I <= Last; ++I) { 7621 assert(Clusters[I].Kind == CC_Range); 7622 Dests.set(Clusters[I].MBB->getNumber()); 7623 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7624 } 7625 unsigned NumDests = Dests.count(); 7626 7627 APInt Low = Clusters[First].Low->getValue(); 7628 APInt High = Clusters[Last].High->getValue(); 7629 assert(Low.slt(High)); 7630 7631 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7632 return false; 7633 7634 APInt LowBound; 7635 APInt CmpRange; 7636 7637 const int BitWidth = 7638 DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7639 assert((High - Low + 1).sle(BitWidth) && "Case range must fit in bit mask!"); 7640 7641 if (Low.isNonNegative() && High.slt(BitWidth)) { 7642 // Optimize the case where all the case values fit in a 7643 // word without having to subtract minValue. In this case, 7644 // we can optimize away the subtraction. 7645 LowBound = APInt::getNullValue(Low.getBitWidth()); 7646 CmpRange = High; 7647 } else { 7648 LowBound = Low; 7649 CmpRange = High - Low; 7650 } 7651 7652 CaseBitsVector CBV; 7653 uint32_t TotalWeight = 0; 7654 for (unsigned i = First; i <= Last; ++i) { 7655 // Find the CaseBits for this destination. 7656 unsigned j; 7657 for (j = 0; j < CBV.size(); ++j) 7658 if (CBV[j].BB == Clusters[i].MBB) 7659 break; 7660 if (j == CBV.size()) 7661 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7662 CaseBits *CB = &CBV[j]; 7663 7664 // Update Mask, Bits and ExtraWeight. 7665 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7666 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7667 for (uint64_t j = Lo; j <= Hi; ++j) { 7668 CB->Mask |= 1ULL << j; 7669 CB->Bits++; 7670 } 7671 CB->ExtraWeight += Clusters[i].Weight; 7672 TotalWeight += Clusters[i].Weight; 7673 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7674 } 7675 7676 BitTestInfo BTI; 7677 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7678 // Sort by weight first, number of bits second. 7679 if (a.ExtraWeight != b.ExtraWeight) 7680 return a.ExtraWeight > b.ExtraWeight; 7681 return a.Bits > b.Bits; 7682 }); 7683 7684 for (auto &CB : CBV) { 7685 MachineBasicBlock *BitTestBB = 7686 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7687 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7688 } 7689 BitTestCases.push_back(BitTestBlock(LowBound, CmpRange, SI->getCondition(), 7690 -1U, MVT::Other, false, nullptr, 7691 nullptr, std::move(BTI))); 7692 7693 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7694 BitTestCases.size() - 1, TotalWeight); 7695 return true; 7696 } 7697 7698 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7699 const SwitchInst *SI) { 7700 // Partition Clusters into as few subsets as possible, where each subset has a 7701 // range that fits in a machine word and has <= 3 unique destinations. 7702 7703 #ifndef NDEBUG 7704 // Clusters must be sorted and contain Range or JumpTable clusters. 7705 assert(!Clusters.empty()); 7706 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7707 for (const CaseCluster &C : Clusters) 7708 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7709 for (unsigned i = 1; i < Clusters.size(); ++i) 7710 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7711 #endif 7712 7713 // If target does not have legal shift left, do not emit bit tests at all. 7714 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7715 EVT PTy = TLI.getPointerTy(); 7716 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7717 return; 7718 7719 int BitWidth = PTy.getSizeInBits(); 7720 const int64_t N = Clusters.size(); 7721 7722 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7723 SmallVector<unsigned, 8> MinPartitions(N); 7724 // LastElement[i] is the last element of the partition starting at i. 7725 SmallVector<unsigned, 8> LastElement(N); 7726 7727 // FIXME: This might not be the best algorithm for finding bit test clusters. 7728 7729 // Base case: There is only one way to partition Clusters[N-1]. 7730 MinPartitions[N - 1] = 1; 7731 LastElement[N - 1] = N - 1; 7732 7733 // Note: loop indexes are signed to avoid underflow. 7734 for (int64_t i = N - 2; i >= 0; --i) { 7735 // Find optimal partitioning of Clusters[i..N-1]. 7736 // Baseline: Put Clusters[i] into a partition on its own. 7737 MinPartitions[i] = MinPartitions[i + 1] + 1; 7738 LastElement[i] = i; 7739 7740 // Search for a solution that results in fewer partitions. 7741 // Note: the search is limited by BitWidth, reducing time complexity. 7742 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7743 // Try building a partition from Clusters[i..j]. 7744 7745 // Check the range. 