1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/FastISel.h" 29 #include "llvm/CodeGen/FunctionLoweringInfo.h" 30 #include "llvm/CodeGen/GCMetadata.h" 31 #include "llvm/CodeGen/GCStrategy.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineJumpTableInfo.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/SelectionDAG.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/StackMaps.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfo.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GetElementPtrTypeIterator.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Statepoint.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetFrameLowering.h" 65 #include "llvm/Target/TargetInstrInfo.h" 66 #include "llvm/Target/TargetIntrinsicInfo.h" 67 #include "llvm/Target/TargetLowering.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Target/TargetSubtargetInfo.h" 70 #include <algorithm> 71 #include <utility> 72 using namespace llvm; 73 74 #define DEBUG_TYPE "isel" 75 76 /// LimitFloatPrecision - Generate low-precision inline sequences for 77 /// some float libcalls (6, 8 or 12 bits). 78 static unsigned LimitFloatPrecision; 79 80 static cl::opt<unsigned, true> 81 LimitFPPrecision("limit-float-precision", 82 cl::desc("Generate low-precision inline sequences " 83 "for some float libcalls"), 84 cl::location(LimitFloatPrecision), 85 cl::init(0)); 86 // Limit the width of DAG chains. This is important in general to prevent 87 // DAG-based analysis from blowing up. For example, alias analysis and 88 // load clustering may not complete in reasonable time. It is difficult to 89 // recognize and avoid this situation within each individual analysis, and 90 // future analyses are likely to have the same behavior. Limiting DAG width is 91 // the safe approach and will be especially important with global DAGs. 92 // 93 // MaxParallelChains default is arbitrarily high to avoid affecting 94 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 95 // sequence over this should have been converted to llvm.memcpy by the 96 // frontend. It is easy to induce this behavior with .ll code such as: 97 // %buffer = alloca [4096 x i8] 98 // %data = load [4096 x i8]* %argPtr 99 // store [4096 x i8] %data, [4096 x i8]* %buffer 100 static const unsigned MaxParallelChains = 64; 101 102 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 103 const SDValue *Parts, unsigned NumParts, 104 MVT PartVT, EVT ValueVT, const Value *V, 105 bool IsABIRegCopy); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger than ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 113 const SDValue *Parts, unsigned NumParts, 114 MVT PartVT, EVT ValueVT, const Value *V, 115 Optional<ISD::NodeType> AssertOp = None, 116 bool IsABIRegCopy = false) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V, IsABIRegCopy); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 // PartEVT is the type of the register class that holds the value. 197 // ValueVT is the type of the inline asm operation. 198 EVT PartEVT = Val.getValueType(); 199 200 if (PartEVT == ValueVT) 201 return Val; 202 203 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 204 ValueVT.bitsLT(PartEVT)) { 205 // For an FP value in an integer part, we need to truncate to the right 206 // width first. 207 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 208 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 209 } 210 211 // Handle types that have the same size. 212 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 213 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 214 215 // Handle types with different sizes. 216 if (PartEVT.isInteger() && ValueVT.isInteger()) { 217 if (ValueVT.bitsLT(PartEVT)) { 218 // For a truncate, see if we have any information to 219 // indicate whether the truncated bits will always be 220 // zero or sign-extension. 221 if (AssertOp.hasValue()) 222 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 223 DAG.getValueType(ValueVT)); 224 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 225 } 226 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 227 } 228 229 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 230 // FP_ROUND's are always exact here. 231 if (ValueVT.bitsLT(Val.getValueType())) 232 return DAG.getNode( 233 ISD::FP_ROUND, DL, ValueVT, Val, 234 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 235 236 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 237 } 238 239 llvm_unreachable("Unknown mismatch!"); 240 } 241 242 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 243 const Twine &ErrMsg) { 244 const Instruction *I = dyn_cast_or_null<Instruction>(V); 245 if (!V) 246 return Ctx.emitError(ErrMsg); 247 248 const char *AsmError = ", possible invalid constraint for vector type"; 249 if (const CallInst *CI = dyn_cast<CallInst>(I)) 250 if (isa<InlineAsm>(CI->getCalledValue())) 251 return Ctx.emitError(I, ErrMsg + AsmError); 252 253 return Ctx.emitError(I, ErrMsg); 254 } 255 256 /// getCopyFromPartsVector - Create a value that contains the specified legal 257 /// parts combined into the value they represent. If the parts combine to a 258 /// type larger than ValueVT then AssertOp can be used to specify whether the 259 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 260 /// ValueVT (ISD::AssertSext). 261 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 262 const SDValue *Parts, unsigned NumParts, 263 MVT PartVT, EVT ValueVT, const Value *V, 264 bool IsABIRegCopy) { 265 assert(ValueVT.isVector() && "Not a vector value"); 266 assert(NumParts > 0 && "No parts to assemble!"); 267 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 268 SDValue Val = Parts[0]; 269 270 // Handle a multi-element vector. 271 if (NumParts > 1) { 272 EVT IntermediateVT; 273 MVT RegisterVT; 274 unsigned NumIntermediates; 275 unsigned NumRegs; 276 277 if (IsABIRegCopy) { 278 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 279 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 280 RegisterVT); 281 } else { 282 NumRegs = 283 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 284 NumIntermediates, RegisterVT); 285 } 286 287 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 288 NumParts = NumRegs; // Silence a compiler warning. 289 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 290 assert(RegisterVT.getSizeInBits() == 291 Parts[0].getSimpleValueType().getSizeInBits() && 292 "Part type sizes don't match!"); 293 294 // Assemble the parts into intermediate operands. 295 SmallVector<SDValue, 8> Ops(NumIntermediates); 296 if (NumIntermediates == NumParts) { 297 // If the register was not expanded, truncate or copy the value, 298 // as appropriate. 299 for (unsigned i = 0; i != NumParts; ++i) 300 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 301 PartVT, IntermediateVT, V); 302 } else if (NumParts > 0) { 303 // If the intermediate type was expanded, build the intermediate 304 // operands from the parts. 305 assert(NumParts % NumIntermediates == 0 && 306 "Must expand into a divisible number of parts!"); 307 unsigned Factor = NumParts / NumIntermediates; 308 for (unsigned i = 0; i != NumIntermediates; ++i) 309 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 310 PartVT, IntermediateVT, V); 311 } 312 313 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 314 // intermediate operands. 315 EVT BuiltVectorTy = 316 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 317 (IntermediateVT.isVector() 318 ? IntermediateVT.getVectorNumElements() * NumParts 319 : NumIntermediates)); 320 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 321 : ISD::BUILD_VECTOR, 322 DL, BuiltVectorTy, Ops); 323 } 324 325 // There is now one part, held in Val. Correct it to match ValueVT. 326 EVT PartEVT = Val.getValueType(); 327 328 if (PartEVT == ValueVT) 329 return Val; 330 331 if (PartEVT.isVector()) { 332 // If the element type of the source/dest vectors are the same, but the 333 // parts vector has more elements than the value vector, then we have a 334 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 335 // elements we want. 336 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 337 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 338 "Cannot narrow, it would be a lossy transformation"); 339 return DAG.getNode( 340 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 341 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 342 } 343 344 // Vector/Vector bitcast. 345 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 346 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 347 348 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 349 "Cannot handle this kind of promotion"); 350 // Promoted vector extract 351 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 352 353 } 354 355 // Trivial bitcast if the types are the same size and the destination 356 // vector type is legal. 357 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 358 TLI.isTypeLegal(ValueVT)) 359 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 360 361 if (ValueVT.getVectorNumElements() != 1) { 362 // Certain ABIs require that vectors are passed as integers. For vectors 363 // are the same size, this is an obvious bitcast. 364 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 365 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 366 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 367 // Bitcast Val back the original type and extract the corresponding 368 // vector we want. 369 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 370 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 371 ValueVT.getVectorElementType(), Elts); 372 Val = DAG.getBitcast(WiderVecType, Val); 373 return DAG.getNode( 374 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 375 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 376 } 377 378 diagnosePossiblyInvalidConstraint( 379 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 380 return DAG.getUNDEF(ValueVT); 381 } 382 383 // Handle cases such as i8 -> <1 x i1> 384 EVT ValueSVT = ValueVT.getVectorElementType(); 385 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 386 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 387 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 388 389 return DAG.getBuildVector(ValueVT, DL, Val); 390 } 391 392 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 393 SDValue Val, SDValue *Parts, unsigned NumParts, 394 MVT PartVT, const Value *V, bool IsABIRegCopy); 395 396 /// getCopyToParts - Create a series of nodes that contain the specified value 397 /// split into legal parts. If the parts contain more bits than Val, then, for 398 /// integers, ExtendKind can be used to specify how to generate the extra bits. 399 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 400 SDValue *Parts, unsigned NumParts, MVT PartVT, 401 const Value *V, 402 ISD::NodeType ExtendKind = ISD::ANY_EXTEND, 403 bool IsABIRegCopy = false) { 404 EVT ValueVT = Val.getValueType(); 405 406 // Handle the vector case separately. 407 if (ValueVT.isVector()) 408 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 409 IsABIRegCopy); 410 411 unsigned PartBits = PartVT.getSizeInBits(); 412 unsigned OrigNumParts = NumParts; 413 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 414 "Copying to an illegal type!"); 415 416 if (NumParts == 0) 417 return; 418 419 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 420 EVT PartEVT = PartVT; 421 if (PartEVT == ValueVT) { 422 assert(NumParts == 1 && "No-op copy with multiple parts!"); 423 Parts[0] = Val; 424 return; 425 } 426 427 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 428 // If the parts cover more bits than the value has, promote the value. 429 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 430 assert(NumParts == 1 && "Do not know what to promote to!"); 431 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 432 } else { 433 if (ValueVT.isFloatingPoint()) { 434 // FP values need to be bitcast, then extended if they are being put 435 // into a larger container. 436 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 437 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 } 439 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 440 ValueVT.isInteger() && 441 "Unknown mismatch!"); 442 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 443 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 444 if (PartVT == MVT::x86mmx) 445 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 446 } 447 } else if (PartBits == ValueVT.getSizeInBits()) { 448 // Different types of the same size. 449 assert(NumParts == 1 && PartEVT != ValueVT); 450 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 451 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 452 // If the parts cover less bits than value has, truncate the value. 453 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 454 ValueVT.isInteger() && 455 "Unknown mismatch!"); 456 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 457 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 458 if (PartVT == MVT::x86mmx) 459 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 460 } 461 462 // The value may have changed - recompute ValueVT. 463 ValueVT = Val.getValueType(); 464 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 465 "Failed to tile the value with PartVT!"); 466 467 if (NumParts == 1) { 468 if (PartEVT != ValueVT) { 469 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 470 "scalar-to-vector conversion failed"); 471 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 472 } 473 474 Parts[0] = Val; 475 return; 476 } 477 478 // Expand the value into multiple parts. 479 if (NumParts & (NumParts - 1)) { 480 // The number of parts is not a power of 2. Split off and copy the tail. 481 assert(PartVT.isInteger() && ValueVT.isInteger() && 482 "Do not know what to expand to!"); 483 unsigned RoundParts = 1 << Log2_32(NumParts); 484 unsigned RoundBits = RoundParts * PartBits; 485 unsigned OddParts = NumParts - RoundParts; 486 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 487 DAG.getIntPtrConstant(RoundBits, DL)); 488 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 489 490 if (DAG.getDataLayout().isBigEndian()) 491 // The odd parts were reversed by getCopyToParts - unreverse them. 492 std::reverse(Parts + RoundParts, Parts + NumParts); 493 494 NumParts = RoundParts; 495 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 496 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 497 } 498 499 // The number of parts is a power of 2. Repeatedly bisect the value using 500 // EXTRACT_ELEMENT. 501 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 502 EVT::getIntegerVT(*DAG.getContext(), 503 ValueVT.getSizeInBits()), 504 Val); 505 506 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 507 for (unsigned i = 0; i < NumParts; i += StepSize) { 508 unsigned ThisBits = StepSize * PartBits / 2; 509 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 510 SDValue &Part0 = Parts[i]; 511 SDValue &Part1 = Parts[i+StepSize/2]; 512 513 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 514 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 515 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 516 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 517 518 if (ThisBits == PartBits && ThisVT != PartVT) { 519 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 520 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 521 } 522 } 523 } 524 525 if (DAG.getDataLayout().isBigEndian()) 526 std::reverse(Parts, Parts + OrigNumParts); 527 } 528 529 530 /// getCopyToPartsVector - Create a series of nodes that contain the specified 531 /// value split into legal parts. 532 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 533 SDValue Val, SDValue *Parts, unsigned NumParts, 534 MVT PartVT, const Value *V, 535 bool IsABIRegCopy) { 536 537 EVT ValueVT = Val.getValueType(); 538 assert(ValueVT.isVector() && "Not a vector"); 539 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 540 541 if (NumParts == 1) { 542 EVT PartEVT = PartVT; 543 if (PartEVT == ValueVT) { 544 // Nothing to do. 545 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 546 // Bitconvert vector->vector case. 547 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 548 } else if (PartVT.isVector() && 549 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 550 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 551 EVT ElementVT = PartVT.getVectorElementType(); 552 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 553 // undef elements. 554 SmallVector<SDValue, 16> Ops; 555 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 556 Ops.push_back(DAG.getNode( 557 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 558 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 559 560 for (unsigned i = ValueVT.getVectorNumElements(), 561 e = PartVT.getVectorNumElements(); i != e; ++i) 562 Ops.push_back(DAG.getUNDEF(ElementVT)); 563 564 Val = DAG.getBuildVector(PartVT, DL, Ops); 565 566 // FIXME: Use CONCAT for 2x -> 4x. 567 568 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 569 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 570 } else if (PartVT.isVector() && 571 PartEVT.getVectorElementType().bitsGE( 572 ValueVT.getVectorElementType()) && 573 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 574 575 // Promoted vector extract 576 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 577 } else { 578 if (ValueVT.getVectorNumElements() == 1) { 579 Val = DAG.getNode( 580 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 581 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 582 583 } else { 584 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 585 "lossy conversion of vector to scalar type"); 586 EVT IntermediateType = 587 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 588 Val = DAG.getBitcast(IntermediateType, Val); 589 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 590 } 591 } 592 593 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 594 Parts[0] = Val; 595 return; 596 } 597 598 // Handle a multi-element vector. 599 EVT IntermediateVT; 600 MVT RegisterVT; 601 unsigned NumIntermediates; 602 unsigned NumRegs; 603 if (IsABIRegCopy) { 604 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 605 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 606 RegisterVT); 607 } else { 608 NumRegs = 609 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 610 NumIntermediates, RegisterVT); 611 } 612 unsigned NumElements = ValueVT.getVectorNumElements(); 613 614 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 615 NumParts = NumRegs; // Silence a compiler warning. 616 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 617 618 // Convert the vector to the appropiate type if necessary. 619 unsigned DestVectorNoElts = 620 NumIntermediates * 621 (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1); 622 EVT BuiltVectorTy = EVT::getVectorVT( 623 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 624 if (Val.getValueType() != BuiltVectorTy) 625 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 626 627 // Split the vector into intermediate operands. 628 SmallVector<SDValue, 8> Ops(NumIntermediates); 629 for (unsigned i = 0; i != NumIntermediates; ++i) { 630 if (IntermediateVT.isVector()) 631 Ops[i] = 632 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 633 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 634 TLI.getVectorIdxTy(DAG.getDataLayout()))); 635 else 636 Ops[i] = DAG.getNode( 637 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 638 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 639 } 640 641 // Split the intermediate operands into legal parts. 642 if (NumParts == NumIntermediates) { 643 // If the register was not expanded, promote or copy the value, 644 // as appropriate. 645 for (unsigned i = 0; i != NumParts; ++i) 646 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 647 } else if (NumParts > 0) { 648 // If the intermediate type was expanded, split each the value into 649 // legal parts. 650 assert(NumIntermediates != 0 && "division by zero"); 651 assert(NumParts % NumIntermediates == 0 && 652 "Must expand into a divisible number of parts!"); 653 unsigned Factor = NumParts / NumIntermediates; 654 for (unsigned i = 0; i != NumIntermediates; ++i) 655 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 656 } 657 } 658 659 RegsForValue::RegsForValue() { IsABIMangled = false; } 660 661 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 662 EVT valuevt, bool IsABIMangledValue) 663 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 664 RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {} 665 666 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 667 const DataLayout &DL, unsigned Reg, Type *Ty, 668 bool IsABIMangledValue) { 669 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 670 671 IsABIMangled = IsABIMangledValue; 672 673 for (EVT ValueVT : ValueVTs) { 674 unsigned NumRegs = IsABIMangledValue 675 ? TLI.getNumRegistersForCallingConv(Context, ValueVT) 676 : TLI.getNumRegisters(Context, ValueVT); 677 MVT RegisterVT = IsABIMangledValue 678 ? TLI.getRegisterTypeForCallingConv(Context, ValueVT) 679 : TLI.getRegisterType(Context, ValueVT); 680 for (unsigned i = 0; i != NumRegs; ++i) 681 Regs.push_back(Reg + i); 682 RegVTs.push_back(RegisterVT); 683 RegCount.push_back(NumRegs); 684 Reg += NumRegs; 685 } 686 } 687 688 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 689 FunctionLoweringInfo &FuncInfo, 690 const SDLoc &dl, SDValue &Chain, 691 SDValue *Flag, const Value *V) const { 692 // A Value with type {} or [0 x %t] needs no registers. 693 if (ValueVTs.empty()) 694 return SDValue(); 695 696 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 697 698 // Assemble the legal parts into the final values. 699 SmallVector<SDValue, 4> Values(ValueVTs.size()); 700 SmallVector<SDValue, 8> Parts; 701 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 702 // Copy the legal parts from the registers. 703 EVT ValueVT = ValueVTs[Value]; 704 unsigned NumRegs = RegCount[Value]; 705 MVT RegisterVT = IsABIMangled 706 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 707 : RegVTs[Value]; 708 709 Parts.resize(NumRegs); 710 for (unsigned i = 0; i != NumRegs; ++i) { 711 SDValue P; 712 if (!Flag) { 713 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 714 } else { 715 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 716 *Flag = P.getValue(2); 717 } 718 719 Chain = P.getValue(1); 720 Parts[i] = P; 721 722 // If the source register was virtual and if we know something about it, 723 // add an assert node. 724 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 725 !RegisterVT.isInteger() || RegisterVT.isVector()) 726 continue; 727 728 const FunctionLoweringInfo::LiveOutInfo *LOI = 729 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 730 if (!LOI) 731 continue; 732 733 unsigned RegSize = RegisterVT.getSizeInBits(); 734 unsigned NumSignBits = LOI->NumSignBits; 735 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 736 737 if (NumZeroBits == RegSize) { 738 // The current value is a zero. 739 // Explicitly express that as it would be easier for 740 // optimizations to kick in. 741 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 742 continue; 743 } 744 745 // FIXME: We capture more information than the dag can represent. For 746 // now, just use the tightest assertzext/assertsext possible. 747 bool isSExt = true; 748 EVT FromVT(MVT::Other); 749 if (NumSignBits == RegSize) { 750 isSExt = true; // ASSERT SEXT 1 751 FromVT = MVT::i1; 752 } else if (NumZeroBits >= RegSize - 1) { 753 isSExt = false; // ASSERT ZEXT 1 754 FromVT = MVT::i1; 755 } else if (NumSignBits > RegSize - 8) { 756 isSExt = true; // ASSERT SEXT 8 757 FromVT = MVT::i8; 758 } else if (NumZeroBits >= RegSize - 8) { 759 isSExt = false; // ASSERT ZEXT 8 760 FromVT = MVT::i8; 761 } else if (NumSignBits > RegSize - 16) { 762 isSExt = true; // ASSERT SEXT 16 763 FromVT = MVT::i16; 764 } else if (NumZeroBits >= RegSize - 16) { 765 isSExt = false; // ASSERT ZEXT 16 766 FromVT = MVT::i16; 767 } else if (NumSignBits > RegSize - 32) { 768 isSExt = true; // ASSERT SEXT 32 769 FromVT = MVT::i32; 770 } else if (NumZeroBits >= RegSize - 32) { 771 isSExt = false; // ASSERT ZEXT 32 772 FromVT = MVT::i32; 773 } else { 774 continue; 775 } 776 // Add an assertion node. 777 assert(FromVT != MVT::Other); 778 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 779 RegisterVT, P, DAG.getValueType(FromVT)); 780 } 781 782 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 783 NumRegs, RegisterVT, ValueVT, V); 784 Part += NumRegs; 785 Parts.clear(); 786 } 787 788 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 789 } 790 791 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 792 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 793 const Value *V, 794 ISD::NodeType PreferredExtendType) const { 795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 796 ISD::NodeType ExtendKind = PreferredExtendType; 797 798 // Get the list of the values's legal parts. 799 unsigned NumRegs = Regs.size(); 800 SmallVector<SDValue, 8> Parts(NumRegs); 801 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 802 unsigned NumParts = RegCount[Value]; 803 804 MVT RegisterVT = IsABIMangled 805 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 806 : RegVTs[Value]; 807 808 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 809 ExtendKind = ISD::ZERO_EXTEND; 810 811 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 812 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 813 Part += NumParts; 814 } 815 816 // Copy the parts into the registers. 817 SmallVector<SDValue, 8> Chains(NumRegs); 818 for (unsigned i = 0; i != NumRegs; ++i) { 819 SDValue Part; 820 if (!Flag) { 821 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 822 } else { 823 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 824 *Flag = Part.getValue(1); 825 } 826 827 Chains[i] = Part.getValue(0); 828 } 829 830 if (NumRegs == 1 || Flag) 831 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 832 // flagged to it. That is the CopyToReg nodes and the user are considered 833 // a single scheduling unit. If we create a TokenFactor and return it as 834 // chain, then the TokenFactor is both a predecessor (operand) of the 835 // user as well as a successor (the TF operands are flagged to the user). 836 // c1, f1 = CopyToReg 837 // c2, f2 = CopyToReg 838 // c3 = TokenFactor c1, c2 839 // ... 840 // = op c3, ..., f2 841 Chain = Chains[NumRegs-1]; 842 else 843 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 844 } 845 846 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 847 unsigned MatchingIdx, const SDLoc &dl, 848 SelectionDAG &DAG, 849 std::vector<SDValue> &Ops) const { 850 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 851 852 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 853 if (HasMatching) 854 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 855 else if (!Regs.empty() && 856 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 857 // Put the register class of the virtual registers in the flag word. That 858 // way, later passes can recompute register class constraints for inline 859 // assembly as well as normal instructions. 860 // Don't do this for tied operands that can use the regclass information 861 // from the def. 862 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 863 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 864 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 865 } 866 867 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 868 Ops.push_back(Res); 869 870 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 871 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 872 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 873 MVT RegisterVT = RegVTs[Value]; 874 for (unsigned i = 0; i != NumRegs; ++i) { 875 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 876 unsigned TheReg = Regs[Reg++]; 877 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 878 879 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 880 // If we clobbered the stack pointer, MFI should know about it. 881 assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()); 882 } 883 } 884 } 885 } 886 887 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 888 const TargetLibraryInfo *li) { 889 AA = aa; 890 GFI = gfi; 891 LibInfo = li; 892 DL = &DAG.getDataLayout(); 893 Context = DAG.getContext(); 894 LPadToCallSiteMap.clear(); 895 } 896 897 void SelectionDAGBuilder::clear() { 898 NodeMap.clear(); 899 UnusedArgNodeMap.clear(); 900 PendingLoads.clear(); 901 PendingExports.clear(); 902 CurInst = nullptr; 903 HasTailCall = false; 904 SDNodeOrder = LowestSDNodeOrder; 905 StatepointLowering.clear(); 906 } 907 908 void SelectionDAGBuilder::clearDanglingDebugInfo() { 909 DanglingDebugInfoMap.clear(); 910 } 911 912 SDValue SelectionDAGBuilder::getRoot() { 913 if (PendingLoads.empty()) 914 return DAG.getRoot(); 915 916 if (PendingLoads.size() == 1) { 917 SDValue Root = PendingLoads[0]; 918 DAG.setRoot(Root); 919 PendingLoads.clear(); 920 return Root; 921 } 922 923 // Otherwise, we have to make a token factor node. 924 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 925 PendingLoads); 926 PendingLoads.clear(); 927 DAG.setRoot(Root); 928 return Root; 929 } 930 931 SDValue SelectionDAGBuilder::getControlRoot() { 932 SDValue Root = DAG.getRoot(); 933 934 if (PendingExports.empty()) 935 return Root; 936 937 // Turn all of the CopyToReg chains into one factored node. 938 if (Root.getOpcode() != ISD::EntryToken) { 939 unsigned i = 0, e = PendingExports.size(); 940 for (; i != e; ++i) { 941 assert(PendingExports[i].getNode()->getNumOperands() > 1); 942 if (PendingExports[i].getNode()->getOperand(0) == Root) 943 break; // Don't add the root if we already indirectly depend on it. 944 } 945 946 if (i == e) 947 PendingExports.push_back(Root); 948 } 949 950 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 951 PendingExports); 952 PendingExports.clear(); 953 DAG.setRoot(Root); 954 return Root; 955 } 956 957 void SelectionDAGBuilder::visit(const Instruction &I) { 958 // Set up outgoing PHI node register values before emitting the terminator. 959 if (isa<TerminatorInst>(&I)) { 960 HandlePHINodesInSuccessorBlocks(I.getParent()); 961 } 962 963 // Increase the SDNodeOrder if dealing with a non-debug instruction. 964 if (!isa<DbgInfoIntrinsic>(I)) 965 ++SDNodeOrder; 966 967 CurInst = &I; 968 969 visit(I.getOpcode(), I); 970 971 if (!isa<TerminatorInst>(&I) && !HasTailCall && 972 !isStatepoint(&I)) // statepoints handle their exports internally 973 CopyToExportRegsIfNeeded(&I); 974 975 CurInst = nullptr; 976 } 977 978 void SelectionDAGBuilder::visitPHI(const PHINode &) { 979 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 980 } 981 982 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 983 // Note: this doesn't use InstVisitor, because it has to work with 984 // ConstantExpr's in addition to instructions. 