1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/AliasAnalysis.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/CodeGen/Analysis.h" 40 #include "llvm/CodeGen/FunctionLoweringInfo.h" 41 #include "llvm/CodeGen/GCMetadata.h" 42 #include "llvm/CodeGen/ISDOpcodes.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBuilder.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstring> 116 #include <iterator> 117 #include <limits> 118 #include <numeric> 119 #include <tuple> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "isel" 126 127 /// LimitFloatPrecision - Generate low-precision inline sequences for 128 /// some float libcalls (6, 8 or 12 bits). 129 static unsigned LimitFloatPrecision; 130 131 static cl::opt<unsigned, true> 132 LimitFPPrecision("limit-float-precision", 133 cl::desc("Generate low-precision inline sequences " 134 "for some float libcalls"), 135 cl::location(LimitFloatPrecision), cl::Hidden, 136 cl::init(0)); 137 138 static cl::opt<unsigned> SwitchPeelThreshold( 139 "switch-peel-threshold", cl::Hidden, cl::init(66), 140 cl::desc("Set the case probability threshold for peeling the case from a " 141 "switch statement. A value greater than 100 will void this " 142 "optimization")); 143 144 // Limit the width of DAG chains. This is important in general to prevent 145 // DAG-based analysis from blowing up. For example, alias analysis and 146 // load clustering may not complete in reasonable time. It is difficult to 147 // recognize and avoid this situation within each individual analysis, and 148 // future analyses are likely to have the same behavior. Limiting DAG width is 149 // the safe approach and will be especially important with global DAGs. 150 // 151 // MaxParallelChains default is arbitrarily high to avoid affecting 152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 153 // sequence over this should have been converted to llvm.memcpy by the 154 // frontend. It is easy to induce this behavior with .ll code such as: 155 // %buffer = alloca [4096 x i8] 156 // %data = load [4096 x i8]* %argPtr 157 // store [4096 x i8] %data, [4096 x i8]* %buffer 158 static const unsigned MaxParallelChains = 64; 159 160 // Return the calling convention if the Value passed requires ABI mangling as it 161 // is a parameter to a function or a return value from a function which is not 162 // an intrinsic. 163 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 164 if (auto *R = dyn_cast<ReturnInst>(V)) 165 return R->getParent()->getParent()->getCallingConv(); 166 167 if (auto *CI = dyn_cast<CallInst>(V)) { 168 const bool IsInlineAsm = CI->isInlineAsm(); 169 const bool IsIndirectFunctionCall = 170 !IsInlineAsm && !CI->getCalledFunction(); 171 172 // It is possible that the call instruction is an inline asm statement or an 173 // indirect function call in which case the return value of 174 // getCalledFunction() would be nullptr. 175 const bool IsInstrinsicCall = 176 !IsInlineAsm && !IsIndirectFunctionCall && 177 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 178 179 if (!IsInlineAsm && !IsInstrinsicCall) 180 return CI->getCallingConv(); 181 } 182 183 return None; 184 } 185 186 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 187 const SDValue *Parts, unsigned NumParts, 188 MVT PartVT, EVT ValueVT, const Value *V, 189 Optional<CallingConv::ID> CC); 190 191 /// getCopyFromParts - Create a value that contains the specified legal parts 192 /// combined into the value they represent. If the parts combine to a type 193 /// larger than ValueVT then AssertOp can be used to specify whether the extra 194 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 195 /// (ISD::AssertSext). 196 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 197 const SDValue *Parts, unsigned NumParts, 198 MVT PartVT, EVT ValueVT, const Value *V, 199 Optional<CallingConv::ID> CC = None, 200 Optional<ISD::NodeType> AssertOp = None) { 201 if (ValueVT.isVector()) 202 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 203 CC); 204 205 assert(NumParts > 0 && "No parts to assemble!"); 206 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 207 SDValue Val = Parts[0]; 208 209 if (NumParts > 1) { 210 // Assemble the value from multiple parts. 211 if (ValueVT.isInteger()) { 212 unsigned PartBits = PartVT.getSizeInBits(); 213 unsigned ValueBits = ValueVT.getSizeInBits(); 214 215 // Assemble the power of 2 part. 216 unsigned RoundParts = NumParts & (NumParts - 1) ? 217 1 << Log2_32(NumParts) : NumParts; 218 unsigned RoundBits = PartBits * RoundParts; 219 EVT RoundVT = RoundBits == ValueBits ? 220 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 221 SDValue Lo, Hi; 222 223 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 224 225 if (RoundParts > 2) { 226 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 227 PartVT, HalfVT, V); 228 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 229 RoundParts / 2, PartVT, HalfVT, V); 230 } else { 231 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 232 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 233 } 234 235 if (DAG.getDataLayout().isBigEndian()) 236 std::swap(Lo, Hi); 237 238 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 239 240 if (RoundParts < NumParts) { 241 // Assemble the trailing non-power-of-2 part. 242 unsigned OddParts = NumParts - RoundParts; 243 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 244 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 245 OddVT, V, CC); 246 247 // Combine the round and odd parts. 248 Lo = Val; 249 if (DAG.getDataLayout().isBigEndian()) 250 std::swap(Lo, Hi); 251 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 252 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 253 Hi = 254 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 255 DAG.getConstant(Lo.getValueSizeInBits(), DL, 256 TLI.getPointerTy(DAG.getDataLayout()))); 257 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 258 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 259 } 260 } else if (PartVT.isFloatingPoint()) { 261 // FP split into multiple FP parts (for ppcf128) 262 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 263 "Unexpected split"); 264 SDValue Lo, Hi; 265 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 266 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 267 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 268 std::swap(Lo, Hi); 269 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 270 } else { 271 // FP split into integer parts (soft fp) 272 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 273 !PartVT.isVector() && "Unexpected split"); 274 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 275 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 276 } 277 } 278 279 // There is now one part, held in Val. Correct it to match ValueVT. 280 // PartEVT is the type of the register class that holds the value. 281 // ValueVT is the type of the inline asm operation. 282 EVT PartEVT = Val.getValueType(); 283 284 if (PartEVT == ValueVT) 285 return Val; 286 287 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 288 ValueVT.bitsLT(PartEVT)) { 289 // For an FP value in an integer part, we need to truncate to the right 290 // width first. 291 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 292 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 293 } 294 295 // Handle types that have the same size. 296 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 297 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 298 299 // Handle types with different sizes. 300 if (PartEVT.isInteger() && ValueVT.isInteger()) { 301 if (ValueVT.bitsLT(PartEVT)) { 302 // For a truncate, see if we have any information to 303 // indicate whether the truncated bits will always be 304 // zero or sign-extension. 305 if (AssertOp.hasValue()) 306 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 307 DAG.getValueType(ValueVT)); 308 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 309 } 310 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 311 } 312 313 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 314 // FP_ROUND's are always exact here. 315 if (ValueVT.bitsLT(Val.getValueType())) 316 return DAG.getNode( 317 ISD::FP_ROUND, DL, ValueVT, Val, 318 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 319 320 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 321 } 322 323 llvm_unreachable("Unknown mismatch!"); 324 } 325 326 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 327 const Twine &ErrMsg) { 328 const Instruction *I = dyn_cast_or_null<Instruction>(V); 329 if (!V) 330 return Ctx.emitError(ErrMsg); 331 332 const char *AsmError = ", possible invalid constraint for vector type"; 333 if (const CallInst *CI = dyn_cast<CallInst>(I)) 334 if (isa<InlineAsm>(CI->getCalledValue())) 335 return Ctx.emitError(I, ErrMsg + AsmError); 336 337 return Ctx.emitError(I, ErrMsg); 338 } 339 340 /// getCopyFromPartsVector - Create a value that contains the specified legal 341 /// parts combined into the value they represent. If the parts combine to a 342 /// type larger than ValueVT then AssertOp can be used to specify whether the 343 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 344 /// ValueVT (ISD::AssertSext). 345 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 346 const SDValue *Parts, unsigned NumParts, 347 MVT PartVT, EVT ValueVT, const Value *V, 348 Optional<CallingConv::ID> CallConv) { 349 assert(ValueVT.isVector() && "Not a vector value"); 350 assert(NumParts > 0 && "No parts to assemble!"); 351 const bool IsABIRegCopy = CallConv.hasValue(); 352 353 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 354 SDValue Val = Parts[0]; 355 356 // Handle a multi-element vector. 357 if (NumParts > 1) { 358 EVT IntermediateVT; 359 MVT RegisterVT; 360 unsigned NumIntermediates; 361 unsigned NumRegs; 362 363 if (IsABIRegCopy) { 364 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 365 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 366 NumIntermediates, RegisterVT); 367 } else { 368 NumRegs = 369 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 370 NumIntermediates, RegisterVT); 371 } 372 373 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 374 NumParts = NumRegs; // Silence a compiler warning. 375 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 376 assert(RegisterVT.getSizeInBits() == 377 Parts[0].getSimpleValueType().getSizeInBits() && 378 "Part type sizes don't match!"); 379 380 // Assemble the parts into intermediate operands. 381 SmallVector<SDValue, 8> Ops(NumIntermediates); 382 if (NumIntermediates == NumParts) { 383 // If the register was not expanded, truncate or copy the value, 384 // as appropriate. 385 for (unsigned i = 0; i != NumParts; ++i) 386 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 387 PartVT, IntermediateVT, V); 388 } else if (NumParts > 0) { 389 // If the intermediate type was expanded, build the intermediate 390 // operands from the parts. 391 assert(NumParts % NumIntermediates == 0 && 392 "Must expand into a divisible number of parts!"); 393 unsigned Factor = NumParts / NumIntermediates; 394 for (unsigned i = 0; i != NumIntermediates; ++i) 395 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 396 PartVT, IntermediateVT, V); 397 } 398 399 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 400 // intermediate operands. 401 EVT BuiltVectorTy = 402 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 403 (IntermediateVT.isVector() 404 ? IntermediateVT.getVectorNumElements() * NumParts 405 : NumIntermediates)); 406 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 407 : ISD::BUILD_VECTOR, 408 DL, BuiltVectorTy, Ops); 409 } 410 411 // There is now one part, held in Val. Correct it to match ValueVT. 412 EVT PartEVT = Val.getValueType(); 413 414 if (PartEVT == ValueVT) 415 return Val; 416 417 if (PartEVT.isVector()) { 418 // If the element type of the source/dest vectors are the same, but the 419 // parts vector has more elements than the value vector, then we have a 420 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 421 // elements we want. 422 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 423 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 424 "Cannot narrow, it would be a lossy transformation"); 425 return DAG.getNode( 426 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 427 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 428 } 429 430 // Vector/Vector bitcast. 431 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 432 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 433 434 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 435 "Cannot handle this kind of promotion"); 436 // Promoted vector extract 437 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 438 439 } 440 441 // Trivial bitcast if the types are the same size and the destination 442 // vector type is legal. 443 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 444 TLI.isTypeLegal(ValueVT)) 445 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 446 447 if (ValueVT.getVectorNumElements() != 1) { 448 // Certain ABIs require that vectors are passed as integers. For vectors 449 // are the same size, this is an obvious bitcast. 450 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 451 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 452 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 453 // Bitcast Val back the original type and extract the corresponding 454 // vector we want. 455 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 456 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 457 ValueVT.getVectorElementType(), Elts); 458 Val = DAG.getBitcast(WiderVecType, Val); 459 return DAG.getNode( 460 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 461 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 462 } 463 464 diagnosePossiblyInvalidConstraint( 465 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 466 return DAG.getUNDEF(ValueVT); 467 } 468 469 // Handle cases such as i8 -> <1 x i1> 470 EVT ValueSVT = ValueVT.getVectorElementType(); 471 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 472 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 473 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 474 475 return DAG.getBuildVector(ValueVT, DL, Val); 476 } 477 478 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 479 SDValue Val, SDValue *Parts, unsigned NumParts, 480 MVT PartVT, const Value *V, 481 Optional<CallingConv::ID> CallConv); 482 483 /// getCopyToParts - Create a series of nodes that contain the specified value 484 /// split into legal parts. If the parts contain more bits than Val, then, for 485 /// integers, ExtendKind can be used to specify how to generate the extra bits. 486 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 487 SDValue *Parts, unsigned NumParts, MVT PartVT, 488 const Value *V, 489 Optional<CallingConv::ID> CallConv = None, 490 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 491 EVT ValueVT = Val.getValueType(); 492 493 // Handle the vector case separately. 494 if (ValueVT.isVector()) 495 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 496 CallConv); 497 498 unsigned PartBits = PartVT.getSizeInBits(); 499 unsigned OrigNumParts = NumParts; 500 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 501 "Copying to an illegal type!"); 502 503 if (NumParts == 0) 504 return; 505 506 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 507 EVT PartEVT = PartVT; 508 if (PartEVT == ValueVT) { 509 assert(NumParts == 1 && "No-op copy with multiple parts!"); 510 Parts[0] = Val; 511 return; 512 } 513 514 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 515 // If the parts cover more bits than the value has, promote the value. 516 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 517 assert(NumParts == 1 && "Do not know what to promote to!"); 518 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 519 } else { 520 if (ValueVT.isFloatingPoint()) { 521 // FP values need to be bitcast, then extended if they are being put 522 // into a larger container. 523 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 524 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 525 } 526 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 527 ValueVT.isInteger() && 528 "Unknown mismatch!"); 529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 530 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 531 if (PartVT == MVT::x86mmx) 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } 534 } else if (PartBits == ValueVT.getSizeInBits()) { 535 // Different types of the same size. 536 assert(NumParts == 1 && PartEVT != ValueVT); 537 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 538 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 539 // If the parts cover less bits than value has, truncate the value. 540 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 541 ValueVT.isInteger() && 542 "Unknown mismatch!"); 543 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 544 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 545 if (PartVT == MVT::x86mmx) 546 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 547 } 548 549 // The value may have changed - recompute ValueVT. 550 ValueVT = Val.getValueType(); 551 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 552 "Failed to tile the value with PartVT!"); 553 554 if (NumParts == 1) { 555 if (PartEVT != ValueVT) { 556 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 557 "scalar-to-vector conversion failed"); 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } 560 561 Parts[0] = Val; 562 return; 563 } 564 565 // Expand the value into multiple parts. 566 if (NumParts & (NumParts - 1)) { 567 // The number of parts is not a power of 2. Split off and copy the tail. 568 assert(PartVT.isInteger() && ValueVT.isInteger() && 569 "Do not know what to expand to!"); 570 unsigned RoundParts = 1 << Log2_32(NumParts); 571 unsigned RoundBits = RoundParts * PartBits; 572 unsigned OddParts = NumParts - RoundParts; 573 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 574 DAG.getIntPtrConstant(RoundBits, DL)); 575 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 576 CallConv); 577 578 if (DAG.getDataLayout().isBigEndian()) 579 // The odd parts were reversed by getCopyToParts - unreverse them. 580 std::reverse(Parts + RoundParts, Parts + NumParts); 581 582 NumParts = RoundParts; 583 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 584 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 585 } 586 587 // The number of parts is a power of 2. Repeatedly bisect the value using 588 // EXTRACT_ELEMENT. 589 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 590 EVT::getIntegerVT(*DAG.getContext(), 591 ValueVT.getSizeInBits()), 592 Val); 593 594 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 595 for (unsigned i = 0; i < NumParts; i += StepSize) { 596 unsigned ThisBits = StepSize * PartBits / 2; 597 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 598 SDValue &Part0 = Parts[i]; 599 SDValue &Part1 = Parts[i+StepSize/2]; 600 601 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 602 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 603 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 604 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 605 606 if (ThisBits == PartBits && ThisVT != PartVT) { 607 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 608 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 609 } 610 } 611 } 612 613 if (DAG.getDataLayout().isBigEndian()) 614 std::reverse(Parts, Parts + OrigNumParts); 615 } 616 617 static SDValue widenVectorToPartType(SelectionDAG &DAG, 618 SDValue Val, const SDLoc &DL, EVT PartVT) { 619 if (!PartVT.isVector()) 620 return SDValue(); 621 622 EVT ValueVT = Val.getValueType(); 623 unsigned PartNumElts = PartVT.getVectorNumElements(); 624 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 625 if (PartNumElts > ValueNumElts && 626 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 627 EVT ElementVT = PartVT.getVectorElementType(); 628 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 629 // undef elements. 630 SmallVector<SDValue, 16> Ops; 631 DAG.ExtractVectorElements(Val, Ops); 632 SDValue EltUndef = DAG.getUNDEF(ElementVT); 633 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 634 Ops.push_back(EltUndef); 635 636 // FIXME: Use CONCAT for 2x -> 4x. 637 return DAG.getBuildVector(PartVT, DL, Ops); 638 } 639 640 return SDValue(); 641 } 642 643 /// getCopyToPartsVector - Create a series of nodes that contain the specified 644 /// value split into legal parts. 645 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 646 SDValue Val, SDValue *Parts, unsigned NumParts, 647 MVT PartVT, const Value *V, 648 Optional<CallingConv::ID> CallConv) { 649 EVT ValueVT = Val.getValueType(); 650 assert(ValueVT.isVector() && "Not a vector"); 651 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 652 const bool IsABIRegCopy = CallConv.hasValue(); 653 654 if (NumParts == 1) { 655 EVT PartEVT = PartVT; 656 if (PartEVT == ValueVT) { 657 // Nothing to do. 658 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 659 // Bitconvert vector->vector case. 660 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 661 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 662 Val = Widened; 663 } else if (PartVT.isVector() && 664 PartEVT.getVectorElementType().bitsGE( 665 ValueVT.getVectorElementType()) && 666 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 667 668 // Promoted vector extract 669 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 670 } else { 671 if (ValueVT.getVectorNumElements() == 1) { 672 Val = DAG.getNode( 673 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 674 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 675 } else { 676 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 677 "lossy conversion of vector to scalar type"); 678 EVT IntermediateType = 679 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 680 Val = DAG.getBitcast(IntermediateType, Val); 681 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 682 } 683 } 684 685 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 686 Parts[0] = Val; 687 return; 688 } 689 690 // Handle a multi-element vector. 691 EVT IntermediateVT; 692 MVT RegisterVT; 693 unsigned NumIntermediates; 694 unsigned NumRegs; 695 if (IsABIRegCopy) { 696 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 697 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 698 NumIntermediates, RegisterVT); 699 } else { 700 NumRegs = 701 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 702 NumIntermediates, RegisterVT); 703 } 704 unsigned NumElements = ValueVT.getVectorNumElements(); 705 706 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 707 NumParts = NumRegs; // Silence a compiler warning. 708 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 709 710 // Convert the vector to the appropiate type if necessary. 711 unsigned DestVectorNoElts = 712 NumIntermediates * 713 (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1); 714 EVT BuiltVectorTy = EVT::getVectorVT( 715 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 716 if (Val.getValueType() != BuiltVectorTy) 717 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 718 719 // Split the vector into intermediate operands. 720 SmallVector<SDValue, 8> Ops(NumIntermediates); 721 for (unsigned i = 0; i != NumIntermediates; ++i) { 722 if (IntermediateVT.isVector()) 723 Ops[i] = 724 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 725 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 726 TLI.getVectorIdxTy(DAG.getDataLayout()))); 727 else 728 Ops[i] = DAG.getNode( 729 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 730 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 731 } 732 733 // Split the intermediate operands into legal parts. 734 if (NumParts == NumIntermediates) { 735 // If the register was not expanded, promote or copy the value, 736 // as appropriate. 737 for (unsigned i = 0; i != NumParts; ++i) 738 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 739 } else if (NumParts > 0) { 740 // If the intermediate type was expanded, split each the value into 741 // legal parts. 742 assert(NumIntermediates != 0 && "division by zero"); 743 assert(NumParts % NumIntermediates == 0 && 744 "Must expand into a divisible number of parts!"); 745 unsigned Factor = NumParts / NumIntermediates; 746 for (unsigned i = 0; i != NumIntermediates; ++i) 747 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 748 CallConv); 749 } 750 } 751 752 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 753 EVT valuevt, Optional<CallingConv::ID> CC) 754 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 755 RegCount(1, regs.size()), CallConv(CC) {} 756 757 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 758 const DataLayout &DL, unsigned Reg, Type *Ty, 759 Optional<CallingConv::ID> CC) { 760 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 761 762 CallConv = CC; 763 764 for (EVT ValueVT : ValueVTs) { 765 unsigned NumRegs = 766 isABIMangled() 767 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 768 : TLI.getNumRegisters(Context, ValueVT); 769 MVT RegisterVT = 770 isABIMangled() 771 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 772 : TLI.getRegisterType(Context, ValueVT); 773 for (unsigned i = 0; i != NumRegs; ++i) 774 Regs.push_back(Reg + i); 775 RegVTs.push_back(RegisterVT); 776 RegCount.push_back(NumRegs); 777 Reg += NumRegs; 778 } 779 } 780 781 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 782 FunctionLoweringInfo &FuncInfo, 783 const SDLoc &dl, SDValue &Chain, 784 SDValue *Flag, const Value *V) const { 785 // A Value with type {} or [0 x %t] needs no registers. 786 if (ValueVTs.empty()) 787 return SDValue(); 788 789 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 790 791 // Assemble the legal parts into the final values. 792 SmallVector<SDValue, 4> Values(ValueVTs.size()); 793 SmallVector<SDValue, 8> Parts; 794 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 795 // Copy the legal parts from the registers. 796 EVT ValueVT = ValueVTs[Value]; 797 unsigned NumRegs = RegCount[Value]; 798 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 799 *DAG.getContext(), 800 CallConv.getValue(), RegVTs[Value]) 801 : RegVTs[Value]; 802 803 Parts.resize(NumRegs); 804 for (unsigned i = 0; i != NumRegs; ++i) { 805 SDValue P; 806 if (!Flag) { 807 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 808 } else { 809 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 810 *Flag = P.getValue(2); 811 } 812 813 Chain = P.getValue(1); 814 Parts[i] = P; 815 816 // If the source register was virtual and if we know something about it, 817 // add an assert node. 818 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 819 !RegisterVT.isInteger() || RegisterVT.isVector()) 820 continue; 821 822 const FunctionLoweringInfo::LiveOutInfo *LOI = 823 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 824 if (!LOI) 825 continue; 826 827 unsigned RegSize = RegisterVT.getSizeInBits(); 828 unsigned NumSignBits = LOI->NumSignBits; 829 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 830 831 if (NumZeroBits == RegSize) { 832 // The current value is a zero. 833 // Explicitly express that as it would be easier for 834 // optimizations to kick in. 835 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 836 continue; 837 } 838 839 // FIXME: We capture more information than the dag can represent. For 840 // now, just use the tightest assertzext/assertsext possible. 841 bool isSExt; 842 EVT FromVT(MVT::Other); 843 if (NumZeroBits) { 844 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 845 isSExt = false; 846 } else if (NumSignBits > 1) { 847 FromVT = 848 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 849 isSExt = true; 850 } else { 851 continue; 852 } 853 // Add an assertion node. 854 assert(FromVT != MVT::Other); 855 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 856 RegisterVT, P, DAG.getValueType(FromVT)); 857 } 858 859 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 860 RegisterVT, ValueVT, V, CallConv); 861 Part += NumRegs; 862 Parts.clear(); 863 } 864 865 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 866 } 867 868 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 869 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 870 const Value *V, 871 ISD::NodeType PreferredExtendType) const { 872 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 873 ISD::NodeType ExtendKind = PreferredExtendType; 874 875 // Get the list of the values's legal parts. 876 unsigned NumRegs = Regs.size(); 877 SmallVector<SDValue, 8> Parts(NumRegs); 878 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 879 unsigned NumParts = RegCount[Value]; 880 881 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 882 *DAG.getContext(), 883 CallConv.getValue(), RegVTs[Value]) 884 : RegVTs[Value]; 885 886 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 887 ExtendKind = ISD::ZERO_EXTEND; 888 889 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 890 NumParts, RegisterVT, V, CallConv, ExtendKind); 891 Part += NumParts; 892 } 893 894 // Copy the parts into the registers. 895 SmallVector<SDValue, 8> Chains(NumRegs); 896 for (unsigned i = 0; i != NumRegs; ++i) { 897 SDValue Part; 898 if (!Flag) { 899 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 900 } else { 901 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 902 *Flag = Part.getValue(1); 903 } 904 905 Chains[i] = Part.getValue(0); 906 } 907 908 if (NumRegs == 1 || Flag) 909 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 910 // flagged to it. That is the CopyToReg nodes and the user are considered 911 // a single scheduling unit. If we create a TokenFactor and return it as 912 // chain, then the TokenFactor is both a predecessor (operand) of the 913 // user as well as a successor (the TF operands are flagged to the user). 914 // c1, f1 = CopyToReg 915 // c2, f2 = CopyToReg 916 // c3 = TokenFactor c1, c2 917 // ... 918 // = op c3, ..., f2 919 Chain = Chains[NumRegs-1]; 920 else 921 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 922 } 923 924 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 925 unsigned MatchingIdx, const SDLoc &dl, 926 SelectionDAG &DAG, 927 std::vector<SDValue> &Ops) const { 928 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 929 930 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 931 if (HasMatching) 932 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 933 else if (!Regs.empty() && 934 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 935 // Put the register class of the virtual registers in the flag word. That 936 // way, later passes can recompute register class constraints for inline 937 // assembly as well as normal instructions. 938 // Don't do this for tied operands that can use the regclass information 939 // from the def. 940 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 941 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 942 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 943 } 944 945 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 946 Ops.push_back(Res); 947 948 if (Code == InlineAsm::Kind_Clobber) { 949 // Clobbers should always have a 1:1 mapping with registers, and may 950 // reference registers that have illegal (e.g. vector) types. Hence, we 951 // shouldn't try to apply any sort of splitting logic to them. 952 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 953 "No 1:1 mapping from clobbers to regs?"); 954 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 955 (void)SP; 956 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 957 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 958 assert( 959 (Regs[I] != SP || 960 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 961 "If we clobbered the stack pointer, MFI should know about it."); 962 } 963 return; 964 } 965 966 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 967 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 968 MVT RegisterVT = RegVTs[Value]; 969 for (unsigned i = 0; i != NumRegs; ++i) { 970 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 971 unsigned TheReg = Regs[Reg++]; 972 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 973 } 974 } 975 } 976 977 SmallVector<std::pair<unsigned, unsigned>, 4> 978 RegsForValue::getRegsAndSizes() const { 979 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 980 unsigned I = 0; 981 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 982 unsigned RegCount = std::get<0>(CountAndVT); 983 MVT RegisterVT = std::get<1>(CountAndVT); 984 unsigned RegisterSize = RegisterVT.getSizeInBits(); 985 for (unsigned E = I + RegCount; I != E; ++I) 986 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 987 } 988 return OutVec; 989 } 990 991 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 992 const TargetLibraryInfo *li) { 993 AA = aa; 994 GFI = gfi; 995 LibInfo = li; 996 DL = &DAG.getDataLayout(); 997 Context = DAG.getContext(); 998 LPadToCallSiteMap.clear(); 999 } 1000 1001 void SelectionDAGBuilder::clear() { 1002 NodeMap.clear(); 1003 UnusedArgNodeMap.clear(); 1004 PendingLoads.clear(); 1005 PendingExports.clear(); 1006 CurInst = nullptr; 1007 HasTailCall = false; 1008 SDNodeOrder = LowestSDNodeOrder; 1009 StatepointLowering.clear(); 1010 } 1011 1012 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1013 DanglingDebugInfoMap.clear(); 1014 } 1015 1016 SDValue SelectionDAGBuilder::getRoot() { 1017 if (PendingLoads.empty()) 1018 return DAG.getRoot(); 1019 1020 if (PendingLoads.size() == 1) { 1021 SDValue Root = PendingLoads[0]; 1022 DAG.setRoot(Root); 1023 PendingLoads.clear(); 1024 return Root; 1025 } 1026 1027 // Otherwise, we have to make a token factor node. 1028 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1029 PendingLoads); 1030 PendingLoads.clear(); 1031 DAG.setRoot(Root); 1032 return Root; 1033 } 1034 1035 SDValue SelectionDAGBuilder::getControlRoot() { 1036 SDValue Root = DAG.getRoot(); 1037 1038 if (PendingExports.empty()) 1039 return Root; 1040 1041 // Turn all of the CopyToReg chains into one factored node. 1042 if (Root.getOpcode() != ISD::EntryToken) { 1043 unsigned i = 0, e = PendingExports.size(); 1044 for (; i != e; ++i) { 1045 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1046 if (PendingExports[i].getNode()->getOperand(0) == Root) 1047 break; // Don't add the root if we already indirectly depend on it. 1048 } 1049 1050 if (i == e) 1051 PendingExports.push_back(Root); 1052 } 1053 1054 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1055 PendingExports); 1056 PendingExports.clear(); 1057 DAG.setRoot(Root); 1058 return Root; 1059 } 1060 1061 void SelectionDAGBuilder::visit(const Instruction &I) { 1062 // Set up outgoing PHI node register values before emitting the terminator. 1063 if (I.isTerminator()) { 1064 HandlePHINodesInSuccessorBlocks(I.getParent()); 1065 } 1066 1067 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1068 if (!isa<DbgInfoIntrinsic>(I)) 1069 ++SDNodeOrder; 1070 1071 CurInst = &I; 1072 1073 visit(I.getOpcode(), I); 1074 1075 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1076 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1077 // maps to this instruction. 1078 // TODO: We could handle all flags (nsw, etc) here. 1079 // TODO: If an IR instruction maps to >1 node, only the final node will have 1080 // flags set. 1081 if (SDNode *Node = getNodeForIRValue(&I)) { 1082 SDNodeFlags IncomingFlags; 1083 IncomingFlags.copyFMF(*FPMO); 1084 if (!Node->getFlags().isDefined()) 1085 Node->setFlags(IncomingFlags); 1086 else 1087 Node->intersectFlagsWith(IncomingFlags); 1088 } 1089 } 1090 1091 if (!I.isTerminator() && !HasTailCall && 1092 !isStatepoint(&I)) // statepoints handle their exports internally 1093 CopyToExportRegsIfNeeded(&I); 1094 1095 CurInst = nullptr; 1096 } 1097 1098 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1099 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1100 } 1101 1102 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1103 // Note: this doesn't use InstVisitor, because it has to work with 1104 // ConstantExpr's in addition to instructions. 1105 switch (Opcode) { 1106 default: llvm_unreachable("Unknown instruction type encountered!"); 1107 // Build the switch statement using the Instruction.def file. 1108 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1109 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1110 #include "llvm/IR/Instruction.def" 1111 } 1112 } 1113 1114 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1115 const DIExpression *Expr) { 1116 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1117 const DbgValueInst *DI = DDI.getDI(); 1118 DIVariable *DanglingVariable = DI->getVariable(); 1119 DIExpression *DanglingExpr = DI->getExpression(); 1120 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1121 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1122 return true; 1123 } 1124 return false; 1125 }; 1126 1127 for (auto &DDIMI : DanglingDebugInfoMap) { 1128 DanglingDebugInfoVector &DDIV = DDIMI.second; 1129 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1130 } 1131 } 1132 1133 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1134 // generate the debug data structures now that we've seen its definition. 1135 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1136 SDValue Val) { 1137 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1138 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1139 return; 1140 1141 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1142 for (auto &DDI : DDIV) { 1143 const DbgValueInst *DI = DDI.getDI(); 1144 assert(DI && "Ill-formed DanglingDebugInfo"); 1145 DebugLoc dl = DDI.getdl(); 1146 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1147 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1148 DILocalVariable *Variable = DI->getVariable(); 1149 DIExpression *Expr = DI->getExpression(); 1150 assert(Variable->isValidLocationForIntrinsic(dl) && 1151 "Expected inlined-at fields to agree"); 1152 SDDbgValue *SDV; 1153 if (Val.getNode()) { 1154 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1155 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1156 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1157 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1158 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1159 // inserted after the definition of Val when emitting the instructions 1160 // after ISel. An alternative could be to teach 1161 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1162 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1163 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1164 << ValSDNodeOrder << "\n"); 1165 SDV = getDbgValue(Val, Variable, Expr, dl, 1166 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1167 DAG.AddDbgValue(SDV, Val.getNode(), false); 1168 } else 1169 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1170 << "in EmitFuncArgumentDbgValue\n"); 1171 } else 1172 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1173 } 1174 DDIV.clear(); 1175 } 1176 1177 /// getCopyFromRegs - If there was virtual register allocated for the value V 1178 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1179 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1180 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1181 SDValue Result; 1182 1183 if (It != FuncInfo.ValueMap.end()) { 1184 unsigned InReg = It->second; 1185 1186 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1187 DAG.getDataLayout(), InReg, Ty, 1188 None); // This is not an ABI copy. 1189 SDValue Chain = DAG.getEntryNode(); 1190 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1191 V); 1192 resolveDanglingDebugInfo(V, Result); 1193 } 1194 1195 return Result; 1196 } 1197 1198 /// getValue - Return an SDValue for the given Value. 1199 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1200 // If we already have an SDValue for this value, use it. It's important 1201 // to do this first, so that we don't create a CopyFromReg if we already 1202 // have a regular SDValue. 1203 SDValue &N = NodeMap[V]; 1204 if (N.getNode()) return N; 1205 1206 // If there's a virtual register allocated and initialized for this 1207 // value, use it. 1208 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1209 return copyFromReg; 1210 1211 // Otherwise create a new SDValue and remember it. 1212 SDValue Val = getValueImpl(V); 1213 NodeMap[V] = Val; 1214 resolveDanglingDebugInfo(V, Val); 1215 return Val; 1216 } 1217 1218 // Return true if SDValue exists for the given Value 1219 bool SelectionDAGBuilder::findValue(const Value *V) const { 1220 return (NodeMap.find(V) != NodeMap.end()) || 1221 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1222 } 1223 1224 /// getNonRegisterValue - Return an SDValue for the given Value, but 1225 /// don't look in FuncInfo.ValueMap for a virtual register. 1226 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1227 // If we already have an SDValue for this value, use it. 1228 SDValue &N = NodeMap[V]; 1229 if (N.getNode()) { 1230 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1231 // Remove the debug location from the node as the node is about to be used 1232 // in a location which may differ from the original debug location. This 1233 // is relevant to Constant and ConstantFP nodes because they can appear 1234 // as constant expressions inside PHI nodes. 1235 N->setDebugLoc(DebugLoc()); 1236 } 1237 return N; 1238 } 1239 1240 // Otherwise create a new SDValue and remember it. 1241 SDValue Val = getValueImpl(V); 1242 NodeMap[V] = Val; 1243 resolveDanglingDebugInfo(V, Val); 1244 return Val; 1245 } 1246 1247 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1248 /// Create an SDValue for the given value. 1249 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1250 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1251 1252 if (const Constant *C = dyn_cast<Constant>(V)) { 1253 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1254 1255 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1256 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1257 1258 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1259 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1260 1261 if (isa<ConstantPointerNull>(C)) { 1262 unsigned AS = V->getType()->getPointerAddressSpace(); 1263 return DAG.getConstant(0, getCurSDLoc(), 1264 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1265 } 1266 1267 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1268 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1269 1270 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1271 return DAG.getUNDEF(VT); 1272 1273 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1274 visit(CE->getOpcode(), *CE); 1275 SDValue N1 = NodeMap[V]; 1276 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1277 return N1; 1278 } 1279 1280 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1281 SmallVector<SDValue, 4> Constants; 1282 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1283 OI != OE; ++OI) { 1284 SDNode *Val = getValue(*OI).getNode(); 1285 // If the operand is an empty aggregate, there are no values. 1286 if (!Val) continue; 1287 // Add each leaf value from the operand to the Constants list 1288 // to form a flattened list of all the values. 1289 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1290 Constants.push_back(SDValue(Val, i)); 1291 } 1292 1293 return DAG.getMergeValues(Constants, getCurSDLoc()); 1294 } 1295 1296 if (const ConstantDataSequential *CDS = 1297 dyn_cast<ConstantDataSequential>(C)) { 1298 SmallVector<SDValue, 4> Ops; 1299 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1300 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1301 // Add each leaf value from the operand to the Constants list 1302 // to form a flattened list of all the values. 1303 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1304 Ops.push_back(SDValue(Val, i)); 1305 } 1306 1307 if (isa<ArrayType>(CDS->getType())) 1308 return DAG.getMergeValues(Ops, getCurSDLoc()); 1309 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1310 } 1311 1312 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1313 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1314 "Unknown struct or array constant!"); 1315 1316 SmallVector<EVT, 4> ValueVTs; 1317 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1318 unsigned NumElts = ValueVTs.size(); 1319 if (NumElts == 0) 1320 return SDValue(); // empty struct 1321 SmallVector<SDValue, 4> Constants(NumElts); 1322 for (unsigned i = 0; i != NumElts; ++i) { 1323 EVT EltVT = ValueVTs[i]; 1324 if (isa<UndefValue>(C)) 1325 Constants[i] = DAG.getUNDEF(EltVT); 1326 else if (EltVT.isFloatingPoint()) 1327 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1328 else 1329 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1330 } 1331 1332 return DAG.getMergeValues(Constants, getCurSDLoc()); 1333 } 1334 1335 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1336 return DAG.getBlockAddress(BA, VT); 1337 1338 VectorType *VecTy = cast<VectorType>(V->getType()); 1339 unsigned NumElements = VecTy->getNumElements(); 1340 1341 // Now that we know the number and type of the elements, get that number of 1342 // elements into the Ops array based on what kind of constant it is. 1343 SmallVector<SDValue, 16> Ops; 1344 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1345 for (unsigned i = 0; i != NumElements; ++i) 1346 Ops.push_back(getValue(CV->getOperand(i))); 1347 } else { 1348 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1349 EVT EltVT = 1350 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1351 1352 SDValue Op; 1353 if (EltVT.isFloatingPoint()) 1354 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1355 else 1356 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1357 Ops.assign(NumElements, Op); 1358 } 1359 1360 // Create a BUILD_VECTOR node. 1361 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1362 } 1363 1364 // If this is a static alloca, generate it as the frameindex instead of 1365 // computation. 1366 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1367 DenseMap<const AllocaInst*, int>::iterator SI = 1368 FuncInfo.StaticAllocaMap.find(AI); 1369 if (SI != FuncInfo.StaticAllocaMap.end()) 1370 return DAG.getFrameIndex(SI->second, 1371 TLI.getFrameIndexTy(DAG.getDataLayout())); 1372 } 1373 1374 // If this is an instruction which fast-isel has deferred, select it now. 1375 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1376 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1377 1378 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1379 Inst->getType(), getABIRegCopyCC(V)); 1380 SDValue Chain = DAG.getEntryNode(); 1381 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1382 } 1383 1384 llvm_unreachable("Can't get register for value!"); 1385 } 1386 1387 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1388 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1389 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1390 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1391 bool IsSEH = isAsynchronousEHPersonality(Pers); 1392 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1393 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1394 if (!IsSEH) 1395 CatchPadMBB->setIsEHScopeEntry(); 1396 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1397 if (IsMSVCCXX || IsCoreCLR) 1398 CatchPadMBB->setIsEHFuncletEntry(); 1399 // Wasm does not need catchpads anymore 1400 if (!IsWasmCXX) 1401 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1402 getControlRoot())); 1403 } 1404 1405 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1406 // Update machine-CFG edge. 1407 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1408 FuncInfo.MBB->addSuccessor(TargetMBB); 1409 1410 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1411 bool IsSEH = isAsynchronousEHPersonality(Pers); 1412 if (IsSEH) { 1413 // If this is not a fall-through branch or optimizations are switched off, 1414 // emit the branch. 