1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 static cl::opt<bool> 82 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden, 83 cl::desc("Enable fast-math-flags for DAG nodes")); 84 85 // Limit the width of DAG chains. This is important in general to prevent 86 // DAG-based analysis from blowing up. For example, alias analysis and 87 // load clustering may not complete in reasonable time. It is difficult to 88 // recognize and avoid this situation within each individual analysis, and 89 // future analyses are likely to have the same behavior. Limiting DAG width is 90 // the safe approach and will be especially important with global DAGs. 91 // 92 // MaxParallelChains default is arbitrarily high to avoid affecting 93 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 94 // sequence over this should have been converted to llvm.memcpy by the 95 // frontend. It easy to induce this behavior with .ll code such as: 96 // %buffer = alloca [4096 x i8] 97 // %data = load [4096 x i8]* %argPtr 98 // store [4096 x i8] %data, [4096 x i8]* %buffer 99 static const unsigned MaxParallelChains = 64; 100 101 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, unsigned NumParts, 103 MVT PartVT, EVT ValueVT, const Value *V); 104 105 /// getCopyFromParts - Create a value that contains the specified legal parts 106 /// combined into the value they represent. If the parts combine to a type 107 /// larger then ValueVT then AssertOp can be used to specify whether the extra 108 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 109 /// (ISD::AssertSext). 110 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 111 const SDValue *Parts, 112 unsigned NumParts, MVT PartVT, EVT ValueVT, 113 const Value *V, 114 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 115 if (ValueVT.isVector()) 116 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 117 PartVT, ValueVT, V); 118 119 assert(NumParts > 0 && "No parts to assemble!"); 120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 121 SDValue Val = Parts[0]; 122 123 if (NumParts > 1) { 124 // Assemble the value from multiple parts. 125 if (ValueVT.isInteger()) { 126 unsigned PartBits = PartVT.getSizeInBits(); 127 unsigned ValueBits = ValueVT.getSizeInBits(); 128 129 // Assemble the power of 2 part. 130 unsigned RoundParts = NumParts & (NumParts - 1) ? 131 1 << Log2_32(NumParts) : NumParts; 132 unsigned RoundBits = PartBits * RoundParts; 133 EVT RoundVT = RoundBits == ValueBits ? 134 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 135 SDValue Lo, Hi; 136 137 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 138 139 if (RoundParts > 2) { 140 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 141 PartVT, HalfVT, V); 142 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 143 RoundParts / 2, PartVT, HalfVT, V); 144 } else { 145 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 146 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 147 } 148 149 if (DAG.getDataLayout().isBigEndian()) 150 std::swap(Lo, Hi); 151 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 153 154 if (RoundParts < NumParts) { 155 // Assemble the trailing non-power-of-2 part. 156 unsigned OddParts = NumParts - RoundParts; 157 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 158 Hi = getCopyFromParts(DAG, DL, 159 Parts + RoundParts, OddParts, PartVT, OddVT, V); 160 161 // Combine the round and odd parts. 162 Lo = Val; 163 if (DAG.getDataLayout().isBigEndian()) 164 std::swap(Lo, Hi); 165 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 166 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 167 Hi = 168 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 169 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 170 TLI.getPointerTy(DAG.getDataLayout()))); 171 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 172 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 173 } 174 } else if (PartVT.isFloatingPoint()) { 175 // FP split into multiple FP parts (for ppcf128) 176 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 177 "Unexpected split"); 178 SDValue Lo, Hi; 179 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 180 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 181 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 182 std::swap(Lo, Hi); 183 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 184 } else { 185 // FP split into integer parts (soft fp) 186 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 187 !PartVT.isVector() && "Unexpected split"); 188 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 189 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 190 } 191 } 192 193 // There is now one part, held in Val. Correct it to match ValueVT. 194 EVT PartEVT = Val.getValueType(); 195 196 if (PartEVT == ValueVT) 197 return Val; 198 199 if (PartEVT.isInteger() && ValueVT.isInteger()) { 200 if (ValueVT.bitsLT(PartEVT)) { 201 // For a truncate, see if we have any information to 202 // indicate whether the truncated bits will always be 203 // zero or sign-extension. 204 if (AssertOp != ISD::DELETED_NODE) 205 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 206 DAG.getValueType(ValueVT)); 207 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 208 } 209 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 210 } 211 212 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 213 // FP_ROUND's are always exact here. 214 if (ValueVT.bitsLT(Val.getValueType())) 215 return DAG.getNode( 216 ISD::FP_ROUND, DL, ValueVT, Val, 217 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 218 219 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 223 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 224 225 llvm_unreachable("Unknown mismatch!"); 226 } 227 228 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 229 const Twine &ErrMsg) { 230 const Instruction *I = dyn_cast_or_null<Instruction>(V); 231 if (!V) 232 return Ctx.emitError(ErrMsg); 233 234 const char *AsmError = ", possible invalid constraint for vector type"; 235 if (const CallInst *CI = dyn_cast<CallInst>(I)) 236 if (isa<InlineAsm>(CI->getCalledValue())) 237 return Ctx.emitError(I, ErrMsg + AsmError); 238 239 return Ctx.emitError(I, ErrMsg); 240 } 241 242 /// getCopyFromPartsVector - Create a value that contains the specified legal 243 /// parts combined into the value they represent. If the parts combine to a 244 /// type larger then ValueVT then AssertOp can be used to specify whether the 245 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 246 /// ValueVT (ISD::AssertSext). 247 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 248 const SDValue *Parts, unsigned NumParts, 249 MVT PartVT, EVT ValueVT, const Value *V) { 250 assert(ValueVT.isVector() && "Not a vector value"); 251 assert(NumParts > 0 && "No parts to assemble!"); 252 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 253 SDValue Val = Parts[0]; 254 255 // Handle a multi-element vector. 256 if (NumParts > 1) { 257 EVT IntermediateVT; 258 MVT RegisterVT; 259 unsigned NumIntermediates; 260 unsigned NumRegs = 261 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 262 NumIntermediates, RegisterVT); 263 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 264 NumParts = NumRegs; // Silence a compiler warning. 265 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 266 assert(RegisterVT.getSizeInBits() == 267 Parts[0].getSimpleValueType().getSizeInBits() && 268 "Part type sizes don't match!"); 269 270 // Assemble the parts into intermediate operands. 271 SmallVector<SDValue, 8> Ops(NumIntermediates); 272 if (NumIntermediates == NumParts) { 273 // If the register was not expanded, truncate or copy the value, 274 // as appropriate. 275 for (unsigned i = 0; i != NumParts; ++i) 276 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 277 PartVT, IntermediateVT, V); 278 } else if (NumParts > 0) { 279 // If the intermediate type was expanded, build the intermediate 280 // operands from the parts. 281 assert(NumParts % NumIntermediates == 0 && 282 "Must expand into a divisible number of parts!"); 283 unsigned Factor = NumParts / NumIntermediates; 284 for (unsigned i = 0; i != NumIntermediates; ++i) 285 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 286 PartVT, IntermediateVT, V); 287 } 288 289 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 290 // intermediate operands. 291 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 292 : ISD::BUILD_VECTOR, 293 DL, ValueVT, Ops); 294 } 295 296 // There is now one part, held in Val. Correct it to match ValueVT. 297 EVT PartEVT = Val.getValueType(); 298 299 if (PartEVT == ValueVT) 300 return Val; 301 302 if (PartEVT.isVector()) { 303 // If the element type of the source/dest vectors are the same, but the 304 // parts vector has more elements than the value vector, then we have a 305 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 306 // elements we want. 307 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 308 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 309 "Cannot narrow, it would be a lossy transformation"); 310 return DAG.getNode( 311 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 312 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 313 } 314 315 // Vector/Vector bitcast. 316 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 317 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 318 319 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 320 "Cannot handle this kind of promotion"); 321 // Promoted vector extract 322 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 323 324 } 325 326 // Trivial bitcast if the types are the same size and the destination 327 // vector type is legal. 328 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 329 TLI.isTypeLegal(ValueVT)) 330 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 331 332 // Handle cases such as i8 -> <1 x i1> 333 if (ValueVT.getVectorNumElements() != 1) { 334 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 335 "non-trivial scalar-to-vector conversion"); 336 return DAG.getUNDEF(ValueVT); 337 } 338 339 if (ValueVT.getVectorNumElements() == 1 && 340 ValueVT.getVectorElementType() != PartEVT) 341 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 342 343 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 344 } 345 346 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 347 SDValue Val, SDValue *Parts, unsigned NumParts, 348 MVT PartVT, const Value *V); 349 350 /// getCopyToParts - Create a series of nodes that contain the specified value 351 /// split into legal parts. If the parts contain more bits than Val, then, for 352 /// integers, ExtendKind can be used to specify how to generate the extra bits. 353 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 354 SDValue Val, SDValue *Parts, unsigned NumParts, 355 MVT PartVT, const Value *V, 356 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 357 EVT ValueVT = Val.getValueType(); 358 359 // Handle the vector case separately. 360 if (ValueVT.isVector()) 361 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 362 363 unsigned PartBits = PartVT.getSizeInBits(); 364 unsigned OrigNumParts = NumParts; 365 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 366 "Copying to an illegal type!"); 367 368 if (NumParts == 0) 369 return; 370 371 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 372 EVT PartEVT = PartVT; 373 if (PartEVT == ValueVT) { 374 assert(NumParts == 1 && "No-op copy with multiple parts!"); 375 Parts[0] = Val; 376 return; 377 } 378 379 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 380 // If the parts cover more bits than the value has, promote the value. 381 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 382 assert(NumParts == 1 && "Do not know what to promote to!"); 383 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 384 } else { 385 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 386 ValueVT.isInteger() && 387 "Unknown mismatch!"); 388 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 389 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 390 if (PartVT == MVT::x86mmx) 391 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 392 } 393 } else if (PartBits == ValueVT.getSizeInBits()) { 394 // Different types of the same size. 395 assert(NumParts == 1 && PartEVT != ValueVT); 396 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 397 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 398 // If the parts cover less bits than value has, truncate the value. 399 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 400 ValueVT.isInteger() && 401 "Unknown mismatch!"); 402 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 403 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 404 if (PartVT == MVT::x86mmx) 405 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 406 } 407 408 // The value may have changed - recompute ValueVT. 409 ValueVT = Val.getValueType(); 410 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 411 "Failed to tile the value with PartVT!"); 412 413 if (NumParts == 1) { 414 if (PartEVT != ValueVT) 415 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 416 "scalar-to-vector conversion failed"); 417 418 Parts[0] = Val; 419 return; 420 } 421 422 // Expand the value into multiple parts. 423 if (NumParts & (NumParts - 1)) { 424 // The number of parts is not a power of 2. Split off and copy the tail. 425 assert(PartVT.isInteger() && ValueVT.isInteger() && 426 "Do not know what to expand to!"); 427 unsigned RoundParts = 1 << Log2_32(NumParts); 428 unsigned RoundBits = RoundParts * PartBits; 429 unsigned OddParts = NumParts - RoundParts; 430 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 431 DAG.getIntPtrConstant(RoundBits, DL)); 432 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 433 434 if (DAG.getDataLayout().isBigEndian()) 435 // The odd parts were reversed by getCopyToParts - unreverse them. 436 std::reverse(Parts + RoundParts, Parts + NumParts); 437 438 NumParts = RoundParts; 439 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 440 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 441 } 442 443 // The number of parts is a power of 2. Repeatedly bisect the value using 444 // EXTRACT_ELEMENT. 445 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 446 EVT::getIntegerVT(*DAG.getContext(), 447 ValueVT.getSizeInBits()), 448 Val); 449 450 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 451 for (unsigned i = 0; i < NumParts; i += StepSize) { 452 unsigned ThisBits = StepSize * PartBits / 2; 453 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 454 SDValue &Part0 = Parts[i]; 455 SDValue &Part1 = Parts[i+StepSize/2]; 456 457 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 458 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 459 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 460 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 461 462 if (ThisBits == PartBits && ThisVT != PartVT) { 463 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 464 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 465 } 466 } 467 } 468 469 if (DAG.getDataLayout().isBigEndian()) 470 std::reverse(Parts, Parts + OrigNumParts); 471 } 472 473 474 /// getCopyToPartsVector - Create a series of nodes that contain the specified 475 /// value split into legal parts. 476 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 477 SDValue Val, SDValue *Parts, unsigned NumParts, 478 MVT PartVT, const Value *V) { 479 EVT ValueVT = Val.getValueType(); 480 assert(ValueVT.isVector() && "Not a vector"); 481 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 482 483 if (NumParts == 1) { 484 EVT PartEVT = PartVT; 485 if (PartEVT == ValueVT) { 486 // Nothing to do. 487 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 488 // Bitconvert vector->vector case. 489 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 490 } else if (PartVT.isVector() && 491 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 492 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 493 EVT ElementVT = PartVT.getVectorElementType(); 494 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 495 // undef elements. 496 SmallVector<SDValue, 16> Ops; 497 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getNode( 499 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 500 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 501 502 for (unsigned i = ValueVT.getVectorNumElements(), 503 e = PartVT.getVectorNumElements(); i != e; ++i) 504 Ops.push_back(DAG.getUNDEF(ElementVT)); 505 506 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 507 508 // FIXME: Use CONCAT for 2x -> 4x. 509 510 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 511 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 512 } else if (PartVT.isVector() && 513 PartEVT.getVectorElementType().bitsGE( 514 ValueVT.getVectorElementType()) && 515 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 516 517 // Promoted vector extract 518 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 519 } else{ 520 // Vector -> scalar conversion. 521 assert(ValueVT.getVectorNumElements() == 1 && 522 "Only trivial vector-to-scalar conversions should get here!"); 523 Val = DAG.getNode( 524 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 525 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 526 527 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 528 } 529 530 Parts[0] = Val; 531 return; 532 } 533 534 // Handle a multi-element vector. 535 EVT IntermediateVT; 536 MVT RegisterVT; 537 unsigned NumIntermediates; 538 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 539 IntermediateVT, 540 NumIntermediates, RegisterVT); 541 unsigned NumElements = ValueVT.getVectorNumElements(); 542 543 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 544 NumParts = NumRegs; // Silence a compiler warning. 545 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 546 547 // Split the vector into intermediate operands. 548 SmallVector<SDValue, 8> Ops(NumIntermediates); 549 for (unsigned i = 0; i != NumIntermediates; ++i) { 550 if (IntermediateVT.isVector()) 551 Ops[i] = 552 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 553 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 554 TLI.getVectorIdxTy(DAG.getDataLayout()))); 555 else 556 Ops[i] = DAG.getNode( 557 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 558 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 559 } 560 561 // Split the intermediate operands into legal parts. 562 if (NumParts == NumIntermediates) { 563 // If the register was not expanded, promote or copy the value, 564 // as appropriate. 565 for (unsigned i = 0; i != NumParts; ++i) 566 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 567 } else if (NumParts > 0) { 568 // If the intermediate type was expanded, split each the value into 569 // legal parts. 570 assert(NumIntermediates != 0 && "division by zero"); 571 assert(NumParts % NumIntermediates == 0 && 572 "Must expand into a divisible number of parts!"); 573 unsigned Factor = NumParts / NumIntermediates; 574 for (unsigned i = 0; i != NumIntermediates; ++i) 575 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 576 } 577 } 578 579 RegsForValue::RegsForValue() {} 580 581 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 582 EVT valuevt) 583 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 584 585 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 586 const DataLayout &DL, unsigned Reg, Type *Ty) { 587 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 588 589 for (EVT ValueVT : ValueVTs) { 590 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 591 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 592 for (unsigned i = 0; i != NumRegs; ++i) 593 Regs.push_back(Reg + i); 594 RegVTs.push_back(RegisterVT); 595 Reg += NumRegs; 596 } 597 } 598 599 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 600 /// this value and returns the result as a ValueVT value. This uses 601 /// Chain/Flag as the input and updates them for the output Chain/Flag. 602 /// If the Flag pointer is NULL, no flag is used. 603 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 604 FunctionLoweringInfo &FuncInfo, 605 SDLoc dl, 606 SDValue &Chain, SDValue *Flag, 607 const Value *V) const { 608 // A Value with type {} or [0 x %t] needs no registers. 609 if (ValueVTs.empty()) 610 return SDValue(); 611 612 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 613 614 // Assemble the legal parts into the final values. 615 SmallVector<SDValue, 4> Values(ValueVTs.size()); 616 SmallVector<SDValue, 8> Parts; 617 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 618 // Copy the legal parts from the registers. 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 621 MVT RegisterVT = RegVTs[Value]; 622 623 Parts.resize(NumRegs); 624 for (unsigned i = 0; i != NumRegs; ++i) { 625 SDValue P; 626 if (!Flag) { 627 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 628 } else { 629 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 630 *Flag = P.getValue(2); 631 } 632 633 Chain = P.getValue(1); 634 Parts[i] = P; 635 636 // If the source register was virtual and if we know something about it, 637 // add an assert node. 638 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 639 !RegisterVT.isInteger() || RegisterVT.isVector()) 640 continue; 641 642 const FunctionLoweringInfo::LiveOutInfo *LOI = 643 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 644 if (!LOI) 645 continue; 646 647 unsigned RegSize = RegisterVT.getSizeInBits(); 648 unsigned NumSignBits = LOI->NumSignBits; 649 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 650 651 if (NumZeroBits == RegSize) { 652 // The current value is a zero. 653 // Explicitly express that as it would be easier for 654 // optimizations to kick in. 655 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 656 continue; 657 } 658 659 // FIXME: We capture more information than the dag can represent. For 660 // now, just use the tightest assertzext/assertsext possible. 661 bool isSExt = true; 662 EVT FromVT(MVT::Other); 663 if (NumSignBits == RegSize) 664 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 665 else if (NumZeroBits >= RegSize-1) 666 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 667 else if (NumSignBits > RegSize-8) 668 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 669 else if (NumZeroBits >= RegSize-8) 670 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 671 else if (NumSignBits > RegSize-16) 672 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 673 else if (NumZeroBits >= RegSize-16) 674 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 675 else if (NumSignBits > RegSize-32) 676 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 677 else if (NumZeroBits >= RegSize-32) 678 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 679 else 680 continue; 681 682 // Add an assertion node. 683 assert(FromVT != MVT::Other); 684 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 685 RegisterVT, P, DAG.getValueType(FromVT)); 686 } 687 688 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 689 NumRegs, RegisterVT, ValueVT, V); 690 Part += NumRegs; 691 Parts.clear(); 692 } 693 694 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 695 } 696 697 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 698 /// specified value into the registers specified by this object. This uses 699 /// Chain/Flag as the input and updates them for the output Chain/Flag. 700 /// If the Flag pointer is NULL, no flag is used. 701 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 702 SDValue &Chain, SDValue *Flag, const Value *V, 703 ISD::NodeType PreferredExtendType) const { 704 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 705 ISD::NodeType ExtendKind = PreferredExtendType; 706 707 // Get the list of the values's legal parts. 708 unsigned NumRegs = Regs.size(); 709 SmallVector<SDValue, 8> Parts(NumRegs); 710 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 711 EVT ValueVT = ValueVTs[Value]; 712 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 713 MVT RegisterVT = RegVTs[Value]; 714 715 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 716 ExtendKind = ISD::ZERO_EXTEND; 717 718 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 719 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 720 Part += NumParts; 721 } 722 723 // Copy the parts into the registers. 724 SmallVector<SDValue, 8> Chains(NumRegs); 725 for (unsigned i = 0; i != NumRegs; ++i) { 726 SDValue Part; 727 if (!Flag) { 728 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 729 } else { 730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 731 *Flag = Part.getValue(1); 732 } 733 734 Chains[i] = Part.getValue(0); 735 } 736 737 if (NumRegs == 1 || Flag) 738 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 739 // flagged to it. That is the CopyToReg nodes and the user are considered 740 // a single scheduling unit. If we create a TokenFactor and return it as 741 // chain, then the TokenFactor is both a predecessor (operand) of the 742 // user as well as a successor (the TF operands are flagged to the user). 743 // c1, f1 = CopyToReg 744 // c2, f2 = CopyToReg 745 // c3 = TokenFactor c1, c2 746 // ... 747 // = op c3, ..., f2 748 Chain = Chains[NumRegs-1]; 749 else 750 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 751 } 752 753 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 754 /// operand list. This adds the code marker and includes the number of 755 /// values added into it. 756 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 757 unsigned MatchingIdx, SDLoc dl, 758 SelectionDAG &DAG, 759 std::vector<SDValue> &Ops) const { 760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 761 762 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 763 if (HasMatching) 764 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 765 else if (!Regs.empty() && 766 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 767 // Put the register class of the virtual registers in the flag word. That 768 // way, later passes can recompute register class constraints for inline 769 // assembly as well as normal instructions. 770 // Don't do this for tied operands that can use the regclass information 771 // from the def. 772 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 773 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 774 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 775 } 776 777 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 778 Ops.push_back(Res); 779 780 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 781 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 782 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 783 MVT RegisterVT = RegVTs[Value]; 784 for (unsigned i = 0; i != NumRegs; ++i) { 785 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 786 unsigned TheReg = Regs[Reg++]; 787 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 788 789 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 790 // If we clobbered the stack pointer, MFI should know about it. 791 assert(DAG.getMachineFunction().getFrameInfo()-> 792 hasOpaqueSPAdjustment()); 793 } 794 } 795 } 796 } 797 798 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 799 const TargetLibraryInfo *li) { 800 AA = &aa; 801 GFI = gfi; 802 LibInfo = li; 803 DL = &DAG.getDataLayout(); 804 Context = DAG.getContext(); 805 LPadToCallSiteMap.clear(); 806 } 807 808 /// clear - Clear out the current SelectionDAG and the associated 809 /// state and prepare this SelectionDAGBuilder object to be used 810 /// for a new block. This doesn't clear out information about 811 /// additional blocks that are needed to complete switch lowering 812 /// or PHI node updating; that information is cleared out as it is 813 /// consumed. 814 void SelectionDAGBuilder::clear() { 815 NodeMap.clear(); 816 UnusedArgNodeMap.clear(); 817 PendingLoads.clear(); 818 PendingExports.clear(); 819 CurInst = nullptr; 820 HasTailCall = false; 821 SDNodeOrder = LowestSDNodeOrder; 822 StatepointLowering.clear(); 823 } 824 825 /// clearDanglingDebugInfo - Clear the dangling debug information 826 /// map. This function is separated from the clear so that debug 827 /// information that is dangling in a basic block can be properly 828 /// resolved in a different basic block. This allows the 829 /// SelectionDAG to resolve dangling debug information attached 830 /// to PHI nodes. 831 void SelectionDAGBuilder::clearDanglingDebugInfo() { 832 DanglingDebugInfoMap.clear(); 833 } 834 835 /// getRoot - Return the current virtual root of the Selection DAG, 836 /// flushing any PendingLoad items. This must be done before emitting 837 /// a store or any other node that may need to be ordered after any 838 /// prior load instructions. 839 /// 840 SDValue SelectionDAGBuilder::getRoot() { 841 if (PendingLoads.empty()) 842 return DAG.getRoot(); 843 844 if (PendingLoads.size() == 1) { 845 SDValue Root = PendingLoads[0]; 846 DAG.setRoot(Root); 847 PendingLoads.clear(); 848 return Root; 849 } 850 851 // Otherwise, we have to make a token factor node. 852 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 853 PendingLoads); 854 PendingLoads.clear(); 855 DAG.setRoot(Root); 856 return Root; 857 } 858 859 /// getControlRoot - Similar to getRoot, but instead of flushing all the 860 /// PendingLoad items, flush all the PendingExports items. It is necessary 861 /// to do this before emitting a terminator instruction. 862 /// 863 SDValue SelectionDAGBuilder::getControlRoot() { 864 SDValue Root = DAG.getRoot(); 865 866 if (PendingExports.empty()) 867 return Root; 868 869 // Turn all of the CopyToReg chains into one factored node. 870 if (Root.getOpcode() != ISD::EntryToken) { 871 unsigned i = 0, e = PendingExports.size(); 872 for (; i != e; ++i) { 873 assert(PendingExports[i].getNode()->getNumOperands() > 1); 874 if (PendingExports[i].getNode()->getOperand(0) == Root) 875 break; // Don't add the root if we already indirectly depend on it. 876 } 877 878 if (i == e) 879 PendingExports.push_back(Root); 880 } 881 882 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 883 PendingExports); 884 PendingExports.clear(); 885 DAG.setRoot(Root); 886 return Root; 887 } 888 889 void SelectionDAGBuilder::visit(const Instruction &I) { 890 // Set up outgoing PHI node register values before emitting the terminator. 891 if (isa<TerminatorInst>(&I)) 892 HandlePHINodesInSuccessorBlocks(I.getParent()); 893 894 ++SDNodeOrder; 895 896 CurInst = &I; 897 898 visit(I.getOpcode(), I); 899 900 if (!isa<TerminatorInst>(&I) && !HasTailCall) 901 CopyToExportRegsIfNeeded(&I); 902 903 CurInst = nullptr; 904 } 905 906 void SelectionDAGBuilder::visitPHI(const PHINode &) { 907 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 908 } 909 910 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 911 // Note: this doesn't use InstVisitor, because it has to work with 912 // ConstantExpr's in addition to instructions. 913 switch (Opcode) { 914 default: llvm_unreachable("Unknown instruction type encountered!"); 915 // Build the switch statement using the Instruction.def file. 916 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 917 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 918 #include "llvm/IR/Instruction.def" 919 } 920 } 921 922 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 923 // generate the debug data structures now that we've seen its definition. 924 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 925 SDValue Val) { 926 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 927 if (DDI.getDI()) { 928 const DbgValueInst *DI = DDI.getDI(); 929 DebugLoc dl = DDI.getdl(); 930 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 931 DILocalVariable *Variable = DI->getVariable(); 932 DIExpression *Expr = DI->getExpression(); 933 assert(Variable->isValidLocationForIntrinsic(dl) && 934 "Expected inlined-at fields to agree"); 935 uint64_t Offset = DI->getOffset(); 936 // A dbg.value for an alloca is always indirect. 937 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 938 SDDbgValue *SDV; 939 if (Val.getNode()) { 940 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 941 Val)) { 942 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 943 IsIndirect, Offset, dl, DbgSDNodeOrder); 944 DAG.AddDbgValue(SDV, Val.getNode(), false); 945 } 946 } else 947 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 948 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 949 } 950 } 951 952 /// getCopyFromRegs - If there was virtual register allocated for the value V 953 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 954 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 955 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 956 SDValue Result; 957 958 if (It != FuncInfo.ValueMap.end()) { 959 unsigned InReg = It->second; 960 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 961 DAG.getDataLayout(), InReg, Ty); 962 SDValue Chain = DAG.getEntryNode(); 963 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 964 resolveDanglingDebugInfo(V, Result); 965 } 966 967 return Result; 968 } 969 970 /// getValue - Return an SDValue for the given Value. 971 SDValue SelectionDAGBuilder::getValue(const Value *V) { 972 // If we already have an SDValue for this value, use it. It's important 973 // to do this first, so that we don't create a CopyFromReg if we already 974 // have a regular SDValue. 975 SDValue &N = NodeMap[V]; 976 if (N.getNode()) return N; 977 978 // If there's a virtual register allocated and initialized for this 979 // value, use it. 980 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 981 if (copyFromReg.getNode()) { 982 return copyFromReg; 983 } 984 985 // Otherwise create a new SDValue and remember it. 986 SDValue Val = getValueImpl(V); 987 NodeMap[V] = Val; 988 resolveDanglingDebugInfo(V, Val); 989 return Val; 990 } 991 992 // Return true if SDValue exists for the given Value 993 bool SelectionDAGBuilder::findValue(const Value *V) const { 994 return (NodeMap.find(V) != NodeMap.end()) || 995 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 996 } 997 998 /// getNonRegisterValue - Return an SDValue for the given Value, but 999 /// don't look in FuncInfo.ValueMap for a virtual register. 1000 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1001 // If we already have an SDValue for this value, use it. 1002 SDValue &N = NodeMap[V]; 1003 if (N.getNode()) { 1004 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1005 // Remove the debug location from the node as the node is about to be used 1006 // in a location which may differ from the original debug location. This 1007 // is relevant to Constant and ConstantFP nodes because they can appear 1008 // as constant expressions inside PHI nodes. 1009 N->setDebugLoc(DebugLoc()); 1010 } 1011 return N; 1012 } 1013 1014 // Otherwise create a new SDValue and remember it. 1015 SDValue Val = getValueImpl(V); 1016 NodeMap[V] = Val; 1017 resolveDanglingDebugInfo(V, Val); 1018 return Val; 1019 } 1020 1021 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1022 /// Create an SDValue for the given value. 1023 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1025 1026 if (const Constant *C = dyn_cast<Constant>(V)) { 1027 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1028 1029 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1030 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1031 1032 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1033 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1034 1035 if (isa<ConstantPointerNull>(C)) { 1036 unsigned AS = V->getType()->getPointerAddressSpace(); 1037 return DAG.getConstant(0, getCurSDLoc(), 1038 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1039 } 1040 1041 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1042 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1043 1044 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1045 return DAG.getUNDEF(VT); 1046 1047 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1048 visit(CE->getOpcode(), *CE); 1049 SDValue N1 = NodeMap[V]; 1050 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1051 return N1; 1052 } 1053 1054 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1055 SmallVector<SDValue, 4> Constants; 1056 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1057 OI != OE; ++OI) { 1058 SDNode *Val = getValue(*OI).getNode(); 1059 // If the operand is an empty aggregate, there are no values. 1060 if (!Val) continue; 1061 // Add each leaf value from the operand to the Constants list 1062 // to form a flattened list of all the values. 1063 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1064 Constants.push_back(SDValue(Val, i)); 1065 } 1066 1067 return DAG.getMergeValues(Constants, getCurSDLoc()); 1068 } 1069 1070 if (const ConstantDataSequential *CDS = 1071 dyn_cast<ConstantDataSequential>(C)) { 1072 SmallVector<SDValue, 4> Ops; 1073 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1074 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1075 // Add each leaf value from the operand to the Constants list 1076 // to form a flattened list of all the values. 