985 switch (Opcode) { 986 default: llvm_unreachable("Unknown instruction type encountered!"); 987 // Build the switch statement using the Instruction.def file. 988 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 989 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 990 #include "llvm/IR/Instruction.def" 991 } 992 } 993 994 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 995 // generate the debug data structures now that we've seen its definition. 996 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 997 SDValue Val) { 998 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 999 if (DDI.getDI()) { 1000 const DbgValueInst *DI = DDI.getDI(); 1001 DebugLoc dl = DDI.getdl(); 1002 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1003 DILocalVariable *Variable = DI->getVariable(); 1004 DIExpression *Expr = DI->getExpression(); 1005 assert(Variable->isValidLocationForIntrinsic(dl) && 1006 "Expected inlined-at fields to agree"); 1007 SDDbgValue *SDV; 1008 if (Val.getNode()) { 1009 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1010 SDV = getDbgValue(Val, Variable, Expr, dl, DbgSDNodeOrder); 1011 DAG.AddDbgValue(SDV, Val.getNode(), false); 1012 } 1013 } else 1014 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1015 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1016 } 1017 } 1018 1019 /// getCopyFromRegs - If there was virtual register allocated for the value V 1020 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1021 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1022 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1023 SDValue Result; 1024 1025 if (It != FuncInfo.ValueMap.end()) { 1026 unsigned InReg = It->second; 1027 bool IsABIRegCopy = 1028 V && ((isa<CallInst>(V) && 1029 !(static_cast<const CallInst *>(V))->isInlineAsm()) || 1030 isa<ReturnInst>(V)); 1031 1032 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1033 DAG.getDataLayout(), InReg, Ty, IsABIRegCopy); 1034 SDValue Chain = DAG.getEntryNode(); 1035 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1036 V); 1037 resolveDanglingDebugInfo(V, Result); 1038 } 1039 1040 return Result; 1041 } 1042 1043 /// getValue - Return an SDValue for the given Value. 1044 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1045 // If we already have an SDValue for this value, use it. It's important 1046 // to do this first, so that we don't create a CopyFromReg if we already 1047 // have a regular SDValue. 1048 SDValue &N = NodeMap[V]; 1049 if (N.getNode()) return N; 1050 1051 // If there's a virtual register allocated and initialized for this 1052 // value, use it. 1053 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1054 return copyFromReg; 1055 1056 // Otherwise create a new SDValue and remember it. 1057 SDValue Val = getValueImpl(V); 1058 NodeMap[V] = Val; 1059 resolveDanglingDebugInfo(V, Val); 1060 return Val; 1061 } 1062 1063 // Return true if SDValue exists for the given Value 1064 bool SelectionDAGBuilder::findValue(const Value *V) const { 1065 return (NodeMap.find(V) != NodeMap.end()) || 1066 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1067 } 1068 1069 /// getNonRegisterValue - Return an SDValue for the given Value, but 1070 /// don't look in FuncInfo.ValueMap for a virtual register. 1071 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1072 // If we already have an SDValue for this value, use it. 1073 SDValue &N = NodeMap[V]; 1074 if (N.getNode()) { 1075 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1076 // Remove the debug location from the node as the node is about to be used 1077 // in a location which may differ from the original debug location. This 1078 // is relevant to Constant and ConstantFP nodes because they can appear 1079 // as constant expressions inside PHI nodes. 1080 N->setDebugLoc(DebugLoc()); 1081 } 1082 return N; 1083 } 1084 1085 // Otherwise create a new SDValue and remember it. 1086 SDValue Val = getValueImpl(V); 1087 NodeMap[V] = Val; 1088 resolveDanglingDebugInfo(V, Val); 1089 return Val; 1090 } 1091 1092 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1093 /// Create an SDValue for the given value. 1094 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1095 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1096 1097 if (const Constant *C = dyn_cast<Constant>(V)) { 1098 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1099 1100 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1101 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1102 1103 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1104 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1105 1106 if (isa<ConstantPointerNull>(C)) { 1107 unsigned AS = V->getType()->getPointerAddressSpace(); 1108 return DAG.getConstant(0, getCurSDLoc(), 1109 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1110 } 1111 1112 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1113 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1114 1115 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1116 return DAG.getUNDEF(VT); 1117 1118 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1119 visit(CE->getOpcode(), *CE); 1120 SDValue N1 = NodeMap[V]; 1121 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1122 return N1; 1123 } 1124 1125 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1126 SmallVector<SDValue, 4> Constants; 1127 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1128 OI != OE; ++OI) { 1129 SDNode *Val = getValue(*OI).getNode(); 1130 // If the operand is an empty aggregate, there are no values. 1131 if (!Val) continue; 1132 // Add each leaf value from the operand to the Constants list 1133 // to form a flattened list of all the values. 1134 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1135 Constants.push_back(SDValue(Val, i)); 1136 } 1137 1138 return DAG.getMergeValues(Constants, getCurSDLoc()); 1139 } 1140 1141 if (const ConstantDataSequential *CDS = 1142 dyn_cast<ConstantDataSequential>(C)) { 1143 SmallVector<SDValue, 4> Ops; 1144 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1145 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1146 // Add each leaf value from the operand to the Constants list 1147 // to form a flattened list of all the values. 1148 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1149 Ops.push_back(SDValue(Val, i)); 1150 } 1151 1152 if (isa<ArrayType>(CDS->getType())) 1153 return DAG.getMergeValues(Ops, getCurSDLoc()); 1154 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1155 } 1156 1157 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1158 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1159 "Unknown struct or array constant!"); 1160 1161 SmallVector<EVT, 4> ValueVTs; 1162 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1163 unsigned NumElts = ValueVTs.size(); 1164 if (NumElts == 0) 1165 return SDValue(); // empty struct 1166 SmallVector<SDValue, 4> Constants(NumElts); 1167 for (unsigned i = 0; i != NumElts; ++i) { 1168 EVT EltVT = ValueVTs[i]; 1169 if (isa<UndefValue>(C)) 1170 Constants[i] = DAG.getUNDEF(EltVT); 1171 else if (EltVT.isFloatingPoint()) 1172 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1173 else 1174 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1175 } 1176 1177 return DAG.getMergeValues(Constants, getCurSDLoc()); 1178 } 1179 1180 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1181 return DAG.getBlockAddress(BA, VT); 1182 1183 VectorType *VecTy = cast<VectorType>(V->getType()); 1184 unsigned NumElements = VecTy->getNumElements(); 1185 1186 // Now that we know the number and type of the elements, get that number of 1187 // elements into the Ops array based on what kind of constant it is. 1188 SmallVector<SDValue, 16> Ops; 1189 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1190 for (unsigned i = 0; i != NumElements; ++i) 1191 Ops.push_back(getValue(CV->getOperand(i))); 1192 } else { 1193 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1194 EVT EltVT = 1195 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1196 1197 SDValue Op; 1198 if (EltVT.isFloatingPoint()) 1199 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1200 else 1201 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1202 Ops.assign(NumElements, Op); 1203 } 1204 1205 // Create a BUILD_VECTOR node. 1206 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1207 } 1208 1209 // If this is a static alloca, generate it as the frameindex instead of 1210 // computation. 1211 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1212 DenseMap<const AllocaInst*, int>::iterator SI = 1213 FuncInfo.StaticAllocaMap.find(AI); 1214 if (SI != FuncInfo.StaticAllocaMap.end()) 1215 return DAG.getFrameIndex(SI->second, 1216 TLI.getFrameIndexTy(DAG.getDataLayout())); 1217 } 1218 1219 // If this is an instruction which fast-isel has deferred, select it now. 1220 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1221 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1222 bool IsABIRegCopy = 1223 V && ((isa<CallInst>(V) && 1224 !(static_cast<const CallInst *>(V))->isInlineAsm()) || 1225 isa<ReturnInst>(V)); 1226 1227 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1228 Inst->getType(), IsABIRegCopy); 1229 SDValue Chain = DAG.getEntryNode(); 1230 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1231 } 1232 1233 llvm_unreachable("Can't get register for value!"); 1234 } 1235 1236 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1237 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1238 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1239 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1240 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1241 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1242 if (IsMSVCCXX || IsCoreCLR) 1243 CatchPadMBB->setIsEHFuncletEntry(); 1244 1245 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1246 } 1247 1248 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1249 // Update machine-CFG edge. 1250 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1251 FuncInfo.MBB->addSuccessor(TargetMBB); 1252 1253 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1254 bool IsSEH = isAsynchronousEHPersonality(Pers); 1255 if (IsSEH) { 1256 // If this is not a fall-through branch or optimizations are switched off, 1257 // emit the branch. 1258 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1259 TM.getOptLevel() == CodeGenOpt::None) 1260 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1261 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1262 return; 1263 } 1264 1265 // Figure out the funclet membership for the catchret's successor. 1266 // This will be used by the FuncletLayout pass to determine how to order the 1267 // BB's. 1268 // A 'catchret' returns to the outer scope's color. 1269 Value *ParentPad = I.getCatchSwitchParentPad(); 1270 const BasicBlock *SuccessorColor; 1271 if (isa<ConstantTokenNone>(ParentPad)) 1272 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1273 else 1274 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1275 assert(SuccessorColor && "No parent funclet for catchret!"); 1276 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1277 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1278 1279 // Create the terminator node. 1280 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1281 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1282 DAG.getBasicBlock(SuccessorColorMBB)); 1283 DAG.setRoot(Ret); 1284 } 1285 1286 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1287 // Don't emit any special code for the cleanuppad instruction. It just marks 1288 // the start of a funclet. 1289 FuncInfo.MBB->setIsEHFuncletEntry(); 1290 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1291 } 1292 1293 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1294 /// many places it could ultimately go. In the IR, we have a single unwind 1295 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1296 /// This function skips over imaginary basic blocks that hold catchswitch 1297 /// instructions, and finds all the "real" machine 1298 /// basic block destinations. As those destinations may not be successors of 1299 /// EHPadBB, here we also calculate the edge probability to those destinations. 1300 /// The passed-in Prob is the edge probability to EHPadBB. 1301 static void findUnwindDestinations( 1302 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1303 BranchProbability Prob, 1304 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1305 &UnwindDests) { 1306 EHPersonality Personality = 1307 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1308 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1309 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1310 1311 while (EHPadBB) { 1312 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1313 BasicBlock *NewEHPadBB = nullptr; 1314 if (isa<LandingPadInst>(Pad)) { 1315 // Stop on landingpads. They are not funclets. 1316 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1317 break; 1318 } else if (isa<CleanupPadInst>(Pad)) { 1319 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1320 // personalities. 1321 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1322 UnwindDests.back().first->setIsEHFuncletEntry(); 1323 break; 1324 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1325 // Add the catchpad handlers to the possible destinations. 1326 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1327 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1328 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1329 if (IsMSVCCXX || IsCoreCLR) 1330 UnwindDests.back().first->setIsEHFuncletEntry(); 1331 } 1332 NewEHPadBB = CatchSwitch->getUnwindDest(); 1333 } else { 1334 continue; 1335 } 1336 1337 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1338 if (BPI && NewEHPadBB) 1339 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1340 EHPadBB = NewEHPadBB; 1341 } 1342 } 1343 1344 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1345 // Update successor info. 1346 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1347 auto UnwindDest = I.getUnwindDest(); 1348 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1349 BranchProbability UnwindDestProb = 1350 (BPI && UnwindDest) 1351 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1352 : BranchProbability::getZero(); 1353 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1354 for (auto &UnwindDest : UnwindDests) { 1355 UnwindDest.first->setIsEHPad(); 1356 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1357 } 1358 FuncInfo.MBB->normalizeSuccProbs(); 1359 1360 // Create the terminator node. 1361 SDValue Ret = 1362 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1363 DAG.setRoot(Ret); 1364 } 1365 1366 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1367 report_fatal_error("visitCatchSwitch not yet implemented!"); 1368 } 1369 1370 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1371 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1372 auto &DL = DAG.getDataLayout(); 1373 SDValue Chain = getControlRoot(); 1374 SmallVector<ISD::OutputArg, 8> Outs; 1375 SmallVector<SDValue, 8> OutVals; 1376 1377 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1378 // lower 1379 // 1380 // %val = call <ty> @llvm.experimental.deoptimize() 1381 // ret <ty> %val 1382 // 1383 // differently. 1384 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1385 LowerDeoptimizingReturn(); 1386 return; 1387 } 1388 1389 if (!FuncInfo.CanLowerReturn) { 1390 unsigned DemoteReg = FuncInfo.DemoteRegister; 1391 const Function *F = I.getParent()->getParent(); 1392 1393 // Emit a store of the return value through the virtual register. 1394 // Leave Outs empty so that LowerReturn won't try to load return 1395 // registers the usual way. 1396 SmallVector<EVT, 1> PtrValueVTs; 1397 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1398 PtrValueVTs); 1399 1400 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1401 DemoteReg, PtrValueVTs[0]); 1402 SDValue RetOp = getValue(I.getOperand(0)); 1403 1404 SmallVector<EVT, 4> ValueVTs; 1405 SmallVector<uint64_t, 4> Offsets; 1406 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1407 unsigned NumValues = ValueVTs.size(); 1408 1409 // An aggregate return value cannot wrap around the address space, so 1410 // offsets to its parts don't wrap either. 1411 SDNodeFlags Flags; 1412 Flags.setNoUnsignedWrap(true); 1413 1414 SmallVector<SDValue, 4> Chains(NumValues); 1415 for (unsigned i = 0; i != NumValues; ++i) { 1416 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1417 RetPtr.getValueType(), RetPtr, 1418 DAG.getIntPtrConstant(Offsets[i], 1419 getCurSDLoc()), 1420 Flags); 1421 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), 1422 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1423 // FIXME: better loc info would be nice. 1424 Add, MachinePointerInfo()); 1425 } 1426 1427 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1428 MVT::Other, Chains); 1429 } else if (I.getNumOperands() != 0) { 1430 SmallVector<EVT, 4> ValueVTs; 1431 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1432 unsigned NumValues = ValueVTs.size(); 1433 if (NumValues) { 1434 SDValue RetOp = getValue(I.getOperand(0)); 1435 1436 const Function *F = I.getParent()->getParent(); 1437 1438 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1439 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1440 Attribute::SExt)) 1441 ExtendKind = ISD::SIGN_EXTEND; 1442 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1443 Attribute::ZExt)) 1444 ExtendKind = ISD::ZERO_EXTEND; 1445 1446 LLVMContext &Context = F->getContext(); 1447 bool RetInReg = F->getAttributes().hasAttribute( 1448 AttributeList::ReturnIndex, Attribute::InReg); 1449 1450 for (unsigned j = 0; j != NumValues; ++j) { 1451 EVT VT = ValueVTs[j]; 1452 1453 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1454 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1455 1456 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT); 1457 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT); 1458 SmallVector<SDValue, 4> Parts(NumParts); 1459 getCopyToParts(DAG, getCurSDLoc(), 1460 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1461 &Parts[0], NumParts, PartVT, &I, ExtendKind, true); 1462 1463 // 'inreg' on function refers to return value 1464 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1465 if (RetInReg) 1466 Flags.setInReg(); 1467 1468 // Propagate extension type if any 1469 if (ExtendKind == ISD::SIGN_EXTEND) 1470 Flags.setSExt(); 1471 else if (ExtendKind == ISD::ZERO_EXTEND) 1472 Flags.setZExt(); 1473 1474 for (unsigned i = 0; i < NumParts; ++i) { 1475 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1476 VT, /*isfixed=*/true, 0, 0)); 1477 OutVals.push_back(Parts[i]); 1478 } 1479 } 1480 } 1481 } 1482 1483 // Push in swifterror virtual register as the last element of Outs. This makes 1484 // sure swifterror virtual register will be returned in the swifterror 1485 // physical register. 1486 const Function *F = I.getParent()->getParent(); 1487 if (TLI.supportSwiftError() && 1488 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1489 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1490 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1491 Flags.setSwiftError(); 1492 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1493 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1494 true /*isfixed*/, 1 /*origidx*/, 1495 0 /*partOffs*/)); 1496 // Create SDNode for the swifterror virtual register. 1497 OutVals.push_back( 1498 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1499 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1500 EVT(TLI.getPointerTy(DL)))); 1501 } 1502 1503 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1504 CallingConv::ID CallConv = 1505 DAG.getMachineFunction().getFunction()->getCallingConv(); 1506 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1507 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1508 1509 // Verify that the target's LowerReturn behaved as expected. 1510 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1511 "LowerReturn didn't return a valid chain!"); 1512 1513 // Update the DAG with the new chain value resulting from return lowering. 1514 DAG.setRoot(Chain); 1515 } 1516 1517 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1518 /// created for it, emit nodes to copy the value into the virtual 1519 /// registers. 1520 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1521 // Skip empty types 1522 if (V->getType()->isEmptyTy()) 1523 return; 1524 1525 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1526 if (VMI != FuncInfo.ValueMap.end()) { 1527 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1528 CopyValueToVirtualRegister(V, VMI->second); 1529 } 1530 } 1531 1532 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1533 /// the current basic block, add it to ValueMap now so that we'll get a 1534 /// CopyTo/FromReg. 1535 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1536 // No need to export constants. 1537 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1538 1539 // Already exported? 1540 if (FuncInfo.isExportedInst(V)) return; 1541 1542 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1543 CopyValueToVirtualRegister(V, Reg); 1544 } 1545 1546 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1547 const BasicBlock *FromBB) { 1548 // The operands of the setcc have to be in this block. We don't know 1549 // how to export them from some other block. 1550 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1551 // Can export from current BB. 1552 if (VI->getParent() == FromBB) 1553 return true; 1554 1555 // Is already exported, noop. 1556 return FuncInfo.isExportedInst(V); 1557 } 1558 1559 // If this is an argument, we can export it if the BB is the entry block or 1560 // if it is already exported. 1561 if (isa<Argument>(V)) { 1562 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1563 return true; 1564 1565 // Otherwise, can only export this if it is already exported. 1566 return FuncInfo.isExportedInst(V); 1567 } 1568 1569 // Otherwise, constants can always be exported. 1570 return true; 1571 } 1572 1573 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1574 BranchProbability 1575 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1576 const MachineBasicBlock *Dst) const { 1577 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1578 const BasicBlock *SrcBB = Src->getBasicBlock(); 1579 const BasicBlock *DstBB = Dst->getBasicBlock(); 1580 if (!BPI) { 1581 // If BPI is not available, set the default probability as 1 / N, where N is 1582 // the number of successors. 1583 auto SuccSize = std::max<uint32_t>( 1584 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1585 return BranchProbability(1, SuccSize); 1586 } 1587 return BPI->getEdgeProbability(SrcBB, DstBB); 1588 } 1589 1590 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1591 MachineBasicBlock *Dst, 1592 BranchProbability Prob) { 1593 if (!FuncInfo.BPI) 1594 Src->addSuccessorWithoutProb(Dst); 1595 else { 1596 if (Prob.isUnknown()) 1597 Prob = getEdgeProbability(Src, Dst); 1598 Src->addSuccessor(Dst, Prob); 1599 } 1600 } 1601 1602 static bool InBlock(const Value *V, const BasicBlock *BB) { 1603 if (const Instruction *I = dyn_cast<Instruction>(V)) 1604 return I->getParent() == BB; 1605 return true; 1606 } 1607 1608 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1609 /// This function emits a branch and is used at the leaves of an OR or an 1610 /// AND operator tree. 1611 /// 1612 void 1613 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1614 MachineBasicBlock *TBB, 1615 MachineBasicBlock *FBB, 1616 MachineBasicBlock *CurBB, 1617 MachineBasicBlock *SwitchBB, 1618 BranchProbability TProb, 1619 BranchProbability FProb, 1620 bool InvertCond) { 1621 const BasicBlock *BB = CurBB->getBasicBlock(); 1622 1623 // If the leaf of the tree is a comparison, merge the condition into 1624 // the caseblock. 1625 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1626 // The operands of the cmp have to be in this block. We don't know 1627 // how to export them from some other block. If this is the first block 1628 // of the sequence, no exporting is needed. 1629 if (CurBB == SwitchBB || 1630 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1631 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1632 ISD::CondCode Condition; 1633 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1634 ICmpInst::Predicate Pred = 1635 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1636 Condition = getICmpCondCode(Pred); 1637 } else { 1638 const FCmpInst *FC = cast<FCmpInst>(Cond); 1639 FCmpInst::Predicate Pred = 1640 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1641 Condition = getFCmpCondCode(Pred); 1642 if (TM.Options.NoNaNsFPMath) 1643 Condition = getFCmpCodeWithoutNaN(Condition); 1644 } 1645 1646 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1647 TBB, FBB, CurBB, TProb, FProb); 1648 SwitchCases.push_back(CB); 1649 return; 1650 } 1651 } 1652 1653 // Create a CaseBlock record representing this branch. 1654 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1655 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1656 nullptr, TBB, FBB, CurBB, TProb, FProb); 1657 SwitchCases.push_back(CB); 1658 } 1659 1660 /// FindMergedConditions - If Cond is an expression like 1661 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1662 MachineBasicBlock *TBB, 1663 MachineBasicBlock *FBB, 1664 MachineBasicBlock *CurBB, 1665 MachineBasicBlock *SwitchBB, 1666 Instruction::BinaryOps Opc, 1667 BranchProbability TProb, 1668 BranchProbability FProb, 1669 bool InvertCond) { 1670 // Skip over not part of the tree and remember to invert op and operands at 1671 // next level. 1672 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1673 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1674 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1675 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1676 !InvertCond); 1677 return; 1678 } 1679 } 1680 1681 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1682 // Compute the effective opcode for Cond, taking into account whether it needs 1683 // to be inverted, e.g. 1684 // and (not (or A, B)), C 1685 // gets lowered as 1686 // and (and (not A, not B), C) 1687 unsigned BOpc = 0; 1688 if (BOp) { 1689 BOpc = BOp->getOpcode(); 1690 if (InvertCond) { 1691 if (BOpc == Instruction::And) 1692 BOpc = Instruction::Or; 1693 else if (BOpc == Instruction::Or) 1694 BOpc = Instruction::And; 1695 } 1696 } 1697 1698 // If this node is not part of the or/and tree, emit it as a branch. 1699 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1700 BOpc != Opc || !BOp->hasOneUse() || 1701 BOp->getParent() != CurBB->getBasicBlock() || 1702 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1703 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1704 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1705 TProb, FProb, InvertCond); 1706 return; 1707 } 1708 1709 // Create TmpBB after CurBB. 1710 MachineFunction::iterator BBI(CurBB); 1711 MachineFunction &MF = DAG.getMachineFunction(); 1712 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1713 CurBB->getParent()->insert(++BBI, TmpBB); 1714 1715 if (Opc == Instruction::Or) { 1716 // Codegen X | Y as: 1717 // BB1: 1718 // jmp_if_X TBB 1719 // jmp TmpBB 1720 // TmpBB: 1721 // jmp_if_Y TBB 1722 // jmp FBB 1723 // 1724 1725 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1726 // The requirement is that 1727 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1728 // = TrueProb for original BB. 1729 // Assuming the original probabilities are A and B, one choice is to set 1730 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1731 // A/(1+B) and 2B/(1+B). This choice assumes that 1732 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1733 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1734 // TmpBB, but the math is more complicated. 1735 1736 auto NewTrueProb = TProb / 2; 1737 auto NewFalseProb = TProb / 2 + FProb; 1738 // Emit the LHS condition. 1739 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1740 NewTrueProb, NewFalseProb, InvertCond); 1741 1742 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1743 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1744 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1745 // Emit the RHS condition into TmpBB. 1746 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1747 Probs[0], Probs[1], InvertCond); 1748 } else { 1749 assert(Opc == Instruction::And && "Unknown merge op!"); 1750 // Codegen X & Y as: 1751 // BB1: 1752 // jmp_if_X TmpBB 1753 // jmp FBB 1754 // TmpBB: 1755 // jmp_if_Y TBB 1756 // jmp FBB 1757 // 1758 // This requires creation of TmpBB after CurBB. 1759 1760 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1761 // The requirement is that 1762 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1763 // = FalseProb for original BB. 1764 // Assuming the original probabilities are A and B, one choice is to set 1765 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1766 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1767 // TrueProb for BB1 * FalseProb for TmpBB. 1768 1769 auto NewTrueProb = TProb + FProb / 2; 1770 auto NewFalseProb = FProb / 2; 1771 // Emit the LHS condition. 1772 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1773 NewTrueProb, NewFalseProb, InvertCond); 1774 1775 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1776 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1777 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1778 // Emit the RHS condition into TmpBB. 1779 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1780 Probs[0], Probs[1], InvertCond); 1781 } 1782 } 1783 1784 /// If the set of cases should be emitted as a series of branches, return true. 1785 /// If we should emit this as a bunch of and/or'd together conditions, return 1786 /// false. 1787 bool 1788 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1789 if (Cases.size() != 2) return true; 1790 1791 // If this is two comparisons of the same values or'd or and'd together, they 1792 // will get folded into a single comparison, so don't emit two blocks. 1793 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1794 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1795 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1796 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1797 return false; 1798 } 1799 1800 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1801 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1802 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1803 Cases[0].CC == Cases[1].CC && 1804 isa<Constant>(Cases[0].CmpRHS) && 1805 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1806 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1807 return false; 1808 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1809 return false; 1810 } 1811 1812 return true; 1813 } 1814 1815 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1816 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1817 1818 // Update machine-CFG edges. 