1415 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1416 TM.getOptLevel() == CodeGenOpt::None) 1417 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1418 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1419 return; 1420 } 1421 1422 // Figure out the funclet membership for the catchret's successor. 1423 // This will be used by the FuncletLayout pass to determine how to order the 1424 // BB's. 1425 // A 'catchret' returns to the outer scope's color. 1426 Value *ParentPad = I.getCatchSwitchParentPad(); 1427 const BasicBlock *SuccessorColor; 1428 if (isa<ConstantTokenNone>(ParentPad)) 1429 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1430 else 1431 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1432 assert(SuccessorColor && "No parent funclet for catchret!"); 1433 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1434 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1435 1436 // Create the terminator node. 1437 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1438 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1439 DAG.getBasicBlock(SuccessorColorMBB)); 1440 DAG.setRoot(Ret); 1441 } 1442 1443 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1444 // Don't emit any special code for the cleanuppad instruction. It just marks 1445 // the start of an EH scope/funclet. 1446 FuncInfo.MBB->setIsEHScopeEntry(); 1447 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1448 if (Pers != EHPersonality::Wasm_CXX) { 1449 FuncInfo.MBB->setIsEHFuncletEntry(); 1450 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1451 } 1452 } 1453 1454 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1455 /// many places it could ultimately go. In the IR, we have a single unwind 1456 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1457 /// This function skips over imaginary basic blocks that hold catchswitch 1458 /// instructions, and finds all the "real" machine 1459 /// basic block destinations. As those destinations may not be successors of 1460 /// EHPadBB, here we also calculate the edge probability to those destinations. 1461 /// The passed-in Prob is the edge probability to EHPadBB. 1462 static void findUnwindDestinations( 1463 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1464 BranchProbability Prob, 1465 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1466 &UnwindDests) { 1467 EHPersonality Personality = 1468 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1469 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1470 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1471 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1472 bool IsSEH = isAsynchronousEHPersonality(Personality); 1473 1474 while (EHPadBB) { 1475 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1476 BasicBlock *NewEHPadBB = nullptr; 1477 if (isa<LandingPadInst>(Pad)) { 1478 // Stop on landingpads. They are not funclets. 1479 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1480 break; 1481 } else if (isa<CleanupPadInst>(Pad)) { 1482 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1483 // personalities. 1484 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1485 UnwindDests.back().first->setIsEHScopeEntry(); 1486 if (!IsWasmCXX) 1487 UnwindDests.back().first->setIsEHFuncletEntry(); 1488 break; 1489 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1490 // Add the catchpad handlers to the possible destinations. 1491 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1492 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1493 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1494 if (IsMSVCCXX || IsCoreCLR) 1495 UnwindDests.back().first->setIsEHFuncletEntry(); 1496 if (!IsSEH) 1497 UnwindDests.back().first->setIsEHScopeEntry(); 1498 } 1499 NewEHPadBB = CatchSwitch->getUnwindDest(); 1500 } else { 1501 continue; 1502 } 1503 1504 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1505 if (BPI && NewEHPadBB) 1506 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1507 EHPadBB = NewEHPadBB; 1508 } 1509 } 1510 1511 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1512 // Update successor info. 1513 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1514 auto UnwindDest = I.getUnwindDest(); 1515 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1516 BranchProbability UnwindDestProb = 1517 (BPI && UnwindDest) 1518 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1519 : BranchProbability::getZero(); 1520 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1521 for (auto &UnwindDest : UnwindDests) { 1522 UnwindDest.first->setIsEHPad(); 1523 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1524 } 1525 FuncInfo.MBB->normalizeSuccProbs(); 1526 1527 // Create the terminator node. 1528 SDValue Ret = 1529 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1530 DAG.setRoot(Ret); 1531 } 1532 1533 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1534 report_fatal_error("visitCatchSwitch not yet implemented!"); 1535 } 1536 1537 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1538 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1539 auto &DL = DAG.getDataLayout(); 1540 SDValue Chain = getControlRoot(); 1541 SmallVector<ISD::OutputArg, 8> Outs; 1542 SmallVector<SDValue, 8> OutVals; 1543 1544 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1545 // lower 1546 // 1547 // %val = call <ty> @llvm.experimental.deoptimize() 1548 // ret <ty> %val 1549 // 1550 // differently. 1551 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1552 LowerDeoptimizingReturn(); 1553 return; 1554 } 1555 1556 if (!FuncInfo.CanLowerReturn) { 1557 unsigned DemoteReg = FuncInfo.DemoteRegister; 1558 const Function *F = I.getParent()->getParent(); 1559 1560 // Emit a store of the return value through the virtual register. 1561 // Leave Outs empty so that LowerReturn won't try to load return 1562 // registers the usual way. 1563 SmallVector<EVT, 1> PtrValueVTs; 1564 ComputeValueVTs(TLI, DL, 1565 F->getReturnType()->getPointerTo( 1566 DAG.getDataLayout().getAllocaAddrSpace()), 1567 PtrValueVTs); 1568 1569 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1570 DemoteReg, PtrValueVTs[0]); 1571 SDValue RetOp = getValue(I.getOperand(0)); 1572 1573 SmallVector<EVT, 4> ValueVTs; 1574 SmallVector<uint64_t, 4> Offsets; 1575 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1576 unsigned NumValues = ValueVTs.size(); 1577 1578 SmallVector<SDValue, 4> Chains(NumValues); 1579 for (unsigned i = 0; i != NumValues; ++i) { 1580 // An aggregate return value cannot wrap around the address space, so 1581 // offsets to its parts don't wrap either. 1582 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1583 Chains[i] = DAG.getStore( 1584 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1585 // FIXME: better loc info would be nice. 1586 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1587 } 1588 1589 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1590 MVT::Other, Chains); 1591 } else if (I.getNumOperands() != 0) { 1592 SmallVector<EVT, 4> ValueVTs; 1593 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1594 unsigned NumValues = ValueVTs.size(); 1595 if (NumValues) { 1596 SDValue RetOp = getValue(I.getOperand(0)); 1597 1598 const Function *F = I.getParent()->getParent(); 1599 1600 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1601 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1602 Attribute::SExt)) 1603 ExtendKind = ISD::SIGN_EXTEND; 1604 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1605 Attribute::ZExt)) 1606 ExtendKind = ISD::ZERO_EXTEND; 1607 1608 LLVMContext &Context = F->getContext(); 1609 bool RetInReg = F->getAttributes().hasAttribute( 1610 AttributeList::ReturnIndex, Attribute::InReg); 1611 1612 for (unsigned j = 0; j != NumValues; ++j) { 1613 EVT VT = ValueVTs[j]; 1614 1615 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1616 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1617 1618 CallingConv::ID CC = F->getCallingConv(); 1619 1620 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1621 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1622 SmallVector<SDValue, 4> Parts(NumParts); 1623 getCopyToParts(DAG, getCurSDLoc(), 1624 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1625 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1626 1627 // 'inreg' on function refers to return value 1628 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1629 if (RetInReg) 1630 Flags.setInReg(); 1631 1632 // Propagate extension type if any 1633 if (ExtendKind == ISD::SIGN_EXTEND) 1634 Flags.setSExt(); 1635 else if (ExtendKind == ISD::ZERO_EXTEND) 1636 Flags.setZExt(); 1637 1638 for (unsigned i = 0; i < NumParts; ++i) { 1639 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1640 VT, /*isfixed=*/true, 0, 0)); 1641 OutVals.push_back(Parts[i]); 1642 } 1643 } 1644 } 1645 } 1646 1647 // Push in swifterror virtual register as the last element of Outs. This makes 1648 // sure swifterror virtual register will be returned in the swifterror 1649 // physical register. 1650 const Function *F = I.getParent()->getParent(); 1651 if (TLI.supportSwiftError() && 1652 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1653 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1654 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1655 Flags.setSwiftError(); 1656 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1657 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1658 true /*isfixed*/, 1 /*origidx*/, 1659 0 /*partOffs*/)); 1660 // Create SDNode for the swifterror virtual register. 1661 OutVals.push_back( 1662 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1663 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1664 EVT(TLI.getPointerTy(DL)))); 1665 } 1666 1667 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1668 CallingConv::ID CallConv = 1669 DAG.getMachineFunction().getFunction().getCallingConv(); 1670 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1671 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1672 1673 // Verify that the target's LowerReturn behaved as expected. 1674 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1675 "LowerReturn didn't return a valid chain!"); 1676 1677 // Update the DAG with the new chain value resulting from return lowering. 1678 DAG.setRoot(Chain); 1679 } 1680 1681 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1682 /// created for it, emit nodes to copy the value into the virtual 1683 /// registers. 1684 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1685 // Skip empty types 1686 if (V->getType()->isEmptyTy()) 1687 return; 1688 1689 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1690 if (VMI != FuncInfo.ValueMap.end()) { 1691 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1692 CopyValueToVirtualRegister(V, VMI->second); 1693 } 1694 } 1695 1696 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1697 /// the current basic block, add it to ValueMap now so that we'll get a 1698 /// CopyTo/FromReg. 1699 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1700 // No need to export constants. 1701 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1702 1703 // Already exported? 1704 if (FuncInfo.isExportedInst(V)) return; 1705 1706 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1707 CopyValueToVirtualRegister(V, Reg); 1708 } 1709 1710 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1711 const BasicBlock *FromBB) { 1712 // The operands of the setcc have to be in this block. We don't know 1713 // how to export them from some other block. 1714 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1715 // Can export from current BB. 1716 if (VI->getParent() == FromBB) 1717 return true; 1718 1719 // Is already exported, noop. 1720 return FuncInfo.isExportedInst(V); 1721 } 1722 1723 // If this is an argument, we can export it if the BB is the entry block or 1724 // if it is already exported. 1725 if (isa<Argument>(V)) { 1726 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1727 return true; 1728 1729 // Otherwise, can only export this if it is already exported. 1730 return FuncInfo.isExportedInst(V); 1731 } 1732 1733 // Otherwise, constants can always be exported. 1734 return true; 1735 } 1736 1737 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1738 BranchProbability 1739 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1740 const MachineBasicBlock *Dst) const { 1741 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1742 const BasicBlock *SrcBB = Src->getBasicBlock(); 1743 const BasicBlock *DstBB = Dst->getBasicBlock(); 1744 if (!BPI) { 1745 // If BPI is not available, set the default probability as 1 / N, where N is 1746 // the number of successors. 1747 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1748 return BranchProbability(1, SuccSize); 1749 } 1750 return BPI->getEdgeProbability(SrcBB, DstBB); 1751 } 1752 1753 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1754 MachineBasicBlock *Dst, 1755 BranchProbability Prob) { 1756 if (!FuncInfo.BPI) 1757 Src->addSuccessorWithoutProb(Dst); 1758 else { 1759 if (Prob.isUnknown()) 1760 Prob = getEdgeProbability(Src, Dst); 1761 Src->addSuccessor(Dst, Prob); 1762 } 1763 } 1764 1765 static bool InBlock(const Value *V, const BasicBlock *BB) { 1766 if (const Instruction *I = dyn_cast<Instruction>(V)) 1767 return I->getParent() == BB; 1768 return true; 1769 } 1770 1771 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1772 /// This function emits a branch and is used at the leaves of an OR or an 1773 /// AND operator tree. 1774 void 1775 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1776 MachineBasicBlock *TBB, 1777 MachineBasicBlock *FBB, 1778 MachineBasicBlock *CurBB, 1779 MachineBasicBlock *SwitchBB, 1780 BranchProbability TProb, 1781 BranchProbability FProb, 1782 bool InvertCond) { 1783 const BasicBlock *BB = CurBB->getBasicBlock(); 1784 1785 // If the leaf of the tree is a comparison, merge the condition into 1786 // the caseblock. 1787 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1788 // The operands of the cmp have to be in this block. We don't know 1789 // how to export them from some other block. If this is the first block 1790 // of the sequence, no exporting is needed. 1791 if (CurBB == SwitchBB || 1792 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1793 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1794 ISD::CondCode Condition; 1795 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1796 ICmpInst::Predicate Pred = 1797 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1798 Condition = getICmpCondCode(Pred); 1799 } else { 1800 const FCmpInst *FC = cast<FCmpInst>(Cond); 1801 FCmpInst::Predicate Pred = 1802 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1803 Condition = getFCmpCondCode(Pred); 1804 if (TM.Options.NoNaNsFPMath) 1805 Condition = getFCmpCodeWithoutNaN(Condition); 1806 } 1807 1808 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1809 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1810 SwitchCases.push_back(CB); 1811 return; 1812 } 1813 } 1814 1815 // Create a CaseBlock record representing this branch. 1816 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1817 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1818 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1819 SwitchCases.push_back(CB); 1820 } 1821 1822 /// FindMergedConditions - If Cond is an expression like 1823 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1824 MachineBasicBlock *TBB, 1825 MachineBasicBlock *FBB, 1826 MachineBasicBlock *CurBB, 1827 MachineBasicBlock *SwitchBB, 1828 Instruction::BinaryOps Opc, 1829 BranchProbability TProb, 1830 BranchProbability FProb, 1831 bool InvertCond) { 1832 // Skip over not part of the tree and remember to invert op and operands at 1833 // next level. 1834 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1835 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1836 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1837 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1838 !InvertCond); 1839 return; 1840 } 1841 } 1842 1843 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1844 // Compute the effective opcode for Cond, taking into account whether it needs 1845 // to be inverted, e.g. 1846 // and (not (or A, B)), C 1847 // gets lowered as 1848 // and (and (not A, not B), C) 1849 unsigned BOpc = 0; 1850 if (BOp) { 1851 BOpc = BOp->getOpcode(); 1852 if (InvertCond) { 1853 if (BOpc == Instruction::And) 1854 BOpc = Instruction::Or; 1855 else if (BOpc == Instruction::Or) 1856 BOpc = Instruction::And; 1857 } 1858 } 1859 1860 // If this node is not part of the or/and tree, emit it as a branch. 1861 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1862 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 1863 BOp->getParent() != CurBB->getBasicBlock() || 1864 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1865 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1866 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1867 TProb, FProb, InvertCond); 1868 return; 1869 } 1870 1871 // Create TmpBB after CurBB. 1872 MachineFunction::iterator BBI(CurBB); 1873 MachineFunction &MF = DAG.getMachineFunction(); 1874 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1875 CurBB->getParent()->insert(++BBI, TmpBB); 1876 1877 if (Opc == Instruction::Or) { 1878 // Codegen X | Y as: 1879 // BB1: 1880 // jmp_if_X TBB 1881 // jmp TmpBB 1882 // TmpBB: 1883 // jmp_if_Y TBB 1884 // jmp FBB 1885 // 1886 1887 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1888 // The requirement is that 1889 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1890 // = TrueProb for original BB. 1891 // Assuming the original probabilities are A and B, one choice is to set 1892 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1893 // A/(1+B) and 2B/(1+B). This choice assumes that 1894 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1895 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1896 // TmpBB, but the math is more complicated. 1897 1898 auto NewTrueProb = TProb / 2; 1899 auto NewFalseProb = TProb / 2 + FProb; 1900 // Emit the LHS condition. 1901 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1902 NewTrueProb, NewFalseProb, InvertCond); 1903 1904 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1905 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1906 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1907 // Emit the RHS condition into TmpBB. 1908 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1909 Probs[0], Probs[1], InvertCond); 1910 } else { 1911 assert(Opc == Instruction::And && "Unknown merge op!"); 1912 // Codegen X & Y as: 1913 // BB1: 1914 // jmp_if_X TmpBB 1915 // jmp FBB 1916 // TmpBB: 1917 // jmp_if_Y TBB 1918 // jmp FBB 1919 // 1920 // This requires creation of TmpBB after CurBB. 1921 1922 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1923 // The requirement is that 1924 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1925 // = FalseProb for original BB. 1926 // Assuming the original probabilities are A and B, one choice is to set 1927 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1928 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1929 // TrueProb for BB1 * FalseProb for TmpBB. 1930 1931 auto NewTrueProb = TProb + FProb / 2; 1932 auto NewFalseProb = FProb / 2; 1933 // Emit the LHS condition. 1934 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1935 NewTrueProb, NewFalseProb, InvertCond); 1936 1937 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1938 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1939 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1940 // Emit the RHS condition into TmpBB. 1941 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1942 Probs[0], Probs[1], InvertCond); 1943 } 1944 } 1945 1946 /// If the set of cases should be emitted as a series of branches, return true. 1947 /// If we should emit this as a bunch of and/or'd together conditions, return 1948 /// false. 1949 bool 1950 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1951 if (Cases.size() != 2) return true; 1952 1953 // If this is two comparisons of the same values or'd or and'd together, they 1954 // will get folded into a single comparison, so don't emit two blocks. 1955 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1956 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1957 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1958 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1959 return false; 1960 } 1961 1962 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1963 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1964 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1965 Cases[0].CC == Cases[1].CC && 1966 isa<Constant>(Cases[0].CmpRHS) && 1967 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1968 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1969 return false; 1970 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1971 return false; 1972 } 1973 1974 return true; 1975 } 1976 1977 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1978 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1979 1980 // Update machine-CFG edges. 1981 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1982 1983 if (I.isUnconditional()) { 1984 // Update machine-CFG edges. 1985 BrMBB->addSuccessor(Succ0MBB); 1986 1987 // If this is not a fall-through branch or optimizations are switched off, 1988 // emit the branch. 1989 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1990 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1991 MVT::Other, getControlRoot(), 1992 DAG.getBasicBlock(Succ0MBB))); 1993 1994 return; 1995 } 1996 1997 // If this condition is one of the special cases we handle, do special stuff 1998 // now. 1999 const Value *CondVal = I.getCondition(); 2000 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2001 2002 // If this is a series of conditions that are or'd or and'd together, emit 2003 // this as a sequence of branches instead of setcc's with and/or operations. 2004 // As long as jumps are not expensive, this should improve performance. 2005 // For example, instead of something like: 2006 // cmp A, B 2007 // C = seteq 2008 // cmp D, E 2009 // F = setle 2010 // or C, F 2011 // jnz foo 2012 // Emit: 2013 // cmp A, B 2014 // je foo 2015 // cmp D, E 2016 // jle foo 2017 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2018 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2019 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2020 !I.getMetadata(LLVMContext::MD_unpredictable) && 2021 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2022 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2023 Opcode, 2024 getEdgeProbability(BrMBB, Succ0MBB), 2025 getEdgeProbability(BrMBB, Succ1MBB), 2026 /*InvertCond=*/false); 2027 // If the compares in later blocks need to use values not currently 2028 // exported from this block, export them now. This block should always 2029 // be the first entry. 2030 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2031 2032 // Allow some cases to be rejected. 2033 if (ShouldEmitAsBranches(SwitchCases)) { 2034 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2035 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2036 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2037 } 2038 2039 // Emit the branch for this block. 2040 visitSwitchCase(SwitchCases[0], BrMBB); 2041 SwitchCases.erase(SwitchCases.begin()); 2042 return; 2043 } 2044 2045 // Okay, we decided not to do this, remove any inserted MBB's and clear 2046 // SwitchCases. 2047 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2048 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2049 2050 SwitchCases.clear(); 2051 } 2052 } 2053 2054 // Create a CaseBlock record representing this branch. 2055 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2056 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2057 2058 // Use visitSwitchCase to actually insert the fast branch sequence for this 2059 // cond branch. 2060 visitSwitchCase(CB, BrMBB); 2061 } 2062 2063 /// visitSwitchCase - Emits the necessary code to represent a single node in 2064 /// the binary search tree resulting from lowering a switch instruction. 2065 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2066 MachineBasicBlock *SwitchBB) { 2067 SDValue Cond; 2068 SDValue CondLHS = getValue(CB.CmpLHS); 2069 SDLoc dl = CB.DL; 2070 2071 // Build the setcc now. 2072 if (!CB.CmpMHS) { 2073 // Fold "(X == true)" to X and "(X == false)" to !X to 2074 // handle common cases produced by branch lowering. 2075 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2076 CB.CC == ISD::SETEQ) 2077 Cond = CondLHS; 2078 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2079 CB.CC == ISD::SETEQ) { 2080 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2081 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2082 } else 2083 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2084 } else { 2085 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2086 2087 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2088 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2089 2090 SDValue CmpOp = getValue(CB.CmpMHS); 2091 EVT VT = CmpOp.getValueType(); 2092 2093 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2094 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2095 ISD::SETLE); 2096 } else { 2097 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2098 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2099 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2100 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2101 } 2102 } 2103 2104 // Update successor info 2105 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2106 // TrueBB and FalseBB are always different unless the incoming IR is 2107 // degenerate. This only happens when running llc on weird IR. 2108 if (CB.TrueBB != CB.FalseBB) 2109 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2110 SwitchBB->normalizeSuccProbs(); 2111 2112 // If the lhs block is the next block, invert the condition so that we can 2113 // fall through to the lhs instead of the rhs block. 2114 if (CB.TrueBB == NextBlock(SwitchBB)) { 2115 std::swap(CB.TrueBB, CB.FalseBB); 2116 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2117 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2118 } 2119 2120 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2121 MVT::Other, getControlRoot(), Cond, 2122 DAG.getBasicBlock(CB.TrueBB)); 2123 2124 // Insert the false branch. Do this even if it's a fall through branch, 2125 // this makes it easier to do DAG optimizations which require inverting 2126 // the branch condition. 2127 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2128 DAG.getBasicBlock(CB.FalseBB)); 2129 2130 DAG.setRoot(BrCond); 2131 } 2132 2133 /// visitJumpTable - Emit JumpTable node in the current MBB 2134 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2135 // Emit the code for the jump table 2136 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2137 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2138 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2139 JT.Reg, PTy); 2140 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2141 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2142 MVT::Other, Index.getValue(1), 2143 Table, Index); 2144 DAG.setRoot(BrJumpTable); 2145 } 2146 2147 /// visitJumpTableHeader - This function emits necessary code to produce index 2148 /// in the JumpTable from switch case. 2149 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2150 JumpTableHeader &JTH, 2151 MachineBasicBlock *SwitchBB) { 2152 SDLoc dl = getCurSDLoc(); 2153 2154 // Subtract the lowest switch case value from the value being switched on and 2155 // conditional branch to default mbb if the result is greater than the 2156 // difference between smallest and largest cases. 2157 SDValue SwitchOp = getValue(JTH.SValue); 2158 EVT VT = SwitchOp.getValueType(); 2159 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2160 DAG.getConstant(JTH.First, dl, VT)); 2161 2162 // The SDNode we just created, which holds the value being switched on minus 2163 // the smallest case value, needs to be copied to a virtual register so it 2164 // can be used as an index into the jump table in a subsequent basic block. 2165 // This value may be smaller or larger than the target's pointer type, and 2166 // therefore require extension or truncating. 2167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2168 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2169 2170 unsigned JumpTableReg = 2171 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2172 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2173 JumpTableReg, SwitchOp); 2174 JT.Reg = JumpTableReg; 2175 2176 // Emit the range check for the jump table, and branch to the default block 2177 // for the switch statement if the value being switched on exceeds the largest 2178 // case in the switch. 2179 SDValue CMP = DAG.getSetCC( 2180 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2181 Sub.getValueType()), 2182 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2183 2184 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2185 MVT::Other, CopyTo, CMP, 2186 DAG.getBasicBlock(JT.Default)); 2187 2188 // Avoid emitting unnecessary branches to the next block. 2189 if (JT.MBB != NextBlock(SwitchBB)) 2190 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2191 DAG.getBasicBlock(JT.MBB)); 2192 2193 DAG.setRoot(BrCond); 2194 } 2195 2196 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2197 /// variable if there exists one. 2198 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2199 SDValue &Chain) { 2200 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2201 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2202 MachineFunction &MF = DAG.getMachineFunction(); 2203 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2204 MachineSDNode *Node = 2205 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2206 if (Global) { 2207 MachinePointerInfo MPInfo(Global); 2208 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2209 MachineMemOperand::MODereferenceable; 2210 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2211 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2212 DAG.setNodeMemRefs(Node, {MemRef}); 2213 } 2214 return SDValue(Node, 0); 2215 } 2216 2217 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2218 /// tail spliced into a stack protector check success bb. 2219 /// 2220 /// For a high level explanation of how this fits into the stack protector 2221 /// generation see the comment on the declaration of class 2222 /// StackProtectorDescriptor. 2223 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2224 MachineBasicBlock *ParentBB) { 2225 2226 // First create the loads to the guard/stack slot for the comparison. 2227 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2228 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2229 2230 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2231 int FI = MFI.getStackProtectorIndex(); 2232 2233 SDValue Guard; 2234 SDLoc dl = getCurSDLoc(); 2235 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2236 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2237 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2238 2239 // Generate code to load the content of the guard slot. 2240 SDValue GuardVal = DAG.getLoad( 2241 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2242 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2243 MachineMemOperand::MOVolatile); 2244 2245 if (TLI.useStackGuardXorFP()) 2246 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2247 2248 // Retrieve guard check function, nullptr if instrumentation is inlined. 2249 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2250 // The target provides a guard check function to validate the guard value. 2251 // Generate a call to that function with the content of the guard slot as 2252 // argument. 2253 auto *Fn = cast<Function>(GuardCheck); 2254 FunctionType *FnTy = Fn->getFunctionType(); 2255 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2256 2257 TargetLowering::ArgListTy Args; 2258 TargetLowering::ArgListEntry Entry; 2259 Entry.Node = GuardVal; 2260 Entry.Ty = FnTy->getParamType(0); 2261 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2262 Entry.IsInReg = true; 2263 Args.push_back(Entry); 2264 2265 TargetLowering::CallLoweringInfo CLI(DAG); 2266 CLI.setDebugLoc(getCurSDLoc()) 2267 .setChain(DAG.getEntryNode()) 2268 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2269 getValue(GuardCheck), std::move(Args)); 2270 2271 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2272 DAG.setRoot(Result.second); 2273 return; 2274 } 2275 2276 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2277 // Otherwise, emit a volatile load to retrieve the stack guard value. 2278 SDValue Chain = DAG.getEntryNode(); 2279 if (TLI.useLoadStackGuardNode()) { 2280 Guard = getLoadStackGuard(DAG, dl, Chain); 2281 } else { 2282 const Value *IRGuard = TLI.getSDagStackGuard(M); 2283 SDValue GuardPtr = getValue(IRGuard); 2284 2285 Guard = 2286 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2287 Align, MachineMemOperand::MOVolatile); 2288 } 2289 2290 // Perform the comparison via a subtract/getsetcc. 2291 EVT VT = Guard.getValueType(); 2292 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2293 2294 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2295 *DAG.getContext(), 2296 Sub.getValueType()), 2297 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2298 2299 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2300 // branch to failure MBB. 2301 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2302 MVT::Other, GuardVal.getOperand(0), 2303 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2304 // Otherwise branch to success MBB. 2305 SDValue Br = DAG.getNode(ISD::BR, dl, 2306 MVT::Other, BrCond, 2307 DAG.getBasicBlock(SPD.getSuccessMBB())); 2308 2309 DAG.setRoot(Br); 2310 } 2311 2312 /// Codegen the failure basic block for a stack protector check. 2313 /// 2314 /// A failure stack protector machine basic block consists simply of a call to 2315 /// __stack_chk_fail(). 2316 /// 2317 /// For a high level explanation of how this fits into the stack protector 2318 /// generation see the comment on the declaration of class 2319 /// StackProtectorDescriptor. 2320 void 2321 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2322 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2323 SDValue Chain = 2324 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2325 None, false, getCurSDLoc(), false, false).second; 2326 DAG.setRoot(Chain); 2327 } 2328 2329 /// visitBitTestHeader - This function emits necessary code to produce value 2330 /// suitable for "bit tests" 2331 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2332 MachineBasicBlock *SwitchBB) { 2333 SDLoc dl = getCurSDLoc(); 2334 2335 // Subtract the minimum value 2336 SDValue SwitchOp = getValue(B.SValue); 2337 EVT VT = SwitchOp.getValueType(); 2338 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2339 DAG.getConstant(B.First, dl, VT)); 2340 2341 // Check range 2342 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2343 SDValue RangeCmp = DAG.getSetCC( 2344 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2345 Sub.getValueType()), 2346 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2347 2348 // Determine the type of the test operands. 2349 bool UsePtrType = false; 2350 if (!TLI.isTypeLegal(VT)) 2351 UsePtrType = true; 2352 else { 2353 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2354 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2355 // Switch table case range are encoded into series of masks. 2356 // Just use pointer type, it's guaranteed to fit. 2357 UsePtrType = true; 2358 break; 2359 } 2360 } 2361 if (UsePtrType) { 2362 VT = TLI.getPointerTy(DAG.getDataLayout()); 2363 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2364 } 2365 2366 B.RegVT = VT.getSimpleVT(); 2367 B.Reg = FuncInfo.CreateReg(B.RegVT); 2368 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2369 2370 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2371 2372 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2373 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2374 SwitchBB->normalizeSuccProbs(); 2375 2376 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2377 MVT::Other, CopyTo, RangeCmp, 2378 DAG.getBasicBlock(B.Default)); 2379 2380 // Avoid emitting unnecessary branches to the next block. 2381 if (MBB != NextBlock(SwitchBB)) 2382 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2383 DAG.getBasicBlock(MBB)); 2384 2385 DAG.setRoot(BrRange); 2386 } 2387 2388 /// visitBitTestCase - this function produces one "bit test" 2389 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2390 MachineBasicBlock* NextMBB, 2391 BranchProbability BranchProbToNext, 2392 unsigned Reg, 2393 BitTestCase &B, 2394 MachineBasicBlock *SwitchBB) { 2395 SDLoc dl = getCurSDLoc(); 2396 MVT VT = BB.RegVT; 2397 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2398 SDValue Cmp; 2399 unsigned PopCount = countPopulation(B.Mask); 2400 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2401 if (PopCount == 1) { 2402 // Testing for a single bit; just compare the shift count with what it 2403 // would need to be to shift a 1 bit in that position. 2404 Cmp = DAG.getSetCC( 2405 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2406 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2407 ISD::SETEQ); 2408 } else if (PopCount == BB.Range) { 2409 // There is only one zero bit in the range, test for it directly. 2410 Cmp = DAG.getSetCC( 2411 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2412 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2413 ISD::SETNE); 2414 } else { 2415 // Make desired shift 2416 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2417 DAG.getConstant(1, dl, VT), ShiftOp); 2418 2419 // Emit bit tests and jumps 2420 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2421 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2422 Cmp = DAG.getSetCC( 2423 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2424 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2425 } 2426 2427 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2428 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2429 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2430 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2431 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2432 // one as they are relative probabilities (and thus work more like weights), 2433 // and hence we need to normalize them to let the sum of them become one. 2434 SwitchBB->normalizeSuccProbs(); 2435 2436 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2437 MVT::Other, getControlRoot(), 2438 Cmp, DAG.getBasicBlock(B.TargetBB)); 2439 2440 // Avoid emitting unnecessary branches to the next block. 2441 if (NextMBB != NextBlock(SwitchBB)) 2442 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2443 DAG.getBasicBlock(NextMBB)); 2444 2445 DAG.setRoot(BrAnd); 2446 } 2447 2448 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2449 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2450 2451 // Retrieve successors. Look through artificial IR level blocks like 2452 // catchswitch for successors. 2453 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2454 const BasicBlock *EHPadBB = I.getSuccessor(1); 2455 2456 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2457 // have to do anything here to lower funclet bundles. 2458 assert(!I.hasOperandBundlesOtherThan( 2459 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2460 "Cannot lower invokes with arbitrary operand bundles yet!"); 2461 2462 const Value *Callee(I.getCalledValue()); 2463 const Function *Fn = dyn_cast<Function>(Callee); 2464 if (isa<InlineAsm>(Callee)) 2465 visitInlineAsm(&I); 2466 else if (Fn && Fn->isIntrinsic()) { 2467 switch (Fn->getIntrinsicID()) { 2468 default: 2469 llvm_unreachable("Cannot invoke this intrinsic"); 2470 case Intrinsic::donothing: 2471 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2472 break; 2473 case Intrinsic::experimental_patchpoint_void: 2474 case Intrinsic::experimental_patchpoint_i64: 2475 visitPatchpoint(&I, EHPadBB); 2476 break; 2477 case Intrinsic::experimental_gc_statepoint: 2478 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2479 break; 2480 } 2481 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2482 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2483 // Eventually we will support lowering the @llvm.experimental.deoptimize 2484 // intrinsic, and right now there are no plans to support other intrinsics 2485 // with deopt state. 2486 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2487 } else { 2488 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2489 } 2490 2491 // If the value of the invoke is used outside of its defining block, make it 2492 // available as a virtual register. 2493 // We already took care of the exported value for the statepoint instruction 2494 // during call to the LowerStatepoint. 2495 if (!isStatepoint(I)) { 2496 CopyToExportRegsIfNeeded(&I); 2497 } 2498 2499 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2500 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2501 BranchProbability EHPadBBProb = 2502 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2503 : BranchProbability::getZero(); 2504 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2505 2506 // Update successor info. 2507 addSuccessorWithProb(InvokeMBB, Return); 2508 for (auto &UnwindDest : UnwindDests) { 2509 UnwindDest.first->setIsEHPad(); 2510 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2511 } 2512 InvokeMBB->normalizeSuccProbs(); 2513 2514 // Drop into normal successor. 2515 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2516 MVT::Other, getControlRoot(), 2517 DAG.getBasicBlock(Return))); 2518 } 2519 2520 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2521 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2522 } 2523 2524 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2525 assert(FuncInfo.MBB->isEHPad() && 2526 "Call to landingpad not in landing pad!"); 2527 2528 MachineBasicBlock *MBB = FuncInfo.MBB; 2529 addLandingPadInfo(LP, *MBB); 2530 2531 // If there aren't registers to copy the values into (e.g., during SjLj 2532 // exceptions), then don't bother to create these DAG nodes. 2533 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2534 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2535 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2536 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2537 return; 2538 2539 // If landingpad's return type is token type, we don't create DAG nodes 2540 // for its exception pointer and selector value. The extraction of exception 2541 // pointer or selector value from token type landingpads is not currently 2542 // supported. 2543 if (LP.getType()->isTokenTy()) 2544 return; 2545 2546 SmallVector<EVT, 2> ValueVTs; 2547 SDLoc dl = getCurSDLoc(); 2548 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2549 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2550 2551 // Get the two live-in registers as SDValues. The physregs have already been 2552 // copied into virtual registers. 2553 SDValue Ops[2]; 2554 if (FuncInfo.ExceptionPointerVirtReg) { 2555 Ops[0] = DAG.getZExtOrTrunc( 2556 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2557 FuncInfo.ExceptionPointerVirtReg, 2558 TLI.getPointerTy(DAG.getDataLayout())), 2559 dl, ValueVTs[0]); 2560 } else { 2561 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2562 } 2563 Ops[1] = DAG.getZExtOrTrunc( 2564 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2565 FuncInfo.ExceptionSelectorVirtReg, 2566 TLI.getPointerTy(DAG.getDataLayout())), 2567 dl, ValueVTs[1]); 2568 2569 // Merge into one. 2570 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2571 DAG.getVTList(ValueVTs), Ops); 2572 setValue(&LP, Res); 2573 } 2574 2575 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2576 #ifndef NDEBUG 2577 for (const CaseCluster &CC : Clusters) 2578 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2579 #endif 2580 2581 llvm::sort(Clusters.begin(), Clusters.end(), 2582 [](const CaseCluster &a, const CaseCluster &b) { 2583 return a.Low->getValue().slt(b.Low->getValue()); 2584 }); 2585 2586 // Merge adjacent clusters with the same destination. 2587 const unsigned N = Clusters.size(); 2588 unsigned DstIndex = 0; 2589 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2590 CaseCluster &CC = Clusters[SrcIndex]; 2591 const ConstantInt *CaseVal = CC.Low; 2592 MachineBasicBlock *Succ = CC.MBB; 2593 2594 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2595 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2596 // If this case has the same successor and is a neighbour, merge it into 2597 // the previous cluster. 2598 Clusters[DstIndex - 1].High = CaseVal; 2599 Clusters[DstIndex - 1].Prob += CC.Prob; 2600 } else { 2601 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2602 sizeof(Clusters[SrcIndex])); 2603 } 2604 } 2605 Clusters.resize(DstIndex); 2606 } 2607 2608 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2609 MachineBasicBlock *Last) { 2610 // Update JTCases. 2611 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2612 if (JTCases[i].first.HeaderBB == First) 2613 JTCases[i].first.HeaderBB = Last; 2614 2615 // Update BitTestCases. 2616 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2617 if (BitTestCases[i].Parent == First) 2618 BitTestCases[i].Parent = Last; 2619 } 2620 2621 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2622 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2623 2624 // Update machine-CFG edges with unique successors. 2625 SmallSet<BasicBlock*, 32> Done; 2626 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2627 BasicBlock *BB = I.getSuccessor(i); 2628 bool Inserted = Done.insert(BB).second; 2629 if (!Inserted) 2630 continue; 2631 2632 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2633 addSuccessorWithProb(IndirectBrMBB, Succ); 2634 } 2635 IndirectBrMBB->normalizeSuccProbs(); 2636 2637 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2638 MVT::Other, getControlRoot(), 2639 getValue(I.getAddress()))); 2640 } 2641 2642 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2643 if (!DAG.getTarget().Options.TrapUnreachable) 2644 return; 2645 2646 // We may be able to ignore unreachable behind a noreturn call. 2647 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2648 const BasicBlock &BB = *I.getParent(); 2649 if (&I != &BB.front()) { 2650 BasicBlock::const_iterator PredI = 2651 std::prev(BasicBlock::const_iterator(&I)); 2652 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2653 if (Call->doesNotReturn()) 2654 return; 2655 } 2656 } 2657 } 2658 2659 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2660 } 2661 2662 void SelectionDAGBuilder::visitFSub(const User &I) { 2663 // -0.0 - X --> fneg 2664 Type *Ty = I.getType(); 2665 if (isa<Constant>(I.getOperand(0)) && 2666 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2667 SDValue Op2 = getValue(I.getOperand(1)); 2668 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2669 Op2.getValueType(), Op2)); 2670 return; 2671 } 2672 2673 visitBinary(I, ISD::FSUB); 2674 } 2675 2676 /// Checks if the given instruction performs a vector reduction, in which case 2677 /// we have the freedom to alter the elements in the result as long as the 2678 /// reduction of them stays unchanged. 