1077 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1078 Ops.push_back(SDValue(Val, i)); 1079 } 1080 1081 if (isa<ArrayType>(CDS->getType())) 1082 return DAG.getMergeValues(Ops, getCurSDLoc()); 1083 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1084 VT, Ops); 1085 } 1086 1087 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1088 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1089 "Unknown struct or array constant!"); 1090 1091 SmallVector<EVT, 4> ValueVTs; 1092 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1093 unsigned NumElts = ValueVTs.size(); 1094 if (NumElts == 0) 1095 return SDValue(); // empty struct 1096 SmallVector<SDValue, 4> Constants(NumElts); 1097 for (unsigned i = 0; i != NumElts; ++i) { 1098 EVT EltVT = ValueVTs[i]; 1099 if (isa<UndefValue>(C)) 1100 Constants[i] = DAG.getUNDEF(EltVT); 1101 else if (EltVT.isFloatingPoint()) 1102 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1103 else 1104 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1105 } 1106 1107 return DAG.getMergeValues(Constants, getCurSDLoc()); 1108 } 1109 1110 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1111 return DAG.getBlockAddress(BA, VT); 1112 1113 VectorType *VecTy = cast<VectorType>(V->getType()); 1114 unsigned NumElements = VecTy->getNumElements(); 1115 1116 // Now that we know the number and type of the elements, get that number of 1117 // elements into the Ops array based on what kind of constant it is. 1118 SmallVector<SDValue, 16> Ops; 1119 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1120 for (unsigned i = 0; i != NumElements; ++i) 1121 Ops.push_back(getValue(CV->getOperand(i))); 1122 } else { 1123 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1124 EVT EltVT = 1125 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1126 1127 SDValue Op; 1128 if (EltVT.isFloatingPoint()) 1129 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1130 else 1131 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1132 Ops.assign(NumElements, Op); 1133 } 1134 1135 // Create a BUILD_VECTOR node. 1136 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1137 } 1138 1139 // If this is a static alloca, generate it as the frameindex instead of 1140 // computation. 1141 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1142 DenseMap<const AllocaInst*, int>::iterator SI = 1143 FuncInfo.StaticAllocaMap.find(AI); 1144 if (SI != FuncInfo.StaticAllocaMap.end()) 1145 return DAG.getFrameIndex(SI->second, 1146 TLI.getPointerTy(DAG.getDataLayout())); 1147 } 1148 1149 // If this is an instruction which fast-isel has deferred, select it now. 1150 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1151 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1152 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1153 Inst->getType()); 1154 SDValue Chain = DAG.getEntryNode(); 1155 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1156 } 1157 1158 llvm_unreachable("Can't get register for value!"); 1159 } 1160 1161 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1162 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1163 auto &DL = DAG.getDataLayout(); 1164 SDValue Chain = getControlRoot(); 1165 SmallVector<ISD::OutputArg, 8> Outs; 1166 SmallVector<SDValue, 8> OutVals; 1167 1168 if (!FuncInfo.CanLowerReturn) { 1169 unsigned DemoteReg = FuncInfo.DemoteRegister; 1170 const Function *F = I.getParent()->getParent(); 1171 1172 // Emit a store of the return value through the virtual register. 1173 // Leave Outs empty so that LowerReturn won't try to load return 1174 // registers the usual way. 1175 SmallVector<EVT, 1> PtrValueVTs; 1176 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1177 PtrValueVTs); 1178 1179 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1180 SDValue RetOp = getValue(I.getOperand(0)); 1181 1182 SmallVector<EVT, 4> ValueVTs; 1183 SmallVector<uint64_t, 4> Offsets; 1184 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1185 unsigned NumValues = ValueVTs.size(); 1186 1187 SmallVector<SDValue, 4> Chains(NumValues); 1188 for (unsigned i = 0; i != NumValues; ++i) { 1189 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1190 RetPtr.getValueType(), RetPtr, 1191 DAG.getIntPtrConstant(Offsets[i], 1192 getCurSDLoc())); 1193 Chains[i] = 1194 DAG.getStore(Chain, getCurSDLoc(), 1195 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1196 // FIXME: better loc info would be nice. 1197 Add, MachinePointerInfo(), false, false, 0); 1198 } 1199 1200 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1201 MVT::Other, Chains); 1202 } else if (I.getNumOperands() != 0) { 1203 SmallVector<EVT, 4> ValueVTs; 1204 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1205 unsigned NumValues = ValueVTs.size(); 1206 if (NumValues) { 1207 SDValue RetOp = getValue(I.getOperand(0)); 1208 1209 const Function *F = I.getParent()->getParent(); 1210 1211 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1212 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1213 Attribute::SExt)) 1214 ExtendKind = ISD::SIGN_EXTEND; 1215 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1216 Attribute::ZExt)) 1217 ExtendKind = ISD::ZERO_EXTEND; 1218 1219 LLVMContext &Context = F->getContext(); 1220 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1221 Attribute::InReg); 1222 1223 for (unsigned j = 0; j != NumValues; ++j) { 1224 EVT VT = ValueVTs[j]; 1225 1226 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1227 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1228 1229 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1230 MVT PartVT = TLI.getRegisterType(Context, VT); 1231 SmallVector<SDValue, 4> Parts(NumParts); 1232 getCopyToParts(DAG, getCurSDLoc(), 1233 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1234 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1235 1236 // 'inreg' on function refers to return value 1237 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1238 if (RetInReg) 1239 Flags.setInReg(); 1240 1241 // Propagate extension type if any 1242 if (ExtendKind == ISD::SIGN_EXTEND) 1243 Flags.setSExt(); 1244 else if (ExtendKind == ISD::ZERO_EXTEND) 1245 Flags.setZExt(); 1246 1247 for (unsigned i = 0; i < NumParts; ++i) { 1248 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1249 VT, /*isfixed=*/true, 0, 0)); 1250 OutVals.push_back(Parts[i]); 1251 } 1252 } 1253 } 1254 } 1255 1256 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1257 CallingConv::ID CallConv = 1258 DAG.getMachineFunction().getFunction()->getCallingConv(); 1259 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1260 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1261 1262 // Verify that the target's LowerReturn behaved as expected. 1263 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1264 "LowerReturn didn't return a valid chain!"); 1265 1266 // Update the DAG with the new chain value resulting from return lowering. 1267 DAG.setRoot(Chain); 1268 } 1269 1270 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1271 /// created for it, emit nodes to copy the value into the virtual 1272 /// registers. 1273 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1274 // Skip empty types 1275 if (V->getType()->isEmptyTy()) 1276 return; 1277 1278 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1279 if (VMI != FuncInfo.ValueMap.end()) { 1280 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1281 CopyValueToVirtualRegister(V, VMI->second); 1282 } 1283 } 1284 1285 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1286 /// the current basic block, add it to ValueMap now so that we'll get a 1287 /// CopyTo/FromReg. 1288 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1289 // No need to export constants. 1290 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1291 1292 // Already exported? 1293 if (FuncInfo.isExportedInst(V)) return; 1294 1295 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1296 CopyValueToVirtualRegister(V, Reg); 1297 } 1298 1299 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1300 const BasicBlock *FromBB) { 1301 // The operands of the setcc have to be in this block. We don't know 1302 // how to export them from some other block. 1303 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1304 // Can export from current BB. 1305 if (VI->getParent() == FromBB) 1306 return true; 1307 1308 // Is already exported, noop. 1309 return FuncInfo.isExportedInst(V); 1310 } 1311 1312 // If this is an argument, we can export it if the BB is the entry block or 1313 // if it is already exported. 1314 if (isa<Argument>(V)) { 1315 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1316 return true; 1317 1318 // Otherwise, can only export this if it is already exported. 1319 return FuncInfo.isExportedInst(V); 1320 } 1321 1322 // Otherwise, constants can always be exported. 1323 return true; 1324 } 1325 1326 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1327 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1328 const MachineBasicBlock *Dst) const { 1329 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1330 if (!BPI) 1331 return 0; 1332 const BasicBlock *SrcBB = Src->getBasicBlock(); 1333 const BasicBlock *DstBB = Dst->getBasicBlock(); 1334 return BPI->getEdgeWeight(SrcBB, DstBB); 1335 } 1336 1337 void SelectionDAGBuilder:: 1338 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1339 uint32_t Weight /* = 0 */) { 1340 if (!Weight) 1341 Weight = getEdgeWeight(Src, Dst); 1342 Src->addSuccessor(Dst, Weight); 1343 } 1344 1345 1346 static bool InBlock(const Value *V, const BasicBlock *BB) { 1347 if (const Instruction *I = dyn_cast<Instruction>(V)) 1348 return I->getParent() == BB; 1349 return true; 1350 } 1351 1352 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1353 /// This function emits a branch and is used at the leaves of an OR or an 1354 /// AND operator tree. 1355 /// 1356 void 1357 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1358 MachineBasicBlock *TBB, 1359 MachineBasicBlock *FBB, 1360 MachineBasicBlock *CurBB, 1361 MachineBasicBlock *SwitchBB, 1362 uint32_t TWeight, 1363 uint32_t FWeight) { 1364 const BasicBlock *BB = CurBB->getBasicBlock(); 1365 1366 // If the leaf of the tree is a comparison, merge the condition into 1367 // the caseblock. 1368 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1369 // The operands of the cmp have to be in this block. We don't know 1370 // how to export them from some other block. If this is the first block 1371 // of the sequence, no exporting is needed. 1372 if (CurBB == SwitchBB || 1373 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1374 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1375 ISD::CondCode Condition; 1376 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1377 Condition = getICmpCondCode(IC->getPredicate()); 1378 } else { 1379 const FCmpInst *FC = cast<FCmpInst>(Cond); 1380 Condition = getFCmpCondCode(FC->getPredicate()); 1381 if (TM.Options.NoNaNsFPMath) 1382 Condition = getFCmpCodeWithoutNaN(Condition); 1383 } 1384 1385 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1386 TBB, FBB, CurBB, TWeight, FWeight); 1387 SwitchCases.push_back(CB); 1388 return; 1389 } 1390 } 1391 1392 // Create a CaseBlock record representing this branch. 1393 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1394 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1395 SwitchCases.push_back(CB); 1396 } 1397 1398 /// Scale down both weights to fit into uint32_t. 1399 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1400 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1401 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1402 NewTrue = NewTrue / Scale; 1403 NewFalse = NewFalse / Scale; 1404 } 1405 1406 /// FindMergedConditions - If Cond is an expression like 1407 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1408 MachineBasicBlock *TBB, 1409 MachineBasicBlock *FBB, 1410 MachineBasicBlock *CurBB, 1411 MachineBasicBlock *SwitchBB, 1412 unsigned Opc, uint32_t TWeight, 1413 uint32_t FWeight) { 1414 // If this node is not part of the or/and tree, emit it as a branch. 1415 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1416 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1417 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1418 BOp->getParent() != CurBB->getBasicBlock() || 1419 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1420 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1421 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1422 TWeight, FWeight); 1423 return; 1424 } 1425 1426 // Create TmpBB after CurBB. 1427 MachineFunction::iterator BBI = CurBB; 1428 MachineFunction &MF = DAG.getMachineFunction(); 1429 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1430 CurBB->getParent()->insert(++BBI, TmpBB); 1431 1432 if (Opc == Instruction::Or) { 1433 // Codegen X | Y as: 1434 // BB1: 1435 // jmp_if_X TBB 1436 // jmp TmpBB 1437 // TmpBB: 1438 // jmp_if_Y TBB 1439 // jmp FBB 1440 // 1441 1442 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1443 // The requirement is that 1444 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1445 // = TrueProb for original BB. 1446 // Assuming the original weights are A and B, one choice is to set BB1's 1447 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1448 // assumes that 1449 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1450 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1451 // TmpBB, but the math is more complicated. 1452 1453 uint64_t NewTrueWeight = TWeight; 1454 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1455 ScaleWeights(NewTrueWeight, NewFalseWeight); 1456 // Emit the LHS condition. 1457 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1458 NewTrueWeight, NewFalseWeight); 1459 1460 NewTrueWeight = TWeight; 1461 NewFalseWeight = 2 * (uint64_t)FWeight; 1462 ScaleWeights(NewTrueWeight, NewFalseWeight); 1463 // Emit the RHS condition into TmpBB. 1464 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1465 NewTrueWeight, NewFalseWeight); 1466 } else { 1467 assert(Opc == Instruction::And && "Unknown merge op!"); 1468 // Codegen X & Y as: 1469 // BB1: 1470 // jmp_if_X TmpBB 1471 // jmp FBB 1472 // TmpBB: 1473 // jmp_if_Y TBB 1474 // jmp FBB 1475 // 1476 // This requires creation of TmpBB after CurBB. 1477 1478 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1479 // The requirement is that 1480 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1481 // = FalseProb for original BB. 1482 // Assuming the original weights are A and B, one choice is to set BB1's 1483 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1484 // assumes that 1485 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1486 1487 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1488 uint64_t NewFalseWeight = FWeight; 1489 ScaleWeights(NewTrueWeight, NewFalseWeight); 1490 // Emit the LHS condition. 1491 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1492 NewTrueWeight, NewFalseWeight); 1493 1494 NewTrueWeight = 2 * (uint64_t)TWeight; 1495 NewFalseWeight = FWeight; 1496 ScaleWeights(NewTrueWeight, NewFalseWeight); 1497 // Emit the RHS condition into TmpBB. 1498 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1499 NewTrueWeight, NewFalseWeight); 1500 } 1501 } 1502 1503 /// If the set of cases should be emitted as a series of branches, return true. 1504 /// If we should emit this as a bunch of and/or'd together conditions, return 1505 /// false. 1506 bool 1507 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1508 if (Cases.size() != 2) return true; 1509 1510 // If this is two comparisons of the same values or'd or and'd together, they 1511 // will get folded into a single comparison, so don't emit two blocks. 1512 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1513 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1514 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1515 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1516 return false; 1517 } 1518 1519 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1520 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1521 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1522 Cases[0].CC == Cases[1].CC && 1523 isa<Constant>(Cases[0].CmpRHS) && 1524 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1525 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1526 return false; 1527 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1528 return false; 1529 } 1530 1531 return true; 1532 } 1533 1534 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1535 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1536 1537 // Update machine-CFG edges. 1538 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1539 1540 if (I.isUnconditional()) { 1541 // Update machine-CFG edges. 1542 BrMBB->addSuccessor(Succ0MBB); 1543 1544 // If this is not a fall-through branch or optimizations are switched off, 1545 // emit the branch. 1546 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1547 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1548 MVT::Other, getControlRoot(), 1549 DAG.getBasicBlock(Succ0MBB))); 1550 1551 return; 1552 } 1553 1554 // If this condition is one of the special cases we handle, do special stuff 1555 // now. 1556 const Value *CondVal = I.getCondition(); 1557 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1558 1559 // If this is a series of conditions that are or'd or and'd together, emit 1560 // this as a sequence of branches instead of setcc's with and/or operations. 1561 // As long as jumps are not expensive, this should improve performance. 1562 // For example, instead of something like: 1563 // cmp A, B 1564 // C = seteq 1565 // cmp D, E 1566 // F = setle 1567 // or C, F 1568 // jnz foo 1569 // Emit: 1570 // cmp A, B 1571 // je foo 1572 // cmp D, E 1573 // jle foo 1574 // 1575 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1576 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1577 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1578 BOp->getOpcode() == Instruction::Or)) { 1579 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1580 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1581 getEdgeWeight(BrMBB, Succ1MBB)); 1582 // If the compares in later blocks need to use values not currently 1583 // exported from this block, export them now. This block should always 1584 // be the first entry. 1585 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1586 1587 // Allow some cases to be rejected. 1588 if (ShouldEmitAsBranches(SwitchCases)) { 1589 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1590 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1591 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1592 } 1593 1594 // Emit the branch for this block. 1595 visitSwitchCase(SwitchCases[0], BrMBB); 1596 SwitchCases.erase(SwitchCases.begin()); 1597 return; 1598 } 1599 1600 // Okay, we decided not to do this, remove any inserted MBB's and clear 1601 // SwitchCases. 1602 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1603 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1604 1605 SwitchCases.clear(); 1606 } 1607 } 1608 1609 // Create a CaseBlock record representing this branch. 1610 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1611 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1612 1613 // Use visitSwitchCase to actually insert the fast branch sequence for this 1614 // cond branch. 1615 visitSwitchCase(CB, BrMBB); 1616 } 1617 1618 /// visitSwitchCase - Emits the necessary code to represent a single node in 1619 /// the binary search tree resulting from lowering a switch instruction. 1620 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1621 MachineBasicBlock *SwitchBB) { 1622 SDValue Cond; 1623 SDValue CondLHS = getValue(CB.CmpLHS); 1624 SDLoc dl = getCurSDLoc(); 1625 1626 // Build the setcc now. 1627 if (!CB.CmpMHS) { 1628 // Fold "(X == true)" to X and "(X == false)" to !X to 1629 // handle common cases produced by branch lowering. 1630 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1631 CB.CC == ISD::SETEQ) 1632 Cond = CondLHS; 1633 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1634 CB.CC == ISD::SETEQ) { 1635 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1636 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1637 } else 1638 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1639 } else { 1640 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1641 1642 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1643 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1644 1645 SDValue CmpOp = getValue(CB.CmpMHS); 1646 EVT VT = CmpOp.getValueType(); 1647 1648 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1649 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1650 ISD::SETLE); 1651 } else { 1652 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1653 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1654 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1655 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1656 } 1657 } 1658 1659 // Update successor info 1660 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1661 // TrueBB and FalseBB are always different unless the incoming IR is 1662 // degenerate. This only happens when running llc on weird IR. 1663 if (CB.TrueBB != CB.FalseBB) 1664 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1665 1666 // If the lhs block is the next block, invert the condition so that we can 1667 // fall through to the lhs instead of the rhs block. 1668 if (CB.TrueBB == NextBlock(SwitchBB)) { 1669 std::swap(CB.TrueBB, CB.FalseBB); 1670 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1671 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1672 } 1673 1674 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1675 MVT::Other, getControlRoot(), Cond, 1676 DAG.getBasicBlock(CB.TrueBB)); 1677 1678 // Insert the false branch. Do this even if it's a fall through branch, 1679 // this makes it easier to do DAG optimizations which require inverting 1680 // the branch condition. 1681 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1682 DAG.getBasicBlock(CB.FalseBB)); 1683 1684 DAG.setRoot(BrCond); 1685 } 1686 1687 /// visitJumpTable - Emit JumpTable node in the current MBB 1688 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1689 // Emit the code for the jump table 1690 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1691 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1692 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1693 JT.Reg, PTy); 1694 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1695 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1696 MVT::Other, Index.getValue(1), 1697 Table, Index); 1698 DAG.setRoot(BrJumpTable); 1699 } 1700 1701 /// visitJumpTableHeader - This function emits necessary code to produce index 1702 /// in the JumpTable from switch case. 1703 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1704 JumpTableHeader &JTH, 1705 MachineBasicBlock *SwitchBB) { 1706 SDLoc dl = getCurSDLoc(); 1707 1708 // Subtract the lowest switch case value from the value being switched on and 1709 // conditional branch to default mbb if the result is greater than the 1710 // difference between smallest and largest cases. 1711 SDValue SwitchOp = getValue(JTH.SValue); 1712 EVT VT = SwitchOp.getValueType(); 1713 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1714 DAG.getConstant(JTH.First, dl, VT)); 1715 1716 // The SDNode we just created, which holds the value being switched on minus 1717 // the smallest case value, needs to be copied to a virtual register so it 1718 // can be used as an index into the jump table in a subsequent basic block. 1719 // This value may be smaller or larger than the target's pointer type, and 1720 // therefore require extension or truncating. 1721 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1722 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1723 1724 unsigned JumpTableReg = 1725 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1726 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1727 JumpTableReg, SwitchOp); 1728 JT.Reg = JumpTableReg; 1729 1730 // Emit the range check for the jump table, and branch to the default block 1731 // for the switch statement if the value being switched on exceeds the largest 1732 // case in the switch. 1733 SDValue CMP = DAG.getSetCC( 1734 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1735 Sub.getValueType()), 1736 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1737 1738 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1739 MVT::Other, CopyTo, CMP, 1740 DAG.getBasicBlock(JT.Default)); 1741 1742 // Avoid emitting unnecessary branches to the next block. 1743 if (JT.MBB != NextBlock(SwitchBB)) 1744 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1745 DAG.getBasicBlock(JT.MBB)); 1746 1747 DAG.setRoot(BrCond); 1748 } 1749 1750 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1751 /// tail spliced into a stack protector check success bb. 1752 /// 1753 /// For a high level explanation of how this fits into the stack protector 1754 /// generation see the comment on the declaration of class 1755 /// StackProtectorDescriptor. 1756 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1757 MachineBasicBlock *ParentBB) { 1758 1759 // First create the loads to the guard/stack slot for the comparison. 1760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1761 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1762 1763 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1764 int FI = MFI->getStackProtectorIndex(); 1765 1766 const Value *IRGuard = SPD.getGuard(); 1767 SDValue GuardPtr = getValue(IRGuard); 1768 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1769 1770 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1771 1772 SDValue Guard; 1773 SDLoc dl = getCurSDLoc(); 1774 1775 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1776 // guard value from the virtual register holding the value. Otherwise, emit a 1777 // volatile load to retrieve the stack guard value. 1778 unsigned GuardReg = SPD.getGuardReg(); 1779 1780 if (GuardReg && TLI.useLoadStackGuardNode()) 1781 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1782 PtrTy); 1783 else 1784 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1785 GuardPtr, MachinePointerInfo(IRGuard, 0), 1786 true, false, false, Align); 1787 1788 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1789 StackSlotPtr, 1790 MachinePointerInfo::getFixedStack(FI), 1791 true, false, false, Align); 1792 1793 // Perform the comparison via a subtract/getsetcc. 1794 EVT VT = Guard.getValueType(); 1795 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1796 1797 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1798 *DAG.getContext(), 1799 Sub.getValueType()), 1800 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1801 1802 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1803 // branch to failure MBB. 1804 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1805 MVT::Other, StackSlot.getOperand(0), 1806 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1807 // Otherwise branch to success MBB. 1808 SDValue Br = DAG.getNode(ISD::BR, dl, 1809 MVT::Other, BrCond, 1810 DAG.getBasicBlock(SPD.getSuccessMBB())); 1811 1812 DAG.setRoot(Br); 1813 } 1814 1815 /// Codegen the failure basic block for a stack protector check. 1816 /// 1817 /// A failure stack protector machine basic block consists simply of a call to 1818 /// __stack_chk_fail(). 1819 /// 1820 /// For a high level explanation of how this fits into the stack protector 1821 /// generation see the comment on the declaration of class 1822 /// StackProtectorDescriptor. 1823 void 1824 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1826 SDValue Chain = 1827 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1828 nullptr, 0, false, getCurSDLoc(), false, false).second; 1829 DAG.setRoot(Chain); 1830 } 1831 1832 /// visitBitTestHeader - This function emits necessary code to produce value 1833 /// suitable for "bit tests" 1834 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1835 MachineBasicBlock *SwitchBB) { 1836 SDLoc dl = getCurSDLoc(); 1837 1838 // Subtract the minimum value 1839 SDValue SwitchOp = getValue(B.SValue); 1840 EVT VT = SwitchOp.getValueType(); 1841 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1842 DAG.getConstant(B.First, dl, VT)); 1843 1844 // Check range 1845 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1846 SDValue RangeCmp = DAG.getSetCC( 1847 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1848 Sub.getValueType()), 1849 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1850 1851 // Determine the type of the test operands. 1852 bool UsePtrType = false; 1853 if (!TLI.isTypeLegal(VT)) 1854 UsePtrType = true; 1855 else { 1856 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1857 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1858 // Switch table case range are encoded into series of masks. 1859 // Just use pointer type, it's guaranteed to fit. 1860 UsePtrType = true; 1861 break; 1862 } 1863 } 1864 if (UsePtrType) { 1865 VT = TLI.getPointerTy(DAG.getDataLayout()); 1866 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1867 } 1868 1869 B.RegVT = VT.getSimpleVT(); 1870 B.Reg = FuncInfo.CreateReg(B.RegVT); 1871 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1872 1873 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1874 1875 addSuccessorWithWeight(SwitchBB, B.Default); 1876 addSuccessorWithWeight(SwitchBB, MBB); 1877 1878 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1879 MVT::Other, CopyTo, RangeCmp, 1880 DAG.getBasicBlock(B.Default)); 1881 1882 // Avoid emitting unnecessary branches to the next block. 1883 if (MBB != NextBlock(SwitchBB)) 1884 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1885 DAG.getBasicBlock(MBB)); 1886 1887 DAG.setRoot(BrRange); 1888 } 1889 1890 /// visitBitTestCase - this function produces one "bit test" 1891 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1892 MachineBasicBlock* NextMBB, 1893 uint32_t BranchWeightToNext, 1894 unsigned Reg, 1895 BitTestCase &B, 1896 MachineBasicBlock *SwitchBB) { 1897 SDLoc dl = getCurSDLoc(); 1898 MVT VT = BB.RegVT; 1899 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1900 SDValue Cmp; 1901 unsigned PopCount = countPopulation(B.Mask); 1902 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1903 if (PopCount == 1) { 1904 // Testing for a single bit; just compare the shift count with what it 1905 // would need to be to shift a 1 bit in that position. 1906 Cmp = DAG.getSetCC( 1907 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1908 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 1909 ISD::SETEQ); 1910 } else if (PopCount == BB.Range) { 1911 // There is only one zero bit in the range, test for it directly. 1912 Cmp = DAG.getSetCC( 1913 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1914 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 1915 ISD::SETNE); 1916 } else { 1917 // Make desired shift 1918 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1919 DAG.getConstant(1, dl, VT), ShiftOp); 1920 1921 // Emit bit tests and jumps 1922 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1923 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1924 Cmp = DAG.getSetCC( 1925 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1926 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 1927 } 1928 1929 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1930 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1931 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1932 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1933 1934 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1935 MVT::Other, getControlRoot(), 1936 Cmp, DAG.getBasicBlock(B.TargetBB)); 1937 1938 // Avoid emitting unnecessary branches to the next block. 1939 if (NextMBB != NextBlock(SwitchBB)) 1940 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1941 DAG.getBasicBlock(NextMBB)); 1942 1943 DAG.setRoot(BrAnd); 1944 } 1945 1946 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1947 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1948 1949 // Retrieve successors. 1950 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1951 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1952 1953 const Value *Callee(I.getCalledValue()); 1954 const Function *Fn = dyn_cast<Function>(Callee); 1955 if (isa<InlineAsm>(Callee)) 1956 visitInlineAsm(&I); 1957 else if (Fn && Fn->isIntrinsic()) { 1958 switch (Fn->getIntrinsicID()) { 1959 default: 1960 llvm_unreachable("Cannot invoke this intrinsic"); 1961 case Intrinsic::donothing: 1962 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1963 break; 1964 case Intrinsic::experimental_patchpoint_void: 1965 case Intrinsic::experimental_patchpoint_i64: 1966 visitPatchpoint(&I, LandingPad); 1967 break; 1968 case Intrinsic::experimental_gc_statepoint: 1969 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1970 break; 1971 } 1972 } else 1973 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1974 1975 // If the value of the invoke is used outside of its defining block, make it 1976 // available as a virtual register. 1977 // We already took care of the exported value for the statepoint instruction 1978 // during call to the LowerStatepoint. 1979 if (!isStatepoint(I)) { 1980 CopyToExportRegsIfNeeded(&I); 1981 } 1982 1983 // Update successor info 1984 addSuccessorWithWeight(InvokeMBB, Return); 1985 addSuccessorWithWeight(InvokeMBB, LandingPad); 1986 1987 // Drop into normal successor. 1988 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1989 MVT::Other, getControlRoot(), 1990 DAG.getBasicBlock(Return))); 1991 } 1992 1993 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1994 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1995 } 1996 1997 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1998 assert(FuncInfo.MBB->isLandingPad() && 1999 "Call to landingpad not in landing pad!"); 2000 2001 MachineBasicBlock *MBB = FuncInfo.MBB; 2002 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2003 AddLandingPadInfo(LP, MMI, MBB); 2004 2005 // If there aren't registers to copy the values into (e.g., during SjLj 2006 // exceptions), then don't bother to create these DAG nodes. 2007 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2008 if (TLI.getExceptionPointerRegister() == 0 && 2009 TLI.getExceptionSelectorRegister() == 0) 2010 return; 2011 2012 SmallVector<EVT, 2> ValueVTs; 2013 SDLoc dl = getCurSDLoc(); 2014 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2015 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2016 2017 // Get the two live-in registers as SDValues. The physregs have already been 2018 // copied into virtual registers. 2019 SDValue Ops[2]; 2020 if (FuncInfo.ExceptionPointerVirtReg) { 2021 Ops[0] = DAG.getZExtOrTrunc( 2022 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2023 FuncInfo.ExceptionPointerVirtReg, 2024 TLI.getPointerTy(DAG.getDataLayout())), 2025 dl, ValueVTs[0]); 2026 } else { 2027 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2028 } 2029 Ops[1] = DAG.getZExtOrTrunc( 2030 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2031 FuncInfo.ExceptionSelectorVirtReg, 2032 TLI.getPointerTy(DAG.getDataLayout())), 2033 dl, ValueVTs[1]); 2034 2035 // Merge into one. 2036 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2037 DAG.getVTList(ValueVTs), Ops); 2038 setValue(&LP, Res); 2039 } 2040 2041 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2042 #ifndef NDEBUG 2043 for (const CaseCluster &CC : Clusters) 2044 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2045 #endif 2046 2047 std::sort(Clusters.begin(), Clusters.end(), 2048 [](const CaseCluster &a, const CaseCluster &b) { 2049 return a.Low->getValue().slt(b.Low->getValue()); 2050 }); 2051 2052 // Merge adjacent clusters with the same destination. 2053 const unsigned N = Clusters.size(); 2054 unsigned DstIndex = 0; 2055 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2056 CaseCluster &CC = Clusters[SrcIndex]; 2057 const ConstantInt *CaseVal = CC.Low; 2058 MachineBasicBlock *Succ = CC.MBB; 2059 2060 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2061 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2062 // If this case has the same successor and is a neighbour, merge it into 2063 // the previous cluster. 2064 Clusters[DstIndex - 1].High = CaseVal; 2065 Clusters[DstIndex - 1].Weight += CC.Weight; 2066 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2067 } else { 2068 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2069 sizeof(Clusters[SrcIndex])); 2070 } 2071 } 2072 Clusters.resize(DstIndex); 2073 } 2074 2075 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2076 MachineBasicBlock *Last) { 2077 // Update JTCases. 2078 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2079 if (JTCases[i].first.HeaderBB == First) 2080 JTCases[i].first.HeaderBB = Last; 2081 2082 // Update BitTestCases. 2083 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2084 if (BitTestCases[i].Parent == First) 2085 BitTestCases[i].Parent = Last; 2086 } 2087 2088 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2089 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2090 2091 // Update machine-CFG edges with unique successors. 