1819 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1820 1821 if (I.isUnconditional()) { 1822 // Update machine-CFG edges. 1823 BrMBB->addSuccessor(Succ0MBB); 1824 1825 // If this is not a fall-through branch or optimizations are switched off, 1826 // emit the branch. 1827 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1828 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1829 MVT::Other, getControlRoot(), 1830 DAG.getBasicBlock(Succ0MBB))); 1831 1832 return; 1833 } 1834 1835 // If this condition is one of the special cases we handle, do special stuff 1836 // now. 1837 const Value *CondVal = I.getCondition(); 1838 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1839 1840 // If this is a series of conditions that are or'd or and'd together, emit 1841 // this as a sequence of branches instead of setcc's with and/or operations. 1842 // As long as jumps are not expensive, this should improve performance. 1843 // For example, instead of something like: 1844 // cmp A, B 1845 // C = seteq 1846 // cmp D, E 1847 // F = setle 1848 // or C, F 1849 // jnz foo 1850 // Emit: 1851 // cmp A, B 1852 // je foo 1853 // cmp D, E 1854 // jle foo 1855 // 1856 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1857 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1858 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1859 !I.getMetadata(LLVMContext::MD_unpredictable) && 1860 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1861 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1862 Opcode, 1863 getEdgeProbability(BrMBB, Succ0MBB), 1864 getEdgeProbability(BrMBB, Succ1MBB), 1865 /*InvertCond=*/false); 1866 // If the compares in later blocks need to use values not currently 1867 // exported from this block, export them now. This block should always 1868 // be the first entry. 1869 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1870 1871 // Allow some cases to be rejected. 1872 if (ShouldEmitAsBranches(SwitchCases)) { 1873 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1874 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1875 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1876 } 1877 1878 // Emit the branch for this block. 1879 visitSwitchCase(SwitchCases[0], BrMBB); 1880 SwitchCases.erase(SwitchCases.begin()); 1881 return; 1882 } 1883 1884 // Okay, we decided not to do this, remove any inserted MBB's and clear 1885 // SwitchCases. 1886 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1887 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1888 1889 SwitchCases.clear(); 1890 } 1891 } 1892 1893 // Create a CaseBlock record representing this branch. 1894 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1895 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1896 1897 // Use visitSwitchCase to actually insert the fast branch sequence for this 1898 // cond branch. 1899 visitSwitchCase(CB, BrMBB); 1900 } 1901 1902 /// visitSwitchCase - Emits the necessary code to represent a single node in 1903 /// the binary search tree resulting from lowering a switch instruction. 1904 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1905 MachineBasicBlock *SwitchBB) { 1906 SDValue Cond; 1907 SDValue CondLHS = getValue(CB.CmpLHS); 1908 SDLoc dl = getCurSDLoc(); 1909 1910 // Build the setcc now. 1911 if (!CB.CmpMHS) { 1912 // Fold "(X == true)" to X and "(X == false)" to !X to 1913 // handle common cases produced by branch lowering. 1914 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1915 CB.CC == ISD::SETEQ) 1916 Cond = CondLHS; 1917 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1918 CB.CC == ISD::SETEQ) { 1919 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1920 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1921 } else 1922 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1923 } else { 1924 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1925 1926 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1927 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1928 1929 SDValue CmpOp = getValue(CB.CmpMHS); 1930 EVT VT = CmpOp.getValueType(); 1931 1932 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1933 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1934 ISD::SETLE); 1935 } else { 1936 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1937 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1938 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1939 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1940 } 1941 } 1942 1943 // Update successor info 1944 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1945 // TrueBB and FalseBB are always different unless the incoming IR is 1946 // degenerate. This only happens when running llc on weird IR. 1947 if (CB.TrueBB != CB.FalseBB) 1948 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1949 SwitchBB->normalizeSuccProbs(); 1950 1951 // If the lhs block is the next block, invert the condition so that we can 1952 // fall through to the lhs instead of the rhs block. 1953 if (CB.TrueBB == NextBlock(SwitchBB)) { 1954 std::swap(CB.TrueBB, CB.FalseBB); 1955 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1956 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1957 } 1958 1959 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1960 MVT::Other, getControlRoot(), Cond, 1961 DAG.getBasicBlock(CB.TrueBB)); 1962 1963 // Insert the false branch. Do this even if it's a fall through branch, 1964 // this makes it easier to do DAG optimizations which require inverting 1965 // the branch condition. 1966 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1967 DAG.getBasicBlock(CB.FalseBB)); 1968 1969 DAG.setRoot(BrCond); 1970 } 1971 1972 /// visitJumpTable - Emit JumpTable node in the current MBB 1973 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1974 // Emit the code for the jump table 1975 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1976 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1977 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1978 JT.Reg, PTy); 1979 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1980 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1981 MVT::Other, Index.getValue(1), 1982 Table, Index); 1983 DAG.setRoot(BrJumpTable); 1984 } 1985 1986 /// visitJumpTableHeader - This function emits necessary code to produce index 1987 /// in the JumpTable from switch case. 1988 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1989 JumpTableHeader &JTH, 1990 MachineBasicBlock *SwitchBB) { 1991 SDLoc dl = getCurSDLoc(); 1992 1993 // Subtract the lowest switch case value from the value being switched on and 1994 // conditional branch to default mbb if the result is greater than the 1995 // difference between smallest and largest cases. 1996 SDValue SwitchOp = getValue(JTH.SValue); 1997 EVT VT = SwitchOp.getValueType(); 1998 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1999 DAG.getConstant(JTH.First, dl, VT)); 2000 2001 // The SDNode we just created, which holds the value being switched on minus 2002 // the smallest case value, needs to be copied to a virtual register so it 2003 // can be used as an index into the jump table in a subsequent basic block. 2004 // This value may be smaller or larger than the target's pointer type, and 2005 // therefore require extension or truncating. 2006 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2007 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2008 2009 unsigned JumpTableReg = 2010 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2011 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2012 JumpTableReg, SwitchOp); 2013 JT.Reg = JumpTableReg; 2014 2015 // Emit the range check for the jump table, and branch to the default block 2016 // for the switch statement if the value being switched on exceeds the largest 2017 // case in the switch. 2018 SDValue CMP = DAG.getSetCC( 2019 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2020 Sub.getValueType()), 2021 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2022 2023 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2024 MVT::Other, CopyTo, CMP, 2025 DAG.getBasicBlock(JT.Default)); 2026 2027 // Avoid emitting unnecessary branches to the next block. 2028 if (JT.MBB != NextBlock(SwitchBB)) 2029 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2030 DAG.getBasicBlock(JT.MBB)); 2031 2032 DAG.setRoot(BrCond); 2033 } 2034 2035 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2036 /// variable if there exists one. 2037 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2038 SDValue &Chain) { 2039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2040 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2041 MachineFunction &MF = DAG.getMachineFunction(); 2042 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent()); 2043 MachineSDNode *Node = 2044 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2045 if (Global) { 2046 MachinePointerInfo MPInfo(Global); 2047 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2048 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2049 MachineMemOperand::MODereferenceable; 2050 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2051 DAG.getEVTAlignment(PtrTy)); 2052 Node->setMemRefs(MemRefs, MemRefs + 1); 2053 } 2054 return SDValue(Node, 0); 2055 } 2056 2057 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2058 /// tail spliced into a stack protector check success bb. 2059 /// 2060 /// For a high level explanation of how this fits into the stack protector 2061 /// generation see the comment on the declaration of class 2062 /// StackProtectorDescriptor. 2063 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2064 MachineBasicBlock *ParentBB) { 2065 2066 // First create the loads to the guard/stack slot for the comparison. 2067 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2068 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2069 2070 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2071 int FI = MFI.getStackProtectorIndex(); 2072 2073 SDValue Guard; 2074 SDLoc dl = getCurSDLoc(); 2075 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2076 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 2077 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2078 2079 // Generate code to load the content of the guard slot. 2080 SDValue StackSlot = DAG.getLoad( 2081 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2082 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2083 MachineMemOperand::MOVolatile); 2084 2085 // Retrieve guard check function, nullptr if instrumentation is inlined. 2086 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2087 // The target provides a guard check function to validate the guard value. 2088 // Generate a call to that function with the content of the guard slot as 2089 // argument. 2090 auto *Fn = cast<Function>(GuardCheck); 2091 FunctionType *FnTy = Fn->getFunctionType(); 2092 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2093 2094 TargetLowering::ArgListTy Args; 2095 TargetLowering::ArgListEntry Entry; 2096 Entry.Node = StackSlot; 2097 Entry.Ty = FnTy->getParamType(0); 2098 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2099 Entry.IsInReg = true; 2100 Args.push_back(Entry); 2101 2102 TargetLowering::CallLoweringInfo CLI(DAG); 2103 CLI.setDebugLoc(getCurSDLoc()) 2104 .setChain(DAG.getEntryNode()) 2105 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2106 getValue(GuardCheck), std::move(Args)); 2107 2108 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2109 DAG.setRoot(Result.second); 2110 return; 2111 } 2112 2113 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2114 // Otherwise, emit a volatile load to retrieve the stack guard value. 2115 SDValue Chain = DAG.getEntryNode(); 2116 if (TLI.useLoadStackGuardNode()) { 2117 Guard = getLoadStackGuard(DAG, dl, Chain); 2118 } else { 2119 const Value *IRGuard = TLI.getSDagStackGuard(M); 2120 SDValue GuardPtr = getValue(IRGuard); 2121 2122 Guard = 2123 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2124 Align, MachineMemOperand::MOVolatile); 2125 } 2126 2127 // Perform the comparison via a subtract/getsetcc. 2128 EVT VT = Guard.getValueType(); 2129 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2130 2131 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2132 *DAG.getContext(), 2133 Sub.getValueType()), 2134 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2135 2136 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2137 // branch to failure MBB. 2138 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2139 MVT::Other, StackSlot.getOperand(0), 2140 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2141 // Otherwise branch to success MBB. 2142 SDValue Br = DAG.getNode(ISD::BR, dl, 2143 MVT::Other, BrCond, 2144 DAG.getBasicBlock(SPD.getSuccessMBB())); 2145 2146 DAG.setRoot(Br); 2147 } 2148 2149 /// Codegen the failure basic block for a stack protector check. 2150 /// 2151 /// A failure stack protector machine basic block consists simply of a call to 2152 /// __stack_chk_fail(). 2153 /// 2154 /// For a high level explanation of how this fits into the stack protector 2155 /// generation see the comment on the declaration of class 2156 /// StackProtectorDescriptor. 2157 void 2158 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2159 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2160 SDValue Chain = 2161 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2162 None, false, getCurSDLoc(), false, false).second; 2163 DAG.setRoot(Chain); 2164 } 2165 2166 /// visitBitTestHeader - This function emits necessary code to produce value 2167 /// suitable for "bit tests" 2168 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2169 MachineBasicBlock *SwitchBB) { 2170 SDLoc dl = getCurSDLoc(); 2171 2172 // Subtract the minimum value 2173 SDValue SwitchOp = getValue(B.SValue); 2174 EVT VT = SwitchOp.getValueType(); 2175 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2176 DAG.getConstant(B.First, dl, VT)); 2177 2178 // Check range 2179 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2180 SDValue RangeCmp = DAG.getSetCC( 2181 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2182 Sub.getValueType()), 2183 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2184 2185 // Determine the type of the test operands. 2186 bool UsePtrType = false; 2187 if (!TLI.isTypeLegal(VT)) 2188 UsePtrType = true; 2189 else { 2190 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2191 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2192 // Switch table case range are encoded into series of masks. 2193 // Just use pointer type, it's guaranteed to fit. 2194 UsePtrType = true; 2195 break; 2196 } 2197 } 2198 if (UsePtrType) { 2199 VT = TLI.getPointerTy(DAG.getDataLayout()); 2200 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2201 } 2202 2203 B.RegVT = VT.getSimpleVT(); 2204 B.Reg = FuncInfo.CreateReg(B.RegVT); 2205 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2206 2207 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2208 2209 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2210 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2211 SwitchBB->normalizeSuccProbs(); 2212 2213 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2214 MVT::Other, CopyTo, RangeCmp, 2215 DAG.getBasicBlock(B.Default)); 2216 2217 // Avoid emitting unnecessary branches to the next block. 2218 if (MBB != NextBlock(SwitchBB)) 2219 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2220 DAG.getBasicBlock(MBB)); 2221 2222 DAG.setRoot(BrRange); 2223 } 2224 2225 /// visitBitTestCase - this function produces one "bit test" 2226 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2227 MachineBasicBlock* NextMBB, 2228 BranchProbability BranchProbToNext, 2229 unsigned Reg, 2230 BitTestCase &B, 2231 MachineBasicBlock *SwitchBB) { 2232 SDLoc dl = getCurSDLoc(); 2233 MVT VT = BB.RegVT; 2234 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2235 SDValue Cmp; 2236 unsigned PopCount = countPopulation(B.Mask); 2237 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2238 if (PopCount == 1) { 2239 // Testing for a single bit; just compare the shift count with what it 2240 // would need to be to shift a 1 bit in that position. 2241 Cmp = DAG.getSetCC( 2242 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2243 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2244 ISD::SETEQ); 2245 } else if (PopCount == BB.Range) { 2246 // There is only one zero bit in the range, test for it directly. 2247 Cmp = DAG.getSetCC( 2248 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2249 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2250 ISD::SETNE); 2251 } else { 2252 // Make desired shift 2253 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2254 DAG.getConstant(1, dl, VT), ShiftOp); 2255 2256 // Emit bit tests and jumps 2257 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2258 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2259 Cmp = DAG.getSetCC( 2260 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2261 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2262 } 2263 2264 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2265 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2266 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2267 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2268 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2269 // one as they are relative probabilities (and thus work more like weights), 2270 // and hence we need to normalize them to let the sum of them become one. 2271 SwitchBB->normalizeSuccProbs(); 2272 2273 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2274 MVT::Other, getControlRoot(), 2275 Cmp, DAG.getBasicBlock(B.TargetBB)); 2276 2277 // Avoid emitting unnecessary branches to the next block. 2278 if (NextMBB != NextBlock(SwitchBB)) 2279 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2280 DAG.getBasicBlock(NextMBB)); 2281 2282 DAG.setRoot(BrAnd); 2283 } 2284 2285 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2286 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2287 2288 // Retrieve successors. Look through artificial IR level blocks like 2289 // catchswitch for successors. 2290 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2291 const BasicBlock *EHPadBB = I.getSuccessor(1); 2292 2293 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2294 // have to do anything here to lower funclet bundles. 2295 assert(!I.hasOperandBundlesOtherThan( 2296 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2297 "Cannot lower invokes with arbitrary operand bundles yet!"); 2298 2299 const Value *Callee(I.getCalledValue()); 2300 const Function *Fn = dyn_cast<Function>(Callee); 2301 if (isa<InlineAsm>(Callee)) 2302 visitInlineAsm(&I); 2303 else if (Fn && Fn->isIntrinsic()) { 2304 switch (Fn->getIntrinsicID()) { 2305 default: 2306 llvm_unreachable("Cannot invoke this intrinsic"); 2307 case Intrinsic::donothing: 2308 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2309 break; 2310 case Intrinsic::experimental_patchpoint_void: 2311 case Intrinsic::experimental_patchpoint_i64: 2312 visitPatchpoint(&I, EHPadBB); 2313 break; 2314 case Intrinsic::experimental_gc_statepoint: 2315 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2316 break; 2317 } 2318 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2319 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2320 // Eventually we will support lowering the @llvm.experimental.deoptimize 2321 // intrinsic, and right now there are no plans to support other intrinsics 2322 // with deopt state. 2323 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2324 } else { 2325 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2326 } 2327 2328 // If the value of the invoke is used outside of its defining block, make it 2329 // available as a virtual register. 2330 // We already took care of the exported value for the statepoint instruction 2331 // during call to the LowerStatepoint. 2332 if (!isStatepoint(I)) { 2333 CopyToExportRegsIfNeeded(&I); 2334 } 2335 2336 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2337 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2338 BranchProbability EHPadBBProb = 2339 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2340 : BranchProbability::getZero(); 2341 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2342 2343 // Update successor info. 2344 addSuccessorWithProb(InvokeMBB, Return); 2345 for (auto &UnwindDest : UnwindDests) { 2346 UnwindDest.first->setIsEHPad(); 2347 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2348 } 2349 InvokeMBB->normalizeSuccProbs(); 2350 2351 // Drop into normal successor. 2352 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2353 MVT::Other, getControlRoot(), 2354 DAG.getBasicBlock(Return))); 2355 } 2356 2357 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2358 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2359 } 2360 2361 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2362 assert(FuncInfo.MBB->isEHPad() && 2363 "Call to landingpad not in landing pad!"); 2364 2365 MachineBasicBlock *MBB = FuncInfo.MBB; 2366 addLandingPadInfo(LP, *MBB); 2367 2368 // If there aren't registers to copy the values into (e.g., during SjLj 2369 // exceptions), then don't bother to create these DAG nodes. 2370 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2371 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2372 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2373 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2374 return; 2375 2376 // If landingpad's return type is token type, we don't create DAG nodes 2377 // for its exception pointer and selector value. The extraction of exception 2378 // pointer or selector value from token type landingpads is not currently 2379 // supported. 2380 if (LP.getType()->isTokenTy()) 2381 return; 2382 2383 SmallVector<EVT, 2> ValueVTs; 2384 SDLoc dl = getCurSDLoc(); 2385 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2386 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2387 2388 // Get the two live-in registers as SDValues. The physregs have already been 2389 // copied into virtual registers. 2390 SDValue Ops[2]; 2391 if (FuncInfo.ExceptionPointerVirtReg) { 2392 Ops[0] = DAG.getZExtOrTrunc( 2393 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2394 FuncInfo.ExceptionPointerVirtReg, 2395 TLI.getPointerTy(DAG.getDataLayout())), 2396 dl, ValueVTs[0]); 2397 } else { 2398 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2399 } 2400 Ops[1] = DAG.getZExtOrTrunc( 2401 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2402 FuncInfo.ExceptionSelectorVirtReg, 2403 TLI.getPointerTy(DAG.getDataLayout())), 2404 dl, ValueVTs[1]); 2405 2406 // Merge into one. 2407 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2408 DAG.getVTList(ValueVTs), Ops); 2409 setValue(&LP, Res); 2410 } 2411 2412 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2413 #ifndef NDEBUG 2414 for (const CaseCluster &CC : Clusters) 2415 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2416 #endif 2417 2418 std::sort(Clusters.begin(), Clusters.end(), 2419 [](const CaseCluster &a, const CaseCluster &b) { 2420 return a.Low->getValue().slt(b.Low->getValue()); 2421 }); 2422 2423 // Merge adjacent clusters with the same destination. 2424 const unsigned N = Clusters.size(); 2425 unsigned DstIndex = 0; 2426 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2427 CaseCluster &CC = Clusters[SrcIndex]; 2428 const ConstantInt *CaseVal = CC.Low; 2429 MachineBasicBlock *Succ = CC.MBB; 2430 2431 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2432 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2433 // If this case has the same successor and is a neighbour, merge it into 2434 // the previous cluster. 2435 Clusters[DstIndex - 1].High = CaseVal; 2436 Clusters[DstIndex - 1].Prob += CC.Prob; 2437 } else { 2438 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2439 sizeof(Clusters[SrcIndex])); 2440 } 2441 } 2442 Clusters.resize(DstIndex); 2443 } 2444 2445 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2446 MachineBasicBlock *Last) { 2447 // Update JTCases. 2448 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2449 if (JTCases[i].first.HeaderBB == First) 2450 JTCases[i].first.HeaderBB = Last; 2451 2452 // Update BitTestCases. 2453 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2454 if (BitTestCases[i].Parent == First) 2455 BitTestCases[i].Parent = Last; 2456 } 2457 2458 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2459 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2460 2461 // Update machine-CFG edges with unique successors. 2462 SmallSet<BasicBlock*, 32> Done; 2463 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2464 BasicBlock *BB = I.getSuccessor(i); 2465 bool Inserted = Done.insert(BB).second; 2466 if (!Inserted) 2467 continue; 2468 2469 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2470 addSuccessorWithProb(IndirectBrMBB, Succ); 2471 } 2472 IndirectBrMBB->normalizeSuccProbs(); 2473 2474 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2475 MVT::Other, getControlRoot(), 2476 getValue(I.getAddress()))); 2477 } 2478 2479 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2480 if (DAG.getTarget().Options.TrapUnreachable) 2481 DAG.setRoot( 2482 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2483 } 2484 2485 void SelectionDAGBuilder::visitFSub(const User &I) { 2486 // -0.0 - X --> fneg 2487 Type *Ty = I.getType(); 2488 if (isa<Constant>(I.getOperand(0)) && 2489 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2490 SDValue Op2 = getValue(I.getOperand(1)); 2491 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2492 Op2.getValueType(), Op2)); 2493 return; 2494 } 2495 2496 visitBinary(I, ISD::FSUB); 2497 } 2498 2499 /// Checks if the given instruction performs a vector reduction, in which case 2500 /// we have the freedom to alter the elements in the result as long as the 2501 /// reduction of them stays unchanged. 2502 static bool isVectorReductionOp(const User *I) { 2503 const Instruction *Inst = dyn_cast<Instruction>(I); 2504 if (!Inst || !Inst->getType()->isVectorTy()) 2505 return false; 2506 2507 auto OpCode = Inst->getOpcode(); 2508 switch (OpCode) { 2509 case Instruction::Add: 2510 case Instruction::Mul: 2511 case Instruction::And: 2512 case Instruction::Or: 2513 case Instruction::Xor: 2514 break; 2515 case Instruction::FAdd: 2516 case Instruction::FMul: 2517 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2518 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2519 break; 2520 LLVM_FALLTHROUGH; 2521 default: 2522 return false; 2523 } 2524 2525 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2526 unsigned ElemNumToReduce = ElemNum; 2527 2528 // Do DFS search on the def-use chain from the given instruction. We only 2529 // allow four kinds of operations during the search until we reach the 2530 // instruction that extracts the first element from the vector: 2531 // 2532 // 1. The reduction operation of the same opcode as the given instruction. 2533 // 2534 // 2. PHI node. 2535 // 2536 // 3. ShuffleVector instruction together with a reduction operation that 2537 // does a partial reduction. 2538 // 2539 // 4. ExtractElement that extracts the first element from the vector, and we 2540 // stop searching the def-use chain here. 2541 // 2542 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2543 // from 1-3 to the stack to continue the DFS. The given instruction is not 2544 // a reduction operation if we meet any other instructions other than those 2545 // listed above. 2546 2547 SmallVector<const User *, 16> UsersToVisit{Inst}; 2548 SmallPtrSet<const User *, 16> Visited; 2549 bool ReduxExtracted = false; 2550 2551 while (!UsersToVisit.empty()) { 2552 auto User = UsersToVisit.back(); 2553 UsersToVisit.pop_back(); 2554 if (!Visited.insert(User).second) 2555 continue; 2556 2557 for (const auto &U : User->users()) { 2558 auto Inst = dyn_cast<Instruction>(U); 2559 if (!Inst) 2560 return false; 2561 2562 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2563 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2564 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2565 return false; 2566 UsersToVisit.push_back(U); 2567 } else if (const ShuffleVectorInst *ShufInst = 2568 dyn_cast<ShuffleVectorInst>(U)) { 2569 // Detect the following pattern: A ShuffleVector instruction together 2570 // with a reduction that do partial reduction on the first and second 2571 // ElemNumToReduce / 2 elements, and store the result in 2572 // ElemNumToReduce / 2 elements in another vector. 2573 2574 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2575 if (ResultElements < ElemNum) 2576 return false; 2577 2578 if (ElemNumToReduce == 1) 2579 return false; 2580 if (!isa<UndefValue>(U->getOperand(1))) 2581 return false; 2582 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2583 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2584 return false; 2585 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2586 if (ShufInst->getMaskValue(i) != -1) 2587 return false; 2588 2589 // There is only one user of this ShuffleVector instruction, which 2590 // must be a reduction operation. 2591 if (!U->hasOneUse()) 2592 return false; 2593 2594 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2595 if (!U2 || U2->getOpcode() != OpCode) 2596 return false; 2597 2598 // Check operands of the reduction operation. 2599 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2600 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2601 UsersToVisit.push_back(U2); 2602 ElemNumToReduce /= 2; 2603 } else 2604 return false; 2605 } else if (isa<ExtractElementInst>(U)) { 2606 // At this moment we should have reduced all elements in the vector. 