2679 static bool isVectorReductionOp(const User *I) { 2680 const Instruction *Inst = dyn_cast<Instruction>(I); 2681 if (!Inst || !Inst->getType()->isVectorTy()) 2682 return false; 2683 2684 auto OpCode = Inst->getOpcode(); 2685 switch (OpCode) { 2686 case Instruction::Add: 2687 case Instruction::Mul: 2688 case Instruction::And: 2689 case Instruction::Or: 2690 case Instruction::Xor: 2691 break; 2692 case Instruction::FAdd: 2693 case Instruction::FMul: 2694 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2695 if (FPOp->getFastMathFlags().isFast()) 2696 break; 2697 LLVM_FALLTHROUGH; 2698 default: 2699 return false; 2700 } 2701 2702 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2703 // Ensure the reduction size is a power of 2. 2704 if (!isPowerOf2_32(ElemNum)) 2705 return false; 2706 2707 unsigned ElemNumToReduce = ElemNum; 2708 2709 // Do DFS search on the def-use chain from the given instruction. We only 2710 // allow four kinds of operations during the search until we reach the 2711 // instruction that extracts the first element from the vector: 2712 // 2713 // 1. The reduction operation of the same opcode as the given instruction. 2714 // 2715 // 2. PHI node. 2716 // 2717 // 3. ShuffleVector instruction together with a reduction operation that 2718 // does a partial reduction. 2719 // 2720 // 4. ExtractElement that extracts the first element from the vector, and we 2721 // stop searching the def-use chain here. 2722 // 2723 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2724 // from 1-3 to the stack to continue the DFS. The given instruction is not 2725 // a reduction operation if we meet any other instructions other than those 2726 // listed above. 2727 2728 SmallVector<const User *, 16> UsersToVisit{Inst}; 2729 SmallPtrSet<const User *, 16> Visited; 2730 bool ReduxExtracted = false; 2731 2732 while (!UsersToVisit.empty()) { 2733 auto User = UsersToVisit.back(); 2734 UsersToVisit.pop_back(); 2735 if (!Visited.insert(User).second) 2736 continue; 2737 2738 for (const auto &U : User->users()) { 2739 auto Inst = dyn_cast<Instruction>(U); 2740 if (!Inst) 2741 return false; 2742 2743 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2744 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2745 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2746 return false; 2747 UsersToVisit.push_back(U); 2748 } else if (const ShuffleVectorInst *ShufInst = 2749 dyn_cast<ShuffleVectorInst>(U)) { 2750 // Detect the following pattern: A ShuffleVector instruction together 2751 // with a reduction that do partial reduction on the first and second 2752 // ElemNumToReduce / 2 elements, and store the result in 2753 // ElemNumToReduce / 2 elements in another vector. 2754 2755 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2756 if (ResultElements < ElemNum) 2757 return false; 2758 2759 if (ElemNumToReduce == 1) 2760 return false; 2761 if (!isa<UndefValue>(U->getOperand(1))) 2762 return false; 2763 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2764 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2765 return false; 2766 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2767 if (ShufInst->getMaskValue(i) != -1) 2768 return false; 2769 2770 // There is only one user of this ShuffleVector instruction, which 2771 // must be a reduction operation. 2772 if (!U->hasOneUse()) 2773 return false; 2774 2775 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2776 if (!U2 || U2->getOpcode() != OpCode) 2777 return false; 2778 2779 // Check operands of the reduction operation. 2780 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2781 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2782 UsersToVisit.push_back(U2); 2783 ElemNumToReduce /= 2; 2784 } else 2785 return false; 2786 } else if (isa<ExtractElementInst>(U)) { 2787 // At this moment we should have reduced all elements in the vector. 2788 if (ElemNumToReduce != 1) 2789 return false; 2790 2791 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2792 if (!Val || !Val->isZero()) 2793 return false; 2794 2795 ReduxExtracted = true; 2796 } else 2797 return false; 2798 } 2799 } 2800 return ReduxExtracted; 2801 } 2802 2803 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 2804 SDNodeFlags Flags; 2805 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 2806 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 2807 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 2808 } 2809 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 2810 Flags.setExact(ExactOp->isExact()); 2811 } 2812 if (isVectorReductionOp(&I)) { 2813 Flags.setVectorReduction(true); 2814 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2815 } 2816 2817 SDValue Op1 = getValue(I.getOperand(0)); 2818 SDValue Op2 = getValue(I.getOperand(1)); 2819 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 2820 Op1, Op2, Flags); 2821 setValue(&I, BinNodeValue); 2822 } 2823 2824 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2825 SDValue Op1 = getValue(I.getOperand(0)); 2826 SDValue Op2 = getValue(I.getOperand(1)); 2827 2828 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2829 Op2.getValueType(), DAG.getDataLayout()); 2830 2831 // Coerce the shift amount to the right type if we can. 2832 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2833 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2834 unsigned Op2Size = Op2.getValueSizeInBits(); 2835 SDLoc DL = getCurSDLoc(); 2836 2837 // If the operand is smaller than the shift count type, promote it. 2838 if (ShiftSize > Op2Size) 2839 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2840 2841 // If the operand is larger than the shift count type but the shift 2842 // count type has enough bits to represent any shift value, truncate 2843 // it now. This is a common case and it exposes the truncate to 2844 // optimization early. 2845 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2846 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2847 // Otherwise we'll need to temporarily settle for some other convenient 2848 // type. Type legalization will make adjustments once the shiftee is split. 2849 else 2850 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2851 } 2852 2853 bool nuw = false; 2854 bool nsw = false; 2855 bool exact = false; 2856 2857 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2858 2859 if (const OverflowingBinaryOperator *OFBinOp = 2860 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2861 nuw = OFBinOp->hasNoUnsignedWrap(); 2862 nsw = OFBinOp->hasNoSignedWrap(); 2863 } 2864 if (const PossiblyExactOperator *ExactOp = 2865 dyn_cast<const PossiblyExactOperator>(&I)) 2866 exact = ExactOp->isExact(); 2867 } 2868 SDNodeFlags Flags; 2869 Flags.setExact(exact); 2870 Flags.setNoSignedWrap(nsw); 2871 Flags.setNoUnsignedWrap(nuw); 2872 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2873 Flags); 2874 setValue(&I, Res); 2875 } 2876 2877 void SelectionDAGBuilder::visitSDiv(const User &I) { 2878 SDValue Op1 = getValue(I.getOperand(0)); 2879 SDValue Op2 = getValue(I.getOperand(1)); 2880 2881 SDNodeFlags Flags; 2882 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2883 cast<PossiblyExactOperator>(&I)->isExact()); 2884 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2885 Op2, Flags)); 2886 } 2887 2888 void SelectionDAGBuilder::visitICmp(const User &I) { 2889 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2890 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2891 predicate = IC->getPredicate(); 2892 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2893 predicate = ICmpInst::Predicate(IC->getPredicate()); 2894 SDValue Op1 = getValue(I.getOperand(0)); 2895 SDValue Op2 = getValue(I.getOperand(1)); 2896 ISD::CondCode Opcode = getICmpCondCode(predicate); 2897 2898 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2899 I.getType()); 2900 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2901 } 2902 2903 void SelectionDAGBuilder::visitFCmp(const User &I) { 2904 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2905 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2906 predicate = FC->getPredicate(); 2907 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2908 predicate = FCmpInst::Predicate(FC->getPredicate()); 2909 SDValue Op1 = getValue(I.getOperand(0)); 2910 SDValue Op2 = getValue(I.getOperand(1)); 2911 2912 ISD::CondCode Condition = getFCmpCondCode(predicate); 2913 auto *FPMO = dyn_cast<FPMathOperator>(&I); 2914 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 2915 Condition = getFCmpCodeWithoutNaN(Condition); 2916 2917 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2918 I.getType()); 2919 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2920 } 2921 2922 // Check if the condition of the select has one use or two users that are both 2923 // selects with the same condition. 2924 static bool hasOnlySelectUsers(const Value *Cond) { 2925 return llvm::all_of(Cond->users(), [](const Value *V) { 2926 return isa<SelectInst>(V); 2927 }); 2928 } 2929 2930 void SelectionDAGBuilder::visitSelect(const User &I) { 2931 SmallVector<EVT, 4> ValueVTs; 2932 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2933 ValueVTs); 2934 unsigned NumValues = ValueVTs.size(); 2935 if (NumValues == 0) return; 2936 2937 SmallVector<SDValue, 4> Values(NumValues); 2938 SDValue Cond = getValue(I.getOperand(0)); 2939 SDValue LHSVal = getValue(I.getOperand(1)); 2940 SDValue RHSVal = getValue(I.getOperand(2)); 2941 auto BaseOps = {Cond}; 2942 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2943 ISD::VSELECT : ISD::SELECT; 2944 2945 // Min/max matching is only viable if all output VTs are the same. 2946 if (is_splat(ValueVTs)) { 2947 EVT VT = ValueVTs[0]; 2948 LLVMContext &Ctx = *DAG.getContext(); 2949 auto &TLI = DAG.getTargetLoweringInfo(); 2950 2951 // We care about the legality of the operation after it has been type 2952 // legalized. 2953 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2954 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2955 VT = TLI.getTypeToTransformTo(Ctx, VT); 2956 2957 // If the vselect is legal, assume we want to leave this as a vector setcc + 2958 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2959 // min/max is legal on the scalar type. 2960 bool UseScalarMinMax = VT.isVector() && 2961 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2962 2963 Value *LHS, *RHS; 2964 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2965 ISD::NodeType Opc = ISD::DELETED_NODE; 2966 switch (SPR.Flavor) { 2967 case SPF_UMAX: Opc = ISD::UMAX; break; 2968 case SPF_UMIN: Opc = ISD::UMIN; break; 2969 case SPF_SMAX: Opc = ISD::SMAX; break; 2970 case SPF_SMIN: Opc = ISD::SMIN; break; 2971 case SPF_FMINNUM: 2972 switch (SPR.NaNBehavior) { 2973 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2974 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2975 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2976 case SPNB_RETURNS_ANY: { 2977 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2978 Opc = ISD::FMINNUM; 2979 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2980 Opc = ISD::FMINNAN; 2981 else if (UseScalarMinMax) 2982 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2983 ISD::FMINNUM : ISD::FMINNAN; 2984 break; 2985 } 2986 } 2987 break; 2988 case SPF_FMAXNUM: 2989 switch (SPR.NaNBehavior) { 2990 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2991 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2992 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2993 case SPNB_RETURNS_ANY: 2994 2995 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2996 Opc = ISD::FMAXNUM; 2997 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2998 Opc = ISD::FMAXNAN; 2999 else if (UseScalarMinMax) 3000 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3001 ISD::FMAXNUM : ISD::FMAXNAN; 3002 break; 3003 } 3004 break; 3005 default: break; 3006 } 3007 3008 if (Opc != ISD::DELETED_NODE && 3009 (TLI.isOperationLegalOrCustom(Opc, VT) || 3010 (UseScalarMinMax && 3011 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3012 // If the underlying comparison instruction is used by any other 3013 // instruction, the consumed instructions won't be destroyed, so it is 3014 // not profitable to convert to a min/max. 3015 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3016 OpCode = Opc; 3017 LHSVal = getValue(LHS); 3018 RHSVal = getValue(RHS); 3019 BaseOps = {}; 3020 } 3021 } 3022 3023 for (unsigned i = 0; i != NumValues; ++i) { 3024 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3025 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3026 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3027 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 3028 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 3029 Ops); 3030 } 3031 3032 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3033 DAG.getVTList(ValueVTs), Values)); 3034 } 3035 3036 void SelectionDAGBuilder::visitTrunc(const User &I) { 3037 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3038 SDValue N = getValue(I.getOperand(0)); 3039 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3040 I.getType()); 3041 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3042 } 3043 3044 void SelectionDAGBuilder::visitZExt(const User &I) { 3045 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3046 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3047 SDValue N = getValue(I.getOperand(0)); 3048 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3049 I.getType()); 3050 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3051 } 3052 3053 void SelectionDAGBuilder::visitSExt(const User &I) { 3054 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3055 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3056 SDValue N = getValue(I.getOperand(0)); 3057 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3058 I.getType()); 3059 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3060 } 3061 3062 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3063 // FPTrunc is never a no-op cast, no need to check 3064 SDValue N = getValue(I.getOperand(0)); 3065 SDLoc dl = getCurSDLoc(); 3066 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3067 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3068 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3069 DAG.getTargetConstant( 3070 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3071 } 3072 3073 void SelectionDAGBuilder::visitFPExt(const User &I) { 3074 // FPExt is never a no-op cast, no need to check 3075 SDValue N = getValue(I.getOperand(0)); 3076 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3077 I.getType()); 3078 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3079 } 3080 3081 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3082 // FPToUI is never a no-op cast, no need to check 3083 SDValue N = getValue(I.getOperand(0)); 3084 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3085 I.getType()); 3086 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3087 } 3088 3089 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3090 // FPToSI is never a no-op cast, no need to check 3091 SDValue N = getValue(I.getOperand(0)); 3092 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3093 I.getType()); 3094 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3095 } 3096 3097 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3098 // UIToFP is never a no-op cast, no need to check 3099 SDValue N = getValue(I.getOperand(0)); 3100 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3101 I.getType()); 3102 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3103 } 3104 3105 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3106 // SIToFP is never a no-op cast, no need to check 3107 SDValue N = getValue(I.getOperand(0)); 3108 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3109 I.getType()); 3110 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3111 } 3112 3113 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3114 // What to do depends on the size of the integer and the size of the pointer. 3115 // We can either truncate, zero extend, or no-op, accordingly. 3116 SDValue N = getValue(I.getOperand(0)); 3117 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3118 I.getType()); 3119 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3120 } 3121 3122 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3123 // What to do depends on the size of the integer and the size of the pointer. 3124 // We can either truncate, zero extend, or no-op, accordingly. 3125 SDValue N = getValue(I.getOperand(0)); 3126 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3127 I.getType()); 3128 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3129 } 3130 3131 void SelectionDAGBuilder::visitBitCast(const User &I) { 3132 SDValue N = getValue(I.getOperand(0)); 3133 SDLoc dl = getCurSDLoc(); 3134 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3135 I.getType()); 3136 3137 // BitCast assures us that source and destination are the same size so this is 3138 // either a BITCAST or a no-op. 3139 if (DestVT != N.getValueType()) 3140 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3141 DestVT, N)); // convert types. 3142 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3143 // might fold any kind of constant expression to an integer constant and that 3144 // is not what we are looking for. Only recognize a bitcast of a genuine 3145 // constant integer as an opaque constant. 3146 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3147 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3148 /*isOpaque*/true)); 3149 else 3150 setValue(&I, N); // noop cast. 3151 } 3152 3153 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3154 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3155 const Value *SV = I.getOperand(0); 3156 SDValue N = getValue(SV); 3157 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3158 3159 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3160 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3161 3162 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3163 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3164 3165 setValue(&I, N); 3166 } 3167 3168 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3169 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3170 SDValue InVec = getValue(I.getOperand(0)); 3171 SDValue InVal = getValue(I.getOperand(1)); 3172 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3173 TLI.getVectorIdxTy(DAG.getDataLayout())); 3174 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3175 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3176 InVec, InVal, InIdx)); 3177 } 3178 3179 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3180 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3181 SDValue InVec = getValue(I.getOperand(0)); 3182 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3183 TLI.getVectorIdxTy(DAG.getDataLayout())); 3184 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3185 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3186 InVec, InIdx)); 3187 } 3188 3189 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3190 SDValue Src1 = getValue(I.getOperand(0)); 3191 SDValue Src2 = getValue(I.getOperand(1)); 3192 SDLoc DL = getCurSDLoc(); 3193 3194 SmallVector<int, 8> Mask; 3195 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3196 unsigned MaskNumElts = Mask.size(); 3197 3198 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3199 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3200 EVT SrcVT = Src1.getValueType(); 3201 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3202 3203 if (SrcNumElts == MaskNumElts) { 3204 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3205 return; 3206 } 3207 3208 // Normalize the shuffle vector since mask and vector length don't match. 3209 if (SrcNumElts < MaskNumElts) { 3210 // Mask is longer than the source vectors. We can use concatenate vector to 3211 // make the mask and vectors lengths match. 3212 3213 if (MaskNumElts % SrcNumElts == 0) { 3214 // Mask length is a multiple of the source vector length. 3215 // Check if the shuffle is some kind of concatenation of the input 3216 // vectors. 3217 unsigned NumConcat = MaskNumElts / SrcNumElts; 3218 bool IsConcat = true; 3219 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3220 for (unsigned i = 0; i != MaskNumElts; ++i) { 3221 int Idx = Mask[i]; 3222 if (Idx < 0) 3223 continue; 3224 // Ensure the indices in each SrcVT sized piece are sequential and that 3225 // the same source is used for the whole piece. 3226 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3227 (ConcatSrcs[i / SrcNumElts] >= 0 && 3228 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3229 IsConcat = false; 3230 break; 3231 } 3232 // Remember which source this index came from. 3233 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3234 } 3235 3236 // The shuffle is concatenating multiple vectors together. Just emit 3237 // a CONCAT_VECTORS operation. 3238 if (IsConcat) { 3239 SmallVector<SDValue, 8> ConcatOps; 3240 for (auto Src : ConcatSrcs) { 3241 if (Src < 0) 3242 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3243 else if (Src == 0) 3244 ConcatOps.push_back(Src1); 3245 else 3246 ConcatOps.push_back(Src2); 3247 } 3248 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3249 return; 3250 } 3251 } 3252 3253 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3254 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3255 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3256 PaddedMaskNumElts); 3257 3258 // Pad both vectors with undefs to make them the same length as the mask. 3259 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3260 3261 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3262 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3263 MOps1[0] = Src1; 3264 MOps2[0] = Src2; 3265 3266 Src1 = Src1.isUndef() 3267 ? DAG.getUNDEF(PaddedVT) 3268 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3269 Src2 = Src2.isUndef() 3270 ? DAG.getUNDEF(PaddedVT) 3271 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3272 3273 // Readjust mask for new input vector length. 3274 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3275 for (unsigned i = 0; i != MaskNumElts; ++i) { 3276 int Idx = Mask[i]; 3277 if (Idx >= (int)SrcNumElts) 3278 Idx -= SrcNumElts - PaddedMaskNumElts; 3279 MappedOps[i] = Idx; 3280 } 3281 3282 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3283 3284 // If the concatenated vector was padded, extract a subvector with the 3285 // correct number of elements. 3286 if (MaskNumElts != PaddedMaskNumElts) 3287 Result = DAG.getNode( 3288 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3289 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3290 3291 setValue(&I, Result); 3292 return; 3293 } 3294 3295 if (SrcNumElts > MaskNumElts) { 3296 // Analyze the access pattern of the vector to see if we can extract 3297 // two subvectors and do the shuffle. 3298 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3299 bool CanExtract = true; 3300 for (int Idx : Mask) { 3301 unsigned Input = 0; 3302 if (Idx < 0) 3303 continue; 3304 3305 if (Idx >= (int)SrcNumElts) { 3306 Input = 1; 3307 Idx -= SrcNumElts; 3308 } 3309 3310 // If all the indices come from the same MaskNumElts sized portion of 3311 // the sources we can use extract. Also make sure the extract wouldn't 3312 // extract past the end of the source. 3313 int NewStartIdx = alignDown(Idx, MaskNumElts); 3314 if (NewStartIdx + MaskNumElts > SrcNumElts || 3315 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3316 CanExtract = false; 3317 // Make sure we always update StartIdx as we use it to track if all 3318 // elements are undef. 3319 StartIdx[Input] = NewStartIdx; 3320 } 3321 3322 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3323 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3324 return; 3325 } 3326 if (CanExtract) { 3327 // Extract appropriate subvector and generate a vector shuffle 3328 for (unsigned Input = 0; Input < 2; ++Input) { 3329 SDValue &Src = Input == 0 ? Src1 : Src2; 3330 if (StartIdx[Input] < 0) 3331 Src = DAG.getUNDEF(VT); 3332 else { 3333 Src = DAG.getNode( 3334 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3335 DAG.getConstant(StartIdx[Input], DL, 3336 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3337 } 3338 } 3339 3340 // Calculate new mask. 3341 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3342 for (int &Idx : MappedOps) { 3343 if (Idx >= (int)SrcNumElts) 3344 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3345 else if (Idx >= 0) 3346 Idx -= StartIdx[0]; 3347 } 3348 3349 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3350 return; 3351 } 3352 } 3353 3354 // We can't use either concat vectors or extract subvectors so fall back to 3355 // replacing the shuffle with extract and build vector. 3356 // to insert and build vector. 3357 EVT EltVT = VT.getVectorElementType(); 3358 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3359 SmallVector<SDValue,8> Ops; 3360 for (int Idx : Mask) { 3361 SDValue Res; 3362 3363 if (Idx < 0) { 3364 Res = DAG.getUNDEF(EltVT); 3365 } else { 3366 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3367 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3368 3369 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3370 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3371 } 3372 3373 Ops.push_back(Res); 3374 } 3375 3376 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3377 } 3378 3379 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3380 ArrayRef<unsigned> Indices; 3381 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3382 Indices = IV->getIndices(); 3383 else 3384 Indices = cast<ConstantExpr>(&I)->getIndices(); 3385 3386 const Value *Op0 = I.getOperand(0); 3387 const Value *Op1 = I.getOperand(1); 3388 Type *AggTy = I.getType(); 3389 Type *ValTy = Op1->getType(); 3390 bool IntoUndef = isa<UndefValue>(Op0); 3391 bool FromUndef = isa<UndefValue>(Op1); 3392 3393 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3394 3395 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3396 SmallVector<EVT, 4> AggValueVTs; 3397 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3398 SmallVector<EVT, 4> ValValueVTs; 3399 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3400 3401 unsigned NumAggValues = AggValueVTs.size(); 3402 unsigned NumValValues = ValValueVTs.size(); 3403 SmallVector<SDValue, 4> Values(NumAggValues); 3404 3405 // Ignore an insertvalue that produces an empty object 3406 if (!NumAggValues) { 3407 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3408 return; 3409 } 3410 3411 SDValue Agg = getValue(Op0); 3412 unsigned i = 0; 3413 // Copy the beginning value(s) from the original aggregate. 3414 for (; i != LinearIndex; ++i) 3415 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3416 SDValue(Agg.getNode(), Agg.getResNo() + i); 3417 // Copy values from the inserted value(s). 3418 if (NumValValues) { 3419 SDValue Val = getValue(Op1); 3420 for (; i != LinearIndex + NumValValues; ++i) 3421 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3422 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3423 } 3424 // Copy remaining value(s) from the original aggregate. 3425 for (; i != NumAggValues; ++i) 3426 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3427 SDValue(Agg.getNode(), Agg.getResNo() + i); 3428 3429 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3430 DAG.getVTList(AggValueVTs), Values)); 3431 } 3432 3433 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3434 ArrayRef<unsigned> Indices; 3435 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3436 Indices = EV->getIndices(); 3437 else 3438 Indices = cast<ConstantExpr>(&I)->getIndices(); 3439 3440 const Value *Op0 = I.getOperand(0); 3441 Type *AggTy = Op0->getType(); 3442 Type *ValTy = I.getType(); 3443 bool OutOfUndef = isa<UndefValue>(Op0); 3444 3445 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3446 3447 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3448 SmallVector<EVT, 4> ValValueVTs; 3449 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3450 3451 unsigned NumValValues = ValValueVTs.size(); 3452 3453 // Ignore a extractvalue that produces an empty object 3454 if (!NumValValues) { 3455 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3456 return; 3457 } 3458 3459 SmallVector<SDValue, 4> Values(NumValValues); 3460 3461 SDValue Agg = getValue(Op0); 3462 // Copy out the selected value(s). 3463 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3464 Values[i - LinearIndex] = 3465 OutOfUndef ? 3466 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3467 SDValue(Agg.getNode(), Agg.getResNo() + i); 3468 3469 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3470 DAG.getVTList(ValValueVTs), Values)); 3471 } 3472 3473 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3474 Value *Op0 = I.getOperand(0); 3475 // Note that the pointer operand may be a vector of pointers. Take the scalar 3476 // element which holds a pointer. 3477 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3478 SDValue N = getValue(Op0); 3479 SDLoc dl = getCurSDLoc(); 3480 3481 // Normalize Vector GEP - all scalar operands should be converted to the 3482 // splat vector. 3483 unsigned VectorWidth = I.getType()->isVectorTy() ? 3484 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3485 3486 if (VectorWidth && !N.getValueType().isVector()) { 3487 LLVMContext &Context = *DAG.getContext(); 3488 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3489 N = DAG.getSplatBuildVector(VT, dl, N); 3490 } 3491 3492 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3493 GTI != E; ++GTI) { 3494 const Value *Idx = GTI.getOperand(); 3495 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3496 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3497 if (Field) { 3498 // N = N + Offset 3499 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3500 3501 // In an inbounds GEP with an offset that is nonnegative even when 3502 // interpreted as signed, assume there is no unsigned overflow. 3503 SDNodeFlags Flags; 3504 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3505 Flags.setNoUnsignedWrap(true); 3506 3507 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3508 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3509 } 3510 } else { 3511 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3512 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3513 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3514 3515 // If this is a scalar constant or a splat vector of constants, 3516 // handle it quickly. 3517 const auto *CI = dyn_cast<ConstantInt>(Idx); 3518 if (!CI && isa<ConstantDataVector>(Idx) && 3519 cast<ConstantDataVector>(Idx)->getSplatValue()) 3520 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3521 3522 if (CI) { 3523 if (CI->isZero()) 3524 continue; 3525 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3526 LLVMContext &Context = *DAG.getContext(); 3527 SDValue OffsVal = VectorWidth ? 3528 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3529 DAG.getConstant(Offs, dl, IdxTy); 3530 3531 // In an inbouds GEP with an offset that is nonnegative even when 3532 // interpreted as signed, assume there is no unsigned overflow. 3533 SDNodeFlags Flags; 3534 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3535 Flags.setNoUnsignedWrap(true); 3536 3537 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3538 continue; 3539 } 3540 3541 // N = N + Idx * ElementSize; 3542 SDValue IdxN = getValue(Idx); 3543 3544 if (!IdxN.getValueType().isVector() && VectorWidth) { 3545 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3546 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3547 } 3548 3549 // If the index is smaller or larger than intptr_t, truncate or extend 3550 // it. 3551 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3552 3553 // If this is a multiply by a power of two, turn it into a shl 3554 // immediately. This is a very common case. 3555 if (ElementSize != 1) { 3556 if (ElementSize.isPowerOf2()) { 3557 unsigned Amt = ElementSize.logBase2(); 3558 IdxN = DAG.getNode(ISD::SHL, dl, 3559 N.getValueType(), IdxN, 3560 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3561 } else { 3562 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3563 IdxN = DAG.getNode(ISD::MUL, dl, 3564 N.getValueType(), IdxN, Scale); 3565 } 3566 } 3567 3568 N = DAG.getNode(ISD::ADD, dl, 3569 N.getValueType(), N, IdxN); 3570 } 3571 } 3572 3573 setValue(&I, N); 3574 } 3575 3576 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3577 // If this is a fixed sized alloca in the entry block of the function, 3578 // allocate it statically on the stack. 3579 if (FuncInfo.StaticAllocaMap.count(&I)) 3580 return; // getValue will auto-populate this. 3581 3582 SDLoc dl = getCurSDLoc(); 3583 Type *Ty = I.getAllocatedType(); 3584 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3585 auto &DL = DAG.getDataLayout(); 3586 uint64_t TySize = DL.getTypeAllocSize(Ty); 3587 unsigned Align = 3588 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3589 3590 SDValue AllocSize = getValue(I.getArraySize()); 3591 3592 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3593 if (AllocSize.getValueType() != IntPtr) 3594 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3595 3596 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3597 AllocSize, 3598 DAG.getConstant(TySize, dl, IntPtr)); 3599 3600 // Handle alignment. If the requested alignment is less than or equal to 3601 // the stack alignment, ignore it. If the size is greater than or equal to 3602 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3603 unsigned StackAlign = 3604 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3605 if (Align <= StackAlign) 3606 Align = 0; 3607 3608 // Round the size of the allocation up to the stack alignment size 3609 // by add SA-1 to the size. This doesn't overflow because we're computing 3610 // an address inside an alloca. 3611 SDNodeFlags Flags; 3612 Flags.setNoUnsignedWrap(true); 3613 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3614 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3615 3616 // Mask out the low bits for alignment purposes. 3617 AllocSize = 3618 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3619 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3620 3621 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3622 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3623 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3624 setValue(&I, DSA); 3625 DAG.setRoot(DSA.getValue(1)); 3626 3627 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3628 } 3629 3630 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3631 if (I.isAtomic()) 3632 return visitAtomicLoad(I); 3633 3634 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3635 const Value *SV = I.getOperand(0); 3636 if (TLI.supportSwiftError()) { 3637 // Swifterror values can come from either a function parameter with 3638 // swifterror attribute or an alloca with swifterror attribute. 3639 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3640 if (Arg->hasSwiftErrorAttr()) 3641 return visitLoadFromSwiftError(I); 3642 } 3643 3644 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3645 if (Alloca->isSwiftError()) 3646 return visitLoadFromSwiftError(I); 3647 } 3648 } 3649 3650 SDValue Ptr = getValue(SV); 3651 3652 Type *Ty = I.getType(); 3653 3654 bool isVolatile = I.isVolatile(); 3655 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3656 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3657 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3658 unsigned Alignment = I.getAlignment(); 3659 3660 AAMDNodes AAInfo; 3661 I.getAAMetadata(AAInfo); 3662 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3663 3664 SmallVector<EVT, 4> ValueVTs; 3665 SmallVector<uint64_t, 4> Offsets; 3666 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3667 unsigned NumValues = ValueVTs.size(); 3668 if (NumValues == 0) 3669 return; 3670 3671 SDValue Root; 3672 bool ConstantMemory = false; 3673 if (isVolatile || NumValues > MaxParallelChains) 3674 // Serialize volatile loads with other side effects. 3675 Root = getRoot(); 3676 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3677 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3678 // Do not serialize (non-volatile) loads of constant memory with anything. 3679 Root = DAG.getEntryNode(); 3680 ConstantMemory = true; 3681 } else { 3682 // Do not serialize non-volatile loads against each other. 3683 Root = DAG.getRoot(); 3684 } 3685 3686 SDLoc dl = getCurSDLoc(); 3687 3688 if (isVolatile) 3689 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3690 3691 // An aggregate load cannot wrap around the address space, so offsets to its 3692 // parts don't wrap either. 3693 SDNodeFlags Flags; 3694 Flags.setNoUnsignedWrap(true); 3695 3696 SmallVector<SDValue, 4> Values(NumValues); 3697 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3698 EVT PtrVT = Ptr.getValueType(); 3699 unsigned ChainI = 0; 3700 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3701 // Serializing loads here may result in excessive register pressure, and 3702 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3703 // could recover a bit by hoisting nodes upward in the chain by recognizing 3704 // they are side-effect free or do not alias. The optimizer should really 3705 // avoid this case by converting large object/array copies to llvm.memcpy 3706 // (MaxParallelChains should always remain as failsafe). 3707 if (ChainI == MaxParallelChains) { 3708 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3709 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3710 makeArrayRef(Chains.data(), ChainI)); 3711 Root = Chain; 3712 ChainI = 0; 3713 } 3714 SDValue A = DAG.getNode(ISD::ADD, dl, 3715 PtrVT, Ptr, 3716 DAG.getConstant(Offsets[i], dl, PtrVT), 3717 Flags); 3718 auto MMOFlags = MachineMemOperand::MONone; 3719 if (isVolatile) 3720 MMOFlags |= MachineMemOperand::MOVolatile; 3721 if (isNonTemporal) 3722 MMOFlags |= MachineMemOperand::MONonTemporal; 3723 if (isInvariant) 3724 MMOFlags |= MachineMemOperand::MOInvariant; 3725 if (isDereferenceable) 3726 MMOFlags |= MachineMemOperand::MODereferenceable; 3727 MMOFlags |= TLI.getMMOFlags(I); 3728 3729 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3730 MachinePointerInfo(SV, Offsets[i]), Alignment, 3731 MMOFlags, AAInfo, Ranges); 3732 3733 Values[i] = L; 3734 Chains[ChainI] = L.getValue(1); 3735 } 3736 3737 if (!ConstantMemory) { 3738 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3739 makeArrayRef(Chains.data(), ChainI)); 3740 if (isVolatile) 3741 DAG.setRoot(Chain); 3742 else 3743 PendingLoads.push_back(Chain); 3744 } 3745 3746 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3747 DAG.getVTList(ValueVTs), Values)); 3748 } 3749 3750 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3751 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3752 "call visitStoreToSwiftError when backend supports swifterror"); 3753 3754 SmallVector<EVT, 4> ValueVTs; 3755 SmallVector<uint64_t, 4> Offsets; 3756 const Value *SrcV = I.getOperand(0); 3757 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3758 SrcV->getType(), ValueVTs, &Offsets); 3759 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3760 "expect a single EVT for swifterror"); 3761 3762 SDValue Src = getValue(SrcV); 3763 // Create a virtual register, then update the virtual register. 3764 unsigned VReg; bool CreatedVReg; 3765 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3766 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3767 // Chain can be getRoot or getControlRoot. 3768 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3769 SDValue(Src.getNode(), Src.getResNo())); 3770 DAG.setRoot(CopyNode); 3771 if (CreatedVReg) 3772 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3773 } 3774 3775 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3776 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3777 "call visitLoadFromSwiftError when backend supports swifterror"); 3778 3779 assert(!I.isVolatile() && 3780 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3781 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3782 "Support volatile, non temporal, invariant for load_from_swift_error"); 3783 3784 const Value *SV = I.getOperand(0); 3785 Type *Ty = I.getType(); 3786 AAMDNodes AAInfo; 3787 I.getAAMetadata(AAInfo); 3788 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3789 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3790 "load_from_swift_error should not be constant memory"); 3791 3792 SmallVector<EVT, 4> ValueVTs; 3793 SmallVector<uint64_t, 4> Offsets; 3794 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3795 ValueVTs, &Offsets); 3796 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3797 "expect a single EVT for swifterror"); 3798 3799 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3800 SDValue L = DAG.getCopyFromReg( 3801 getRoot(), getCurSDLoc(), 3802 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3803 ValueVTs[0]); 3804 3805 setValue(&I, L); 3806 } 3807 3808 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3809 if (I.isAtomic()) 3810 return visitAtomicStore(I); 3811 3812 const Value *SrcV = I.getOperand(0); 3813 const Value *PtrV = I.getOperand(1); 3814 3815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3816 if (TLI.supportSwiftError()) { 3817 // Swifterror values can come from either a function parameter with 3818 // swifterror attribute or an alloca with swifterror attribute. 3819 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3820 if (Arg->hasSwiftErrorAttr()) 3821 return visitStoreToSwiftError(I); 3822 } 3823 3824 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3825 if (Alloca->isSwiftError()) 3826 return visitStoreToSwiftError(I); 3827 } 3828 } 3829 3830 SmallVector<EVT, 4> ValueVTs; 3831 SmallVector<uint64_t, 4> Offsets; 3832 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3833 SrcV->getType(), ValueVTs, &Offsets); 3834 unsigned NumValues = ValueVTs.size(); 3835 if (NumValues == 0) 3836 return; 3837 3838 // Get the lowered operands. Note that we do this after 3839 // checking if NumResults is zero, because with zero results 3840 // the operands won't have values in the map. 3841 SDValue Src = getValue(SrcV); 3842 SDValue Ptr = getValue(PtrV); 3843 3844 SDValue Root = getRoot(); 3845 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3846 SDLoc dl = getCurSDLoc(); 3847 EVT PtrVT = Ptr.getValueType(); 3848 unsigned Alignment = I.getAlignment(); 3849 AAMDNodes AAInfo; 3850 I.getAAMetadata(AAInfo); 3851 3852 auto MMOFlags = MachineMemOperand::MONone; 3853 if (I.isVolatile()) 3854 MMOFlags |= MachineMemOperand::MOVolatile; 3855 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3856 MMOFlags |= MachineMemOperand::MONonTemporal; 3857 MMOFlags |= TLI.getMMOFlags(I); 3858 3859 // An aggregate load cannot wrap around the address space, so offsets to its 3860 // parts don't wrap either. 3861 SDNodeFlags Flags; 3862 Flags.setNoUnsignedWrap(true); 3863 3864 unsigned ChainI = 0; 3865 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3866 // See visitLoad comments. 3867 if (ChainI == MaxParallelChains) { 3868 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3869 makeArrayRef(Chains.data(), ChainI)); 3870 Root = Chain; 3871 ChainI = 0; 3872 } 3873 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3874 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3875 SDValue St = DAG.getStore( 3876 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3877 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3878 Chains[ChainI] = St; 3879 } 3880 3881 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3882 makeArrayRef(Chains.data(), ChainI)); 3883 DAG.setRoot(StoreNode); 3884 } 3885 3886 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3887 bool IsCompressing) { 3888 SDLoc sdl = getCurSDLoc(); 3889 3890 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3891 unsigned& Alignment) { 3892 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3893 Src0 = I.getArgOperand(0); 3894 Ptr = I.getArgOperand(1); 3895 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3896 Mask = I.getArgOperand(3); 3897 }; 3898 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3899 unsigned& Alignment) { 3900 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3901 Src0 = I.getArgOperand(0); 3902 Ptr = I.getArgOperand(1); 3903 Mask = I.getArgOperand(2); 3904 Alignment = 0; 3905 }; 3906 3907 Value *PtrOperand, *MaskOperand, *Src0Operand; 3908 unsigned Alignment; 3909 if (IsCompressing) 3910 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3911 else 3912 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3913 3914 SDValue Ptr = getValue(PtrOperand); 3915 SDValue Src0 = getValue(Src0Operand); 3916 SDValue Mask = getValue(MaskOperand); 3917 3918 EVT VT = Src0.getValueType(); 3919 if (!Alignment) 3920 Alignment = DAG.getEVTAlignment(VT); 3921 3922 AAMDNodes AAInfo; 3923 I.getAAMetadata(AAInfo); 3924 3925 MachineMemOperand *MMO = 3926 DAG.getMachineFunction(). 3927 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3928 MachineMemOperand::MOStore, VT.getStoreSize(), 3929 Alignment, AAInfo); 3930 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3931 MMO, false /* Truncating */, 3932 IsCompressing); 3933 DAG.setRoot(StoreNode); 3934 setValue(&I, StoreNode); 3935 } 3936 3937 // Get a uniform base for the Gather/Scatter intrinsic. 3938 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3939 // We try to represent it as a base pointer + vector of indices. 3940 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3941 // The first operand of the GEP may be a single pointer or a vector of pointers 3942 // Example: 3943 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3944 // or 3945 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3946 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3947 // 3948 // When the first GEP operand is a single pointer - it is the uniform base we 3949 // are looking for. If first operand of the GEP is a splat vector - we 3950 // extract the splat value and use it as a uniform base. 3951 // In all other cases the function returns 'false'. 3952 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3953 SDValue &Scale, SelectionDAGBuilder* SDB) { 3954 SelectionDAG& DAG = SDB->DAG; 3955 LLVMContext &Context = *DAG.getContext(); 3956 3957 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3958 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3959 if (!GEP) 3960 return false; 3961 3962 const Value *GEPPtr = GEP->getPointerOperand(); 3963 if (!GEPPtr->getType()->isVectorTy()) 3964 Ptr = GEPPtr; 3965 else if (!(Ptr = getSplatValue(GEPPtr))) 3966 return false; 3967 3968 unsigned FinalIndex = GEP->getNumOperands() - 1; 3969 Value *IndexVal = GEP->getOperand(FinalIndex); 3970 3971 // Ensure all the other indices are 0. 3972 for (unsigned i = 1; i < FinalIndex; ++i) { 3973 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 3974 if (!C || !C->isZero()) 3975 return false; 3976 } 3977 3978 // The operands of the GEP may be defined in another basic block. 3979 // In this case we'll not find nodes for the operands. 