2092 SmallSet<BasicBlock*, 32> Done; 2093 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2094 BasicBlock *BB = I.getSuccessor(i); 2095 bool Inserted = Done.insert(BB).second; 2096 if (!Inserted) 2097 continue; 2098 2099 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2100 addSuccessorWithWeight(IndirectBrMBB, Succ); 2101 } 2102 2103 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2104 MVT::Other, getControlRoot(), 2105 getValue(I.getAddress()))); 2106 } 2107 2108 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2109 if (DAG.getTarget().Options.TrapUnreachable) 2110 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2111 } 2112 2113 void SelectionDAGBuilder::visitFSub(const User &I) { 2114 // -0.0 - X --> fneg 2115 Type *Ty = I.getType(); 2116 if (isa<Constant>(I.getOperand(0)) && 2117 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2118 SDValue Op2 = getValue(I.getOperand(1)); 2119 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2120 Op2.getValueType(), Op2)); 2121 return; 2122 } 2123 2124 visitBinary(I, ISD::FSUB); 2125 } 2126 2127 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2128 SDValue Op1 = getValue(I.getOperand(0)); 2129 SDValue Op2 = getValue(I.getOperand(1)); 2130 2131 bool nuw = false; 2132 bool nsw = false; 2133 bool exact = false; 2134 FastMathFlags FMF; 2135 2136 if (const OverflowingBinaryOperator *OFBinOp = 2137 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2138 nuw = OFBinOp->hasNoUnsignedWrap(); 2139 nsw = OFBinOp->hasNoSignedWrap(); 2140 } 2141 if (const PossiblyExactOperator *ExactOp = 2142 dyn_cast<const PossiblyExactOperator>(&I)) 2143 exact = ExactOp->isExact(); 2144 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2145 FMF = FPOp->getFastMathFlags(); 2146 2147 SDNodeFlags Flags; 2148 Flags.setExact(exact); 2149 Flags.setNoSignedWrap(nsw); 2150 Flags.setNoUnsignedWrap(nuw); 2151 if (EnableFMFInDAG) { 2152 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2153 Flags.setNoInfs(FMF.noInfs()); 2154 Flags.setNoNaNs(FMF.noNaNs()); 2155 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2156 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2157 } 2158 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2159 Op1, Op2, &Flags); 2160 setValue(&I, BinNodeValue); 2161 } 2162 2163 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2164 SDValue Op1 = getValue(I.getOperand(0)); 2165 SDValue Op2 = getValue(I.getOperand(1)); 2166 2167 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2168 Op2.getValueType(), DAG.getDataLayout()); 2169 2170 // Coerce the shift amount to the right type if we can. 2171 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2172 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2173 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2174 SDLoc DL = getCurSDLoc(); 2175 2176 // If the operand is smaller than the shift count type, promote it. 2177 if (ShiftSize > Op2Size) 2178 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2179 2180 // If the operand is larger than the shift count type but the shift 2181 // count type has enough bits to represent any shift value, truncate 2182 // it now. This is a common case and it exposes the truncate to 2183 // optimization early. 2184 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2185 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2186 // Otherwise we'll need to temporarily settle for some other convenient 2187 // type. Type legalization will make adjustments once the shiftee is split. 2188 else 2189 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2190 } 2191 2192 bool nuw = false; 2193 bool nsw = false; 2194 bool exact = false; 2195 2196 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2197 2198 if (const OverflowingBinaryOperator *OFBinOp = 2199 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2200 nuw = OFBinOp->hasNoUnsignedWrap(); 2201 nsw = OFBinOp->hasNoSignedWrap(); 2202 } 2203 if (const PossiblyExactOperator *ExactOp = 2204 dyn_cast<const PossiblyExactOperator>(&I)) 2205 exact = ExactOp->isExact(); 2206 } 2207 SDNodeFlags Flags; 2208 Flags.setExact(exact); 2209 Flags.setNoSignedWrap(nsw); 2210 Flags.setNoUnsignedWrap(nuw); 2211 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2212 &Flags); 2213 setValue(&I, Res); 2214 } 2215 2216 void SelectionDAGBuilder::visitSDiv(const User &I) { 2217 SDValue Op1 = getValue(I.getOperand(0)); 2218 SDValue Op2 = getValue(I.getOperand(1)); 2219 2220 SDNodeFlags Flags; 2221 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2222 cast<PossiblyExactOperator>(&I)->isExact()); 2223 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2224 Op2, &Flags)); 2225 } 2226 2227 void SelectionDAGBuilder::visitICmp(const User &I) { 2228 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2229 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2230 predicate = IC->getPredicate(); 2231 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2232 predicate = ICmpInst::Predicate(IC->getPredicate()); 2233 SDValue Op1 = getValue(I.getOperand(0)); 2234 SDValue Op2 = getValue(I.getOperand(1)); 2235 ISD::CondCode Opcode = getICmpCondCode(predicate); 2236 2237 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2238 I.getType()); 2239 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2240 } 2241 2242 void SelectionDAGBuilder::visitFCmp(const User &I) { 2243 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2244 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2245 predicate = FC->getPredicate(); 2246 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2247 predicate = FCmpInst::Predicate(FC->getPredicate()); 2248 SDValue Op1 = getValue(I.getOperand(0)); 2249 SDValue Op2 = getValue(I.getOperand(1)); 2250 ISD::CondCode Condition = getFCmpCondCode(predicate); 2251 if (TM.Options.NoNaNsFPMath) 2252 Condition = getFCmpCodeWithoutNaN(Condition); 2253 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2254 I.getType()); 2255 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2256 } 2257 2258 void SelectionDAGBuilder::visitSelect(const User &I) { 2259 SmallVector<EVT, 4> ValueVTs; 2260 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2261 ValueVTs); 2262 unsigned NumValues = ValueVTs.size(); 2263 if (NumValues == 0) return; 2264 2265 SmallVector<SDValue, 4> Values(NumValues); 2266 SDValue Cond = getValue(I.getOperand(0)); 2267 SDValue LHSVal = getValue(I.getOperand(1)); 2268 SDValue RHSVal = getValue(I.getOperand(2)); 2269 auto BaseOps = {Cond}; 2270 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2271 ISD::VSELECT : ISD::SELECT; 2272 2273 // Min/max matching is only viable if all output VTs are the same. 2274 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2275 Value *LHS, *RHS; 2276 SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2277 ISD::NodeType Opc = ISD::DELETED_NODE; 2278 switch (SPF) { 2279 case SPF_UMAX: Opc = ISD::UMAX; break; 2280 case SPF_UMIN: Opc = ISD::UMIN; break; 2281 case SPF_SMAX: Opc = ISD::SMAX; break; 2282 case SPF_SMIN: Opc = ISD::SMIN; break; 2283 default: break; 2284 } 2285 2286 EVT VT = ValueVTs[0]; 2287 LLVMContext &Ctx = *DAG.getContext(); 2288 auto &TLI = DAG.getTargetLoweringInfo(); 2289 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2290 VT = TLI.getTypeToTransformTo(Ctx, VT); 2291 2292 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2293 // If the underlying comparison instruction is used by any other instruction, 2294 // the consumed instructions won't be destroyed, so it is not profitable 2295 // to convert to a min/max. 2296 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2297 OpCode = Opc; 2298 LHSVal = getValue(LHS); 2299 RHSVal = getValue(RHS); 2300 BaseOps = {}; 2301 } 2302 } 2303 2304 for (unsigned i = 0; i != NumValues; ++i) { 2305 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2306 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2307 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2308 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2309 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2310 Ops); 2311 } 2312 2313 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2314 DAG.getVTList(ValueVTs), Values)); 2315 } 2316 2317 void SelectionDAGBuilder::visitTrunc(const User &I) { 2318 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2319 SDValue N = getValue(I.getOperand(0)); 2320 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2321 I.getType()); 2322 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2323 } 2324 2325 void SelectionDAGBuilder::visitZExt(const User &I) { 2326 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2327 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2328 SDValue N = getValue(I.getOperand(0)); 2329 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2330 I.getType()); 2331 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2332 } 2333 2334 void SelectionDAGBuilder::visitSExt(const User &I) { 2335 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2336 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2337 SDValue N = getValue(I.getOperand(0)); 2338 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2339 I.getType()); 2340 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2341 } 2342 2343 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2344 // FPTrunc is never a no-op cast, no need to check 2345 SDValue N = getValue(I.getOperand(0)); 2346 SDLoc dl = getCurSDLoc(); 2347 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2348 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2349 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2350 DAG.getTargetConstant( 2351 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2352 } 2353 2354 void SelectionDAGBuilder::visitFPExt(const User &I) { 2355 // FPExt is never a no-op cast, no need to check 2356 SDValue N = getValue(I.getOperand(0)); 2357 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2358 I.getType()); 2359 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2360 } 2361 2362 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2363 // FPToUI is never a no-op cast, no need to check 2364 SDValue N = getValue(I.getOperand(0)); 2365 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2366 I.getType()); 2367 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2368 } 2369 2370 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2371 // FPToSI is never a no-op cast, no need to check 2372 SDValue N = getValue(I.getOperand(0)); 2373 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2374 I.getType()); 2375 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2376 } 2377 2378 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2379 // UIToFP is never a no-op cast, no need to check 2380 SDValue N = getValue(I.getOperand(0)); 2381 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2382 I.getType()); 2383 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2384 } 2385 2386 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2387 // SIToFP is never a no-op cast, no need to check 2388 SDValue N = getValue(I.getOperand(0)); 2389 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2390 I.getType()); 2391 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2392 } 2393 2394 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2395 // What to do depends on the size of the integer and the size of the pointer. 2396 // We can either truncate, zero extend, or no-op, accordingly. 2397 SDValue N = getValue(I.getOperand(0)); 2398 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2399 I.getType()); 2400 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2401 } 2402 2403 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2404 // What to do depends on the size of the integer and the size of the pointer. 2405 // We can either truncate, zero extend, or no-op, accordingly. 2406 SDValue N = getValue(I.getOperand(0)); 2407 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2408 I.getType()); 2409 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2410 } 2411 2412 void SelectionDAGBuilder::visitBitCast(const User &I) { 2413 SDValue N = getValue(I.getOperand(0)); 2414 SDLoc dl = getCurSDLoc(); 2415 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2416 I.getType()); 2417 2418 // BitCast assures us that source and destination are the same size so this is 2419 // either a BITCAST or a no-op. 2420 if (DestVT != N.getValueType()) 2421 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2422 DestVT, N)); // convert types. 2423 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2424 // might fold any kind of constant expression to an integer constant and that 2425 // is not what we are looking for. Only regcognize a bitcast of a genuine 2426 // constant integer as an opaque constant. 2427 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2428 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2429 /*isOpaque*/true)); 2430 else 2431 setValue(&I, N); // noop cast. 2432 } 2433 2434 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2435 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2436 const Value *SV = I.getOperand(0); 2437 SDValue N = getValue(SV); 2438 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2439 2440 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2441 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2442 2443 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2444 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2445 2446 setValue(&I, N); 2447 } 2448 2449 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2450 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2451 SDValue InVec = getValue(I.getOperand(0)); 2452 SDValue InVal = getValue(I.getOperand(1)); 2453 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2454 TLI.getVectorIdxTy(DAG.getDataLayout())); 2455 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2456 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2457 InVec, InVal, InIdx)); 2458 } 2459 2460 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2461 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2462 SDValue InVec = getValue(I.getOperand(0)); 2463 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2464 TLI.getVectorIdxTy(DAG.getDataLayout())); 2465 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2466 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2467 InVec, InIdx)); 2468 } 2469 2470 // Utility for visitShuffleVector - Return true if every element in Mask, 2471 // beginning from position Pos and ending in Pos+Size, falls within the 2472 // specified sequential range [L, L+Pos). or is undef. 2473 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2474 unsigned Pos, unsigned Size, int Low) { 2475 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2476 if (Mask[i] >= 0 && Mask[i] != Low) 2477 return false; 2478 return true; 2479 } 2480 2481 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2482 SDValue Src1 = getValue(I.getOperand(0)); 2483 SDValue Src2 = getValue(I.getOperand(1)); 2484 2485 SmallVector<int, 8> Mask; 2486 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2487 unsigned MaskNumElts = Mask.size(); 2488 2489 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2490 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2491 EVT SrcVT = Src1.getValueType(); 2492 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2493 2494 if (SrcNumElts == MaskNumElts) { 2495 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2496 &Mask[0])); 2497 return; 2498 } 2499 2500 // Normalize the shuffle vector since mask and vector length don't match. 2501 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2502 // Mask is longer than the source vectors and is a multiple of the source 2503 // vectors. We can use concatenate vector to make the mask and vectors 2504 // lengths match. 2505 if (SrcNumElts*2 == MaskNumElts) { 2506 // First check for Src1 in low and Src2 in high 2507 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2508 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2509 // The shuffle is concatenating two vectors together. 2510 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2511 VT, Src1, Src2)); 2512 return; 2513 } 2514 // Then check for Src2 in low and Src1 in high 2515 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2516 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2517 // The shuffle is concatenating two vectors together. 2518 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2519 VT, Src2, Src1)); 2520 return; 2521 } 2522 } 2523 2524 // Pad both vectors with undefs to make them the same length as the mask. 2525 unsigned NumConcat = MaskNumElts / SrcNumElts; 2526 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2527 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2528 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2529 2530 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2531 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2532 MOps1[0] = Src1; 2533 MOps2[0] = Src2; 2534 2535 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2536 getCurSDLoc(), VT, MOps1); 2537 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2538 getCurSDLoc(), VT, MOps2); 2539 2540 // Readjust mask for new input vector length. 2541 SmallVector<int, 8> MappedOps; 2542 for (unsigned i = 0; i != MaskNumElts; ++i) { 2543 int Idx = Mask[i]; 2544 if (Idx >= (int)SrcNumElts) 2545 Idx -= SrcNumElts - MaskNumElts; 2546 MappedOps.push_back(Idx); 2547 } 2548 2549 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2550 &MappedOps[0])); 2551 return; 2552 } 2553 2554 if (SrcNumElts > MaskNumElts) { 2555 // Analyze the access pattern of the vector to see if we can extract 2556 // two subvectors and do the shuffle. The analysis is done by calculating 2557 // the range of elements the mask access on both vectors. 2558 int MinRange[2] = { static_cast<int>(SrcNumElts), 2559 static_cast<int>(SrcNumElts)}; 2560 int MaxRange[2] = {-1, -1}; 2561 2562 for (unsigned i = 0; i != MaskNumElts; ++i) { 2563 int Idx = Mask[i]; 2564 unsigned Input = 0; 2565 if (Idx < 0) 2566 continue; 2567 2568 if (Idx >= (int)SrcNumElts) { 2569 Input = 1; 2570 Idx -= SrcNumElts; 2571 } 2572 if (Idx > MaxRange[Input]) 2573 MaxRange[Input] = Idx; 2574 if (Idx < MinRange[Input]) 2575 MinRange[Input] = Idx; 2576 } 2577 2578 // Check if the access is smaller than the vector size and can we find 2579 // a reasonable extract index. 2580 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2581 // Extract. 2582 int StartIdx[2]; // StartIdx to extract from 2583 for (unsigned Input = 0; Input < 2; ++Input) { 2584 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2585 RangeUse[Input] = 0; // Unused 2586 StartIdx[Input] = 0; 2587 continue; 2588 } 2589 2590 // Find a good start index that is a multiple of the mask length. Then 2591 // see if the rest of the elements are in range. 2592 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2593 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2594 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2595 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2596 } 2597 2598 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2599 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2600 return; 2601 } 2602 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2603 // Extract appropriate subvector and generate a vector shuffle 2604 for (unsigned Input = 0; Input < 2; ++Input) { 2605 SDValue &Src = Input == 0 ? Src1 : Src2; 2606 if (RangeUse[Input] == 0) 2607 Src = DAG.getUNDEF(VT); 2608 else { 2609 SDLoc dl = getCurSDLoc(); 2610 Src = DAG.getNode( 2611 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2612 DAG.getConstant(StartIdx[Input], dl, 2613 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2614 } 2615 } 2616 2617 // Calculate new mask. 2618 SmallVector<int, 8> MappedOps; 2619 for (unsigned i = 0; i != MaskNumElts; ++i) { 2620 int Idx = Mask[i]; 2621 if (Idx >= 0) { 2622 if (Idx < (int)SrcNumElts) 2623 Idx -= StartIdx[0]; 2624 else 2625 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2626 } 2627 MappedOps.push_back(Idx); 2628 } 2629 2630 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2631 &MappedOps[0])); 2632 return; 2633 } 2634 } 2635 2636 // We can't use either concat vectors or extract subvectors so fall back to 2637 // replacing the shuffle with extract and build vector. 2638 // to insert and build vector. 2639 EVT EltVT = VT.getVectorElementType(); 2640 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2641 SDLoc dl = getCurSDLoc(); 2642 SmallVector<SDValue,8> Ops; 2643 for (unsigned i = 0; i != MaskNumElts; ++i) { 2644 int Idx = Mask[i]; 2645 SDValue Res; 2646 2647 if (Idx < 0) { 2648 Res = DAG.getUNDEF(EltVT); 2649 } else { 2650 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2651 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2652 2653 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2654 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2655 } 2656 2657 Ops.push_back(Res); 2658 } 2659 2660 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2661 } 2662 2663 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2664 const Value *Op0 = I.getOperand(0); 2665 const Value *Op1 = I.getOperand(1); 2666 Type *AggTy = I.getType(); 2667 Type *ValTy = Op1->getType(); 2668 bool IntoUndef = isa<UndefValue>(Op0); 2669 bool FromUndef = isa<UndefValue>(Op1); 2670 2671 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2672 2673 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2674 SmallVector<EVT, 4> AggValueVTs; 2675 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2676 SmallVector<EVT, 4> ValValueVTs; 2677 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2678 2679 unsigned NumAggValues = AggValueVTs.size(); 2680 unsigned NumValValues = ValValueVTs.size(); 2681 SmallVector<SDValue, 4> Values(NumAggValues); 2682 2683 // Ignore an insertvalue that produces an empty object 2684 if (!NumAggValues) { 2685 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2686 return; 2687 } 2688 2689 SDValue Agg = getValue(Op0); 2690 unsigned i = 0; 2691 // Copy the beginning value(s) from the original aggregate. 2692 for (; i != LinearIndex; ++i) 2693 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2694 SDValue(Agg.getNode(), Agg.getResNo() + i); 2695 // Copy values from the inserted value(s). 2696 if (NumValValues) { 2697 SDValue Val = getValue(Op1); 2698 for (; i != LinearIndex + NumValValues; ++i) 2699 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2700 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2701 } 2702 // Copy remaining value(s) from the original aggregate. 2703 for (; i != NumAggValues; ++i) 2704 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2705 SDValue(Agg.getNode(), Agg.getResNo() + i); 2706 2707 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2708 DAG.getVTList(AggValueVTs), Values)); 2709 } 2710 2711 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2712 const Value *Op0 = I.getOperand(0); 2713 Type *AggTy = Op0->getType(); 2714 Type *ValTy = I.getType(); 2715 bool OutOfUndef = isa<UndefValue>(Op0); 2716 2717 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2718 2719 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2720 SmallVector<EVT, 4> ValValueVTs; 2721 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2722 2723 unsigned NumValValues = ValValueVTs.size(); 2724 2725 // Ignore a extractvalue that produces an empty object 2726 if (!NumValValues) { 2727 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2728 return; 2729 } 2730 2731 SmallVector<SDValue, 4> Values(NumValValues); 2732 2733 SDValue Agg = getValue(Op0); 2734 // Copy out the selected value(s). 2735 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2736 Values[i - LinearIndex] = 2737 OutOfUndef ? 2738 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2739 SDValue(Agg.getNode(), Agg.getResNo() + i); 2740 2741 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2742 DAG.getVTList(ValValueVTs), Values)); 2743 } 2744 2745 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2746 Value *Op0 = I.getOperand(0); 2747 // Note that the pointer operand may be a vector of pointers. Take the scalar 2748 // element which holds a pointer. 2749 Type *Ty = Op0->getType()->getScalarType(); 2750 unsigned AS = Ty->getPointerAddressSpace(); 2751 SDValue N = getValue(Op0); 2752 SDLoc dl = getCurSDLoc(); 2753 2754 // Normalize Vector GEP - all scalar operands should be converted to the 2755 // splat vector. 2756 unsigned VectorWidth = I.getType()->isVectorTy() ? 2757 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2758 2759 if (VectorWidth && !N.getValueType().isVector()) { 2760 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2761 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2762 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2763 } 2764 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2765 OI != E; ++OI) { 2766 const Value *Idx = *OI; 2767 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2768 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2769 if (Field) { 2770 // N = N + Offset 2771 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2772 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2773 DAG.getConstant(Offset, dl, N.getValueType())); 2774 } 2775 2776 Ty = StTy->getElementType(Field); 2777 } else { 2778 Ty = cast<SequentialType>(Ty)->getElementType(); 2779 MVT PtrTy = 2780 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2781 unsigned PtrSize = PtrTy.getSizeInBits(); 2782 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2783 2784 // If this is a scalar constant or a splat vector of constants, 2785 // handle it quickly. 2786 const auto *CI = dyn_cast<ConstantInt>(Idx); 2787 if (!CI && isa<ConstantDataVector>(Idx) && 2788 cast<ConstantDataVector>(Idx)->getSplatValue()) 2789 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2790 2791 if (CI) { 2792 if (CI->isZero()) 2793 continue; 2794 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2795 SDValue OffsVal = VectorWidth ? 2796 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2797 DAG.getConstant(Offs, dl, PtrTy); 2798 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2799 continue; 2800 } 2801 2802 // N = N + Idx * ElementSize; 2803 SDValue IdxN = getValue(Idx); 2804 2805 if (!IdxN.getValueType().isVector() && VectorWidth) { 2806 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2807 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2808 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2809 } 2810 // If the index is smaller or larger than intptr_t, truncate or extend 2811 // it. 2812 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2813 2814 // If this is a multiply by a power of two, turn it into a shl 2815 // immediately. This is a very common case. 2816 if (ElementSize != 1) { 2817 if (ElementSize.isPowerOf2()) { 2818 unsigned Amt = ElementSize.logBase2(); 2819 IdxN = DAG.getNode(ISD::SHL, dl, 2820 N.getValueType(), IdxN, 2821 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2822 } else { 2823 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2824 IdxN = DAG.getNode(ISD::MUL, dl, 2825 N.getValueType(), IdxN, Scale); 2826 } 2827 } 2828 2829 N = DAG.getNode(ISD::ADD, dl, 2830 N.getValueType(), N, IdxN); 2831 } 2832 } 2833 2834 setValue(&I, N); 2835 } 2836 2837 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2838 // If this is a fixed sized alloca in the entry block of the function, 2839 // allocate it statically on the stack. 2840 if (FuncInfo.StaticAllocaMap.count(&I)) 2841 return; // getValue will auto-populate this. 2842 2843 SDLoc dl = getCurSDLoc(); 2844 Type *Ty = I.getAllocatedType(); 2845 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2846 auto &DL = DAG.getDataLayout(); 2847 uint64_t TySize = DL.getTypeAllocSize(Ty); 2848 unsigned Align = 2849 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2850 2851 SDValue AllocSize = getValue(I.getArraySize()); 2852 2853 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2854 if (AllocSize.getValueType() != IntPtr) 2855 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2856 2857 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2858 AllocSize, 2859 DAG.getConstant(TySize, dl, IntPtr)); 2860 2861 // Handle alignment. If the requested alignment is less than or equal to 2862 // the stack alignment, ignore it. If the size is greater than or equal to 2863 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2864 unsigned StackAlign = 2865 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2866 if (Align <= StackAlign) 2867 Align = 0; 2868 2869 // Round the size of the allocation up to the stack alignment size 2870 // by add SA-1 to the size. 2871 AllocSize = DAG.getNode(ISD::ADD, dl, 2872 AllocSize.getValueType(), AllocSize, 2873 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2874 2875 // Mask out the low bits for alignment purposes. 2876 AllocSize = DAG.getNode(ISD::AND, dl, 2877 AllocSize.getValueType(), AllocSize, 2878 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2879 dl)); 2880 2881 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2882 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2883 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2884 setValue(&I, DSA); 2885 DAG.setRoot(DSA.getValue(1)); 2886 2887 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2888 } 2889 2890 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2891 if (I.isAtomic()) 2892 return visitAtomicLoad(I); 2893 2894 const Value *SV = I.getOperand(0); 2895 SDValue Ptr = getValue(SV); 2896 2897 Type *Ty = I.getType(); 2898 2899 bool isVolatile = I.isVolatile(); 2900 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2901 2902 // The IR notion of invariant_load only guarantees that all *non-faulting* 2903 // invariant loads result in the same value. The MI notion of invariant load 2904 // guarantees that the load can be legally moved to any location within its 2905 // containing function. The MI notion of invariant_load is stronger than the 2906 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2907 // with a guarantee that the location being loaded from is dereferenceable 2908 // throughout the function's lifetime. 2909 2910 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2911 isDereferenceablePointer(SV, *DAG.getTarget().getDataLayout()); 2912 unsigned Alignment = I.getAlignment(); 2913 2914 AAMDNodes AAInfo; 2915 I.getAAMetadata(AAInfo); 2916 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2917 2918 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2919 SmallVector<EVT, 4> ValueVTs; 2920 SmallVector<uint64_t, 4> Offsets; 2921 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 2922 unsigned NumValues = ValueVTs.size(); 2923 if (NumValues == 0) 2924 return; 2925 2926 SDValue Root; 2927 bool ConstantMemory = false; 2928 if (isVolatile || NumValues > MaxParallelChains) 2929 // Serialize volatile loads with other side effects. 2930 Root = getRoot(); 2931 else if (AA->pointsToConstantMemory( 2932 MemoryLocation(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2933 // Do not serialize (non-volatile) loads of constant memory with anything. 2934 Root = DAG.getEntryNode(); 2935 ConstantMemory = true; 2936 } else { 2937 // Do not serialize non-volatile loads against each other. 2938 Root = DAG.getRoot(); 2939 } 2940 2941 SDLoc dl = getCurSDLoc(); 2942 2943 if (isVolatile) 2944 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2945 2946 SmallVector<SDValue, 4> Values(NumValues); 2947 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 2948 EVT PtrVT = Ptr.getValueType(); 2949 unsigned ChainI = 0; 2950 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2951 // Serializing loads here may result in excessive register pressure, and 2952 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2953 // could recover a bit by hoisting nodes upward in the chain by recognizing 2954 // they are side-effect free or do not alias. The optimizer should really 2955 // avoid this case by converting large object/array copies to llvm.memcpy 2956 // (MaxParallelChains should always remain as failsafe). 2957 if (ChainI == MaxParallelChains) { 2958 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2959 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2960 makeArrayRef(Chains.data(), ChainI)); 2961 Root = Chain; 2962 ChainI = 0; 2963 } 2964 SDValue A = DAG.getNode(ISD::ADD, dl, 2965 PtrVT, Ptr, 2966 DAG.getConstant(Offsets[i], dl, PtrVT)); 2967 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2968 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2969 isNonTemporal, isInvariant, Alignment, AAInfo, 2970 Ranges); 2971 2972 Values[i] = L; 2973 Chains[ChainI] = L.getValue(1); 2974 } 2975 2976 if (!ConstantMemory) { 2977 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2978 makeArrayRef(Chains.data(), ChainI)); 2979 if (isVolatile) 2980 DAG.setRoot(Chain); 2981 else 2982 PendingLoads.push_back(Chain); 2983 } 2984 2985 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2986 DAG.getVTList(ValueVTs), Values)); 2987 } 2988 2989 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2990 if (I.isAtomic()) 2991 return visitAtomicStore(I); 2992 2993 const Value *SrcV = I.getOperand(0); 2994 const Value *PtrV = I.getOperand(1); 2995 2996 SmallVector<EVT, 4> ValueVTs; 2997 SmallVector<uint64_t, 4> Offsets; 2998 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 2999 SrcV->getType(), ValueVTs, &Offsets); 3000 unsigned NumValues = ValueVTs.size(); 3001 if (NumValues == 0) 3002 return; 3003 3004 // Get the lowered operands. Note that we do this after 3005 // checking if NumResults is zero, because with zero results 3006 // the operands won't have values in the map. 3007 SDValue Src = getValue(SrcV); 3008 SDValue Ptr = getValue(PtrV); 3009 3010 SDValue Root = getRoot(); 3011 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3012 EVT PtrVT = Ptr.getValueType(); 3013 bool isVolatile = I.isVolatile(); 3014 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3015 unsigned Alignment = I.getAlignment(); 3016 SDLoc dl = getCurSDLoc(); 3017 3018 AAMDNodes AAInfo; 3019 I.getAAMetadata(AAInfo); 3020 3021 unsigned ChainI = 0; 3022 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3023 // See visitLoad comments. 3024 if (ChainI == MaxParallelChains) { 3025 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3026 makeArrayRef(Chains.data(), ChainI)); 3027 Root = Chain; 3028 ChainI = 0; 3029 } 3030 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3031 DAG.getConstant(Offsets[i], dl, PtrVT)); 3032 SDValue St = DAG.getStore(Root, dl, 3033 SDValue(Src.getNode(), Src.getResNo() + i), 3034 Add, MachinePointerInfo(PtrV, Offsets[i]), 3035 isVolatile, isNonTemporal, Alignment, AAInfo); 3036 Chains[ChainI] = St; 3037 } 3038 3039 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3040 makeArrayRef(Chains.data(), ChainI)); 3041 DAG.setRoot(StoreNode); 3042 } 3043 3044 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3045 SDLoc sdl = getCurSDLoc(); 3046 3047 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3048 Value *PtrOperand = I.getArgOperand(1); 3049 SDValue Ptr = getValue(PtrOperand); 3050 SDValue Src0 = getValue(I.getArgOperand(0)); 3051 SDValue Mask = getValue(I.getArgOperand(3)); 3052 EVT VT = Src0.getValueType(); 3053 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3054 if (!Alignment) 3055 Alignment = DAG.getEVTAlignment(VT); 3056 3057 AAMDNodes AAInfo; 3058 I.getAAMetadata(AAInfo); 3059 3060 MachineMemOperand *MMO = 3061 DAG.getMachineFunction(). 3062 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3063 MachineMemOperand::MOStore, VT.getStoreSize(), 3064 Alignment, AAInfo); 3065 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3066 MMO, false); 3067 DAG.setRoot(StoreNode); 3068 setValue(&I, StoreNode); 3069 } 3070 3071 // Gather/scatter receive a vector of pointers. 3072 // This vector of pointers may be represented as a base pointer + vector of 3073 // indices, it depends on GEP and instruction preceeding GEP 3074 // that calculates indices 3075 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3076 SelectionDAGBuilder* SDB) { 3077 3078 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3079 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3080 if (!Gep || Gep->getNumOperands() > 2) 3081 return false; 3082 ShuffleVectorInst *ShuffleInst = 3083 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3084 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3085 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3086 Instruction::InsertElement) 3087 return false; 3088 3089 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3090 3091 SelectionDAG& DAG = SDB->DAG; 3092 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3093 // Check is the Ptr is inside current basic block 3094 // If not, look for the shuffle instruction 3095 if (SDB->findValue(Ptr)) 3096 Base = SDB->getValue(Ptr); 3097 else if (SDB->findValue(ShuffleInst)) { 3098 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3099 SDLoc sdl = ShuffleNode; 3100 Base = DAG.getNode( 3101 ISD::EXTRACT_VECTOR_ELT, sdl, 3102 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3103 DAG.getConstant(0, sdl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3104 SDB->setValue(Ptr, Base); 3105 } 3106 else 3107 return false; 3108 3109 Value *IndexVal = Gep->getOperand(1); 3110 if (SDB->findValue(IndexVal)) { 3111 Index = SDB->getValue(IndexVal); 3112 3113 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3114 IndexVal = Sext->getOperand(0); 3115 if (SDB->findValue(IndexVal)) 3116 Index = SDB->getValue(IndexVal); 3117 } 3118 return true; 3119 } 3120 return false; 3121 } 3122 3123 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3124 SDLoc sdl = getCurSDLoc(); 3125 3126 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3127 Value *Ptr = I.getArgOperand(1); 3128 SDValue Src0 = getValue(I.getArgOperand(0)); 3129 SDValue Mask = getValue(I.getArgOperand(3)); 3130 EVT VT = Src0.getValueType(); 3131 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3132 if (!Alignment) 3133 Alignment = DAG.getEVTAlignment(VT); 3134 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3135 3136 AAMDNodes AAInfo; 3137 I.getAAMetadata(AAInfo); 3138 3139 SDValue Base; 3140 SDValue Index; 3141 Value *BasePtr = Ptr; 3142 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3143 3144 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3145 MachineMemOperand *MMO = DAG.getMachineFunction(). 