2607 if (ElemNumToReduce != 1) 2608 return false; 2609 2610 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2611 if (!Val || Val->getZExtValue() != 0) 2612 return false; 2613 2614 ReduxExtracted = true; 2615 } else 2616 return false; 2617 } 2618 } 2619 return ReduxExtracted; 2620 } 2621 2622 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2623 SDValue Op1 = getValue(I.getOperand(0)); 2624 SDValue Op2 = getValue(I.getOperand(1)); 2625 2626 bool nuw = false; 2627 bool nsw = false; 2628 bool exact = false; 2629 bool vec_redux = false; 2630 FastMathFlags FMF; 2631 2632 if (const OverflowingBinaryOperator *OFBinOp = 2633 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2634 nuw = OFBinOp->hasNoUnsignedWrap(); 2635 nsw = OFBinOp->hasNoSignedWrap(); 2636 } 2637 if (const PossiblyExactOperator *ExactOp = 2638 dyn_cast<const PossiblyExactOperator>(&I)) 2639 exact = ExactOp->isExact(); 2640 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2641 FMF = FPOp->getFastMathFlags(); 2642 2643 if (isVectorReductionOp(&I)) { 2644 vec_redux = true; 2645 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2646 } 2647 2648 SDNodeFlags Flags; 2649 Flags.setExact(exact); 2650 Flags.setNoSignedWrap(nsw); 2651 Flags.setNoUnsignedWrap(nuw); 2652 Flags.setVectorReduction(vec_redux); 2653 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2654 Flags.setAllowContract(FMF.allowContract()); 2655 Flags.setNoInfs(FMF.noInfs()); 2656 Flags.setNoNaNs(FMF.noNaNs()); 2657 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2658 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2659 2660 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2661 Op1, Op2, Flags); 2662 setValue(&I, BinNodeValue); 2663 } 2664 2665 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2666 SDValue Op1 = getValue(I.getOperand(0)); 2667 SDValue Op2 = getValue(I.getOperand(1)); 2668 2669 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2670 Op2.getValueType(), DAG.getDataLayout()); 2671 2672 // Coerce the shift amount to the right type if we can. 2673 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2674 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2675 unsigned Op2Size = Op2.getValueSizeInBits(); 2676 SDLoc DL = getCurSDLoc(); 2677 2678 // If the operand is smaller than the shift count type, promote it. 2679 if (ShiftSize > Op2Size) 2680 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2681 2682 // If the operand is larger than the shift count type but the shift 2683 // count type has enough bits to represent any shift value, truncate 2684 // it now. This is a common case and it exposes the truncate to 2685 // optimization early. 2686 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2687 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2688 // Otherwise we'll need to temporarily settle for some other convenient 2689 // type. Type legalization will make adjustments once the shiftee is split. 2690 else 2691 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2692 } 2693 2694 bool nuw = false; 2695 bool nsw = false; 2696 bool exact = false; 2697 2698 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2699 2700 if (const OverflowingBinaryOperator *OFBinOp = 2701 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2702 nuw = OFBinOp->hasNoUnsignedWrap(); 2703 nsw = OFBinOp->hasNoSignedWrap(); 2704 } 2705 if (const PossiblyExactOperator *ExactOp = 2706 dyn_cast<const PossiblyExactOperator>(&I)) 2707 exact = ExactOp->isExact(); 2708 } 2709 SDNodeFlags Flags; 2710 Flags.setExact(exact); 2711 Flags.setNoSignedWrap(nsw); 2712 Flags.setNoUnsignedWrap(nuw); 2713 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2714 Flags); 2715 setValue(&I, Res); 2716 } 2717 2718 void SelectionDAGBuilder::visitSDiv(const User &I) { 2719 SDValue Op1 = getValue(I.getOperand(0)); 2720 SDValue Op2 = getValue(I.getOperand(1)); 2721 2722 SDNodeFlags Flags; 2723 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2724 cast<PossiblyExactOperator>(&I)->isExact()); 2725 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2726 Op2, Flags)); 2727 } 2728 2729 void SelectionDAGBuilder::visitICmp(const User &I) { 2730 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2731 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2732 predicate = IC->getPredicate(); 2733 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2734 predicate = ICmpInst::Predicate(IC->getPredicate()); 2735 SDValue Op1 = getValue(I.getOperand(0)); 2736 SDValue Op2 = getValue(I.getOperand(1)); 2737 ISD::CondCode Opcode = getICmpCondCode(predicate); 2738 2739 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2740 I.getType()); 2741 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2742 } 2743 2744 void SelectionDAGBuilder::visitFCmp(const User &I) { 2745 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2746 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2747 predicate = FC->getPredicate(); 2748 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2749 predicate = FCmpInst::Predicate(FC->getPredicate()); 2750 SDValue Op1 = getValue(I.getOperand(0)); 2751 SDValue Op2 = getValue(I.getOperand(1)); 2752 ISD::CondCode Condition = getFCmpCondCode(predicate); 2753 2754 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2755 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2756 // further optimization, but currently FMF is only applicable to binary nodes. 2757 if (TM.Options.NoNaNsFPMath) 2758 Condition = getFCmpCodeWithoutNaN(Condition); 2759 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2760 I.getType()); 2761 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2762 } 2763 2764 // Check if the condition of the select has one use or two users that are both 2765 // selects with the same condition. 2766 static bool hasOnlySelectUsers(const Value *Cond) { 2767 return all_of(Cond->users(), [](const Value *V) { 2768 return isa<SelectInst>(V); 2769 }); 2770 } 2771 2772 void SelectionDAGBuilder::visitSelect(const User &I) { 2773 SmallVector<EVT, 4> ValueVTs; 2774 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2775 ValueVTs); 2776 unsigned NumValues = ValueVTs.size(); 2777 if (NumValues == 0) return; 2778 2779 SmallVector<SDValue, 4> Values(NumValues); 2780 SDValue Cond = getValue(I.getOperand(0)); 2781 SDValue LHSVal = getValue(I.getOperand(1)); 2782 SDValue RHSVal = getValue(I.getOperand(2)); 2783 auto BaseOps = {Cond}; 2784 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2785 ISD::VSELECT : ISD::SELECT; 2786 2787 // Min/max matching is only viable if all output VTs are the same. 2788 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2789 EVT VT = ValueVTs[0]; 2790 LLVMContext &Ctx = *DAG.getContext(); 2791 auto &TLI = DAG.getTargetLoweringInfo(); 2792 2793 // We care about the legality of the operation after it has been type 2794 // legalized. 2795 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2796 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2797 VT = TLI.getTypeToTransformTo(Ctx, VT); 2798 2799 // If the vselect is legal, assume we want to leave this as a vector setcc + 2800 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2801 // min/max is legal on the scalar type. 2802 bool UseScalarMinMax = VT.isVector() && 2803 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2804 2805 Value *LHS, *RHS; 2806 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2807 ISD::NodeType Opc = ISD::DELETED_NODE; 2808 switch (SPR.Flavor) { 2809 case SPF_UMAX: Opc = ISD::UMAX; break; 2810 case SPF_UMIN: Opc = ISD::UMIN; break; 2811 case SPF_SMAX: Opc = ISD::SMAX; break; 2812 case SPF_SMIN: Opc = ISD::SMIN; break; 2813 case SPF_FMINNUM: 2814 switch (SPR.NaNBehavior) { 2815 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2816 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2817 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2818 case SPNB_RETURNS_ANY: { 2819 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2820 Opc = ISD::FMINNUM; 2821 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2822 Opc = ISD::FMINNAN; 2823 else if (UseScalarMinMax) 2824 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2825 ISD::FMINNUM : ISD::FMINNAN; 2826 break; 2827 } 2828 } 2829 break; 2830 case SPF_FMAXNUM: 2831 switch (SPR.NaNBehavior) { 2832 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2833 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2834 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2835 case SPNB_RETURNS_ANY: 2836 2837 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2838 Opc = ISD::FMAXNUM; 2839 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2840 Opc = ISD::FMAXNAN; 2841 else if (UseScalarMinMax) 2842 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2843 ISD::FMAXNUM : ISD::FMAXNAN; 2844 break; 2845 } 2846 break; 2847 default: break; 2848 } 2849 2850 if (Opc != ISD::DELETED_NODE && 2851 (TLI.isOperationLegalOrCustom(Opc, VT) || 2852 (UseScalarMinMax && 2853 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2854 // If the underlying comparison instruction is used by any other 2855 // instruction, the consumed instructions won't be destroyed, so it is 2856 // not profitable to convert to a min/max. 2857 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2858 OpCode = Opc; 2859 LHSVal = getValue(LHS); 2860 RHSVal = getValue(RHS); 2861 BaseOps = {}; 2862 } 2863 } 2864 2865 for (unsigned i = 0; i != NumValues; ++i) { 2866 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2867 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2868 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2869 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2870 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2871 Ops); 2872 } 2873 2874 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2875 DAG.getVTList(ValueVTs), Values)); 2876 } 2877 2878 void SelectionDAGBuilder::visitTrunc(const User &I) { 2879 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2880 SDValue N = getValue(I.getOperand(0)); 2881 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2882 I.getType()); 2883 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2884 } 2885 2886 void SelectionDAGBuilder::visitZExt(const User &I) { 2887 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2888 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2889 SDValue N = getValue(I.getOperand(0)); 2890 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2891 I.getType()); 2892 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2893 } 2894 2895 void SelectionDAGBuilder::visitSExt(const User &I) { 2896 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2897 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2898 SDValue N = getValue(I.getOperand(0)); 2899 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2900 I.getType()); 2901 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2902 } 2903 2904 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2905 // FPTrunc is never a no-op cast, no need to check 2906 SDValue N = getValue(I.getOperand(0)); 2907 SDLoc dl = getCurSDLoc(); 2908 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2909 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2910 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2911 DAG.getTargetConstant( 2912 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2913 } 2914 2915 void SelectionDAGBuilder::visitFPExt(const User &I) { 2916 // FPExt is never a no-op cast, no need to check 2917 SDValue N = getValue(I.getOperand(0)); 2918 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2919 I.getType()); 2920 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2921 } 2922 2923 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2924 // FPToUI is never a no-op cast, no need to check 2925 SDValue N = getValue(I.getOperand(0)); 2926 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2927 I.getType()); 2928 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2929 } 2930 2931 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2932 // FPToSI is never a no-op cast, no need to check 2933 SDValue N = getValue(I.getOperand(0)); 2934 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2935 I.getType()); 2936 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2937 } 2938 2939 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2940 // UIToFP is never a no-op cast, no need to check 2941 SDValue N = getValue(I.getOperand(0)); 2942 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2943 I.getType()); 2944 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2945 } 2946 2947 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2948 // SIToFP is never a no-op cast, no need to check 2949 SDValue N = getValue(I.getOperand(0)); 2950 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2951 I.getType()); 2952 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2953 } 2954 2955 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2956 // What to do depends on the size of the integer and the size of the pointer. 2957 // We can either truncate, zero extend, or no-op, accordingly. 2958 SDValue N = getValue(I.getOperand(0)); 2959 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2960 I.getType()); 2961 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2962 } 2963 2964 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2965 // What to do depends on the size of the integer and the size of the pointer. 2966 // We can either truncate, zero extend, or no-op, accordingly. 2967 SDValue N = getValue(I.getOperand(0)); 2968 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2969 I.getType()); 2970 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2971 } 2972 2973 void SelectionDAGBuilder::visitBitCast(const User &I) { 2974 SDValue N = getValue(I.getOperand(0)); 2975 SDLoc dl = getCurSDLoc(); 2976 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2977 I.getType()); 2978 2979 // BitCast assures us that source and destination are the same size so this is 2980 // either a BITCAST or a no-op. 2981 if (DestVT != N.getValueType()) 2982 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2983 DestVT, N)); // convert types. 2984 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2985 // might fold any kind of constant expression to an integer constant and that 2986 // is not what we are looking for. Only recognize a bitcast of a genuine 2987 // constant integer as an opaque constant. 2988 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2989 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2990 /*isOpaque*/true)); 2991 else 2992 setValue(&I, N); // noop cast. 2993 } 2994 2995 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2996 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2997 const Value *SV = I.getOperand(0); 2998 SDValue N = getValue(SV); 2999 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3000 3001 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3002 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3003 3004 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3005 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3006 3007 setValue(&I, N); 3008 } 3009 3010 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3012 SDValue InVec = getValue(I.getOperand(0)); 3013 SDValue InVal = getValue(I.getOperand(1)); 3014 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3015 TLI.getVectorIdxTy(DAG.getDataLayout())); 3016 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3017 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3018 InVec, InVal, InIdx)); 3019 } 3020 3021 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3022 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3023 SDValue InVec = getValue(I.getOperand(0)); 3024 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3025 TLI.getVectorIdxTy(DAG.getDataLayout())); 3026 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3027 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3028 InVec, InIdx)); 3029 } 3030 3031 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3032 SDValue Src1 = getValue(I.getOperand(0)); 3033 SDValue Src2 = getValue(I.getOperand(1)); 3034 SDLoc DL = getCurSDLoc(); 3035 3036 SmallVector<int, 8> Mask; 3037 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3038 unsigned MaskNumElts = Mask.size(); 3039 3040 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3041 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3042 EVT SrcVT = Src1.getValueType(); 3043 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3044 3045 if (SrcNumElts == MaskNumElts) { 3046 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3047 return; 3048 } 3049 3050 // Normalize the shuffle vector since mask and vector length don't match. 3051 if (SrcNumElts < MaskNumElts) { 3052 // Mask is longer than the source vectors. We can use concatenate vector to 3053 // make the mask and vectors lengths match. 3054 3055 if (MaskNumElts % SrcNumElts == 0) { 3056 // Mask length is a multiple of the source vector length. 3057 // Check if the shuffle is some kind of concatenation of the input 3058 // vectors. 3059 unsigned NumConcat = MaskNumElts / SrcNumElts; 3060 bool IsConcat = true; 3061 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3062 for (unsigned i = 0; i != MaskNumElts; ++i) { 3063 int Idx = Mask[i]; 3064 if (Idx < 0) 3065 continue; 3066 // Ensure the indices in each SrcVT sized piece are sequential and that 3067 // the same source is used for the whole piece. 3068 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3069 (ConcatSrcs[i / SrcNumElts] >= 0 && 3070 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3071 IsConcat = false; 3072 break; 3073 } 3074 // Remember which source this index came from. 3075 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3076 } 3077 3078 // The shuffle is concatenating multiple vectors together. Just emit 3079 // a CONCAT_VECTORS operation. 3080 if (IsConcat) { 3081 SmallVector<SDValue, 8> ConcatOps; 3082 for (auto Src : ConcatSrcs) { 3083 if (Src < 0) 3084 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3085 else if (Src == 0) 3086 ConcatOps.push_back(Src1); 3087 else 3088 ConcatOps.push_back(Src2); 3089 } 3090 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3091 return; 3092 } 3093 } 3094 3095 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3096 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3097 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3098 PaddedMaskNumElts); 3099 3100 // Pad both vectors with undefs to make them the same length as the mask. 3101 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3102 3103 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3104 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3105 MOps1[0] = Src1; 3106 MOps2[0] = Src2; 3107 3108 Src1 = Src1.isUndef() 3109 ? DAG.getUNDEF(PaddedVT) 3110 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3111 Src2 = Src2.isUndef() 3112 ? DAG.getUNDEF(PaddedVT) 3113 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3114 3115 // Readjust mask for new input vector length. 3116 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3117 for (unsigned i = 0; i != MaskNumElts; ++i) { 3118 int Idx = Mask[i]; 3119 if (Idx >= (int)SrcNumElts) 3120 Idx -= SrcNumElts - PaddedMaskNumElts; 3121 MappedOps[i] = Idx; 3122 } 3123 3124 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3125 3126 // If the concatenated vector was padded, extract a subvector with the 3127 // correct number of elements. 3128 if (MaskNumElts != PaddedMaskNumElts) 3129 Result = DAG.getNode( 3130 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3131 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3132 3133 setValue(&I, Result); 3134 return; 3135 } 3136 3137 if (SrcNumElts > MaskNumElts) { 3138 // Analyze the access pattern of the vector to see if we can extract 3139 // two subvectors and do the shuffle. 3140 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3141 bool CanExtract = true; 3142 for (int Idx : Mask) { 3143 unsigned Input = 0; 3144 if (Idx < 0) 3145 continue; 3146 3147 if (Idx >= (int)SrcNumElts) { 3148 Input = 1; 3149 Idx -= SrcNumElts; 3150 } 3151 3152 // If all the indices come from the same MaskNumElts sized portion of 3153 // the sources we can use extract. Also make sure the extract wouldn't 3154 // extract past the end of the source. 3155 int NewStartIdx = alignDown(Idx, MaskNumElts); 3156 if (NewStartIdx + MaskNumElts > SrcNumElts || 3157 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3158 CanExtract = false; 3159 // Make sure we always update StartIdx as we use it to track if all 3160 // elements are undef. 3161 StartIdx[Input] = NewStartIdx; 3162 } 3163 3164 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3165 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3166 return; 3167 } 3168 if (CanExtract) { 3169 // Extract appropriate subvector and generate a vector shuffle 3170 for (unsigned Input = 0; Input < 2; ++Input) { 3171 SDValue &Src = Input == 0 ? Src1 : Src2; 3172 if (StartIdx[Input] < 0) 3173 Src = DAG.getUNDEF(VT); 3174 else { 3175 Src = DAG.getNode( 3176 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3177 DAG.getConstant(StartIdx[Input], DL, 3178 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3179 } 3180 } 3181 3182 // Calculate new mask. 3183 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3184 for (int &Idx : MappedOps) { 3185 if (Idx >= (int)SrcNumElts) 3186 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3187 else if (Idx >= 0) 3188 Idx -= StartIdx[0]; 3189 } 3190 3191 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3192 return; 3193 } 3194 } 3195 3196 // We can't use either concat vectors or extract subvectors so fall back to 3197 // replacing the shuffle with extract and build vector. 3198 // to insert and build vector. 3199 EVT EltVT = VT.getVectorElementType(); 3200 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3201 SmallVector<SDValue,8> Ops; 3202 for (int Idx : Mask) { 3203 SDValue Res; 3204 3205 if (Idx < 0) { 3206 Res = DAG.getUNDEF(EltVT); 3207 } else { 3208 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3209 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3210 3211 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3212 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3213 } 3214 3215 Ops.push_back(Res); 3216 } 3217 3218 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3219 } 3220 3221 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3222 ArrayRef<unsigned> Indices; 3223 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3224 Indices = IV->getIndices(); 3225 else 3226 Indices = cast<ConstantExpr>(&I)->getIndices(); 3227 3228 const Value *Op0 = I.getOperand(0); 3229 const Value *Op1 = I.getOperand(1); 3230 Type *AggTy = I.getType(); 3231 Type *ValTy = Op1->getType(); 3232 bool IntoUndef = isa<UndefValue>(Op0); 3233 bool FromUndef = isa<UndefValue>(Op1); 3234 3235 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3236 3237 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3238 SmallVector<EVT, 4> AggValueVTs; 3239 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3240 SmallVector<EVT, 4> ValValueVTs; 3241 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3242 3243 unsigned NumAggValues = AggValueVTs.size(); 3244 unsigned NumValValues = ValValueVTs.size(); 3245 SmallVector<SDValue, 4> Values(NumAggValues); 3246 3247 // Ignore an insertvalue that produces an empty object 3248 if (!NumAggValues) { 3249 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3250 return; 3251 } 3252 3253 SDValue Agg = getValue(Op0); 3254 unsigned i = 0; 3255 // Copy the beginning value(s) from the original aggregate. 3256 for (; i != LinearIndex; ++i) 3257 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3258 SDValue(Agg.getNode(), Agg.getResNo() + i); 3259 // Copy values from the inserted value(s). 3260 if (NumValValues) { 3261 SDValue Val = getValue(Op1); 3262 for (; i != LinearIndex + NumValValues; ++i) 3263 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3264 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3265 } 3266 // Copy remaining value(s) from the original aggregate. 3267 for (; i != NumAggValues; ++i) 3268 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3269 SDValue(Agg.getNode(), Agg.getResNo() + i); 3270 3271 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3272 DAG.getVTList(AggValueVTs), Values)); 3273 } 3274 3275 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3276 ArrayRef<unsigned> Indices; 3277 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3278 Indices = EV->getIndices(); 3279 else 3280 Indices = cast<ConstantExpr>(&I)->getIndices(); 3281 3282 const Value *Op0 = I.getOperand(0); 3283 Type *AggTy = Op0->getType(); 3284 Type *ValTy = I.getType(); 3285 bool OutOfUndef = isa<UndefValue>(Op0); 3286 3287 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3288 3289 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3290 SmallVector<EVT, 4> ValValueVTs; 3291 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3292 3293 unsigned NumValValues = ValValueVTs.size(); 3294 3295 // Ignore a extractvalue that produces an empty object 3296 if (!NumValValues) { 3297 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3298 return; 3299 } 3300 3301 SmallVector<SDValue, 4> Values(NumValValues); 3302 3303 SDValue Agg = getValue(Op0); 3304 // Copy out the selected value(s). 3305 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3306 Values[i - LinearIndex] = 3307 OutOfUndef ? 3308 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3309 SDValue(Agg.getNode(), Agg.getResNo() + i); 3310 3311 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3312 DAG.getVTList(ValValueVTs), Values)); 3313 } 3314 3315 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3316 Value *Op0 = I.getOperand(0); 3317 // Note that the pointer operand may be a vector of pointers. Take the scalar 3318 // element which holds a pointer. 3319 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3320 SDValue N = getValue(Op0); 3321 SDLoc dl = getCurSDLoc(); 3322 3323 // Normalize Vector GEP - all scalar operands should be converted to the 3324 // splat vector. 3325 unsigned VectorWidth = I.getType()->isVectorTy() ? 3326 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3327 3328 if (VectorWidth && !N.getValueType().isVector()) { 3329 LLVMContext &Context = *DAG.getContext(); 3330 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3331 N = DAG.getSplatBuildVector(VT, dl, N); 3332 } 3333 3334 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3335 GTI != E; ++GTI) { 3336 const Value *Idx = GTI.getOperand(); 3337 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3338 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3339 if (Field) { 3340 // N = N + Offset 3341 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3342 3343 // In an inbounds GEP with an offset that is nonnegative even when 3344 // interpreted as signed, assume there is no unsigned overflow. 3345 SDNodeFlags Flags; 3346 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3347 Flags.setNoUnsignedWrap(true); 3348 3349 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3350 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3351 } 3352 } else { 3353 MVT PtrTy = 3354 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3355 unsigned PtrSize = PtrTy.getSizeInBits(); 3356 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3357 3358 // If this is a scalar constant or a splat vector of constants, 3359 // handle it quickly. 3360 const auto *CI = dyn_cast<ConstantInt>(Idx); 3361 if (!CI && isa<ConstantDataVector>(Idx) && 3362 cast<ConstantDataVector>(Idx)->getSplatValue()) 3363 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3364 3365 if (CI) { 3366 if (CI->isZero()) 3367 continue; 3368 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3369 LLVMContext &Context = *DAG.getContext(); 3370 SDValue OffsVal = VectorWidth ? 3371 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) : 3372 DAG.getConstant(Offs, dl, PtrTy); 3373 3374 // In an inbouds GEP with an offset that is nonnegative even when 3375 // interpreted as signed, assume there is no unsigned overflow. 3376 SDNodeFlags Flags; 3377 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3378 Flags.setNoUnsignedWrap(true); 3379 3380 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3381 continue; 3382 } 3383 3384 // N = N + Idx * ElementSize; 3385 SDValue IdxN = getValue(Idx); 3386 3387 if (!IdxN.getValueType().isVector() && VectorWidth) { 3388 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3389 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3390 } 3391 3392 // If the index is smaller or larger than intptr_t, truncate or extend 3393 // it. 3394 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3395 3396 // If this is a multiply by a power of two, turn it into a shl 3397 // immediately. This is a very common case. 3398 if (ElementSize != 1) { 3399 if (ElementSize.isPowerOf2()) { 3400 unsigned Amt = ElementSize.logBase2(); 3401 IdxN = DAG.getNode(ISD::SHL, dl, 3402 N.getValueType(), IdxN, 3403 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3404 } else { 3405 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3406 IdxN = DAG.getNode(ISD::MUL, dl, 3407 N.getValueType(), IdxN, Scale); 3408 } 3409 } 3410 3411 N = DAG.getNode(ISD::ADD, dl, 3412 N.getValueType(), N, IdxN); 3413 } 3414 } 3415 3416 setValue(&I, N); 3417 } 3418 3419 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3420 // If this is a fixed sized alloca in the entry block of the function, 3421 // allocate it statically on the stack. 3422 if (FuncInfo.StaticAllocaMap.count(&I)) 3423 return; // getValue will auto-populate this. 3424 3425 SDLoc dl = getCurSDLoc(); 3426 Type *Ty = I.getAllocatedType(); 3427 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3428 auto &DL = DAG.getDataLayout(); 3429 uint64_t TySize = DL.getTypeAllocSize(Ty); 3430 unsigned Align = 3431 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3432 3433 SDValue AllocSize = getValue(I.getArraySize()); 3434 3435 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3436 if (AllocSize.getValueType() != IntPtr) 3437 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3438 3439 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3440 AllocSize, 3441 DAG.getConstant(TySize, dl, IntPtr)); 3442 3443 // Handle alignment. If the requested alignment is less than or equal to 3444 // the stack alignment, ignore it. If the size is greater than or equal to 3445 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3446 unsigned StackAlign = 3447 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3448 if (Align <= StackAlign) 3449 Align = 0; 3450 3451 // Round the size of the allocation up to the stack alignment size 3452 // by add SA-1 to the size. This doesn't overflow because we're computing 3453 // an address inside an alloca. 3454 SDNodeFlags Flags; 3455 Flags.setNoUnsignedWrap(true); 3456 AllocSize = DAG.getNode(ISD::ADD, dl, 3457 AllocSize.getValueType(), AllocSize, 3458 DAG.getIntPtrConstant(StackAlign - 1, dl), Flags); 3459 3460 // Mask out the low bits for alignment purposes. 3461 AllocSize = DAG.getNode(ISD::AND, dl, 3462 AllocSize.getValueType(), AllocSize, 3463 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3464 dl)); 3465 3466 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3467 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3468 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3469 setValue(&I, DSA); 3470 DAG.setRoot(DSA.getValue(1)); 3471 3472 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3473 } 3474 3475 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3476 if (I.isAtomic()) 3477 return visitAtomicLoad(I); 3478 3479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3480 const Value *SV = I.getOperand(0); 3481 if (TLI.supportSwiftError()) { 3482 // Swifterror values can come from either a function parameter with 3483 // swifterror attribute or an alloca with swifterror attribute. 