3980 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3981 return false; 3982 3983 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3984 const DataLayout &DL = DAG.getDataLayout(); 3985 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 3986 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 3987 Base = SDB->getValue(Ptr); 3988 Index = SDB->getValue(IndexVal); 3989 3990 if (!Index.getValueType().isVector()) { 3991 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3992 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3993 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3994 } 3995 return true; 3996 } 3997 3998 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3999 SDLoc sdl = getCurSDLoc(); 4000 4001 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4002 const Value *Ptr = I.getArgOperand(1); 4003 SDValue Src0 = getValue(I.getArgOperand(0)); 4004 SDValue Mask = getValue(I.getArgOperand(3)); 4005 EVT VT = Src0.getValueType(); 4006 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4007 if (!Alignment) 4008 Alignment = DAG.getEVTAlignment(VT); 4009 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4010 4011 AAMDNodes AAInfo; 4012 I.getAAMetadata(AAInfo); 4013 4014 SDValue Base; 4015 SDValue Index; 4016 SDValue Scale; 4017 const Value *BasePtr = Ptr; 4018 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4019 4020 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4021 MachineMemOperand *MMO = DAG.getMachineFunction(). 4022 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4023 MachineMemOperand::MOStore, VT.getStoreSize(), 4024 Alignment, AAInfo); 4025 if (!UniformBase) { 4026 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4027 Index = getValue(Ptr); 4028 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4029 } 4030 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4031 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4032 Ops, MMO); 4033 DAG.setRoot(Scatter); 4034 setValue(&I, Scatter); 4035 } 4036 4037 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4038 SDLoc sdl = getCurSDLoc(); 4039 4040 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4041 unsigned& Alignment) { 4042 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4043 Ptr = I.getArgOperand(0); 4044 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4045 Mask = I.getArgOperand(2); 4046 Src0 = I.getArgOperand(3); 4047 }; 4048 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4049 unsigned& Alignment) { 4050 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4051 Ptr = I.getArgOperand(0); 4052 Alignment = 0; 4053 Mask = I.getArgOperand(1); 4054 Src0 = I.getArgOperand(2); 4055 }; 4056 4057 Value *PtrOperand, *MaskOperand, *Src0Operand; 4058 unsigned Alignment; 4059 if (IsExpanding) 4060 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4061 else 4062 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4063 4064 SDValue Ptr = getValue(PtrOperand); 4065 SDValue Src0 = getValue(Src0Operand); 4066 SDValue Mask = getValue(MaskOperand); 4067 4068 EVT VT = Src0.getValueType(); 4069 if (!Alignment) 4070 Alignment = DAG.getEVTAlignment(VT); 4071 4072 AAMDNodes AAInfo; 4073 I.getAAMetadata(AAInfo); 4074 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4075 4076 // Do not serialize masked loads of constant memory with anything. 4077 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 4078 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 4079 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4080 4081 MachineMemOperand *MMO = 4082 DAG.getMachineFunction(). 4083 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4084 MachineMemOperand::MOLoad, VT.getStoreSize(), 4085 Alignment, AAInfo, Ranges); 4086 4087 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4088 ISD::NON_EXTLOAD, IsExpanding); 4089 if (AddToChain) 4090 PendingLoads.push_back(Load.getValue(1)); 4091 setValue(&I, Load); 4092 } 4093 4094 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4095 SDLoc sdl = getCurSDLoc(); 4096 4097 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4098 const Value *Ptr = I.getArgOperand(0); 4099 SDValue Src0 = getValue(I.getArgOperand(3)); 4100 SDValue Mask = getValue(I.getArgOperand(2)); 4101 4102 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4103 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4104 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4105 if (!Alignment) 4106 Alignment = DAG.getEVTAlignment(VT); 4107 4108 AAMDNodes AAInfo; 4109 I.getAAMetadata(AAInfo); 4110 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4111 4112 SDValue Root = DAG.getRoot(); 4113 SDValue Base; 4114 SDValue Index; 4115 SDValue Scale; 4116 const Value *BasePtr = Ptr; 4117 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4118 bool ConstantMemory = false; 4119 if (UniformBase && 4120 AA && AA->pointsToConstantMemory(MemoryLocation( 4121 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 4122 AAInfo))) { 4123 // Do not serialize (non-volatile) loads of constant memory with anything. 4124 Root = DAG.getEntryNode(); 4125 ConstantMemory = true; 4126 } 4127 4128 MachineMemOperand *MMO = 4129 DAG.getMachineFunction(). 4130 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4131 MachineMemOperand::MOLoad, VT.getStoreSize(), 4132 Alignment, AAInfo, Ranges); 4133 4134 if (!UniformBase) { 4135 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4136 Index = getValue(Ptr); 4137 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4138 } 4139 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4140 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4141 Ops, MMO); 4142 4143 SDValue OutChain = Gather.getValue(1); 4144 if (!ConstantMemory) 4145 PendingLoads.push_back(OutChain); 4146 setValue(&I, Gather); 4147 } 4148 4149 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4150 SDLoc dl = getCurSDLoc(); 4151 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4152 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4153 SyncScope::ID SSID = I.getSyncScopeID(); 4154 4155 SDValue InChain = getRoot(); 4156 4157 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4158 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4159 SDValue L = DAG.getAtomicCmpSwap( 4160 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4161 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4162 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4163 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4164 4165 SDValue OutChain = L.getValue(2); 4166 4167 setValue(&I, L); 4168 DAG.setRoot(OutChain); 4169 } 4170 4171 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4172 SDLoc dl = getCurSDLoc(); 4173 ISD::NodeType NT; 4174 switch (I.getOperation()) { 4175 default: llvm_unreachable("Unknown atomicrmw operation"); 4176 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4177 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4178 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4179 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4180 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4181 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4182 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4183 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4184 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4185 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4186 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4187 } 4188 AtomicOrdering Order = I.getOrdering(); 4189 SyncScope::ID SSID = I.getSyncScopeID(); 4190 4191 SDValue InChain = getRoot(); 4192 4193 SDValue L = 4194 DAG.getAtomic(NT, dl, 4195 getValue(I.getValOperand()).getSimpleValueType(), 4196 InChain, 4197 getValue(I.getPointerOperand()), 4198 getValue(I.getValOperand()), 4199 I.getPointerOperand(), 4200 /* Alignment=*/ 0, Order, SSID); 4201 4202 SDValue OutChain = L.getValue(1); 4203 4204 setValue(&I, L); 4205 DAG.setRoot(OutChain); 4206 } 4207 4208 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4209 SDLoc dl = getCurSDLoc(); 4210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4211 SDValue Ops[3]; 4212 Ops[0] = getRoot(); 4213 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4214 TLI.getFenceOperandTy(DAG.getDataLayout())); 4215 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4216 TLI.getFenceOperandTy(DAG.getDataLayout())); 4217 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4218 } 4219 4220 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4221 SDLoc dl = getCurSDLoc(); 4222 AtomicOrdering Order = I.getOrdering(); 4223 SyncScope::ID SSID = I.getSyncScopeID(); 4224 4225 SDValue InChain = getRoot(); 4226 4227 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4228 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4229 4230 if (!TLI.supportsUnalignedAtomics() && 4231 I.getAlignment() < VT.getStoreSize()) 4232 report_fatal_error("Cannot generate unaligned atomic load"); 4233 4234 MachineMemOperand *MMO = 4235 DAG.getMachineFunction(). 4236 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4237 MachineMemOperand::MOVolatile | 4238 MachineMemOperand::MOLoad, 4239 VT.getStoreSize(), 4240 I.getAlignment() ? I.getAlignment() : 4241 DAG.getEVTAlignment(VT), 4242 AAMDNodes(), nullptr, SSID, Order); 4243 4244 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4245 SDValue L = 4246 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4247 getValue(I.getPointerOperand()), MMO); 4248 4249 SDValue OutChain = L.getValue(1); 4250 4251 setValue(&I, L); 4252 DAG.setRoot(OutChain); 4253 } 4254 4255 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4256 SDLoc dl = getCurSDLoc(); 4257 4258 AtomicOrdering Order = I.getOrdering(); 4259 SyncScope::ID SSID = I.getSyncScopeID(); 4260 4261 SDValue InChain = getRoot(); 4262 4263 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4264 EVT VT = 4265 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4266 4267 if (I.getAlignment() < VT.getStoreSize()) 4268 report_fatal_error("Cannot generate unaligned atomic store"); 4269 4270 SDValue OutChain = 4271 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4272 InChain, 4273 getValue(I.getPointerOperand()), 4274 getValue(I.getValueOperand()), 4275 I.getPointerOperand(), I.getAlignment(), 4276 Order, SSID); 4277 4278 DAG.setRoot(OutChain); 4279 } 4280 4281 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4282 /// node. 4283 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4284 unsigned Intrinsic) { 4285 // Ignore the callsite's attributes. A specific call site may be marked with 4286 // readnone, but the lowering code will expect the chain based on the 4287 // definition. 4288 const Function *F = I.getCalledFunction(); 4289 bool HasChain = !F->doesNotAccessMemory(); 4290 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4291 4292 // Build the operand list. 4293 SmallVector<SDValue, 8> Ops; 4294 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4295 if (OnlyLoad) { 4296 // We don't need to serialize loads against other loads. 4297 Ops.push_back(DAG.getRoot()); 4298 } else { 4299 Ops.push_back(getRoot()); 4300 } 4301 } 4302 4303 // Info is set by getTgtMemInstrinsic 4304 TargetLowering::IntrinsicInfo Info; 4305 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4306 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4307 DAG.getMachineFunction(), 4308 Intrinsic); 4309 4310 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4311 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4312 Info.opc == ISD::INTRINSIC_W_CHAIN) 4313 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4314 TLI.getPointerTy(DAG.getDataLayout()))); 4315 4316 // Add all operands of the call to the operand list. 4317 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4318 SDValue Op = getValue(I.getArgOperand(i)); 4319 Ops.push_back(Op); 4320 } 4321 4322 SmallVector<EVT, 4> ValueVTs; 4323 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4324 4325 if (HasChain) 4326 ValueVTs.push_back(MVT::Other); 4327 4328 SDVTList VTs = DAG.getVTList(ValueVTs); 4329 4330 // Create the node. 4331 SDValue Result; 4332 if (IsTgtIntrinsic) { 4333 // This is target intrinsic that touches memory 4334 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4335 Ops, Info.memVT, 4336 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4337 Info.flags, Info.size); 4338 } else if (!HasChain) { 4339 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4340 } else if (!I.getType()->isVoidTy()) { 4341 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4342 } else { 4343 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4344 } 4345 4346 if (HasChain) { 4347 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4348 if (OnlyLoad) 4349 PendingLoads.push_back(Chain); 4350 else 4351 DAG.setRoot(Chain); 4352 } 4353 4354 if (!I.getType()->isVoidTy()) { 4355 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4356 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4357 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4358 } else 4359 Result = lowerRangeToAssertZExt(DAG, I, Result); 4360 4361 setValue(&I, Result); 4362 } 4363 } 4364 4365 /// GetSignificand - Get the significand and build it into a floating-point 4366 /// number with exponent of 1: 4367 /// 4368 /// Op = (Op & 0x007fffff) | 0x3f800000; 4369 /// 4370 /// where Op is the hexadecimal representation of floating point value. 4371 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4372 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4373 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4374 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4375 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4376 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4377 } 4378 4379 /// GetExponent - Get the exponent: 4380 /// 4381 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4382 /// 4383 /// where Op is the hexadecimal representation of floating point value. 4384 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4385 const TargetLowering &TLI, const SDLoc &dl) { 4386 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4387 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4388 SDValue t1 = DAG.getNode( 4389 ISD::SRL, dl, MVT::i32, t0, 4390 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4391 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4392 DAG.getConstant(127, dl, MVT::i32)); 4393 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4394 } 4395 4396 /// getF32Constant - Get 32-bit floating point constant. 4397 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4398 const SDLoc &dl) { 4399 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4400 MVT::f32); 4401 } 4402 4403 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4404 SelectionDAG &DAG) { 4405 // TODO: What fast-math-flags should be set on the floating-point nodes? 4406 4407 // IntegerPartOfX = ((int32_t)(t0); 4408 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4409 4410 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4411 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4412 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4413 4414 // IntegerPartOfX <<= 23; 4415 IntegerPartOfX = DAG.getNode( 4416 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4417 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4418 DAG.getDataLayout()))); 4419 4420 SDValue TwoToFractionalPartOfX; 4421 if (LimitFloatPrecision <= 6) { 4422 // For floating-point precision of 6: 4423 // 4424 // TwoToFractionalPartOfX = 4425 // 0.997535578f + 4426 // (0.735607626f + 0.252464424f * x) * x; 4427 // 4428 // error 0.0144103317, which is 6 bits 4429 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4430 getF32Constant(DAG, 0x3e814304, dl)); 4431 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4432 getF32Constant(DAG, 0x3f3c50c8, dl)); 4433 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4434 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4435 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4436 } else if (LimitFloatPrecision <= 12) { 4437 // For floating-point precision of 12: 4438 // 4439 // TwoToFractionalPartOfX = 4440 // 0.999892986f + 4441 // (0.696457318f + 4442 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4443 // 4444 // error 0.000107046256, which is 13 to 14 bits 4445 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4446 getF32Constant(DAG, 0x3da235e3, dl)); 4447 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4448 getF32Constant(DAG, 0x3e65b8f3, dl)); 4449 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4450 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4451 getF32Constant(DAG, 0x3f324b07, dl)); 4452 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4453 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4454 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4455 } else { // LimitFloatPrecision <= 18 4456 // For floating-point precision of 18: 4457 // 4458 // TwoToFractionalPartOfX = 4459 // 0.999999982f + 4460 // (0.693148872f + 4461 // (0.240227044f + 4462 // (0.554906021e-1f + 4463 // (0.961591928e-2f + 4464 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4465 // error 2.47208000*10^(-7), which is better than 18 bits 4466 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4467 getF32Constant(DAG, 0x3924b03e, dl)); 4468 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4469 getF32Constant(DAG, 0x3ab24b87, dl)); 4470 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4471 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4472 getF32Constant(DAG, 0x3c1d8c17, dl)); 4473 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4474 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4475 getF32Constant(DAG, 0x3d634a1d, dl)); 4476 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4477 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4478 getF32Constant(DAG, 0x3e75fe14, dl)); 4479 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4480 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4481 getF32Constant(DAG, 0x3f317234, dl)); 4482 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4483 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4484 getF32Constant(DAG, 0x3f800000, dl)); 4485 } 4486 4487 // Add the exponent into the result in integer domain. 4488 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4489 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4490 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4491 } 4492 4493 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4494 /// limited-precision mode. 4495 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4496 const TargetLowering &TLI) { 4497 if (Op.getValueType() == MVT::f32 && 4498 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4499 4500 // Put the exponent in the right bit position for later addition to the 4501 // final result: 4502 // 4503 // #define LOG2OFe 1.4426950f 4504 // t0 = Op * LOG2OFe 4505 4506 // TODO: What fast-math-flags should be set here? 4507 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4508 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4509 return getLimitedPrecisionExp2(t0, dl, DAG); 4510 } 4511 4512 // No special expansion. 4513 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4514 } 4515 4516 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4517 /// limited-precision mode. 4518 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4519 const TargetLowering &TLI) { 4520 // TODO: What fast-math-flags should be set on the floating-point nodes? 4521 4522 if (Op.getValueType() == MVT::f32 && 4523 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4524 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4525 4526 // Scale the exponent by log(2) [0.69314718f]. 4527 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4528 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4529 getF32Constant(DAG, 0x3f317218, dl)); 4530 4531 // Get the significand and build it into a floating-point number with 4532 // exponent of 1. 4533 SDValue X = GetSignificand(DAG, Op1, dl); 4534 4535 SDValue LogOfMantissa; 4536 if (LimitFloatPrecision <= 6) { 4537 // For floating-point precision of 6: 4538 // 4539 // LogofMantissa = 4540 // -1.1609546f + 4541 // (1.4034025f - 0.23903021f * x) * x; 4542 // 4543 // error 0.0034276066, which is better than 8 bits 4544 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4545 getF32Constant(DAG, 0xbe74c456, dl)); 4546 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4547 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4548 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4549 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4550 getF32Constant(DAG, 0x3f949a29, dl)); 4551 } else if (LimitFloatPrecision <= 12) { 4552 // For floating-point precision of 12: 4553 // 4554 // LogOfMantissa = 4555 // -1.7417939f + 4556 // (2.8212026f + 4557 // (-1.4699568f + 4558 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4559 // 4560 // error 0.000061011436, which is 14 bits 4561 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4562 getF32Constant(DAG, 0xbd67b6d6, dl)); 4563 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4564 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4565 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4566 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4567 getF32Constant(DAG, 0x3fbc278b, dl)); 4568 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4569 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4570 getF32Constant(DAG, 0x40348e95, dl)); 4571 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4572 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4573 getF32Constant(DAG, 0x3fdef31a, dl)); 4574 } else { // LimitFloatPrecision <= 18 4575 // For floating-point precision of 18: 4576 // 4577 // LogOfMantissa = 4578 // -2.1072184f + 4579 // (4.2372794f + 4580 // (-3.7029485f + 4581 // (2.2781945f + 4582 // (-0.87823314f + 4583 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4584 // 4585 // error 0.0000023660568, which is better than 18 bits 4586 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4587 getF32Constant(DAG, 0xbc91e5ac, dl)); 4588 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4589 getF32Constant(DAG, 0x3e4350aa, dl)); 4590 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4591 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4592 getF32Constant(DAG, 0x3f60d3e3, dl)); 4593 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4594 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4595 getF32Constant(DAG, 0x4011cdf0, dl)); 4596 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4597 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4598 getF32Constant(DAG, 0x406cfd1c, dl)); 4599 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4600 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4601 getF32Constant(DAG, 0x408797cb, dl)); 4602 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4603 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4604 getF32Constant(DAG, 0x4006dcab, dl)); 4605 } 4606 4607 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4608 } 4609 4610 // No special expansion. 4611 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4612 } 4613 4614 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4615 /// limited-precision mode. 4616 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4617 const TargetLowering &TLI) { 4618 // TODO: What fast-math-flags should be set on the floating-point nodes? 4619 4620 if (Op.getValueType() == MVT::f32 && 4621 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4622 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4623 4624 // Get the exponent. 4625 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4626 4627 // Get the significand and build it into a floating-point number with 4628 // exponent of 1. 4629 SDValue X = GetSignificand(DAG, Op1, dl); 4630 4631 // Different possible minimax approximations of significand in 4632 // floating-point for various degrees of accuracy over [1,2]. 4633 SDValue Log2ofMantissa; 4634 if (LimitFloatPrecision <= 6) { 4635 // For floating-point precision of 6: 4636 // 4637 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4638 // 4639 // error 0.0049451742, which is more than 7 bits 4640 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4641 getF32Constant(DAG, 0xbeb08fe0, dl)); 4642 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4643 getF32Constant(DAG, 0x40019463, dl)); 4644 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4645 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4646 getF32Constant(DAG, 0x3fd6633d, dl)); 4647 } else if (LimitFloatPrecision <= 12) { 4648 // For floating-point precision of 12: 4649 // 4650 // Log2ofMantissa = 4651 // -2.51285454f + 4652 // (4.07009056f + 4653 // (-2.12067489f + 4654 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4655 // 4656 // error 0.0000876136000, which is better than 13 bits 4657 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4658 getF32Constant(DAG, 0xbda7262e, dl)); 4659 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4660 getF32Constant(DAG, 0x3f25280b, dl)); 4661 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4662 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4663 getF32Constant(DAG, 0x4007b923, dl)); 4664 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4665 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4666 getF32Constant(DAG, 0x40823e2f, dl)); 4667 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4668 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4669 getF32Constant(DAG, 0x4020d29c, dl)); 4670 } else { // LimitFloatPrecision <= 18 4671 // For floating-point precision of 18: 4672 // 4673 // Log2ofMantissa = 4674 // -3.0400495f + 4675 // (6.1129976f + 4676 // (-5.3420409f + 4677 // (3.2865683f + 4678 // (-1.2669343f + 4679 // (0.27515199f - 4680 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4681 // 4682 // error 0.0000018516, which is better than 18 bits 4683 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4684 getF32Constant(DAG, 0xbcd2769e, dl)); 4685 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4686 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4687 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4688 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4689 getF32Constant(DAG, 0x3fa22ae7, dl)); 4690 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4691 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4692 getF32Constant(DAG, 0x40525723, dl)); 4693 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4694 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4695 getF32Constant(DAG, 0x40aaf200, dl)); 4696 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4697 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4698 getF32Constant(DAG, 0x40c39dad, dl)); 4699 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4700 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4701 getF32Constant(DAG, 0x4042902c, dl)); 4702 } 4703 4704 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4705 } 4706 4707 // No special expansion. 4708 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4709 } 4710 4711 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4712 /// limited-precision mode. 4713 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4714 const TargetLowering &TLI) { 4715 // TODO: What fast-math-flags should be set on the floating-point nodes? 4716 4717 if (Op.getValueType() == MVT::f32 && 4718 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4719 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4720 4721 // Scale the exponent by log10(2) [0.30102999f]. 4722 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4723 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4724 getF32Constant(DAG, 0x3e9a209a, dl)); 4725 4726 // Get the significand and build it into a floating-point number with 4727 // exponent of 1. 4728 SDValue X = GetSignificand(DAG, Op1, dl); 4729 4730 SDValue Log10ofMantissa; 4731 if (LimitFloatPrecision <= 6) { 4732 // For floating-point precision of 6: 4733 // 4734 // Log10ofMantissa = 4735 // -0.50419619f + 4736 // (0.60948995f - 0.10380950f * x) * x; 4737 // 4738 // error 0.0014886165, which is 6 bits 4739 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4740 getF32Constant(DAG, 0xbdd49a13, dl)); 4741 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4742 getF32Constant(DAG, 0x3f1c0789, dl)); 4743 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4744 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4745 getF32Constant(DAG, 0x3f011300, dl)); 4746 } else if (LimitFloatPrecision <= 12) { 4747 // For floating-point precision of 12: 4748 // 4749 // Log10ofMantissa = 4750 // -0.64831180f + 4751 // (0.91751397f + 4752 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4753 // 4754 // error 0.00019228036, which is better than 12 bits 4755 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4756 getF32Constant(DAG, 0x3d431f31, dl)); 4757 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4758 getF32Constant(DAG, 0x3ea21fb2, dl)); 4759 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4760 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4761 getF32Constant(DAG, 0x3f6ae232, dl)); 4762 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4763 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4764 getF32Constant(DAG, 0x3f25f7c3, dl)); 4765 } else { // LimitFloatPrecision <= 18 4766 // For floating-point precision of 18: 4767 // 4768 // Log10ofMantissa = 4769 // -0.84299375f + 4770 // (1.5327582f + 4771 // (-1.0688956f + 4772 // (0.49102474f + 4773 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4774 // 4775 // error 0.0000037995730, which is better than 18 bits 4776 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4777 getF32Constant(DAG, 0x3c5d51ce, dl)); 4778 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4779 getF32Constant(DAG, 0x3e00685a, dl)); 4780 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4781 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4782 getF32Constant(DAG, 0x3efb6798, dl)); 4783 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4784 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4785 getF32Constant(DAG, 0x3f88d192, dl)); 4786 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4787 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4788 getF32Constant(DAG, 0x3fc4316c, dl)); 4789 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4790 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4791 getF32Constant(DAG, 0x3f57ce70, dl)); 4792 } 4793 4794 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4795 } 4796 4797 // No special expansion. 4798 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4799 } 4800 4801 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4802 /// limited-precision mode. 4803 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4804 const TargetLowering &TLI) { 4805 if (Op.getValueType() == MVT::f32 && 4806 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4807 return getLimitedPrecisionExp2(Op, dl, DAG); 4808 4809 // No special expansion. 4810 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4811 } 4812 4813 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4814 /// limited-precision mode with x == 10.0f. 4815 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4816 SelectionDAG &DAG, const TargetLowering &TLI) { 4817 bool IsExp10 = false; 4818 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4819 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4820 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4821 APFloat Ten(10.0f); 4822 IsExp10 = LHSC->isExactlyValue(Ten); 4823 } 4824 } 4825 4826 // TODO: What fast-math-flags should be set on the FMUL node? 4827 if (IsExp10) { 4828 // Put the exponent in the right bit position for later addition to the 4829 // final result: 4830 // 4831 // #define LOG2OF10 3.3219281f 4832 // t0 = Op * LOG2OF10; 4833 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4834 getF32Constant(DAG, 0x40549a78, dl)); 4835 return getLimitedPrecisionExp2(t0, dl, DAG); 4836 } 4837 4838 // No special expansion. 4839 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4840 } 4841 4842 /// ExpandPowI - Expand a llvm.powi intrinsic. 4843 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4844 SelectionDAG &DAG) { 4845 // If RHS is a constant, we can expand this out to a multiplication tree, 4846 // otherwise we end up lowering to a call to __powidf2 (for example). When 4847 // optimizing for size, we only want to do this if the expansion would produce 4848 // a small number of multiplies, otherwise we do the full expansion. 4849 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4850 // Get the exponent as a positive value. 4851 unsigned Val = RHSC->getSExtValue(); 4852 if ((int)Val < 0) Val = -Val; 4853 4854 // powi(x, 0) -> 1.0 4855 if (Val == 0) 4856 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4857 4858 const Function &F = DAG.getMachineFunction().getFunction(); 4859 if (!F.optForSize() || 4860 // If optimizing for size, don't insert too many multiplies. 4861 // This inserts up to 5 multiplies. 4862 countPopulation(Val) + Log2_32(Val) < 7) { 4863 // We use the simple binary decomposition method to generate the multiply 4864 // sequence. There are more optimal ways to do this (for example, 4865 // powi(x,15) generates one more multiply than it should), but this has 4866 // the benefit of being both really simple and much better than a libcall. 4867 SDValue Res; // Logically starts equal to 1.0 4868 SDValue CurSquare = LHS; 4869 // TODO: Intrinsics should have fast-math-flags that propagate to these 4870 // nodes. 4871 while (Val) { 4872 if (Val & 1) { 4873 if (Res.getNode()) 4874 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4875 else 4876 Res = CurSquare; // 1.0*CurSquare. 4877 } 4878 4879 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4880 CurSquare, CurSquare); 4881 Val >>= 1; 4882 } 4883 4884 // If the original was negative, invert the result, producing 1/(x*x*x). 4885 if (RHSC->getSExtValue() < 0) 4886 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4887 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4888 return Res; 4889 } 4890 } 4891 4892 // Otherwise, expand to a libcall. 4893 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4894 } 4895 4896 // getUnderlyingArgReg - Find underlying register used for a truncated or 4897 // bitcasted argument. 4898 static unsigned getUnderlyingArgReg(const SDValue &N) { 4899 switch (N.getOpcode()) { 4900 case ISD::CopyFromReg: 4901 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4902 case ISD::BITCAST: 4903 case ISD::AssertZext: 4904 case ISD::AssertSext: 4905 case ISD::TRUNCATE: 4906 return getUnderlyingArgReg(N.getOperand(0)); 4907 default: 4908 return 0; 4909 } 4910 } 4911 4912 /// If the DbgValueInst is a dbg_value of a function argument, create the 4913 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4914 /// instruction selection, they will be inserted to the entry BB. 4915 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4916 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4917 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4918 const Argument *Arg = dyn_cast<Argument>(V); 4919 if (!Arg) 4920 return false; 4921 4922 MachineFunction &MF = DAG.getMachineFunction(); 4923 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4924 4925 bool IsIndirect = false; 4926 Optional<MachineOperand> Op; 4927 // Some arguments' frame index is recorded during argument lowering. 4928 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4929 if (FI != std::numeric_limits<int>::max()) 4930 Op = MachineOperand::CreateFI(FI); 4931 4932 if (!Op && N.getNode()) { 4933 unsigned Reg = getUnderlyingArgReg(N); 4934 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4935 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4936 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4937 if (PR) 4938 Reg = PR; 4939 } 4940 if (Reg) { 4941 Op = MachineOperand::CreateReg(Reg, false); 4942 IsIndirect = IsDbgDeclare; 4943 } 4944 } 4945 4946 if (!Op && N.getNode()) 4947 // Check if frame index is available. 4948 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4949 if (FrameIndexSDNode *FINode = 4950 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4951 Op = MachineOperand::CreateFI(FINode->getIndex()); 4952 4953 if (!Op) { 4954 // Check if ValueMap has reg number. 4955 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4956 if (VMI != FuncInfo.ValueMap.end()) { 4957 const auto &TLI = DAG.getTargetLoweringInfo(); 4958 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4959 V->getType(), getABIRegCopyCC(V)); 4960 if (RFV.occupiesMultipleRegs()) { 4961 unsigned Offset = 0; 4962 for (auto RegAndSize : RFV.getRegsAndSizes()) { 4963 Op = MachineOperand::CreateReg(RegAndSize.first, false); 4964 auto FragmentExpr = DIExpression::createFragmentExpression( 4965 Expr, Offset, RegAndSize.second); 4966 if (!FragmentExpr) 4967 continue; 4968 FuncInfo.ArgDbgValues.push_back( 4969 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 4970 Op->getReg(), Variable, *FragmentExpr)); 4971 Offset += RegAndSize.second; 4972 } 4973 return true; 4974 } 4975 Op = MachineOperand::CreateReg(VMI->second, false); 4976 IsIndirect = IsDbgDeclare; 4977 } 4978 } 4979 4980 if (!Op) 4981 return false; 4982 4983 assert(Variable->isValidLocationForIntrinsic(DL) && 4984 "Expected inlined-at fields to agree"); 4985 IsIndirect = (Op->isReg()) ? IsIndirect : true; 4986 FuncInfo.ArgDbgValues.push_back( 4987 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4988 *Op, Variable, Expr)); 4989 4990 return true; 4991 } 4992 4993 /// Return the appropriate SDDbgValue based on N. 4994 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4995 DILocalVariable *Variable, 4996 DIExpression *Expr, 4997 const DebugLoc &dl, 4998 unsigned DbgSDNodeOrder) { 4999 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5000 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5001 // stack slot locations. 5002 // 5003 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5004 // debug values here after optimization: 5005 // 5006 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5007 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5008 // 5009 // Both describe the direct values of their associated variables. 5010 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5011 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5012 } 5013 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5014 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5015 } 5016 5017 // VisualStudio defines setjmp as _setjmp 5018 #if defined(_MSC_VER) && defined(setjmp) && \ 5019 !defined(setjmp_undefined_for_msvc) 5020 # pragma push_macro("setjmp") 5021 # undef setjmp 5022 # define setjmp_undefined_for_msvc 5023 #endif 5024 5025 /// Lower the call to the specified intrinsic function. If we want to emit this 5026 /// as a call to a named external function, return the name. Otherwise, lower it 5027 /// and return null. 5028 const char * 5029 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 5030 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5031 SDLoc sdl = getCurSDLoc(); 5032 DebugLoc dl = getCurDebugLoc(); 5033 SDValue Res; 5034 5035 switch (Intrinsic) { 5036 default: 5037 // By default, turn this into a target intrinsic node. 5038 visitTargetIntrinsic(I, Intrinsic); 5039 return nullptr; 5040 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5041 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5042 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5043 case Intrinsic::returnaddress: 5044 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5045 TLI.getPointerTy(DAG.getDataLayout()), 5046 getValue(I.getArgOperand(0)))); 5047 return nullptr; 5048 case Intrinsic::addressofreturnaddress: 5049 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5050 TLI.getPointerTy(DAG.getDataLayout()))); 5051 return nullptr; 5052 case Intrinsic::frameaddress: 5053 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5054 TLI.getPointerTy(DAG.getDataLayout()), 5055 getValue(I.getArgOperand(0)))); 5056 return nullptr; 5057 case Intrinsic::read_register: { 5058 Value *Reg = I.getArgOperand(0); 5059 SDValue Chain = getRoot(); 5060 SDValue RegName = 5061 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5062 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5063 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5064 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5065 setValue(&I, Res); 5066 DAG.setRoot(Res.getValue(1)); 5067 return nullptr; 5068 } 5069 case Intrinsic::write_register: { 5070 Value *Reg = I.getArgOperand(0); 5071 Value *RegValue = I.getArgOperand(1); 5072 SDValue Chain = getRoot(); 5073 SDValue RegName = 5074 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5075 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5076 RegName, getValue(RegValue))); 5077 return nullptr; 5078 } 5079 case Intrinsic::setjmp: 5080 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5081 case Intrinsic::longjmp: 5082 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5083 case Intrinsic::memcpy: { 5084 const auto &MCI = cast<MemCpyInst>(I); 5085 SDValue Op1 = getValue(I.getArgOperand(0)); 5086 SDValue Op2 = getValue(I.getArgOperand(1)); 5087 SDValue Op3 = getValue(I.getArgOperand(2)); 5088 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5089 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5090 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5091 unsigned Align = MinAlign(DstAlign, SrcAlign); 5092 bool isVol = MCI.isVolatile(); 5093 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5094 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5095 // node. 5096 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5097 false, isTC, 5098 MachinePointerInfo(I.getArgOperand(0)), 5099 MachinePointerInfo(I.getArgOperand(1))); 5100 updateDAGForMaybeTailCall(MC); 5101 return nullptr; 5102 } 5103 case Intrinsic::memset: { 5104 const auto &MSI = cast<MemSetInst>(I); 5105 SDValue Op1 = getValue(I.getArgOperand(0)); 5106 SDValue Op2 = getValue(I.getArgOperand(1)); 5107 SDValue Op3 = getValue(I.getArgOperand(2)); 5108 // @llvm.memset defines 0 and 1 to both mean no alignment. 5109 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5110 bool isVol = MSI.isVolatile(); 5111 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5112 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5113 isTC, MachinePointerInfo(I.getArgOperand(0))); 5114 updateDAGForMaybeTailCall(MS); 5115 return nullptr; 5116 } 5117 case Intrinsic::memmove: { 5118 const auto &MMI = cast<MemMoveInst>(I); 5119 SDValue Op1 = getValue(I.getArgOperand(0)); 5120 SDValue Op2 = getValue(I.getArgOperand(1)); 5121 SDValue Op3 = getValue(I.getArgOperand(2)); 5122 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5123 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5124 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5125 unsigned Align = MinAlign(DstAlign, SrcAlign); 5126 bool isVol = MMI.isVolatile(); 5127 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5128 // FIXME: Support passing different dest/src alignments to the memmove DAG 5129 // node. 5130 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5131 isTC, MachinePointerInfo(I.getArgOperand(0)), 5132 MachinePointerInfo(I.getArgOperand(1))); 5133 updateDAGForMaybeTailCall(MM); 5134 return nullptr; 5135 } 5136 case Intrinsic::memcpy_element_unordered_atomic: { 5137 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5138 SDValue Dst = getValue(MI.getRawDest()); 5139 SDValue Src = getValue(MI.getRawSource()); 5140 SDValue Length = getValue(MI.getLength()); 5141 5142 unsigned DstAlign = MI.getDestAlignment(); 5143 unsigned SrcAlign = MI.getSourceAlignment(); 5144 Type *LengthTy = MI.getLength()->getType(); 5145 unsigned ElemSz = MI.getElementSizeInBytes(); 5146 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5147 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5148 SrcAlign, Length, LengthTy, ElemSz, isTC, 5149 MachinePointerInfo(MI.getRawDest()), 5150 MachinePointerInfo(MI.getRawSource())); 5151 updateDAGForMaybeTailCall(MC); 5152 return nullptr; 5153 } 5154 case Intrinsic::memmove_element_unordered_atomic: { 5155 auto &MI = cast<AtomicMemMoveInst>(I); 5156 SDValue Dst = getValue(MI.getRawDest()); 5157 SDValue Src = getValue(MI.getRawSource()); 5158 SDValue Length = getValue(MI.getLength()); 5159 5160 unsigned DstAlign = MI.getDestAlignment(); 5161 unsigned SrcAlign = MI.getSourceAlignment(); 5162 Type *LengthTy = MI.getLength()->getType(); 5163 unsigned ElemSz = MI.getElementSizeInBytes(); 5164 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5165 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5166 SrcAlign, Length, LengthTy, ElemSz, isTC, 5167 MachinePointerInfo(MI.getRawDest()), 5168 MachinePointerInfo(MI.getRawSource())); 5169 updateDAGForMaybeTailCall(MC); 5170 return nullptr; 5171 } 5172 case Intrinsic::memset_element_unordered_atomic: { 5173 auto &MI = cast<AtomicMemSetInst>(I); 5174 SDValue Dst = getValue(MI.getRawDest()); 5175 SDValue Val = getValue(MI.getValue()); 5176 SDValue Length = getValue(MI.getLength()); 5177 5178 unsigned DstAlign = MI.getDestAlignment(); 5179 Type *LengthTy = MI.getLength()->getType(); 5180 unsigned ElemSz = MI.getElementSizeInBytes(); 5181 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5182 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5183 LengthTy, ElemSz, isTC, 5184 MachinePointerInfo(MI.getRawDest())); 5185 updateDAGForMaybeTailCall(MC); 5186 return nullptr; 5187 } 5188 case Intrinsic::dbg_addr: 5189 case Intrinsic::dbg_declare: { 5190 const auto &DI = cast<DbgVariableIntrinsic>(I); 5191 DILocalVariable *Variable = DI.getVariable(); 5192 DIExpression *Expression = DI.getExpression(); 5193 dropDanglingDebugInfo(Variable, Expression); 5194 assert(Variable && "Missing variable"); 5195 5196 // Check if address has undef value. 5197 const Value *Address = DI.getVariableLocation(); 5198 if (!Address || isa<UndefValue>(Address) || 5199 (Address->use_empty() && !isa<Argument>(Address))) { 5200 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5201 return nullptr; 5202 } 5203 5204 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5205 5206 // Check if this variable can be described by a frame index, typically 5207 // either as a static alloca or a byval parameter. 5208 int FI = std::numeric_limits<int>::max(); 5209 if (const auto *AI = 5210 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5211 if (AI->isStaticAlloca()) { 5212 auto I = FuncInfo.StaticAllocaMap.find(AI); 5213 if (I != FuncInfo.StaticAllocaMap.end()) 5214 FI = I->second; 5215 } 5216 } else if (const auto *Arg = dyn_cast<Argument>( 5217 Address->stripInBoundsConstantOffsets())) { 5218 FI = FuncInfo.getArgumentFrameIndex(Arg); 5219 } 5220 5221 // llvm.dbg.addr is control dependent and always generates indirect 5222 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5223 // the MachineFunction variable table. 5224 if (FI != std::numeric_limits<int>::max()) { 5225 if (Intrinsic == Intrinsic::dbg_addr) { 5226 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5227 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5228 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5229 } 5230 return nullptr; 5231 } 5232 5233 SDValue &N = NodeMap[Address]; 5234 if (!N.getNode() && isa<Argument>(Address)) 5235 // Check unused arguments map. 5236 N = UnusedArgNodeMap[Address]; 5237 SDDbgValue *SDV; 5238 if (N.getNode()) { 5239 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5240 Address = BCI->getOperand(0); 5241 // Parameters are handled specially. 