3146 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3147 MachineMemOperand::MOStore, VT.getStoreSize(), 3148 Alignment, AAInfo); 3149 if (!UniformBase) { 3150 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3151 Index = getValue(Ptr); 3152 } 3153 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3154 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3155 Ops, MMO); 3156 DAG.setRoot(Scatter); 3157 setValue(&I, Scatter); 3158 } 3159 3160 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3161 SDLoc sdl = getCurSDLoc(); 3162 3163 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3164 Value *PtrOperand = I.getArgOperand(0); 3165 SDValue Ptr = getValue(PtrOperand); 3166 SDValue Src0 = getValue(I.getArgOperand(3)); 3167 SDValue Mask = getValue(I.getArgOperand(2)); 3168 3169 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3170 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3171 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3172 if (!Alignment) 3173 Alignment = DAG.getEVTAlignment(VT); 3174 3175 AAMDNodes AAInfo; 3176 I.getAAMetadata(AAInfo); 3177 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3178 3179 SDValue InChain = DAG.getRoot(); 3180 if (AA->pointsToConstantMemory(MemoryLocation( 3181 PtrOperand, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3182 // Do not serialize (non-volatile) loads of constant memory with anything. 3183 InChain = DAG.getEntryNode(); 3184 } 3185 3186 MachineMemOperand *MMO = 3187 DAG.getMachineFunction(). 3188 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3189 MachineMemOperand::MOLoad, VT.getStoreSize(), 3190 Alignment, AAInfo, Ranges); 3191 3192 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3193 ISD::NON_EXTLOAD); 3194 SDValue OutChain = Load.getValue(1); 3195 DAG.setRoot(OutChain); 3196 setValue(&I, Load); 3197 } 3198 3199 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3200 SDLoc sdl = getCurSDLoc(); 3201 3202 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3203 Value *Ptr = I.getArgOperand(0); 3204 SDValue Src0 = getValue(I.getArgOperand(3)); 3205 SDValue Mask = getValue(I.getArgOperand(2)); 3206 3207 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3208 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3209 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3210 if (!Alignment) 3211 Alignment = DAG.getEVTAlignment(VT); 3212 3213 AAMDNodes AAInfo; 3214 I.getAAMetadata(AAInfo); 3215 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3216 3217 SDValue Root = DAG.getRoot(); 3218 SDValue Base; 3219 SDValue Index; 3220 Value *BasePtr = Ptr; 3221 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3222 bool ConstantMemory = false; 3223 if (UniformBase && 3224 AA->pointsToConstantMemory( 3225 MemoryLocation(BasePtr, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3226 // Do not serialize (non-volatile) loads of constant memory with anything. 3227 Root = DAG.getEntryNode(); 3228 ConstantMemory = true; 3229 } 3230 3231 MachineMemOperand *MMO = 3232 DAG.getMachineFunction(). 3233 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3234 MachineMemOperand::MOLoad, VT.getStoreSize(), 3235 Alignment, AAInfo, Ranges); 3236 3237 if (!UniformBase) { 3238 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3239 Index = getValue(Ptr); 3240 } 3241 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3242 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3243 Ops, MMO); 3244 3245 SDValue OutChain = Gather.getValue(1); 3246 if (!ConstantMemory) 3247 PendingLoads.push_back(OutChain); 3248 setValue(&I, Gather); 3249 } 3250 3251 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3252 SDLoc dl = getCurSDLoc(); 3253 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3254 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3255 SynchronizationScope Scope = I.getSynchScope(); 3256 3257 SDValue InChain = getRoot(); 3258 3259 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3260 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3261 SDValue L = DAG.getAtomicCmpSwap( 3262 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3263 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3264 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3265 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3266 3267 SDValue OutChain = L.getValue(2); 3268 3269 setValue(&I, L); 3270 DAG.setRoot(OutChain); 3271 } 3272 3273 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3274 SDLoc dl = getCurSDLoc(); 3275 ISD::NodeType NT; 3276 switch (I.getOperation()) { 3277 default: llvm_unreachable("Unknown atomicrmw operation"); 3278 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3279 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3280 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3281 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3282 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3283 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3284 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3285 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3286 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3287 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3288 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3289 } 3290 AtomicOrdering Order = I.getOrdering(); 3291 SynchronizationScope Scope = I.getSynchScope(); 3292 3293 SDValue InChain = getRoot(); 3294 3295 SDValue L = 3296 DAG.getAtomic(NT, dl, 3297 getValue(I.getValOperand()).getSimpleValueType(), 3298 InChain, 3299 getValue(I.getPointerOperand()), 3300 getValue(I.getValOperand()), 3301 I.getPointerOperand(), 3302 /* Alignment=*/ 0, Order, Scope); 3303 3304 SDValue OutChain = L.getValue(1); 3305 3306 setValue(&I, L); 3307 DAG.setRoot(OutChain); 3308 } 3309 3310 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3311 SDLoc dl = getCurSDLoc(); 3312 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3313 SDValue Ops[3]; 3314 Ops[0] = getRoot(); 3315 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3316 TLI.getPointerTy(DAG.getDataLayout())); 3317 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3318 TLI.getPointerTy(DAG.getDataLayout())); 3319 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3320 } 3321 3322 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3323 SDLoc dl = getCurSDLoc(); 3324 AtomicOrdering Order = I.getOrdering(); 3325 SynchronizationScope Scope = I.getSynchScope(); 3326 3327 SDValue InChain = getRoot(); 3328 3329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3330 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3331 3332 if (I.getAlignment() < VT.getSizeInBits() / 8) 3333 report_fatal_error("Cannot generate unaligned atomic load"); 3334 3335 MachineMemOperand *MMO = 3336 DAG.getMachineFunction(). 3337 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3338 MachineMemOperand::MOVolatile | 3339 MachineMemOperand::MOLoad, 3340 VT.getStoreSize(), 3341 I.getAlignment() ? I.getAlignment() : 3342 DAG.getEVTAlignment(VT)); 3343 3344 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3345 SDValue L = 3346 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3347 getValue(I.getPointerOperand()), MMO, 3348 Order, Scope); 3349 3350 SDValue OutChain = L.getValue(1); 3351 3352 setValue(&I, L); 3353 DAG.setRoot(OutChain); 3354 } 3355 3356 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3357 SDLoc dl = getCurSDLoc(); 3358 3359 AtomicOrdering Order = I.getOrdering(); 3360 SynchronizationScope Scope = I.getSynchScope(); 3361 3362 SDValue InChain = getRoot(); 3363 3364 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3365 EVT VT = 3366 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3367 3368 if (I.getAlignment() < VT.getSizeInBits() / 8) 3369 report_fatal_error("Cannot generate unaligned atomic store"); 3370 3371 SDValue OutChain = 3372 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3373 InChain, 3374 getValue(I.getPointerOperand()), 3375 getValue(I.getValueOperand()), 3376 I.getPointerOperand(), I.getAlignment(), 3377 Order, Scope); 3378 3379 DAG.setRoot(OutChain); 3380 } 3381 3382 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3383 /// node. 3384 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3385 unsigned Intrinsic) { 3386 bool HasChain = !I.doesNotAccessMemory(); 3387 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3388 3389 // Build the operand list. 3390 SmallVector<SDValue, 8> Ops; 3391 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3392 if (OnlyLoad) { 3393 // We don't need to serialize loads against other loads. 3394 Ops.push_back(DAG.getRoot()); 3395 } else { 3396 Ops.push_back(getRoot()); 3397 } 3398 } 3399 3400 // Info is set by getTgtMemInstrinsic 3401 TargetLowering::IntrinsicInfo Info; 3402 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3403 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3404 3405 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3406 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3407 Info.opc == ISD::INTRINSIC_W_CHAIN) 3408 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3409 TLI.getPointerTy(DAG.getDataLayout()))); 3410 3411 // Add all operands of the call to the operand list. 3412 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3413 SDValue Op = getValue(I.getArgOperand(i)); 3414 Ops.push_back(Op); 3415 } 3416 3417 SmallVector<EVT, 4> ValueVTs; 3418 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3419 3420 if (HasChain) 3421 ValueVTs.push_back(MVT::Other); 3422 3423 SDVTList VTs = DAG.getVTList(ValueVTs); 3424 3425 // Create the node. 3426 SDValue Result; 3427 if (IsTgtIntrinsic) { 3428 // This is target intrinsic that touches memory 3429 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3430 VTs, Ops, Info.memVT, 3431 MachinePointerInfo(Info.ptrVal, Info.offset), 3432 Info.align, Info.vol, 3433 Info.readMem, Info.writeMem, Info.size); 3434 } else if (!HasChain) { 3435 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3436 } else if (!I.getType()->isVoidTy()) { 3437 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3438 } else { 3439 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3440 } 3441 3442 if (HasChain) { 3443 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3444 if (OnlyLoad) 3445 PendingLoads.push_back(Chain); 3446 else 3447 DAG.setRoot(Chain); 3448 } 3449 3450 if (!I.getType()->isVoidTy()) { 3451 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3452 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3453 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3454 } 3455 3456 setValue(&I, Result); 3457 } 3458 } 3459 3460 /// GetSignificand - Get the significand and build it into a floating-point 3461 /// number with exponent of 1: 3462 /// 3463 /// Op = (Op & 0x007fffff) | 0x3f800000; 3464 /// 3465 /// where Op is the hexadecimal representation of floating point value. 3466 static SDValue 3467 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3468 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3469 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3470 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3471 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3472 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3473 } 3474 3475 /// GetExponent - Get the exponent: 3476 /// 3477 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3478 /// 3479 /// where Op is the hexadecimal representation of floating point value. 3480 static SDValue 3481 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3482 SDLoc dl) { 3483 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3484 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3485 SDValue t1 = DAG.getNode( 3486 ISD::SRL, dl, MVT::i32, t0, 3487 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3488 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3489 DAG.getConstant(127, dl, MVT::i32)); 3490 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3491 } 3492 3493 /// getF32Constant - Get 32-bit floating point constant. 3494 static SDValue 3495 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3496 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3497 MVT::f32); 3498 } 3499 3500 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3501 SelectionDAG &DAG) { 3502 // IntegerPartOfX = ((int32_t)(t0); 3503 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3504 3505 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3506 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3507 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3508 3509 // IntegerPartOfX <<= 23; 3510 IntegerPartOfX = DAG.getNode( 3511 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3512 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3513 DAG.getDataLayout()))); 3514 3515 SDValue TwoToFractionalPartOfX; 3516 if (LimitFloatPrecision <= 6) { 3517 // For floating-point precision of 6: 3518 // 3519 // TwoToFractionalPartOfX = 3520 // 0.997535578f + 3521 // (0.735607626f + 0.252464424f * x) * x; 3522 // 3523 // error 0.0144103317, which is 6 bits 3524 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3525 getF32Constant(DAG, 0x3e814304, dl)); 3526 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3527 getF32Constant(DAG, 0x3f3c50c8, dl)); 3528 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3529 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3530 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3531 } else if (LimitFloatPrecision <= 12) { 3532 // For floating-point precision of 12: 3533 // 3534 // TwoToFractionalPartOfX = 3535 // 0.999892986f + 3536 // (0.696457318f + 3537 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3538 // 3539 // error 0.000107046256, which is 13 to 14 bits 3540 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3541 getF32Constant(DAG, 0x3da235e3, dl)); 3542 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3543 getF32Constant(DAG, 0x3e65b8f3, dl)); 3544 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3545 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3546 getF32Constant(DAG, 0x3f324b07, dl)); 3547 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3548 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3549 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3550 } else { // LimitFloatPrecision <= 18 3551 // For floating-point precision of 18: 3552 // 3553 // TwoToFractionalPartOfX = 3554 // 0.999999982f + 3555 // (0.693148872f + 3556 // (0.240227044f + 3557 // (0.554906021e-1f + 3558 // (0.961591928e-2f + 3559 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3560 // error 2.47208000*10^(-7), which is better than 18 bits 3561 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3562 getF32Constant(DAG, 0x3924b03e, dl)); 3563 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3564 getF32Constant(DAG, 0x3ab24b87, dl)); 3565 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3566 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3567 getF32Constant(DAG, 0x3c1d8c17, dl)); 3568 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3569 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3570 getF32Constant(DAG, 0x3d634a1d, dl)); 3571 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3572 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3573 getF32Constant(DAG, 0x3e75fe14, dl)); 3574 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3575 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3576 getF32Constant(DAG, 0x3f317234, dl)); 3577 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3578 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3579 getF32Constant(DAG, 0x3f800000, dl)); 3580 } 3581 3582 // Add the exponent into the result in integer domain. 3583 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3584 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3585 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3586 } 3587 3588 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3589 /// limited-precision mode. 3590 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3591 const TargetLowering &TLI) { 3592 if (Op.getValueType() == MVT::f32 && 3593 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3594 3595 // Put the exponent in the right bit position for later addition to the 3596 // final result: 3597 // 3598 // #define LOG2OFe 1.4426950f 3599 // t0 = Op * LOG2OFe 3600 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3601 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3602 return getLimitedPrecisionExp2(t0, dl, DAG); 3603 } 3604 3605 // No special expansion. 3606 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3607 } 3608 3609 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3610 /// limited-precision mode. 3611 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3612 const TargetLowering &TLI) { 3613 if (Op.getValueType() == MVT::f32 && 3614 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3615 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3616 3617 // Scale the exponent by log(2) [0.69314718f]. 3618 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3619 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3620 getF32Constant(DAG, 0x3f317218, dl)); 3621 3622 // Get the significand and build it into a floating-point number with 3623 // exponent of 1. 3624 SDValue X = GetSignificand(DAG, Op1, dl); 3625 3626 SDValue LogOfMantissa; 3627 if (LimitFloatPrecision <= 6) { 3628 // For floating-point precision of 6: 3629 // 3630 // LogofMantissa = 3631 // -1.1609546f + 3632 // (1.4034025f - 0.23903021f * x) * x; 3633 // 3634 // error 0.0034276066, which is better than 8 bits 3635 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3636 getF32Constant(DAG, 0xbe74c456, dl)); 3637 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3638 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3639 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3640 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3641 getF32Constant(DAG, 0x3f949a29, dl)); 3642 } else if (LimitFloatPrecision <= 12) { 3643 // For floating-point precision of 12: 3644 // 3645 // LogOfMantissa = 3646 // -1.7417939f + 3647 // (2.8212026f + 3648 // (-1.4699568f + 3649 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3650 // 3651 // error 0.000061011436, which is 14 bits 3652 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3653 getF32Constant(DAG, 0xbd67b6d6, dl)); 3654 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3655 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3656 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3657 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3658 getF32Constant(DAG, 0x3fbc278b, dl)); 3659 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3660 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3661 getF32Constant(DAG, 0x40348e95, dl)); 3662 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3663 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3664 getF32Constant(DAG, 0x3fdef31a, dl)); 3665 } else { // LimitFloatPrecision <= 18 3666 // For floating-point precision of 18: 3667 // 3668 // LogOfMantissa = 3669 // -2.1072184f + 3670 // (4.2372794f + 3671 // (-3.7029485f + 3672 // (2.2781945f + 3673 // (-0.87823314f + 3674 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3675 // 3676 // error 0.0000023660568, which is better than 18 bits 3677 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3678 getF32Constant(DAG, 0xbc91e5ac, dl)); 3679 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3680 getF32Constant(DAG, 0x3e4350aa, dl)); 3681 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3682 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3683 getF32Constant(DAG, 0x3f60d3e3, dl)); 3684 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3685 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3686 getF32Constant(DAG, 0x4011cdf0, dl)); 3687 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3688 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3689 getF32Constant(DAG, 0x406cfd1c, dl)); 3690 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3691 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3692 getF32Constant(DAG, 0x408797cb, dl)); 3693 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3694 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3695 getF32Constant(DAG, 0x4006dcab, dl)); 3696 } 3697 3698 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3699 } 3700 3701 // No special expansion. 3702 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3703 } 3704 3705 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3706 /// limited-precision mode. 3707 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3708 const TargetLowering &TLI) { 3709 if (Op.getValueType() == MVT::f32 && 3710 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3711 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3712 3713 // Get the exponent. 3714 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3715 3716 // Get the significand and build it into a floating-point number with 3717 // exponent of 1. 3718 SDValue X = GetSignificand(DAG, Op1, dl); 3719 3720 // Different possible minimax approximations of significand in 3721 // floating-point for various degrees of accuracy over [1,2]. 3722 SDValue Log2ofMantissa; 3723 if (LimitFloatPrecision <= 6) { 3724 // For floating-point precision of 6: 3725 // 3726 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3727 // 3728 // error 0.0049451742, which is more than 7 bits 3729 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3730 getF32Constant(DAG, 0xbeb08fe0, dl)); 3731 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3732 getF32Constant(DAG, 0x40019463, dl)); 3733 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3734 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3735 getF32Constant(DAG, 0x3fd6633d, dl)); 3736 } else if (LimitFloatPrecision <= 12) { 3737 // For floating-point precision of 12: 3738 // 3739 // Log2ofMantissa = 3740 // -2.51285454f + 3741 // (4.07009056f + 3742 // (-2.12067489f + 3743 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3744 // 3745 // error 0.0000876136000, which is better than 13 bits 3746 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3747 getF32Constant(DAG, 0xbda7262e, dl)); 3748 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3749 getF32Constant(DAG, 0x3f25280b, dl)); 3750 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3751 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3752 getF32Constant(DAG, 0x4007b923, dl)); 3753 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3754 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3755 getF32Constant(DAG, 0x40823e2f, dl)); 3756 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3757 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3758 getF32Constant(DAG, 0x4020d29c, dl)); 3759 } else { // LimitFloatPrecision <= 18 3760 // For floating-point precision of 18: 3761 // 3762 // Log2ofMantissa = 3763 // -3.0400495f + 3764 // (6.1129976f + 3765 // (-5.3420409f + 3766 // (3.2865683f + 3767 // (-1.2669343f + 3768 // (0.27515199f - 3769 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3770 // 3771 // error 0.0000018516, which is better than 18 bits 3772 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3773 getF32Constant(DAG, 0xbcd2769e, dl)); 3774 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3775 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3776 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3777 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3778 getF32Constant(DAG, 0x3fa22ae7, dl)); 3779 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3780 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3781 getF32Constant(DAG, 0x40525723, dl)); 3782 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3783 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3784 getF32Constant(DAG, 0x40aaf200, dl)); 3785 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3786 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3787 getF32Constant(DAG, 0x40c39dad, dl)); 3788 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3789 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3790 getF32Constant(DAG, 0x4042902c, dl)); 3791 } 3792 3793 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3794 } 3795 3796 // No special expansion. 3797 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3798 } 3799 3800 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3801 /// limited-precision mode. 3802 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3803 const TargetLowering &TLI) { 3804 if (Op.getValueType() == MVT::f32 && 3805 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3806 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3807 3808 // Scale the exponent by log10(2) [0.30102999f]. 3809 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3810 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3811 getF32Constant(DAG, 0x3e9a209a, dl)); 3812 3813 // Get the significand and build it into a floating-point number with 3814 // exponent of 1. 3815 SDValue X = GetSignificand(DAG, Op1, dl); 3816 3817 SDValue Log10ofMantissa; 3818 if (LimitFloatPrecision <= 6) { 3819 // For floating-point precision of 6: 3820 // 3821 // Log10ofMantissa = 3822 // -0.50419619f + 3823 // (0.60948995f - 0.10380950f * x) * x; 3824 // 3825 // error 0.0014886165, which is 6 bits 3826 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3827 getF32Constant(DAG, 0xbdd49a13, dl)); 3828 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3829 getF32Constant(DAG, 0x3f1c0789, dl)); 3830 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3831 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3832 getF32Constant(DAG, 0x3f011300, dl)); 3833 } else if (LimitFloatPrecision <= 12) { 3834 // For floating-point precision of 12: 3835 // 3836 // Log10ofMantissa = 3837 // -0.64831180f + 3838 // (0.91751397f + 3839 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3840 // 3841 // error 0.00019228036, which is better than 12 bits 3842 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3843 getF32Constant(DAG, 0x3d431f31, dl)); 3844 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3845 getF32Constant(DAG, 0x3ea21fb2, dl)); 3846 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3847 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3848 getF32Constant(DAG, 0x3f6ae232, dl)); 3849 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3850 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3851 getF32Constant(DAG, 0x3f25f7c3, dl)); 3852 } else { // LimitFloatPrecision <= 18 3853 // For floating-point precision of 18: 3854 // 3855 // Log10ofMantissa = 3856 // -0.84299375f + 3857 // (1.5327582f + 3858 // (-1.0688956f + 3859 // (0.49102474f + 3860 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3861 // 3862 // error 0.0000037995730, which is better than 18 bits 3863 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3864 getF32Constant(DAG, 0x3c5d51ce, dl)); 3865 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3866 getF32Constant(DAG, 0x3e00685a, dl)); 3867 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3868 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3869 getF32Constant(DAG, 0x3efb6798, dl)); 3870 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3871 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3872 getF32Constant(DAG, 0x3f88d192, dl)); 3873 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3874 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3875 getF32Constant(DAG, 0x3fc4316c, dl)); 3876 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3877 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3878 getF32Constant(DAG, 0x3f57ce70, dl)); 3879 } 3880 3881 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3882 } 3883 3884 // No special expansion. 3885 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3886 } 3887 3888 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3889 /// limited-precision mode. 3890 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3891 const TargetLowering &TLI) { 3892 if (Op.getValueType() == MVT::f32 && 3893 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3894 return getLimitedPrecisionExp2(Op, dl, DAG); 3895 3896 // No special expansion. 3897 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3898 } 3899 3900 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3901 /// limited-precision mode with x == 10.0f. 3902 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3903 SelectionDAG &DAG, const TargetLowering &TLI) { 3904 bool IsExp10 = false; 3905 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3906 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3907 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3908 APFloat Ten(10.0f); 3909 IsExp10 = LHSC->isExactlyValue(Ten); 3910 } 3911 } 3912 3913 if (IsExp10) { 3914 // Put the exponent in the right bit position for later addition to the 3915 // final result: 3916 // 3917 // #define LOG2OF10 3.3219281f 3918 // t0 = Op * LOG2OF10; 3919 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3920 getF32Constant(DAG, 0x40549a78, dl)); 3921 return getLimitedPrecisionExp2(t0, dl, DAG); 3922 } 3923 3924 // No special expansion. 3925 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3926 } 3927 3928 3929 /// ExpandPowI - Expand a llvm.powi intrinsic. 3930 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3931 SelectionDAG &DAG) { 3932 // If RHS is a constant, we can expand this out to a multiplication tree, 3933 // otherwise we end up lowering to a call to __powidf2 (for example). When 3934 // optimizing for size, we only want to do this if the expansion would produce 3935 // a small number of multiplies, otherwise we do the full expansion. 3936 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3937 // Get the exponent as a positive value. 3938 unsigned Val = RHSC->getSExtValue(); 3939 if ((int)Val < 0) Val = -Val; 3940 3941 // powi(x, 0) -> 1.0 3942 if (Val == 0) 3943 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3944 3945 const Function *F = DAG.getMachineFunction().getFunction(); 3946 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3947 // If optimizing for size, don't insert too many multiplies. This 3948 // inserts up to 5 multiplies. 3949 countPopulation(Val) + Log2_32(Val) < 7) { 3950 // We use the simple binary decomposition method to generate the multiply 3951 // sequence. There are more optimal ways to do this (for example, 3952 // powi(x,15) generates one more multiply than it should), but this has 3953 // the benefit of being both really simple and much better than a libcall. 3954 SDValue Res; // Logically starts equal to 1.0 3955 SDValue CurSquare = LHS; 3956 while (Val) { 3957 if (Val & 1) { 3958 if (Res.getNode()) 3959 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3960 else 3961 Res = CurSquare; // 1.0*CurSquare. 3962 } 3963 3964 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3965 CurSquare, CurSquare); 3966 Val >>= 1; 3967 } 3968 3969 // If the original was negative, invert the result, producing 1/(x*x*x). 3970 if (RHSC->getSExtValue() < 0) 3971 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3972 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3973 return Res; 3974 } 3975 } 3976 3977 // Otherwise, expand to a libcall. 3978 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3979 } 3980 3981 // getTruncatedArgReg - Find underlying register used for an truncated 3982 // argument. 3983 static unsigned getTruncatedArgReg(const SDValue &N) { 3984 if (N.getOpcode() != ISD::TRUNCATE) 3985 return 0; 3986 3987 const SDValue &Ext = N.getOperand(0); 3988 if (Ext.getOpcode() == ISD::AssertZext || 3989 Ext.getOpcode() == ISD::AssertSext) { 3990 const SDValue &CFR = Ext.getOperand(0); 3991 if (CFR.getOpcode() == ISD::CopyFromReg) 3992 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3993 if (CFR.getOpcode() == ISD::TRUNCATE) 3994 return getTruncatedArgReg(CFR); 3995 } 3996 return 0; 3997 } 3998 3999 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4000 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4001 /// At the end of instruction selection, they will be inserted to the entry BB. 4002 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4003 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4004 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4005 const Argument *Arg = dyn_cast<Argument>(V); 4006 if (!Arg) 4007 return false; 4008 4009 MachineFunction &MF = DAG.getMachineFunction(); 4010 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4011 4012 // Ignore inlined function arguments here. 4013 // 4014 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4015 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4016 return false; 4017 4018 Optional<MachineOperand> Op; 4019 // Some arguments' frame index is recorded during argument lowering. 4020 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4021 Op = MachineOperand::CreateFI(FI); 4022 4023 if (!Op && N.getNode()) { 4024 unsigned Reg; 4025 if (N.getOpcode() == ISD::CopyFromReg) 4026 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4027 else 4028 Reg = getTruncatedArgReg(N); 4029 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4030 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4031 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4032 if (PR) 4033 Reg = PR; 4034 } 4035 if (Reg) 4036 Op = MachineOperand::CreateReg(Reg, false); 4037 } 4038 4039 if (!Op) { 4040 // Check if ValueMap has reg number. 4041 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4042 if (VMI != FuncInfo.ValueMap.end()) 4043 Op = MachineOperand::CreateReg(VMI->second, false); 4044 } 4045 4046 if (!Op && N.getNode()) 4047 // Check if frame index is available. 4048 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4049 if (FrameIndexSDNode *FINode = 4050 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4051 Op = MachineOperand::CreateFI(FINode->getIndex()); 4052 4053 if (!Op) 4054 return false; 4055 4056 assert(Variable->isValidLocationForIntrinsic(DL) && 4057 "Expected inlined-at fields to agree"); 4058 if (Op->isReg()) 4059 FuncInfo.ArgDbgValues.push_back( 4060 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4061 Op->getReg(), Offset, Variable, Expr)); 4062 else 4063 FuncInfo.ArgDbgValues.push_back( 4064 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4065 .addOperand(*Op) 4066 .addImm(Offset) 4067 .addMetadata(Variable) 4068 .addMetadata(Expr)); 4069 4070 return true; 4071 } 4072 4073 // VisualStudio defines setjmp as _setjmp 4074 #if defined(_MSC_VER) && defined(setjmp) && \ 4075 !defined(setjmp_undefined_for_msvc) 4076 # pragma push_macro("setjmp") 4077 # undef setjmp 4078 # define setjmp_undefined_for_msvc 4079 #endif 4080 4081 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4082 /// we want to emit this as a call to a named external function, return the name 4083 /// otherwise lower it and return null. 4084 const char * 4085 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4087 SDLoc sdl = getCurSDLoc(); 4088 DebugLoc dl = getCurDebugLoc(); 4089 SDValue Res; 4090 4091 switch (Intrinsic) { 4092 default: 4093 // By default, turn this into a target intrinsic node. 4094 visitTargetIntrinsic(I, Intrinsic); 4095 return nullptr; 4096 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4097 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4098 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4099 case Intrinsic::returnaddress: 4100 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4101 TLI.getPointerTy(DAG.getDataLayout()), 4102 getValue(I.getArgOperand(0)))); 4103 return nullptr; 4104 case Intrinsic::frameaddress: 4105 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4106 TLI.getPointerTy(DAG.getDataLayout()), 4107 getValue(I.getArgOperand(0)))); 4108 return nullptr; 4109 case Intrinsic::read_register: { 4110 Value *Reg = I.getArgOperand(0); 4111 SDValue Chain = getRoot(); 4112 SDValue RegName = 4113 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4114 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4115 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4116 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4117 setValue(&I, Res); 4118 DAG.setRoot(Res.getValue(1)); 4119 return nullptr; 4120 } 4121 case Intrinsic::write_register: { 4122 Value *Reg = I.getArgOperand(0); 4123 Value *RegValue = I.getArgOperand(1); 4124 SDValue Chain = getRoot(); 4125 SDValue RegName = 4126 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4127 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4128 RegName, getValue(RegValue))); 4129 return nullptr; 4130 } 4131 case Intrinsic::setjmp: 4132 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4133 case Intrinsic::longjmp: 4134 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4135 case Intrinsic::memcpy: { 4136 // FIXME: this definition of "user defined address space" is x86-specific 4137 // Assert for address < 256 since we support only user defined address 4138 // spaces. 4139 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4140 < 256 && 4141 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4142 < 256 && 4143 "Unknown address space"); 4144 SDValue Op1 = getValue(I.getArgOperand(0)); 4145 SDValue Op2 = getValue(I.getArgOperand(1)); 4146 SDValue Op3 = getValue(I.getArgOperand(2)); 4147 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4148 if (!Align) 4149 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4150 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4151 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4152 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4153 false, isTC, 4154 MachinePointerInfo(I.getArgOperand(0)), 4155 MachinePointerInfo(I.getArgOperand(1))); 4156 updateDAGForMaybeTailCall(MC); 4157 return nullptr; 4158 } 4159 case Intrinsic::memset: { 4160 // FIXME: this definition of "user defined address space" is x86-specific 4161 // Assert for address < 256 since we support only user defined address 4162 // spaces. 