7746 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7747 Clusters[j].High->getValue())) 7748 continue; 7749 7750 // Check nbr of destinations and cluster types. 7751 // FIXME: This works, but doesn't seem very efficient. 7752 bool RangesOnly = true; 7753 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7754 for (int64_t k = i; k <= j; k++) { 7755 if (Clusters[k].Kind != CC_Range) { 7756 RangesOnly = false; 7757 break; 7758 } 7759 Dests.set(Clusters[k].MBB->getNumber()); 7760 } 7761 if (!RangesOnly || Dests.count() > 3) 7762 break; 7763 7764 // Check if it's a better partition. 7765 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7766 if (NumPartitions < MinPartitions[i]) { 7767 // Found a better partition. 7768 MinPartitions[i] = NumPartitions; 7769 LastElement[i] = j; 7770 } 7771 } 7772 } 7773 7774 // Iterate over the partitions, replacing with bit-test clusters in-place. 7775 unsigned DstIndex = 0; 7776 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7777 Last = LastElement[First]; 7778 assert(First <= Last); 7779 assert(DstIndex <= First); 7780 7781 CaseCluster BitTestCluster; 7782 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7783 Clusters[DstIndex++] = BitTestCluster; 7784 } else { 7785 for (unsigned I = First; I <= Last; ++I) 7786 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7787 } 7788 } 7789 Clusters.resize(DstIndex); 7790 } 7791 7792 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7793 MachineBasicBlock *SwitchMBB, 7794 MachineBasicBlock *DefaultMBB) { 7795 MachineFunction *CurMF = FuncInfo.MF; 7796 MachineBasicBlock *NextMBB = nullptr; 7797 MachineFunction::iterator BBI = W.MBB; 7798 if (++BBI != FuncInfo.MF->end()) 7799 NextMBB = BBI; 7800 7801 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7802 7803 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7804 7805 if (Size == 2 && W.MBB == SwitchMBB) { 7806 // If any two of the cases has the same destination, and if one value 7807 // is the same as the other, but has one bit unset that the other has set, 7808 // use bit manipulation to do two compares at once. For example: 7809 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7810 // TODO: This could be extended to merge any 2 cases in switches with 3 7811 // cases. 7812 // TODO: Handle cases where W.CaseBB != SwitchBB. 7813 CaseCluster &Small = *W.FirstCluster; 7814 CaseCluster &Big = *W.LastCluster; 7815 7816 if (Small.Low == Small.High && Big.Low == Big.High && 7817 Small.MBB == Big.MBB) { 7818 const APInt &SmallValue = Small.Low->getValue(); 7819 const APInt &BigValue = Big.Low->getValue(); 7820 7821 // Check that there is only one bit different. 7822 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 7823 (SmallValue | BigValue) == BigValue) { 7824 // Isolate the common bit. 7825 APInt CommonBit = BigValue & ~SmallValue; 7826 assert((SmallValue | CommonBit) == BigValue && 7827 CommonBit.countPopulation() == 1 && "Not a common bit?"); 7828 7829 SDValue CondLHS = getValue(Cond); 7830 EVT VT = CondLHS.getValueType(); 7831 SDLoc DL = getCurSDLoc(); 7832 7833 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7834 DAG.getConstant(CommonBit, DL, VT)); 7835 SDValue Cond = DAG.getSetCC(DL, MVT::i1, Or, 7836 DAG.getConstant(BigValue, DL, VT), 7837 ISD::SETEQ); 7838 7839 // Update successor info. 7840 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7841 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7842 addSuccessorWithWeight( 7843 SwitchMBB, DefaultMBB, 7844 // The default destination is the first successor in IR. 7845 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7846 : 0); 7847 7848 // Insert the true branch. 7849 SDValue BrCond = 7850 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7851 DAG.getBasicBlock(Small.MBB)); 7852 // Insert the false branch. 7853 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7854 DAG.getBasicBlock(DefaultMBB)); 7855 7856 DAG.setRoot(BrCond); 7857 return; 7858 } 7859 } 7860 } 7861 7862 if (TM.getOptLevel() != CodeGenOpt::None) { 7863 // Order cases by weight so the most likely case will be checked first. 7864 std::sort(W.FirstCluster, W.LastCluster + 1, 7865 [](const CaseCluster &a, const CaseCluster &b) { 7866 return a.Weight > b.Weight; 7867 }); 7868 7869 // Rearrange the case blocks so that the last one falls through if possible 7870 // without without changing the order of weights. 7871 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7872 --I; 7873 if (I->Weight > W.LastCluster->Weight) 7874 break; 7875 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7876 std::swap(*I, *W.LastCluster); 7877 break; 7878 } 7879 } 7880 } 7881 7882 // Compute total weight. 