3484 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3485 if (Arg->hasSwiftErrorAttr()) 3486 return visitLoadFromSwiftError(I); 3487 } 3488 3489 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3490 if (Alloca->isSwiftError()) 3491 return visitLoadFromSwiftError(I); 3492 } 3493 } 3494 3495 SDValue Ptr = getValue(SV); 3496 3497 Type *Ty = I.getType(); 3498 3499 bool isVolatile = I.isVolatile(); 3500 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3501 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3502 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3503 unsigned Alignment = I.getAlignment(); 3504 3505 AAMDNodes AAInfo; 3506 I.getAAMetadata(AAInfo); 3507 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3508 3509 SmallVector<EVT, 4> ValueVTs; 3510 SmallVector<uint64_t, 4> Offsets; 3511 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3512 unsigned NumValues = ValueVTs.size(); 3513 if (NumValues == 0) 3514 return; 3515 3516 SDValue Root; 3517 bool ConstantMemory = false; 3518 if (isVolatile || NumValues > MaxParallelChains) 3519 // Serialize volatile loads with other side effects. 3520 Root = getRoot(); 3521 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3522 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3523 // Do not serialize (non-volatile) loads of constant memory with anything. 3524 Root = DAG.getEntryNode(); 3525 ConstantMemory = true; 3526 } else { 3527 // Do not serialize non-volatile loads against each other. 3528 Root = DAG.getRoot(); 3529 } 3530 3531 SDLoc dl = getCurSDLoc(); 3532 3533 if (isVolatile) 3534 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3535 3536 // An aggregate load cannot wrap around the address space, so offsets to its 3537 // parts don't wrap either. 3538 SDNodeFlags Flags; 3539 Flags.setNoUnsignedWrap(true); 3540 3541 SmallVector<SDValue, 4> Values(NumValues); 3542 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3543 EVT PtrVT = Ptr.getValueType(); 3544 unsigned ChainI = 0; 3545 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3546 // Serializing loads here may result in excessive register pressure, and 3547 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3548 // could recover a bit by hoisting nodes upward in the chain by recognizing 3549 // they are side-effect free or do not alias. The optimizer should really 3550 // avoid this case by converting large object/array copies to llvm.memcpy 3551 // (MaxParallelChains should always remain as failsafe). 3552 if (ChainI == MaxParallelChains) { 3553 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3554 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3555 makeArrayRef(Chains.data(), ChainI)); 3556 Root = Chain; 3557 ChainI = 0; 3558 } 3559 SDValue A = DAG.getNode(ISD::ADD, dl, 3560 PtrVT, Ptr, 3561 DAG.getConstant(Offsets[i], dl, PtrVT), 3562 Flags); 3563 auto MMOFlags = MachineMemOperand::MONone; 3564 if (isVolatile) 3565 MMOFlags |= MachineMemOperand::MOVolatile; 3566 if (isNonTemporal) 3567 MMOFlags |= MachineMemOperand::MONonTemporal; 3568 if (isInvariant) 3569 MMOFlags |= MachineMemOperand::MOInvariant; 3570 if (isDereferenceable) 3571 MMOFlags |= MachineMemOperand::MODereferenceable; 3572 MMOFlags |= TLI.getMMOFlags(I); 3573 3574 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3575 MachinePointerInfo(SV, Offsets[i]), Alignment, 3576 MMOFlags, AAInfo, Ranges); 3577 3578 Values[i] = L; 3579 Chains[ChainI] = L.getValue(1); 3580 } 3581 3582 if (!ConstantMemory) { 3583 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3584 makeArrayRef(Chains.data(), ChainI)); 3585 if (isVolatile) 3586 DAG.setRoot(Chain); 3587 else 3588 PendingLoads.push_back(Chain); 3589 } 3590 3591 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3592 DAG.getVTList(ValueVTs), Values)); 3593 } 3594 3595 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3596 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3597 "call visitStoreToSwiftError when backend supports swifterror"); 3598 3599 SmallVector<EVT, 4> ValueVTs; 3600 SmallVector<uint64_t, 4> Offsets; 3601 const Value *SrcV = I.getOperand(0); 3602 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3603 SrcV->getType(), ValueVTs, &Offsets); 3604 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3605 "expect a single EVT for swifterror"); 3606 3607 SDValue Src = getValue(SrcV); 3608 // Create a virtual register, then update the virtual register. 3609 unsigned VReg; bool CreatedVReg; 3610 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3611 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3612 // Chain can be getRoot or getControlRoot. 3613 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3614 SDValue(Src.getNode(), Src.getResNo())); 3615 DAG.setRoot(CopyNode); 3616 if (CreatedVReg) 3617 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3618 } 3619 3620 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3621 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3622 "call visitLoadFromSwiftError when backend supports swifterror"); 3623 3624 assert(!I.isVolatile() && 3625 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3626 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3627 "Support volatile, non temporal, invariant for load_from_swift_error"); 3628 3629 const Value *SV = I.getOperand(0); 3630 Type *Ty = I.getType(); 3631 AAMDNodes AAInfo; 3632 I.getAAMetadata(AAInfo); 3633 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3634 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3635 "load_from_swift_error should not be constant memory"); 3636 3637 SmallVector<EVT, 4> ValueVTs; 3638 SmallVector<uint64_t, 4> Offsets; 3639 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3640 ValueVTs, &Offsets); 3641 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3642 "expect a single EVT for swifterror"); 3643 3644 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3645 SDValue L = DAG.getCopyFromReg( 3646 getRoot(), getCurSDLoc(), 3647 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3648 ValueVTs[0]); 3649 3650 setValue(&I, L); 3651 } 3652 3653 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3654 if (I.isAtomic()) 3655 return visitAtomicStore(I); 3656 3657 const Value *SrcV = I.getOperand(0); 3658 const Value *PtrV = I.getOperand(1); 3659 3660 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3661 if (TLI.supportSwiftError()) { 3662 // Swifterror values can come from either a function parameter with 3663 // swifterror attribute or an alloca with swifterror attribute. 3664 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3665 if (Arg->hasSwiftErrorAttr()) 3666 return visitStoreToSwiftError(I); 3667 } 3668 3669 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3670 if (Alloca->isSwiftError()) 3671 return visitStoreToSwiftError(I); 3672 } 3673 } 3674 3675 SmallVector<EVT, 4> ValueVTs; 3676 SmallVector<uint64_t, 4> Offsets; 3677 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3678 SrcV->getType(), ValueVTs, &Offsets); 3679 unsigned NumValues = ValueVTs.size(); 3680 if (NumValues == 0) 3681 return; 3682 3683 // Get the lowered operands. Note that we do this after 3684 // checking if NumResults is zero, because with zero results 3685 // the operands won't have values in the map. 3686 SDValue Src = getValue(SrcV); 3687 SDValue Ptr = getValue(PtrV); 3688 3689 SDValue Root = getRoot(); 3690 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3691 SDLoc dl = getCurSDLoc(); 3692 EVT PtrVT = Ptr.getValueType(); 3693 unsigned Alignment = I.getAlignment(); 3694 AAMDNodes AAInfo; 3695 I.getAAMetadata(AAInfo); 3696 3697 auto MMOFlags = MachineMemOperand::MONone; 3698 if (I.isVolatile()) 3699 MMOFlags |= MachineMemOperand::MOVolatile; 3700 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3701 MMOFlags |= MachineMemOperand::MONonTemporal; 3702 MMOFlags |= TLI.getMMOFlags(I); 3703 3704 // An aggregate load cannot wrap around the address space, so offsets to its 3705 // parts don't wrap either. 3706 SDNodeFlags Flags; 3707 Flags.setNoUnsignedWrap(true); 3708 3709 unsigned ChainI = 0; 3710 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3711 // See visitLoad comments. 3712 if (ChainI == MaxParallelChains) { 3713 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3714 makeArrayRef(Chains.data(), ChainI)); 3715 Root = Chain; 3716 ChainI = 0; 3717 } 3718 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3719 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3720 SDValue St = DAG.getStore( 3721 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3722 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3723 Chains[ChainI] = St; 3724 } 3725 3726 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3727 makeArrayRef(Chains.data(), ChainI)); 3728 DAG.setRoot(StoreNode); 3729 } 3730 3731 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3732 bool IsCompressing) { 3733 SDLoc sdl = getCurSDLoc(); 3734 3735 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3736 unsigned& Alignment) { 3737 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3738 Src0 = I.getArgOperand(0); 3739 Ptr = I.getArgOperand(1); 3740 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3741 Mask = I.getArgOperand(3); 3742 }; 3743 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3744 unsigned& Alignment) { 3745 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3746 Src0 = I.getArgOperand(0); 3747 Ptr = I.getArgOperand(1); 3748 Mask = I.getArgOperand(2); 3749 Alignment = 0; 3750 }; 3751 3752 Value *PtrOperand, *MaskOperand, *Src0Operand; 3753 unsigned Alignment; 3754 if (IsCompressing) 3755 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3756 else 3757 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3758 3759 SDValue Ptr = getValue(PtrOperand); 3760 SDValue Src0 = getValue(Src0Operand); 3761 SDValue Mask = getValue(MaskOperand); 3762 3763 EVT VT = Src0.getValueType(); 3764 if (!Alignment) 3765 Alignment = DAG.getEVTAlignment(VT); 3766 3767 AAMDNodes AAInfo; 3768 I.getAAMetadata(AAInfo); 3769 3770 MachineMemOperand *MMO = 3771 DAG.getMachineFunction(). 3772 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3773 MachineMemOperand::MOStore, VT.getStoreSize(), 3774 Alignment, AAInfo); 3775 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3776 MMO, false /* Truncating */, 3777 IsCompressing); 3778 DAG.setRoot(StoreNode); 3779 setValue(&I, StoreNode); 3780 } 3781 3782 // Get a uniform base for the Gather/Scatter intrinsic. 3783 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3784 // We try to represent it as a base pointer + vector of indices. 3785 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3786 // The first operand of the GEP may be a single pointer or a vector of pointers 3787 // Example: 3788 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3789 // or 3790 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3791 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3792 // 3793 // When the first GEP operand is a single pointer - it is the uniform base we 3794 // are looking for. If first operand of the GEP is a splat vector - we 3795 // extract the spalt value and use it as a uniform base. 3796 // In all other cases the function returns 'false'. 3797 // 3798 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3799 SelectionDAGBuilder* SDB) { 3800 3801 SelectionDAG& DAG = SDB->DAG; 3802 LLVMContext &Context = *DAG.getContext(); 3803 3804 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3805 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3806 if (!GEP || GEP->getNumOperands() > 2) 3807 return false; 3808 3809 const Value *GEPPtr = GEP->getPointerOperand(); 3810 if (!GEPPtr->getType()->isVectorTy()) 3811 Ptr = GEPPtr; 3812 else if (!(Ptr = getSplatValue(GEPPtr))) 3813 return false; 3814 3815 Value *IndexVal = GEP->getOperand(1); 3816 3817 // The operands of the GEP may be defined in another basic block. 3818 // In this case we'll not find nodes for the operands. 3819 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3820 return false; 3821 3822 Base = SDB->getValue(Ptr); 3823 Index = SDB->getValue(IndexVal); 3824 3825 // Suppress sign extension. 3826 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3827 if (SDB->findValue(Sext->getOperand(0))) { 3828 IndexVal = Sext->getOperand(0); 3829 Index = SDB->getValue(IndexVal); 3830 } 3831 } 3832 if (!Index.getValueType().isVector()) { 3833 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3834 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3835 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3836 } 3837 return true; 3838 } 3839 3840 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3841 SDLoc sdl = getCurSDLoc(); 3842 3843 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3844 const Value *Ptr = I.getArgOperand(1); 3845 SDValue Src0 = getValue(I.getArgOperand(0)); 3846 SDValue Mask = getValue(I.getArgOperand(3)); 3847 EVT VT = Src0.getValueType(); 3848 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3849 if (!Alignment) 3850 Alignment = DAG.getEVTAlignment(VT); 3851 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3852 3853 AAMDNodes AAInfo; 3854 I.getAAMetadata(AAInfo); 3855 3856 SDValue Base; 3857 SDValue Index; 3858 const Value *BasePtr = Ptr; 3859 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3860 3861 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3862 MachineMemOperand *MMO = DAG.getMachineFunction(). 3863 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3864 MachineMemOperand::MOStore, VT.getStoreSize(), 3865 Alignment, AAInfo); 3866 if (!UniformBase) { 3867 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3868 Index = getValue(Ptr); 3869 } 3870 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3871 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3872 Ops, MMO); 3873 DAG.setRoot(Scatter); 3874 setValue(&I, Scatter); 3875 } 3876 3877 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3878 SDLoc sdl = getCurSDLoc(); 3879 3880 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3881 unsigned& Alignment) { 3882 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3883 Ptr = I.getArgOperand(0); 3884 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 3885 Mask = I.getArgOperand(2); 3886 Src0 = I.getArgOperand(3); 3887 }; 3888 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3889 unsigned& Alignment) { 3890 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 3891 Ptr = I.getArgOperand(0); 3892 Alignment = 0; 3893 Mask = I.getArgOperand(1); 3894 Src0 = I.getArgOperand(2); 3895 }; 3896 3897 Value *PtrOperand, *MaskOperand, *Src0Operand; 3898 unsigned Alignment; 3899 if (IsExpanding) 3900 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3901 else 3902 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3903 3904 SDValue Ptr = getValue(PtrOperand); 3905 SDValue Src0 = getValue(Src0Operand); 3906 SDValue Mask = getValue(MaskOperand); 3907 3908 EVT VT = Src0.getValueType(); 3909 if (!Alignment) 3910 Alignment = DAG.getEVTAlignment(VT); 3911 3912 AAMDNodes AAInfo; 3913 I.getAAMetadata(AAInfo); 3914 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3915 3916 // Do not serialize masked loads of constant memory with anything. 3917 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 3918 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 3919 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 3920 3921 MachineMemOperand *MMO = 3922 DAG.getMachineFunction(). 3923 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3924 MachineMemOperand::MOLoad, VT.getStoreSize(), 3925 Alignment, AAInfo, Ranges); 3926 3927 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3928 ISD::NON_EXTLOAD, IsExpanding); 3929 if (AddToChain) { 3930 SDValue OutChain = Load.getValue(1); 3931 DAG.setRoot(OutChain); 3932 } 3933 setValue(&I, Load); 3934 } 3935 3936 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3937 SDLoc sdl = getCurSDLoc(); 3938 3939 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3940 const Value *Ptr = I.getArgOperand(0); 3941 SDValue Src0 = getValue(I.getArgOperand(3)); 3942 SDValue Mask = getValue(I.getArgOperand(2)); 3943 3944 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3945 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3946 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3947 if (!Alignment) 3948 Alignment = DAG.getEVTAlignment(VT); 3949 3950 AAMDNodes AAInfo; 3951 I.getAAMetadata(AAInfo); 3952 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3953 3954 SDValue Root = DAG.getRoot(); 3955 SDValue Base; 3956 SDValue Index; 3957 const Value *BasePtr = Ptr; 3958 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3959 bool ConstantMemory = false; 3960 if (UniformBase && 3961 AA && AA->pointsToConstantMemory(MemoryLocation( 3962 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3963 AAInfo))) { 3964 // Do not serialize (non-volatile) loads of constant memory with anything. 3965 Root = DAG.getEntryNode(); 3966 ConstantMemory = true; 3967 } 3968 3969 MachineMemOperand *MMO = 3970 DAG.getMachineFunction(). 3971 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3972 MachineMemOperand::MOLoad, VT.getStoreSize(), 3973 Alignment, AAInfo, Ranges); 3974 3975 if (!UniformBase) { 3976 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3977 Index = getValue(Ptr); 3978 } 3979 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3980 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3981 Ops, MMO); 3982 3983 SDValue OutChain = Gather.getValue(1); 3984 if (!ConstantMemory) 3985 PendingLoads.push_back(OutChain); 3986 setValue(&I, Gather); 3987 } 3988 3989 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3990 SDLoc dl = getCurSDLoc(); 3991 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3992 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3993 SyncScope::ID SSID = I.getSyncScopeID(); 3994 3995 SDValue InChain = getRoot(); 3996 3997 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3998 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3999 SDValue L = DAG.getAtomicCmpSwap( 4000 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4001 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4002 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4003 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4004 4005 SDValue OutChain = L.getValue(2); 4006 4007 setValue(&I, L); 4008 DAG.setRoot(OutChain); 4009 } 4010 4011 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4012 SDLoc dl = getCurSDLoc(); 4013 ISD::NodeType NT; 4014 switch (I.getOperation()) { 4015 default: llvm_unreachable("Unknown atomicrmw operation"); 4016 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4017 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4018 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4019 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4020 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4021 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4022 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4023 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4024 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4025 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4026 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4027 } 4028 AtomicOrdering Order = I.getOrdering(); 4029 SyncScope::ID SSID = I.getSyncScopeID(); 4030 4031 SDValue InChain = getRoot(); 4032 4033 SDValue L = 4034 DAG.getAtomic(NT, dl, 4035 getValue(I.getValOperand()).getSimpleValueType(), 4036 InChain, 4037 getValue(I.getPointerOperand()), 4038 getValue(I.getValOperand()), 4039 I.getPointerOperand(), 4040 /* Alignment=*/ 0, Order, SSID); 4041 4042 SDValue OutChain = L.getValue(1); 4043 4044 setValue(&I, L); 4045 DAG.setRoot(OutChain); 4046 } 4047 4048 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4049 SDLoc dl = getCurSDLoc(); 4050 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4051 SDValue Ops[3]; 4052 Ops[0] = getRoot(); 4053 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4054 TLI.getFenceOperandTy(DAG.getDataLayout())); 4055 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4056 TLI.getFenceOperandTy(DAG.getDataLayout())); 4057 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4058 } 4059 4060 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4061 SDLoc dl = getCurSDLoc(); 4062 AtomicOrdering Order = I.getOrdering(); 4063 SyncScope::ID SSID = I.getSyncScopeID(); 4064 4065 SDValue InChain = getRoot(); 4066 4067 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4068 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4069 4070 if (I.getAlignment() < VT.getSizeInBits() / 8) 4071 report_fatal_error("Cannot generate unaligned atomic load"); 4072 4073 MachineMemOperand *MMO = 4074 DAG.getMachineFunction(). 4075 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4076 MachineMemOperand::MOVolatile | 4077 MachineMemOperand::MOLoad, 4078 VT.getStoreSize(), 4079 I.getAlignment() ? I.getAlignment() : 4080 DAG.getEVTAlignment(VT), 4081 AAMDNodes(), nullptr, SSID, Order); 4082 4083 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4084 SDValue L = 4085 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4086 getValue(I.getPointerOperand()), MMO); 4087 4088 SDValue OutChain = L.getValue(1); 4089 4090 setValue(&I, L); 4091 DAG.setRoot(OutChain); 4092 } 4093 4094 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4095 SDLoc dl = getCurSDLoc(); 4096 4097 AtomicOrdering Order = I.getOrdering(); 4098 SyncScope::ID SSID = I.getSyncScopeID(); 4099 4100 SDValue InChain = getRoot(); 4101 4102 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4103 EVT VT = 4104 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4105 4106 if (I.getAlignment() < VT.getSizeInBits() / 8) 4107 report_fatal_error("Cannot generate unaligned atomic store"); 4108 4109 SDValue OutChain = 4110 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4111 InChain, 4112 getValue(I.getPointerOperand()), 4113 getValue(I.getValueOperand()), 4114 I.getPointerOperand(), I.getAlignment(), 4115 Order, SSID); 4116 4117 DAG.setRoot(OutChain); 4118 } 4119 4120 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4121 /// node. 4122 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4123 unsigned Intrinsic) { 4124 // Ignore the callsite's attributes. A specific call site may be marked with 4125 // readnone, but the lowering code will expect the chain based on the 4126 // definition. 4127 const Function *F = I.getCalledFunction(); 4128 bool HasChain = !F->doesNotAccessMemory(); 4129 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4130 4131 // Build the operand list. 4132 SmallVector<SDValue, 8> Ops; 4133 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4134 if (OnlyLoad) { 4135 // We don't need to serialize loads against other loads. 4136 Ops.push_back(DAG.getRoot()); 4137 } else { 4138 Ops.push_back(getRoot()); 4139 } 4140 } 4141 4142 // Info is set by getTgtMemInstrinsic 4143 TargetLowering::IntrinsicInfo Info; 4144 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4145 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 4146 4147 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4148 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4149 Info.opc == ISD::INTRINSIC_W_CHAIN) 4150 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4151 TLI.getPointerTy(DAG.getDataLayout()))); 4152 4153 // Add all operands of the call to the operand list. 4154 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4155 SDValue Op = getValue(I.getArgOperand(i)); 4156 Ops.push_back(Op); 4157 } 4158 4159 SmallVector<EVT, 4> ValueVTs; 4160 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4161 4162 if (HasChain) 4163 ValueVTs.push_back(MVT::Other); 4164 4165 SDVTList VTs = DAG.getVTList(ValueVTs); 4166 4167 // Create the node. 4168 SDValue Result; 4169 if (IsTgtIntrinsic) { 4170 // This is target intrinsic that touches memory 4171 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4172 VTs, Ops, Info.memVT, 4173 MachinePointerInfo(Info.ptrVal, Info.offset), 4174 Info.align, Info.vol, 4175 Info.readMem, Info.writeMem, Info.size); 4176 } else if (!HasChain) { 4177 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4178 } else if (!I.getType()->isVoidTy()) { 4179 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4180 } else { 4181 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4182 } 4183 4184 if (HasChain) { 4185 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4186 if (OnlyLoad) 4187 PendingLoads.push_back(Chain); 4188 else 4189 DAG.setRoot(Chain); 4190 } 4191 4192 if (!I.getType()->isVoidTy()) { 4193 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4194 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4195 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4196 } else 4197 Result = lowerRangeToAssertZExt(DAG, I, Result); 4198 4199 setValue(&I, Result); 4200 } 4201 } 4202 4203 /// GetSignificand - Get the significand and build it into a floating-point 4204 /// number with exponent of 1: 4205 /// 4206 /// Op = (Op & 0x007fffff) | 0x3f800000; 4207 /// 4208 /// where Op is the hexadecimal representation of floating point value. 4209 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4210 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4211 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4212 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4213 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4214 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4215 } 4216 4217 /// GetExponent - Get the exponent: 4218 /// 4219 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4220 /// 4221 /// where Op is the hexadecimal representation of floating point value. 4222 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4223 const TargetLowering &TLI, const SDLoc &dl) { 4224 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4225 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4226 SDValue t1 = DAG.getNode( 4227 ISD::SRL, dl, MVT::i32, t0, 4228 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4229 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4230 DAG.getConstant(127, dl, MVT::i32)); 4231 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4232 } 4233 4234 /// getF32Constant - Get 32-bit floating point constant. 4235 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4236 const SDLoc &dl) { 4237 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4238 MVT::f32); 4239 } 4240 4241 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4242 SelectionDAG &DAG) { 4243 // TODO: What fast-math-flags should be set on the floating-point nodes? 4244 4245 // IntegerPartOfX = ((int32_t)(t0); 4246 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4247 4248 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4249 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4250 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4251 4252 // IntegerPartOfX <<= 23; 4253 IntegerPartOfX = DAG.getNode( 4254 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4255 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4256 DAG.getDataLayout()))); 4257 4258 SDValue TwoToFractionalPartOfX; 4259 if (LimitFloatPrecision <= 6) { 4260 // For floating-point precision of 6: 4261 // 4262 // TwoToFractionalPartOfX = 4263 // 0.997535578f + 4264 // (0.735607626f + 0.252464424f * x) * x; 4265 // 4266 // error 0.0144103317, which is 6 bits 4267 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4268 getF32Constant(DAG, 0x3e814304, dl)); 4269 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4270 getF32Constant(DAG, 0x3f3c50c8, dl)); 4271 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4272 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4273 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4274 } else if (LimitFloatPrecision <= 12) { 4275 // For floating-point precision of 12: 4276 // 4277 // TwoToFractionalPartOfX = 4278 // 0.999892986f + 4279 // (0.696457318f + 4280 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4281 // 4282 // error 0.000107046256, which is 13 to 14 bits 4283 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4284 getF32Constant(DAG, 0x3da235e3, dl)); 4285 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4286 getF32Constant(DAG, 0x3e65b8f3, dl)); 4287 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4288 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4289 getF32Constant(DAG, 0x3f324b07, dl)); 4290 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4291 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4292 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4293 } else { // LimitFloatPrecision <= 18 4294 // For floating-point precision of 18: 4295 // 4296 // TwoToFractionalPartOfX = 4297 // 0.999999982f + 4298 // (0.693148872f + 4299 // (0.240227044f + 4300 // (0.554906021e-1f + 4301 // (0.961591928e-2f + 4302 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4303 // error 2.47208000*10^(-7), which is better than 18 bits 4304 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4305 getF32Constant(DAG, 0x3924b03e, dl)); 4306 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4307 getF32Constant(DAG, 0x3ab24b87, dl)); 4308 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4309 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4310 getF32Constant(DAG, 0x3c1d8c17, dl)); 4311 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4312 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4313 getF32Constant(DAG, 0x3d634a1d, dl)); 4314 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4315 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4316 getF32Constant(DAG, 0x3e75fe14, dl)); 4317 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4318 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4319 getF32Constant(DAG, 0x3f317234, dl)); 4320 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4321 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4322 getF32Constant(DAG, 0x3f800000, dl)); 4323 } 4324 4325 // Add the exponent into the result in integer domain. 4326 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4327 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4328 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4329 } 4330 4331 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4332 /// limited-precision mode. 4333 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4334 const TargetLowering &TLI) { 4335 if (Op.getValueType() == MVT::f32 && 4336 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4337 4338 // Put the exponent in the right bit position for later addition to the 4339 // final result: 4340 // 4341 // #define LOG2OFe 1.4426950f 4342 // t0 = Op * LOG2OFe 4343 4344 // TODO: What fast-math-flags should be set here? 4345 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4346 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4347 return getLimitedPrecisionExp2(t0, dl, DAG); 4348 } 4349 4350 // No special expansion. 