4163 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4164 < 256 && 4165 "Unknown address space"); 4166 SDValue Op1 = getValue(I.getArgOperand(0)); 4167 SDValue Op2 = getValue(I.getArgOperand(1)); 4168 SDValue Op3 = getValue(I.getArgOperand(2)); 4169 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4170 if (!Align) 4171 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4172 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4173 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4174 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4175 isTC, MachinePointerInfo(I.getArgOperand(0))); 4176 updateDAGForMaybeTailCall(MS); 4177 return nullptr; 4178 } 4179 case Intrinsic::memmove: { 4180 // FIXME: this definition of "user defined address space" is x86-specific 4181 // Assert for address < 256 since we support only user defined address 4182 // spaces. 4183 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4184 < 256 && 4185 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4186 < 256 && 4187 "Unknown address space"); 4188 SDValue Op1 = getValue(I.getArgOperand(0)); 4189 SDValue Op2 = getValue(I.getArgOperand(1)); 4190 SDValue Op3 = getValue(I.getArgOperand(2)); 4191 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4192 if (!Align) 4193 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4194 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4195 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4196 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4197 isTC, MachinePointerInfo(I.getArgOperand(0)), 4198 MachinePointerInfo(I.getArgOperand(1))); 4199 updateDAGForMaybeTailCall(MM); 4200 return nullptr; 4201 } 4202 case Intrinsic::dbg_declare: { 4203 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4204 DILocalVariable *Variable = DI.getVariable(); 4205 DIExpression *Expression = DI.getExpression(); 4206 const Value *Address = DI.getAddress(); 4207 assert(Variable && "Missing variable"); 4208 if (!Address) { 4209 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4210 return nullptr; 4211 } 4212 4213 // Check if address has undef value. 4214 if (isa<UndefValue>(Address) || 4215 (Address->use_empty() && !isa<Argument>(Address))) { 4216 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4217 return nullptr; 4218 } 4219 4220 SDValue &N = NodeMap[Address]; 4221 if (!N.getNode() && isa<Argument>(Address)) 4222 // Check unused arguments map. 4223 N = UnusedArgNodeMap[Address]; 4224 SDDbgValue *SDV; 4225 if (N.getNode()) { 4226 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4227 Address = BCI->getOperand(0); 4228 // Parameters are handled specially. 4229 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4230 isa<Argument>(Address); 4231 4232 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4233 4234 if (isParameter && !AI) { 4235 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4236 if (FINode) 4237 // Byval parameter. We have a frame index at this point. 4238 SDV = DAG.getFrameIndexDbgValue( 4239 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4240 else { 4241 // Address is an argument, so try to emit its dbg value using 4242 // virtual register info from the FuncInfo.ValueMap. 4243 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4244 N); 4245 return nullptr; 4246 } 4247 } else if (AI) 4248 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4249 true, 0, dl, SDNodeOrder); 4250 else { 4251 // Can't do anything with other non-AI cases yet. 4252 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4253 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4254 DEBUG(Address->dump()); 4255 return nullptr; 4256 } 4257 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4258 } else { 4259 // If Address is an argument then try to emit its dbg value using 4260 // virtual register info from the FuncInfo.ValueMap. 4261 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4262 N)) { 4263 // If variable is pinned by a alloca in dominating bb then 4264 // use StaticAllocaMap. 4265 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4266 if (AI->getParent() != DI.getParent()) { 4267 DenseMap<const AllocaInst*, int>::iterator SI = 4268 FuncInfo.StaticAllocaMap.find(AI); 4269 if (SI != FuncInfo.StaticAllocaMap.end()) { 4270 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4271 0, dl, SDNodeOrder); 4272 DAG.AddDbgValue(SDV, nullptr, false); 4273 return nullptr; 4274 } 4275 } 4276 } 4277 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4278 } 4279 } 4280 return nullptr; 4281 } 4282 case Intrinsic::dbg_value: { 4283 const DbgValueInst &DI = cast<DbgValueInst>(I); 4284 assert(DI.getVariable() && "Missing variable"); 4285 4286 DILocalVariable *Variable = DI.getVariable(); 4287 DIExpression *Expression = DI.getExpression(); 4288 uint64_t Offset = DI.getOffset(); 4289 const Value *V = DI.getValue(); 4290 if (!V) 4291 return nullptr; 4292 4293 SDDbgValue *SDV; 4294 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4295 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4296 SDNodeOrder); 4297 DAG.AddDbgValue(SDV, nullptr, false); 4298 } else { 4299 // Do not use getValue() in here; we don't want to generate code at 4300 // this point if it hasn't been done yet. 4301 SDValue N = NodeMap[V]; 4302 if (!N.getNode() && isa<Argument>(V)) 4303 // Check unused arguments map. 4304 N = UnusedArgNodeMap[V]; 4305 if (N.getNode()) { 4306 // A dbg.value for an alloca is always indirect. 4307 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4308 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4309 IsIndirect, N)) { 4310 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4311 IsIndirect, Offset, dl, SDNodeOrder); 4312 DAG.AddDbgValue(SDV, N.getNode(), false); 4313 } 4314 } else if (!V->use_empty() ) { 4315 // Do not call getValue(V) yet, as we don't want to generate code. 4316 // Remember it for later. 4317 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4318 DanglingDebugInfoMap[V] = DDI; 4319 } else { 4320 // We may expand this to cover more cases. One case where we have no 4321 // data available is an unreferenced parameter. 4322 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4323 } 4324 } 4325 4326 // Build a debug info table entry. 4327 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4328 V = BCI->getOperand(0); 4329 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4330 // Don't handle byval struct arguments or VLAs, for example. 4331 if (!AI) { 4332 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4333 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4334 return nullptr; 4335 } 4336 DenseMap<const AllocaInst*, int>::iterator SI = 4337 FuncInfo.StaticAllocaMap.find(AI); 4338 if (SI == FuncInfo.StaticAllocaMap.end()) 4339 return nullptr; // VLAs. 4340 return nullptr; 4341 } 4342 4343 case Intrinsic::eh_typeid_for: { 4344 // Find the type id for the given typeinfo. 4345 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4346 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4347 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4348 setValue(&I, Res); 4349 return nullptr; 4350 } 4351 4352 case Intrinsic::eh_return_i32: 4353 case Intrinsic::eh_return_i64: 4354 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4355 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4356 MVT::Other, 4357 getControlRoot(), 4358 getValue(I.getArgOperand(0)), 4359 getValue(I.getArgOperand(1)))); 4360 return nullptr; 4361 case Intrinsic::eh_unwind_init: 4362 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4363 return nullptr; 4364 case Intrinsic::eh_dwarf_cfa: { 4365 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4366 TLI.getPointerTy(DAG.getDataLayout())); 4367 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4368 CfaArg.getValueType(), 4369 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4370 CfaArg.getValueType()), 4371 CfaArg); 4372 SDValue FA = DAG.getNode( 4373 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4374 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4375 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4376 FA, Offset)); 4377 return nullptr; 4378 } 4379 case Intrinsic::eh_sjlj_callsite: { 4380 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4381 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4382 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4383 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4384 4385 MMI.setCurrentCallSite(CI->getZExtValue()); 4386 return nullptr; 4387 } 4388 case Intrinsic::eh_sjlj_functioncontext: { 4389 // Get and store the index of the function context. 4390 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4391 AllocaInst *FnCtx = 4392 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4393 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4394 MFI->setFunctionContextIndex(FI); 4395 return nullptr; 4396 } 4397 case Intrinsic::eh_sjlj_setjmp: { 4398 SDValue Ops[2]; 4399 Ops[0] = getRoot(); 4400 Ops[1] = getValue(I.getArgOperand(0)); 4401 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4402 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4403 setValue(&I, Op.getValue(0)); 4404 DAG.setRoot(Op.getValue(1)); 4405 return nullptr; 4406 } 4407 case Intrinsic::eh_sjlj_longjmp: { 4408 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4409 getRoot(), getValue(I.getArgOperand(0)))); 4410 return nullptr; 4411 } 4412 4413 case Intrinsic::masked_gather: 4414 visitMaskedGather(I); 4415 return nullptr; 4416 case Intrinsic::masked_load: 4417 visitMaskedLoad(I); 4418 return nullptr; 4419 case Intrinsic::masked_scatter: 4420 visitMaskedScatter(I); 4421 return nullptr; 4422 case Intrinsic::masked_store: 4423 visitMaskedStore(I); 4424 return nullptr; 4425 case Intrinsic::x86_mmx_pslli_w: 4426 case Intrinsic::x86_mmx_pslli_d: 4427 case Intrinsic::x86_mmx_pslli_q: 4428 case Intrinsic::x86_mmx_psrli_w: 4429 case Intrinsic::x86_mmx_psrli_d: 4430 case Intrinsic::x86_mmx_psrli_q: 4431 case Intrinsic::x86_mmx_psrai_w: 4432 case Intrinsic::x86_mmx_psrai_d: { 4433 SDValue ShAmt = getValue(I.getArgOperand(1)); 4434 if (isa<ConstantSDNode>(ShAmt)) { 4435 visitTargetIntrinsic(I, Intrinsic); 4436 return nullptr; 4437 } 4438 unsigned NewIntrinsic = 0; 4439 EVT ShAmtVT = MVT::v2i32; 4440 switch (Intrinsic) { 4441 case Intrinsic::x86_mmx_pslli_w: 4442 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4443 break; 4444 case Intrinsic::x86_mmx_pslli_d: 4445 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4446 break; 4447 case Intrinsic::x86_mmx_pslli_q: 4448 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4449 break; 4450 case Intrinsic::x86_mmx_psrli_w: 4451 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4452 break; 4453 case Intrinsic::x86_mmx_psrli_d: 4454 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4455 break; 4456 case Intrinsic::x86_mmx_psrli_q: 4457 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4458 break; 4459 case Intrinsic::x86_mmx_psrai_w: 4460 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4461 break; 4462 case Intrinsic::x86_mmx_psrai_d: 4463 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4464 break; 4465 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4466 } 4467 4468 // The vector shift intrinsics with scalars uses 32b shift amounts but 4469 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4470 // to be zero. 4471 // We must do this early because v2i32 is not a legal type. 4472 SDValue ShOps[2]; 4473 ShOps[0] = ShAmt; 4474 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4475 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4476 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4477 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4478 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4479 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4480 getValue(I.getArgOperand(0)), ShAmt); 4481 setValue(&I, Res); 4482 return nullptr; 4483 } 4484 case Intrinsic::convertff: 4485 case Intrinsic::convertfsi: 4486 case Intrinsic::convertfui: 4487 case Intrinsic::convertsif: 4488 case Intrinsic::convertuif: 4489 case Intrinsic::convertss: 4490 case Intrinsic::convertsu: 4491 case Intrinsic::convertus: 4492 case Intrinsic::convertuu: { 4493 ISD::CvtCode Code = ISD::CVT_INVALID; 4494 switch (Intrinsic) { 4495 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4496 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4497 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4498 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4499 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4500 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4501 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4502 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4503 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4504 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4505 } 4506 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4507 const Value *Op1 = I.getArgOperand(0); 4508 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4509 DAG.getValueType(DestVT), 4510 DAG.getValueType(getValue(Op1).getValueType()), 4511 getValue(I.getArgOperand(1)), 4512 getValue(I.getArgOperand(2)), 4513 Code); 4514 setValue(&I, Res); 4515 return nullptr; 4516 } 4517 case Intrinsic::powi: 4518 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4519 getValue(I.getArgOperand(1)), DAG)); 4520 return nullptr; 4521 case Intrinsic::log: 4522 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4523 return nullptr; 4524 case Intrinsic::log2: 4525 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4526 return nullptr; 4527 case Intrinsic::log10: 4528 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4529 return nullptr; 4530 case Intrinsic::exp: 4531 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4532 return nullptr; 4533 case Intrinsic::exp2: 4534 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4535 return nullptr; 4536 case Intrinsic::pow: 4537 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4538 getValue(I.getArgOperand(1)), DAG, TLI)); 4539 return nullptr; 4540 case Intrinsic::sqrt: 4541 case Intrinsic::fabs: 4542 case Intrinsic::sin: 4543 case Intrinsic::cos: 4544 case Intrinsic::floor: 4545 case Intrinsic::ceil: 4546 case Intrinsic::trunc: 4547 case Intrinsic::rint: 4548 case Intrinsic::nearbyint: 4549 case Intrinsic::round: { 4550 unsigned Opcode; 4551 switch (Intrinsic) { 4552 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4553 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4554 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4555 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4556 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4557 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4558 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4559 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4560 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4561 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4562 case Intrinsic::round: Opcode = ISD::FROUND; break; 4563 } 4564 4565 setValue(&I, DAG.getNode(Opcode, sdl, 4566 getValue(I.getArgOperand(0)).getValueType(), 4567 getValue(I.getArgOperand(0)))); 4568 return nullptr; 4569 } 4570 case Intrinsic::minnum: 4571 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4572 getValue(I.getArgOperand(0)).getValueType(), 4573 getValue(I.getArgOperand(0)), 4574 getValue(I.getArgOperand(1)))); 4575 return nullptr; 4576 case Intrinsic::maxnum: 4577 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4578 getValue(I.getArgOperand(0)).getValueType(), 4579 getValue(I.getArgOperand(0)), 4580 getValue(I.getArgOperand(1)))); 4581 return nullptr; 4582 case Intrinsic::copysign: 4583 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4584 getValue(I.getArgOperand(0)).getValueType(), 4585 getValue(I.getArgOperand(0)), 4586 getValue(I.getArgOperand(1)))); 4587 return nullptr; 4588 case Intrinsic::fma: 4589 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4590 getValue(I.getArgOperand(0)).getValueType(), 4591 getValue(I.getArgOperand(0)), 4592 getValue(I.getArgOperand(1)), 4593 getValue(I.getArgOperand(2)))); 4594 return nullptr; 4595 case Intrinsic::fmuladd: { 4596 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4597 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4598 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4599 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4600 getValue(I.getArgOperand(0)).getValueType(), 4601 getValue(I.getArgOperand(0)), 4602 getValue(I.getArgOperand(1)), 4603 getValue(I.getArgOperand(2)))); 4604 } else { 4605 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4606 getValue(I.getArgOperand(0)).getValueType(), 4607 getValue(I.getArgOperand(0)), 4608 getValue(I.getArgOperand(1))); 4609 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4610 getValue(I.getArgOperand(0)).getValueType(), 4611 Mul, 4612 getValue(I.getArgOperand(2))); 4613 setValue(&I, Add); 4614 } 4615 return nullptr; 4616 } 4617 case Intrinsic::convert_to_fp16: 4618 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4619 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4620 getValue(I.getArgOperand(0)), 4621 DAG.getTargetConstant(0, sdl, 4622 MVT::i32)))); 4623 return nullptr; 4624 case Intrinsic::convert_from_fp16: 4625 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4626 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4627 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4628 getValue(I.getArgOperand(0))))); 4629 return nullptr; 4630 case Intrinsic::pcmarker: { 4631 SDValue Tmp = getValue(I.getArgOperand(0)); 4632 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4633 return nullptr; 4634 } 4635 case Intrinsic::readcyclecounter: { 4636 SDValue Op = getRoot(); 4637 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4638 DAG.getVTList(MVT::i64, MVT::Other), Op); 4639 setValue(&I, Res); 4640 DAG.setRoot(Res.getValue(1)); 4641 return nullptr; 4642 } 4643 case Intrinsic::bswap: 4644 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4645 getValue(I.getArgOperand(0)).getValueType(), 4646 getValue(I.getArgOperand(0)))); 4647 return nullptr; 4648 case Intrinsic::cttz: { 4649 SDValue Arg = getValue(I.getArgOperand(0)); 4650 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4651 EVT Ty = Arg.getValueType(); 4652 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4653 sdl, Ty, Arg)); 4654 return nullptr; 4655 } 4656 case Intrinsic::ctlz: { 4657 SDValue Arg = getValue(I.getArgOperand(0)); 4658 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4659 EVT Ty = Arg.getValueType(); 4660 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4661 sdl, Ty, Arg)); 4662 return nullptr; 4663 } 4664 case Intrinsic::ctpop: { 4665 SDValue Arg = getValue(I.getArgOperand(0)); 4666 EVT Ty = Arg.getValueType(); 4667 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4668 return nullptr; 4669 } 4670 case Intrinsic::stacksave: { 4671 SDValue Op = getRoot(); 4672 Res = DAG.getNode( 4673 ISD::STACKSAVE, sdl, 4674 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4675 setValue(&I, Res); 4676 DAG.setRoot(Res.getValue(1)); 4677 return nullptr; 4678 } 4679 case Intrinsic::stackrestore: { 4680 Res = getValue(I.getArgOperand(0)); 4681 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4682 return nullptr; 4683 } 4684 case Intrinsic::stackprotector: { 4685 // Emit code into the DAG to store the stack guard onto the stack. 4686 MachineFunction &MF = DAG.getMachineFunction(); 4687 MachineFrameInfo *MFI = MF.getFrameInfo(); 4688 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4689 SDValue Src, Chain = getRoot(); 4690 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4691 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4692 4693 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4694 // global variable __stack_chk_guard. 4695 if (!GV) 4696 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4697 if (BC->getOpcode() == Instruction::BitCast) 4698 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4699 4700 if (GV && TLI.useLoadStackGuardNode()) { 4701 // Emit a LOAD_STACK_GUARD node. 4702 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4703 sdl, PtrTy, Chain); 4704 MachinePointerInfo MPInfo(GV); 4705 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4706 unsigned Flags = MachineMemOperand::MOLoad | 4707 MachineMemOperand::MOInvariant; 4708 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4709 PtrTy.getSizeInBits() / 8, 4710 DAG.getEVTAlignment(PtrTy)); 4711 Node->setMemRefs(MemRefs, MemRefs + 1); 4712 4713 // Copy the guard value to a virtual register so that it can be 4714 // retrieved in the epilogue. 4715 Src = SDValue(Node, 0); 4716 const TargetRegisterClass *RC = 4717 TLI.getRegClassFor(Src.getSimpleValueType()); 4718 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4719 4720 SPDescriptor.setGuardReg(Reg); 4721 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4722 } else { 4723 Src = getValue(I.getArgOperand(0)); // The guard's value. 4724 } 4725 4726 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4727 4728 int FI = FuncInfo.StaticAllocaMap[Slot]; 4729 MFI->setStackProtectorIndex(FI); 4730 4731 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4732 4733 // Store the stack protector onto the stack. 4734 Res = DAG.getStore(Chain, sdl, Src, FIN, 4735 MachinePointerInfo::getFixedStack(FI), 4736 true, false, 0); 4737 setValue(&I, Res); 4738 DAG.setRoot(Res); 4739 return nullptr; 4740 } 4741 case Intrinsic::objectsize: { 4742 // If we don't know by now, we're never going to know. 4743 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4744 4745 assert(CI && "Non-constant type in __builtin_object_size?"); 4746 4747 SDValue Arg = getValue(I.getCalledValue()); 4748 EVT Ty = Arg.getValueType(); 4749 4750 if (CI->isZero()) 4751 Res = DAG.getConstant(-1ULL, sdl, Ty); 4752 else 4753 Res = DAG.getConstant(0, sdl, Ty); 4754 4755 setValue(&I, Res); 4756 return nullptr; 4757 } 4758 case Intrinsic::annotation: 4759 case Intrinsic::ptr_annotation: 4760 // Drop the intrinsic, but forward the value 4761 setValue(&I, getValue(I.getOperand(0))); 4762 return nullptr; 4763 case Intrinsic::assume: 4764 case Intrinsic::var_annotation: 4765 // Discard annotate attributes and assumptions 4766 return nullptr; 4767 4768 case Intrinsic::init_trampoline: { 4769 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4770 4771 SDValue Ops[6]; 4772 Ops[0] = getRoot(); 4773 Ops[1] = getValue(I.getArgOperand(0)); 4774 Ops[2] = getValue(I.getArgOperand(1)); 4775 Ops[3] = getValue(I.getArgOperand(2)); 4776 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4777 Ops[5] = DAG.getSrcValue(F); 4778 4779 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4780 4781 DAG.setRoot(Res); 4782 return nullptr; 4783 } 4784 case Intrinsic::adjust_trampoline: { 4785 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4786 TLI.getPointerTy(DAG.getDataLayout()), 4787 getValue(I.getArgOperand(0)))); 4788 return nullptr; 4789 } 4790 case Intrinsic::gcroot: 4791 if (GFI) { 4792 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4793 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4794 4795 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4796 GFI->addStackRoot(FI->getIndex(), TypeMap); 4797 } 4798 return nullptr; 4799 case Intrinsic::gcread: 4800 case Intrinsic::gcwrite: 4801 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4802 case Intrinsic::flt_rounds: 4803 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4804 return nullptr; 4805 4806 case Intrinsic::expect: { 4807 // Just replace __builtin_expect(exp, c) with EXP. 4808 setValue(&I, getValue(I.getArgOperand(0))); 4809 return nullptr; 4810 } 4811 4812 case Intrinsic::debugtrap: 4813 case Intrinsic::trap: { 4814 StringRef TrapFuncName = 4815 I.getAttributes() 4816 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4817 .getValueAsString(); 4818 if (TrapFuncName.empty()) { 4819 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4820 ISD::TRAP : ISD::DEBUGTRAP; 4821 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4822 return nullptr; 4823 } 4824 TargetLowering::ArgListTy Args; 4825 4826 TargetLowering::CallLoweringInfo CLI(DAG); 4827 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 4828 CallingConv::C, I.getType(), 4829 DAG.getExternalSymbol(TrapFuncName.data(), 4830 TLI.getPointerTy(DAG.getDataLayout())), 4831 std::move(Args), 0); 4832 4833 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4834 DAG.setRoot(Result.second); 4835 return nullptr; 4836 } 4837 4838 case Intrinsic::uadd_with_overflow: 4839 case Intrinsic::sadd_with_overflow: 4840 case Intrinsic::usub_with_overflow: 4841 case Intrinsic::ssub_with_overflow: 4842 case Intrinsic::umul_with_overflow: 4843 case Intrinsic::smul_with_overflow: { 4844 ISD::NodeType Op; 4845 switch (Intrinsic) { 4846 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4847 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4848 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4849 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4850 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4851 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4852 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4853 } 4854 SDValue Op1 = getValue(I.getArgOperand(0)); 4855 SDValue Op2 = getValue(I.getArgOperand(1)); 4856 4857 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4858 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4859 return nullptr; 4860 } 4861 case Intrinsic::prefetch: { 4862 SDValue Ops[5]; 4863 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4864 Ops[0] = getRoot(); 4865 Ops[1] = getValue(I.getArgOperand(0)); 4866 Ops[2] = getValue(I.getArgOperand(1)); 4867 Ops[3] = getValue(I.getArgOperand(2)); 4868 Ops[4] = getValue(I.getArgOperand(3)); 4869 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4870 DAG.getVTList(MVT::Other), Ops, 4871 EVT::getIntegerVT(*Context, 8), 4872 MachinePointerInfo(I.getArgOperand(0)), 4873 0, /* align */ 4874 false, /* volatile */ 4875 rw==0, /* read */ 4876 rw==1)); /* write */ 4877 return nullptr; 4878 } 4879 case Intrinsic::lifetime_start: 4880 case Intrinsic::lifetime_end: { 4881 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4882 // Stack coloring is not enabled in O0, discard region information. 4883 if (TM.getOptLevel() == CodeGenOpt::None) 4884 return nullptr; 4885 4886 SmallVector<Value *, 4> Allocas; 4887 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4888 4889 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4890 E = Allocas.end(); Object != E; ++Object) { 4891 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4892 4893 // Could not find an Alloca. 4894 if (!LifetimeObject) 4895 continue; 4896 4897 // First check that the Alloca is static, otherwise it won't have a 4898 // valid frame index. 4899 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4900 if (SI == FuncInfo.StaticAllocaMap.end()) 4901 return nullptr; 4902 4903 int FI = SI->second; 4904 4905 SDValue Ops[2]; 4906 Ops[0] = getRoot(); 4907 Ops[1] = 4908 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 4909 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4910 4911 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4912 DAG.setRoot(Res); 4913 } 4914 return nullptr; 4915 } 4916 case Intrinsic::invariant_start: 4917 // Discard region information. 4918 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 4919 return nullptr; 4920 case Intrinsic::invariant_end: 4921 // Discard region information. 4922 return nullptr; 4923 case Intrinsic::stackprotectorcheck: { 4924 // Do not actually emit anything for this basic block. Instead we initialize 4925 // the stack protector descriptor and export the guard variable so we can 4926 // access it in FinishBasicBlock. 4927 const BasicBlock *BB = I.getParent(); 4928 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4929 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4930 4931 // Flush our exports since we are going to process a terminator. 4932 (void)getControlRoot(); 4933 return nullptr; 4934 } 4935 case Intrinsic::clear_cache: 4936 return TLI.getClearCacheBuiltinName(); 4937 case Intrinsic::eh_actions: 4938 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 4939 return nullptr; 4940 case Intrinsic::donothing: 4941 // ignore 4942 return nullptr; 4943 case Intrinsic::experimental_stackmap: { 4944 visitStackmap(I); 4945 return nullptr; 4946 } 4947 case Intrinsic::experimental_patchpoint_void: 4948 case Intrinsic::experimental_patchpoint_i64: { 4949 visitPatchpoint(&I); 4950 return nullptr; 4951 } 4952 case Intrinsic::experimental_gc_statepoint: { 4953 visitStatepoint(I); 4954 return nullptr; 4955 } 4956 case Intrinsic::experimental_gc_result_int: 4957 case Intrinsic::experimental_gc_result_float: 4958 case Intrinsic::experimental_gc_result_ptr: 4959 case Intrinsic::experimental_gc_result: { 4960 visitGCResult(I); 4961 return nullptr; 4962 } 4963 case Intrinsic::experimental_gc_relocate: { 4964 visitGCRelocate(I); 4965 return nullptr; 4966 } 4967 case Intrinsic::instrprof_increment: 4968 llvm_unreachable("instrprof failed to lower an increment"); 4969 4970 case Intrinsic::localescape: { 4971 MachineFunction &MF = DAG.getMachineFunction(); 4972 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4973 4974 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 4975 // is the same on all targets. 4976 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4977 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4978 if (isa<ConstantPointerNull>(Arg)) 4979 continue; // Skip null pointers. They represent a hole in index space. 4980 AllocaInst *Slot = cast<AllocaInst>(Arg); 4981 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4982 "can only escape static allocas"); 4983 int FI = FuncInfo.StaticAllocaMap[Slot]; 4984 MCSymbol *FrameAllocSym = 4985 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4986 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4987 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4988 TII->get(TargetOpcode::LOCAL_ESCAPE)) 4989 .addSym(FrameAllocSym) 4990 .addFrameIndex(FI); 4991 } 4992 4993 return nullptr; 4994 } 4995 4996 case Intrinsic::localrecover: { 4997 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 4998 MachineFunction &MF = DAG.getMachineFunction(); 4999 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5000 5001 // Get the symbol that defines the frame offset. 5002 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5003 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5004 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5005 MCSymbol *FrameAllocSym = 5006 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5007 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5008 5009 // Create a MCSymbol for the label to avoid any target lowering 5010 // that would make this PC relative. 5011 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5012 SDValue OffsetVal = 5013 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5014 5015 // Add the offset to the FP. 5016 Value *FP = I.getArgOperand(1); 5017 SDValue FPVal = getValue(FP); 5018 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5019 setValue(&I, Add); 5020 5021 return nullptr; 5022 } 5023 case Intrinsic::eh_begincatch: 5024 case Intrinsic::eh_endcatch: 5025 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5026 case Intrinsic::eh_exceptioncode: { 5027 unsigned Reg = TLI.getExceptionPointerRegister(); 5028 assert(Reg && "cannot get exception code on this platform"); 5029 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5030 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5031 assert(FuncInfo.MBB->isLandingPad() && "eh.exceptioncode in non-lpad"); 5032 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5033 SDValue N = 5034 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5035 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5036 setValue(&I, N); 5037 return nullptr; 5038 } 5039 } 5040 } 5041 5042 std::pair<SDValue, SDValue> 5043 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5044 MachineBasicBlock *LandingPad) { 5045 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5046 MCSymbol *BeginLabel = nullptr; 5047 5048 if (LandingPad) { 5049 // Insert a label before the invoke call to mark the try range. This can be 5050 // used to detect deletion of the invoke via the MachineModuleInfo. 5051 BeginLabel = MMI.getContext().createTempSymbol(); 5052 5053 // For SjLj, keep track of which landing pads go with which invokes 5054 // so as to maintain the ordering of pads in the LSDA. 5055 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5056 if (CallSiteIndex) { 5057 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5058 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5059 5060 // Now that the call site is handled, stop tracking it. 5061 MMI.setCurrentCallSite(0); 5062 } 5063 5064 // Both PendingLoads and PendingExports must be flushed here; 5065 // this call might not return. 5066 (void)getRoot(); 5067 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5068 5069 CLI.setChain(getRoot()); 5070 } 5071 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5072 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5073 5074 assert((CLI.IsTailCall || Result.second.getNode()) && 5075 "Non-null chain expected with non-tail call!"); 5076 assert((Result.second.getNode() || !Result.first.getNode()) && 5077 "Null value expected with tail call!"); 5078 5079 if (!Result.second.getNode()) { 5080 // As a special case, a null chain means that a tail call has been emitted 5081 // and the DAG root is already updated. 5082 HasTailCall = true; 5083 5084 // Since there's no actual continuation from this block, nothing can be 5085 // relying on us setting vregs for them. 5086 PendingExports.clear(); 5087 } else { 5088 DAG.setRoot(Result.second); 5089 } 5090 5091 if (LandingPad) { 5092 // Insert a label at the end of the invoke call to mark the try range. This 5093 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5094 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5095 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5096 5097 // Inform MachineModuleInfo of range. 5098 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5099 } 5100 5101 return Result; 5102 } 5103 5104 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5105 bool isTailCall, 5106 MachineBasicBlock *LandingPad) { 5107 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5108 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5109 Type *RetTy = FTy->getReturnType(); 5110 5111 TargetLowering::ArgListTy Args; 5112 TargetLowering::ArgListEntry Entry; 5113 Args.reserve(CS.arg_size()); 5114 5115 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5116 i != e; ++i) { 5117 const Value *V = *i; 5118 5119 // Skip empty types 5120 if (V->getType()->isEmptyTy()) 5121 continue; 5122 5123 SDValue ArgNode = getValue(V); 5124 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5125 5126 // Skip the first return-type Attribute to get to params. 5127 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5128 Args.push_back(Entry); 5129 5130 // If we have an explicit sret argument that is an Instruction, (i.e., it 5131 // might point to function-local memory), we can't meaningfully tail-call. 5132 if (Entry.isSRet && isa<Instruction>(V)) 5133 isTailCall = false; 5134 } 5135 5136 // Check if target-independent constraints permit a tail call here. 5137 // Target-dependent constraints are checked within TLI->LowerCallTo. 5138 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5139 isTailCall = false; 5140 5141 TargetLowering::CallLoweringInfo CLI(DAG); 5142 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5143 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5144 .setTailCall(isTailCall); 5145 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5146 5147 if (Result.first.getNode()) 5148 setValue(CS.getInstruction(), Result.first); 5149 } 5150 5151 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5152 /// value is equal or not-equal to zero. 5153 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5154 for (const User *U : V->users()) { 5155 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5156 if (IC->isEquality()) 5157 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5158 if (C->isNullValue()) 5159 continue; 5160 // Unknown instruction. 5161 return false; 5162 } 5163 return true; 5164 } 5165 5166 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5167 Type *LoadTy, 5168 SelectionDAGBuilder &Builder) { 5169 5170 // Check to see if this load can be trivially constant folded, e.g. if the 5171 // input is from a string literal. 5172 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5173 // Cast pointer to the type we really want to load. 5174 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5175 PointerType::getUnqual(LoadTy)); 5176 5177 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5178 const_cast<Constant *>(LoadInput), *Builder.DL)) 5179 return Builder.getValue(LoadCst); 5180 } 5181 5182 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5183 // still constant memory, the input chain can be the entry node. 5184 SDValue Root; 5185 bool ConstantMemory = false; 5186 5187 // Do not serialize (non-volatile) loads of constant memory with anything. 5188 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5189 Root = Builder.DAG.getEntryNode(); 5190 ConstantMemory = true; 5191 } else { 5192 // Do not serialize non-volatile loads against each other. 