5242 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5243 if (isParameter && FINode) { 5244 // Byval parameter. We have a frame index at this point. 5245 SDV = 5246 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5247 /*IsIndirect*/ true, dl, SDNodeOrder); 5248 } else if (isa<Argument>(Address)) { 5249 // Address is an argument, so try to emit its dbg value using 5250 // virtual register info from the FuncInfo.ValueMap. 5251 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5252 return nullptr; 5253 } else { 5254 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5255 true, dl, SDNodeOrder); 5256 } 5257 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5258 } else { 5259 // If Address is an argument then try to emit its dbg value using 5260 // virtual register info from the FuncInfo.ValueMap. 5261 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5262 N)) { 5263 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5264 } 5265 } 5266 return nullptr; 5267 } 5268 case Intrinsic::dbg_label: { 5269 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5270 DILabel *Label = DI.getLabel(); 5271 assert(Label && "Missing label"); 5272 5273 SDDbgLabel *SDV; 5274 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5275 DAG.AddDbgLabel(SDV); 5276 return nullptr; 5277 } 5278 case Intrinsic::dbg_value: { 5279 const DbgValueInst &DI = cast<DbgValueInst>(I); 5280 assert(DI.getVariable() && "Missing variable"); 5281 5282 DILocalVariable *Variable = DI.getVariable(); 5283 DIExpression *Expression = DI.getExpression(); 5284 dropDanglingDebugInfo(Variable, Expression); 5285 const Value *V = DI.getValue(); 5286 if (!V) 5287 return nullptr; 5288 5289 SDDbgValue *SDV; 5290 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5291 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5292 DAG.AddDbgValue(SDV, nullptr, false); 5293 return nullptr; 5294 } 5295 5296 // Do not use getValue() in here; we don't want to generate code at 5297 // this point if it hasn't been done yet. 5298 SDValue N = NodeMap[V]; 5299 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5300 N = UnusedArgNodeMap[V]; 5301 if (N.getNode()) { 5302 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5303 return nullptr; 5304 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5305 DAG.AddDbgValue(SDV, N.getNode(), false); 5306 return nullptr; 5307 } 5308 5309 // PHI nodes have already been selected, so we should know which VReg that 5310 // is assigns to already. 5311 if (isa<PHINode>(V)) { 5312 auto VMI = FuncInfo.ValueMap.find(V); 5313 if (VMI != FuncInfo.ValueMap.end()) { 5314 unsigned Reg = VMI->second; 5315 // The PHI node may be split up into several MI PHI nodes (in 5316 // FunctionLoweringInfo::set). 5317 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 5318 V->getType(), None); 5319 if (RFV.occupiesMultipleRegs()) { 5320 unsigned Offset = 0; 5321 unsigned BitsToDescribe = 0; 5322 if (auto VarSize = Variable->getSizeInBits()) 5323 BitsToDescribe = *VarSize; 5324 if (auto Fragment = Expression->getFragmentInfo()) 5325 BitsToDescribe = Fragment->SizeInBits; 5326 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5327 unsigned RegisterSize = RegAndSize.second; 5328 // Bail out if all bits are described already. 5329 if (Offset >= BitsToDescribe) 5330 break; 5331 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 5332 ? BitsToDescribe - Offset 5333 : RegisterSize; 5334 auto FragmentExpr = DIExpression::createFragmentExpression( 5335 Expression, Offset, FragmentSize); 5336 if (!FragmentExpr) 5337 continue; 5338 SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first, 5339 false, dl, SDNodeOrder); 5340 DAG.AddDbgValue(SDV, nullptr, false); 5341 Offset += RegisterSize; 5342 } 5343 } else { 5344 SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl, 5345 SDNodeOrder); 5346 DAG.AddDbgValue(SDV, nullptr, false); 5347 } 5348 return nullptr; 5349 } 5350 } 5351 5352 // TODO: When we get here we will either drop the dbg.value completely, or 5353 // we try to move it forward by letting it dangle for awhile. So we should 5354 // probably add an extra DbgValue to the DAG here, with a reference to 5355 // "noreg", to indicate that we have lost the debug location for the 5356 // variable. 5357 5358 if (!V->use_empty() ) { 5359 // Do not call getValue(V) yet, as we don't want to generate code. 5360 // Remember it for later. 5361 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5362 return nullptr; 5363 } 5364 5365 LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5366 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5367 return nullptr; 5368 } 5369 5370 case Intrinsic::eh_typeid_for: { 5371 // Find the type id for the given typeinfo. 5372 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5373 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5374 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5375 setValue(&I, Res); 5376 return nullptr; 5377 } 5378 5379 case Intrinsic::eh_return_i32: 5380 case Intrinsic::eh_return_i64: 5381 DAG.getMachineFunction().setCallsEHReturn(true); 5382 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5383 MVT::Other, 5384 getControlRoot(), 5385 getValue(I.getArgOperand(0)), 5386 getValue(I.getArgOperand(1)))); 5387 return nullptr; 5388 case Intrinsic::eh_unwind_init: 5389 DAG.getMachineFunction().setCallsUnwindInit(true); 5390 return nullptr; 5391 case Intrinsic::eh_dwarf_cfa: 5392 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5393 TLI.getPointerTy(DAG.getDataLayout()), 5394 getValue(I.getArgOperand(0)))); 5395 return nullptr; 5396 case Intrinsic::eh_sjlj_callsite: { 5397 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5398 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5399 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5400 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5401 5402 MMI.setCurrentCallSite(CI->getZExtValue()); 5403 return nullptr; 5404 } 5405 case Intrinsic::eh_sjlj_functioncontext: { 5406 // Get and store the index of the function context. 5407 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5408 AllocaInst *FnCtx = 5409 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5410 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5411 MFI.setFunctionContextIndex(FI); 5412 return nullptr; 5413 } 5414 case Intrinsic::eh_sjlj_setjmp: { 5415 SDValue Ops[2]; 5416 Ops[0] = getRoot(); 5417 Ops[1] = getValue(I.getArgOperand(0)); 5418 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5419 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5420 setValue(&I, Op.getValue(0)); 5421 DAG.setRoot(Op.getValue(1)); 5422 return nullptr; 5423 } 5424 case Intrinsic::eh_sjlj_longjmp: 5425 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5426 getRoot(), getValue(I.getArgOperand(0)))); 5427 return nullptr; 5428 case Intrinsic::eh_sjlj_setup_dispatch: 5429 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5430 getRoot())); 5431 return nullptr; 5432 case Intrinsic::masked_gather: 5433 visitMaskedGather(I); 5434 return nullptr; 5435 case Intrinsic::masked_load: 5436 visitMaskedLoad(I); 5437 return nullptr; 5438 case Intrinsic::masked_scatter: 5439 visitMaskedScatter(I); 5440 return nullptr; 5441 case Intrinsic::masked_store: 5442 visitMaskedStore(I); 5443 return nullptr; 5444 case Intrinsic::masked_expandload: 5445 visitMaskedLoad(I, true /* IsExpanding */); 5446 return nullptr; 5447 case Intrinsic::masked_compressstore: 5448 visitMaskedStore(I, true /* IsCompressing */); 5449 return nullptr; 5450 case Intrinsic::x86_mmx_pslli_w: 5451 case Intrinsic::x86_mmx_pslli_d: 5452 case Intrinsic::x86_mmx_pslli_q: 5453 case Intrinsic::x86_mmx_psrli_w: 5454 case Intrinsic::x86_mmx_psrli_d: 5455 case Intrinsic::x86_mmx_psrli_q: 5456 case Intrinsic::x86_mmx_psrai_w: 5457 case Intrinsic::x86_mmx_psrai_d: { 5458 SDValue ShAmt = getValue(I.getArgOperand(1)); 5459 if (isa<ConstantSDNode>(ShAmt)) { 5460 visitTargetIntrinsic(I, Intrinsic); 5461 return nullptr; 5462 } 5463 unsigned NewIntrinsic = 0; 5464 EVT ShAmtVT = MVT::v2i32; 5465 switch (Intrinsic) { 5466 case Intrinsic::x86_mmx_pslli_w: 5467 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5468 break; 5469 case Intrinsic::x86_mmx_pslli_d: 5470 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5471 break; 5472 case Intrinsic::x86_mmx_pslli_q: 5473 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5474 break; 5475 case Intrinsic::x86_mmx_psrli_w: 5476 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5477 break; 5478 case Intrinsic::x86_mmx_psrli_d: 5479 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5480 break; 5481 case Intrinsic::x86_mmx_psrli_q: 5482 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5483 break; 5484 case Intrinsic::x86_mmx_psrai_w: 5485 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5486 break; 5487 case Intrinsic::x86_mmx_psrai_d: 5488 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5489 break; 5490 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5491 } 5492 5493 // The vector shift intrinsics with scalars uses 32b shift amounts but 5494 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5495 // to be zero. 5496 // We must do this early because v2i32 is not a legal type. 5497 SDValue ShOps[2]; 5498 ShOps[0] = ShAmt; 5499 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5500 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5501 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5502 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5503 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5504 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5505 getValue(I.getArgOperand(0)), ShAmt); 5506 setValue(&I, Res); 5507 return nullptr; 5508 } 5509 case Intrinsic::powi: 5510 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5511 getValue(I.getArgOperand(1)), DAG)); 5512 return nullptr; 5513 case Intrinsic::log: 5514 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5515 return nullptr; 5516 case Intrinsic::log2: 5517 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5518 return nullptr; 5519 case Intrinsic::log10: 5520 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5521 return nullptr; 5522 case Intrinsic::exp: 5523 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5524 return nullptr; 5525 case Intrinsic::exp2: 5526 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5527 return nullptr; 5528 case Intrinsic::pow: 5529 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5530 getValue(I.getArgOperand(1)), DAG, TLI)); 5531 return nullptr; 5532 case Intrinsic::sqrt: 5533 case Intrinsic::fabs: 5534 case Intrinsic::sin: 5535 case Intrinsic::cos: 5536 case Intrinsic::floor: 5537 case Intrinsic::ceil: 5538 case Intrinsic::trunc: 5539 case Intrinsic::rint: 5540 case Intrinsic::nearbyint: 5541 case Intrinsic::round: 5542 case Intrinsic::canonicalize: { 5543 unsigned Opcode; 5544 switch (Intrinsic) { 5545 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5546 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5547 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5548 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5549 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5550 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5551 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5552 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5553 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5554 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5555 case Intrinsic::round: Opcode = ISD::FROUND; break; 5556 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5557 } 5558 5559 setValue(&I, DAG.getNode(Opcode, sdl, 5560 getValue(I.getArgOperand(0)).getValueType(), 5561 getValue(I.getArgOperand(0)))); 5562 return nullptr; 5563 } 5564 case Intrinsic::minnum: { 5565 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5566 unsigned Opc = 5567 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5568 ? ISD::FMINNAN 5569 : ISD::FMINNUM; 5570 setValue(&I, DAG.getNode(Opc, sdl, VT, 5571 getValue(I.getArgOperand(0)), 5572 getValue(I.getArgOperand(1)))); 5573 return nullptr; 5574 } 5575 case Intrinsic::maxnum: { 5576 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5577 unsigned Opc = 5578 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5579 ? ISD::FMAXNAN 5580 : ISD::FMAXNUM; 5581 setValue(&I, DAG.getNode(Opc, sdl, VT, 5582 getValue(I.getArgOperand(0)), 5583 getValue(I.getArgOperand(1)))); 5584 return nullptr; 5585 } 5586 case Intrinsic::copysign: 5587 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5588 getValue(I.getArgOperand(0)).getValueType(), 5589 getValue(I.getArgOperand(0)), 5590 getValue(I.getArgOperand(1)))); 5591 return nullptr; 5592 case Intrinsic::fma: 5593 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5594 getValue(I.getArgOperand(0)).getValueType(), 5595 getValue(I.getArgOperand(0)), 5596 getValue(I.getArgOperand(1)), 5597 getValue(I.getArgOperand(2)))); 5598 return nullptr; 5599 case Intrinsic::experimental_constrained_fadd: 5600 case Intrinsic::experimental_constrained_fsub: 5601 case Intrinsic::experimental_constrained_fmul: 5602 case Intrinsic::experimental_constrained_fdiv: 5603 case Intrinsic::experimental_constrained_frem: 5604 case Intrinsic::experimental_constrained_fma: 5605 case Intrinsic::experimental_constrained_sqrt: 5606 case Intrinsic::experimental_constrained_pow: 5607 case Intrinsic::experimental_constrained_powi: 5608 case Intrinsic::experimental_constrained_sin: 5609 case Intrinsic::experimental_constrained_cos: 5610 case Intrinsic::experimental_constrained_exp: 5611 case Intrinsic::experimental_constrained_exp2: 5612 case Intrinsic::experimental_constrained_log: 5613 case Intrinsic::experimental_constrained_log10: 5614 case Intrinsic::experimental_constrained_log2: 5615 case Intrinsic::experimental_constrained_rint: 5616 case Intrinsic::experimental_constrained_nearbyint: 5617 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5618 return nullptr; 5619 case Intrinsic::fmuladd: { 5620 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5621 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5622 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5623 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5624 getValue(I.getArgOperand(0)).getValueType(), 5625 getValue(I.getArgOperand(0)), 5626 getValue(I.getArgOperand(1)), 5627 getValue(I.getArgOperand(2)))); 5628 } else { 5629 // TODO: Intrinsic calls should have fast-math-flags. 5630 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5631 getValue(I.getArgOperand(0)).getValueType(), 5632 getValue(I.getArgOperand(0)), 5633 getValue(I.getArgOperand(1))); 5634 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5635 getValue(I.getArgOperand(0)).getValueType(), 5636 Mul, 5637 getValue(I.getArgOperand(2))); 5638 setValue(&I, Add); 5639 } 5640 return nullptr; 5641 } 5642 case Intrinsic::convert_to_fp16: 5643 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5644 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5645 getValue(I.getArgOperand(0)), 5646 DAG.getTargetConstant(0, sdl, 5647 MVT::i32)))); 5648 return nullptr; 5649 case Intrinsic::convert_from_fp16: 5650 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5651 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5652 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5653 getValue(I.getArgOperand(0))))); 5654 return nullptr; 5655 case Intrinsic::pcmarker: { 5656 SDValue Tmp = getValue(I.getArgOperand(0)); 5657 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5658 return nullptr; 5659 } 5660 case Intrinsic::readcyclecounter: { 5661 SDValue Op = getRoot(); 5662 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5663 DAG.getVTList(MVT::i64, MVT::Other), Op); 5664 setValue(&I, Res); 5665 DAG.setRoot(Res.getValue(1)); 5666 return nullptr; 5667 } 5668 case Intrinsic::bitreverse: 5669 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5670 getValue(I.getArgOperand(0)).getValueType(), 5671 getValue(I.getArgOperand(0)))); 5672 return nullptr; 5673 case Intrinsic::bswap: 5674 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5675 getValue(I.getArgOperand(0)).getValueType(), 5676 getValue(I.getArgOperand(0)))); 5677 return nullptr; 5678 case Intrinsic::cttz: { 5679 SDValue Arg = getValue(I.getArgOperand(0)); 5680 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5681 EVT Ty = Arg.getValueType(); 5682 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5683 sdl, Ty, Arg)); 5684 return nullptr; 5685 } 5686 case Intrinsic::ctlz: { 5687 SDValue Arg = getValue(I.getArgOperand(0)); 5688 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5689 EVT Ty = Arg.getValueType(); 5690 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5691 sdl, Ty, Arg)); 5692 return nullptr; 5693 } 5694 case Intrinsic::ctpop: { 5695 SDValue Arg = getValue(I.getArgOperand(0)); 5696 EVT Ty = Arg.getValueType(); 5697 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5698 return nullptr; 5699 } 5700 case Intrinsic::fshl: 5701 case Intrinsic::fshr: { 5702 bool IsFSHL = Intrinsic == Intrinsic::fshl; 5703 SDValue X = getValue(I.getArgOperand(0)); 5704 SDValue Y = getValue(I.getArgOperand(1)); 5705 SDValue Z = getValue(I.getArgOperand(2)); 5706 EVT VT = X.getValueType(); 5707 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 5708 SDValue Zero = DAG.getConstant(0, sdl, VT); 5709 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 5710 5711 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 5712 // avoid the select that is necessary in the general case to filter out 5713 // the 0-shift possibility that leads to UB. 5714 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 5715 // TODO: This should also be done if the operation is custom, but we have 5716 // to make sure targets are handling the modulo shift amount as expected. 5717 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 5718 if (TLI.isOperationLegal(RotateOpcode, VT)) { 5719 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 5720 return nullptr; 5721 } 5722 5723 // Some targets only rotate one way. Try the opposite direction. 5724 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 5725 if (TLI.isOperationLegal(RotateOpcode, VT)) { 5726 // Negate the shift amount because it is safe to ignore the high bits. 5727 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 5728 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 5729 return nullptr; 5730 } 5731 5732 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 5733 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 5734 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 5735 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 5736 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 5737 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 5738 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 5739 return nullptr; 5740 } 5741 5742 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5743 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5744 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 5745 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 5746 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5747 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 5748 5749 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 5750 // and that is undefined. We must compare and select to avoid UB. 5751 EVT CCVT = MVT::i1; 5752 if (VT.isVector()) 5753 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 5754 5755 // For fshl, 0-shift returns the 1st arg (X). 5756 // For fshr, 0-shift returns the 2nd arg (Y). 5757 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 5758 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 5759 return nullptr; 5760 } 5761 case Intrinsic::stacksave: { 5762 SDValue Op = getRoot(); 5763 Res = DAG.getNode( 5764 ISD::STACKSAVE, sdl, 5765 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5766 setValue(&I, Res); 5767 DAG.setRoot(Res.getValue(1)); 5768 return nullptr; 5769 } 5770 case Intrinsic::stackrestore: 5771 Res = getValue(I.getArgOperand(0)); 5772 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5773 return nullptr; 5774 case Intrinsic::get_dynamic_area_offset: { 5775 SDValue Op = getRoot(); 5776 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5777 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5778 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5779 // target. 5780 if (PtrTy != ResTy) 5781 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5782 " intrinsic!"); 5783 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5784 Op); 5785 DAG.setRoot(Op); 5786 setValue(&I, Res); 5787 return nullptr; 5788 } 5789 case Intrinsic::stackguard: { 5790 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5791 MachineFunction &MF = DAG.getMachineFunction(); 5792 const Module &M = *MF.getFunction().getParent(); 5793 SDValue Chain = getRoot(); 5794 if (TLI.useLoadStackGuardNode()) { 5795 Res = getLoadStackGuard(DAG, sdl, Chain); 5796 } else { 5797 const Value *Global = TLI.getSDagStackGuard(M); 5798 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5799 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5800 MachinePointerInfo(Global, 0), Align, 5801 MachineMemOperand::MOVolatile); 5802 } 5803 if (TLI.useStackGuardXorFP()) 5804 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 5805 DAG.setRoot(Chain); 5806 setValue(&I, Res); 5807 return nullptr; 5808 } 5809 case Intrinsic::stackprotector: { 5810 // Emit code into the DAG to store the stack guard onto the stack. 5811 MachineFunction &MF = DAG.getMachineFunction(); 5812 MachineFrameInfo &MFI = MF.getFrameInfo(); 5813 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5814 SDValue Src, Chain = getRoot(); 5815 5816 if (TLI.useLoadStackGuardNode()) 5817 Src = getLoadStackGuard(DAG, sdl, Chain); 5818 else 5819 Src = getValue(I.getArgOperand(0)); // The guard's value. 5820 5821 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5822 5823 int FI = FuncInfo.StaticAllocaMap[Slot]; 5824 MFI.setStackProtectorIndex(FI); 5825 5826 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5827 5828 // Store the stack protector onto the stack. 5829 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5830 DAG.getMachineFunction(), FI), 5831 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5832 setValue(&I, Res); 5833 DAG.setRoot(Res); 5834 return nullptr; 5835 } 5836 case Intrinsic::objectsize: { 5837 // If we don't know by now, we're never going to know. 5838 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5839 5840 assert(CI && "Non-constant type in __builtin_object_size?"); 5841 5842 SDValue Arg = getValue(I.getCalledValue()); 5843 EVT Ty = Arg.getValueType(); 5844 5845 if (CI->isZero()) 5846 Res = DAG.getConstant(-1ULL, sdl, Ty); 5847 else 5848 Res = DAG.getConstant(0, sdl, Ty); 5849 5850 setValue(&I, Res); 5851 return nullptr; 5852 } 5853 case Intrinsic::annotation: 5854 case Intrinsic::ptr_annotation: 5855 case Intrinsic::launder_invariant_group: 5856 case Intrinsic::strip_invariant_group: 5857 // Drop the intrinsic, but forward the value 5858 setValue(&I, getValue(I.getOperand(0))); 5859 return nullptr; 5860 case Intrinsic::assume: 5861 case Intrinsic::var_annotation: 5862 case Intrinsic::sideeffect: 5863 // Discard annotate attributes, assumptions, and artificial side-effects. 5864 return nullptr; 5865 5866 case Intrinsic::codeview_annotation: { 5867 // Emit a label associated with this metadata. 5868 MachineFunction &MF = DAG.getMachineFunction(); 5869 MCSymbol *Label = 5870 MF.getMMI().getContext().createTempSymbol("annotation", true); 5871 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5872 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5873 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5874 DAG.setRoot(Res); 5875 return nullptr; 5876 } 5877 5878 case Intrinsic::init_trampoline: { 5879 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5880 5881 SDValue Ops[6]; 5882 Ops[0] = getRoot(); 5883 Ops[1] = getValue(I.getArgOperand(0)); 5884 Ops[2] = getValue(I.getArgOperand(1)); 5885 Ops[3] = getValue(I.getArgOperand(2)); 5886 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5887 Ops[5] = DAG.getSrcValue(F); 5888 5889 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5890 5891 DAG.setRoot(Res); 5892 return nullptr; 5893 } 5894 case Intrinsic::adjust_trampoline: 5895 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5896 TLI.getPointerTy(DAG.getDataLayout()), 5897 getValue(I.getArgOperand(0)))); 5898 return nullptr; 5899 case Intrinsic::gcroot: { 5900 assert(DAG.getMachineFunction().getFunction().hasGC() && 5901 "only valid in functions with gc specified, enforced by Verifier"); 5902 assert(GFI && "implied by previous"); 5903 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5904 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5905 5906 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5907 GFI->addStackRoot(FI->getIndex(), TypeMap); 5908 return nullptr; 5909 } 5910 case Intrinsic::gcread: 5911 case Intrinsic::gcwrite: 5912 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5913 case Intrinsic::flt_rounds: 5914 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5915 return nullptr; 5916 5917 case Intrinsic::expect: 5918 // Just replace __builtin_expect(exp, c) with EXP. 5919 setValue(&I, getValue(I.getArgOperand(0))); 5920 return nullptr; 5921 5922 case Intrinsic::debugtrap: 5923 case Intrinsic::trap: { 5924 StringRef TrapFuncName = 5925 I.getAttributes() 5926 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5927 .getValueAsString(); 5928 if (TrapFuncName.empty()) { 5929 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5930 ISD::TRAP : ISD::DEBUGTRAP; 5931 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5932 return nullptr; 5933 } 5934 TargetLowering::ArgListTy Args; 5935 5936 TargetLowering::CallLoweringInfo CLI(DAG); 5937 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5938 CallingConv::C, I.getType(), 5939 DAG.getExternalSymbol(TrapFuncName.data(), 5940 TLI.getPointerTy(DAG.getDataLayout())), 5941 std::move(Args)); 5942 5943 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5944 DAG.setRoot(Result.second); 5945 return nullptr; 5946 } 5947 5948 case Intrinsic::uadd_with_overflow: 5949 case Intrinsic::sadd_with_overflow: 5950 case Intrinsic::usub_with_overflow: 5951 case Intrinsic::ssub_with_overflow: 5952 case Intrinsic::umul_with_overflow: 5953 case Intrinsic::smul_with_overflow: { 5954 ISD::NodeType Op; 5955 switch (Intrinsic) { 5956 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5957 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5958 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5959 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5960 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5961 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5962 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5963 } 5964 SDValue Op1 = getValue(I.getArgOperand(0)); 5965 SDValue Op2 = getValue(I.getArgOperand(1)); 5966 5967 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5968 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5969 return nullptr; 5970 } 5971 case Intrinsic::prefetch: { 5972 SDValue Ops[5]; 5973 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5974 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 5975 Ops[0] = DAG.getRoot(); 5976 Ops[1] = getValue(I.getArgOperand(0)); 5977 Ops[2] = getValue(I.getArgOperand(1)); 5978 Ops[3] = getValue(I.getArgOperand(2)); 5979 Ops[4] = getValue(I.getArgOperand(3)); 5980 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5981 DAG.getVTList(MVT::Other), Ops, 5982 EVT::getIntegerVT(*Context, 8), 5983 MachinePointerInfo(I.getArgOperand(0)), 5984 0, /* align */ 5985 Flags); 5986 5987 // Chain the prefetch in parallell with any pending loads, to stay out of 5988 // the way of later optimizations. 5989 PendingLoads.push_back(Result); 5990 Result = getRoot(); 5991 DAG.setRoot(Result); 5992 return nullptr; 5993 } 5994 case Intrinsic::lifetime_start: 5995 case Intrinsic::lifetime_end: { 5996 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5997 // Stack coloring is not enabled in O0, discard region information. 5998 if (TM.getOptLevel() == CodeGenOpt::None) 5999 return nullptr; 6000 6001 SmallVector<Value *, 4> Allocas; 6002 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 6003 6004 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 6005 E = Allocas.end(); Object != E; ++Object) { 6006 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6007 6008 // Could not find an Alloca. 6009 if (!LifetimeObject) 6010 continue; 6011 6012 // First check that the Alloca is static, otherwise it won't have a 6013 // valid frame index. 6014 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6015 if (SI == FuncInfo.StaticAllocaMap.end()) 6016 return nullptr; 6017 6018 int FI = SI->second; 6019 6020 SDValue Ops[2]; 6021 Ops[0] = getRoot(); 6022 Ops[1] = 6023 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 6024 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 6025 6026 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 6027 DAG.setRoot(Res); 6028 } 6029 return nullptr; 6030 } 6031 case Intrinsic::invariant_start: 6032 // Discard region information. 6033 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6034 return nullptr; 6035 case Intrinsic::invariant_end: 6036 // Discard region information. 6037 return nullptr; 6038 case Intrinsic::clear_cache: 6039 return TLI.getClearCacheBuiltinName(); 6040 case Intrinsic::donothing: 6041 // ignore 6042 return nullptr; 6043 case Intrinsic::experimental_stackmap: 6044 visitStackmap(I); 6045 return nullptr; 6046 case Intrinsic::experimental_patchpoint_void: 6047 case Intrinsic::experimental_patchpoint_i64: 6048 visitPatchpoint(&I); 6049 return nullptr; 6050 case Intrinsic::experimental_gc_statepoint: 6051 LowerStatepoint(ImmutableStatepoint(&I)); 6052 return nullptr; 6053 case Intrinsic::experimental_gc_result: 6054 visitGCResult(cast<GCResultInst>(I)); 6055 return nullptr; 6056 case Intrinsic::experimental_gc_relocate: 6057 visitGCRelocate(cast<GCRelocateInst>(I)); 6058 return nullptr; 6059 case Intrinsic::instrprof_increment: 6060 llvm_unreachable("instrprof failed to lower an increment"); 6061 case Intrinsic::instrprof_value_profile: 6062 llvm_unreachable("instrprof failed to lower a value profiling call"); 6063 case Intrinsic::localescape: { 6064 MachineFunction &MF = DAG.getMachineFunction(); 6065 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6066 6067 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6068 // is the same on all targets. 6069 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6070 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6071 if (isa<ConstantPointerNull>(Arg)) 6072 continue; // Skip null pointers. They represent a hole in index space. 6073 AllocaInst *Slot = cast<AllocaInst>(Arg); 6074 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6075 "can only escape static allocas"); 6076 int FI = FuncInfo.StaticAllocaMap[Slot]; 6077 MCSymbol *FrameAllocSym = 6078 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6079 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6080 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6081 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6082 .addSym(FrameAllocSym) 6083 .addFrameIndex(FI); 6084 } 6085 6086 return nullptr; 6087 } 6088 6089 case Intrinsic::localrecover: { 6090 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6091 MachineFunction &MF = DAG.getMachineFunction(); 6092 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6093 6094 // Get the symbol that defines the frame offset. 6095 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6096 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6097 unsigned IdxVal = 6098 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6099 MCSymbol *FrameAllocSym = 6100 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6101 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6102 6103 // Create a MCSymbol for the label to avoid any target lowering 6104 // that would make this PC relative. 6105 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6106 SDValue OffsetVal = 6107 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6108 6109 // Add the offset to the FP. 6110 Value *FP = I.getArgOperand(1); 6111 SDValue FPVal = getValue(FP); 6112 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6113 setValue(&I, Add); 6114 6115 return nullptr; 6116 } 6117 6118 case Intrinsic::eh_exceptionpointer: 6119 case Intrinsic::eh_exceptioncode: { 6120 // Get the exception pointer vreg, copy from it, and resize it to fit. 6121 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6122 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6123 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6124 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6125 SDValue N = 6126 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6127 if (Intrinsic == Intrinsic::eh_exceptioncode) 6128 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6129 setValue(&I, N); 6130 return nullptr; 6131 } 6132 case Intrinsic::xray_customevent: { 6133 // Here we want to make sure that the intrinsic behaves as if it has a 6134 // specific calling convention, and only for x86_64. 6135 // FIXME: Support other platforms later. 6136 const auto &Triple = DAG.getTarget().getTargetTriple(); 6137 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6138 return nullptr; 6139 6140 SDLoc DL = getCurSDLoc(); 6141 SmallVector<SDValue, 8> Ops; 6142 6143 // We want to say that we always want the arguments in registers. 6144 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6145 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6146 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6147 SDValue Chain = getRoot(); 6148 Ops.push_back(LogEntryVal); 6149 Ops.push_back(StrSizeVal); 6150 Ops.push_back(Chain); 6151 6152 // We need to enforce the calling convention for the callsite, so that 6153 // argument ordering is enforced correctly, and that register allocation can 6154 // see that some registers may be assumed clobbered and have to preserve 6155 // them across calls to the intrinsic. 6156 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6157 DL, NodeTys, Ops); 6158 SDValue patchableNode = SDValue(MN, 0); 6159 DAG.setRoot(patchableNode); 6160 setValue(&I, patchableNode); 6161 return nullptr; 6162 } 6163 case Intrinsic::xray_typedevent: { 6164 // Here we want to make sure that the intrinsic behaves as if it has a 6165 // specific calling convention, and only for x86_64. 6166 // FIXME: Support other platforms later. 6167 const auto &Triple = DAG.getTarget().getTargetTriple(); 6168 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6169 return nullptr; 6170 6171 SDLoc DL = getCurSDLoc(); 6172 SmallVector<SDValue, 8> Ops; 6173 6174 // We want to say that we always want the arguments in registers. 6175 // It's unclear to me how manipulating the selection DAG here forces callers 6176 // to provide arguments in registers instead of on the stack. 6177 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6178 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6179 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6180 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6181 SDValue Chain = getRoot(); 6182 Ops.push_back(LogTypeId); 6183 Ops.push_back(LogEntryVal); 6184 Ops.push_back(StrSizeVal); 6185 Ops.push_back(Chain); 6186 6187 // We need to enforce the calling convention for the callsite, so that 6188 // argument ordering is enforced correctly, and that register allocation can 6189 // see that some registers may be assumed clobbered and have to preserve 6190 // them across calls to the intrinsic. 6191 MachineSDNode *MN = DAG.getMachineNode( 6192 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6193 SDValue patchableNode = SDValue(MN, 0); 6194 DAG.setRoot(patchableNode); 6195 setValue(&I, patchableNode); 6196 return nullptr; 6197 } 6198 case Intrinsic::experimental_deoptimize: 6199 LowerDeoptimizeCall(&I); 6200 return nullptr; 6201 6202 case Intrinsic::experimental_vector_reduce_fadd: 6203 case Intrinsic::experimental_vector_reduce_fmul: 6204 case Intrinsic::experimental_vector_reduce_add: 6205 case Intrinsic::experimental_vector_reduce_mul: 6206 case Intrinsic::experimental_vector_reduce_and: 6207 case Intrinsic::experimental_vector_reduce_or: 6208 case Intrinsic::experimental_vector_reduce_xor: 6209 case Intrinsic::experimental_vector_reduce_smax: 6210 case Intrinsic::experimental_vector_reduce_smin: 6211 case Intrinsic::experimental_vector_reduce_umax: 6212 case Intrinsic::experimental_vector_reduce_umin: 6213 case Intrinsic::experimental_vector_reduce_fmax: 6214 case Intrinsic::experimental_vector_reduce_fmin: 6215 visitVectorReduce(I, Intrinsic); 6216 return nullptr; 6217 6218 case Intrinsic::icall_branch_funnel: { 6219 SmallVector<SDValue, 16> Ops; 6220 Ops.push_back(DAG.getRoot()); 6221 Ops.push_back(getValue(I.getArgOperand(0))); 6222 6223 int64_t Offset; 6224 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6225 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6226 if (!Base) 6227 report_fatal_error( 6228 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6229 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6230 6231 struct BranchFunnelTarget { 6232 int64_t Offset; 6233 SDValue Target; 6234 }; 6235 SmallVector<BranchFunnelTarget, 8> Targets; 6236 6237 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6238 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6239 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6240 if (ElemBase != Base) 6241 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6242 "to the same GlobalValue"); 6243 6244 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6245 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6246 if (!GA) 6247 report_fatal_error( 6248 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6249 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6250 GA->getGlobal(), getCurSDLoc(), 6251 Val.getValueType(), GA->getOffset())}); 6252 } 6253 llvm::sort(Targets.begin(), Targets.end(), 6254 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6255 return T1.Offset < T2.Offset; 6256 }); 6257 6258 for (auto &T : Targets) { 6259 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6260 Ops.push_back(T.Target); 6261 } 6262 6263 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6264 getCurSDLoc(), MVT::Other, Ops), 6265 0); 6266 DAG.setRoot(N); 6267 setValue(&I, N); 6268 HasTailCall = true; 6269 return nullptr; 6270 } 6271 6272 case Intrinsic::wasm_landingpad_index: { 6273 // TODO store landing pad index in a map, which will be used when generating 6274 // LSDA information 6275 return nullptr; 6276 } 6277 } 6278 } 6279 6280 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6281 const ConstrainedFPIntrinsic &FPI) { 6282 SDLoc sdl = getCurSDLoc(); 6283 unsigned Opcode; 6284 switch (FPI.getIntrinsicID()) { 6285 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6286 case Intrinsic::experimental_constrained_fadd: 6287 Opcode = ISD::STRICT_FADD; 6288 break; 6289 case Intrinsic::experimental_constrained_fsub: 6290 Opcode = ISD::STRICT_FSUB; 6291 break; 6292 case Intrinsic::experimental_constrained_fmul: 6293 Opcode = ISD::STRICT_FMUL; 6294 break; 6295 case Intrinsic::experimental_constrained_fdiv: 6296 Opcode = ISD::STRICT_FDIV; 6297 break; 6298 case Intrinsic::experimental_constrained_frem: 6299 Opcode = ISD::STRICT_FREM; 6300 break; 6301 case Intrinsic::experimental_constrained_fma: 6302 Opcode = ISD::STRICT_FMA; 6303 break; 6304 case Intrinsic::experimental_constrained_sqrt: 6305 Opcode = ISD::STRICT_FSQRT; 6306 break; 6307 case Intrinsic::experimental_constrained_pow: 6308 Opcode = ISD::STRICT_FPOW; 6309 break; 6310 case Intrinsic::experimental_constrained_powi: 6311 Opcode = ISD::STRICT_FPOWI; 6312 break; 6313 case Intrinsic::experimental_constrained_sin: 6314 Opcode = ISD::STRICT_FSIN; 6315 break; 6316 case Intrinsic::experimental_constrained_cos: 6317 Opcode = ISD::STRICT_FCOS; 6318 break; 6319 case Intrinsic::experimental_constrained_exp: 6320 Opcode = ISD::STRICT_FEXP; 6321 break; 6322 case Intrinsic::experimental_constrained_exp2: 6323 Opcode = ISD::STRICT_FEXP2; 6324 break; 6325 case Intrinsic::experimental_constrained_log: 6326 Opcode = ISD::STRICT_FLOG; 6327 break; 6328 case Intrinsic::experimental_constrained_log10: 6329 Opcode = ISD::STRICT_FLOG10; 6330 break; 6331 case Intrinsic::experimental_constrained_log2: 6332 Opcode = ISD::STRICT_FLOG2; 6333 break; 6334 case Intrinsic::experimental_constrained_rint: 6335 Opcode = ISD::STRICT_FRINT; 6336 break; 6337 case Intrinsic::experimental_constrained_nearbyint: 6338 Opcode = ISD::STRICT_FNEARBYINT; 6339 break; 6340 } 6341 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6342 SDValue Chain = getRoot(); 6343 SmallVector<EVT, 4> ValueVTs; 6344 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6345 ValueVTs.push_back(MVT::Other); // Out chain 6346 6347 SDVTList VTs = DAG.getVTList(ValueVTs); 6348 SDValue Result; 6349 if (FPI.isUnaryOp()) 6350 Result = DAG.getNode(Opcode, sdl, VTs, 6351 { Chain, getValue(FPI.getArgOperand(0)) }); 6352 else if (FPI.isTernaryOp()) 6353 Result = DAG.getNode(Opcode, sdl, VTs, 6354 { Chain, getValue(FPI.getArgOperand(0)), 6355 getValue(FPI.getArgOperand(1)), 6356 getValue(FPI.getArgOperand(2)) }); 6357 else 6358 Result = DAG.getNode(Opcode, sdl, VTs, 6359 { Chain, getValue(FPI.getArgOperand(0)), 6360 getValue(FPI.getArgOperand(1)) }); 6361 6362 assert(Result.getNode()->getNumValues() == 2); 6363 SDValue OutChain = Result.getValue(1); 6364 DAG.setRoot(OutChain); 6365 SDValue FPResult = Result.getValue(0); 6366 setValue(&FPI, FPResult); 6367 } 6368 6369 std::pair<SDValue, SDValue> 6370 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6371 const BasicBlock *EHPadBB) { 6372 MachineFunction &MF = DAG.getMachineFunction(); 6373 MachineModuleInfo &MMI = MF.getMMI(); 6374 MCSymbol *BeginLabel = nullptr; 6375 6376 if (EHPadBB) { 6377 // Insert a label before the invoke call to mark the try range. This can be 6378 // used to detect deletion of the invoke via the MachineModuleInfo. 6379 BeginLabel = MMI.getContext().createTempSymbol(); 6380 6381 // For SjLj, keep track of which landing pads go with which invokes 6382 // so as to maintain the ordering of pads in the LSDA. 6383 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6384 if (CallSiteIndex) { 6385 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6386 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6387 6388 // Now that the call site is handled, stop tracking it. 6389 MMI.setCurrentCallSite(0); 6390 } 6391 6392 // Both PendingLoads and PendingExports must be flushed here; 6393 // this call might not return. 6394 (void)getRoot(); 6395 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6396 6397 CLI.setChain(getRoot()); 6398 } 6399 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6400 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6401 6402 assert((CLI.IsTailCall || Result.second.getNode()) && 6403 "Non-null chain expected with non-tail call!"); 6404 assert((Result.second.getNode() || !Result.first.getNode()) && 6405 "Null value expected with tail call!"); 6406 6407 if (!Result.second.getNode()) { 6408 // As a special case, a null chain means that a tail call has been emitted 6409 // and the DAG root is already updated. 6410 HasTailCall = true; 6411 6412 // Since there's no actual continuation from this block, nothing can be 6413 // relying on us setting vregs for them. 6414 PendingExports.clear(); 6415 } else { 6416 DAG.setRoot(Result.second); 6417 } 6418 6419 if (EHPadBB) { 6420 // Insert a label at the end of the invoke call to mark the try range. This 6421 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6422 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6423 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6424 6425 // Inform MachineModuleInfo of range. 6426 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6427 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6428 // actually use outlined funclets and their LSDA info style. 6429 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6430 assert(CLI.CS); 6431 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6432 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6433 BeginLabel, EndLabel); 6434 } else { 6435 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6436 } 6437 } 6438 6439 return Result; 6440 } 6441 6442 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6443 bool isTailCall, 6444 const BasicBlock *EHPadBB) { 6445 auto &DL = DAG.getDataLayout(); 6446 FunctionType *FTy = CS.getFunctionType(); 6447 Type *RetTy = CS.getType(); 6448 6449 TargetLowering::ArgListTy Args; 6450 Args.reserve(CS.arg_size()); 6451 6452 const Value *SwiftErrorVal = nullptr; 6453 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6454 6455 // We can't tail call inside a function with a swifterror argument. Lowering 6456 // does not support this yet. It would have to move into the swifterror 6457 // register before the call. 6458 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6459 if (TLI.supportSwiftError() && 6460 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6461 isTailCall = false; 6462 6463 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6464 i != e; ++i) { 6465 TargetLowering::ArgListEntry Entry; 6466 const Value *V = *i; 6467 6468 // Skip empty types 6469 if (V->getType()->isEmptyTy()) 6470 continue; 6471 6472 SDValue ArgNode = getValue(V); 6473 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6474 6475 Entry.setAttributes(&CS, i - CS.arg_begin()); 6476 6477 // Use swifterror virtual register as input to the call. 6478 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6479 SwiftErrorVal = V; 6480 // We find the virtual register for the actual swifterror argument. 6481 // Instead of using the Value, we use the virtual register instead. 6482 Entry.Node = DAG.getRegister(FuncInfo 6483 .getOrCreateSwiftErrorVRegUseAt( 6484 CS.getInstruction(), FuncInfo.MBB, V) 6485 .first, 6486 EVT(TLI.getPointerTy(DL))); 6487 } 6488 6489 Args.push_back(Entry); 6490 6491 // If we have an explicit sret argument that is an Instruction, (i.e., it 6492 // might point to function-local memory), we can't meaningfully tail-call. 6493 if (Entry.IsSRet && isa<Instruction>(V)) 6494 isTailCall = false; 6495 } 6496 6497 // Check if target-independent constraints permit a tail call here. 6498 // Target-dependent constraints are checked within TLI->LowerCallTo. 6499 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6500 isTailCall = false; 6501 6502 // Disable tail calls if there is an swifterror argument. Targets have not 6503 // been updated to support tail calls. 6504 if (TLI.supportSwiftError() && SwiftErrorVal) 6505 isTailCall = false; 6506 6507 TargetLowering::CallLoweringInfo CLI(DAG); 6508 CLI.setDebugLoc(getCurSDLoc()) 6509 .setChain(getRoot()) 6510 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6511 .setTailCall(isTailCall) 6512 .setConvergent(CS.isConvergent()); 6513 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6514 6515 if (Result.first.getNode()) { 6516 const Instruction *Inst = CS.getInstruction(); 6517 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6518 setValue(Inst, Result.first); 6519 } 6520 6521 // The last element of CLI.InVals has the SDValue for swifterror return. 6522 // Here we copy it to a virtual register and update SwiftErrorMap for 6523 // book-keeping. 6524 if (SwiftErrorVal && TLI.supportSwiftError()) { 6525 // Get the last element of InVals. 