4351 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4352 } 4353 4354 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4355 /// limited-precision mode. 4356 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4357 const TargetLowering &TLI) { 4358 4359 // TODO: What fast-math-flags should be set on the floating-point nodes? 4360 4361 if (Op.getValueType() == MVT::f32 && 4362 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4363 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4364 4365 // Scale the exponent by log(2) [0.69314718f]. 4366 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4367 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4368 getF32Constant(DAG, 0x3f317218, dl)); 4369 4370 // Get the significand and build it into a floating-point number with 4371 // exponent of 1. 4372 SDValue X = GetSignificand(DAG, Op1, dl); 4373 4374 SDValue LogOfMantissa; 4375 if (LimitFloatPrecision <= 6) { 4376 // For floating-point precision of 6: 4377 // 4378 // LogofMantissa = 4379 // -1.1609546f + 4380 // (1.4034025f - 0.23903021f * x) * x; 4381 // 4382 // error 0.0034276066, which is better than 8 bits 4383 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4384 getF32Constant(DAG, 0xbe74c456, dl)); 4385 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4386 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4387 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4388 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4389 getF32Constant(DAG, 0x3f949a29, dl)); 4390 } else if (LimitFloatPrecision <= 12) { 4391 // For floating-point precision of 12: 4392 // 4393 // LogOfMantissa = 4394 // -1.7417939f + 4395 // (2.8212026f + 4396 // (-1.4699568f + 4397 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4398 // 4399 // error 0.000061011436, which is 14 bits 4400 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4401 getF32Constant(DAG, 0xbd67b6d6, dl)); 4402 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4403 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4404 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4405 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4406 getF32Constant(DAG, 0x3fbc278b, dl)); 4407 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4408 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4409 getF32Constant(DAG, 0x40348e95, dl)); 4410 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4411 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4412 getF32Constant(DAG, 0x3fdef31a, dl)); 4413 } else { // LimitFloatPrecision <= 18 4414 // For floating-point precision of 18: 4415 // 4416 // LogOfMantissa = 4417 // -2.1072184f + 4418 // (4.2372794f + 4419 // (-3.7029485f + 4420 // (2.2781945f + 4421 // (-0.87823314f + 4422 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4423 // 4424 // error 0.0000023660568, which is better than 18 bits 4425 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4426 getF32Constant(DAG, 0xbc91e5ac, dl)); 4427 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4428 getF32Constant(DAG, 0x3e4350aa, dl)); 4429 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4430 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4431 getF32Constant(DAG, 0x3f60d3e3, dl)); 4432 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4433 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4434 getF32Constant(DAG, 0x4011cdf0, dl)); 4435 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4436 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4437 getF32Constant(DAG, 0x406cfd1c, dl)); 4438 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4439 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4440 getF32Constant(DAG, 0x408797cb, dl)); 4441 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4442 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4443 getF32Constant(DAG, 0x4006dcab, dl)); 4444 } 4445 4446 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4447 } 4448 4449 // No special expansion. 4450 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4451 } 4452 4453 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4454 /// limited-precision mode. 4455 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4456 const TargetLowering &TLI) { 4457 4458 // TODO: What fast-math-flags should be set on the floating-point nodes? 4459 4460 if (Op.getValueType() == MVT::f32 && 4461 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4462 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4463 4464 // Get the exponent. 4465 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4466 4467 // Get the significand and build it into a floating-point number with 4468 // exponent of 1. 4469 SDValue X = GetSignificand(DAG, Op1, dl); 4470 4471 // Different possible minimax approximations of significand in 4472 // floating-point for various degrees of accuracy over [1,2]. 4473 SDValue Log2ofMantissa; 4474 if (LimitFloatPrecision <= 6) { 4475 // For floating-point precision of 6: 4476 // 4477 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4478 // 4479 // error 0.0049451742, which is more than 7 bits 4480 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4481 getF32Constant(DAG, 0xbeb08fe0, dl)); 4482 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4483 getF32Constant(DAG, 0x40019463, dl)); 4484 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4485 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4486 getF32Constant(DAG, 0x3fd6633d, dl)); 4487 } else if (LimitFloatPrecision <= 12) { 4488 // For floating-point precision of 12: 4489 // 4490 // Log2ofMantissa = 4491 // -2.51285454f + 4492 // (4.07009056f + 4493 // (-2.12067489f + 4494 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4495 // 4496 // error 0.0000876136000, which is better than 13 bits 4497 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4498 getF32Constant(DAG, 0xbda7262e, dl)); 4499 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4500 getF32Constant(DAG, 0x3f25280b, dl)); 4501 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4502 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4503 getF32Constant(DAG, 0x4007b923, dl)); 4504 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4505 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4506 getF32Constant(DAG, 0x40823e2f, dl)); 4507 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4508 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4509 getF32Constant(DAG, 0x4020d29c, dl)); 4510 } else { // LimitFloatPrecision <= 18 4511 // For floating-point precision of 18: 4512 // 4513 // Log2ofMantissa = 4514 // -3.0400495f + 4515 // (6.1129976f + 4516 // (-5.3420409f + 4517 // (3.2865683f + 4518 // (-1.2669343f + 4519 // (0.27515199f - 4520 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4521 // 4522 // error 0.0000018516, which is better than 18 bits 4523 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4524 getF32Constant(DAG, 0xbcd2769e, dl)); 4525 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4526 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4527 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4528 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4529 getF32Constant(DAG, 0x3fa22ae7, dl)); 4530 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4531 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4532 getF32Constant(DAG, 0x40525723, dl)); 4533 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4534 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4535 getF32Constant(DAG, 0x40aaf200, dl)); 4536 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4537 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4538 getF32Constant(DAG, 0x40c39dad, dl)); 4539 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4540 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4541 getF32Constant(DAG, 0x4042902c, dl)); 4542 } 4543 4544 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4545 } 4546 4547 // No special expansion. 4548 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4549 } 4550 4551 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4552 /// limited-precision mode. 4553 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4554 const TargetLowering &TLI) { 4555 4556 // TODO: What fast-math-flags should be set on the floating-point nodes? 4557 4558 if (Op.getValueType() == MVT::f32 && 4559 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4560 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4561 4562 // Scale the exponent by log10(2) [0.30102999f]. 4563 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4564 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4565 getF32Constant(DAG, 0x3e9a209a, dl)); 4566 4567 // Get the significand and build it into a floating-point number with 4568 // exponent of 1. 4569 SDValue X = GetSignificand(DAG, Op1, dl); 4570 4571 SDValue Log10ofMantissa; 4572 if (LimitFloatPrecision <= 6) { 4573 // For floating-point precision of 6: 4574 // 4575 // Log10ofMantissa = 4576 // -0.50419619f + 4577 // (0.60948995f - 0.10380950f * x) * x; 4578 // 4579 // error 0.0014886165, which is 6 bits 4580 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4581 getF32Constant(DAG, 0xbdd49a13, dl)); 4582 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4583 getF32Constant(DAG, 0x3f1c0789, dl)); 4584 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4585 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4586 getF32Constant(DAG, 0x3f011300, dl)); 4587 } else if (LimitFloatPrecision <= 12) { 4588 // For floating-point precision of 12: 4589 // 4590 // Log10ofMantissa = 4591 // -0.64831180f + 4592 // (0.91751397f + 4593 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4594 // 4595 // error 0.00019228036, which is better than 12 bits 4596 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4597 getF32Constant(DAG, 0x3d431f31, dl)); 4598 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4599 getF32Constant(DAG, 0x3ea21fb2, dl)); 4600 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4601 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4602 getF32Constant(DAG, 0x3f6ae232, dl)); 4603 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4604 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4605 getF32Constant(DAG, 0x3f25f7c3, dl)); 4606 } else { // LimitFloatPrecision <= 18 4607 // For floating-point precision of 18: 4608 // 4609 // Log10ofMantissa = 4610 // -0.84299375f + 4611 // (1.5327582f + 4612 // (-1.0688956f + 4613 // (0.49102474f + 4614 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4615 // 4616 // error 0.0000037995730, which is better than 18 bits 4617 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4618 getF32Constant(DAG, 0x3c5d51ce, dl)); 4619 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4620 getF32Constant(DAG, 0x3e00685a, dl)); 4621 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4622 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4623 getF32Constant(DAG, 0x3efb6798, dl)); 4624 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4625 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4626 getF32Constant(DAG, 0x3f88d192, dl)); 4627 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4628 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4629 getF32Constant(DAG, 0x3fc4316c, dl)); 4630 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4631 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4632 getF32Constant(DAG, 0x3f57ce70, dl)); 4633 } 4634 4635 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4636 } 4637 4638 // No special expansion. 4639 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4640 } 4641 4642 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4643 /// limited-precision mode. 4644 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4645 const TargetLowering &TLI) { 4646 if (Op.getValueType() == MVT::f32 && 4647 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4648 return getLimitedPrecisionExp2(Op, dl, DAG); 4649 4650 // No special expansion. 4651 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4652 } 4653 4654 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4655 /// limited-precision mode with x == 10.0f. 4656 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4657 SelectionDAG &DAG, const TargetLowering &TLI) { 4658 bool IsExp10 = false; 4659 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4660 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4661 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4662 APFloat Ten(10.0f); 4663 IsExp10 = LHSC->isExactlyValue(Ten); 4664 } 4665 } 4666 4667 // TODO: What fast-math-flags should be set on the FMUL node? 4668 if (IsExp10) { 4669 // Put the exponent in the right bit position for later addition to the 4670 // final result: 4671 // 4672 // #define LOG2OF10 3.3219281f 4673 // t0 = Op * LOG2OF10; 4674 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4675 getF32Constant(DAG, 0x40549a78, dl)); 4676 return getLimitedPrecisionExp2(t0, dl, DAG); 4677 } 4678 4679 // No special expansion. 4680 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4681 } 4682 4683 4684 /// ExpandPowI - Expand a llvm.powi intrinsic. 4685 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4686 SelectionDAG &DAG) { 4687 // If RHS is a constant, we can expand this out to a multiplication tree, 4688 // otherwise we end up lowering to a call to __powidf2 (for example). When 4689 // optimizing for size, we only want to do this if the expansion would produce 4690 // a small number of multiplies, otherwise we do the full expansion. 4691 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4692 // Get the exponent as a positive value. 4693 unsigned Val = RHSC->getSExtValue(); 4694 if ((int)Val < 0) Val = -Val; 4695 4696 // powi(x, 0) -> 1.0 4697 if (Val == 0) 4698 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4699 4700 const Function *F = DAG.getMachineFunction().getFunction(); 4701 if (!F->optForSize() || 4702 // If optimizing for size, don't insert too many multiplies. 4703 // This inserts up to 5 multiplies. 4704 countPopulation(Val) + Log2_32(Val) < 7) { 4705 // We use the simple binary decomposition method to generate the multiply 4706 // sequence. There are more optimal ways to do this (for example, 4707 // powi(x,15) generates one more multiply than it should), but this has 4708 // the benefit of being both really simple and much better than a libcall. 4709 SDValue Res; // Logically starts equal to 1.0 4710 SDValue CurSquare = LHS; 4711 // TODO: Intrinsics should have fast-math-flags that propagate to these 4712 // nodes. 4713 while (Val) { 4714 if (Val & 1) { 4715 if (Res.getNode()) 4716 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4717 else 4718 Res = CurSquare; // 1.0*CurSquare. 4719 } 4720 4721 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4722 CurSquare, CurSquare); 4723 Val >>= 1; 4724 } 4725 4726 // If the original was negative, invert the result, producing 1/(x*x*x). 4727 if (RHSC->getSExtValue() < 0) 4728 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4729 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4730 return Res; 4731 } 4732 } 4733 4734 // Otherwise, expand to a libcall. 4735 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4736 } 4737 4738 // getUnderlyingArgReg - Find underlying register used for a truncated or 4739 // bitcasted argument. 4740 static unsigned getUnderlyingArgReg(const SDValue &N) { 4741 switch (N.getOpcode()) { 4742 case ISD::CopyFromReg: 4743 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4744 case ISD::BITCAST: 4745 case ISD::AssertZext: 4746 case ISD::AssertSext: 4747 case ISD::TRUNCATE: 4748 return getUnderlyingArgReg(N.getOperand(0)); 4749 default: 4750 return 0; 4751 } 4752 } 4753 4754 /// If the DbgValueInst is a dbg_value of a function argument, create the 4755 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4756 /// instruction selection, they will be inserted to the entry BB. 4757 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4758 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4759 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4760 const Argument *Arg = dyn_cast<Argument>(V); 4761 if (!Arg) 4762 return false; 4763 4764 MachineFunction &MF = DAG.getMachineFunction(); 4765 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4766 4767 // Ignore inlined function arguments here. 4768 // 4769 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4770 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4771 return false; 4772 4773 bool IsIndirect = false; 4774 Optional<MachineOperand> Op; 4775 // Some arguments' frame index is recorded during argument lowering. 4776 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4777 if (FI != INT_MAX) 4778 Op = MachineOperand::CreateFI(FI); 4779 4780 if (!Op && N.getNode()) { 4781 unsigned Reg = getUnderlyingArgReg(N); 4782 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4783 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4784 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4785 if (PR) 4786 Reg = PR; 4787 } 4788 if (Reg) { 4789 Op = MachineOperand::CreateReg(Reg, false); 4790 IsIndirect = IsDbgDeclare; 4791 } 4792 } 4793 4794 if (!Op) { 4795 // Check if ValueMap has reg number. 4796 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4797 if (VMI != FuncInfo.ValueMap.end()) { 4798 Op = MachineOperand::CreateReg(VMI->second, false); 4799 IsIndirect = IsDbgDeclare; 4800 } 4801 } 4802 4803 if (!Op && N.getNode()) 4804 // Check if frame index is available. 4805 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4806 if (FrameIndexSDNode *FINode = 4807 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4808 Op = MachineOperand::CreateFI(FINode->getIndex()); 4809 4810 if (!Op) 4811 return false; 4812 4813 assert(Variable->isValidLocationForIntrinsic(DL) && 4814 "Expected inlined-at fields to agree"); 4815 if (Op->isReg()) 4816 FuncInfo.ArgDbgValues.push_back( 4817 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4818 Op->getReg(), 0, Variable, Expr)); 4819 else 4820 FuncInfo.ArgDbgValues.push_back( 4821 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4822 .add(*Op) 4823 .addImm(0) 4824 .addMetadata(Variable) 4825 .addMetadata(Expr)); 4826 4827 return true; 4828 } 4829 4830 /// Return the appropriate SDDbgValue based on N. 4831 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4832 DILocalVariable *Variable, 4833 DIExpression *Expr, 4834 const DebugLoc &dl, 4835 unsigned DbgSDNodeOrder) { 4836 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 4837 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4838 // stack slot locations as such instead of as indirectly addressed 4839 // locations. 4840 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl, 4841 DbgSDNodeOrder); 4842 } 4843 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl, 4844 DbgSDNodeOrder); 4845 } 4846 4847 // VisualStudio defines setjmp as _setjmp 4848 #if defined(_MSC_VER) && defined(setjmp) && \ 4849 !defined(setjmp_undefined_for_msvc) 4850 # pragma push_macro("setjmp") 4851 # undef setjmp 4852 # define setjmp_undefined_for_msvc 4853 #endif 4854 4855 /// Lower the call to the specified intrinsic function. If we want to emit this 4856 /// as a call to a named external function, return the name. Otherwise, lower it 4857 /// and return null. 4858 const char * 4859 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4860 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4861 SDLoc sdl = getCurSDLoc(); 4862 DebugLoc dl = getCurDebugLoc(); 4863 SDValue Res; 4864 4865 switch (Intrinsic) { 4866 default: 4867 // By default, turn this into a target intrinsic node. 4868 visitTargetIntrinsic(I, Intrinsic); 4869 return nullptr; 4870 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4871 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4872 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4873 case Intrinsic::returnaddress: 4874 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4875 TLI.getPointerTy(DAG.getDataLayout()), 4876 getValue(I.getArgOperand(0)))); 4877 return nullptr; 4878 case Intrinsic::addressofreturnaddress: 4879 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 4880 TLI.getPointerTy(DAG.getDataLayout()))); 4881 return nullptr; 4882 case Intrinsic::frameaddress: 4883 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4884 TLI.getPointerTy(DAG.getDataLayout()), 4885 getValue(I.getArgOperand(0)))); 4886 return nullptr; 4887 case Intrinsic::read_register: { 4888 Value *Reg = I.getArgOperand(0); 4889 SDValue Chain = getRoot(); 4890 SDValue RegName = 4891 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4892 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4893 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4894 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4895 setValue(&I, Res); 4896 DAG.setRoot(Res.getValue(1)); 4897 return nullptr; 4898 } 4899 case Intrinsic::write_register: { 4900 Value *Reg = I.getArgOperand(0); 4901 Value *RegValue = I.getArgOperand(1); 4902 SDValue Chain = getRoot(); 4903 SDValue RegName = 4904 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4905 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4906 RegName, getValue(RegValue))); 4907 return nullptr; 4908 } 4909 case Intrinsic::setjmp: 4910 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4911 case Intrinsic::longjmp: 4912 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4913 case Intrinsic::memcpy: { 4914 SDValue Op1 = getValue(I.getArgOperand(0)); 4915 SDValue Op2 = getValue(I.getArgOperand(1)); 4916 SDValue Op3 = getValue(I.getArgOperand(2)); 4917 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4918 if (!Align) 4919 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4920 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4921 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4922 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4923 false, isTC, 4924 MachinePointerInfo(I.getArgOperand(0)), 4925 MachinePointerInfo(I.getArgOperand(1))); 4926 updateDAGForMaybeTailCall(MC); 4927 return nullptr; 4928 } 4929 case Intrinsic::memset: { 4930 SDValue Op1 = getValue(I.getArgOperand(0)); 4931 SDValue Op2 = getValue(I.getArgOperand(1)); 4932 SDValue Op3 = getValue(I.getArgOperand(2)); 4933 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4934 if (!Align) 4935 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4936 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4937 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4938 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4939 isTC, MachinePointerInfo(I.getArgOperand(0))); 4940 updateDAGForMaybeTailCall(MS); 4941 return nullptr; 4942 } 4943 case Intrinsic::memmove: { 4944 SDValue Op1 = getValue(I.getArgOperand(0)); 4945 SDValue Op2 = getValue(I.getArgOperand(1)); 4946 SDValue Op3 = getValue(I.getArgOperand(2)); 4947 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4948 if (!Align) 4949 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4950 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4951 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4952 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4953 isTC, MachinePointerInfo(I.getArgOperand(0)), 4954 MachinePointerInfo(I.getArgOperand(1))); 4955 updateDAGForMaybeTailCall(MM); 4956 return nullptr; 4957 } 4958 case Intrinsic::memcpy_element_unordered_atomic: { 4959 const ElementUnorderedAtomicMemCpyInst &MI = 4960 cast<ElementUnorderedAtomicMemCpyInst>(I); 4961 SDValue Dst = getValue(MI.getRawDest()); 4962 SDValue Src = getValue(MI.getRawSource()); 4963 SDValue Length = getValue(MI.getLength()); 4964 4965 // Emit a library call. 4966 TargetLowering::ArgListTy Args; 4967 TargetLowering::ArgListEntry Entry; 4968 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 4969 Entry.Node = Dst; 4970 Args.push_back(Entry); 4971 4972 Entry.Node = Src; 4973 Args.push_back(Entry); 4974 4975 Entry.Ty = MI.getLength()->getType(); 4976 Entry.Node = Length; 4977 Args.push_back(Entry); 4978 4979 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 4980 RTLIB::Libcall LibraryCall = 4981 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 4982 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 4983 report_fatal_error("Unsupported element size"); 4984 4985 TargetLowering::CallLoweringInfo CLI(DAG); 4986 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 4987 TLI.getLibcallCallingConv(LibraryCall), 4988 Type::getVoidTy(*DAG.getContext()), 4989 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 4990 TLI.getPointerTy(DAG.getDataLayout())), 4991 std::move(Args)); 4992 4993 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4994 DAG.setRoot(CallResult.second); 4995 return nullptr; 4996 } 4997 case Intrinsic::memmove_element_unordered_atomic: { 4998 auto &MI = cast<ElementUnorderedAtomicMemMoveInst>(I); 4999 SDValue Dst = getValue(MI.getRawDest()); 5000 SDValue Src = getValue(MI.getRawSource()); 5001 SDValue Length = getValue(MI.getLength()); 5002 5003 // Emit a library call. 5004 TargetLowering::ArgListTy Args; 5005 TargetLowering::ArgListEntry Entry; 5006 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5007 Entry.Node = Dst; 5008 Args.push_back(Entry); 5009 5010 Entry.Node = Src; 5011 Args.push_back(Entry); 5012 5013 Entry.Ty = MI.getLength()->getType(); 5014 Entry.Node = Length; 5015 Args.push_back(Entry); 5016 5017 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5018 RTLIB::Libcall LibraryCall = 5019 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5020 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5021 report_fatal_error("Unsupported element size"); 5022 5023 TargetLowering::CallLoweringInfo CLI(DAG); 5024 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5025 TLI.getLibcallCallingConv(LibraryCall), 5026 Type::getVoidTy(*DAG.getContext()), 5027 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5028 TLI.getPointerTy(DAG.getDataLayout())), 5029 std::move(Args)); 5030 5031 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5032 DAG.setRoot(CallResult.second); 5033 return nullptr; 5034 } 5035 case Intrinsic::memset_element_unordered_atomic: { 5036 auto &MI = cast<ElementUnorderedAtomicMemSetInst>(I); 5037 SDValue Dst = getValue(MI.getRawDest()); 5038 SDValue Val = getValue(MI.getValue()); 5039 SDValue Length = getValue(MI.getLength()); 5040 5041 // Emit a library call. 5042 TargetLowering::ArgListTy Args; 5043 TargetLowering::ArgListEntry Entry; 5044 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5045 Entry.Node = Dst; 5046 Args.push_back(Entry); 5047 5048 Entry.Ty = Type::getInt8Ty(*DAG.getContext()); 5049 Entry.Node = Val; 5050 Args.push_back(Entry); 5051 5052 Entry.Ty = MI.getLength()->getType(); 5053 Entry.Node = Length; 5054 Args.push_back(Entry); 5055 5056 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5057 RTLIB::Libcall LibraryCall = 5058 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5059 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5060 report_fatal_error("Unsupported element size"); 5061 5062 TargetLowering::CallLoweringInfo CLI(DAG); 5063 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5064 TLI.getLibcallCallingConv(LibraryCall), 5065 Type::getVoidTy(*DAG.getContext()), 5066 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5067 TLI.getPointerTy(DAG.getDataLayout())), 5068 std::move(Args)); 5069 5070 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5071 DAG.setRoot(CallResult.second); 5072 return nullptr; 5073 } 5074 case Intrinsic::dbg_declare: { 5075 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 5076 DILocalVariable *Variable = DI.getVariable(); 5077 DIExpression *Expression = DI.getExpression(); 5078 const Value *Address = DI.getAddress(); 5079 assert(Variable && "Missing variable"); 5080 if (!Address) { 5081 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5082 return nullptr; 5083 } 5084 5085 // Check if address has undef value. 5086 if (isa<UndefValue>(Address) || 5087 (Address->use_empty() && !isa<Argument>(Address))) { 5088 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5089 return nullptr; 5090 } 5091 5092 // Byval arguments with frame indices were already handled after argument 5093 // lowering and before isel. 5094 const auto *Arg = 5095 dyn_cast<Argument>(Address->stripInBoundsConstantOffsets()); 5096 if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX) 5097 return nullptr; 5098 5099 SDValue &N = NodeMap[Address]; 5100 if (!N.getNode() && isa<Argument>(Address)) 5101 // Check unused arguments map. 5102 N = UnusedArgNodeMap[Address]; 5103 SDDbgValue *SDV; 5104 if (N.getNode()) { 5105 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5106 Address = BCI->getOperand(0); 5107 // Parameters are handled specially. 5108 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5109 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5110 if (isParameter && FINode) { 5111 // Byval parameter. We have a frame index at this point. 5112 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5113 FINode->getIndex(), dl, SDNodeOrder); 5114 } else if (isa<Argument>(Address)) { 5115 // Address is an argument, so try to emit its dbg value using 5116 // virtual register info from the FuncInfo.ValueMap. 5117 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5118 return nullptr; 5119 } else { 5120 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5121 true, dl, SDNodeOrder); 5122 } 5123 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5124 } else { 5125 // If Address is an argument then try to emit its dbg value using 5126 // virtual register info from the FuncInfo.ValueMap. 5127 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5128 N)) { 5129 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5130 } 5131 } 5132 return nullptr; 5133 } 5134 case Intrinsic::dbg_value: { 5135 const DbgValueInst &DI = cast<DbgValueInst>(I); 5136 assert(DI.getVariable() && "Missing variable"); 5137 5138 DILocalVariable *Variable = DI.getVariable(); 5139 DIExpression *Expression = DI.getExpression(); 5140 const Value *V = DI.getValue(); 5141 if (!V) 5142 return nullptr; 5143 5144 SDDbgValue *SDV; 5145 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5146 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5147 DAG.AddDbgValue(SDV, nullptr, false); 5148 return nullptr; 5149 } 5150 5151 // Do not use getValue() in here; we don't want to generate code at 5152 // this point if it hasn't been done yet. 5153 SDValue N = NodeMap[V]; 5154 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5155 N = UnusedArgNodeMap[V]; 5156 if (N.getNode()) { 5157 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5158 return nullptr; 5159 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5160 DAG.AddDbgValue(SDV, N.getNode(), false); 5161 return nullptr; 5162 } 5163 5164 if (!V->use_empty() ) { 5165 // Do not call getValue(V) yet, as we don't want to generate code. 5166 // Remember it for later. 