7883 uint32_t UnhandledWeights = 0; 7884 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7885 UnhandledWeights += I->Weight; 7886 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7887 } 7888 7889 MachineBasicBlock *CurMBB = W.MBB; 7890 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7891 MachineBasicBlock *Fallthrough; 7892 if (I == W.LastCluster) { 7893 // For the last cluster, fall through to the default destination. 7894 Fallthrough = DefaultMBB; 7895 } else { 7896 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7897 CurMF->insert(BBI, Fallthrough); 7898 // Put Cond in a virtual register to make it available from the new blocks. 7899 ExportFromCurrentBlock(Cond); 7900 } 7901 7902 switch (I->Kind) { 7903 case CC_JumpTable: { 7904 // FIXME: Optimize away range check based on pivot comparisons. 7905 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7906 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7907 7908 // The jump block hasn't been inserted yet; insert it here. 7909 MachineBasicBlock *JumpMBB = JT->MBB; 7910 CurMF->insert(BBI, JumpMBB); 7911 addSuccessorWithWeight(CurMBB, Fallthrough); 7912 addSuccessorWithWeight(CurMBB, JumpMBB); 7913 7914 // The jump table header will be inserted in our current block, do the 7915 // range check, and fall through to our fallthrough block. 7916 JTH->HeaderBB = CurMBB; 7917 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7918 7919 // If we're in the right place, emit the jump table header right now. 7920 if (CurMBB == SwitchMBB) { 7921 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7922 JTH->Emitted = true; 7923 } 7924 break; 7925 } 7926 case CC_BitTests: { 7927 // FIXME: Optimize away range check based on pivot comparisons. 7928 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7929 7930 // The bit test blocks haven't been inserted yet; insert them here. 7931 for (BitTestCase &BTC : BTB->Cases) 7932 CurMF->insert(BBI, BTC.ThisBB); 7933 7934 // Fill in fields of the BitTestBlock. 7935 BTB->Parent = CurMBB; 7936 BTB->Default = Fallthrough; 7937 7938 // If we're in the right place, emit the bit test header header right now. 7939 if (CurMBB ==SwitchMBB) { 7940 visitBitTestHeader(*BTB, SwitchMBB); 7941 BTB->Emitted = true; 7942 } 7943 break; 7944 } 7945 case CC_Range: { 7946 const Value *RHS, *LHS, *MHS; 7947 ISD::CondCode CC; 7948 if (I->Low == I->High) { 7949 // Check Cond == I->Low. 7950 CC = ISD::SETEQ; 7951 LHS = Cond; 7952 RHS=I->Low; 7953 MHS = nullptr; 7954 } else { 7955 // Check I->Low <= Cond <= I->High. 7956 CC = ISD::SETLE; 7957 LHS = I->Low; 7958 MHS = Cond; 7959 RHS = I->High; 7960 } 7961 7962 // The false weight is the sum of all unhandled cases. 7963 UnhandledWeights -= I->Weight; 7964 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 7965 UnhandledWeights); 7966 7967 if (CurMBB == SwitchMBB) 7968 visitSwitchCase(CB, SwitchMBB); 7969 else 7970 SwitchCases.push_back(CB); 7971 7972 break; 7973 } 7974 } 7975 CurMBB = Fallthrough; 7976 } 7977 } 7978 7979 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 7980 const SwitchWorkListItem &W, 7981 Value *Cond, 7982 MachineBasicBlock *SwitchMBB) { 7983 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 7984 "Clusters not sorted?"); 7985 7986 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 7987 assert(NumClusters >= 2 && "Too small to split!"); 7988 7989 // FIXME: When we have profile info, we might want to balance the tree based 7990 // on weights instead of node count. 7991 7992 CaseClusterIt PivotCluster = W.FirstCluster + NumClusters / 2; 7993 CaseClusterIt FirstLeft = W.FirstCluster; 7994 CaseClusterIt LastLeft = PivotCluster - 1; 7995 CaseClusterIt FirstRight = PivotCluster; 7996 CaseClusterIt LastRight = W.LastCluster; 7997 const ConstantInt *Pivot = PivotCluster->Low; 7998 7999 // New blocks will be inserted immediately after the current one. 8000 MachineFunction::iterator BBI = W.MBB; 8001 ++BBI; 8002 8003 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8004 // we can branch to its destination directly if it's squeezed exactly in 8005 // between the known lower bound and Pivot - 1. 8006 MachineBasicBlock *LeftMBB; 8007 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8008 FirstLeft->Low == W.GE && 8009 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8010 LeftMBB = FirstLeft->MBB; 8011 } else { 8012 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8013 FuncInfo.MF->insert(BBI, LeftMBB); 8014 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8015 // Put Cond in a virtual register to make it available from the new blocks. 