6526 SDValue Src = CLI.InVals.back(); 6527 unsigned VReg; bool CreatedVReg; 6528 std::tie(VReg, CreatedVReg) = 6529 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6530 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6531 // We update the virtual register for the actual swifterror argument. 6532 if (CreatedVReg) 6533 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6534 DAG.setRoot(CopyNode); 6535 } 6536 } 6537 6538 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6539 SelectionDAGBuilder &Builder) { 6540 // Check to see if this load can be trivially constant folded, e.g. if the 6541 // input is from a string literal. 6542 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6543 // Cast pointer to the type we really want to load. 6544 Type *LoadTy = 6545 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6546 if (LoadVT.isVector()) 6547 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6548 6549 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6550 PointerType::getUnqual(LoadTy)); 6551 6552 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6553 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6554 return Builder.getValue(LoadCst); 6555 } 6556 6557 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6558 // still constant memory, the input chain can be the entry node. 6559 SDValue Root; 6560 bool ConstantMemory = false; 6561 6562 // Do not serialize (non-volatile) loads of constant memory with anything. 6563 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6564 Root = Builder.DAG.getEntryNode(); 6565 ConstantMemory = true; 6566 } else { 6567 // Do not serialize non-volatile loads against each other. 6568 Root = Builder.DAG.getRoot(); 6569 } 6570 6571 SDValue Ptr = Builder.getValue(PtrVal); 6572 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6573 Ptr, MachinePointerInfo(PtrVal), 6574 /* Alignment = */ 1); 6575 6576 if (!ConstantMemory) 6577 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6578 return LoadVal; 6579 } 6580 6581 /// Record the value for an instruction that produces an integer result, 6582 /// converting the type where necessary. 6583 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6584 SDValue Value, 6585 bool IsSigned) { 6586 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6587 I.getType(), true); 6588 if (IsSigned) 6589 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6590 else 6591 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6592 setValue(&I, Value); 6593 } 6594 6595 /// See if we can lower a memcmp call into an optimized form. If so, return 6596 /// true and lower it. Otherwise return false, and it will be lowered like a 6597 /// normal call. 6598 /// The caller already checked that \p I calls the appropriate LibFunc with a 6599 /// correct prototype. 6600 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6601 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6602 const Value *Size = I.getArgOperand(2); 6603 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6604 if (CSize && CSize->getZExtValue() == 0) { 6605 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6606 I.getType(), true); 6607 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6608 return true; 6609 } 6610 6611 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6612 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6613 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6614 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6615 if (Res.first.getNode()) { 6616 processIntegerCallValue(I, Res.first, true); 6617 PendingLoads.push_back(Res.second); 6618 return true; 6619 } 6620 6621 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6622 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6623 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6624 return false; 6625 6626 // If the target has a fast compare for the given size, it will return a 6627 // preferred load type for that size. Require that the load VT is legal and 6628 // that the target supports unaligned loads of that type. Otherwise, return 6629 // INVALID. 6630 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6631 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6632 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6633 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6634 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6635 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6636 // TODO: Check alignment of src and dest ptrs. 6637 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6638 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6639 if (!TLI.isTypeLegal(LVT) || 6640 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6641 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6642 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6643 } 6644 6645 return LVT; 6646 }; 6647 6648 // This turns into unaligned loads. We only do this if the target natively 6649 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6650 // we'll only produce a small number of byte loads. 6651 MVT LoadVT; 6652 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6653 switch (NumBitsToCompare) { 6654 default: 6655 return false; 6656 case 16: 6657 LoadVT = MVT::i16; 6658 break; 6659 case 32: 6660 LoadVT = MVT::i32; 6661 break; 6662 case 64: 6663 case 128: 6664 case 256: 6665 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6666 break; 6667 } 6668 6669 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6670 return false; 6671 6672 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6673 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6674 6675 // Bitcast to a wide integer type if the loads are vectors. 6676 if (LoadVT.isVector()) { 6677 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6678 LoadL = DAG.getBitcast(CmpVT, LoadL); 6679 LoadR = DAG.getBitcast(CmpVT, LoadR); 6680 } 6681 6682 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6683 processIntegerCallValue(I, Cmp, false); 6684 return true; 6685 } 6686 6687 /// See if we can lower a memchr call into an optimized form. If so, return 6688 /// true and lower it. Otherwise return false, and it will be lowered like a 6689 /// normal call. 6690 /// The caller already checked that \p I calls the appropriate LibFunc with a 6691 /// correct prototype. 6692 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6693 const Value *Src = I.getArgOperand(0); 6694 const Value *Char = I.getArgOperand(1); 6695 const Value *Length = I.getArgOperand(2); 6696 6697 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6698 std::pair<SDValue, SDValue> Res = 6699 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6700 getValue(Src), getValue(Char), getValue(Length), 6701 MachinePointerInfo(Src)); 6702 if (Res.first.getNode()) { 6703 setValue(&I, Res.first); 6704 PendingLoads.push_back(Res.second); 6705 return true; 6706 } 6707 6708 return false; 6709 } 6710 6711 /// See if we can lower a mempcpy call into an optimized form. If so, return 6712 /// true and lower it. Otherwise return false, and it will be lowered like a 6713 /// normal call. 6714 /// The caller already checked that \p I calls the appropriate LibFunc with a 6715 /// correct prototype. 6716 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6717 SDValue Dst = getValue(I.getArgOperand(0)); 6718 SDValue Src = getValue(I.getArgOperand(1)); 6719 SDValue Size = getValue(I.getArgOperand(2)); 6720 6721 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6722 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6723 unsigned Align = std::min(DstAlign, SrcAlign); 6724 if (Align == 0) // Alignment of one or both could not be inferred. 6725 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6726 6727 bool isVol = false; 6728 SDLoc sdl = getCurSDLoc(); 6729 6730 // In the mempcpy context we need to pass in a false value for isTailCall 6731 // because the return pointer needs to be adjusted by the size of 6732 // the copied memory. 6733 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6734 false, /*isTailCall=*/false, 6735 MachinePointerInfo(I.getArgOperand(0)), 6736 MachinePointerInfo(I.getArgOperand(1))); 6737 assert(MC.getNode() != nullptr && 6738 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6739 DAG.setRoot(MC); 6740 6741 // Check if Size needs to be truncated or extended. 6742 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6743 6744 // Adjust return pointer to point just past the last dst byte. 6745 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6746 Dst, Size); 6747 setValue(&I, DstPlusSize); 6748 return true; 6749 } 6750 6751 /// See if we can lower a strcpy call into an optimized form. If so, return 6752 /// true and lower it, otherwise return false and it will be lowered like a 6753 /// normal call. 6754 /// The caller already checked that \p I calls the appropriate LibFunc with a 6755 /// correct prototype. 6756 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6757 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6758 6759 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6760 std::pair<SDValue, SDValue> Res = 6761 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6762 getValue(Arg0), getValue(Arg1), 6763 MachinePointerInfo(Arg0), 6764 MachinePointerInfo(Arg1), isStpcpy); 6765 if (Res.first.getNode()) { 6766 setValue(&I, Res.first); 6767 DAG.setRoot(Res.second); 6768 return true; 6769 } 6770 6771 return false; 6772 } 6773 6774 /// See if we can lower a strcmp call into an optimized form. If so, return 6775 /// true and lower it, otherwise return false and it will be lowered like a 6776 /// normal call. 6777 /// The caller already checked that \p I calls the appropriate LibFunc with a 6778 /// correct prototype. 6779 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6780 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6781 6782 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6783 std::pair<SDValue, SDValue> Res = 6784 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6785 getValue(Arg0), getValue(Arg1), 6786 MachinePointerInfo(Arg0), 6787 MachinePointerInfo(Arg1)); 6788 if (Res.first.getNode()) { 6789 processIntegerCallValue(I, Res.first, true); 6790 PendingLoads.push_back(Res.second); 6791 return true; 6792 } 6793 6794 return false; 6795 } 6796 6797 /// See if we can lower a strlen call into an optimized form. If so, return 6798 /// true and lower it, otherwise return false and it will be lowered like a 6799 /// normal call. 6800 /// The caller already checked that \p I calls the appropriate LibFunc with a 6801 /// correct prototype. 6802 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6803 const Value *Arg0 = I.getArgOperand(0); 6804 6805 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6806 std::pair<SDValue, SDValue> Res = 6807 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6808 getValue(Arg0), MachinePointerInfo(Arg0)); 6809 if (Res.first.getNode()) { 6810 processIntegerCallValue(I, Res.first, false); 6811 PendingLoads.push_back(Res.second); 6812 return true; 6813 } 6814 6815 return false; 6816 } 6817 6818 /// See if we can lower a strnlen call into an optimized form. If so, return 6819 /// true and lower it, otherwise return false and it will be lowered like a 6820 /// normal call. 6821 /// The caller already checked that \p I calls the appropriate LibFunc with a 6822 /// correct prototype. 6823 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6824 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6825 6826 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6827 std::pair<SDValue, SDValue> Res = 6828 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6829 getValue(Arg0), getValue(Arg1), 6830 MachinePointerInfo(Arg0)); 6831 if (Res.first.getNode()) { 6832 processIntegerCallValue(I, Res.first, false); 6833 PendingLoads.push_back(Res.second); 6834 return true; 6835 } 6836 6837 return false; 6838 } 6839 6840 /// See if we can lower a unary floating-point operation into an SDNode with 6841 /// the specified Opcode. If so, return true and lower it, otherwise return 6842 /// false and it will be lowered like a normal call. 6843 /// The caller already checked that \p I calls the appropriate LibFunc with a 6844 /// correct prototype. 6845 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6846 unsigned Opcode) { 6847 // We already checked this call's prototype; verify it doesn't modify errno. 6848 if (!I.onlyReadsMemory()) 6849 return false; 6850 6851 SDValue Tmp = getValue(I.getArgOperand(0)); 6852 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6853 return true; 6854 } 6855 6856 /// See if we can lower a binary floating-point operation into an SDNode with 6857 /// the specified Opcode. If so, return true and lower it. Otherwise return 6858 /// false, and it will be lowered like a normal call. 6859 /// The caller already checked that \p I calls the appropriate LibFunc with a 6860 /// correct prototype. 6861 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6862 unsigned Opcode) { 6863 // We already checked this call's prototype; verify it doesn't modify errno. 6864 if (!I.onlyReadsMemory()) 6865 return false; 6866 6867 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6868 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6869 EVT VT = Tmp0.getValueType(); 6870 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6871 return true; 6872 } 6873 6874 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6875 // Handle inline assembly differently. 6876 if (isa<InlineAsm>(I.getCalledValue())) { 6877 visitInlineAsm(&I); 6878 return; 6879 } 6880 6881 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6882 computeUsesVAFloatArgument(I, MMI); 6883 6884 const char *RenameFn = nullptr; 6885 if (Function *F = I.getCalledFunction()) { 6886 if (F->isDeclaration()) { 6887 // Is this an LLVM intrinsic or a target-specific intrinsic? 6888 unsigned IID = F->getIntrinsicID(); 6889 if (!IID) 6890 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 6891 IID = II->getIntrinsicID(F); 6892 6893 if (IID) { 6894 RenameFn = visitIntrinsicCall(I, IID); 6895 if (!RenameFn) 6896 return; 6897 } 6898 } 6899 6900 // Check for well-known libc/libm calls. If the function is internal, it 6901 // can't be a library call. Don't do the check if marked as nobuiltin for 6902 // some reason or the call site requires strict floating point semantics. 6903 LibFunc Func; 6904 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 6905 F->hasName() && LibInfo->getLibFunc(*F, Func) && 6906 LibInfo->hasOptimizedCodeGen(Func)) { 6907 switch (Func) { 6908 default: break; 6909 case LibFunc_copysign: 6910 case LibFunc_copysignf: 6911 case LibFunc_copysignl: 6912 // We already checked this call's prototype; verify it doesn't modify 6913 // errno. 6914 if (I.onlyReadsMemory()) { 6915 SDValue LHS = getValue(I.getArgOperand(0)); 6916 SDValue RHS = getValue(I.getArgOperand(1)); 6917 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6918 LHS.getValueType(), LHS, RHS)); 6919 return; 6920 } 6921 break; 6922 case LibFunc_fabs: 6923 case LibFunc_fabsf: 6924 case LibFunc_fabsl: 6925 if (visitUnaryFloatCall(I, ISD::FABS)) 6926 return; 6927 break; 6928 case LibFunc_fmin: 6929 case LibFunc_fminf: 6930 case LibFunc_fminl: 6931 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6932 return; 6933 break; 6934 case LibFunc_fmax: 6935 case LibFunc_fmaxf: 6936 case LibFunc_fmaxl: 6937 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6938 return; 6939 break; 6940 case LibFunc_sin: 6941 case LibFunc_sinf: 6942 case LibFunc_sinl: 6943 if (visitUnaryFloatCall(I, ISD::FSIN)) 6944 return; 6945 break; 6946 case LibFunc_cos: 6947 case LibFunc_cosf: 6948 case LibFunc_cosl: 6949 if (visitUnaryFloatCall(I, ISD::FCOS)) 6950 return; 6951 break; 6952 case LibFunc_sqrt: 6953 case LibFunc_sqrtf: 6954 case LibFunc_sqrtl: 6955 case LibFunc_sqrt_finite: 6956 case LibFunc_sqrtf_finite: 6957 case LibFunc_sqrtl_finite: 6958 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6959 return; 6960 break; 6961 case LibFunc_floor: 6962 case LibFunc_floorf: 6963 case LibFunc_floorl: 6964 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6965 return; 6966 break; 6967 case LibFunc_nearbyint: 6968 case LibFunc_nearbyintf: 6969 case LibFunc_nearbyintl: 6970 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6971 return; 6972 break; 6973 case LibFunc_ceil: 6974 case LibFunc_ceilf: 6975 case LibFunc_ceill: 6976 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6977 return; 6978 break; 6979 case LibFunc_rint: 6980 case LibFunc_rintf: 6981 case LibFunc_rintl: 6982 if (visitUnaryFloatCall(I, ISD::FRINT)) 6983 return; 6984 break; 6985 case LibFunc_round: 6986 case LibFunc_roundf: 6987 case LibFunc_roundl: 6988 if (visitUnaryFloatCall(I, ISD::FROUND)) 6989 return; 6990 break; 6991 case LibFunc_trunc: 6992 case LibFunc_truncf: 6993 case LibFunc_truncl: 6994 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6995 return; 6996 break; 6997 case LibFunc_log2: 6998 case LibFunc_log2f: 6999 case LibFunc_log2l: 7000 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7001 return; 7002 break; 7003 case LibFunc_exp2: 7004 case LibFunc_exp2f: 7005 case LibFunc_exp2l: 7006 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7007 return; 7008 break; 7009 case LibFunc_memcmp: 7010 if (visitMemCmpCall(I)) 7011 return; 7012 break; 7013 case LibFunc_mempcpy: 7014 if (visitMemPCpyCall(I)) 7015 return; 7016 break; 7017 case LibFunc_memchr: 7018 if (visitMemChrCall(I)) 7019 return; 7020 break; 7021 case LibFunc_strcpy: 7022 if (visitStrCpyCall(I, false)) 7023 return; 7024 break; 7025 case LibFunc_stpcpy: 7026 if (visitStrCpyCall(I, true)) 7027 return; 7028 break; 7029 case LibFunc_strcmp: 7030 if (visitStrCmpCall(I)) 7031 return; 7032 break; 7033 case LibFunc_strlen: 7034 if (visitStrLenCall(I)) 7035 return; 7036 break; 7037 case LibFunc_strnlen: 7038 if (visitStrNLenCall(I)) 7039 return; 7040 break; 7041 } 7042 } 7043 } 7044 7045 SDValue Callee; 7046 if (!RenameFn) 7047 Callee = getValue(I.getCalledValue()); 7048 else 7049 Callee = DAG.getExternalSymbol( 7050 RenameFn, 7051 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7052 7053 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7054 // have to do anything here to lower funclet bundles. 7055 assert(!I.hasOperandBundlesOtherThan( 7056 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7057 "Cannot lower calls with arbitrary operand bundles!"); 7058 7059 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7060 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7061 else 7062 // Check if we can potentially perform a tail call. More detailed checking 7063 // is be done within LowerCallTo, after more information about the call is 7064 // known. 7065 LowerCallTo(&I, Callee, I.isTailCall()); 7066 } 7067 7068 namespace { 7069 7070 /// AsmOperandInfo - This contains information for each constraint that we are 7071 /// lowering. 7072 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7073 public: 7074 /// CallOperand - If this is the result output operand or a clobber 7075 /// this is null, otherwise it is the incoming operand to the CallInst. 7076 /// This gets modified as the asm is processed. 7077 SDValue CallOperand; 7078 7079 /// AssignedRegs - If this is a register or register class operand, this 7080 /// contains the set of register corresponding to the operand. 7081 RegsForValue AssignedRegs; 7082 7083 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7084 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7085 } 7086 7087 /// Whether or not this operand accesses memory 7088 bool hasMemory(const TargetLowering &TLI) const { 7089 // Indirect operand accesses access memory. 7090 if (isIndirect) 7091 return true; 7092 7093 for (const auto &Code : Codes) 7094 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7095 return true; 7096 7097 return false; 7098 } 7099 7100 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7101 /// corresponds to. If there is no Value* for this operand, it returns 7102 /// MVT::Other. 7103 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7104 const DataLayout &DL) const { 7105 if (!CallOperandVal) return MVT::Other; 7106 7107 if (isa<BasicBlock>(CallOperandVal)) 7108 return TLI.getPointerTy(DL); 7109 7110 llvm::Type *OpTy = CallOperandVal->getType(); 7111 7112 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7113 // If this is an indirect operand, the operand is a pointer to the 7114 // accessed type. 7115 if (isIndirect) { 7116 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7117 if (!PtrTy) 7118 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7119 OpTy = PtrTy->getElementType(); 7120 } 7121 7122 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7123 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7124 if (STy->getNumElements() == 1) 7125 OpTy = STy->getElementType(0); 7126 7127 // If OpTy is not a single value, it may be a struct/union that we 7128 // can tile with integers. 7129 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7130 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7131 switch (BitSize) { 7132 default: break; 7133 case 1: 7134 case 8: 7135 case 16: 7136 case 32: 7137 case 64: 7138 case 128: 7139 OpTy = IntegerType::get(Context, BitSize); 7140 break; 7141 } 7142 } 7143 7144 return TLI.getValueType(DL, OpTy, true); 7145 } 7146 }; 7147 7148 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7149 7150 } // end anonymous namespace 7151 7152 /// Make sure that the output operand \p OpInfo and its corresponding input 7153 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7154 /// out). 7155 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7156 SDISelAsmOperandInfo &MatchingOpInfo, 7157 SelectionDAG &DAG) { 7158 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7159 return; 7160 7161 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7162 const auto &TLI = DAG.getTargetLoweringInfo(); 7163 7164 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7165 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7166 OpInfo.ConstraintVT); 7167 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7168 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7169 MatchingOpInfo.ConstraintVT); 7170 if ((OpInfo.ConstraintVT.isInteger() != 7171 MatchingOpInfo.ConstraintVT.isInteger()) || 7172 (MatchRC.second != InputRC.second)) { 7173 // FIXME: error out in a more elegant fashion 7174 report_fatal_error("Unsupported asm: input constraint" 7175 " with a matching output constraint of" 7176 " incompatible type!"); 7177 } 7178 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7179 } 7180 7181 /// Get a direct memory input to behave well as an indirect operand. 7182 /// This may introduce stores, hence the need for a \p Chain. 7183 /// \return The (possibly updated) chain. 7184 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7185 SDISelAsmOperandInfo &OpInfo, 7186 SelectionDAG &DAG) { 7187 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7188 7189 // If we don't have an indirect input, put it in the constpool if we can, 7190 // otherwise spill it to a stack slot. 7191 // TODO: This isn't quite right. We need to handle these according to 7192 // the addressing mode that the constraint wants. Also, this may take 7193 // an additional register for the computation and we don't want that 7194 // either. 7195 7196 // If the operand is a float, integer, or vector constant, spill to a 7197 // constant pool entry to get its address. 7198 const Value *OpVal = OpInfo.CallOperandVal; 7199 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7200 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7201 OpInfo.CallOperand = DAG.getConstantPool( 7202 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7203 return Chain; 7204 } 7205 7206 // Otherwise, create a stack slot and emit a store to it before the asm. 7207 Type *Ty = OpVal->getType(); 7208 auto &DL = DAG.getDataLayout(); 7209 uint64_t TySize = DL.getTypeAllocSize(Ty); 7210 unsigned Align = DL.getPrefTypeAlignment(Ty); 7211 MachineFunction &MF = DAG.getMachineFunction(); 7212 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7213 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7214 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7215 MachinePointerInfo::getFixedStack(MF, SSFI)); 7216 OpInfo.CallOperand = StackSlot; 7217 7218 return Chain; 7219 } 7220 7221 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7222 /// specified operand. We prefer to assign virtual registers, to allow the 7223 /// register allocator to handle the assignment process. However, if the asm 7224 /// uses features that we can't model on machineinstrs, we have SDISel do the 7225 /// allocation. This produces generally horrible, but correct, code. 7226 /// 7227 /// OpInfo describes the operand 7228 /// RefOpInfo describes the matching operand if any, the operand otherwise 7229 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 7230 const SDLoc &DL, SDISelAsmOperandInfo &OpInfo, 7231 SDISelAsmOperandInfo &RefOpInfo) { 7232 LLVMContext &Context = *DAG.getContext(); 7233 7234 MachineFunction &MF = DAG.getMachineFunction(); 7235 SmallVector<unsigned, 4> Regs; 7236 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7237 7238 // If this is a constraint for a single physreg, or a constraint for a 7239 // register class, find it. 7240 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 7241 TLI.getRegForInlineAsmConstraint(&TRI, RefOpInfo.ConstraintCode, 7242 RefOpInfo.ConstraintVT); 7243 7244 unsigned NumRegs = 1; 7245 if (OpInfo.ConstraintVT != MVT::Other) { 7246 // If this is an FP operand in an integer register (or visa versa), or more 7247 // generally if the operand value disagrees with the register class we plan 7248 // to stick it in, fix the operand type. 7249 // 7250 // If this is an input value, the bitcast to the new type is done now. 7251 // Bitcast for output value is done at the end of visitInlineAsm(). 7252 if ((OpInfo.Type == InlineAsm::isOutput || 7253 OpInfo.Type == InlineAsm::isInput) && 7254 PhysReg.second && 7255 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 7256 // Try to convert to the first EVT that the reg class contains. If the 7257 // types are identical size, use a bitcast to convert (e.g. two differing 7258 // vector types). Note: output bitcast is done at the end of 7259 // visitInlineAsm(). 7260 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 7261 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7262 // Exclude indirect inputs while they are unsupported because the code 7263 // to perform the load is missing and thus OpInfo.CallOperand still 7264 // refers to the input address rather than the pointed-to value. 7265 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7266 OpInfo.CallOperand = 7267 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7268 OpInfo.ConstraintVT = RegVT; 7269 // If the operand is an FP value and we want it in integer registers, 7270 // use the corresponding integer type. This turns an f64 value into 7271 // i64, which can be passed with two i32 values on a 32-bit machine. 7272 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7273 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7274 if (OpInfo.Type == InlineAsm::isInput) 7275 OpInfo.CallOperand = 7276 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7277 OpInfo.ConstraintVT = RegVT; 7278 } 7279 } 7280 7281 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7282 } 7283 7284 // No need to allocate a matching input constraint since the constraint it's 7285 // matching to has already been allocated. 7286 if (OpInfo.isMatchingInputConstraint()) 7287 return; 7288 7289 MVT RegVT; 7290 EVT ValueVT = OpInfo.ConstraintVT; 7291 7292 // If this is a constraint for a specific physical register, like {r17}, 7293 // assign it now. 7294 if (unsigned AssignedReg = PhysReg.first) { 7295 const TargetRegisterClass *RC = PhysReg.second; 7296 if (OpInfo.ConstraintVT == MVT::Other) 7297 ValueVT = *TRI.legalclasstypes_begin(*RC); 7298 7299 // Get the actual register value type. This is important, because the user 7300 // may have asked for (e.g.) the AX register in i32 type. We need to 7301 // remember that AX is actually i16 to get the right extension. 7302 RegVT = *TRI.legalclasstypes_begin(*RC); 7303 7304 // This is an explicit reference to a physical register. 7305 Regs.push_back(AssignedReg); 7306 7307 // If this is an expanded reference, add the rest of the regs to Regs. 7308 if (NumRegs != 1) { 7309 TargetRegisterClass::iterator I = RC->begin(); 7310 for (; *I != AssignedReg; ++I) 7311 assert(I != RC->end() && "Didn't find reg!"); 7312 7313 // Already added the first reg. 7314 --NumRegs; ++I; 7315 for (; NumRegs; --NumRegs, ++I) { 7316 assert(I != RC->end() && "Ran out of registers to allocate!"); 7317 Regs.push_back(*I); 7318 } 7319 } 7320 7321 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7322 return; 7323 } 7324 7325 // Otherwise, if this was a reference to an LLVM register class, create vregs 7326 // for this reference. 7327 if (const TargetRegisterClass *RC = PhysReg.second) { 7328 RegVT = *TRI.legalclasstypes_begin(*RC); 7329 if (OpInfo.ConstraintVT == MVT::Other) 7330 ValueVT = RegVT; 7331 7332 // Create the appropriate number of virtual registers. 7333 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7334 for (; NumRegs; --NumRegs) 7335 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7336 7337 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7338 return; 7339 } 7340 7341 // Otherwise, we couldn't allocate enough registers for this. 7342 } 7343 7344 static unsigned 7345 findMatchingInlineAsmOperand(unsigned OperandNo, 7346 const std::vector<SDValue> &AsmNodeOperands) { 7347 // Scan until we find the definition we already emitted of this operand. 7348 unsigned CurOp = InlineAsm::Op_FirstOperand; 7349 for (; OperandNo; --OperandNo) { 7350 // Advance to the next operand. 7351 unsigned OpFlag = 7352 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7353 assert((InlineAsm::isRegDefKind(OpFlag) || 7354 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7355 InlineAsm::isMemKind(OpFlag)) && 7356 "Skipped past definitions?"); 7357 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7358 } 7359 return CurOp; 7360 } 7361 7362 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7363 /// \return true if it has succeeded, false otherwise 7364 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7365 MVT RegVT, SelectionDAG &DAG) { 7366 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7367 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7368 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7369 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7370 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7371 else 7372 return false; 7373 } 7374 return true; 7375 } 7376 7377 namespace { 7378 7379 class ExtraFlags { 7380 unsigned Flags = 0; 7381 7382 public: 7383 explicit ExtraFlags(ImmutableCallSite CS) { 7384 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7385 if (IA->hasSideEffects()) 7386 Flags |= InlineAsm::Extra_HasSideEffects; 7387 if (IA->isAlignStack()) 7388 Flags |= InlineAsm::Extra_IsAlignStack; 7389 if (CS.isConvergent()) 7390 Flags |= InlineAsm::Extra_IsConvergent; 7391 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7392 } 7393 7394 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7395 // Ideally, we would only check against memory constraints. However, the 7396 // meaning of an Other constraint can be target-specific and we can't easily 7397 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7398 // for Other constraints as well. 7399 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7400 OpInfo.ConstraintType == TargetLowering::C_Other) { 7401 if (OpInfo.Type == InlineAsm::isInput) 7402 Flags |= InlineAsm::Extra_MayLoad; 7403 else if (OpInfo.Type == InlineAsm::isOutput) 7404 Flags |= InlineAsm::Extra_MayStore; 7405 else if (OpInfo.Type == InlineAsm::isClobber) 7406 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7407 } 7408 } 7409 7410 unsigned get() const { return Flags; } 7411 }; 7412 7413 } // end anonymous namespace 7414 7415 /// visitInlineAsm - Handle a call to an InlineAsm object. 7416 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7417 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7418 7419 /// ConstraintOperands - Information about all of the constraints. 7420 SDISelAsmOperandInfoVector ConstraintOperands; 7421 7422 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7423 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7424 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7425 7426 bool hasMemory = false; 7427 7428 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7429 ExtraFlags ExtraInfo(CS); 7430 7431 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7432 unsigned ResNo = 0; // ResNo - The result number of the next output. 7433 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7434 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7435 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7436 7437 MVT OpVT = MVT::Other; 7438 7439 // Compute the value type for each operand. 7440 if (OpInfo.Type == InlineAsm::isInput || 7441 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7442 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7443 7444 // Process the call argument. BasicBlocks are labels, currently appearing 7445 // only in asm's. 7446 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7447 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7448 } else { 7449 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7450 } 7451 7452 OpVT = 7453 OpInfo 7454 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7455 .getSimpleVT(); 7456 } 7457 7458 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7459 // The return value of the call is this value. As such, there is no 7460 // corresponding argument. 7461 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7462 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7463 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7464 STy->getElementType(ResNo)); 7465 } else { 7466 assert(ResNo == 0 && "Asm only has one result!"); 7467 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7468 } 7469 ++ResNo; 7470 } 7471 7472 OpInfo.ConstraintVT = OpVT; 7473 7474 if (!hasMemory) 7475 hasMemory = OpInfo.hasMemory(TLI); 7476 7477 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7478 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7479 auto TargetConstraint = TargetConstraints[i]; 7480 7481 // Compute the constraint code and ConstraintType to use. 7482 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7483 7484 ExtraInfo.update(TargetConstraint); 7485 } 7486 7487 SDValue Chain, Flag; 7488 7489 // We won't need to flush pending loads if this asm doesn't touch 7490 // memory and is nonvolatile. 7491 if (hasMemory || IA->hasSideEffects()) 7492 Chain = getRoot(); 7493 else 7494 Chain = DAG.getRoot(); 7495 7496 // Second pass over the constraints: compute which constraint option to use 7497 // and assign registers to constraints that want a specific physreg. 7498 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7499 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7500 7501 // If this is an output operand with a matching input operand, look up the 7502 // matching input. If their types mismatch, e.g. one is an integer, the 7503 // other is floating point, or their sizes are different, flag it as an 7504 // error. 7505 if (OpInfo.hasMatchingInput()) { 7506 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7507 patchMatchingInput(OpInfo, Input, DAG); 7508 } 7509 7510 // Compute the constraint code and ConstraintType to use. 7511 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7512 7513 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7514 OpInfo.Type == InlineAsm::isClobber) 7515 continue; 7516 7517 // If this is a memory input, and if the operand is not indirect, do what we 7518 // need to provide an address for the memory input. 7519 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7520 !OpInfo.isIndirect) { 7521 assert((OpInfo.isMultipleAlternative || 7522 (OpInfo.Type == InlineAsm::isInput)) && 7523 "Can only indirectify direct input operands!"); 7524 7525 // Memory operands really want the address of the value. 7526 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7527 7528 // There is no longer a Value* corresponding to this operand. 7529 OpInfo.CallOperandVal = nullptr; 7530 7531 // It is now an indirect operand. 7532 OpInfo.isIndirect = true; 7533 } 7534 7535 // If this constraint is for a specific register, allocate it before 7536 // anything else. 7537 SDISelAsmOperandInfo &RefOpInfo = 7538 OpInfo.isMatchingInputConstraint() 7539 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7540 : ConstraintOperands[i]; 7541 if (RefOpInfo.ConstraintType == TargetLowering::C_Register) 7542 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo); 7543 } 7544 7545 // Third pass - Loop over all of the operands, assigning virtual or physregs 7546 // to register class operands. 7547 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7548 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7549 SDISelAsmOperandInfo &RefOpInfo = 7550 OpInfo.isMatchingInputConstraint() 7551 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7552 : ConstraintOperands[i]; 7553 7554 // C_Register operands have already been allocated, Other/Memory don't need 7555 // to be. 7556 if (RefOpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7557 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo); 7558 } 7559 7560 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7561 std::vector<SDValue> AsmNodeOperands; 7562 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7563 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7564 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7565 7566 // If we have a !srcloc metadata node associated with it, we want to attach 7567 // this to the ultimately generated inline asm machineinstr. To do this, we 7568 // pass in the third operand as this (potentially null) inline asm MDNode. 7569 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7570 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7571 7572 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7573 // bits as operand 3. 7574 AsmNodeOperands.push_back(DAG.getTargetConstant( 7575 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7576 7577 // Loop over all of the inputs, copying the operand values into the 7578 // appropriate registers and processing the output regs. 7579 RegsForValue RetValRegs; 7580 7581 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7582 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7583 7584 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7585 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7586 7587 switch (OpInfo.Type) { 7588 case InlineAsm::isOutput: 7589 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7590 OpInfo.ConstraintType != TargetLowering::C_Register) { 7591 // Memory output, or 'other' output (e.g. 'X' constraint). 7592 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7593 7594 unsigned ConstraintID = 7595 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7596 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7597 "Failed to convert memory constraint code to constraint id."); 7598 7599 // Add information to the INLINEASM node to know about this output. 7600 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7601 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7602 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7603 MVT::i32)); 7604 AsmNodeOperands.push_back(OpInfo.CallOperand); 7605 break; 7606 } 7607 7608 // Otherwise, this is a register or register class output. 7609 7610 // Copy the output from the appropriate register. Find a register that 7611 // we can use. 7612 if (OpInfo.AssignedRegs.Regs.empty()) { 7613 emitInlineAsmError( 7614 CS, "couldn't allocate output register for constraint '" + 7615 Twine(OpInfo.ConstraintCode) + "'"); 7616 return; 7617 } 7618 7619 // If this is an indirect operand, store through the pointer after the 7620 // asm. 7621 if (OpInfo.isIndirect) { 7622 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7623 OpInfo.CallOperandVal)); 7624 } else { 7625 // This is the result value of the call. 7626 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7627 // Concatenate this output onto the outputs list. 7628 RetValRegs.append(OpInfo.AssignedRegs); 7629 } 7630 7631 // Add information to the INLINEASM node to know that this register is 7632 // set. 7633 OpInfo.AssignedRegs 7634 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7635 ? InlineAsm::Kind_RegDefEarlyClobber 7636 : InlineAsm::Kind_RegDef, 7637 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7638 break; 7639 7640 case InlineAsm::isInput: { 7641 SDValue InOperandVal = OpInfo.CallOperand; 7642 7643 if (OpInfo.isMatchingInputConstraint()) { 7644 // If this is required to match an output register we have already set, 7645 // just use its register. 7646 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7647 AsmNodeOperands); 7648 unsigned OpFlag = 7649 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7650 if (InlineAsm::isRegDefKind(OpFlag) || 7651 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7652 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7653 if (OpInfo.isIndirect) { 7654 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7655 emitInlineAsmError(CS, "inline asm not supported yet:" 7656 " don't know how to handle tied " 7657 "indirect register inputs"); 7658 return; 7659 } 7660 7661 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7662 SmallVector<unsigned, 4> Regs; 7663 7664 if (!createVirtualRegs(Regs, 7665 InlineAsm::getNumOperandRegisters(OpFlag), 7666 RegVT, DAG)) { 7667 emitInlineAsmError(CS, "inline asm error: This value type register " 7668 "class is not natively supported!"); 7669 return; 7670 } 7671 7672 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7673 7674 SDLoc dl = getCurSDLoc(); 7675 // Use the produced MatchedRegs object to 7676 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7677 CS.getInstruction()); 7678 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7679 true, OpInfo.getMatchedOperand(), dl, 7680 DAG, AsmNodeOperands); 7681 break; 7682 } 7683 7684 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7685 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7686 "Unexpected number of operands"); 7687 // Add information to the INLINEASM node to know about this input. 7688 // See InlineAsm.h isUseOperandTiedToDef. 7689 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7690 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7691 OpInfo.getMatchedOperand()); 7692 AsmNodeOperands.push_back(DAG.getTargetConstant( 7693 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7694 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7695 break; 7696 } 7697 7698 // Treat indirect 'X' constraint as memory. 7699 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7700 OpInfo.isIndirect) 7701 OpInfo.ConstraintType = TargetLowering::C_Memory; 7702 7703 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7704 std::vector<SDValue> Ops; 7705 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7706 Ops, DAG); 7707 if (Ops.empty()) { 7708 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7709 Twine(OpInfo.ConstraintCode) + "'"); 7710 return; 7711 } 7712 7713 // Add information to the INLINEASM node to know about this input. 7714 unsigned ResOpType = 7715 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7716 AsmNodeOperands.push_back(DAG.getTargetConstant( 7717 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7718 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7719 break; 7720 } 7721 7722 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7723 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7724 assert(InOperandVal.getValueType() == 7725 TLI.getPointerTy(DAG.getDataLayout()) && 7726 "Memory operands expect pointer values"); 7727 7728 unsigned ConstraintID = 7729 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7730 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7731 "Failed to convert memory constraint code to constraint id."); 7732 7733 // Add information to the INLINEASM node to know about this input. 7734 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7735 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7736 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7737 getCurSDLoc(), 7738 MVT::i32)); 7739 AsmNodeOperands.push_back(InOperandVal); 7740 break; 7741 } 7742 7743 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7744 OpInfo.ConstraintType == TargetLowering::C_Register) && 7745 "Unknown constraint type!"); 7746 7747 // TODO: Support this. 7748 if (OpInfo.isIndirect) { 7749 emitInlineAsmError( 7750 CS, "Don't know how to handle indirect register inputs yet " 7751 "for constraint '" + 7752 Twine(OpInfo.ConstraintCode) + "'"); 7753 return; 7754 } 7755 7756 // Copy the input into the appropriate registers. 7757 if (OpInfo.AssignedRegs.Regs.empty()) { 7758 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7759 Twine(OpInfo.ConstraintCode) + "'"); 7760 return; 7761 } 7762 7763 SDLoc dl = getCurSDLoc(); 7764 7765 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7766 Chain, &Flag, CS.getInstruction()); 7767 7768 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7769 dl, DAG, AsmNodeOperands); 7770 break; 7771 } 7772 case InlineAsm::isClobber: 7773 // Add the clobbered value to the operand list, so that the register 7774 // allocator is aware that the physreg got clobbered. 7775 if (!OpInfo.AssignedRegs.Regs.empty()) 7776 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7777 false, 0, getCurSDLoc(), DAG, 7778 AsmNodeOperands); 7779 break; 7780 } 7781 } 7782 7783 // Finish up input operands. Set the input chain and add the flag last. 7784 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7785 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7786 7787 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7788 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7789 Flag = Chain.getValue(1); 7790 7791 // If this asm returns a register value, copy the result from that register 7792 // and set it as the value of the call. 7793 if (!RetValRegs.Regs.empty()) { 7794 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7795 Chain, &Flag, CS.getInstruction()); 7796 7797 llvm::Type *CSResultType = CS.getType(); 7798 unsigned numRet; 7799 ArrayRef<Type *> ResultTypes; 7800 SmallVector<SDValue, 1> ResultValues(1); 7801 if (CSResultType->isSingleValueType()) { 7802 numRet = 1; 7803 ResultValues[0] = Val; 7804 ResultTypes = makeArrayRef(CSResultType); 7805 } else { 7806 numRet = CSResultType->getNumContainedTypes(); 7807 assert(Val->getNumOperands() == numRet && 7808 "Mismatch in number of output operands in asm result"); 7809 ResultTypes = CSResultType->subtypes(); 7810 ArrayRef<SDUse> ValueUses = Val->ops(); 7811 ResultValues.resize(numRet); 7812 std::transform(ValueUses.begin(), ValueUses.end(), ResultValues.begin(), 7813 [](const SDUse &u) -> SDValue { return u.get(); }); 7814 } 7815 SmallVector<EVT, 1> ResultVTs(numRet); 7816 for (unsigned i = 0; i < numRet; i++) { 7817 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), ResultTypes[i]); 7818 SDValue Val = ResultValues[i]; 7819 assert(ResultTypes[i]->isSized() && "Unexpected unsized type"); 7820 // If the type of the inline asm call site return value is different but 7821 // has same size as the type of the asm output bitcast it. One example 7822 // of this is for vectors with different width / number of elements. 