5167 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5168 DanglingDebugInfoMap[V] = DDI; 5169 return nullptr; 5170 } 5171 5172 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5173 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5174 return nullptr; 5175 } 5176 5177 case Intrinsic::eh_typeid_for: { 5178 // Find the type id for the given typeinfo. 5179 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5180 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5181 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5182 setValue(&I, Res); 5183 return nullptr; 5184 } 5185 5186 case Intrinsic::eh_return_i32: 5187 case Intrinsic::eh_return_i64: 5188 DAG.getMachineFunction().setCallsEHReturn(true); 5189 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5190 MVT::Other, 5191 getControlRoot(), 5192 getValue(I.getArgOperand(0)), 5193 getValue(I.getArgOperand(1)))); 5194 return nullptr; 5195 case Intrinsic::eh_unwind_init: 5196 DAG.getMachineFunction().setCallsUnwindInit(true); 5197 return nullptr; 5198 case Intrinsic::eh_dwarf_cfa: { 5199 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5200 TLI.getPointerTy(DAG.getDataLayout()), 5201 getValue(I.getArgOperand(0)))); 5202 return nullptr; 5203 } 5204 case Intrinsic::eh_sjlj_callsite: { 5205 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5206 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5207 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5208 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5209 5210 MMI.setCurrentCallSite(CI->getZExtValue()); 5211 return nullptr; 5212 } 5213 case Intrinsic::eh_sjlj_functioncontext: { 5214 // Get and store the index of the function context. 5215 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5216 AllocaInst *FnCtx = 5217 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5218 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5219 MFI.setFunctionContextIndex(FI); 5220 return nullptr; 5221 } 5222 case Intrinsic::eh_sjlj_setjmp: { 5223 SDValue Ops[2]; 5224 Ops[0] = getRoot(); 5225 Ops[1] = getValue(I.getArgOperand(0)); 5226 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5227 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5228 setValue(&I, Op.getValue(0)); 5229 DAG.setRoot(Op.getValue(1)); 5230 return nullptr; 5231 } 5232 case Intrinsic::eh_sjlj_longjmp: { 5233 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5234 getRoot(), getValue(I.getArgOperand(0)))); 5235 return nullptr; 5236 } 5237 case Intrinsic::eh_sjlj_setup_dispatch: { 5238 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5239 getRoot())); 5240 return nullptr; 5241 } 5242 5243 case Intrinsic::masked_gather: 5244 visitMaskedGather(I); 5245 return nullptr; 5246 case Intrinsic::masked_load: 5247 visitMaskedLoad(I); 5248 return nullptr; 5249 case Intrinsic::masked_scatter: 5250 visitMaskedScatter(I); 5251 return nullptr; 5252 case Intrinsic::masked_store: 5253 visitMaskedStore(I); 5254 return nullptr; 5255 case Intrinsic::masked_expandload: 5256 visitMaskedLoad(I, true /* IsExpanding */); 5257 return nullptr; 5258 case Intrinsic::masked_compressstore: 5259 visitMaskedStore(I, true /* IsCompressing */); 5260 return nullptr; 5261 case Intrinsic::x86_mmx_pslli_w: 5262 case Intrinsic::x86_mmx_pslli_d: 5263 case Intrinsic::x86_mmx_pslli_q: 5264 case Intrinsic::x86_mmx_psrli_w: 5265 case Intrinsic::x86_mmx_psrli_d: 5266 case Intrinsic::x86_mmx_psrli_q: 5267 case Intrinsic::x86_mmx_psrai_w: 5268 case Intrinsic::x86_mmx_psrai_d: { 5269 SDValue ShAmt = getValue(I.getArgOperand(1)); 5270 if (isa<ConstantSDNode>(ShAmt)) { 5271 visitTargetIntrinsic(I, Intrinsic); 5272 return nullptr; 5273 } 5274 unsigned NewIntrinsic = 0; 5275 EVT ShAmtVT = MVT::v2i32; 5276 switch (Intrinsic) { 5277 case Intrinsic::x86_mmx_pslli_w: 5278 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5279 break; 5280 case Intrinsic::x86_mmx_pslli_d: 5281 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5282 break; 5283 case Intrinsic::x86_mmx_pslli_q: 5284 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5285 break; 5286 case Intrinsic::x86_mmx_psrli_w: 5287 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5288 break; 5289 case Intrinsic::x86_mmx_psrli_d: 5290 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5291 break; 5292 case Intrinsic::x86_mmx_psrli_q: 5293 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5294 break; 5295 case Intrinsic::x86_mmx_psrai_w: 5296 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5297 break; 5298 case Intrinsic::x86_mmx_psrai_d: 5299 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5300 break; 5301 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5302 } 5303 5304 // The vector shift intrinsics with scalars uses 32b shift amounts but 5305 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5306 // to be zero. 5307 // We must do this early because v2i32 is not a legal type. 5308 SDValue ShOps[2]; 5309 ShOps[0] = ShAmt; 5310 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5311 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5312 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5313 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5314 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5315 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5316 getValue(I.getArgOperand(0)), ShAmt); 5317 setValue(&I, Res); 5318 return nullptr; 5319 } 5320 case Intrinsic::powi: 5321 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5322 getValue(I.getArgOperand(1)), DAG)); 5323 return nullptr; 5324 case Intrinsic::log: 5325 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5326 return nullptr; 5327 case Intrinsic::log2: 5328 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5329 return nullptr; 5330 case Intrinsic::log10: 5331 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5332 return nullptr; 5333 case Intrinsic::exp: 5334 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5335 return nullptr; 5336 case Intrinsic::exp2: 5337 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5338 return nullptr; 5339 case Intrinsic::pow: 5340 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5341 getValue(I.getArgOperand(1)), DAG, TLI)); 5342 return nullptr; 5343 case Intrinsic::sqrt: 5344 case Intrinsic::fabs: 5345 case Intrinsic::sin: 5346 case Intrinsic::cos: 5347 case Intrinsic::floor: 5348 case Intrinsic::ceil: 5349 case Intrinsic::trunc: 5350 case Intrinsic::rint: 5351 case Intrinsic::nearbyint: 5352 case Intrinsic::round: 5353 case Intrinsic::canonicalize: { 5354 unsigned Opcode; 5355 switch (Intrinsic) { 5356 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5357 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5358 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5359 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5360 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5361 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5362 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5363 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5364 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5365 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5366 case Intrinsic::round: Opcode = ISD::FROUND; break; 5367 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5368 } 5369 5370 setValue(&I, DAG.getNode(Opcode, sdl, 5371 getValue(I.getArgOperand(0)).getValueType(), 5372 getValue(I.getArgOperand(0)))); 5373 return nullptr; 5374 } 5375 case Intrinsic::minnum: { 5376 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5377 unsigned Opc = 5378 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5379 ? ISD::FMINNAN 5380 : ISD::FMINNUM; 5381 setValue(&I, DAG.getNode(Opc, sdl, VT, 5382 getValue(I.getArgOperand(0)), 5383 getValue(I.getArgOperand(1)))); 5384 return nullptr; 5385 } 5386 case Intrinsic::maxnum: { 5387 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5388 unsigned Opc = 5389 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5390 ? ISD::FMAXNAN 5391 : ISD::FMAXNUM; 5392 setValue(&I, DAG.getNode(Opc, sdl, VT, 5393 getValue(I.getArgOperand(0)), 5394 getValue(I.getArgOperand(1)))); 5395 return nullptr; 5396 } 5397 case Intrinsic::copysign: 5398 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5399 getValue(I.getArgOperand(0)).getValueType(), 5400 getValue(I.getArgOperand(0)), 5401 getValue(I.getArgOperand(1)))); 5402 return nullptr; 5403 case Intrinsic::fma: 5404 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5405 getValue(I.getArgOperand(0)).getValueType(), 5406 getValue(I.getArgOperand(0)), 5407 getValue(I.getArgOperand(1)), 5408 getValue(I.getArgOperand(2)))); 5409 return nullptr; 5410 case Intrinsic::experimental_constrained_fadd: 5411 case Intrinsic::experimental_constrained_fsub: 5412 case Intrinsic::experimental_constrained_fmul: 5413 case Intrinsic::experimental_constrained_fdiv: 5414 case Intrinsic::experimental_constrained_frem: 5415 case Intrinsic::experimental_constrained_sqrt: 5416 case Intrinsic::experimental_constrained_pow: 5417 case Intrinsic::experimental_constrained_powi: 5418 case Intrinsic::experimental_constrained_sin: 5419 case Intrinsic::experimental_constrained_cos: 5420 case Intrinsic::experimental_constrained_exp: 5421 case Intrinsic::experimental_constrained_exp2: 5422 case Intrinsic::experimental_constrained_log: 5423 case Intrinsic::experimental_constrained_log10: 5424 case Intrinsic::experimental_constrained_log2: 5425 case Intrinsic::experimental_constrained_rint: 5426 case Intrinsic::experimental_constrained_nearbyint: 5427 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5428 return nullptr; 5429 case Intrinsic::fmuladd: { 5430 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5431 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5432 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5433 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5434 getValue(I.getArgOperand(0)).getValueType(), 5435 getValue(I.getArgOperand(0)), 5436 getValue(I.getArgOperand(1)), 5437 getValue(I.getArgOperand(2)))); 5438 } else { 5439 // TODO: Intrinsic calls should have fast-math-flags. 5440 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5441 getValue(I.getArgOperand(0)).getValueType(), 5442 getValue(I.getArgOperand(0)), 5443 getValue(I.getArgOperand(1))); 5444 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5445 getValue(I.getArgOperand(0)).getValueType(), 5446 Mul, 5447 getValue(I.getArgOperand(2))); 5448 setValue(&I, Add); 5449 } 5450 return nullptr; 5451 } 5452 case Intrinsic::convert_to_fp16: 5453 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5454 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5455 getValue(I.getArgOperand(0)), 5456 DAG.getTargetConstant(0, sdl, 5457 MVT::i32)))); 5458 return nullptr; 5459 case Intrinsic::convert_from_fp16: 5460 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5461 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5462 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5463 getValue(I.getArgOperand(0))))); 5464 return nullptr; 5465 case Intrinsic::pcmarker: { 5466 SDValue Tmp = getValue(I.getArgOperand(0)); 5467 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5468 return nullptr; 5469 } 5470 case Intrinsic::readcyclecounter: { 5471 SDValue Op = getRoot(); 5472 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5473 DAG.getVTList(MVT::i64, MVT::Other), Op); 5474 setValue(&I, Res); 5475 DAG.setRoot(Res.getValue(1)); 5476 return nullptr; 5477 } 5478 case Intrinsic::bitreverse: 5479 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5480 getValue(I.getArgOperand(0)).getValueType(), 5481 getValue(I.getArgOperand(0)))); 5482 return nullptr; 5483 case Intrinsic::bswap: 5484 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5485 getValue(I.getArgOperand(0)).getValueType(), 5486 getValue(I.getArgOperand(0)))); 5487 return nullptr; 5488 case Intrinsic::cttz: { 5489 SDValue Arg = getValue(I.getArgOperand(0)); 5490 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5491 EVT Ty = Arg.getValueType(); 5492 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5493 sdl, Ty, Arg)); 5494 return nullptr; 5495 } 5496 case Intrinsic::ctlz: { 5497 SDValue Arg = getValue(I.getArgOperand(0)); 5498 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5499 EVT Ty = Arg.getValueType(); 5500 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5501 sdl, Ty, Arg)); 5502 return nullptr; 5503 } 5504 case Intrinsic::ctpop: { 5505 SDValue Arg = getValue(I.getArgOperand(0)); 5506 EVT Ty = Arg.getValueType(); 5507 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5508 return nullptr; 5509 } 5510 case Intrinsic::stacksave: { 5511 SDValue Op = getRoot(); 5512 Res = DAG.getNode( 5513 ISD::STACKSAVE, sdl, 5514 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5515 setValue(&I, Res); 5516 DAG.setRoot(Res.getValue(1)); 5517 return nullptr; 5518 } 5519 case Intrinsic::stackrestore: { 5520 Res = getValue(I.getArgOperand(0)); 5521 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5522 return nullptr; 5523 } 5524 case Intrinsic::get_dynamic_area_offset: { 5525 SDValue Op = getRoot(); 5526 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5527 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5528 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5529 // target. 5530 if (PtrTy != ResTy) 5531 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5532 " intrinsic!"); 5533 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5534 Op); 5535 DAG.setRoot(Op); 5536 setValue(&I, Res); 5537 return nullptr; 5538 } 5539 case Intrinsic::stackguard: { 5540 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5541 MachineFunction &MF = DAG.getMachineFunction(); 5542 const Module &M = *MF.getFunction()->getParent(); 5543 SDValue Chain = getRoot(); 5544 if (TLI.useLoadStackGuardNode()) { 5545 Res = getLoadStackGuard(DAG, sdl, Chain); 5546 } else { 5547 const Value *Global = TLI.getSDagStackGuard(M); 5548 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5549 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5550 MachinePointerInfo(Global, 0), Align, 5551 MachineMemOperand::MOVolatile); 5552 } 5553 DAG.setRoot(Chain); 5554 setValue(&I, Res); 5555 return nullptr; 5556 } 5557 case Intrinsic::stackprotector: { 5558 // Emit code into the DAG to store the stack guard onto the stack. 5559 MachineFunction &MF = DAG.getMachineFunction(); 5560 MachineFrameInfo &MFI = MF.getFrameInfo(); 5561 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5562 SDValue Src, Chain = getRoot(); 5563 5564 if (TLI.useLoadStackGuardNode()) 5565 Src = getLoadStackGuard(DAG, sdl, Chain); 5566 else 5567 Src = getValue(I.getArgOperand(0)); // The guard's value. 5568 5569 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5570 5571 int FI = FuncInfo.StaticAllocaMap[Slot]; 5572 MFI.setStackProtectorIndex(FI); 5573 5574 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5575 5576 // Store the stack protector onto the stack. 5577 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5578 DAG.getMachineFunction(), FI), 5579 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5580 setValue(&I, Res); 5581 DAG.setRoot(Res); 5582 return nullptr; 5583 } 5584 case Intrinsic::objectsize: { 5585 // If we don't know by now, we're never going to know. 5586 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5587 5588 assert(CI && "Non-constant type in __builtin_object_size?"); 5589 5590 SDValue Arg = getValue(I.getCalledValue()); 5591 EVT Ty = Arg.getValueType(); 5592 5593 if (CI->isZero()) 5594 Res = DAG.getConstant(-1ULL, sdl, Ty); 5595 else 5596 Res = DAG.getConstant(0, sdl, Ty); 5597 5598 setValue(&I, Res); 5599 return nullptr; 5600 } 5601 case Intrinsic::annotation: 5602 case Intrinsic::ptr_annotation: 5603 case Intrinsic::invariant_group_barrier: 5604 // Drop the intrinsic, but forward the value 5605 setValue(&I, getValue(I.getOperand(0))); 5606 return nullptr; 5607 case Intrinsic::assume: 5608 case Intrinsic::var_annotation: 5609 // Discard annotate attributes and assumptions 5610 return nullptr; 5611 5612 case Intrinsic::init_trampoline: { 5613 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5614 5615 SDValue Ops[6]; 5616 Ops[0] = getRoot(); 5617 Ops[1] = getValue(I.getArgOperand(0)); 5618 Ops[2] = getValue(I.getArgOperand(1)); 5619 Ops[3] = getValue(I.getArgOperand(2)); 5620 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5621 Ops[5] = DAG.getSrcValue(F); 5622 5623 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5624 5625 DAG.setRoot(Res); 5626 return nullptr; 5627 } 5628 case Intrinsic::adjust_trampoline: { 5629 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5630 TLI.getPointerTy(DAG.getDataLayout()), 5631 getValue(I.getArgOperand(0)))); 5632 return nullptr; 5633 } 5634 case Intrinsic::gcroot: { 5635 MachineFunction &MF = DAG.getMachineFunction(); 5636 const Function *F = MF.getFunction(); 5637 (void)F; 5638 assert(F->hasGC() && 5639 "only valid in functions with gc specified, enforced by Verifier"); 5640 assert(GFI && "implied by previous"); 5641 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5642 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5643 5644 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5645 GFI->addStackRoot(FI->getIndex(), TypeMap); 5646 return nullptr; 5647 } 5648 case Intrinsic::gcread: 5649 case Intrinsic::gcwrite: 5650 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5651 case Intrinsic::flt_rounds: 5652 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5653 return nullptr; 5654 5655 case Intrinsic::expect: { 5656 // Just replace __builtin_expect(exp, c) with EXP. 5657 setValue(&I, getValue(I.getArgOperand(0))); 5658 return nullptr; 5659 } 5660 5661 case Intrinsic::debugtrap: 5662 case Intrinsic::trap: { 5663 StringRef TrapFuncName = 5664 I.getAttributes() 5665 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5666 .getValueAsString(); 5667 if (TrapFuncName.empty()) { 5668 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5669 ISD::TRAP : ISD::DEBUGTRAP; 5670 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5671 return nullptr; 5672 } 5673 TargetLowering::ArgListTy Args; 5674 5675 TargetLowering::CallLoweringInfo CLI(DAG); 5676 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5677 CallingConv::C, I.getType(), 5678 DAG.getExternalSymbol(TrapFuncName.data(), 5679 TLI.getPointerTy(DAG.getDataLayout())), 5680 std::move(Args)); 5681 5682 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5683 DAG.setRoot(Result.second); 5684 return nullptr; 5685 } 5686 5687 case Intrinsic::uadd_with_overflow: 5688 case Intrinsic::sadd_with_overflow: 5689 case Intrinsic::usub_with_overflow: 5690 case Intrinsic::ssub_with_overflow: 5691 case Intrinsic::umul_with_overflow: 5692 case Intrinsic::smul_with_overflow: { 5693 ISD::NodeType Op; 5694 switch (Intrinsic) { 5695 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5696 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5697 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5698 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5699 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5700 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5701 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5702 } 5703 SDValue Op1 = getValue(I.getArgOperand(0)); 5704 SDValue Op2 = getValue(I.getArgOperand(1)); 5705 5706 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5707 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5708 return nullptr; 5709 } 5710 case Intrinsic::prefetch: { 5711 SDValue Ops[5]; 5712 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5713 Ops[0] = getRoot(); 5714 Ops[1] = getValue(I.getArgOperand(0)); 5715 Ops[2] = getValue(I.getArgOperand(1)); 5716 Ops[3] = getValue(I.getArgOperand(2)); 5717 Ops[4] = getValue(I.getArgOperand(3)); 5718 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5719 DAG.getVTList(MVT::Other), Ops, 5720 EVT::getIntegerVT(*Context, 8), 5721 MachinePointerInfo(I.getArgOperand(0)), 5722 0, /* align */ 5723 false, /* volatile */ 5724 rw==0, /* read */ 5725 rw==1)); /* write */ 5726 return nullptr; 5727 } 5728 case Intrinsic::lifetime_start: 5729 case Intrinsic::lifetime_end: { 5730 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5731 // Stack coloring is not enabled in O0, discard region information. 5732 if (TM.getOptLevel() == CodeGenOpt::None) 5733 return nullptr; 5734 5735 SmallVector<Value *, 4> Allocas; 5736 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5737 5738 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5739 E = Allocas.end(); Object != E; ++Object) { 5740 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5741 5742 // Could not find an Alloca. 5743 if (!LifetimeObject) 5744 continue; 5745 5746 // First check that the Alloca is static, otherwise it won't have a 5747 // valid frame index. 5748 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5749 if (SI == FuncInfo.StaticAllocaMap.end()) 5750 return nullptr; 5751 5752 int FI = SI->second; 5753 5754 SDValue Ops[2]; 5755 Ops[0] = getRoot(); 5756 Ops[1] = 5757 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 5758 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5759 5760 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5761 DAG.setRoot(Res); 5762 } 5763 return nullptr; 5764 } 5765 case Intrinsic::invariant_start: 5766 // Discard region information. 5767 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5768 return nullptr; 5769 case Intrinsic::invariant_end: 5770 // Discard region information. 5771 return nullptr; 5772 case Intrinsic::clear_cache: 5773 return TLI.getClearCacheBuiltinName(); 5774 case Intrinsic::donothing: 5775 // ignore 5776 return nullptr; 5777 case Intrinsic::experimental_stackmap: { 5778 visitStackmap(I); 5779 return nullptr; 5780 } 5781 case Intrinsic::experimental_patchpoint_void: 5782 case Intrinsic::experimental_patchpoint_i64: { 5783 visitPatchpoint(&I); 5784 return nullptr; 5785 } 5786 case Intrinsic::experimental_gc_statepoint: { 5787 LowerStatepoint(ImmutableStatepoint(&I)); 5788 return nullptr; 5789 } 5790 case Intrinsic::experimental_gc_result: { 5791 visitGCResult(cast<GCResultInst>(I)); 5792 return nullptr; 5793 } 5794 case Intrinsic::experimental_gc_relocate: { 5795 visitGCRelocate(cast<GCRelocateInst>(I)); 5796 return nullptr; 5797 } 5798 case Intrinsic::instrprof_increment: 5799 llvm_unreachable("instrprof failed to lower an increment"); 5800 case Intrinsic::instrprof_value_profile: 5801 llvm_unreachable("instrprof failed to lower a value profiling call"); 5802 case Intrinsic::localescape: { 5803 MachineFunction &MF = DAG.getMachineFunction(); 5804 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5805 5806 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5807 // is the same on all targets. 5808 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5809 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5810 if (isa<ConstantPointerNull>(Arg)) 5811 continue; // Skip null pointers. They represent a hole in index space. 5812 AllocaInst *Slot = cast<AllocaInst>(Arg); 5813 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5814 "can only escape static allocas"); 5815 int FI = FuncInfo.StaticAllocaMap[Slot]; 5816 MCSymbol *FrameAllocSym = 5817 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5818 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 5819 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5820 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5821 .addSym(FrameAllocSym) 5822 .addFrameIndex(FI); 5823 } 5824 5825 return nullptr; 5826 } 5827 5828 case Intrinsic::localrecover: { 5829 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5830 MachineFunction &MF = DAG.getMachineFunction(); 5831 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5832 5833 // Get the symbol that defines the frame offset. 5834 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5835 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5836 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5837 MCSymbol *FrameAllocSym = 5838 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5839 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 5840 5841 // Create a MCSymbol for the label to avoid any target lowering 5842 // that would make this PC relative. 5843 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5844 SDValue OffsetVal = 5845 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5846 5847 // Add the offset to the FP. 5848 Value *FP = I.getArgOperand(1); 5849 SDValue FPVal = getValue(FP); 5850 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5851 setValue(&I, Add); 5852 5853 return nullptr; 5854 } 5855 5856 case Intrinsic::eh_exceptionpointer: 5857 case Intrinsic::eh_exceptioncode: { 5858 // Get the exception pointer vreg, copy from it, and resize it to fit. 5859 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5860 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5861 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5862 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5863 SDValue N = 5864 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5865 if (Intrinsic == Intrinsic::eh_exceptioncode) 5866 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5867 setValue(&I, N); 5868 return nullptr; 5869 } 5870 case Intrinsic::xray_customevent: { 5871 // Here we want to make sure that the intrinsic behaves as if it has a 5872 // specific calling convention, and only for x86_64. 5873 // FIXME: Support other platforms later. 5874 const auto &Triple = DAG.getTarget().getTargetTriple(); 5875 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 5876 return nullptr; 5877 5878 SDLoc DL = getCurSDLoc(); 5879 SmallVector<SDValue, 8> Ops; 5880 5881 // We want to say that we always want the arguments in registers. 5882 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 5883 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 5884 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 5885 SDValue Chain = getRoot(); 5886 Ops.push_back(LogEntryVal); 5887 Ops.push_back(StrSizeVal); 5888 Ops.push_back(Chain); 5889 5890 // We need to enforce the calling convention for the callsite, so that 5891 // argument ordering is enforced correctly, and that register allocation can 5892 // see that some registers may be assumed clobbered and have to preserve 5893 // them across calls to the intrinsic. 5894 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 5895 DL, NodeTys, Ops); 5896 SDValue patchableNode = SDValue(MN, 0); 5897 DAG.setRoot(patchableNode); 5898 setValue(&I, patchableNode); 5899 return nullptr; 5900 } 5901 case Intrinsic::experimental_deoptimize: 5902 LowerDeoptimizeCall(&I); 5903 return nullptr; 5904 5905 case Intrinsic::experimental_vector_reduce_fadd: 5906 case Intrinsic::experimental_vector_reduce_fmul: 5907 case Intrinsic::experimental_vector_reduce_add: 5908 case Intrinsic::experimental_vector_reduce_mul: 5909 case Intrinsic::experimental_vector_reduce_and: 5910 case Intrinsic::experimental_vector_reduce_or: 5911 case Intrinsic::experimental_vector_reduce_xor: 5912 case Intrinsic::experimental_vector_reduce_smax: 5913 case Intrinsic::experimental_vector_reduce_smin: 5914 case Intrinsic::experimental_vector_reduce_umax: 5915 case Intrinsic::experimental_vector_reduce_umin: 5916 case Intrinsic::experimental_vector_reduce_fmax: 5917 case Intrinsic::experimental_vector_reduce_fmin: { 5918 visitVectorReduce(I, Intrinsic); 5919 return nullptr; 5920 } 5921 5922 } 5923 } 5924 5925 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 5926 const ConstrainedFPIntrinsic &FPI) { 5927 SDLoc sdl = getCurSDLoc(); 5928 unsigned Opcode; 5929 switch (FPI.getIntrinsicID()) { 5930 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5931 case Intrinsic::experimental_constrained_fadd: 5932 Opcode = ISD::STRICT_FADD; 5933 break; 5934 case Intrinsic::experimental_constrained_fsub: 5935 Opcode = ISD::STRICT_FSUB; 5936 break; 5937 case Intrinsic::experimental_constrained_fmul: 5938 Opcode = ISD::STRICT_FMUL; 5939 break; 5940 case Intrinsic::experimental_constrained_fdiv: 5941 Opcode = ISD::STRICT_FDIV; 5942 break; 5943 case Intrinsic::experimental_constrained_frem: 5944 Opcode = ISD::STRICT_FREM; 5945 break; 5946 case Intrinsic::experimental_constrained_sqrt: 5947 Opcode = ISD::STRICT_FSQRT; 5948 break; 5949 case Intrinsic::experimental_constrained_pow: 5950 Opcode = ISD::STRICT_FPOW; 5951 break; 5952 case Intrinsic::experimental_constrained_powi: 5953 Opcode = ISD::STRICT_FPOWI; 5954 break; 5955 case Intrinsic::experimental_constrained_sin: 5956 Opcode = ISD::STRICT_FSIN; 5957 break; 5958 case Intrinsic::experimental_constrained_cos: 5959 Opcode = ISD::STRICT_FCOS; 5960 break; 5961 case Intrinsic::experimental_constrained_exp: 5962 Opcode = ISD::STRICT_FEXP; 5963 break; 5964 case Intrinsic::experimental_constrained_exp2: 5965 Opcode = ISD::STRICT_FEXP2; 5966 break; 5967 case Intrinsic::experimental_constrained_log: 5968 Opcode = ISD::STRICT_FLOG; 5969 break; 5970 case Intrinsic::experimental_constrained_log10: 5971 Opcode = ISD::STRICT_FLOG10; 5972 break; 5973 case Intrinsic::experimental_constrained_log2: 5974 Opcode = ISD::STRICT_FLOG2; 5975 break; 5976 case Intrinsic::experimental_constrained_rint: 5977 Opcode = ISD::STRICT_FRINT; 5978 break; 5979 case Intrinsic::experimental_constrained_nearbyint: 5980 Opcode = ISD::STRICT_FNEARBYINT; 5981 break; 5982 } 5983 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5984 SDValue Chain = getRoot(); 5985 SmallVector<EVT, 4> ValueVTs; 5986 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 5987 ValueVTs.push_back(MVT::Other); // Out chain 5988 5989 SDVTList VTs = DAG.getVTList(ValueVTs); 5990 SDValue Result; 5991 if (FPI.isUnaryOp()) 5992 Result = DAG.getNode(Opcode, sdl, VTs, 5993 { Chain, getValue(FPI.getArgOperand(0)) }); 5994 else 5995 Result = DAG.getNode(Opcode, sdl, VTs, 5996 { Chain, getValue(FPI.getArgOperand(0)), 5997 getValue(FPI.getArgOperand(1)) }); 5998 5999 assert(Result.getNode()->getNumValues() == 2); 6000 SDValue OutChain = Result.getValue(1); 6001 DAG.setRoot(OutChain); 6002 SDValue FPResult = Result.getValue(0); 6003 setValue(&FPI, FPResult); 6004 } 6005 6006 std::pair<SDValue, SDValue> 6007 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6008 const BasicBlock *EHPadBB) { 6009 MachineFunction &MF = DAG.getMachineFunction(); 6010 MachineModuleInfo &MMI = MF.getMMI(); 6011 MCSymbol *BeginLabel = nullptr; 6012 6013 if (EHPadBB) { 6014 // Insert a label before the invoke call to mark the try range. This can be 6015 // used to detect deletion of the invoke via the MachineModuleInfo. 6016 BeginLabel = MMI.getContext().createTempSymbol(); 6017 6018 // For SjLj, keep track of which landing pads go with which invokes 6019 // so as to maintain the ordering of pads in the LSDA. 6020 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6021 if (CallSiteIndex) { 6022 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6023 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6024 6025 // Now that the call site is handled, stop tracking it. 6026 MMI.setCurrentCallSite(0); 6027 } 6028 6029 // Both PendingLoads and PendingExports must be flushed here; 6030 // this call might not return. 