8016 ExportFromCurrentBlock(Cond); 8017 } 8018 8019 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8020 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8021 // directly if RHS.High equals the current upper bound. 8022 MachineBasicBlock *RightMBB; 8023 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8024 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8025 RightMBB = FirstRight->MBB; 8026 } else { 8027 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8028 FuncInfo.MF->insert(BBI, RightMBB); 8029 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8030 // Put Cond in a virtual register to make it available from the new blocks. 8031 ExportFromCurrentBlock(Cond); 8032 } 8033 8034 // Create the CaseBlock record that will be used to lower the branch. 8035 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB); 8036 8037 if (W.MBB == SwitchMBB) 8038 visitSwitchCase(CB, SwitchMBB); 8039 else 8040 SwitchCases.push_back(CB); 8041 } 8042 8043 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8044 // Extract cases from the switch. 8045 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8046 CaseClusterVector Clusters; 8047 Clusters.reserve(SI.getNumCases()); 8048 for (auto I : SI.cases()) { 8049 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8050 const ConstantInt *CaseVal = I.getCaseValue(); 8051 uint32_t Weight = 0; // FIXME: Use 1 instead? 8052 if (BPI) { 8053 Weight = BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()); 8054 assert(Weight <= UINT32_MAX / SI.getNumSuccessors()); 8055 } 8056 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8057 } 8058 8059 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8060 8061 if (TM.getOptLevel() != CodeGenOpt::None) { 8062 // Cluster adjacent cases with the same destination. 8063 sortAndRangeify(Clusters); 8064 8065 // Replace an unreachable default with the most popular destination. 8066 // FIXME: Exploit unreachable default more aggressively. 8067 bool UnreachableDefault = 8068 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8069 if (UnreachableDefault && !Clusters.empty()) { 8070 DenseMap<const BasicBlock *, unsigned> Popularity; 8071 unsigned MaxPop = 0; 8072 const BasicBlock *MaxBB = nullptr; 8073 for (auto I : SI.cases()) { 8074 const BasicBlock *BB = I.getCaseSuccessor(); 8075 if (++Popularity[BB] > MaxPop) { 8076 MaxPop = Popularity[BB]; 8077 MaxBB = BB; 8078 } 8079 } 8080 // Set new default. 8081 assert(MaxPop > 0 && MaxBB); 8082 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8083 8084 // Remove cases that were pointing to the destination that is now the 8085 // default. 8086 CaseClusterVector New; 8087 New.reserve(Clusters.size()); 8088 for (CaseCluster &CC : Clusters) { 8089 if (CC.MBB != DefaultMBB) 8090 New.push_back(CC); 8091 } 8092 Clusters = std::move(New); 8093 } 8094 } 8095 8096 // If there is only the default destination, jump there directly. 8097 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8098 if (Clusters.empty()) { 8099 SwitchMBB->addSuccessor(DefaultMBB); 8100 if (DefaultMBB != NextBlock(SwitchMBB)) { 8101 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8102 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8103 } 8104 return; 8105 } 8106 8107 if (TM.getOptLevel() != CodeGenOpt::None) { 8108 findJumpTables(Clusters, &SI, DefaultMBB); 8109 findBitTestClusters(Clusters, &SI); 8110 } 8111 8112 8113 DEBUG({ 8114 dbgs() << "Case clusters: "; 8115 for (const CaseCluster &C : Clusters) { 8116 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8117 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8118 8119 C.Low->getValue().print(dbgs(), true); 8120 if (C.Low != C.High) { 8121 dbgs() << '-'; 8122 C.High->getValue().print(dbgs(), true); 8123 } 8124 dbgs() << ' '; 8125 } 8126 dbgs() << '\n'; 8127 }); 8128 8129 assert(!Clusters.empty()); 8130 SwitchWorkList WorkList; 8131 CaseClusterIt First = Clusters.begin(); 8132 CaseClusterIt Last = Clusters.end() - 1; 8133 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8134 8135 while (!WorkList.empty()) { 8136 SwitchWorkListItem W = WorkList.back(); 8137 WorkList.pop_back(); 8138 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8139 8140 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8141 // For optimized builds, lower large range as a balanced binary tree. 8142 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8143 continue; 8144 } 8145 8146 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8147 } 8148 } 8149