7823 // This can happen for register classes that can contain multiple 7824 // different value types. The preg or vreg allocated may not have the 7825 // same VT as was expected. 7826 // 7827 // This can also happen for a return value that disagrees with the 7828 // register class it is put in, eg. a double in a general-purpose 7829 // register on a 32-bit machine. 7830 if (ResultVT != Val.getValueType() && 7831 ResultVT.getSizeInBits() == Val.getValueSizeInBits()) 7832 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, Val); 7833 else if (ResultVT != Val.getValueType() && ResultVT.isInteger() && 7834 Val.getValueType().isInteger()) { 7835 // If a result value was tied to an input value, the computed result 7836 // may have a wider width than the expected result. Extract the 7837 // relevant portion. 7838 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, Val); 7839 } 7840 7841 assert(ResultVT == Val.getValueType() && "Asm result value mismatch!"); 7842 ResultVTs[i] = ResultVT; 7843 ResultValues[i] = Val; 7844 } 7845 7846 Val = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 7847 DAG.getVTList(ResultVTs), ResultValues); 7848 setValue(CS.getInstruction(), Val); 7849 // Don't need to use this as a chain in this case. 7850 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7851 return; 7852 } 7853 7854 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7855 7856 // Process indirect outputs, first output all of the flagged copies out of 7857 // physregs. 7858 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7859 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7860 const Value *Ptr = IndirectStoresToEmit[i].second; 7861 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7862 Chain, &Flag, IA); 7863 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7864 } 7865 7866 // Emit the non-flagged stores from the physregs. 7867 SmallVector<SDValue, 8> OutChains; 7868 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7869 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7870 getValue(StoresToEmit[i].second), 7871 MachinePointerInfo(StoresToEmit[i].second)); 7872 OutChains.push_back(Val); 7873 } 7874 7875 if (!OutChains.empty()) 7876 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7877 7878 DAG.setRoot(Chain); 7879 } 7880 7881 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7882 const Twine &Message) { 7883 LLVMContext &Ctx = *DAG.getContext(); 7884 Ctx.emitError(CS.getInstruction(), Message); 7885 7886 // Make sure we leave the DAG in a valid state 7887 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7888 SmallVector<EVT, 1> ValueVTs; 7889 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7890 7891 if (ValueVTs.empty()) 7892 return; 7893 7894 SmallVector<SDValue, 1> Ops; 7895 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 7896 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 7897 7898 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 7899 } 7900 7901 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7902 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7903 MVT::Other, getRoot(), 7904 getValue(I.getArgOperand(0)), 7905 DAG.getSrcValue(I.getArgOperand(0)))); 7906 } 7907 7908 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7909 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7910 const DataLayout &DL = DAG.getDataLayout(); 7911 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7912 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7913 DAG.getSrcValue(I.getOperand(0)), 7914 DL.getABITypeAlignment(I.getType())); 7915 setValue(&I, V); 7916 DAG.setRoot(V.getValue(1)); 7917 } 7918 7919 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7920 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7921 MVT::Other, getRoot(), 7922 getValue(I.getArgOperand(0)), 7923 DAG.getSrcValue(I.getArgOperand(0)))); 7924 } 7925 7926 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7927 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7928 MVT::Other, getRoot(), 7929 getValue(I.getArgOperand(0)), 7930 getValue(I.getArgOperand(1)), 7931 DAG.getSrcValue(I.getArgOperand(0)), 7932 DAG.getSrcValue(I.getArgOperand(1)))); 7933 } 7934 7935 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7936 const Instruction &I, 7937 SDValue Op) { 7938 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7939 if (!Range) 7940 return Op; 7941 7942 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7943 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7944 return Op; 7945 7946 APInt Lo = CR.getUnsignedMin(); 7947 if (!Lo.isMinValue()) 7948 return Op; 7949 7950 APInt Hi = CR.getUnsignedMax(); 7951 unsigned Bits = Hi.getActiveBits(); 7952 7953 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7954 7955 SDLoc SL = getCurSDLoc(); 7956 7957 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7958 DAG.getValueType(SmallVT)); 7959 unsigned NumVals = Op.getNode()->getNumValues(); 7960 if (NumVals == 1) 7961 return ZExt; 7962 7963 SmallVector<SDValue, 4> Ops; 7964 7965 Ops.push_back(ZExt); 7966 for (unsigned I = 1; I != NumVals; ++I) 7967 Ops.push_back(Op.getValue(I)); 7968 7969 return DAG.getMergeValues(Ops, SL); 7970 } 7971 7972 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 7973 /// the call being lowered. 7974 /// 7975 /// This is a helper for lowering intrinsics that follow a target calling 7976 /// convention or require stack pointer adjustment. Only a subset of the 7977 /// intrinsic's operands need to participate in the calling convention. 7978 void SelectionDAGBuilder::populateCallLoweringInfo( 7979 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7980 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7981 bool IsPatchPoint) { 7982 TargetLowering::ArgListTy Args; 7983 Args.reserve(NumArgs); 7984 7985 // Populate the argument list. 7986 // Attributes for args start at offset 1, after the return attribute. 7987 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7988 ArgI != ArgE; ++ArgI) { 7989 const Value *V = CS->getOperand(ArgI); 7990 7991 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7992 7993 TargetLowering::ArgListEntry Entry; 7994 Entry.Node = getValue(V); 7995 Entry.Ty = V->getType(); 7996 Entry.setAttributes(&CS, ArgI); 7997 Args.push_back(Entry); 7998 } 7999 8000 CLI.setDebugLoc(getCurSDLoc()) 8001 .setChain(getRoot()) 8002 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 8003 .setDiscardResult(CS->use_empty()) 8004 .setIsPatchPoint(IsPatchPoint); 8005 } 8006 8007 /// Add a stack map intrinsic call's live variable operands to a stackmap 8008 /// or patchpoint target node's operand list. 8009 /// 8010 /// Constants are converted to TargetConstants purely as an optimization to 8011 /// avoid constant materialization and register allocation. 8012 /// 8013 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8014 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 8015 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8016 /// address materialization and register allocation, but may also be required 8017 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8018 /// alloca in the entry block, then the runtime may assume that the alloca's 8019 /// StackMap location can be read immediately after compilation and that the 8020 /// location is valid at any point during execution (this is similar to the 8021 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8022 /// only available in a register, then the runtime would need to trap when 8023 /// execution reaches the StackMap in order to read the alloca's location. 8024 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8025 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8026 SelectionDAGBuilder &Builder) { 8027 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8028 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8029 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8030 Ops.push_back( 8031 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8032 Ops.push_back( 8033 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8034 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8035 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8036 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8037 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8038 } else 8039 Ops.push_back(OpVal); 8040 } 8041 } 8042 8043 /// Lower llvm.experimental.stackmap directly to its target opcode. 8044 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8045 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8046 // [live variables...]) 8047 8048 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8049 8050 SDValue Chain, InFlag, Callee, NullPtr; 8051 SmallVector<SDValue, 32> Ops; 8052 8053 SDLoc DL = getCurSDLoc(); 8054 Callee = getValue(CI.getCalledValue()); 8055 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8056 8057 // The stackmap intrinsic only records the live variables (the arguemnts 8058 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8059 // intrinsic, this won't be lowered to a function call. This means we don't 8060 // have to worry about calling conventions and target specific lowering code. 8061 // Instead we perform the call lowering right here. 8062 // 8063 // chain, flag = CALLSEQ_START(chain, 0, 0) 8064 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8065 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8066 // 8067 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8068 InFlag = Chain.getValue(1); 8069 8070 // Add the <id> and <numBytes> constants. 8071 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8072 Ops.push_back(DAG.getTargetConstant( 8073 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8074 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8075 Ops.push_back(DAG.getTargetConstant( 8076 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8077 MVT::i32)); 8078 8079 // Push live variables for the stack map. 8080 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8081 8082 // We are not pushing any register mask info here on the operands list, 8083 // because the stackmap doesn't clobber anything. 8084 8085 // Push the chain and the glue flag. 8086 Ops.push_back(Chain); 8087 Ops.push_back(InFlag); 8088 8089 // Create the STACKMAP node. 8090 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8091 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8092 Chain = SDValue(SM, 0); 8093 InFlag = Chain.getValue(1); 8094 8095 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8096 8097 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8098 8099 // Set the root to the target-lowered call chain. 8100 DAG.setRoot(Chain); 8101 8102 // Inform the Frame Information that we have a stackmap in this function. 8103 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8104 } 8105 8106 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8107 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8108 const BasicBlock *EHPadBB) { 8109 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8110 // i32 <numBytes>, 8111 // i8* <target>, 8112 // i32 <numArgs>, 8113 // [Args...], 8114 // [live variables...]) 8115 8116 CallingConv::ID CC = CS.getCallingConv(); 8117 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8118 bool HasDef = !CS->getType()->isVoidTy(); 8119 SDLoc dl = getCurSDLoc(); 8120 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8121 8122 // Handle immediate and symbolic callees. 8123 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8124 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8125 /*isTarget=*/true); 8126 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8127 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8128 SDLoc(SymbolicCallee), 8129 SymbolicCallee->getValueType(0)); 8130 8131 // Get the real number of arguments participating in the call <numArgs> 8132 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8133 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8134 8135 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8136 // Intrinsics include all meta-operands up to but not including CC. 8137 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8138 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8139 "Not enough arguments provided to the patchpoint intrinsic"); 8140 8141 // For AnyRegCC the arguments are lowered later on manually. 8142 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8143 Type *ReturnTy = 8144 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8145 8146 TargetLowering::CallLoweringInfo CLI(DAG); 8147 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 8148 true); 8149 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8150 8151 SDNode *CallEnd = Result.second.getNode(); 8152 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8153 CallEnd = CallEnd->getOperand(0).getNode(); 8154 8155 /// Get a call instruction from the call sequence chain. 8156 /// Tail calls are not allowed. 8157 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8158 "Expected a callseq node."); 8159 SDNode *Call = CallEnd->getOperand(0).getNode(); 8160 bool HasGlue = Call->getGluedNode(); 8161 8162 // Replace the target specific call node with the patchable intrinsic. 8163 SmallVector<SDValue, 8> Ops; 8164 8165 // Add the <id> and <numBytes> constants. 8166 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8167 Ops.push_back(DAG.getTargetConstant( 8168 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8169 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8170 Ops.push_back(DAG.getTargetConstant( 8171 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8172 MVT::i32)); 8173 8174 // Add the callee. 8175 Ops.push_back(Callee); 8176 8177 // Adjust <numArgs> to account for any arguments that have been passed on the 8178 // stack instead. 8179 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8180 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8181 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8182 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8183 8184 // Add the calling convention 8185 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8186 8187 // Add the arguments we omitted previously. The register allocator should 8188 // place these in any free register. 8189 if (IsAnyRegCC) 8190 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8191 Ops.push_back(getValue(CS.getArgument(i))); 8192 8193 // Push the arguments from the call instruction up to the register mask. 8194 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8195 Ops.append(Call->op_begin() + 2, e); 8196 8197 // Push live variables for the stack map. 8198 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8199 8200 // Push the register mask info. 8201 if (HasGlue) 8202 Ops.push_back(*(Call->op_end()-2)); 8203 else 8204 Ops.push_back(*(Call->op_end()-1)); 8205 8206 // Push the chain (this is originally the first operand of the call, but 8207 // becomes now the last or second to last operand). 8208 Ops.push_back(*(Call->op_begin())); 8209 8210 // Push the glue flag (last operand). 8211 if (HasGlue) 8212 Ops.push_back(*(Call->op_end()-1)); 8213 8214 SDVTList NodeTys; 8215 if (IsAnyRegCC && HasDef) { 8216 // Create the return types based on the intrinsic definition 8217 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8218 SmallVector<EVT, 3> ValueVTs; 8219 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8220 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8221 8222 // There is always a chain and a glue type at the end 8223 ValueVTs.push_back(MVT::Other); 8224 ValueVTs.push_back(MVT::Glue); 8225 NodeTys = DAG.getVTList(ValueVTs); 8226 } else 8227 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8228 8229 // Replace the target specific call node with a PATCHPOINT node. 8230 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8231 dl, NodeTys, Ops); 8232 8233 // Update the NodeMap. 8234 if (HasDef) { 8235 if (IsAnyRegCC) 8236 setValue(CS.getInstruction(), SDValue(MN, 0)); 8237 else 8238 setValue(CS.getInstruction(), Result.first); 8239 } 8240 8241 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8242 // call sequence. Furthermore the location of the chain and glue can change 8243 // when the AnyReg calling convention is used and the intrinsic returns a 8244 // value. 8245 if (IsAnyRegCC && HasDef) { 8246 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8247 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8248 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8249 } else 8250 DAG.ReplaceAllUsesWith(Call, MN); 8251 DAG.DeleteNode(Call); 8252 8253 // Inform the Frame Information that we have a patchpoint in this function. 8254 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8255 } 8256 8257 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8258 unsigned Intrinsic) { 8259 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8260 SDValue Op1 = getValue(I.getArgOperand(0)); 8261 SDValue Op2; 8262 if (I.getNumArgOperands() > 1) 8263 Op2 = getValue(I.getArgOperand(1)); 8264 SDLoc dl = getCurSDLoc(); 8265 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8266 SDValue Res; 8267 FastMathFlags FMF; 8268 if (isa<FPMathOperator>(I)) 8269 FMF = I.getFastMathFlags(); 8270 8271 switch (Intrinsic) { 8272 case Intrinsic::experimental_vector_reduce_fadd: 8273 if (FMF.isFast()) 8274 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8275 else 8276 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8277 break; 8278 case Intrinsic::experimental_vector_reduce_fmul: 8279 if (FMF.isFast()) 8280 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8281 else 8282 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8283 break; 8284 case Intrinsic::experimental_vector_reduce_add: 8285 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8286 break; 8287 case Intrinsic::experimental_vector_reduce_mul: 8288 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8289 break; 8290 case Intrinsic::experimental_vector_reduce_and: 8291 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8292 break; 8293 case Intrinsic::experimental_vector_reduce_or: 8294 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8295 break; 8296 case Intrinsic::experimental_vector_reduce_xor: 8297 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8298 break; 8299 case Intrinsic::experimental_vector_reduce_smax: 8300 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8301 break; 8302 case Intrinsic::experimental_vector_reduce_smin: 8303 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8304 break; 8305 case Intrinsic::experimental_vector_reduce_umax: 8306 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8307 break; 8308 case Intrinsic::experimental_vector_reduce_umin: 8309 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8310 break; 8311 case Intrinsic::experimental_vector_reduce_fmax: 8312 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8313 break; 8314 case Intrinsic::experimental_vector_reduce_fmin: 8315 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8316 break; 8317 default: 8318 llvm_unreachable("Unhandled vector reduce intrinsic"); 8319 } 8320 setValue(&I, Res); 8321 } 8322 8323 /// Returns an AttributeList representing the attributes applied to the return 8324 /// value of the given call. 8325 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8326 SmallVector<Attribute::AttrKind, 2> Attrs; 8327 if (CLI.RetSExt) 8328 Attrs.push_back(Attribute::SExt); 8329 if (CLI.RetZExt) 8330 Attrs.push_back(Attribute::ZExt); 8331 if (CLI.IsInReg) 8332 Attrs.push_back(Attribute::InReg); 8333 8334 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8335 Attrs); 8336 } 8337 8338 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8339 /// implementation, which just calls LowerCall. 8340 /// FIXME: When all targets are 8341 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8342 std::pair<SDValue, SDValue> 8343 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8344 // Handle the incoming return values from the call. 8345 CLI.Ins.clear(); 8346 Type *OrigRetTy = CLI.RetTy; 8347 SmallVector<EVT, 4> RetTys; 8348 SmallVector<uint64_t, 4> Offsets; 8349 auto &DL = CLI.DAG.getDataLayout(); 8350 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8351 8352 if (CLI.IsPostTypeLegalization) { 8353 // If we are lowering a libcall after legalization, split the return type. 8354 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8355 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8356 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8357 EVT RetVT = OldRetTys[i]; 8358 uint64_t Offset = OldOffsets[i]; 8359 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8360 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8361 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8362 RetTys.append(NumRegs, RegisterVT); 8363 for (unsigned j = 0; j != NumRegs; ++j) 8364 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8365 } 8366 } 8367 8368 SmallVector<ISD::OutputArg, 4> Outs; 8369 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8370 8371 bool CanLowerReturn = 8372 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8373 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8374 8375 SDValue DemoteStackSlot; 8376 int DemoteStackIdx = -100; 8377 if (!CanLowerReturn) { 8378 // FIXME: equivalent assert? 8379 // assert(!CS.hasInAllocaArgument() && 8380 // "sret demotion is incompatible with inalloca"); 8381 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8382 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8383 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8384 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8385 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8386 DL.getAllocaAddrSpace()); 8387 8388 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8389 ArgListEntry Entry; 8390 Entry.Node = DemoteStackSlot; 8391 Entry.Ty = StackSlotPtrType; 8392 Entry.IsSExt = false; 8393 Entry.IsZExt = false; 8394 Entry.IsInReg = false; 8395 Entry.IsSRet = true; 8396 Entry.IsNest = false; 8397 Entry.IsByVal = false; 8398 Entry.IsReturned = false; 8399 Entry.IsSwiftSelf = false; 8400 Entry.IsSwiftError = false; 8401 Entry.Alignment = Align; 8402 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8403 CLI.NumFixedArgs += 1; 8404 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8405 8406 // sret demotion isn't compatible with tail-calls, since the sret argument 8407 // points into the callers stack frame. 8408 CLI.IsTailCall = false; 8409 } else { 8410 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8411 EVT VT = RetTys[I]; 8412 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8413 CLI.CallConv, VT); 8414 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8415 CLI.CallConv, VT); 8416 for (unsigned i = 0; i != NumRegs; ++i) { 8417 ISD::InputArg MyFlags; 8418 MyFlags.VT = RegisterVT; 8419 MyFlags.ArgVT = VT; 8420 MyFlags.Used = CLI.IsReturnValueUsed; 8421 if (CLI.RetSExt) 8422 MyFlags.Flags.setSExt(); 8423 if (CLI.RetZExt) 8424 MyFlags.Flags.setZExt(); 8425 if (CLI.IsInReg) 8426 MyFlags.Flags.setInReg(); 8427 CLI.Ins.push_back(MyFlags); 8428 } 8429 } 8430 } 8431 8432 // We push in swifterror return as the last element of CLI.Ins. 8433 ArgListTy &Args = CLI.getArgs(); 8434 if (supportSwiftError()) { 8435 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8436 if (Args[i].IsSwiftError) { 8437 ISD::InputArg MyFlags; 8438 MyFlags.VT = getPointerTy(DL); 8439 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8440 MyFlags.Flags.setSwiftError(); 8441 CLI.Ins.push_back(MyFlags); 8442 } 8443 } 8444 } 8445 8446 // Handle all of the outgoing arguments. 8447 CLI.Outs.clear(); 8448 CLI.OutVals.clear(); 8449 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8450 SmallVector<EVT, 4> ValueVTs; 8451 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8452 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8453 Type *FinalType = Args[i].Ty; 8454 if (Args[i].IsByVal) 8455 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8456 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8457 FinalType, CLI.CallConv, CLI.IsVarArg); 8458 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8459 ++Value) { 8460 EVT VT = ValueVTs[Value]; 8461 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8462 SDValue Op = SDValue(Args[i].Node.getNode(), 8463 Args[i].Node.getResNo() + Value); 8464 ISD::ArgFlagsTy Flags; 8465 8466 // Certain targets (such as MIPS), may have a different ABI alignment 8467 // for a type depending on the context. Give the target a chance to 8468 // specify the alignment it wants. 8469 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8470 8471 if (Args[i].IsZExt) 8472 Flags.setZExt(); 8473 if (Args[i].IsSExt) 8474 Flags.setSExt(); 8475 if (Args[i].IsInReg) { 8476 // If we are using vectorcall calling convention, a structure that is 8477 // passed InReg - is surely an HVA 8478 if (CLI.CallConv == CallingConv::X86_VectorCall && 8479 isa<StructType>(FinalType)) { 8480 // The first value of a structure is marked 8481 if (0 == Value) 8482 Flags.setHvaStart(); 8483 Flags.setHva(); 8484 } 8485 // Set InReg Flag 8486 Flags.setInReg(); 8487 } 8488 if (Args[i].IsSRet) 8489 Flags.setSRet(); 8490 if (Args[i].IsSwiftSelf) 8491 Flags.setSwiftSelf(); 8492 if (Args[i].IsSwiftError) 8493 Flags.setSwiftError(); 8494 if (Args[i].IsByVal) 8495 Flags.setByVal(); 8496 if (Args[i].IsInAlloca) { 8497 Flags.setInAlloca(); 8498 // Set the byval flag for CCAssignFn callbacks that don't know about 8499 // inalloca. This way we can know how many bytes we should've allocated 8500 // and how many bytes a callee cleanup function will pop. If we port 8501 // inalloca to more targets, we'll have to add custom inalloca handling 8502 // in the various CC lowering callbacks. 8503 Flags.setByVal(); 8504 } 8505 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8506 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8507 Type *ElementTy = Ty->getElementType(); 8508 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8509 // For ByVal, alignment should come from FE. BE will guess if this 8510 // info is not there but there are cases it cannot get right. 8511 unsigned FrameAlign; 8512 if (Args[i].Alignment) 8513 FrameAlign = Args[i].Alignment; 8514 else 8515 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8516 Flags.setByValAlign(FrameAlign); 8517 } 8518 if (Args[i].IsNest) 8519 Flags.setNest(); 8520 if (NeedsRegBlock) 8521 Flags.setInConsecutiveRegs(); 8522 Flags.setOrigAlign(OriginalAlignment); 8523 8524 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8525 CLI.CallConv, VT); 8526 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8527 CLI.CallConv, VT); 8528 SmallVector<SDValue, 4> Parts(NumParts); 8529 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8530 8531 if (Args[i].IsSExt) 8532 ExtendKind = ISD::SIGN_EXTEND; 8533 else if (Args[i].IsZExt) 8534 ExtendKind = ISD::ZERO_EXTEND; 8535 8536 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8537 // for now. 8538 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8539 CanLowerReturn) { 8540 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8541 "unexpected use of 'returned'"); 8542 // Before passing 'returned' to the target lowering code, ensure that 8543 // either the register MVT and the actual EVT are the same size or that 8544 // the return value and argument are extended in the same way; in these 8545 // cases it's safe to pass the argument register value unchanged as the 8546 // return register value (although it's at the target's option whether 8547 // to do so) 8548 // TODO: allow code generation to take advantage of partially preserved 8549 // registers rather than clobbering the entire register when the 8550 // parameter extension method is not compatible with the return 8551 // extension method 8552 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8553 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8554 CLI.RetZExt == Args[i].IsZExt)) 8555 Flags.setReturned(); 8556 } 8557 8558 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8559 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 8560 8561 for (unsigned j = 0; j != NumParts; ++j) { 8562 // if it isn't first piece, alignment must be 1 8563 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8564 i < CLI.NumFixedArgs, 8565 i, j*Parts[j].getValueType().getStoreSize()); 8566 if (NumParts > 1 && j == 0) 8567 MyFlags.Flags.setSplit(); 8568 else if (j != 0) { 8569 MyFlags.Flags.setOrigAlign(1); 8570 if (j == NumParts - 1) 8571 MyFlags.Flags.setSplitEnd(); 8572 } 8573 8574 CLI.Outs.push_back(MyFlags); 8575 CLI.OutVals.push_back(Parts[j]); 8576 } 8577 8578 if (NeedsRegBlock && Value == NumValues - 1) 8579 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8580 } 8581 } 8582 8583 SmallVector<SDValue, 4> InVals; 8584 CLI.Chain = LowerCall(CLI, InVals); 8585 8586 // Update CLI.InVals to use outside of this function. 8587 CLI.InVals = InVals; 8588 8589 // Verify that the target's LowerCall behaved as expected. 8590 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8591 "LowerCall didn't return a valid chain!"); 8592 assert((!CLI.IsTailCall || InVals.empty()) && 8593 "LowerCall emitted a return value for a tail call!"); 8594 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8595 "LowerCall didn't emit the correct number of values!"); 8596 8597 // For a tail call, the return value is merely live-out and there aren't 8598 // any nodes in the DAG representing it. Return a special value to 8599 // indicate that a tail call has been emitted and no more Instructions 8600 // should be processed in the current block. 8601 if (CLI.IsTailCall) { 8602 CLI.DAG.setRoot(CLI.Chain); 8603 return std::make_pair(SDValue(), SDValue()); 8604 } 8605 8606 #ifndef NDEBUG 8607 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8608 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8609 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8610 "LowerCall emitted a value with the wrong type!"); 8611 } 8612 #endif 8613 8614 SmallVector<SDValue, 4> ReturnValues; 8615 if (!CanLowerReturn) { 8616 // The instruction result is the result of loading from the 8617 // hidden sret parameter. 8618 SmallVector<EVT, 1> PVTs; 8619 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8620 8621 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8622 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8623 EVT PtrVT = PVTs[0]; 8624 8625 unsigned NumValues = RetTys.size(); 8626 ReturnValues.resize(NumValues); 8627 SmallVector<SDValue, 4> Chains(NumValues); 8628 8629 // An aggregate return value cannot wrap around the address space, so 8630 // offsets to its parts don't wrap either. 8631 SDNodeFlags Flags; 8632 Flags.setNoUnsignedWrap(true); 8633 8634 for (unsigned i = 0; i < NumValues; ++i) { 8635 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8636 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8637 PtrVT), Flags); 8638 SDValue L = CLI.DAG.getLoad( 8639 RetTys[i], CLI.DL, CLI.Chain, Add, 8640 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8641 DemoteStackIdx, Offsets[i]), 8642 /* Alignment = */ 1); 8643 ReturnValues[i] = L; 8644 Chains[i] = L.getValue(1); 8645 } 8646 8647 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8648 } else { 8649 // Collect the legal value parts into potentially illegal values 8650 // that correspond to the original function's return values. 8651 Optional<ISD::NodeType> AssertOp; 8652 if (CLI.RetSExt) 8653 AssertOp = ISD::AssertSext; 8654 else if (CLI.RetZExt) 8655 AssertOp = ISD::AssertZext; 8656 unsigned CurReg = 0; 8657 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8658 EVT VT = RetTys[I]; 8659 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8660 CLI.CallConv, VT); 8661 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8662 CLI.CallConv, VT); 8663 8664 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8665 NumRegs, RegisterVT, VT, nullptr, 8666 CLI.CallConv, AssertOp)); 8667 CurReg += NumRegs; 8668 } 8669 8670 // For a function returning void, there is no return value. We can't create 8671 // such a node, so we just return a null return value in that case. In 8672 // that case, nothing will actually look at the value. 8673 if (ReturnValues.empty()) 8674 return std::make_pair(SDValue(), CLI.Chain); 8675 } 8676 8677 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8678 CLI.DAG.getVTList(RetTys), ReturnValues); 8679 return std::make_pair(Res, CLI.Chain); 8680 } 8681 8682 void TargetLowering::LowerOperationWrapper(SDNode *N, 8683 SmallVectorImpl<SDValue> &Results, 8684 SelectionDAG &DAG) const { 8685 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8686 Results.push_back(Res); 8687 } 8688 8689 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8690 llvm_unreachable("LowerOperation not implemented for this target!"); 8691 } 8692 8693 void 8694 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8695 SDValue Op = getNonRegisterValue(V); 8696 assert((Op.getOpcode() != ISD::CopyFromReg || 8697 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8698 "Copy from a reg to the same reg!"); 8699 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8700 8701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8702 // If this is an InlineAsm we have to match the registers required, not the 8703 // notional registers required by the type. 8704 8705 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 8706 None); // This is not an ABI copy. 8707 SDValue Chain = DAG.getEntryNode(); 8708 8709 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8710 FuncInfo.PreferredExtendType.end()) 8711 ? ISD::ANY_EXTEND 8712 : FuncInfo.PreferredExtendType[V]; 8713 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8714 PendingExports.push_back(Chain); 8715 } 8716 8717 #include "llvm/CodeGen/SelectionDAGISel.h" 8718 8719 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8720 /// entry block, return true. This includes arguments used by switches, since 8721 /// the switch may expand into multiple basic blocks. 8722 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8723 // With FastISel active, we may be splitting blocks, so force creation 8724 // of virtual registers for all non-dead arguments. 8725 if (FastISel) 8726 return A->use_empty(); 8727 8728 const BasicBlock &Entry = A->getParent()->front(); 8729 for (const User *U : A->users()) 8730 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8731 return false; // Use not in entry block. 8732 8733 return true; 8734 } 8735 8736 using ArgCopyElisionMapTy = 8737 DenseMap<const Argument *, 8738 std::pair<const AllocaInst *, const StoreInst *>>; 8739 8740 /// Scan the entry block of the function in FuncInfo for arguments that look 8741 /// like copies into a local alloca. Record any copied arguments in 8742 /// ArgCopyElisionCandidates. 8743 static void 8744 findArgumentCopyElisionCandidates(const DataLayout &DL, 8745 FunctionLoweringInfo *FuncInfo, 8746 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8747 // Record the state of every static alloca used in the entry block. Argument 8748 // allocas are all used in the entry block, so we need approximately as many 8749 // entries as we have arguments. 8750 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8751 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8752 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8753 StaticAllocas.reserve(NumArgs * 2); 8754 8755 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8756 if (!V) 8757 return nullptr; 8758 V = V->stripPointerCasts(); 8759 const auto *AI = dyn_cast<AllocaInst>(V); 8760 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8761 return nullptr; 8762 auto Iter = StaticAllocas.insert({AI, Unknown}); 8763 return &Iter.first->second; 8764 }; 8765 8766 // Look for stores of arguments to static allocas. Look through bitcasts and 8767 // GEPs to handle type coercions, as long as the alloca is fully initialized 8768 // by the store. Any non-store use of an alloca escapes it and any subsequent 8769 // unanalyzed store might write it. 8770 // FIXME: Handle structs initialized with multiple stores. 8771 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8772 // Look for stores, and handle non-store uses conservatively. 8773 const auto *SI = dyn_cast<StoreInst>(&I); 8774 if (!SI) { 8775 // We will look through cast uses, so ignore them completely. 8776 if (I.isCast()) 8777 continue; 8778 // Ignore debug info intrinsics, they don't escape or store to allocas. 8779 if (isa<DbgInfoIntrinsic>(I)) 8780 continue; 8781 // This is an unknown instruction. Assume it escapes or writes to all 8782 // static alloca operands. 8783 for (const Use &U : I.operands()) { 8784 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8785 *Info = StaticAllocaInfo::Clobbered; 8786 } 8787 continue; 8788 } 8789 8790 // If the stored value is a static alloca, mark it as escaped. 8791 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8792 *Info = StaticAllocaInfo::Clobbered; 8793 8794 // Check if the destination is a static alloca. 8795 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8796 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8797 if (!Info) 8798 continue; 8799 const AllocaInst *AI = cast<AllocaInst>(Dst); 8800 8801 // Skip allocas that have been initialized or clobbered. 8802 if (*Info != StaticAllocaInfo::Unknown) 8803 continue; 8804 8805 // Check if the stored value is an argument, and that this store fully 8806 // initializes the alloca. Don't elide copies from the same argument twice. 8807 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8808 const auto *Arg = dyn_cast<Argument>(Val); 8809 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8810 Arg->getType()->isEmptyTy() || 8811 DL.getTypeStoreSize(Arg->getType()) != 8812 DL.getTypeAllocSize(AI->getAllocatedType()) || 8813 ArgCopyElisionCandidates.count(Arg)) { 8814 *Info = StaticAllocaInfo::Clobbered; 8815 continue; 8816 } 8817 8818 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 8819 << '\n'); 8820 8821 // Mark this alloca and store for argument copy elision. 8822 *Info = StaticAllocaInfo::Elidable; 8823 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8824 8825 // Stop scanning if we've seen all arguments. This will happen early in -O0 8826 // builds, which is useful, because -O0 builds have large entry blocks and 8827 // many allocas. 8828 if (ArgCopyElisionCandidates.size() == NumArgs) 8829 break; 8830 } 8831 } 8832 8833 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8834 /// ArgVal is a load from a suitable fixed stack object. 8835 static void tryToElideArgumentCopy( 8836 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8837 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8838 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8839 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8840 SDValue ArgVal, bool &ArgHasUses) { 8841 // Check if this is a load from a fixed stack object. 8842 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8843 if (!LNode) 8844 return; 8845 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8846 if (!FINode) 8847 return; 8848 8849 // Check that the fixed stack object is the right size and alignment. 8850 // Look at the alignment that the user wrote on the alloca instead of looking 8851 // at the stack object. 8852 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8853 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8854 const AllocaInst *AI = ArgCopyIter->second.first; 8855 int FixedIndex = FINode->getIndex(); 8856 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8857 int OldIndex = AllocaIndex; 8858 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8859 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8860 LLVM_DEBUG( 8861 dbgs() << " argument copy elision failed due to bad fixed stack " 8862 "object size\n"); 8863 return; 8864 } 8865 unsigned RequiredAlignment = AI->getAlignment(); 8866 if (!RequiredAlignment) { 8867 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8868 AI->getAllocatedType()); 8869 } 8870 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8871 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8872 "greater than stack argument alignment (" 8873 << RequiredAlignment << " vs " 8874 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8875 return; 8876 } 8877 8878 // Perform the elision. Delete the old stack object and replace its only use 8879 // in the variable info map. Mark the stack object as mutable. 8880 LLVM_DEBUG({ 8881 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8882 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8883 << '\n'; 8884 }); 8885 MFI.RemoveStackObject(OldIndex); 8886 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8887 AllocaIndex = FixedIndex; 8888 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8889 Chains.push_back(ArgVal.getValue(1)); 8890 8891 // Avoid emitting code for the store implementing the copy. 8892 const StoreInst *SI = ArgCopyIter->second.second; 8893 ElidedArgCopyInstrs.insert(SI); 8894 8895 // Check for uses of the argument again so that we can avoid exporting ArgVal 8896 // if it is't used by anything other than the store. 8897 for (const Value *U : Arg.users()) { 8898 if (U != SI) { 8899 ArgHasUses = true; 8900 break; 8901 } 8902 } 8903 } 8904 8905 void SelectionDAGISel::LowerArguments(const Function &F) { 8906 SelectionDAG &DAG = SDB->DAG; 8907 SDLoc dl = SDB->getCurSDLoc(); 8908 const DataLayout &DL = DAG.getDataLayout(); 8909 SmallVector<ISD::InputArg, 16> Ins; 8910 8911 if (!FuncInfo->CanLowerReturn) { 8912 // Put in an sret pointer parameter before all the other parameters. 8913 SmallVector<EVT, 1> ValueVTs; 8914 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8915 F.getReturnType()->getPointerTo( 8916 DAG.getDataLayout().getAllocaAddrSpace()), 8917 ValueVTs); 8918 8919 // NOTE: Assuming that a pointer will never break down to more than one VT 8920 // or one register. 8921 ISD::ArgFlagsTy Flags; 8922 Flags.setSRet(); 8923 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8924 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8925 ISD::InputArg::NoArgIndex, 0); 8926 Ins.push_back(RetArg); 8927 } 8928 8929 // Look for stores of arguments to static allocas. Mark such arguments with a 8930 // flag to ask the target to give us the memory location of that argument if 8931 // available. 8932 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8933 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8934 8935 // Set up the incoming argument description vector. 8936 for (const Argument &Arg : F.args()) { 8937 unsigned ArgNo = Arg.getArgNo(); 8938 SmallVector<EVT, 4> ValueVTs; 8939 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8940 bool isArgValueUsed = !Arg.use_empty(); 8941 unsigned PartBase = 0; 8942 Type *FinalType = Arg.getType(); 8943 if (Arg.hasAttribute(Attribute::ByVal)) 8944 FinalType = cast<PointerType>(FinalType)->getElementType(); 8945 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8946 FinalType, F.getCallingConv(), F.isVarArg()); 8947 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8948 Value != NumValues; ++Value) { 8949 EVT VT = ValueVTs[Value]; 8950 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8951 ISD::ArgFlagsTy Flags; 8952 8953 // Certain targets (such as MIPS), may have a different ABI alignment 8954 // for a type depending on the context. Give the target a chance to 8955 // specify the alignment it wants. 8956 unsigned OriginalAlignment = 8957 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8958 8959 if (Arg.hasAttribute(Attribute::ZExt)) 8960 Flags.setZExt(); 8961 if (Arg.hasAttribute(Attribute::SExt)) 8962 Flags.setSExt(); 8963 if (Arg.hasAttribute(Attribute::InReg)) { 8964 // If we are using vectorcall calling convention, a structure that is 8965 // passed InReg - is surely an HVA 8966 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8967 isa<StructType>(Arg.getType())) { 8968 // The first value of a structure is marked 8969 if (0 == Value) 8970 Flags.setHvaStart(); 8971 Flags.setHva(); 8972 } 8973 // Set InReg Flag 8974 Flags.setInReg(); 8975 } 8976 if (Arg.hasAttribute(Attribute::StructRet)) 8977 Flags.setSRet(); 8978 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8979 Flags.setSwiftSelf(); 8980 if (Arg.hasAttribute(Attribute::SwiftError)) 8981 Flags.setSwiftError(); 8982 if (Arg.hasAttribute(Attribute::ByVal)) 8983 Flags.setByVal(); 8984 if (Arg.hasAttribute(Attribute::InAlloca)) { 8985 Flags.setInAlloca(); 8986 // Set the byval flag for CCAssignFn callbacks that don't know about 8987 // inalloca. This way we can know how many bytes we should've allocated 8988 // and how many bytes a callee cleanup function will pop. If we port 8989 // inalloca to more targets, we'll have to add custom inalloca handling 8990 // in the various CC lowering callbacks. 8991 Flags.setByVal(); 8992 } 8993 if (F.getCallingConv() == CallingConv::X86_INTR) { 8994 // IA Interrupt passes frame (1st parameter) by value in the stack. 8995 if (ArgNo == 0) 8996 Flags.setByVal(); 8997 } 8998 if (Flags.isByVal() || Flags.isInAlloca()) { 8999 PointerType *Ty = cast<PointerType>(Arg.getType()); 9000 Type *ElementTy = Ty->getElementType(); 9001 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9002 // For ByVal, alignment should be passed from FE. BE will guess if 9003 // this info is not there but there are cases it cannot get right. 9004 unsigned FrameAlign; 9005 if (Arg.getParamAlignment()) 9006 FrameAlign = Arg.getParamAlignment(); 9007 else 9008 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9009 Flags.setByValAlign(FrameAlign); 9010 } 9011 if (Arg.hasAttribute(Attribute::Nest)) 9012 Flags.setNest(); 9013 if (NeedsRegBlock) 9014 Flags.setInConsecutiveRegs(); 9015 Flags.setOrigAlign(OriginalAlignment); 9016 if (ArgCopyElisionCandidates.count(&Arg)) 9017 Flags.setCopyElisionCandidate(); 9018 9019 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9020 *CurDAG->getContext(), F.getCallingConv(), VT); 9021 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9022 *CurDAG->getContext(), F.getCallingConv(), VT); 9023 for (unsigned i = 0; i != NumRegs; ++i) { 9024 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9025 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9026 if (NumRegs > 1 && i == 0) 9027 MyFlags.Flags.setSplit(); 9028 // if it isn't first piece, alignment must be 1 9029 else if (i > 0) { 9030 MyFlags.Flags.setOrigAlign(1); 9031 if (i == NumRegs - 1) 9032 MyFlags.Flags.setSplitEnd(); 9033 } 9034 Ins.push_back(MyFlags); 9035 } 9036 if (NeedsRegBlock && Value == NumValues - 1) 9037 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9038 PartBase += VT.getStoreSize(); 9039 } 9040 } 9041 9042 // Call the target to set up the argument values. 9043 SmallVector<SDValue, 8> InVals; 9044 SDValue NewRoot = TLI->LowerFormalArguments( 9045 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9046 9047 // Verify that the target's LowerFormalArguments behaved as expected. 9048 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9049 "LowerFormalArguments didn't return a valid chain!"); 9050 assert(InVals.size() == Ins.size() && 9051 "LowerFormalArguments didn't emit the correct number of values!"); 9052 LLVM_DEBUG({ 9053 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9054 assert(InVals[i].getNode() && 9055 "LowerFormalArguments emitted a null value!"); 9056 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9057 "LowerFormalArguments emitted a value with the wrong type!"); 9058 } 9059 }); 9060 9061 // Update the DAG with the new chain value resulting from argument lowering. 