5193 Root = Builder.DAG.getRoot(); 5194 } 5195 5196 SDValue Ptr = Builder.getValue(PtrVal); 5197 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5198 Ptr, MachinePointerInfo(PtrVal), 5199 false /*volatile*/, 5200 false /*nontemporal*/, 5201 false /*isinvariant*/, 1 /* align=1 */); 5202 5203 if (!ConstantMemory) 5204 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5205 return LoadVal; 5206 } 5207 5208 /// processIntegerCallValue - Record the value for an instruction that 5209 /// produces an integer result, converting the type where necessary. 5210 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5211 SDValue Value, 5212 bool IsSigned) { 5213 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5214 I.getType(), true); 5215 if (IsSigned) 5216 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5217 else 5218 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5219 setValue(&I, Value); 5220 } 5221 5222 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5223 /// If so, return true and lower it, otherwise return false and it will be 5224 /// lowered like a normal call. 5225 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5226 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5227 if (I.getNumArgOperands() != 3) 5228 return false; 5229 5230 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5231 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5232 !I.getArgOperand(2)->getType()->isIntegerTy() || 5233 !I.getType()->isIntegerTy()) 5234 return false; 5235 5236 const Value *Size = I.getArgOperand(2); 5237 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5238 if (CSize && CSize->getZExtValue() == 0) { 5239 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5240 I.getType(), true); 5241 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5242 return true; 5243 } 5244 5245 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5246 std::pair<SDValue, SDValue> Res = 5247 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5248 getValue(LHS), getValue(RHS), getValue(Size), 5249 MachinePointerInfo(LHS), 5250 MachinePointerInfo(RHS)); 5251 if (Res.first.getNode()) { 5252 processIntegerCallValue(I, Res.first, true); 5253 PendingLoads.push_back(Res.second); 5254 return true; 5255 } 5256 5257 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5258 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5259 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5260 bool ActuallyDoIt = true; 5261 MVT LoadVT; 5262 Type *LoadTy; 5263 switch (CSize->getZExtValue()) { 5264 default: 5265 LoadVT = MVT::Other; 5266 LoadTy = nullptr; 5267 ActuallyDoIt = false; 5268 break; 5269 case 2: 5270 LoadVT = MVT::i16; 5271 LoadTy = Type::getInt16Ty(CSize->getContext()); 5272 break; 5273 case 4: 5274 LoadVT = MVT::i32; 5275 LoadTy = Type::getInt32Ty(CSize->getContext()); 5276 break; 5277 case 8: 5278 LoadVT = MVT::i64; 5279 LoadTy = Type::getInt64Ty(CSize->getContext()); 5280 break; 5281 /* 5282 case 16: 5283 LoadVT = MVT::v4i32; 5284 LoadTy = Type::getInt32Ty(CSize->getContext()); 5285 LoadTy = VectorType::get(LoadTy, 4); 5286 break; 5287 */ 5288 } 5289 5290 // This turns into unaligned loads. We only do this if the target natively 5291 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5292 // we'll only produce a small number of byte loads. 5293 5294 // Require that we can find a legal MVT, and only do this if the target 5295 // supports unaligned loads of that type. Expanding into byte loads would 5296 // bloat the code. 5297 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5298 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5299 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5300 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5301 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5302 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5303 // TODO: Check alignment of src and dest ptrs. 5304 if (!TLI.isTypeLegal(LoadVT) || 5305 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5306 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5307 ActuallyDoIt = false; 5308 } 5309 5310 if (ActuallyDoIt) { 5311 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5312 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5313 5314 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5315 ISD::SETNE); 5316 processIntegerCallValue(I, Res, false); 5317 return true; 5318 } 5319 } 5320 5321 5322 return false; 5323 } 5324 5325 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5326 /// form. If so, return true and lower it, otherwise return false and it 5327 /// will be lowered like a normal call. 5328 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5329 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5330 if (I.getNumArgOperands() != 3) 5331 return false; 5332 5333 const Value *Src = I.getArgOperand(0); 5334 const Value *Char = I.getArgOperand(1); 5335 const Value *Length = I.getArgOperand(2); 5336 if (!Src->getType()->isPointerTy() || 5337 !Char->getType()->isIntegerTy() || 5338 !Length->getType()->isIntegerTy() || 5339 !I.getType()->isPointerTy()) 5340 return false; 5341 5342 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5343 std::pair<SDValue, SDValue> Res = 5344 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5345 getValue(Src), getValue(Char), getValue(Length), 5346 MachinePointerInfo(Src)); 5347 if (Res.first.getNode()) { 5348 setValue(&I, Res.first); 5349 PendingLoads.push_back(Res.second); 5350 return true; 5351 } 5352 5353 return false; 5354 } 5355 5356 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5357 /// optimized form. If so, return true and lower it, otherwise return false 5358 /// and it will be lowered like a normal call. 5359 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5360 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5361 if (I.getNumArgOperands() != 2) 5362 return false; 5363 5364 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5365 if (!Arg0->getType()->isPointerTy() || 5366 !Arg1->getType()->isPointerTy() || 5367 !I.getType()->isPointerTy()) 5368 return false; 5369 5370 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5371 std::pair<SDValue, SDValue> Res = 5372 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5373 getValue(Arg0), getValue(Arg1), 5374 MachinePointerInfo(Arg0), 5375 MachinePointerInfo(Arg1), isStpcpy); 5376 if (Res.first.getNode()) { 5377 setValue(&I, Res.first); 5378 DAG.setRoot(Res.second); 5379 return true; 5380 } 5381 5382 return false; 5383 } 5384 5385 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5386 /// If so, return true and lower it, otherwise return false and it will be 5387 /// lowered like a normal call. 5388 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5389 // Verify that the prototype makes sense. int strcmp(void*,void*) 5390 if (I.getNumArgOperands() != 2) 5391 return false; 5392 5393 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5394 if (!Arg0->getType()->isPointerTy() || 5395 !Arg1->getType()->isPointerTy() || 5396 !I.getType()->isIntegerTy()) 5397 return false; 5398 5399 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5400 std::pair<SDValue, SDValue> Res = 5401 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5402 getValue(Arg0), getValue(Arg1), 5403 MachinePointerInfo(Arg0), 5404 MachinePointerInfo(Arg1)); 5405 if (Res.first.getNode()) { 5406 processIntegerCallValue(I, Res.first, true); 5407 PendingLoads.push_back(Res.second); 5408 return true; 5409 } 5410 5411 return false; 5412 } 5413 5414 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5415 /// form. If so, return true and lower it, otherwise return false and it 5416 /// will be lowered like a normal call. 5417 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5418 // Verify that the prototype makes sense. size_t strlen(char *) 5419 if (I.getNumArgOperands() != 1) 5420 return false; 5421 5422 const Value *Arg0 = I.getArgOperand(0); 5423 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5424 return false; 5425 5426 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5427 std::pair<SDValue, SDValue> Res = 5428 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5429 getValue(Arg0), MachinePointerInfo(Arg0)); 5430 if (Res.first.getNode()) { 5431 processIntegerCallValue(I, Res.first, false); 5432 PendingLoads.push_back(Res.second); 5433 return true; 5434 } 5435 5436 return false; 5437 } 5438 5439 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5440 /// form. If so, return true and lower it, otherwise return false and it 5441 /// will be lowered like a normal call. 5442 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5443 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5444 if (I.getNumArgOperands() != 2) 5445 return false; 5446 5447 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5448 if (!Arg0->getType()->isPointerTy() || 5449 !Arg1->getType()->isIntegerTy() || 5450 !I.getType()->isIntegerTy()) 5451 return false; 5452 5453 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5454 std::pair<SDValue, SDValue> Res = 5455 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5456 getValue(Arg0), getValue(Arg1), 5457 MachinePointerInfo(Arg0)); 5458 if (Res.first.getNode()) { 5459 processIntegerCallValue(I, Res.first, false); 5460 PendingLoads.push_back(Res.second); 5461 return true; 5462 } 5463 5464 return false; 5465 } 5466 5467 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5468 /// operation (as expected), translate it to an SDNode with the specified opcode 5469 /// and return true. 5470 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5471 unsigned Opcode) { 5472 // Sanity check that it really is a unary floating-point call. 5473 if (I.getNumArgOperands() != 1 || 5474 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5475 I.getType() != I.getArgOperand(0)->getType() || 5476 !I.onlyReadsMemory()) 5477 return false; 5478 5479 SDValue Tmp = getValue(I.getArgOperand(0)); 5480 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5481 return true; 5482 } 5483 5484 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5485 /// operation (as expected), translate it to an SDNode with the specified opcode 5486 /// and return true. 5487 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5488 unsigned Opcode) { 5489 // Sanity check that it really is a binary floating-point call. 5490 if (I.getNumArgOperands() != 2 || 5491 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5492 I.getType() != I.getArgOperand(0)->getType() || 5493 I.getType() != I.getArgOperand(1)->getType() || 5494 !I.onlyReadsMemory()) 5495 return false; 5496 5497 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5498 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5499 EVT VT = Tmp0.getValueType(); 5500 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5501 return true; 5502 } 5503 5504 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5505 // Handle inline assembly differently. 5506 if (isa<InlineAsm>(I.getCalledValue())) { 5507 visitInlineAsm(&I); 5508 return; 5509 } 5510 5511 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5512 ComputeUsesVAFloatArgument(I, &MMI); 5513 5514 const char *RenameFn = nullptr; 5515 if (Function *F = I.getCalledFunction()) { 5516 if (F->isDeclaration()) { 5517 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5518 if (unsigned IID = II->getIntrinsicID(F)) { 5519 RenameFn = visitIntrinsicCall(I, IID); 5520 if (!RenameFn) 5521 return; 5522 } 5523 } 5524 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5525 RenameFn = visitIntrinsicCall(I, IID); 5526 if (!RenameFn) 5527 return; 5528 } 5529 } 5530 5531 // Check for well-known libc/libm calls. If the function is internal, it 5532 // can't be a library call. 5533 LibFunc::Func Func; 5534 if (!F->hasLocalLinkage() && F->hasName() && 5535 LibInfo->getLibFunc(F->getName(), Func) && 5536 LibInfo->hasOptimizedCodeGen(Func)) { 5537 switch (Func) { 5538 default: break; 5539 case LibFunc::copysign: 5540 case LibFunc::copysignf: 5541 case LibFunc::copysignl: 5542 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5543 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5544 I.getType() == I.getArgOperand(0)->getType() && 5545 I.getType() == I.getArgOperand(1)->getType() && 5546 I.onlyReadsMemory()) { 5547 SDValue LHS = getValue(I.getArgOperand(0)); 5548 SDValue RHS = getValue(I.getArgOperand(1)); 5549 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5550 LHS.getValueType(), LHS, RHS)); 5551 return; 5552 } 5553 break; 5554 case LibFunc::fabs: 5555 case LibFunc::fabsf: 5556 case LibFunc::fabsl: 5557 if (visitUnaryFloatCall(I, ISD::FABS)) 5558 return; 5559 break; 5560 case LibFunc::fmin: 5561 case LibFunc::fminf: 5562 case LibFunc::fminl: 5563 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5564 return; 5565 break; 5566 case LibFunc::fmax: 5567 case LibFunc::fmaxf: 5568 case LibFunc::fmaxl: 5569 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5570 return; 5571 break; 5572 case LibFunc::sin: 5573 case LibFunc::sinf: 5574 case LibFunc::sinl: 5575 if (visitUnaryFloatCall(I, ISD::FSIN)) 5576 return; 5577 break; 5578 case LibFunc::cos: 5579 case LibFunc::cosf: 5580 case LibFunc::cosl: 5581 if (visitUnaryFloatCall(I, ISD::FCOS)) 5582 return; 5583 break; 5584 case LibFunc::sqrt: 5585 case LibFunc::sqrtf: 5586 case LibFunc::sqrtl: 5587 case LibFunc::sqrt_finite: 5588 case LibFunc::sqrtf_finite: 5589 case LibFunc::sqrtl_finite: 5590 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5591 return; 5592 break; 5593 case LibFunc::floor: 5594 case LibFunc::floorf: 5595 case LibFunc::floorl: 5596 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5597 return; 5598 break; 5599 case LibFunc::nearbyint: 5600 case LibFunc::nearbyintf: 5601 case LibFunc::nearbyintl: 5602 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5603 return; 5604 break; 5605 case LibFunc::ceil: 5606 case LibFunc::ceilf: 5607 case LibFunc::ceill: 5608 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5609 return; 5610 break; 5611 case LibFunc::rint: 5612 case LibFunc::rintf: 5613 case LibFunc::rintl: 5614 if (visitUnaryFloatCall(I, ISD::FRINT)) 5615 return; 5616 break; 5617 case LibFunc::round: 5618 case LibFunc::roundf: 5619 case LibFunc::roundl: 5620 if (visitUnaryFloatCall(I, ISD::FROUND)) 5621 return; 5622 break; 5623 case LibFunc::trunc: 5624 case LibFunc::truncf: 5625 case LibFunc::truncl: 5626 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5627 return; 5628 break; 5629 case LibFunc::log2: 5630 case LibFunc::log2f: 5631 case LibFunc::log2l: 5632 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5633 return; 5634 break; 5635 case LibFunc::exp2: 5636 case LibFunc::exp2f: 5637 case LibFunc::exp2l: 5638 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5639 return; 5640 break; 5641 case LibFunc::memcmp: 5642 if (visitMemCmpCall(I)) 5643 return; 5644 break; 5645 case LibFunc::memchr: 5646 if (visitMemChrCall(I)) 5647 return; 5648 break; 5649 case LibFunc::strcpy: 5650 if (visitStrCpyCall(I, false)) 5651 return; 5652 break; 5653 case LibFunc::stpcpy: 5654 if (visitStrCpyCall(I, true)) 5655 return; 5656 break; 5657 case LibFunc::strcmp: 5658 if (visitStrCmpCall(I)) 5659 return; 5660 break; 5661 case LibFunc::strlen: 5662 if (visitStrLenCall(I)) 5663 return; 5664 break; 5665 case LibFunc::strnlen: 5666 if (visitStrNLenCall(I)) 5667 return; 5668 break; 5669 } 5670 } 5671 } 5672 5673 SDValue Callee; 5674 if (!RenameFn) 5675 Callee = getValue(I.getCalledValue()); 5676 else 5677 Callee = DAG.getExternalSymbol( 5678 RenameFn, 5679 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5680 5681 // Check if we can potentially perform a tail call. More detailed checking is 5682 // be done within LowerCallTo, after more information about the call is known. 5683 LowerCallTo(&I, Callee, I.isTailCall()); 5684 } 5685 5686 namespace { 5687 5688 /// AsmOperandInfo - This contains information for each constraint that we are 5689 /// lowering. 5690 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5691 public: 5692 /// CallOperand - If this is the result output operand or a clobber 5693 /// this is null, otherwise it is the incoming operand to the CallInst. 5694 /// This gets modified as the asm is processed. 5695 SDValue CallOperand; 5696 5697 /// AssignedRegs - If this is a register or register class operand, this 5698 /// contains the set of register corresponding to the operand. 5699 RegsForValue AssignedRegs; 5700 5701 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5702 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5703 } 5704 5705 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5706 /// corresponds to. If there is no Value* for this operand, it returns 5707 /// MVT::Other. 5708 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5709 const DataLayout &DL) const { 5710 if (!CallOperandVal) return MVT::Other; 5711 5712 if (isa<BasicBlock>(CallOperandVal)) 5713 return TLI.getPointerTy(DL); 5714 5715 llvm::Type *OpTy = CallOperandVal->getType(); 5716 5717 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5718 // If this is an indirect operand, the operand is a pointer to the 5719 // accessed type. 5720 if (isIndirect) { 5721 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5722 if (!PtrTy) 5723 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5724 OpTy = PtrTy->getElementType(); 5725 } 5726 5727 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5728 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5729 if (STy->getNumElements() == 1) 5730 OpTy = STy->getElementType(0); 5731 5732 // If OpTy is not a single value, it may be a struct/union that we 5733 // can tile with integers. 5734 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5735 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5736 switch (BitSize) { 5737 default: break; 5738 case 1: 5739 case 8: 5740 case 16: 5741 case 32: 5742 case 64: 5743 case 128: 5744 OpTy = IntegerType::get(Context, BitSize); 5745 break; 5746 } 5747 } 5748 5749 return TLI.getValueType(DL, OpTy, true); 5750 } 5751 }; 5752 5753 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5754 5755 } // end anonymous namespace 5756 5757 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5758 /// specified operand. We prefer to assign virtual registers, to allow the 5759 /// register allocator to handle the assignment process. However, if the asm 5760 /// uses features that we can't model on machineinstrs, we have SDISel do the 5761 /// allocation. This produces generally horrible, but correct, code. 5762 /// 5763 /// OpInfo describes the operand. 5764 /// 5765 static void GetRegistersForValue(SelectionDAG &DAG, 5766 const TargetLowering &TLI, 5767 SDLoc DL, 5768 SDISelAsmOperandInfo &OpInfo) { 5769 LLVMContext &Context = *DAG.getContext(); 5770 5771 MachineFunction &MF = DAG.getMachineFunction(); 5772 SmallVector<unsigned, 4> Regs; 5773 5774 // If this is a constraint for a single physreg, or a constraint for a 5775 // register class, find it. 5776 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5777 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5778 OpInfo.ConstraintCode, 5779 OpInfo.ConstraintVT); 5780 5781 unsigned NumRegs = 1; 5782 if (OpInfo.ConstraintVT != MVT::Other) { 5783 // If this is a FP input in an integer register (or visa versa) insert a bit 5784 // cast of the input value. More generally, handle any case where the input 5785 // value disagrees with the register class we plan to stick this in. 5786 if (OpInfo.Type == InlineAsm::isInput && 5787 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5788 // Try to convert to the first EVT that the reg class contains. If the 5789 // types are identical size, use a bitcast to convert (e.g. two differing 5790 // vector types). 5791 MVT RegVT = *PhysReg.second->vt_begin(); 5792 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5793 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5794 RegVT, OpInfo.CallOperand); 5795 OpInfo.ConstraintVT = RegVT; 5796 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5797 // If the input is a FP value and we want it in FP registers, do a 5798 // bitcast to the corresponding integer type. This turns an f64 value 5799 // into i64, which can be passed with two i32 values on a 32-bit 5800 // machine. 5801 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5802 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5803 RegVT, OpInfo.CallOperand); 5804 OpInfo.ConstraintVT = RegVT; 5805 } 5806 } 5807 5808 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5809 } 5810 5811 MVT RegVT; 5812 EVT ValueVT = OpInfo.ConstraintVT; 5813 5814 // If this is a constraint for a specific physical register, like {r17}, 5815 // assign it now. 5816 if (unsigned AssignedReg = PhysReg.first) { 5817 const TargetRegisterClass *RC = PhysReg.second; 5818 if (OpInfo.ConstraintVT == MVT::Other) 5819 ValueVT = *RC->vt_begin(); 5820 5821 // Get the actual register value type. This is important, because the user 5822 // may have asked for (e.g.) the AX register in i32 type. We need to 5823 // remember that AX is actually i16 to get the right extension. 5824 RegVT = *RC->vt_begin(); 5825 5826 // This is a explicit reference to a physical register. 5827 Regs.push_back(AssignedReg); 5828 5829 // If this is an expanded reference, add the rest of the regs to Regs. 5830 if (NumRegs != 1) { 5831 TargetRegisterClass::iterator I = RC->begin(); 5832 for (; *I != AssignedReg; ++I) 5833 assert(I != RC->end() && "Didn't find reg!"); 5834 5835 // Already added the first reg. 5836 --NumRegs; ++I; 5837 for (; NumRegs; --NumRegs, ++I) { 5838 assert(I != RC->end() && "Ran out of registers to allocate!"); 5839 Regs.push_back(*I); 5840 } 5841 } 5842 5843 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5844 return; 5845 } 5846 5847 // Otherwise, if this was a reference to an LLVM register class, create vregs 5848 // for this reference. 5849 if (const TargetRegisterClass *RC = PhysReg.second) { 5850 RegVT = *RC->vt_begin(); 5851 if (OpInfo.ConstraintVT == MVT::Other) 5852 ValueVT = RegVT; 5853 5854 // Create the appropriate number of virtual registers. 5855 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5856 for (; NumRegs; --NumRegs) 5857 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5858 5859 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5860 return; 5861 } 5862 5863 // Otherwise, we couldn't allocate enough registers for this. 5864 } 5865 5866 /// visitInlineAsm - Handle a call to an InlineAsm object. 5867 /// 5868 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5869 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5870 5871 /// ConstraintOperands - Information about all of the constraints. 5872 SDISelAsmOperandInfoVector ConstraintOperands; 5873 5874 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5875 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 5876 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 5877 5878 bool hasMemory = false; 5879 5880 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5881 unsigned ResNo = 0; // ResNo - The result number of the next output. 5882 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5883 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5884 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5885 5886 MVT OpVT = MVT::Other; 5887 5888 // Compute the value type for each operand. 5889 switch (OpInfo.Type) { 5890 case InlineAsm::isOutput: 5891 // Indirect outputs just consume an argument. 5892 if (OpInfo.isIndirect) { 5893 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5894 break; 5895 } 5896 5897 // The return value of the call is this value. As such, there is no 5898 // corresponding argument. 5899 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5900 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5901 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 5902 STy->getElementType(ResNo)); 5903 } else { 5904 assert(ResNo == 0 && "Asm only has one result!"); 5905 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 5906 } 5907 ++ResNo; 5908 break; 5909 case InlineAsm::isInput: 5910 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5911 break; 5912 case InlineAsm::isClobber: 5913 // Nothing to do. 5914 break; 5915 } 5916 5917 // If this is an input or an indirect output, process the call argument. 5918 // BasicBlocks are labels, currently appearing only in asm's. 5919 if (OpInfo.CallOperandVal) { 5920 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5921 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5922 } else { 5923 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5924 } 5925 5926 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 5927 DAG.getDataLayout()).getSimpleVT(); 5928 } 5929 5930 OpInfo.ConstraintVT = OpVT; 5931 5932 // Indirect operand accesses access memory. 5933 if (OpInfo.isIndirect) 5934 hasMemory = true; 5935 else { 5936 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5937 TargetLowering::ConstraintType 5938 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5939 if (CType == TargetLowering::C_Memory) { 5940 hasMemory = true; 5941 break; 5942 } 5943 } 5944 } 5945 } 5946 5947 SDValue Chain, Flag; 5948 5949 // We won't need to flush pending loads if this asm doesn't touch 5950 // memory and is nonvolatile. 5951 if (hasMemory || IA->hasSideEffects()) 5952 Chain = getRoot(); 5953 else 5954 Chain = DAG.getRoot(); 5955 5956 // Second pass over the constraints: compute which constraint option to use 5957 // and assign registers to constraints that want a specific physreg. 5958 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5959 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5960 5961 // If this is an output operand with a matching input operand, look up the 5962 // matching input. If their types mismatch, e.g. one is an integer, the 5963 // other is floating point, or their sizes are different, flag it as an 5964 // error. 5965 if (OpInfo.hasMatchingInput()) { 5966 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5967 5968 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5969 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5970 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5971 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5972 OpInfo.ConstraintVT); 5973 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5974 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5975 Input.ConstraintVT); 5976 if ((OpInfo.ConstraintVT.isInteger() != 5977 Input.ConstraintVT.isInteger()) || 5978 (MatchRC.second != InputRC.second)) { 5979 report_fatal_error("Unsupported asm: input constraint" 5980 " with a matching output constraint of" 5981 " incompatible type!"); 5982 } 5983 Input.ConstraintVT = OpInfo.ConstraintVT; 5984 } 5985 } 5986 5987 // Compute the constraint code and ConstraintType to use. 5988 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5989 5990 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5991 OpInfo.Type == InlineAsm::isClobber) 5992 continue; 5993 5994 // If this is a memory input, and if the operand is not indirect, do what we 5995 // need to to provide an address for the memory input. 5996 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5997 !OpInfo.isIndirect) { 5998 assert((OpInfo.isMultipleAlternative || 5999 (OpInfo.Type == InlineAsm::isInput)) && 6000 "Can only indirectify direct input operands!"); 6001 6002 // Memory operands really want the address of the value. If we don't have 6003 // an indirect input, put it in the constpool if we can, otherwise spill 6004 // it to a stack slot. 6005 // TODO: This isn't quite right. We need to handle these according to 6006 // the addressing mode that the constraint wants. Also, this may take 6007 // an additional register for the computation and we don't want that 6008 // either. 6009 6010 // If the operand is a float, integer, or vector constant, spill to a 6011 // constant pool entry to get its address. 6012 const Value *OpVal = OpInfo.CallOperandVal; 6013 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6014 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6015 OpInfo.CallOperand = DAG.getConstantPool( 6016 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6017 } else { 6018 // Otherwise, create a stack slot and emit a store to it before the 6019 // asm. 6020 Type *Ty = OpVal->getType(); 6021 auto &DL = DAG.getDataLayout(); 6022 uint64_t TySize = DL.getTypeAllocSize(Ty); 6023 unsigned Align = DL.getPrefTypeAlignment(Ty); 6024 MachineFunction &MF = DAG.getMachineFunction(); 6025 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6026 SDValue StackSlot = 6027 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6028 Chain = DAG.getStore(Chain, getCurSDLoc(), 6029 OpInfo.CallOperand, StackSlot, 6030 MachinePointerInfo::getFixedStack(SSFI), 6031 false, false, 0); 6032 OpInfo.CallOperand = StackSlot; 6033 } 6034 6035 // There is no longer a Value* corresponding to this operand. 6036 OpInfo.CallOperandVal = nullptr; 6037 6038 // It is now an indirect operand. 6039 OpInfo.isIndirect = true; 6040 } 6041 6042 // If this constraint is for a specific register, allocate it before 6043 // anything else. 6044 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6045 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6046 } 6047 6048 // Second pass - Loop over all of the operands, assigning virtual or physregs 6049 // to register class operands. 6050 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6051 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6052 6053 // C_Register operands have already been allocated, Other/Memory don't need 6054 // to be. 6055 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6056 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6057 } 6058 6059 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6060 std::vector<SDValue> AsmNodeOperands; 6061 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6062 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6063 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6064 6065 // If we have a !srcloc metadata node associated with it, we want to attach 6066 // this to the ultimately generated inline asm machineinstr. To do this, we 6067 // pass in the third operand as this (potentially null) inline asm MDNode. 6068 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6069 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6070 6071 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6072 // bits as operand 3. 6073 unsigned ExtraInfo = 0; 6074 if (IA->hasSideEffects()) 6075 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6076 if (IA->isAlignStack()) 6077 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6078 // Set the asm dialect. 6079 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6080 6081 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6082 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6083 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6084 6085 // Compute the constraint code and ConstraintType to use. 6086 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6087 6088 // Ideally, we would only check against memory constraints. However, the 6089 // meaning of an other constraint can be target-specific and we can't easily 6090 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6091 // for other constriants as well. 6092 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6093 OpInfo.ConstraintType == TargetLowering::C_Other) { 6094 if (OpInfo.Type == InlineAsm::isInput) 6095 ExtraInfo |= InlineAsm::Extra_MayLoad; 6096 else if (OpInfo.Type == InlineAsm::isOutput) 6097 ExtraInfo |= InlineAsm::Extra_MayStore; 6098 else if (OpInfo.Type == InlineAsm::isClobber) 6099 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6100 } 6101 } 6102 6103 AsmNodeOperands.push_back(DAG.getTargetConstant( 6104 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6105 6106 // Loop over all of the inputs, copying the operand values into the 6107 // appropriate registers and processing the output regs. 6108 RegsForValue RetValRegs; 6109 6110 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6111 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6112 6113 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6114 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6115 6116 switch (OpInfo.Type) { 6117 case InlineAsm::isOutput: { 6118 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6119 OpInfo.ConstraintType != TargetLowering::C_Register) { 6120 // Memory output, or 'other' output (e.g. 'X' constraint). 6121 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6122 6123 unsigned ConstraintID = 6124 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6125 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6126 "Failed to convert memory constraint code to constraint id."); 6127 6128 // Add information to the INLINEASM node to know about this output. 6129 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6130 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6131 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6132 MVT::i32)); 6133 AsmNodeOperands.push_back(OpInfo.CallOperand); 6134 break; 6135 } 6136 6137 // Otherwise, this is a register or register class output. 6138 6139 // Copy the output from the appropriate register. Find a register that 6140 // we can use. 6141 if (OpInfo.AssignedRegs.Regs.empty()) { 6142 LLVMContext &Ctx = *DAG.getContext(); 6143 Ctx.emitError(CS.getInstruction(), 6144 "couldn't allocate output register for constraint '" + 6145 Twine(OpInfo.ConstraintCode) + "'"); 6146 return; 6147 } 6148 6149 // If this is an indirect operand, store through the pointer after the 6150 // asm. 6151 if (OpInfo.isIndirect) { 6152 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6153 OpInfo.CallOperandVal)); 6154 } else { 6155 // This is the result value of the call. 6156 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6157 // Concatenate this output onto the outputs list. 6158 RetValRegs.append(OpInfo.AssignedRegs); 6159 } 6160 6161 // Add information to the INLINEASM node to know that this register is 6162 // set. 6163 OpInfo.AssignedRegs 6164 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6165 ? InlineAsm::Kind_RegDefEarlyClobber 6166 : InlineAsm::Kind_RegDef, 6167 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6168 break; 6169 } 6170 case InlineAsm::isInput: { 6171 SDValue InOperandVal = OpInfo.CallOperand; 6172 6173 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6174 // If this is required to match an output register we have already set, 6175 // just use its register. 6176 unsigned OperandNo = OpInfo.getMatchedOperand(); 6177 6178 // Scan until we find the definition we already emitted of this operand. 6179 // When we find it, create a RegsForValue operand. 6180 unsigned CurOp = InlineAsm::Op_FirstOperand; 6181 for (; OperandNo; --OperandNo) { 6182 // Advance to the next operand. 6183 unsigned OpFlag = 6184 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6185 assert((InlineAsm::isRegDefKind(OpFlag) || 6186 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6187 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6188 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6189 } 6190 6191 unsigned OpFlag = 6192 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6193 if (InlineAsm::isRegDefKind(OpFlag) || 6194 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6195 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6196 if (OpInfo.isIndirect) { 6197 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6198 LLVMContext &Ctx = *DAG.getContext(); 6199 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6200 " don't know how to handle tied " 6201 "indirect register inputs"); 6202 return; 6203 } 6204 6205 RegsForValue MatchedRegs; 6206 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6207 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6208 MatchedRegs.RegVTs.push_back(RegVT); 6209 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6210 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6211 i != e; ++i) { 6212 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6213 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6214 else { 6215 LLVMContext &Ctx = *DAG.getContext(); 6216 Ctx.emitError(CS.getInstruction(), 6217 "inline asm error: This value" 6218 " type register class is not natively supported!"); 6219 return; 6220 } 6221 } 6222 SDLoc dl = getCurSDLoc(); 6223 // Use the produced MatchedRegs object to 6224 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6225 Chain, &Flag, CS.getInstruction()); 6226 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6227 true, OpInfo.getMatchedOperand(), dl, 6228 DAG, AsmNodeOperands); 6229 break; 6230 } 6231 6232 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6233 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6234 "Unexpected number of operands"); 6235 // Add information to the INLINEASM node to know about this input. 6236 // See InlineAsm.h isUseOperandTiedToDef. 6237 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6238 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6239 OpInfo.getMatchedOperand()); 6240 AsmNodeOperands.push_back(DAG.getTargetConstant( 6241 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6242 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6243 break; 6244 } 6245 6246 // Treat indirect 'X' constraint as memory. 6247 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6248 OpInfo.isIndirect) 6249 OpInfo.ConstraintType = TargetLowering::C_Memory; 6250 6251 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6252 std::vector<SDValue> Ops; 6253 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6254 Ops, DAG); 6255 if (Ops.empty()) { 6256 LLVMContext &Ctx = *DAG.getContext(); 6257 Ctx.emitError(CS.getInstruction(), 6258 "invalid operand for inline asm constraint '" + 6259 Twine(OpInfo.ConstraintCode) + "'"); 6260 return; 6261 } 6262 6263 // Add information to the INLINEASM node to know about this input. 