9062 DAG.setRoot(NewRoot); 9063 9064 // Set up the argument values. 9065 unsigned i = 0; 9066 if (!FuncInfo->CanLowerReturn) { 9067 // Create a virtual register for the sret pointer, and put in a copy 9068 // from the sret argument into it. 9069 SmallVector<EVT, 1> ValueVTs; 9070 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9071 F.getReturnType()->getPointerTo( 9072 DAG.getDataLayout().getAllocaAddrSpace()), 9073 ValueVTs); 9074 MVT VT = ValueVTs[0].getSimpleVT(); 9075 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9076 Optional<ISD::NodeType> AssertOp = None; 9077 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9078 nullptr, F.getCallingConv(), AssertOp); 9079 9080 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9081 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9082 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9083 FuncInfo->DemoteRegister = SRetReg; 9084 NewRoot = 9085 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9086 DAG.setRoot(NewRoot); 9087 9088 // i indexes lowered arguments. Bump it past the hidden sret argument. 9089 ++i; 9090 } 9091 9092 SmallVector<SDValue, 4> Chains; 9093 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9094 for (const Argument &Arg : F.args()) { 9095 SmallVector<SDValue, 4> ArgValues; 9096 SmallVector<EVT, 4> ValueVTs; 9097 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9098 unsigned NumValues = ValueVTs.size(); 9099 if (NumValues == 0) 9100 continue; 9101 9102 bool ArgHasUses = !Arg.use_empty(); 9103 9104 // Elide the copying store if the target loaded this argument from a 9105 // suitable fixed stack object. 9106 if (Ins[i].Flags.isCopyElisionCandidate()) { 9107 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9108 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9109 InVals[i], ArgHasUses); 9110 } 9111 9112 // If this argument is unused then remember its value. It is used to generate 9113 // debugging information. 9114 bool isSwiftErrorArg = 9115 TLI->supportSwiftError() && 9116 Arg.hasAttribute(Attribute::SwiftError); 9117 if (!ArgHasUses && !isSwiftErrorArg) { 9118 SDB->setUnusedArgValue(&Arg, InVals[i]); 9119 9120 // Also remember any frame index for use in FastISel. 9121 if (FrameIndexSDNode *FI = 9122 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9123 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9124 } 9125 9126 for (unsigned Val = 0; Val != NumValues; ++Val) { 9127 EVT VT = ValueVTs[Val]; 9128 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9129 F.getCallingConv(), VT); 9130 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9131 *CurDAG->getContext(), F.getCallingConv(), VT); 9132 9133 // Even an apparant 'unused' swifterror argument needs to be returned. So 9134 // we do generate a copy for it that can be used on return from the 9135 // function. 9136 if (ArgHasUses || isSwiftErrorArg) { 9137 Optional<ISD::NodeType> AssertOp; 9138 if (Arg.hasAttribute(Attribute::SExt)) 9139 AssertOp = ISD::AssertSext; 9140 else if (Arg.hasAttribute(Attribute::ZExt)) 9141 AssertOp = ISD::AssertZext; 9142 9143 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9144 PartVT, VT, nullptr, 9145 F.getCallingConv(), AssertOp)); 9146 } 9147 9148 i += NumParts; 9149 } 9150 9151 // We don't need to do anything else for unused arguments. 9152 if (ArgValues.empty()) 9153 continue; 9154 9155 // Note down frame index. 9156 if (FrameIndexSDNode *FI = 9157 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9158 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9159 9160 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9161 SDB->getCurSDLoc()); 9162 9163 SDB->setValue(&Arg, Res); 9164 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9165 // We want to associate the argument with the frame index, among 9166 // involved operands, that correspond to the lowest address. The 9167 // getCopyFromParts function, called earlier, is swapping the order of 9168 // the operands to BUILD_PAIR depending on endianness. The result of 9169 // that swapping is that the least significant bits of the argument will 9170 // be in the first operand of the BUILD_PAIR node, and the most 9171 // significant bits will be in the second operand. 9172 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9173 if (LoadSDNode *LNode = 9174 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9175 if (FrameIndexSDNode *FI = 9176 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9177 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9178 } 9179 9180 // Update the SwiftErrorVRegDefMap. 9181 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9182 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9183 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9184 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9185 FuncInfo->SwiftErrorArg, Reg); 9186 } 9187 9188 // If this argument is live outside of the entry block, insert a copy from 9189 // wherever we got it to the vreg that other BB's will reference it as. 9190 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9191 // If we can, though, try to skip creating an unnecessary vreg. 9192 // FIXME: This isn't very clean... it would be nice to make this more 9193 // general. It's also subtly incompatible with the hacks FastISel 9194 // uses with vregs. 9195 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9196 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9197 FuncInfo->ValueMap[&Arg] = Reg; 9198 continue; 9199 } 9200 } 9201 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9202 FuncInfo->InitializeRegForValue(&Arg); 9203 SDB->CopyToExportRegsIfNeeded(&Arg); 9204 } 9205 } 9206 9207 if (!Chains.empty()) { 9208 Chains.push_back(NewRoot); 9209 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9210 } 9211 9212 DAG.setRoot(NewRoot); 9213 9214 assert(i == InVals.size() && "Argument register count mismatch!"); 9215 9216 // If any argument copy elisions occurred and we have debug info, update the 9217 // stale frame indices used in the dbg.declare variable info table. 9218 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9219 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9220 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9221 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9222 if (I != ArgCopyElisionFrameIndexMap.end()) 9223 VI.Slot = I->second; 9224 } 9225 } 9226 9227 // Finally, if the target has anything special to do, allow it to do so. 9228 EmitFunctionEntryCode(); 9229 } 9230 9231 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9232 /// ensure constants are generated when needed. Remember the virtual registers 9233 /// that need to be added to the Machine PHI nodes as input. We cannot just 9234 /// directly add them, because expansion might result in multiple MBB's for one 9235 /// BB. As such, the start of the BB might correspond to a different MBB than 9236 /// the end. 9237 void 9238 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9239 const TerminatorInst *TI = LLVMBB->getTerminator(); 9240 9241 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9242 9243 // Check PHI nodes in successors that expect a value to be available from this 9244 // block. 9245 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9246 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9247 if (!isa<PHINode>(SuccBB->begin())) continue; 9248 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9249 9250 // If this terminator has multiple identical successors (common for 9251 // switches), only handle each succ once. 9252 if (!SuccsHandled.insert(SuccMBB).second) 9253 continue; 9254 9255 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9256 9257 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9258 // nodes and Machine PHI nodes, but the incoming operands have not been 9259 // emitted yet. 9260 for (const PHINode &PN : SuccBB->phis()) { 9261 // Ignore dead phi's. 9262 if (PN.use_empty()) 9263 continue; 9264 9265 // Skip empty types 9266 if (PN.getType()->isEmptyTy()) 9267 continue; 9268 9269 unsigned Reg; 9270 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9271 9272 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9273 unsigned &RegOut = ConstantsOut[C]; 9274 if (RegOut == 0) { 9275 RegOut = FuncInfo.CreateRegs(C->getType()); 9276 CopyValueToVirtualRegister(C, RegOut); 9277 } 9278 Reg = RegOut; 9279 } else { 9280 DenseMap<const Value *, unsigned>::iterator I = 9281 FuncInfo.ValueMap.find(PHIOp); 9282 if (I != FuncInfo.ValueMap.end()) 9283 Reg = I->second; 9284 else { 9285 assert(isa<AllocaInst>(PHIOp) && 9286 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9287 "Didn't codegen value into a register!??"); 9288 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9289 CopyValueToVirtualRegister(PHIOp, Reg); 9290 } 9291 } 9292 9293 // Remember that this register needs to added to the machine PHI node as 9294 // the input for this MBB. 9295 SmallVector<EVT, 4> ValueVTs; 9296 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9297 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9298 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9299 EVT VT = ValueVTs[vti]; 9300 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9301 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9302 FuncInfo.PHINodesToUpdate.push_back( 9303 std::make_pair(&*MBBI++, Reg + i)); 9304 Reg += NumRegisters; 9305 } 9306 } 9307 } 9308 9309 ConstantsOut.clear(); 9310 } 9311 9312 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9313 /// is 0. 9314 MachineBasicBlock * 9315 SelectionDAGBuilder::StackProtectorDescriptor:: 9316 AddSuccessorMBB(const BasicBlock *BB, 9317 MachineBasicBlock *ParentMBB, 9318 bool IsLikely, 9319 MachineBasicBlock *SuccMBB) { 9320 // If SuccBB has not been created yet, create it. 9321 if (!SuccMBB) { 9322 MachineFunction *MF = ParentMBB->getParent(); 9323 MachineFunction::iterator BBI(ParentMBB); 9324 SuccMBB = MF->CreateMachineBasicBlock(BB); 9325 MF->insert(++BBI, SuccMBB); 9326 } 9327 // Add it as a successor of ParentMBB. 9328 ParentMBB->addSuccessor( 9329 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9330 return SuccMBB; 9331 } 9332 9333 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9334 MachineFunction::iterator I(MBB); 9335 if (++I == FuncInfo.MF->end()) 9336 return nullptr; 9337 return &*I; 9338 } 9339 9340 /// During lowering new call nodes can be created (such as memset, etc.). 9341 /// Those will become new roots of the current DAG, but complications arise 9342 /// when they are tail calls. In such cases, the call lowering will update 9343 /// the root, but the builder still needs to know that a tail call has been 9344 /// lowered in order to avoid generating an additional return. 9345 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9346 // If the node is null, we do have a tail call. 9347 if (MaybeTC.getNode() != nullptr) 9348 DAG.setRoot(MaybeTC); 9349 else 9350 HasTailCall = true; 9351 } 9352 9353 uint64_t 9354 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9355 unsigned First, unsigned Last) const { 9356 assert(Last >= First); 9357 const APInt &LowCase = Clusters[First].Low->getValue(); 9358 const APInt &HighCase = Clusters[Last].High->getValue(); 9359 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9360 9361 // FIXME: A range of consecutive cases has 100% density, but only requires one 9362 // comparison to lower. We should discriminate against such consecutive ranges 9363 // in jump tables. 9364 9365 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9366 } 9367 9368 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9369 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9370 unsigned Last) const { 9371 assert(Last >= First); 9372 assert(TotalCases[Last] >= TotalCases[First]); 9373 uint64_t NumCases = 9374 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9375 return NumCases; 9376 } 9377 9378 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9379 unsigned First, unsigned Last, 9380 const SwitchInst *SI, 9381 MachineBasicBlock *DefaultMBB, 9382 CaseCluster &JTCluster) { 9383 assert(First <= Last); 9384 9385 auto Prob = BranchProbability::getZero(); 9386 unsigned NumCmps = 0; 9387 std::vector<MachineBasicBlock*> Table; 9388 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9389 9390 // Initialize probabilities in JTProbs. 9391 for (unsigned I = First; I <= Last; ++I) 9392 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9393 9394 for (unsigned I = First; I <= Last; ++I) { 9395 assert(Clusters[I].Kind == CC_Range); 9396 Prob += Clusters[I].Prob; 9397 const APInt &Low = Clusters[I].Low->getValue(); 9398 const APInt &High = Clusters[I].High->getValue(); 9399 NumCmps += (Low == High) ? 1 : 2; 9400 if (I != First) { 9401 // Fill the gap between this and the previous cluster. 9402 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9403 assert(PreviousHigh.slt(Low)); 9404 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9405 for (uint64_t J = 0; J < Gap; J++) 9406 Table.push_back(DefaultMBB); 9407 } 9408 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9409 for (uint64_t J = 0; J < ClusterSize; ++J) 9410 Table.push_back(Clusters[I].MBB); 9411 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9412 } 9413 9414 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9415 unsigned NumDests = JTProbs.size(); 9416 if (TLI.isSuitableForBitTests( 9417 NumDests, NumCmps, Clusters[First].Low->getValue(), 9418 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9419 // Clusters[First..Last] should be lowered as bit tests instead. 9420 return false; 9421 } 9422 9423 // Create the MBB that will load from and jump through the table. 9424 // Note: We create it here, but it's not inserted into the function yet. 9425 MachineFunction *CurMF = FuncInfo.MF; 9426 MachineBasicBlock *JumpTableMBB = 9427 CurMF->CreateMachineBasicBlock(SI->getParent()); 9428 9429 // Add successors. Note: use table order for determinism. 9430 SmallPtrSet<MachineBasicBlock *, 8> Done; 9431 for (MachineBasicBlock *Succ : Table) { 9432 if (Done.count(Succ)) 9433 continue; 9434 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9435 Done.insert(Succ); 9436 } 9437 JumpTableMBB->normalizeSuccProbs(); 9438 9439 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9440 ->createJumpTableIndex(Table); 9441 9442 // Set up the jump table info. 9443 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9444 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9445 Clusters[Last].High->getValue(), SI->getCondition(), 9446 nullptr, false); 9447 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9448 9449 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9450 JTCases.size() - 1, Prob); 9451 return true; 9452 } 9453 9454 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9455 const SwitchInst *SI, 9456 MachineBasicBlock *DefaultMBB) { 9457 #ifndef NDEBUG 9458 // Clusters must be non-empty, sorted, and only contain Range clusters. 9459 assert(!Clusters.empty()); 9460 for (CaseCluster &C : Clusters) 9461 assert(C.Kind == CC_Range); 9462 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9463 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9464 #endif 9465 9466 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9467 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9468 return; 9469 9470 const int64_t N = Clusters.size(); 9471 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9472 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9473 9474 if (N < 2 || N < MinJumpTableEntries) 9475 return; 9476 9477 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9478 SmallVector<unsigned, 8> TotalCases(N); 9479 for (unsigned i = 0; i < N; ++i) { 9480 const APInt &Hi = Clusters[i].High->getValue(); 9481 const APInt &Lo = Clusters[i].Low->getValue(); 9482 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9483 if (i != 0) 9484 TotalCases[i] += TotalCases[i - 1]; 9485 } 9486 9487 // Cheap case: the whole range may be suitable for jump table. 9488 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9489 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9490 assert(NumCases < UINT64_MAX / 100); 9491 assert(Range >= NumCases); 9492 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9493 CaseCluster JTCluster; 9494 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9495 Clusters[0] = JTCluster; 9496 Clusters.resize(1); 9497 return; 9498 } 9499 } 9500 9501 // The algorithm below is not suitable for -O0. 9502 if (TM.getOptLevel() == CodeGenOpt::None) 9503 return; 9504 9505 // Split Clusters into minimum number of dense partitions. The algorithm uses 9506 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9507 // for the Case Statement'" (1994), but builds the MinPartitions array in 9508 // reverse order to make it easier to reconstruct the partitions in ascending 9509 // order. In the choice between two optimal partitionings, it picks the one 9510 // which yields more jump tables. 9511 9512 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9513 SmallVector<unsigned, 8> MinPartitions(N); 9514 // LastElement[i] is the last element of the partition starting at i. 9515 SmallVector<unsigned, 8> LastElement(N); 9516 // PartitionsScore[i] is used to break ties when choosing between two 9517 // partitionings resulting in the same number of partitions. 9518 SmallVector<unsigned, 8> PartitionsScore(N); 9519 // For PartitionsScore, a small number of comparisons is considered as good as 9520 // a jump table and a single comparison is considered better than a jump 9521 // table. 9522 enum PartitionScores : unsigned { 9523 NoTable = 0, 9524 Table = 1, 9525 FewCases = 1, 9526 SingleCase = 2 9527 }; 9528 9529 // Base case: There is only one way to partition Clusters[N-1]. 9530 MinPartitions[N - 1] = 1; 9531 LastElement[N - 1] = N - 1; 9532 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9533 9534 // Note: loop indexes are signed to avoid underflow. 9535 for (int64_t i = N - 2; i >= 0; i--) { 9536 // Find optimal partitioning of Clusters[i..N-1]. 9537 // Baseline: Put Clusters[i] into a partition on its own. 9538 MinPartitions[i] = MinPartitions[i + 1] + 1; 9539 LastElement[i] = i; 9540 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9541 9542 // Search for a solution that results in fewer partitions. 9543 for (int64_t j = N - 1; j > i; j--) { 9544 // Try building a partition from Clusters[i..j]. 9545 uint64_t Range = getJumpTableRange(Clusters, i, j); 9546 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9547 assert(NumCases < UINT64_MAX / 100); 9548 assert(Range >= NumCases); 9549 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9550 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9551 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9552 int64_t NumEntries = j - i + 1; 9553 9554 if (NumEntries == 1) 9555 Score += PartitionScores::SingleCase; 9556 else if (NumEntries <= SmallNumberOfEntries) 9557 Score += PartitionScores::FewCases; 9558 else if (NumEntries >= MinJumpTableEntries) 9559 Score += PartitionScores::Table; 9560 9561 // If this leads to fewer partitions, or to the same number of 9562 // partitions with better score, it is a better partitioning. 9563 if (NumPartitions < MinPartitions[i] || 9564 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9565 MinPartitions[i] = NumPartitions; 9566 LastElement[i] = j; 9567 PartitionsScore[i] = Score; 9568 } 9569 } 9570 } 9571 } 9572 9573 // Iterate over the partitions, replacing some with jump tables in-place. 9574 unsigned DstIndex = 0; 9575 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9576 Last = LastElement[First]; 9577 assert(Last >= First); 9578 assert(DstIndex <= First); 9579 unsigned NumClusters = Last - First + 1; 9580 9581 CaseCluster JTCluster; 9582 if (NumClusters >= MinJumpTableEntries && 9583 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9584 Clusters[DstIndex++] = JTCluster; 9585 } else { 9586 for (unsigned I = First; I <= Last; ++I) 9587 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9588 } 9589 } 9590 Clusters.resize(DstIndex); 9591 } 9592 9593 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9594 unsigned First, unsigned Last, 9595 const SwitchInst *SI, 9596 CaseCluster &BTCluster) { 9597 assert(First <= Last); 9598 if (First == Last) 9599 return false; 9600 9601 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9602 unsigned NumCmps = 0; 9603 for (int64_t I = First; I <= Last; ++I) { 9604 assert(Clusters[I].Kind == CC_Range); 9605 Dests.set(Clusters[I].MBB->getNumber()); 9606 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9607 } 9608 unsigned NumDests = Dests.count(); 9609 9610 APInt Low = Clusters[First].Low->getValue(); 9611 APInt High = Clusters[Last].High->getValue(); 9612 assert(Low.slt(High)); 9613 9614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9615 const DataLayout &DL = DAG.getDataLayout(); 9616 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9617 return false; 9618 9619 APInt LowBound; 9620 APInt CmpRange; 9621 9622 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9623 assert(TLI.rangeFitsInWord(Low, High, DL) && 9624 "Case range must fit in bit mask!"); 9625 9626 // Check if the clusters cover a contiguous range such that no value in the 9627 // range will jump to the default statement. 9628 bool ContiguousRange = true; 9629 for (int64_t I = First + 1; I <= Last; ++I) { 9630 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9631 ContiguousRange = false; 9632 break; 9633 } 9634 } 9635 9636 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9637 // Optimize the case where all the case values fit in a word without having 9638 // to subtract minValue. In this case, we can optimize away the subtraction. 9639 LowBound = APInt::getNullValue(Low.getBitWidth()); 9640 CmpRange = High; 9641 ContiguousRange = false; 9642 } else { 9643 LowBound = Low; 9644 CmpRange = High - Low; 9645 } 9646 9647 CaseBitsVector CBV; 9648 auto TotalProb = BranchProbability::getZero(); 9649 for (unsigned i = First; i <= Last; ++i) { 9650 // Find the CaseBits for this destination. 9651 unsigned j; 9652 for (j = 0; j < CBV.size(); ++j) 9653 if (CBV[j].BB == Clusters[i].MBB) 9654 break; 9655 if (j == CBV.size()) 9656 CBV.push_back( 9657 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9658 CaseBits *CB = &CBV[j]; 9659 9660 // Update Mask, Bits and ExtraProb. 9661 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9662 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9663 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9664 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9665 CB->Bits += Hi - Lo + 1; 9666 CB->ExtraProb += Clusters[i].Prob; 9667 TotalProb += Clusters[i].Prob; 9668 } 9669 9670 BitTestInfo BTI; 9671 llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9672 // Sort by probability first, number of bits second, bit mask third. 9673 if (a.ExtraProb != b.ExtraProb) 9674 return a.ExtraProb > b.ExtraProb; 9675 if (a.Bits != b.Bits) 9676 return a.Bits > b.Bits; 9677 return a.Mask < b.Mask; 9678 }); 9679 9680 for (auto &CB : CBV) { 9681 MachineBasicBlock *BitTestBB = 9682 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9683 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9684 } 9685 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9686 SI->getCondition(), -1U, MVT::Other, false, 9687 ContiguousRange, nullptr, nullptr, std::move(BTI), 9688 TotalProb); 9689 9690 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9691 BitTestCases.size() - 1, TotalProb); 9692 return true; 9693 } 9694 9695 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9696 const SwitchInst *SI) { 9697 // Partition Clusters into as few subsets as possible, where each subset has a 9698 // range that fits in a machine word and has <= 3 unique destinations. 9699 9700 #ifndef NDEBUG 9701 // Clusters must be sorted and contain Range or JumpTable clusters. 9702 assert(!Clusters.empty()); 9703 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9704 for (const CaseCluster &C : Clusters) 9705 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9706 for (unsigned i = 1; i < Clusters.size(); ++i) 9707 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9708 #endif 9709 9710 // The algorithm below is not suitable for -O0. 9711 if (TM.getOptLevel() == CodeGenOpt::None) 9712 return; 9713 9714 // If target does not have legal shift left, do not emit bit tests at all. 9715 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9716 const DataLayout &DL = DAG.getDataLayout(); 9717 9718 EVT PTy = TLI.getPointerTy(DL); 9719 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9720 return; 9721 9722 int BitWidth = PTy.getSizeInBits(); 9723 const int64_t N = Clusters.size(); 9724 9725 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9726 SmallVector<unsigned, 8> MinPartitions(N); 9727 // LastElement[i] is the last element of the partition starting at i. 9728 SmallVector<unsigned, 8> LastElement(N); 9729 9730 // FIXME: This might not be the best algorithm for finding bit test clusters. 9731 9732 // Base case: There is only one way to partition Clusters[N-1]. 9733 MinPartitions[N - 1] = 1; 9734 LastElement[N - 1] = N - 1; 9735 9736 // Note: loop indexes are signed to avoid underflow. 9737 for (int64_t i = N - 2; i >= 0; --i) { 9738 // Find optimal partitioning of Clusters[i..N-1]. 9739 // Baseline: Put Clusters[i] into a partition on its own. 9740 MinPartitions[i] = MinPartitions[i + 1] + 1; 9741 LastElement[i] = i; 9742 9743 // Search for a solution that results in fewer partitions. 9744 // Note: the search is limited by BitWidth, reducing time complexity. 9745 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9746 // Try building a partition from Clusters[i..j]. 9747 9748 // Check the range. 9749 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9750 Clusters[j].High->getValue(), DL)) 9751 continue; 9752 9753 // Check nbr of destinations and cluster types. 9754 // FIXME: This works, but doesn't seem very efficient. 9755 bool RangesOnly = true; 9756 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9757 for (int64_t k = i; k <= j; k++) { 9758 if (Clusters[k].Kind != CC_Range) { 9759 RangesOnly = false; 9760 break; 9761 } 9762 Dests.set(Clusters[k].MBB->getNumber()); 9763 } 9764 if (!RangesOnly || Dests.count() > 3) 9765 break; 9766 9767 // Check if it's a better partition. 9768 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9769 if (NumPartitions < MinPartitions[i]) { 9770 // Found a better partition. 9771 MinPartitions[i] = NumPartitions; 9772 LastElement[i] = j; 9773 } 9774 } 9775 } 9776 9777 // Iterate over the partitions, replacing with bit-test clusters in-place. 9778 unsigned DstIndex = 0; 9779 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9780 Last = LastElement[First]; 9781 assert(First <= Last); 9782 assert(DstIndex <= First); 9783 9784 CaseCluster BitTestCluster; 9785 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9786 Clusters[DstIndex++] = BitTestCluster; 9787 } else { 9788 size_t NumClusters = Last - First + 1; 9789 std::memmove(&Clusters[DstIndex], &Clusters[First], 9790 sizeof(Clusters[0]) * NumClusters); 9791 DstIndex += NumClusters; 9792 } 9793 } 9794 Clusters.resize(DstIndex); 9795 } 9796 9797 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9798 MachineBasicBlock *SwitchMBB, 9799 MachineBasicBlock *DefaultMBB) { 9800 MachineFunction *CurMF = FuncInfo.MF; 9801 MachineBasicBlock *NextMBB = nullptr; 9802 MachineFunction::iterator BBI(W.MBB); 9803 if (++BBI != FuncInfo.MF->end()) 9804 NextMBB = &*BBI; 9805 9806 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9807 9808 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9809 9810 if (Size == 2 && W.MBB == SwitchMBB) { 9811 // If any two of the cases has the same destination, and if one value 9812 // is the same as the other, but has one bit unset that the other has set, 9813 // use bit manipulation to do two compares at once. For example: 9814 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9815 // TODO: This could be extended to merge any 2 cases in switches with 3 9816 // cases. 9817 // TODO: Handle cases where W.CaseBB != SwitchBB. 9818 CaseCluster &Small = *W.FirstCluster; 9819 CaseCluster &Big = *W.LastCluster; 9820 9821 if (Small.Low == Small.High && Big.Low == Big.High && 9822 Small.MBB == Big.MBB) { 9823 const APInt &SmallValue = Small.Low->getValue(); 9824 const APInt &BigValue = Big.Low->getValue(); 9825 9826 // Check that there is only one bit different. 9827 APInt CommonBit = BigValue ^ SmallValue; 9828 if (CommonBit.isPowerOf2()) { 9829 SDValue CondLHS = getValue(Cond); 9830 EVT VT = CondLHS.getValueType(); 9831 SDLoc DL = getCurSDLoc(); 9832 9833 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9834 DAG.getConstant(CommonBit, DL, VT)); 9835 SDValue Cond = DAG.getSetCC( 9836 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9837 ISD::SETEQ); 9838 9839 // Update successor info. 9840 // Both Small and Big will jump to Small.BB, so we sum up the 9841 // probabilities. 9842 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9843 if (BPI) 9844 addSuccessorWithProb( 9845 SwitchMBB, DefaultMBB, 9846 // The default destination is the first successor in IR. 9847 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9848 else 9849 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9850 9851 // Insert the true branch. 9852 SDValue BrCond = 9853 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9854 DAG.getBasicBlock(Small.MBB)); 9855 // Insert the false branch. 9856 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9857 DAG.getBasicBlock(DefaultMBB)); 9858 9859 DAG.setRoot(BrCond); 9860 return; 9861 } 9862 } 9863 } 9864 9865 if (TM.getOptLevel() != CodeGenOpt::None) { 9866 // Here, we order cases by probability so the most likely case will be 9867 // checked first. However, two clusters can have the same probability in 9868 // which case their relative ordering is non-deterministic. So we use Low 9869 // as a tie-breaker as clusters are guaranteed to never overlap. 9870 llvm::sort(W.FirstCluster, W.LastCluster + 1, 9871 [](const CaseCluster &a, const CaseCluster &b) { 9872 return a.Prob != b.Prob ? 9873 a.Prob > b.Prob : 9874 a.Low->getValue().slt(b.Low->getValue()); 9875 }); 9876 9877 // Rearrange the case blocks so that the last one falls through if possible 9878 // without changing the order of probabilities. 9879 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9880 --I; 9881 if (I->Prob > W.LastCluster->Prob) 9882 break; 9883 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9884 std::swap(*I, *W.LastCluster); 9885 break; 9886 } 9887 } 9888 } 9889 9890 // Compute total probability. 9891 BranchProbability DefaultProb = W.DefaultProb; 9892 BranchProbability UnhandledProbs = DefaultProb; 9893 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9894 UnhandledProbs += I->Prob; 9895 9896 MachineBasicBlock *CurMBB = W.MBB; 9897 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9898 MachineBasicBlock *Fallthrough; 9899 if (I == W.LastCluster) { 9900 // For the last cluster, fall through to the default destination. 9901 Fallthrough = DefaultMBB; 9902 } else { 9903 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9904 CurMF->insert(BBI, Fallthrough); 9905 // Put Cond in a virtual register to make it available from the new blocks. 9906 ExportFromCurrentBlock(Cond); 9907 } 9908 UnhandledProbs -= I->Prob; 9909 9910 switch (I->Kind) { 9911 case CC_JumpTable: { 9912 // FIXME: Optimize away range check based on pivot comparisons. 9913 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9914 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9915 9916 // The jump block hasn't been inserted yet; insert it here. 9917 MachineBasicBlock *JumpMBB = JT->MBB; 9918 CurMF->insert(BBI, JumpMBB); 9919 9920 auto JumpProb = I->Prob; 9921 auto FallthroughProb = UnhandledProbs; 9922 9923 // If the default statement is a target of the jump table, we evenly 9924 // distribute the default probability to successors of CurMBB. Also 9925 // update the probability on the edge from JumpMBB to Fallthrough. 9926 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9927 SE = JumpMBB->succ_end(); 9928 SI != SE; ++SI) { 9929 if (*SI == DefaultMBB) { 9930 JumpProb += DefaultProb / 2; 9931 FallthroughProb -= DefaultProb / 2; 9932 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9933 JumpMBB->normalizeSuccProbs(); 9934 break; 9935 } 9936 } 9937 9938 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9939 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9940 CurMBB->normalizeSuccProbs(); 9941 9942 // The jump table header will be inserted in our current block, do the 9943 // range check, and fall through to our fallthrough block. 9944 JTH->HeaderBB = CurMBB; 9945 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9946 9947 // If we're in the right place, emit the jump table header right now. 9948 if (CurMBB == SwitchMBB) { 9949 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9950 JTH->Emitted = true; 9951 } 9952 break; 9953 } 9954 case CC_BitTests: { 9955 // FIXME: Optimize away range check based on pivot comparisons. 9956 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9957 9958 // The bit test blocks haven't been inserted yet; insert them here. 9959 for (BitTestCase &BTC : BTB->Cases) 9960 CurMF->insert(BBI, BTC.ThisBB); 9961 9962 // Fill in fields of the BitTestBlock. 9963 BTB->Parent = CurMBB; 9964 BTB->Default = Fallthrough; 9965 9966 BTB->DefaultProb = UnhandledProbs; 9967 // If the cases in bit test don't form a contiguous range, we evenly 9968 // distribute the probability on the edge to Fallthrough to two 9969 // successors of CurMBB. 9970 if (!BTB->ContiguousRange) { 9971 BTB->Prob += DefaultProb / 2; 9972 BTB->DefaultProb -= DefaultProb / 2; 9973 } 9974 9975 // If we're in the right place, emit the bit test header right now. 9976 if (CurMBB == SwitchMBB) { 9977 visitBitTestHeader(*BTB, SwitchMBB); 9978 BTB->Emitted = true; 9979 } 9980 break; 9981 } 9982 case CC_Range: { 9983 const Value *RHS, *LHS, *MHS; 9984 ISD::CondCode CC; 9985 if (I->Low == I->High) { 9986 // Check Cond == I->Low. 9987 CC = ISD::SETEQ; 9988 LHS = Cond; 9989 RHS=I->Low; 9990 MHS = nullptr; 9991 } else { 9992 // Check I->Low <= Cond <= I->High. 9993 CC = ISD::SETLE; 9994 LHS = I->Low; 9995 MHS = Cond; 9996 RHS = I->High; 9997 } 9998 9999 // The false probability is the sum of all unhandled cases. 10000 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10001 getCurSDLoc(), I->Prob, UnhandledProbs); 10002 10003 if (CurMBB == SwitchMBB) 10004 visitSwitchCase(CB, SwitchMBB); 10005 else 10006 SwitchCases.push_back(CB); 10007 10008 break; 10009 } 10010 } 10011 CurMBB = Fallthrough; 10012 } 10013 } 10014 10015 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10016 CaseClusterIt First, 10017 CaseClusterIt Last) { 10018 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10019 if (X.Prob != CC.Prob) 10020 return X.Prob > CC.Prob; 10021 10022 // Ties are broken by comparing the case value. 10023 return X.Low->getValue().slt(CC.Low->getValue()); 10024 }); 10025 } 10026 10027 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10028 const SwitchWorkListItem &W, 10029 Value *Cond, 10030 MachineBasicBlock *SwitchMBB) { 10031 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10032 "Clusters not sorted?"); 10033 10034 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10035 10036 // Balance the tree based on branch probabilities to create a near-optimal (in 10037 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10038 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10039 CaseClusterIt LastLeft = W.FirstCluster; 10040 CaseClusterIt FirstRight = W.LastCluster; 10041 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10042 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10043 10044 // Move LastLeft and FirstRight towards each other from opposite directions to 10045 // find a partitioning of the clusters which balances the probability on both 10046 // sides. If LeftProb and RightProb are equal, alternate which side is 10047 // taken to ensure 0-probability nodes are distributed evenly. 10048 unsigned I = 0; 10049 while (LastLeft + 1 < FirstRight) { 10050 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10051 LeftProb += (++LastLeft)->Prob; 10052 else 10053 RightProb += (--FirstRight)->Prob; 10054 I++; 10055 } 10056 10057 while (true) { 10058 // Our binary search tree differs from a typical BST in that ours can have up 10059 // to three values in each leaf. The pivot selection above doesn't take that 10060 // into account, which means the tree might require more nodes and be less 10061 // efficient. We compensate for this here. 10062 10063 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10064 unsigned NumRight = W.LastCluster - FirstRight + 1; 10065 10066 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10067 // If one side has less than 3 clusters, and the other has more than 3, 10068 // consider taking a cluster from the other side. 10069 10070 if (NumLeft < NumRight) { 10071 // Consider moving the first cluster on the right to the left side. 10072 CaseCluster &CC = *FirstRight; 10073 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10074 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10075 if (LeftSideRank <= RightSideRank) { 10076 // Moving the cluster to the left does not demote it. 10077 ++LastLeft; 10078 ++FirstRight; 10079 continue; 10080 } 10081 } else { 10082 assert(NumRight < NumLeft); 10083 // Consider moving the last element on the left to the right side. 10084 CaseCluster &CC = *LastLeft; 10085 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10086 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10087 if (RightSideRank <= LeftSideRank) { 10088 // Moving the cluster to the right does not demot it. 10089 --LastLeft; 10090 --FirstRight; 10091 continue; 10092 } 10093 } 10094 } 10095 break; 10096 } 10097 10098 assert(LastLeft + 1 == FirstRight); 10099 assert(LastLeft >= W.FirstCluster); 10100 assert(FirstRight <= W.LastCluster); 10101 10102 // Use the first element on the right as pivot since we will make less-than 10103 // comparisons against it. 10104 CaseClusterIt PivotCluster = FirstRight; 10105 assert(PivotCluster > W.FirstCluster); 10106 assert(PivotCluster <= W.LastCluster); 10107 10108 CaseClusterIt FirstLeft = W.FirstCluster; 10109 CaseClusterIt LastRight = W.LastCluster; 10110 10111 const ConstantInt *Pivot = PivotCluster->Low; 10112 10113 // New blocks will be inserted immediately after the current one. 10114 MachineFunction::iterator BBI(W.MBB); 10115 ++BBI; 10116 10117 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10118 // we can branch to its destination directly if it's squeezed exactly in 10119 // between the known lower bound and Pivot - 1. 10120 MachineBasicBlock *LeftMBB; 10121 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10122 FirstLeft->Low == W.GE && 10123 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10124 LeftMBB = FirstLeft->MBB; 10125 } else { 10126 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10127 FuncInfo.MF->insert(BBI, LeftMBB); 10128 WorkList.push_back( 10129 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10130 // Put Cond in a virtual register to make it available from the new blocks. 10131 ExportFromCurrentBlock(Cond); 10132 } 10133 10134 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10135 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10136 // directly if RHS.High equals the current upper bound. 10137 MachineBasicBlock *RightMBB; 10138 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10139 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10140 RightMBB = FirstRight->MBB; 10141 } else { 10142 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10143 FuncInfo.MF->insert(BBI, RightMBB); 10144 WorkList.push_back( 10145 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10146 // Put Cond in a virtual register to make it available from the new blocks. 10147 ExportFromCurrentBlock(Cond); 10148 } 10149 10150 // Create the CaseBlock record that will be used to lower the branch. 10151 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10152 getCurSDLoc(), LeftProb, RightProb); 10153 10154 if (W.MBB == SwitchMBB) 10155 visitSwitchCase(CB, SwitchMBB); 10156 else 10157 SwitchCases.push_back(CB); 10158 } 10159 10160 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10161 // from the swith statement. 10162 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10163 BranchProbability PeeledCaseProb) { 10164 if (PeeledCaseProb == BranchProbability::getOne()) 10165 return BranchProbability::getZero(); 10166 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10167 10168 uint32_t Numerator = CaseProb.getNumerator(); 10169 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10170 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10171 } 10172 10173 // Try to peel the top probability case if it exceeds the threshold. 10174 // Return current MachineBasicBlock for the switch statement if the peeling 10175 // does not occur. 10176 // If the peeling is performed, return the newly created MachineBasicBlock 10177 // for the peeled switch statement. Also update Clusters to remove the peeled 10178 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10179 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10180 const SwitchInst &SI, CaseClusterVector &Clusters, 10181 BranchProbability &PeeledCaseProb) { 10182 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10183 // Don't perform if there is only one cluster or optimizing for size. 10184 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10185 TM.getOptLevel() == CodeGenOpt::None || 10186 SwitchMBB->getParent()->getFunction().optForMinSize()) 10187 return SwitchMBB; 10188 10189 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10190 unsigned PeeledCaseIndex = 0; 10191 bool SwitchPeeled = false; 10192 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10193 CaseCluster &CC = Clusters[Index]; 10194 if (CC.Prob < TopCaseProb) 10195 continue; 10196 TopCaseProb = CC.Prob; 10197 PeeledCaseIndex = Index; 10198 SwitchPeeled = true; 10199 } 10200 if (!SwitchPeeled) 10201 return SwitchMBB; 10202 10203 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10204 << TopCaseProb << "\n"); 10205 10206 // Record the MBB for the peeled switch statement. 10207 MachineFunction::iterator BBI(SwitchMBB); 10208 ++BBI; 10209 MachineBasicBlock *PeeledSwitchMBB = 10210 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10211 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10212 10213 ExportFromCurrentBlock(SI.getCondition()); 10214 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10215 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10216 nullptr, nullptr, TopCaseProb.getCompl()}; 10217 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10218 10219 Clusters.erase(PeeledCaseIt); 10220 for (CaseCluster &CC : Clusters) { 10221 LLVM_DEBUG( 10222 dbgs() << "Scale the probablity for one cluster, before scaling: " 10223 << CC.Prob << "\n"); 10224 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10225 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10226 } 10227 PeeledCaseProb = TopCaseProb; 10228 return PeeledSwitchMBB; 10229 } 10230 10231 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10232 // Extract cases from the switch. 10233 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10234 CaseClusterVector Clusters; 10235 Clusters.reserve(SI.getNumCases()); 10236 for (auto I : SI.cases()) { 10237 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10238 const ConstantInt *CaseVal = I.getCaseValue(); 10239 BranchProbability Prob = 10240 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10241 : BranchProbability(1, SI.getNumCases() + 1); 10242 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10243 } 10244 10245 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10246 10247 // Cluster adjacent cases with the same destination. We do this at all 10248 // optimization levels because it's cheap to do and will make codegen faster 10249 // if there are many clusters. 10250 sortAndRangeify(Clusters); 10251 10252 if (TM.getOptLevel() != CodeGenOpt::None) { 10253 // Replace an unreachable default with the most popular destination. 10254 // FIXME: Exploit unreachable default more aggressively. 10255 bool UnreachableDefault = 10256 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10257 if (UnreachableDefault && !Clusters.empty()) { 10258 DenseMap<const BasicBlock *, unsigned> Popularity; 10259 unsigned MaxPop = 0; 10260 const BasicBlock *MaxBB = nullptr; 10261 for (auto I : SI.cases()) { 10262 const BasicBlock *BB = I.getCaseSuccessor(); 10263 if (++Popularity[BB] > MaxPop) { 10264 MaxPop = Popularity[BB]; 10265 MaxBB = BB; 10266 } 10267 } 10268 // Set new default. 10269 assert(MaxPop > 0 && MaxBB); 10270 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10271 10272 // Remove cases that were pointing to the destination that is now the 10273 // default. 10274 CaseClusterVector New; 10275 New.reserve(Clusters.size()); 10276 for (CaseCluster &CC : Clusters) { 10277 if (CC.MBB != DefaultMBB) 10278 New.push_back(CC); 10279 } 10280 Clusters = std::move(New); 10281 } 10282 } 10283 10284 // The branch probablity of the peeled case. 10285 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10286 MachineBasicBlock *PeeledSwitchMBB = 10287 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10288 10289 // If there is only the default destination, jump there directly. 10290 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10291 if (Clusters.empty()) { 10292 assert(PeeledSwitchMBB == SwitchMBB); 10293 SwitchMBB->addSuccessor(DefaultMBB); 10294 if (DefaultMBB != NextBlock(SwitchMBB)) { 10295 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10296 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10297 } 10298 return; 10299 } 10300 10301 findJumpTables(Clusters, &SI, DefaultMBB); 10302 findBitTestClusters(Clusters, &SI); 10303 10304 LLVM_DEBUG({ 10305 dbgs() << "Case clusters: "; 10306 for (const CaseCluster &C : Clusters) { 10307 if (C.Kind == CC_JumpTable) 10308 dbgs() << "JT:"; 10309 if (C.Kind == CC_BitTests) 10310 dbgs() << "BT:"; 10311 10312 C.Low->getValue().print(dbgs(), true); 10313 if (C.Low != C.High) { 10314 dbgs() << '-'; 10315 C.High->getValue().print(dbgs(), true); 10316 } 10317 dbgs() << ' '; 10318 } 10319 dbgs() << '\n'; 10320 }); 10321 10322 assert(!Clusters.empty()); 10323 SwitchWorkList WorkList; 10324 CaseClusterIt First = Clusters.begin(); 10325 CaseClusterIt Last = Clusters.end() - 1; 10326 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10327 // Scale the branchprobability for DefaultMBB if the peel occurs and 10328 // DefaultMBB is not replaced. 10329 if (PeeledCaseProb != BranchProbability::getZero() && 10330 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10331 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10332 WorkList.push_back( 10333 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10334 10335 while (!WorkList.empty()) { 10336 SwitchWorkListItem W = WorkList.back(); 10337 WorkList.pop_back(); 10338 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10339 10340 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10341 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10342 // For optimized builds, lower large range as a balanced binary tree. 10343 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10344 continue; 10345 } 10346 10347 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10348 } 10349 } 10350