6264 unsigned ResOpType = 6265 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6266 AsmNodeOperands.push_back(DAG.getTargetConstant( 6267 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6268 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6269 break; 6270 } 6271 6272 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6273 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6274 assert(InOperandVal.getValueType() == 6275 TLI.getPointerTy(DAG.getDataLayout()) && 6276 "Memory operands expect pointer values"); 6277 6278 unsigned ConstraintID = 6279 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6280 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6281 "Failed to convert memory constraint code to constraint id."); 6282 6283 // Add information to the INLINEASM node to know about this input. 6284 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6285 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6286 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6287 getCurSDLoc(), 6288 MVT::i32)); 6289 AsmNodeOperands.push_back(InOperandVal); 6290 break; 6291 } 6292 6293 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6294 OpInfo.ConstraintType == TargetLowering::C_Register) && 6295 "Unknown constraint type!"); 6296 6297 // TODO: Support this. 6298 if (OpInfo.isIndirect) { 6299 LLVMContext &Ctx = *DAG.getContext(); 6300 Ctx.emitError(CS.getInstruction(), 6301 "Don't know how to handle indirect register inputs yet " 6302 "for constraint '" + 6303 Twine(OpInfo.ConstraintCode) + "'"); 6304 return; 6305 } 6306 6307 // Copy the input into the appropriate registers. 6308 if (OpInfo.AssignedRegs.Regs.empty()) { 6309 LLVMContext &Ctx = *DAG.getContext(); 6310 Ctx.emitError(CS.getInstruction(), 6311 "couldn't allocate input reg for constraint '" + 6312 Twine(OpInfo.ConstraintCode) + "'"); 6313 return; 6314 } 6315 6316 SDLoc dl = getCurSDLoc(); 6317 6318 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6319 Chain, &Flag, CS.getInstruction()); 6320 6321 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6322 dl, DAG, AsmNodeOperands); 6323 break; 6324 } 6325 case InlineAsm::isClobber: { 6326 // Add the clobbered value to the operand list, so that the register 6327 // allocator is aware that the physreg got clobbered. 6328 if (!OpInfo.AssignedRegs.Regs.empty()) 6329 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6330 false, 0, getCurSDLoc(), DAG, 6331 AsmNodeOperands); 6332 break; 6333 } 6334 } 6335 } 6336 6337 // Finish up input operands. Set the input chain and add the flag last. 6338 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6339 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6340 6341 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6342 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6343 Flag = Chain.getValue(1); 6344 6345 // If this asm returns a register value, copy the result from that register 6346 // and set it as the value of the call. 6347 if (!RetValRegs.Regs.empty()) { 6348 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6349 Chain, &Flag, CS.getInstruction()); 6350 6351 // FIXME: Why don't we do this for inline asms with MRVs? 6352 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6353 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6354 6355 // If any of the results of the inline asm is a vector, it may have the 6356 // wrong width/num elts. This can happen for register classes that can 6357 // contain multiple different value types. The preg or vreg allocated may 6358 // not have the same VT as was expected. Convert it to the right type 6359 // with bit_convert. 6360 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6361 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6362 ResultType, Val); 6363 6364 } else if (ResultType != Val.getValueType() && 6365 ResultType.isInteger() && Val.getValueType().isInteger()) { 6366 // If a result value was tied to an input value, the computed result may 6367 // have a wider width than the expected result. Extract the relevant 6368 // portion. 6369 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6370 } 6371 6372 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6373 } 6374 6375 setValue(CS.getInstruction(), Val); 6376 // Don't need to use this as a chain in this case. 6377 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6378 return; 6379 } 6380 6381 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6382 6383 // Process indirect outputs, first output all of the flagged copies out of 6384 // physregs. 6385 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6386 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6387 const Value *Ptr = IndirectStoresToEmit[i].second; 6388 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6389 Chain, &Flag, IA); 6390 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6391 } 6392 6393 // Emit the non-flagged stores from the physregs. 6394 SmallVector<SDValue, 8> OutChains; 6395 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6396 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6397 StoresToEmit[i].first, 6398 getValue(StoresToEmit[i].second), 6399 MachinePointerInfo(StoresToEmit[i].second), 6400 false, false, 0); 6401 OutChains.push_back(Val); 6402 } 6403 6404 if (!OutChains.empty()) 6405 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6406 6407 DAG.setRoot(Chain); 6408 } 6409 6410 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6411 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6412 MVT::Other, getRoot(), 6413 getValue(I.getArgOperand(0)), 6414 DAG.getSrcValue(I.getArgOperand(0)))); 6415 } 6416 6417 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6418 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6419 const DataLayout &DL = DAG.getDataLayout(); 6420 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6421 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6422 DAG.getSrcValue(I.getOperand(0)), 6423 DL.getABITypeAlignment(I.getType())); 6424 setValue(&I, V); 6425 DAG.setRoot(V.getValue(1)); 6426 } 6427 6428 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6429 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6430 MVT::Other, getRoot(), 6431 getValue(I.getArgOperand(0)), 6432 DAG.getSrcValue(I.getArgOperand(0)))); 6433 } 6434 6435 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6436 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6437 MVT::Other, getRoot(), 6438 getValue(I.getArgOperand(0)), 6439 getValue(I.getArgOperand(1)), 6440 DAG.getSrcValue(I.getArgOperand(0)), 6441 DAG.getSrcValue(I.getArgOperand(1)))); 6442 } 6443 6444 /// \brief Lower an argument list according to the target calling convention. 6445 /// 6446 /// \return A tuple of <return-value, token-chain> 6447 /// 6448 /// This is a helper for lowering intrinsics that follow a target calling 6449 /// convention or require stack pointer adjustment. Only a subset of the 6450 /// intrinsic's operands need to participate in the calling convention. 6451 std::pair<SDValue, SDValue> 6452 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6453 unsigned NumArgs, SDValue Callee, 6454 Type *ReturnTy, 6455 MachineBasicBlock *LandingPad, 6456 bool IsPatchPoint) { 6457 TargetLowering::ArgListTy Args; 6458 Args.reserve(NumArgs); 6459 6460 // Populate the argument list. 6461 // Attributes for args start at offset 1, after the return attribute. 6462 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6463 ArgI != ArgE; ++ArgI) { 6464 const Value *V = CS->getOperand(ArgI); 6465 6466 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6467 6468 TargetLowering::ArgListEntry Entry; 6469 Entry.Node = getValue(V); 6470 Entry.Ty = V->getType(); 6471 Entry.setAttributes(&CS, AttrI); 6472 Args.push_back(Entry); 6473 } 6474 6475 TargetLowering::CallLoweringInfo CLI(DAG); 6476 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6477 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6478 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6479 6480 return lowerInvokable(CLI, LandingPad); 6481 } 6482 6483 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6484 /// or patchpoint target node's operand list. 6485 /// 6486 /// Constants are converted to TargetConstants purely as an optimization to 6487 /// avoid constant materialization and register allocation. 6488 /// 6489 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6490 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6491 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6492 /// address materialization and register allocation, but may also be required 6493 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6494 /// alloca in the entry block, then the runtime may assume that the alloca's 6495 /// StackMap location can be read immediately after compilation and that the 6496 /// location is valid at any point during execution (this is similar to the 6497 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6498 /// only available in a register, then the runtime would need to trap when 6499 /// execution reaches the StackMap in order to read the alloca's location. 6500 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6501 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6502 SelectionDAGBuilder &Builder) { 6503 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6504 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6505 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6506 Ops.push_back( 6507 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6508 Ops.push_back( 6509 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6510 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6511 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6512 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6513 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6514 } else 6515 Ops.push_back(OpVal); 6516 } 6517 } 6518 6519 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6520 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6521 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6522 // [live variables...]) 6523 6524 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6525 6526 SDValue Chain, InFlag, Callee, NullPtr; 6527 SmallVector<SDValue, 32> Ops; 6528 6529 SDLoc DL = getCurSDLoc(); 6530 Callee = getValue(CI.getCalledValue()); 6531 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6532 6533 // The stackmap intrinsic only records the live variables (the arguemnts 6534 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6535 // intrinsic, this won't be lowered to a function call. This means we don't 6536 // have to worry about calling conventions and target specific lowering code. 6537 // Instead we perform the call lowering right here. 6538 // 6539 // chain, flag = CALLSEQ_START(chain, 0) 6540 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6541 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6542 // 6543 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6544 InFlag = Chain.getValue(1); 6545 6546 // Add the <id> and <numBytes> constants. 6547 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6548 Ops.push_back(DAG.getTargetConstant( 6549 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6550 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6551 Ops.push_back(DAG.getTargetConstant( 6552 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6553 MVT::i32)); 6554 6555 // Push live variables for the stack map. 6556 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6557 6558 // We are not pushing any register mask info here on the operands list, 6559 // because the stackmap doesn't clobber anything. 6560 6561 // Push the chain and the glue flag. 6562 Ops.push_back(Chain); 6563 Ops.push_back(InFlag); 6564 6565 // Create the STACKMAP node. 6566 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6567 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6568 Chain = SDValue(SM, 0); 6569 InFlag = Chain.getValue(1); 6570 6571 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6572 6573 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6574 6575 // Set the root to the target-lowered call chain. 6576 DAG.setRoot(Chain); 6577 6578 // Inform the Frame Information that we have a stackmap in this function. 6579 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6580 } 6581 6582 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6583 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6584 MachineBasicBlock *LandingPad) { 6585 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6586 // i32 <numBytes>, 6587 // i8* <target>, 6588 // i32 <numArgs>, 6589 // [Args...], 6590 // [live variables...]) 6591 6592 CallingConv::ID CC = CS.getCallingConv(); 6593 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6594 bool HasDef = !CS->getType()->isVoidTy(); 6595 SDLoc dl = getCurSDLoc(); 6596 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6597 6598 // Handle immediate and symbolic callees. 6599 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6600 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6601 /*isTarget=*/true); 6602 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6603 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6604 SDLoc(SymbolicCallee), 6605 SymbolicCallee->getValueType(0)); 6606 6607 // Get the real number of arguments participating in the call <numArgs> 6608 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6609 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6610 6611 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6612 // Intrinsics include all meta-operands up to but not including CC. 6613 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6614 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6615 "Not enough arguments provided to the patchpoint intrinsic"); 6616 6617 // For AnyRegCC the arguments are lowered later on manually. 6618 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6619 Type *ReturnTy = 6620 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6621 std::pair<SDValue, SDValue> Result = 6622 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6623 LandingPad, true); 6624 6625 SDNode *CallEnd = Result.second.getNode(); 6626 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6627 CallEnd = CallEnd->getOperand(0).getNode(); 6628 6629 /// Get a call instruction from the call sequence chain. 6630 /// Tail calls are not allowed. 6631 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6632 "Expected a callseq node."); 6633 SDNode *Call = CallEnd->getOperand(0).getNode(); 6634 bool HasGlue = Call->getGluedNode(); 6635 6636 // Replace the target specific call node with the patchable intrinsic. 6637 SmallVector<SDValue, 8> Ops; 6638 6639 // Add the <id> and <numBytes> constants. 6640 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6641 Ops.push_back(DAG.getTargetConstant( 6642 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6643 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6644 Ops.push_back(DAG.getTargetConstant( 6645 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6646 MVT::i32)); 6647 6648 // Add the callee. 6649 Ops.push_back(Callee); 6650 6651 // Adjust <numArgs> to account for any arguments that have been passed on the 6652 // stack instead. 6653 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6654 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6655 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6656 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6657 6658 // Add the calling convention 6659 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6660 6661 // Add the arguments we omitted previously. The register allocator should 6662 // place these in any free register. 6663 if (IsAnyRegCC) 6664 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6665 Ops.push_back(getValue(CS.getArgument(i))); 6666 6667 // Push the arguments from the call instruction up to the register mask. 6668 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6669 Ops.append(Call->op_begin() + 2, e); 6670 6671 // Push live variables for the stack map. 6672 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6673 6674 // Push the register mask info. 6675 if (HasGlue) 6676 Ops.push_back(*(Call->op_end()-2)); 6677 else 6678 Ops.push_back(*(Call->op_end()-1)); 6679 6680 // Push the chain (this is originally the first operand of the call, but 6681 // becomes now the last or second to last operand). 6682 Ops.push_back(*(Call->op_begin())); 6683 6684 // Push the glue flag (last operand). 6685 if (HasGlue) 6686 Ops.push_back(*(Call->op_end()-1)); 6687 6688 SDVTList NodeTys; 6689 if (IsAnyRegCC && HasDef) { 6690 // Create the return types based on the intrinsic definition 6691 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6692 SmallVector<EVT, 3> ValueVTs; 6693 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6694 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6695 6696 // There is always a chain and a glue type at the end 6697 ValueVTs.push_back(MVT::Other); 6698 ValueVTs.push_back(MVT::Glue); 6699 NodeTys = DAG.getVTList(ValueVTs); 6700 } else 6701 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6702 6703 // Replace the target specific call node with a PATCHPOINT node. 6704 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6705 dl, NodeTys, Ops); 6706 6707 // Update the NodeMap. 6708 if (HasDef) { 6709 if (IsAnyRegCC) 6710 setValue(CS.getInstruction(), SDValue(MN, 0)); 6711 else 6712 setValue(CS.getInstruction(), Result.first); 6713 } 6714 6715 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6716 // call sequence. Furthermore the location of the chain and glue can change 6717 // when the AnyReg calling convention is used and the intrinsic returns a 6718 // value. 6719 if (IsAnyRegCC && HasDef) { 6720 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6721 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6722 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6723 } else 6724 DAG.ReplaceAllUsesWith(Call, MN); 6725 DAG.DeleteNode(Call); 6726 6727 // Inform the Frame Information that we have a patchpoint in this function. 6728 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6729 } 6730 6731 /// Returns an AttributeSet representing the attributes applied to the return 6732 /// value of the given call. 6733 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6734 SmallVector<Attribute::AttrKind, 2> Attrs; 6735 if (CLI.RetSExt) 6736 Attrs.push_back(Attribute::SExt); 6737 if (CLI.RetZExt) 6738 Attrs.push_back(Attribute::ZExt); 6739 if (CLI.IsInReg) 6740 Attrs.push_back(Attribute::InReg); 6741 6742 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6743 Attrs); 6744 } 6745 6746 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6747 /// implementation, which just calls LowerCall. 6748 /// FIXME: When all targets are 6749 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6750 std::pair<SDValue, SDValue> 6751 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6752 // Handle the incoming return values from the call. 6753 CLI.Ins.clear(); 6754 Type *OrigRetTy = CLI.RetTy; 6755 SmallVector<EVT, 4> RetTys; 6756 SmallVector<uint64_t, 4> Offsets; 6757 auto &DL = CLI.DAG.getDataLayout(); 6758 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6759 6760 SmallVector<ISD::OutputArg, 4> Outs; 6761 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6762 6763 bool CanLowerReturn = 6764 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6765 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6766 6767 SDValue DemoteStackSlot; 6768 int DemoteStackIdx = -100; 6769 if (!CanLowerReturn) { 6770 // FIXME: equivalent assert? 6771 // assert(!CS.hasInAllocaArgument() && 6772 // "sret demotion is incompatible with inalloca"); 6773 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6774 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6775 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6776 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6777 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6778 6779 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6780 ArgListEntry Entry; 6781 Entry.Node = DemoteStackSlot; 6782 Entry.Ty = StackSlotPtrType; 6783 Entry.isSExt = false; 6784 Entry.isZExt = false; 6785 Entry.isInReg = false; 6786 Entry.isSRet = true; 6787 Entry.isNest = false; 6788 Entry.isByVal = false; 6789 Entry.isReturned = false; 6790 Entry.Alignment = Align; 6791 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6792 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6793 6794 // sret demotion isn't compatible with tail-calls, since the sret argument 6795 // points into the callers stack frame. 6796 CLI.IsTailCall = false; 6797 } else { 6798 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6799 EVT VT = RetTys[I]; 6800 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6801 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6802 for (unsigned i = 0; i != NumRegs; ++i) { 6803 ISD::InputArg MyFlags; 6804 MyFlags.VT = RegisterVT; 6805 MyFlags.ArgVT = VT; 6806 MyFlags.Used = CLI.IsReturnValueUsed; 6807 if (CLI.RetSExt) 6808 MyFlags.Flags.setSExt(); 6809 if (CLI.RetZExt) 6810 MyFlags.Flags.setZExt(); 6811 if (CLI.IsInReg) 6812 MyFlags.Flags.setInReg(); 6813 CLI.Ins.push_back(MyFlags); 6814 } 6815 } 6816 } 6817 6818 // Handle all of the outgoing arguments. 6819 CLI.Outs.clear(); 6820 CLI.OutVals.clear(); 6821 ArgListTy &Args = CLI.getArgs(); 6822 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6823 SmallVector<EVT, 4> ValueVTs; 6824 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6825 Type *FinalType = Args[i].Ty; 6826 if (Args[i].isByVal) 6827 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6828 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6829 FinalType, CLI.CallConv, CLI.IsVarArg); 6830 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6831 ++Value) { 6832 EVT VT = ValueVTs[Value]; 6833 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6834 SDValue Op = SDValue(Args[i].Node.getNode(), 6835 Args[i].Node.getResNo() + Value); 6836 ISD::ArgFlagsTy Flags; 6837 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 6838 6839 if (Args[i].isZExt) 6840 Flags.setZExt(); 6841 if (Args[i].isSExt) 6842 Flags.setSExt(); 6843 if (Args[i].isInReg) 6844 Flags.setInReg(); 6845 if (Args[i].isSRet) 6846 Flags.setSRet(); 6847 if (Args[i].isByVal) 6848 Flags.setByVal(); 6849 if (Args[i].isInAlloca) { 6850 Flags.setInAlloca(); 6851 // Set the byval flag for CCAssignFn callbacks that don't know about 6852 // inalloca. This way we can know how many bytes we should've allocated 6853 // and how many bytes a callee cleanup function will pop. If we port 6854 // inalloca to more targets, we'll have to add custom inalloca handling 6855 // in the various CC lowering callbacks. 6856 Flags.setByVal(); 6857 } 6858 if (Args[i].isByVal || Args[i].isInAlloca) { 6859 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6860 Type *ElementTy = Ty->getElementType(); 6861 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 6862 // For ByVal, alignment should come from FE. BE will guess if this 6863 // info is not there but there are cases it cannot get right. 6864 unsigned FrameAlign; 6865 if (Args[i].Alignment) 6866 FrameAlign = Args[i].Alignment; 6867 else 6868 FrameAlign = getByValTypeAlignment(ElementTy, DL); 6869 Flags.setByValAlign(FrameAlign); 6870 } 6871 if (Args[i].isNest) 6872 Flags.setNest(); 6873 if (NeedsRegBlock) 6874 Flags.setInConsecutiveRegs(); 6875 Flags.setOrigAlign(OriginalAlignment); 6876 6877 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6878 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6879 SmallVector<SDValue, 4> Parts(NumParts); 6880 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6881 6882 if (Args[i].isSExt) 6883 ExtendKind = ISD::SIGN_EXTEND; 6884 else if (Args[i].isZExt) 6885 ExtendKind = ISD::ZERO_EXTEND; 6886 6887 // Conservatively only handle 'returned' on non-vectors for now 6888 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6889 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6890 "unexpected use of 'returned'"); 6891 // Before passing 'returned' to the target lowering code, ensure that 6892 // either the register MVT and the actual EVT are the same size or that 6893 // the return value and argument are extended in the same way; in these 6894 // cases it's safe to pass the argument register value unchanged as the 6895 // return register value (although it's at the target's option whether 6896 // to do so) 6897 // TODO: allow code generation to take advantage of partially preserved 6898 // registers rather than clobbering the entire register when the 6899 // parameter extension method is not compatible with the return 6900 // extension method 6901 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6902 (ExtendKind != ISD::ANY_EXTEND && 6903 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6904 Flags.setReturned(); 6905 } 6906 6907 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6908 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6909 6910 for (unsigned j = 0; j != NumParts; ++j) { 6911 // if it isn't first piece, alignment must be 1 6912 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6913 i < CLI.NumFixedArgs, 6914 i, j*Parts[j].getValueType().getStoreSize()); 6915 if (NumParts > 1 && j == 0) 6916 MyFlags.Flags.setSplit(); 6917 else if (j != 0) 6918 MyFlags.Flags.setOrigAlign(1); 6919 6920 CLI.Outs.push_back(MyFlags); 6921 CLI.OutVals.push_back(Parts[j]); 6922 } 6923 6924 if (NeedsRegBlock && Value == NumValues - 1) 6925 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6926 } 6927 } 6928 6929 SmallVector<SDValue, 4> InVals; 6930 CLI.Chain = LowerCall(CLI, InVals); 6931 6932 // Verify that the target's LowerCall behaved as expected. 6933 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6934 "LowerCall didn't return a valid chain!"); 6935 assert((!CLI.IsTailCall || InVals.empty()) && 6936 "LowerCall emitted a return value for a tail call!"); 6937 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6938 "LowerCall didn't emit the correct number of values!"); 6939 6940 // For a tail call, the return value is merely live-out and there aren't 6941 // any nodes in the DAG representing it. Return a special value to 6942 // indicate that a tail call has been emitted and no more Instructions 6943 // should be processed in the current block. 6944 if (CLI.IsTailCall) { 6945 CLI.DAG.setRoot(CLI.Chain); 6946 return std::make_pair(SDValue(), SDValue()); 6947 } 6948 6949 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6950 assert(InVals[i].getNode() && 6951 "LowerCall emitted a null value!"); 6952 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6953 "LowerCall emitted a value with the wrong type!"); 6954 }); 6955 6956 SmallVector<SDValue, 4> ReturnValues; 6957 if (!CanLowerReturn) { 6958 // The instruction result is the result of loading from the 6959 // hidden sret parameter. 6960 SmallVector<EVT, 1> PVTs; 6961 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6962 6963 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 6964 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6965 EVT PtrVT = PVTs[0]; 6966 6967 unsigned NumValues = RetTys.size(); 6968 ReturnValues.resize(NumValues); 6969 SmallVector<SDValue, 4> Chains(NumValues); 6970 6971 for (unsigned i = 0; i < NumValues; ++i) { 6972 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6973 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6974 PtrVT)); 6975 SDValue L = CLI.DAG.getLoad( 6976 RetTys[i], CLI.DL, CLI.Chain, Add, 6977 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6978 false, false, 1); 6979 ReturnValues[i] = L; 6980 Chains[i] = L.getValue(1); 6981 } 6982 6983 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6984 } else { 6985 // Collect the legal value parts into potentially illegal values 6986 // that correspond to the original function's return values. 6987 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6988 if (CLI.RetSExt) 6989 AssertOp = ISD::AssertSext; 6990 else if (CLI.RetZExt) 6991 AssertOp = ISD::AssertZext; 6992 unsigned CurReg = 0; 6993 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6994 EVT VT = RetTys[I]; 6995 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6996 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6997 6998 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6999 NumRegs, RegisterVT, VT, nullptr, 7000 AssertOp)); 7001 CurReg += NumRegs; 7002 } 7003 7004 // For a function returning void, there is no return value. We can't create 7005 // such a node, so we just return a null return value in that case. In 7006 // that case, nothing will actually look at the value. 7007 if (ReturnValues.empty()) 7008 return std::make_pair(SDValue(), CLI.Chain); 7009 } 7010 7011 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7012 CLI.DAG.getVTList(RetTys), ReturnValues); 7013 return std::make_pair(Res, CLI.Chain); 7014 } 7015 7016 void TargetLowering::LowerOperationWrapper(SDNode *N, 7017 SmallVectorImpl<SDValue> &Results, 7018 SelectionDAG &DAG) const { 7019 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7020 if (Res.getNode()) 7021 Results.push_back(Res); 7022 } 7023 7024 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7025 llvm_unreachable("LowerOperation not implemented for this target!"); 7026 } 7027 7028 void 7029 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7030 SDValue Op = getNonRegisterValue(V); 7031 assert((Op.getOpcode() != ISD::CopyFromReg || 7032 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7033 "Copy from a reg to the same reg!"); 7034 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7035 7036 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7037 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7038 V->getType()); 7039 SDValue Chain = DAG.getEntryNode(); 7040 7041 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7042 FuncInfo.PreferredExtendType.end()) 7043 ? ISD::ANY_EXTEND 7044 : FuncInfo.PreferredExtendType[V]; 7045 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7046 PendingExports.push_back(Chain); 7047 } 7048 7049 #include "llvm/CodeGen/SelectionDAGISel.h" 7050 7051 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7052 /// entry block, return true. This includes arguments used by switches, since 7053 /// the switch may expand into multiple basic blocks. 7054 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7055 // With FastISel active, we may be splitting blocks, so force creation 7056 // of virtual registers for all non-dead arguments. 7057 if (FastISel) 7058 return A->use_empty(); 7059 7060 const BasicBlock *Entry = A->getParent()->begin(); 7061 for (const User *U : A->users()) 7062 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7063 return false; // Use not in entry block. 7064 7065 return true; 7066 } 7067 7068 void SelectionDAGISel::LowerArguments(const Function &F) { 7069 SelectionDAG &DAG = SDB->DAG; 7070 SDLoc dl = SDB->getCurSDLoc(); 7071 const DataLayout &DL = DAG.getDataLayout(); 7072 SmallVector<ISD::InputArg, 16> Ins; 7073 7074 if (!FuncInfo->CanLowerReturn) { 7075 // Put in an sret pointer parameter before all the other parameters. 7076 SmallVector<EVT, 1> ValueVTs; 7077 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7078 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7079 7080 // NOTE: Assuming that a pointer will never break down to more than one VT 7081 // or one register. 7082 ISD::ArgFlagsTy Flags; 7083 Flags.setSRet(); 7084 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7085 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7086 ISD::InputArg::NoArgIndex, 0); 7087 Ins.push_back(RetArg); 7088 } 7089 7090 // Set up the incoming argument description vector. 7091 unsigned Idx = 1; 7092 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7093 I != E; ++I, ++Idx) { 7094 SmallVector<EVT, 4> ValueVTs; 7095 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7096 bool isArgValueUsed = !I->use_empty(); 7097 unsigned PartBase = 0; 7098 Type *FinalType = I->getType(); 7099 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7100 FinalType = cast<PointerType>(FinalType)->getElementType(); 7101 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7102 FinalType, F.getCallingConv(), F.isVarArg()); 7103 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7104 Value != NumValues; ++Value) { 7105 EVT VT = ValueVTs[Value]; 7106 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7107 ISD::ArgFlagsTy Flags; 7108 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7109 7110 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7111 Flags.setZExt(); 7112 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7113 Flags.setSExt(); 7114 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7115 Flags.setInReg(); 7116 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7117 Flags.setSRet(); 7118 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7119 Flags.setByVal(); 7120 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7121 Flags.setInAlloca(); 7122 // Set the byval flag for CCAssignFn callbacks that don't know about 7123 // inalloca. This way we can know how many bytes we should've allocated 7124 // and how many bytes a callee cleanup function will pop. If we port 7125 // inalloca to more targets, we'll have to add custom inalloca handling 7126 // in the various CC lowering callbacks. 7127 Flags.setByVal(); 7128 } 7129 if (Flags.isByVal() || Flags.isInAlloca()) { 7130 PointerType *Ty = cast<PointerType>(I->getType()); 7131 Type *ElementTy = Ty->getElementType(); 7132 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7133 // For ByVal, alignment should be passed from FE. BE will guess if 7134 // this info is not there but there are cases it cannot get right. 7135 unsigned FrameAlign; 7136 if (F.getParamAlignment(Idx)) 7137 FrameAlign = F.getParamAlignment(Idx); 7138 else 7139 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7140 Flags.setByValAlign(FrameAlign); 7141 } 7142 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7143 Flags.setNest(); 7144 if (NeedsRegBlock) 7145 Flags.setInConsecutiveRegs(); 7146 Flags.setOrigAlign(OriginalAlignment); 7147 7148 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7149 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7150 for (unsigned i = 0; i != NumRegs; ++i) { 7151 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7152 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7153 if (NumRegs > 1 && i == 0) 7154 MyFlags.Flags.setSplit(); 7155 // if it isn't first piece, alignment must be 1 7156 else if (i > 0) 7157 MyFlags.Flags.setOrigAlign(1); 7158 Ins.push_back(MyFlags); 7159 } 7160 if (NeedsRegBlock && Value == NumValues - 1) 7161 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7162 PartBase += VT.getStoreSize(); 7163 } 7164 } 7165 7166 // Call the target to set up the argument values. 7167 SmallVector<SDValue, 8> InVals; 7168 SDValue NewRoot = TLI->LowerFormalArguments( 7169 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7170 7171 // Verify that the target's LowerFormalArguments behaved as expected. 7172 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7173 "LowerFormalArguments didn't return a valid chain!"); 7174 assert(InVals.size() == Ins.size() && 7175 "LowerFormalArguments didn't emit the correct number of values!"); 7176 DEBUG({ 7177 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7178 assert(InVals[i].getNode() && 7179 "LowerFormalArguments emitted a null value!"); 7180 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7181 "LowerFormalArguments emitted a value with the wrong type!"); 7182 } 7183 }); 7184 7185 // Update the DAG with the new chain value resulting from argument lowering. 7186 DAG.setRoot(NewRoot); 7187 7188 // Set up the argument values. 7189 unsigned i = 0; 7190 Idx = 1; 7191 if (!FuncInfo->CanLowerReturn) { 7192 // Create a virtual register for the sret pointer, and put in a copy 7193 // from the sret argument into it. 7194 SmallVector<EVT, 1> ValueVTs; 7195 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7196 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7197 MVT VT = ValueVTs[0].getSimpleVT(); 7198 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7199 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7200 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7201 RegVT, VT, nullptr, AssertOp); 7202 7203 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7204 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7205 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7206 FuncInfo->DemoteRegister = SRetReg; 7207 NewRoot = 7208 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7209 DAG.setRoot(NewRoot); 7210 7211 // i indexes lowered arguments. Bump it past the hidden sret argument. 7212 // Idx indexes LLVM arguments. Don't touch it. 7213 ++i; 7214 } 7215 7216 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7217 ++I, ++Idx) { 7218 SmallVector<SDValue, 4> ArgValues; 7219 SmallVector<EVT, 4> ValueVTs; 7220 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7221 unsigned NumValues = ValueVTs.size(); 7222 7223 // If this argument is unused then remember its value. It is used to generate 7224 // debugging information. 7225 if (I->use_empty() && NumValues) { 7226 SDB->setUnusedArgValue(I, InVals[i]); 7227 7228 // Also remember any frame index for use in FastISel. 7229 if (FrameIndexSDNode *FI = 7230 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7231 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7232 } 7233 7234 for (unsigned Val = 0; Val != NumValues; ++Val) { 7235 EVT VT = ValueVTs[Val]; 7236 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7237 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7238 7239 if (!I->use_empty()) { 7240 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7241 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7242 AssertOp = ISD::AssertSext; 7243 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7244 AssertOp = ISD::AssertZext; 7245 7246 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7247 NumParts, PartVT, VT, 7248 nullptr, AssertOp)); 7249 } 7250 7251 i += NumParts; 7252 } 7253 7254 // We don't need to do anything else for unused arguments. 7255 if (ArgValues.empty()) 7256 continue; 7257 7258 // Note down frame index. 7259 if (FrameIndexSDNode *FI = 7260 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7261 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7262 7263 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7264 SDB->getCurSDLoc()); 7265 7266 SDB->setValue(I, Res); 7267 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7268 if (LoadSDNode *LNode = 7269 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7270 if (FrameIndexSDNode *FI = 7271 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7272 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7273 } 7274 7275 // If this argument is live outside of the entry block, insert a copy from 7276 // wherever we got it to the vreg that other BB's will reference it as. 7277 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7278 // If we can, though, try to skip creating an unnecessary vreg. 7279 // FIXME: This isn't very clean... it would be nice to make this more 7280 // general. It's also subtly incompatible with the hacks FastISel 7281 // uses with vregs. 7282 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7283 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7284 FuncInfo->ValueMap[I] = Reg; 7285 continue; 7286 } 7287 } 7288 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7289 FuncInfo->InitializeRegForValue(I); 7290 SDB->CopyToExportRegsIfNeeded(I); 7291 } 7292 } 7293 7294 assert(i == InVals.size() && "Argument register count mismatch!"); 7295 7296 // Finally, if the target has anything special to do, allow it to do so. 7297 EmitFunctionEntryCode(); 7298 } 7299 7300 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7301 /// ensure constants are generated when needed. Remember the virtual registers 7302 /// that need to be added to the Machine PHI nodes as input. We cannot just 7303 /// directly add them, because expansion might result in multiple MBB's for one 7304 /// BB. As such, the start of the BB might correspond to a different MBB than 7305 /// the end. 7306 /// 7307 void 7308 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7309 const TerminatorInst *TI = LLVMBB->getTerminator(); 7310 7311 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7312 7313 // Check PHI nodes in successors that expect a value to be available from this 7314 // block. 7315 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7316 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7317 if (!isa<PHINode>(SuccBB->begin())) continue; 7318 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7319 7320 // If this terminator has multiple identical successors (common for 7321 // switches), only handle each succ once. 7322 if (!SuccsHandled.insert(SuccMBB).second) 7323 continue; 7324 7325 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7326 7327 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7328 // nodes and Machine PHI nodes, but the incoming operands have not been 7329 // emitted yet. 7330 for (BasicBlock::const_iterator I = SuccBB->begin(); 7331 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7332 // Ignore dead phi's. 7333 if (PN->use_empty()) continue; 7334 7335 // Skip empty types 7336 if (PN->getType()->isEmptyTy()) 7337 continue; 7338 7339 unsigned Reg; 7340 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7341 7342 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7343 unsigned &RegOut = ConstantsOut[C]; 7344 if (RegOut == 0) { 7345 RegOut = FuncInfo.CreateRegs(C->getType()); 7346 CopyValueToVirtualRegister(C, RegOut); 7347 } 7348 Reg = RegOut; 7349 } else { 7350 DenseMap<const Value *, unsigned>::iterator I = 7351 FuncInfo.ValueMap.find(PHIOp); 7352 if (I != FuncInfo.ValueMap.end()) 7353 Reg = I->second; 7354 else { 7355 assert(isa<AllocaInst>(PHIOp) && 7356 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7357 "Didn't codegen value into a register!??"); 7358 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7359 CopyValueToVirtualRegister(PHIOp, Reg); 7360 } 7361 } 7362 7363 // Remember that this register needs to added to the machine PHI node as 7364 // the input for this MBB. 7365 SmallVector<EVT, 4> ValueVTs; 7366 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7367 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7368 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7369 EVT VT = ValueVTs[vti]; 7370 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7371 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7372 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7373 Reg += NumRegisters; 7374 } 7375 } 7376 } 7377 7378 ConstantsOut.clear(); 7379 } 7380 7381 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7382 /// is 0. 7383 MachineBasicBlock * 7384 SelectionDAGBuilder::StackProtectorDescriptor:: 7385 AddSuccessorMBB(const BasicBlock *BB, 7386 MachineBasicBlock *ParentMBB, 7387 bool IsLikely, 7388 MachineBasicBlock *SuccMBB) { 7389 // If SuccBB has not been created yet, create it. 7390 if (!SuccMBB) { 7391 MachineFunction *MF = ParentMBB->getParent(); 7392 MachineFunction::iterator BBI = ParentMBB; 7393 SuccMBB = MF->CreateMachineBasicBlock(BB); 7394 MF->insert(++BBI, SuccMBB); 7395 } 7396 // Add it as a successor of ParentMBB. 7397 ParentMBB->addSuccessor( 7398 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7399 return SuccMBB; 7400 } 7401 7402 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7403 MachineFunction::iterator I = MBB; 7404 if (++I == FuncInfo.MF->end()) 7405 return nullptr; 7406 return I; 7407 } 7408 7409 /// During lowering new call nodes can be created (such as memset, etc.). 7410 /// Those will become new roots of the current DAG, but complications arise 7411 /// when they are tail calls. In such cases, the call lowering will update 7412 /// the root, but the builder still needs to know that a tail call has been 7413 /// lowered in order to avoid generating an additional return. 7414 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7415 // If the node is null, we do have a tail call. 7416 if (MaybeTC.getNode() != nullptr) 7417 DAG.setRoot(MaybeTC); 7418 else 7419 HasTailCall = true; 7420 } 7421 7422 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7423 unsigned *TotalCases, unsigned First, 7424 unsigned Last) { 7425 assert(Last >= First); 7426 assert(TotalCases[Last] >= TotalCases[First]); 7427 7428 APInt LowCase = Clusters[First].Low->getValue(); 7429 APInt HighCase = Clusters[Last].High->getValue(); 7430 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7431 7432 // FIXME: A range of consecutive cases has 100% density, but only requires one 7433 // comparison to lower. We should discriminate against such consecutive ranges 7434 // in jump tables. 7435 7436 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7437 uint64_t Range = Diff + 1; 7438 7439 uint64_t NumCases = 7440 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7441 7442 assert(NumCases < UINT64_MAX / 100); 7443 assert(Range >= NumCases); 7444 7445 return NumCases * 100 >= Range * MinJumpTableDensity; 7446 } 7447 7448 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7449 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7450 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7451 } 7452 7453 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7454 unsigned First, unsigned Last, 7455 const SwitchInst *SI, 7456 MachineBasicBlock *DefaultMBB, 7457 CaseCluster &JTCluster) { 7458 assert(First <= Last); 7459 7460 uint32_t Weight = 0; 7461 unsigned NumCmps = 0; 7462 std::vector<MachineBasicBlock*> Table; 7463 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7464 for (unsigned I = First; I <= Last; ++I) { 7465 assert(Clusters[I].Kind == CC_Range); 7466 Weight += Clusters[I].Weight; 7467 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7468 APInt Low = Clusters[I].Low->getValue(); 7469 APInt High = Clusters[I].High->getValue(); 7470 NumCmps += (Low == High) ? 1 : 2; 7471 if (I != First) { 7472 // Fill the gap between this and the previous cluster. 7473 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7474 assert(PreviousHigh.slt(Low)); 7475 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7476 for (uint64_t J = 0; J < Gap; J++) 7477 Table.push_back(DefaultMBB); 7478 } 7479 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7480 for (uint64_t J = 0; J < ClusterSize; ++J) 7481 Table.push_back(Clusters[I].MBB); 7482 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7483 } 7484 7485 unsigned NumDests = JTWeights.size(); 7486 if (isSuitableForBitTests(NumDests, NumCmps, 7487 Clusters[First].Low->getValue(), 7488 Clusters[Last].High->getValue())) { 7489 // Clusters[First..Last] should be lowered as bit tests instead. 7490 return false; 7491 } 7492 7493 // Create the MBB that will load from and jump through the table. 7494 // Note: We create it here, but it's not inserted into the function yet. 7495 MachineFunction *CurMF = FuncInfo.MF; 7496 MachineBasicBlock *JumpTableMBB = 7497 CurMF->CreateMachineBasicBlock(SI->getParent()); 7498 7499 // Add successors. Note: use table order for determinism. 7500 SmallPtrSet<MachineBasicBlock *, 8> Done; 7501 for (MachineBasicBlock *Succ : Table) { 7502 if (Done.count(Succ)) 7503 continue; 7504 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7505 Done.insert(Succ); 7506 } 7507 7508 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7509 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7510 ->createJumpTableIndex(Table); 7511 7512 // Set up the jump table info. 7513 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7514 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7515 Clusters[Last].High->getValue(), SI->getCondition(), 7516 nullptr, false); 7517 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7518 7519 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7520 JTCases.size() - 1, Weight); 7521 return true; 7522 } 7523 7524 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7525 const SwitchInst *SI, 7526 MachineBasicBlock *DefaultMBB) { 7527 #ifndef NDEBUG 7528 // Clusters must be non-empty, sorted, and only contain Range clusters. 7529 assert(!Clusters.empty()); 7530 for (CaseCluster &C : Clusters) 7531 assert(C.Kind == CC_Range); 7532 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7533 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7534 #endif 7535 7536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7537 if (!areJTsAllowed(TLI)) 7538 return; 7539 7540 const int64_t N = Clusters.size(); 7541 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7542 7543 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7544 SmallVector<unsigned, 8> TotalCases(N); 7545 7546 for (unsigned i = 0; i < N; ++i) { 7547 APInt Hi = Clusters[i].High->getValue(); 7548 APInt Lo = Clusters[i].Low->getValue(); 7549 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7550 if (i != 0) 7551 TotalCases[i] += TotalCases[i - 1]; 7552 } 7553 7554 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7555 // Cheap case: the whole range might be suitable for jump table. 7556 CaseCluster JTCluster; 7557 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7558 Clusters[0] = JTCluster; 7559 Clusters.resize(1); 7560 return; 7561 } 7562 } 7563 7564 // The algorithm below is not suitable for -O0. 7565 if (TM.getOptLevel() == CodeGenOpt::None) 7566 return; 7567 7568 // Split Clusters into minimum number of dense partitions. The algorithm uses 7569 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7570 // for the Case Statement'" (1994), but builds the MinPartitions array in 7571 // reverse order to make it easier to reconstruct the partitions in ascending 7572 // order. In the choice between two optimal partitionings, it picks the one 7573 // which yields more jump tables. 7574 7575 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7576 SmallVector<unsigned, 8> MinPartitions(N); 7577 // LastElement[i] is the last element of the partition starting at i. 7578 SmallVector<unsigned, 8> LastElement(N); 7579 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7580 SmallVector<unsigned, 8> NumTables(N); 7581 7582 // Base case: There is only one way to partition Clusters[N-1]. 7583 MinPartitions[N - 1] = 1; 7584 LastElement[N - 1] = N - 1; 7585 assert(MinJumpTableSize > 1); 7586 NumTables[N - 1] = 0; 7587 7588 // Note: loop indexes are signed to avoid underflow. 7589 for (int64_t i = N - 2; i >= 0; i--) { 7590 // Find optimal partitioning of Clusters[i..N-1]. 7591 // Baseline: Put Clusters[i] into a partition on its own. 7592 MinPartitions[i] = MinPartitions[i + 1] + 1; 7593 LastElement[i] = i; 7594 NumTables[i] = NumTables[i + 1]; 7595 7596 // Search for a solution that results in fewer partitions. 7597 for (int64_t j = N - 1; j > i; j--) { 7598 // Try building a partition from Clusters[i..j]. 7599 if (isDense(Clusters, &TotalCases[0], i, j)) { 7600 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7601 bool IsTable = j - i + 1 >= MinJumpTableSize; 7602 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7603 7604 // If this j leads to fewer partitions, or same number of partitions 7605 // with more lookup tables, it is a better partitioning. 7606 if (NumPartitions < MinPartitions[i] || 7607 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7608 MinPartitions[i] = NumPartitions; 7609 LastElement[i] = j; 7610 NumTables[i] = Tables; 7611 } 7612 } 7613 } 7614 } 7615 7616 // Iterate over the partitions, replacing some with jump tables in-place. 7617 unsigned DstIndex = 0; 7618 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7619 Last = LastElement[First]; 7620 assert(Last >= First); 7621 assert(DstIndex <= First); 7622 unsigned NumClusters = Last - First + 1; 7623 7624 CaseCluster JTCluster; 7625 if (NumClusters >= MinJumpTableSize && 7626 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7627 Clusters[DstIndex++] = JTCluster; 7628 } else { 7629 for (unsigned I = First; I <= Last; ++I) 7630 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7631 } 7632 } 7633 Clusters.resize(DstIndex); 7634 } 7635 7636 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7637 // FIXME: Using the pointer type doesn't seem ideal. 7638 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7639 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7640 return Range <= BW; 7641 } 7642 7643 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7644 unsigned NumCmps, 7645 const APInt &Low, 7646 const APInt &High) { 7647 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7648 // range of cases both require only one branch to lower. Just looking at the 7649 // number of clusters and destinations should be enough to decide whether to 7650 // build bit tests. 7651 7652 // To lower a range with bit tests, the range must fit the bitwidth of a 7653 // machine word. 7654 if (!rangeFitsInWord(Low, High)) 7655 return false; 7656 7657 // Decide whether it's profitable to lower this range with bit tests. Each 7658 // destination requires a bit test and branch, and there is an overall range 7659 // check branch. For a small number of clusters, separate comparisons might be 7660 // cheaper, and for many destinations, splitting the range might be better. 7661 return (NumDests == 1 && NumCmps >= 3) || 7662 (NumDests == 2 && NumCmps >= 5) || 7663 (NumDests == 3 && NumCmps >= 6); 7664 } 7665 7666 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7667 unsigned First, unsigned Last, 7668 const SwitchInst *SI, 7669 CaseCluster &BTCluster) { 7670 assert(First <= Last); 7671 if (First == Last) 7672 return false; 7673 7674 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7675 unsigned NumCmps = 0; 7676 for (int64_t I = First; I <= Last; ++I) { 7677 assert(Clusters[I].Kind == CC_Range); 7678 Dests.set(Clusters[I].MBB->getNumber()); 7679 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7680 } 7681 unsigned NumDests = Dests.count(); 7682 7683 APInt Low = Clusters[First].Low->getValue(); 7684 APInt High = Clusters[Last].High->getValue(); 7685 assert(Low.slt(High)); 7686 7687 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7688 return false; 7689 7690 APInt LowBound; 7691 APInt CmpRange; 7692 7693 const int BitWidth = DAG.getTargetLoweringInfo() 7694 .getPointerTy(DAG.getDataLayout()) 7695 .getSizeInBits(); 7696 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7697 7698 if (Low.isNonNegative() && High.slt(BitWidth)) { 7699 // Optimize the case where all the case values fit in a 7700 // word without having to subtract minValue. In this case, 7701 // we can optimize away the subtraction. 7702 LowBound = APInt::getNullValue(Low.getBitWidth()); 7703 CmpRange = High; 7704 } else { 7705 LowBound = Low; 7706 CmpRange = High - Low; 7707 } 7708 7709 CaseBitsVector CBV; 7710 uint32_t TotalWeight = 0; 7711 for (unsigned i = First; i <= Last; ++i) { 7712 // Find the CaseBits for this destination. 7713 unsigned j; 7714 for (j = 0; j < CBV.size(); ++j) 7715 if (CBV[j].BB == Clusters[i].MBB) 7716 break; 7717 if (j == CBV.size()) 7718 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7719 CaseBits *CB = &CBV[j]; 7720 7721 // Update Mask, Bits and ExtraWeight. 7722 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7723 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7724 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7725 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7726 CB->Bits += Hi - Lo + 1; 7727 CB->ExtraWeight += Clusters[i].Weight; 7728 TotalWeight += Clusters[i].Weight; 7729 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7730 } 7731 7732 BitTestInfo BTI; 7733 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7734 // Sort by weight first, number of bits second. 7735 if (a.ExtraWeight != b.ExtraWeight) 7736 return a.ExtraWeight > b.ExtraWeight; 7737 return a.Bits > b.Bits; 7738 }); 7739 7740 for (auto &CB : CBV) { 7741 MachineBasicBlock *BitTestBB = 7742 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7743 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7744 } 7745 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7746 SI->getCondition(), -1U, MVT::Other, false, nullptr, 7747 nullptr, std::move(BTI)); 7748 7749 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7750 BitTestCases.size() - 1, TotalWeight); 7751 return true; 7752 } 7753 7754 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7755 const SwitchInst *SI) { 7756 // Partition Clusters into as few subsets as possible, where each subset has a 7757 // range that fits in a machine word and has <= 3 unique destinations. 7758 7759 #ifndef NDEBUG 7760 // Clusters must be sorted and contain Range or JumpTable clusters. 7761 assert(!Clusters.empty()); 7762 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7763 for (const CaseCluster &C : Clusters) 7764 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7765 for (unsigned i = 1; i < Clusters.size(); ++i) 7766 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7767 #endif 7768 7769 // The algorithm below is not suitable for -O0. 7770 if (TM.getOptLevel() == CodeGenOpt::None) 7771 return; 7772 7773 // If target does not have legal shift left, do not emit bit tests at all. 7774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7775 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7776 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7777 return; 7778 7779 int BitWidth = PTy.getSizeInBits(); 7780 const int64_t N = Clusters.size(); 7781 7782 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7783 SmallVector<unsigned, 8> MinPartitions(N); 7784 // LastElement[i] is the last element of the partition starting at i. 7785 SmallVector<unsigned, 8> LastElement(N); 7786 7787 // FIXME: This might not be the best algorithm for finding bit test clusters. 7788 7789 // Base case: There is only one way to partition Clusters[N-1]. 7790 MinPartitions[N - 1] = 1; 7791 LastElement[N - 1] = N - 1; 7792 7793 // Note: loop indexes are signed to avoid underflow. 7794 for (int64_t i = N - 2; i >= 0; --i) { 7795 // Find optimal partitioning of Clusters[i..N-1]. 7796 // Baseline: Put Clusters[i] into a partition on its own. 7797 MinPartitions[i] = MinPartitions[i + 1] + 1; 7798 LastElement[i] = i; 7799 7800 // Search for a solution that results in fewer partitions. 7801 // Note: the search is limited by BitWidth, reducing time complexity. 7802 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7803 // Try building a partition from Clusters[i..j]. 7804 7805 // Check the range. 7806 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7807 Clusters[j].High->getValue())) 7808 continue; 7809 7810 // Check nbr of destinations and cluster types. 7811 // FIXME: This works, but doesn't seem very efficient. 7812 bool RangesOnly = true; 7813 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7814 for (int64_t k = i; k <= j; k++) { 7815 if (Clusters[k].Kind != CC_Range) { 7816 RangesOnly = false; 7817 break; 7818 } 7819 Dests.set(Clusters[k].MBB->getNumber()); 7820 } 7821 if (!RangesOnly || Dests.count() > 3) 7822 break; 7823 7824 // Check if it's a better partition. 7825 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7826 if (NumPartitions < MinPartitions[i]) { 7827 // Found a better partition. 7828 MinPartitions[i] = NumPartitions; 7829 LastElement[i] = j; 7830 } 7831 } 7832 } 7833 7834 // Iterate over the partitions, replacing with bit-test clusters in-place. 7835 unsigned DstIndex = 0; 7836 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7837 Last = LastElement[First]; 7838 assert(First <= Last); 7839 assert(DstIndex <= First); 7840 7841 CaseCluster BitTestCluster; 7842 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7843 Clusters[DstIndex++] = BitTestCluster; 7844 } else { 7845 size_t NumClusters = Last - First + 1; 7846 std::memmove(&Clusters[DstIndex], &Clusters[First], 7847 sizeof(Clusters[0]) * NumClusters); 7848 DstIndex += NumClusters; 7849 } 7850 } 7851 Clusters.resize(DstIndex); 7852 } 7853 7854 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7855 MachineBasicBlock *SwitchMBB, 7856 MachineBasicBlock *DefaultMBB) { 7857 MachineFunction *CurMF = FuncInfo.MF; 7858 MachineBasicBlock *NextMBB = nullptr; 7859 MachineFunction::iterator BBI = W.MBB; 7860 if (++BBI != FuncInfo.MF->end()) 7861 NextMBB = BBI; 7862 7863 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7864 7865 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7866 7867 if (Size == 2 && W.MBB == SwitchMBB) { 7868 // If any two of the cases has the same destination, and if one value 7869 // is the same as the other, but has one bit unset that the other has set, 7870 // use bit manipulation to do two compares at once. For example: 7871 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7872 // TODO: This could be extended to merge any 2 cases in switches with 3 7873 // cases. 7874 // TODO: Handle cases where W.CaseBB != SwitchBB. 7875 CaseCluster &Small = *W.FirstCluster; 7876 CaseCluster &Big = *W.LastCluster; 7877 7878 if (Small.Low == Small.High && Big.Low == Big.High && 7879 Small.MBB == Big.MBB) { 7880 const APInt &SmallValue = Small.Low->getValue(); 7881 const APInt &BigValue = Big.Low->getValue(); 7882 7883 // Check that there is only one bit different. 7884 APInt CommonBit = BigValue ^ SmallValue; 7885 if (CommonBit.isPowerOf2()) { 7886 SDValue CondLHS = getValue(Cond); 7887 EVT VT = CondLHS.getValueType(); 7888 SDLoc DL = getCurSDLoc(); 7889 7890 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7891 DAG.getConstant(CommonBit, DL, VT)); 7892 SDValue Cond = DAG.getSetCC( 7893 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 7894 ISD::SETEQ); 7895 7896 // Update successor info. 7897 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7898 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7899 addSuccessorWithWeight( 7900 SwitchMBB, DefaultMBB, 7901 // The default destination is the first successor in IR. 7902 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7903 : 0); 7904 7905 // Insert the true branch. 7906 SDValue BrCond = 7907 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7908 DAG.getBasicBlock(Small.MBB)); 7909 // Insert the false branch. 7910 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7911 DAG.getBasicBlock(DefaultMBB)); 7912 7913 DAG.setRoot(BrCond); 7914 return; 7915 } 7916 } 7917 } 7918 7919 if (TM.getOptLevel() != CodeGenOpt::None) { 7920 // Order cases by weight so the most likely case will be checked first. 7921 std::sort(W.FirstCluster, W.LastCluster + 1, 7922 [](const CaseCluster &a, const CaseCluster &b) { 7923 return a.Weight > b.Weight; 7924 }); 7925 7926 // Rearrange the case blocks so that the last one falls through if possible 7927 // without without changing the order of weights. 7928 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7929 --I; 7930 if (I->Weight > W.LastCluster->Weight) 7931 break; 7932 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7933 std::swap(*I, *W.LastCluster); 7934 break; 7935 } 7936 } 7937 } 7938 7939 // Compute total weight. 7940 uint32_t UnhandledWeights = 0; 7941 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7942 UnhandledWeights += I->Weight; 7943 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7944 } 7945 7946 MachineBasicBlock *CurMBB = W.MBB; 7947 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7948 MachineBasicBlock *Fallthrough; 7949 if (I == W.LastCluster) { 7950 // For the last cluster, fall through to the default destination. 7951 Fallthrough = DefaultMBB; 7952 } else { 7953 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7954 CurMF->insert(BBI, Fallthrough); 7955 // Put Cond in a virtual register to make it available from the new blocks. 7956 ExportFromCurrentBlock(Cond); 7957 } 7958 7959 switch (I->Kind) { 7960 case CC_JumpTable: { 7961 // FIXME: Optimize away range check based on pivot comparisons. 7962 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7963 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7964 7965 // The jump block hasn't been inserted yet; insert it here. 7966 MachineBasicBlock *JumpMBB = JT->MBB; 7967 CurMF->insert(BBI, JumpMBB); 7968 addSuccessorWithWeight(CurMBB, Fallthrough); 7969 addSuccessorWithWeight(CurMBB, JumpMBB); 7970 7971 // The jump table header will be inserted in our current block, do the 7972 // range check, and fall through to our fallthrough block. 7973 JTH->HeaderBB = CurMBB; 7974 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7975 7976 // If we're in the right place, emit the jump table header right now. 7977 if (CurMBB == SwitchMBB) { 7978 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7979 JTH->Emitted = true; 7980 } 7981 break; 7982 } 7983 case CC_BitTests: { 7984 // FIXME: Optimize away range check based on pivot comparisons. 7985 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7986 7987 // The bit test blocks haven't been inserted yet; insert them here. 7988 for (BitTestCase &BTC : BTB->Cases) 7989 CurMF->insert(BBI, BTC.ThisBB); 7990 7991 // Fill in fields of the BitTestBlock. 7992 BTB->Parent = CurMBB; 7993 BTB->Default = Fallthrough; 7994 7995 // If we're in the right place, emit the bit test header header right now. 7996 if (CurMBB ==SwitchMBB) { 7997 visitBitTestHeader(*BTB, SwitchMBB); 7998 BTB->Emitted = true; 7999 } 8000 break; 8001 } 8002 case CC_Range: { 8003 const Value *RHS, *LHS, *MHS; 8004 ISD::CondCode CC; 8005 if (I->Low == I->High) { 8006 // Check Cond == I->Low. 8007 CC = ISD::SETEQ; 8008 LHS = Cond; 8009 RHS=I->Low; 8010 MHS = nullptr; 8011 } else { 8012 // Check I->Low <= Cond <= I->High. 8013 CC = ISD::SETLE; 8014 LHS = I->Low; 8015 MHS = Cond; 8016 RHS = I->High; 8017 } 8018 8019 // The false weight is the sum of all unhandled cases. 8020 UnhandledWeights -= I->Weight; 8021 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8022 UnhandledWeights); 8023 8024 if (CurMBB == SwitchMBB) 8025 visitSwitchCase(CB, SwitchMBB); 8026 else 8027 SwitchCases.push_back(CB); 8028 8029 break; 8030 } 8031 } 8032 CurMBB = Fallthrough; 8033 } 8034 } 8035 8036 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8037 CaseClusterIt First, 8038 CaseClusterIt Last) { 8039 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8040 if (X.Weight != CC.Weight) 8041 return X.Weight > CC.Weight; 8042 8043 // Ties are broken by comparing the case value. 8044 return X.Low->getValue().slt(CC.Low->getValue()); 8045 }); 8046 } 8047 8048 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8049 const SwitchWorkListItem &W, 8050 Value *Cond, 8051 MachineBasicBlock *SwitchMBB) { 8052 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8053 "Clusters not sorted?"); 8054 8055 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8056 8057 // Balance the tree based on branch weights to create a near-optimal (in terms 8058 // of search time given key frequency) binary search tree. See e.g. Kurt 8059 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8060 CaseClusterIt LastLeft = W.FirstCluster; 8061 CaseClusterIt FirstRight = W.LastCluster; 8062 uint32_t LeftWeight = LastLeft->Weight; 8063 uint32_t RightWeight = FirstRight->Weight; 8064 8065 // Move LastLeft and FirstRight towards each other from opposite directions to 8066 // find a partitioning of the clusters which balances the weight on both 8067 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8068 // taken to ensure 0-weight nodes are distributed evenly. 8069 unsigned I = 0; 8070 while (LastLeft + 1 < FirstRight) { 8071 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8072 LeftWeight += (++LastLeft)->Weight; 8073 else 8074 RightWeight += (--FirstRight)->Weight; 8075 I++; 8076 } 8077 8078 for (;;) { 8079 // Our binary search tree differs from a typical BST in that ours can have up 8080 // to three values in each leaf. The pivot selection above doesn't take that 8081 // into account, which means the tree might require more nodes and be less 8082 // efficient. We compensate for this here. 8083 8084 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8085 unsigned NumRight = W.LastCluster - FirstRight + 1; 8086 8087 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8088 // If one side has less than 3 clusters, and the other has more than 3, 8089 // consider taking a cluster from the other side. 8090 8091 if (NumLeft < NumRight) { 8092 // Consider moving the first cluster on the right to the left side. 8093 CaseCluster &CC = *FirstRight; 8094 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8095 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8096 if (LeftSideRank <= RightSideRank) { 8097 // Moving the cluster to the left does not demote it. 8098 ++LastLeft; 8099 ++FirstRight; 8100 continue; 8101 } 8102 } else { 8103 assert(NumRight < NumLeft); 8104 // Consider moving the last element on the left to the right side. 8105 CaseCluster &CC = *LastLeft; 8106 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8107 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8108 if (RightSideRank <= LeftSideRank) { 8109 // Moving the cluster to the right does not demot it. 8110 --LastLeft; 8111 --FirstRight; 8112 continue; 8113 } 8114 } 8115 } 8116 break; 8117 } 8118 8119 assert(LastLeft + 1 == FirstRight); 8120 assert(LastLeft >= W.FirstCluster); 8121 assert(FirstRight <= W.LastCluster); 8122 8123 // Use the first element on the right as pivot since we will make less-than 8124 // comparisons against it. 8125 CaseClusterIt PivotCluster = FirstRight; 8126 assert(PivotCluster > W.FirstCluster); 8127 assert(PivotCluster <= W.LastCluster); 8128 8129 CaseClusterIt FirstLeft = W.FirstCluster; 8130 CaseClusterIt LastRight = W.LastCluster; 8131 8132 const ConstantInt *Pivot = PivotCluster->Low; 8133 8134 // New blocks will be inserted immediately after the current one. 8135 MachineFunction::iterator BBI = W.MBB; 8136 ++BBI; 8137 8138 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8139 // we can branch to its destination directly if it's squeezed exactly in 8140 // between the known lower bound and Pivot - 1. 8141 MachineBasicBlock *LeftMBB; 8142 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8143 FirstLeft->Low == W.GE && 8144 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8145 LeftMBB = FirstLeft->MBB; 8146 } else { 8147 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8148 FuncInfo.MF->insert(BBI, LeftMBB); 8149 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8150 // Put Cond in a virtual register to make it available from the new blocks. 8151 ExportFromCurrentBlock(Cond); 8152 } 8153 8154 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8155 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8156 // directly if RHS.High equals the current upper bound. 8157 MachineBasicBlock *RightMBB; 8158 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8159 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8160 RightMBB = FirstRight->MBB; 8161 } else { 8162 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8163 FuncInfo.MF->insert(BBI, RightMBB); 8164 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8165 // Put Cond in a virtual register to make it available from the new blocks. 8166 ExportFromCurrentBlock(Cond); 8167 } 8168 8169 // Create the CaseBlock record that will be used to lower the branch. 8170 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8171 LeftWeight, RightWeight); 8172 8173 if (W.MBB == SwitchMBB) 8174 visitSwitchCase(CB, SwitchMBB); 8175 else 8176 SwitchCases.push_back(CB); 8177 } 8178 8179 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8180 // Extract cases from the switch. 8181 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8182 CaseClusterVector Clusters; 8183 Clusters.reserve(SI.getNumCases()); 8184 for (auto I : SI.cases()) { 8185 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8186 const ConstantInt *CaseVal = I.getCaseValue(); 8187 uint32_t Weight = 8188 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8189 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8190 } 8191 8192 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8193 8194 // Cluster adjacent cases with the same destination. We do this at all 8195 // optimization levels because it's cheap to do and will make codegen faster 8196 // if there are many clusters. 8197 sortAndRangeify(Clusters); 8198 8199 if (TM.getOptLevel() != CodeGenOpt::None) { 8200 // Replace an unreachable default with the most popular destination. 8201 // FIXME: Exploit unreachable default more aggressively. 8202 bool UnreachableDefault = 8203 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8204 if (UnreachableDefault && !Clusters.empty()) { 8205 DenseMap<const BasicBlock *, unsigned> Popularity; 8206 unsigned MaxPop = 0; 8207 const BasicBlock *MaxBB = nullptr; 8208 for (auto I : SI.cases()) { 8209 const BasicBlock *BB = I.getCaseSuccessor(); 8210 if (++Popularity[BB] > MaxPop) { 8211 MaxPop = Popularity[BB]; 8212 MaxBB = BB; 8213 } 8214 } 8215 // Set new default. 8216 assert(MaxPop > 0 && MaxBB); 8217 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8218 8219 // Remove cases that were pointing to the destination that is now the 8220 // default. 8221 CaseClusterVector New; 8222 New.reserve(Clusters.size()); 8223 for (CaseCluster &CC : Clusters) { 8224 if (CC.MBB != DefaultMBB) 8225 New.push_back(CC); 8226 } 8227 Clusters = std::move(New); 8228 } 8229 } 8230 8231 // If there is only the default destination, jump there directly. 8232 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8233 if (Clusters.empty()) { 8234 SwitchMBB->addSuccessor(DefaultMBB); 8235 if (DefaultMBB != NextBlock(SwitchMBB)) { 8236 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8237 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8238 } 8239 return; 8240 } 8241 8242 findJumpTables(Clusters, &SI, DefaultMBB); 8243 findBitTestClusters(Clusters, &SI); 8244 8245 DEBUG({ 8246 dbgs() << "Case clusters: "; 8247 for (const CaseCluster &C : Clusters) { 8248 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8249 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8250 8251 C.Low->getValue().print(dbgs(), true); 8252 if (C.Low != C.High) { 8253 dbgs() << '-'; 8254 C.High->getValue().print(dbgs(), true); 8255 } 8256 dbgs() << ' '; 8257 } 8258 dbgs() << '\n'; 8259 }); 8260 8261 assert(!Clusters.empty()); 8262 SwitchWorkList WorkList; 8263 CaseClusterIt First = Clusters.begin(); 8264 CaseClusterIt Last = Clusters.end() - 1; 8265 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8266 8267 while (!WorkList.empty()) { 8268 SwitchWorkListItem W = WorkList.back(); 8269 WorkList.pop_back(); 8270 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8271 8272 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8273 // For optimized builds, lower large range as a balanced binary tree. 8274 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8275 continue; 8276 } 8277 8278 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8279 } 8280 } 8281