6031 (void)getRoot(); 6032 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6033 6034 CLI.setChain(getRoot()); 6035 } 6036 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6037 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6038 6039 assert((CLI.IsTailCall || Result.second.getNode()) && 6040 "Non-null chain expected with non-tail call!"); 6041 assert((Result.second.getNode() || !Result.first.getNode()) && 6042 "Null value expected with tail call!"); 6043 6044 if (!Result.second.getNode()) { 6045 // As a special case, a null chain means that a tail call has been emitted 6046 // and the DAG root is already updated. 6047 HasTailCall = true; 6048 6049 // Since there's no actual continuation from this block, nothing can be 6050 // relying on us setting vregs for them. 6051 PendingExports.clear(); 6052 } else { 6053 DAG.setRoot(Result.second); 6054 } 6055 6056 if (EHPadBB) { 6057 // Insert a label at the end of the invoke call to mark the try range. This 6058 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6059 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6060 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6061 6062 // Inform MachineModuleInfo of range. 6063 if (MF.hasEHFunclets()) { 6064 assert(CLI.CS); 6065 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6066 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6067 BeginLabel, EndLabel); 6068 } else { 6069 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6070 } 6071 } 6072 6073 return Result; 6074 } 6075 6076 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6077 bool isTailCall, 6078 const BasicBlock *EHPadBB) { 6079 auto &DL = DAG.getDataLayout(); 6080 FunctionType *FTy = CS.getFunctionType(); 6081 Type *RetTy = CS.getType(); 6082 6083 TargetLowering::ArgListTy Args; 6084 Args.reserve(CS.arg_size()); 6085 6086 const Value *SwiftErrorVal = nullptr; 6087 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6088 6089 // We can't tail call inside a function with a swifterror argument. Lowering 6090 // does not support this yet. It would have to move into the swifterror 6091 // register before the call. 6092 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6093 if (TLI.supportSwiftError() && 6094 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6095 isTailCall = false; 6096 6097 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6098 i != e; ++i) { 6099 TargetLowering::ArgListEntry Entry; 6100 const Value *V = *i; 6101 6102 // Skip empty types 6103 if (V->getType()->isEmptyTy()) 6104 continue; 6105 6106 SDValue ArgNode = getValue(V); 6107 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6108 6109 Entry.setAttributes(&CS, i - CS.arg_begin()); 6110 6111 // Use swifterror virtual register as input to the call. 6112 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6113 SwiftErrorVal = V; 6114 // We find the virtual register for the actual swifterror argument. 6115 // Instead of using the Value, we use the virtual register instead. 6116 Entry.Node = DAG.getRegister(FuncInfo 6117 .getOrCreateSwiftErrorVRegUseAt( 6118 CS.getInstruction(), FuncInfo.MBB, V) 6119 .first, 6120 EVT(TLI.getPointerTy(DL))); 6121 } 6122 6123 Args.push_back(Entry); 6124 6125 // If we have an explicit sret argument that is an Instruction, (i.e., it 6126 // might point to function-local memory), we can't meaningfully tail-call. 6127 if (Entry.IsSRet && isa<Instruction>(V)) 6128 isTailCall = false; 6129 } 6130 6131 // Check if target-independent constraints permit a tail call here. 6132 // Target-dependent constraints are checked within TLI->LowerCallTo. 6133 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6134 isTailCall = false; 6135 6136 // Disable tail calls if there is an swifterror argument. Targets have not 6137 // been updated to support tail calls. 6138 if (TLI.supportSwiftError() && SwiftErrorVal) 6139 isTailCall = false; 6140 6141 TargetLowering::CallLoweringInfo CLI(DAG); 6142 CLI.setDebugLoc(getCurSDLoc()) 6143 .setChain(getRoot()) 6144 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6145 .setTailCall(isTailCall) 6146 .setConvergent(CS.isConvergent()); 6147 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6148 6149 if (Result.first.getNode()) { 6150 const Instruction *Inst = CS.getInstruction(); 6151 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6152 setValue(Inst, Result.first); 6153 } 6154 6155 // The last element of CLI.InVals has the SDValue for swifterror return. 6156 // Here we copy it to a virtual register and update SwiftErrorMap for 6157 // book-keeping. 6158 if (SwiftErrorVal && TLI.supportSwiftError()) { 6159 // Get the last element of InVals. 6160 SDValue Src = CLI.InVals.back(); 6161 unsigned VReg; bool CreatedVReg; 6162 std::tie(VReg, CreatedVReg) = 6163 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6164 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6165 // We update the virtual register for the actual swifterror argument. 6166 if (CreatedVReg) 6167 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6168 DAG.setRoot(CopyNode); 6169 } 6170 } 6171 6172 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6173 SelectionDAGBuilder &Builder) { 6174 6175 // Check to see if this load can be trivially constant folded, e.g. if the 6176 // input is from a string literal. 6177 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6178 // Cast pointer to the type we really want to load. 6179 Type *LoadTy = 6180 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6181 if (LoadVT.isVector()) 6182 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6183 6184 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6185 PointerType::getUnqual(LoadTy)); 6186 6187 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6188 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6189 return Builder.getValue(LoadCst); 6190 } 6191 6192 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6193 // still constant memory, the input chain can be the entry node. 6194 SDValue Root; 6195 bool ConstantMemory = false; 6196 6197 // Do not serialize (non-volatile) loads of constant memory with anything. 6198 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6199 Root = Builder.DAG.getEntryNode(); 6200 ConstantMemory = true; 6201 } else { 6202 // Do not serialize non-volatile loads against each other. 6203 Root = Builder.DAG.getRoot(); 6204 } 6205 6206 SDValue Ptr = Builder.getValue(PtrVal); 6207 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6208 Ptr, MachinePointerInfo(PtrVal), 6209 /* Alignment = */ 1); 6210 6211 if (!ConstantMemory) 6212 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6213 return LoadVal; 6214 } 6215 6216 /// Record the value for an instruction that produces an integer result, 6217 /// converting the type where necessary. 6218 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6219 SDValue Value, 6220 bool IsSigned) { 6221 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6222 I.getType(), true); 6223 if (IsSigned) 6224 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6225 else 6226 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6227 setValue(&I, Value); 6228 } 6229 6230 /// See if we can lower a memcmp call into an optimized form. If so, return 6231 /// true and lower it. Otherwise return false, and it will be lowered like a 6232 /// normal call. 6233 /// The caller already checked that \p I calls the appropriate LibFunc with a 6234 /// correct prototype. 6235 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6236 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6237 const Value *Size = I.getArgOperand(2); 6238 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6239 if (CSize && CSize->getZExtValue() == 0) { 6240 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6241 I.getType(), true); 6242 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6243 return true; 6244 } 6245 6246 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6247 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6248 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6249 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6250 if (Res.first.getNode()) { 6251 processIntegerCallValue(I, Res.first, true); 6252 PendingLoads.push_back(Res.second); 6253 return true; 6254 } 6255 6256 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6257 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6258 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6259 return false; 6260 6261 // If the target has a fast compare for the given size, it will return a 6262 // preferred load type for that size. Require that the load VT is legal and 6263 // that the target supports unaligned loads of that type. Otherwise, return 6264 // INVALID. 6265 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6266 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6267 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6268 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6269 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6270 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6271 // TODO: Check alignment of src and dest ptrs. 6272 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6273 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6274 if (!TLI.isTypeLegal(LVT) || 6275 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6276 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6277 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6278 } 6279 6280 return LVT; 6281 }; 6282 6283 // This turns into unaligned loads. We only do this if the target natively 6284 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6285 // we'll only produce a small number of byte loads. 6286 MVT LoadVT; 6287 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6288 switch (NumBitsToCompare) { 6289 default: 6290 return false; 6291 case 16: 6292 LoadVT = MVT::i16; 6293 break; 6294 case 32: 6295 LoadVT = MVT::i32; 6296 break; 6297 case 64: 6298 case 128: 6299 case 256: 6300 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6301 break; 6302 } 6303 6304 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6305 return false; 6306 6307 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6308 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6309 6310 // Bitcast to a wide integer type if the loads are vectors. 6311 if (LoadVT.isVector()) { 6312 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6313 LoadL = DAG.getBitcast(CmpVT, LoadL); 6314 LoadR = DAG.getBitcast(CmpVT, LoadR); 6315 } 6316 6317 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6318 processIntegerCallValue(I, Cmp, false); 6319 return true; 6320 } 6321 6322 /// See if we can lower a memchr call into an optimized form. If so, return 6323 /// true and lower it. Otherwise return false, and it will be lowered like a 6324 /// normal call. 6325 /// The caller already checked that \p I calls the appropriate LibFunc with a 6326 /// correct prototype. 6327 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6328 const Value *Src = I.getArgOperand(0); 6329 const Value *Char = I.getArgOperand(1); 6330 const Value *Length = I.getArgOperand(2); 6331 6332 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6333 std::pair<SDValue, SDValue> Res = 6334 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6335 getValue(Src), getValue(Char), getValue(Length), 6336 MachinePointerInfo(Src)); 6337 if (Res.first.getNode()) { 6338 setValue(&I, Res.first); 6339 PendingLoads.push_back(Res.second); 6340 return true; 6341 } 6342 6343 return false; 6344 } 6345 6346 /// See if we can lower a mempcpy call into an optimized form. If so, return 6347 /// true and lower it. Otherwise return false, and it will be lowered like a 6348 /// normal call. 6349 /// The caller already checked that \p I calls the appropriate LibFunc with a 6350 /// correct prototype. 6351 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6352 SDValue Dst = getValue(I.getArgOperand(0)); 6353 SDValue Src = getValue(I.getArgOperand(1)); 6354 SDValue Size = getValue(I.getArgOperand(2)); 6355 6356 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6357 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6358 unsigned Align = std::min(DstAlign, SrcAlign); 6359 if (Align == 0) // Alignment of one or both could not be inferred. 6360 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6361 6362 bool isVol = false; 6363 SDLoc sdl = getCurSDLoc(); 6364 6365 // In the mempcpy context we need to pass in a false value for isTailCall 6366 // because the return pointer needs to be adjusted by the size of 6367 // the copied memory. 6368 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6369 false, /*isTailCall=*/false, 6370 MachinePointerInfo(I.getArgOperand(0)), 6371 MachinePointerInfo(I.getArgOperand(1))); 6372 assert(MC.getNode() != nullptr && 6373 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6374 DAG.setRoot(MC); 6375 6376 // Check if Size needs to be truncated or extended. 6377 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6378 6379 // Adjust return pointer to point just past the last dst byte. 6380 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6381 Dst, Size); 6382 setValue(&I, DstPlusSize); 6383 return true; 6384 } 6385 6386 /// See if we can lower a strcpy call into an optimized form. If so, return 6387 /// true and lower it, otherwise return false and it will be lowered like a 6388 /// normal call. 6389 /// The caller already checked that \p I calls the appropriate LibFunc with a 6390 /// correct prototype. 6391 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6392 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6393 6394 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6395 std::pair<SDValue, SDValue> Res = 6396 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6397 getValue(Arg0), getValue(Arg1), 6398 MachinePointerInfo(Arg0), 6399 MachinePointerInfo(Arg1), isStpcpy); 6400 if (Res.first.getNode()) { 6401 setValue(&I, Res.first); 6402 DAG.setRoot(Res.second); 6403 return true; 6404 } 6405 6406 return false; 6407 } 6408 6409 /// See if we can lower a strcmp call into an optimized form. If so, return 6410 /// true and lower it, otherwise return false and it will be lowered like a 6411 /// normal call. 6412 /// The caller already checked that \p I calls the appropriate LibFunc with a 6413 /// correct prototype. 6414 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6415 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6416 6417 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6418 std::pair<SDValue, SDValue> Res = 6419 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6420 getValue(Arg0), getValue(Arg1), 6421 MachinePointerInfo(Arg0), 6422 MachinePointerInfo(Arg1)); 6423 if (Res.first.getNode()) { 6424 processIntegerCallValue(I, Res.first, true); 6425 PendingLoads.push_back(Res.second); 6426 return true; 6427 } 6428 6429 return false; 6430 } 6431 6432 /// See if we can lower a strlen call into an optimized form. If so, return 6433 /// true and lower it, otherwise return false and it will be lowered like a 6434 /// normal call. 6435 /// The caller already checked that \p I calls the appropriate LibFunc with a 6436 /// correct prototype. 6437 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6438 const Value *Arg0 = I.getArgOperand(0); 6439 6440 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6441 std::pair<SDValue, SDValue> Res = 6442 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6443 getValue(Arg0), MachinePointerInfo(Arg0)); 6444 if (Res.first.getNode()) { 6445 processIntegerCallValue(I, Res.first, false); 6446 PendingLoads.push_back(Res.second); 6447 return true; 6448 } 6449 6450 return false; 6451 } 6452 6453 /// See if we can lower a strnlen call into an optimized form. If so, return 6454 /// true and lower it, otherwise return false and it will be lowered like a 6455 /// normal call. 6456 /// The caller already checked that \p I calls the appropriate LibFunc with a 6457 /// correct prototype. 6458 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6459 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6460 6461 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6462 std::pair<SDValue, SDValue> Res = 6463 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6464 getValue(Arg0), getValue(Arg1), 6465 MachinePointerInfo(Arg0)); 6466 if (Res.first.getNode()) { 6467 processIntegerCallValue(I, Res.first, false); 6468 PendingLoads.push_back(Res.second); 6469 return true; 6470 } 6471 6472 return false; 6473 } 6474 6475 /// See if we can lower a unary floating-point operation into an SDNode with 6476 /// the specified Opcode. If so, return true and lower it, otherwise return 6477 /// false and it will be lowered like a normal call. 6478 /// The caller already checked that \p I calls the appropriate LibFunc with a 6479 /// correct prototype. 6480 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6481 unsigned Opcode) { 6482 // We already checked this call's prototype; verify it doesn't modify errno. 6483 if (!I.onlyReadsMemory()) 6484 return false; 6485 6486 SDValue Tmp = getValue(I.getArgOperand(0)); 6487 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6488 return true; 6489 } 6490 6491 /// See if we can lower a binary floating-point operation into an SDNode with 6492 /// the specified Opcode. If so, return true and lower it. Otherwise return 6493 /// false, and it will be lowered like a normal call. 6494 /// The caller already checked that \p I calls the appropriate LibFunc with a 6495 /// correct prototype. 6496 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6497 unsigned Opcode) { 6498 // We already checked this call's prototype; verify it doesn't modify errno. 6499 if (!I.onlyReadsMemory()) 6500 return false; 6501 6502 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6503 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6504 EVT VT = Tmp0.getValueType(); 6505 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6506 return true; 6507 } 6508 6509 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6510 // Handle inline assembly differently. 6511 if (isa<InlineAsm>(I.getCalledValue())) { 6512 visitInlineAsm(&I); 6513 return; 6514 } 6515 6516 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6517 computeUsesVAFloatArgument(I, MMI); 6518 6519 const char *RenameFn = nullptr; 6520 if (Function *F = I.getCalledFunction()) { 6521 if (F->isDeclaration()) { 6522 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6523 if (unsigned IID = II->getIntrinsicID(F)) { 6524 RenameFn = visitIntrinsicCall(I, IID); 6525 if (!RenameFn) 6526 return; 6527 } 6528 } 6529 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6530 RenameFn = visitIntrinsicCall(I, IID); 6531 if (!RenameFn) 6532 return; 6533 } 6534 } 6535 6536 // Check for well-known libc/libm calls. If the function is internal, it 6537 // can't be a library call. Don't do the check if marked as nobuiltin for 6538 // some reason. 6539 LibFunc Func; 6540 if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() && 6541 LibInfo->getLibFunc(*F, Func) && 6542 LibInfo->hasOptimizedCodeGen(Func)) { 6543 switch (Func) { 6544 default: break; 6545 case LibFunc_copysign: 6546 case LibFunc_copysignf: 6547 case LibFunc_copysignl: 6548 // We already checked this call's prototype; verify it doesn't modify 6549 // errno. 6550 if (I.onlyReadsMemory()) { 6551 SDValue LHS = getValue(I.getArgOperand(0)); 6552 SDValue RHS = getValue(I.getArgOperand(1)); 6553 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6554 LHS.getValueType(), LHS, RHS)); 6555 return; 6556 } 6557 break; 6558 case LibFunc_fabs: 6559 case LibFunc_fabsf: 6560 case LibFunc_fabsl: 6561 if (visitUnaryFloatCall(I, ISD::FABS)) 6562 return; 6563 break; 6564 case LibFunc_fmin: 6565 case LibFunc_fminf: 6566 case LibFunc_fminl: 6567 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6568 return; 6569 break; 6570 case LibFunc_fmax: 6571 case LibFunc_fmaxf: 6572 case LibFunc_fmaxl: 6573 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6574 return; 6575 break; 6576 case LibFunc_sin: 6577 case LibFunc_sinf: 6578 case LibFunc_sinl: 6579 if (visitUnaryFloatCall(I, ISD::FSIN)) 6580 return; 6581 break; 6582 case LibFunc_cos: 6583 case LibFunc_cosf: 6584 case LibFunc_cosl: 6585 if (visitUnaryFloatCall(I, ISD::FCOS)) 6586 return; 6587 break; 6588 case LibFunc_sqrt: 6589 case LibFunc_sqrtf: 6590 case LibFunc_sqrtl: 6591 case LibFunc_sqrt_finite: 6592 case LibFunc_sqrtf_finite: 6593 case LibFunc_sqrtl_finite: 6594 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6595 return; 6596 break; 6597 case LibFunc_floor: 6598 case LibFunc_floorf: 6599 case LibFunc_floorl: 6600 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6601 return; 6602 break; 6603 case LibFunc_nearbyint: 6604 case LibFunc_nearbyintf: 6605 case LibFunc_nearbyintl: 6606 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6607 return; 6608 break; 6609 case LibFunc_ceil: 6610 case LibFunc_ceilf: 6611 case LibFunc_ceill: 6612 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6613 return; 6614 break; 6615 case LibFunc_rint: 6616 case LibFunc_rintf: 6617 case LibFunc_rintl: 6618 if (visitUnaryFloatCall(I, ISD::FRINT)) 6619 return; 6620 break; 6621 case LibFunc_round: 6622 case LibFunc_roundf: 6623 case LibFunc_roundl: 6624 if (visitUnaryFloatCall(I, ISD::FROUND)) 6625 return; 6626 break; 6627 case LibFunc_trunc: 6628 case LibFunc_truncf: 6629 case LibFunc_truncl: 6630 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6631 return; 6632 break; 6633 case LibFunc_log2: 6634 case LibFunc_log2f: 6635 case LibFunc_log2l: 6636 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6637 return; 6638 break; 6639 case LibFunc_exp2: 6640 case LibFunc_exp2f: 6641 case LibFunc_exp2l: 6642 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6643 return; 6644 break; 6645 case LibFunc_memcmp: 6646 if (visitMemCmpCall(I)) 6647 return; 6648 break; 6649 case LibFunc_mempcpy: 6650 if (visitMemPCpyCall(I)) 6651 return; 6652 break; 6653 case LibFunc_memchr: 6654 if (visitMemChrCall(I)) 6655 return; 6656 break; 6657 case LibFunc_strcpy: 6658 if (visitStrCpyCall(I, false)) 6659 return; 6660 break; 6661 case LibFunc_stpcpy: 6662 if (visitStrCpyCall(I, true)) 6663 return; 6664 break; 6665 case LibFunc_strcmp: 6666 if (visitStrCmpCall(I)) 6667 return; 6668 break; 6669 case LibFunc_strlen: 6670 if (visitStrLenCall(I)) 6671 return; 6672 break; 6673 case LibFunc_strnlen: 6674 if (visitStrNLenCall(I)) 6675 return; 6676 break; 6677 } 6678 } 6679 } 6680 6681 SDValue Callee; 6682 if (!RenameFn) 6683 Callee = getValue(I.getCalledValue()); 6684 else 6685 Callee = DAG.getExternalSymbol( 6686 RenameFn, 6687 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6688 6689 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6690 // have to do anything here to lower funclet bundles. 6691 assert(!I.hasOperandBundlesOtherThan( 6692 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6693 "Cannot lower calls with arbitrary operand bundles!"); 6694 6695 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6696 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6697 else 6698 // Check if we can potentially perform a tail call. More detailed checking 6699 // is be done within LowerCallTo, after more information about the call is 6700 // known. 6701 LowerCallTo(&I, Callee, I.isTailCall()); 6702 } 6703 6704 namespace { 6705 6706 /// AsmOperandInfo - This contains information for each constraint that we are 6707 /// lowering. 6708 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6709 public: 6710 /// CallOperand - If this is the result output operand or a clobber 6711 /// this is null, otherwise it is the incoming operand to the CallInst. 6712 /// This gets modified as the asm is processed. 6713 SDValue CallOperand; 6714 6715 /// AssignedRegs - If this is a register or register class operand, this 6716 /// contains the set of register corresponding to the operand. 6717 RegsForValue AssignedRegs; 6718 6719 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6720 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6721 } 6722 6723 /// Whether or not this operand accesses memory 6724 bool hasMemory(const TargetLowering &TLI) const { 6725 // Indirect operand accesses access memory. 6726 if (isIndirect) 6727 return true; 6728 6729 for (const auto &Code : Codes) 6730 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6731 return true; 6732 6733 return false; 6734 } 6735 6736 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6737 /// corresponds to. If there is no Value* for this operand, it returns 6738 /// MVT::Other. 6739 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6740 const DataLayout &DL) const { 6741 if (!CallOperandVal) return MVT::Other; 6742 6743 if (isa<BasicBlock>(CallOperandVal)) 6744 return TLI.getPointerTy(DL); 6745 6746 llvm::Type *OpTy = CallOperandVal->getType(); 6747 6748 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6749 // If this is an indirect operand, the operand is a pointer to the 6750 // accessed type. 6751 if (isIndirect) { 6752 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6753 if (!PtrTy) 6754 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6755 OpTy = PtrTy->getElementType(); 6756 } 6757 6758 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6759 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6760 if (STy->getNumElements() == 1) 6761 OpTy = STy->getElementType(0); 6762 6763 // If OpTy is not a single value, it may be a struct/union that we 6764 // can tile with integers. 6765 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6766 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6767 switch (BitSize) { 6768 default: break; 6769 case 1: 6770 case 8: 6771 case 16: 6772 case 32: 6773 case 64: 6774 case 128: 6775 OpTy = IntegerType::get(Context, BitSize); 6776 break; 6777 } 6778 } 6779 6780 return TLI.getValueType(DL, OpTy, true); 6781 } 6782 }; 6783 6784 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6785 6786 } // end anonymous namespace 6787 6788 /// Make sure that the output operand \p OpInfo and its corresponding input 6789 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 6790 /// out). 6791 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 6792 SDISelAsmOperandInfo &MatchingOpInfo, 6793 SelectionDAG &DAG) { 6794 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 6795 return; 6796 6797 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6798 const auto &TLI = DAG.getTargetLoweringInfo(); 6799 6800 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6801 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6802 OpInfo.ConstraintVT); 6803 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6804 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 6805 MatchingOpInfo.ConstraintVT); 6806 if ((OpInfo.ConstraintVT.isInteger() != 6807 MatchingOpInfo.ConstraintVT.isInteger()) || 6808 (MatchRC.second != InputRC.second)) { 6809 // FIXME: error out in a more elegant fashion 6810 report_fatal_error("Unsupported asm: input constraint" 6811 " with a matching output constraint of" 6812 " incompatible type!"); 6813 } 6814 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 6815 } 6816 6817 /// Get a direct memory input to behave well as an indirect operand. 6818 /// This may introduce stores, hence the need for a \p Chain. 6819 /// \return The (possibly updated) chain. 6820 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 6821 SDISelAsmOperandInfo &OpInfo, 6822 SelectionDAG &DAG) { 6823 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6824 6825 // If we don't have an indirect input, put it in the constpool if we can, 6826 // otherwise spill it to a stack slot. 6827 // TODO: This isn't quite right. We need to handle these according to 6828 // the addressing mode that the constraint wants. Also, this may take 6829 // an additional register for the computation and we don't want that 6830 // either. 6831 6832 // If the operand is a float, integer, or vector constant, spill to a 6833 // constant pool entry to get its address. 6834 const Value *OpVal = OpInfo.CallOperandVal; 6835 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6836 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6837 OpInfo.CallOperand = DAG.getConstantPool( 6838 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6839 return Chain; 6840 } 6841 6842 // Otherwise, create a stack slot and emit a store to it before the asm. 6843 Type *Ty = OpVal->getType(); 6844 auto &DL = DAG.getDataLayout(); 6845 uint64_t TySize = DL.getTypeAllocSize(Ty); 6846 unsigned Align = DL.getPrefTypeAlignment(Ty); 6847 MachineFunction &MF = DAG.getMachineFunction(); 6848 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 6849 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 6850 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 6851 MachinePointerInfo::getFixedStack(MF, SSFI)); 6852 OpInfo.CallOperand = StackSlot; 6853 6854 return Chain; 6855 } 6856 6857 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6858 /// specified operand. We prefer to assign virtual registers, to allow the 6859 /// register allocator to handle the assignment process. However, if the asm 6860 /// uses features that we can't model on machineinstrs, we have SDISel do the 6861 /// allocation. This produces generally horrible, but correct, code. 6862 /// 6863 /// OpInfo describes the operand. 6864 /// 6865 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 6866 const SDLoc &DL, 6867 SDISelAsmOperandInfo &OpInfo) { 6868 LLVMContext &Context = *DAG.getContext(); 6869 6870 MachineFunction &MF = DAG.getMachineFunction(); 6871 SmallVector<unsigned, 4> Regs; 6872 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6873 6874 // If this is a constraint for a single physreg, or a constraint for a 6875 // register class, find it. 6876 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6877 TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode, 6878 OpInfo.ConstraintVT); 6879 6880 unsigned NumRegs = 1; 6881 if (OpInfo.ConstraintVT != MVT::Other) { 6882 // If this is a FP input in an integer register (or visa versa) insert a bit 6883 // cast of the input value. More generally, handle any case where the input 6884 // value disagrees with the register class we plan to stick this in. 6885 if (OpInfo.Type == InlineAsm::isInput && PhysReg.second && 6886 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 6887 // Try to convert to the first EVT that the reg class contains. If the 6888 // types are identical size, use a bitcast to convert (e.g. two differing 6889 // vector types). 6890 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 6891 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6892 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6893 RegVT, OpInfo.CallOperand); 6894 OpInfo.ConstraintVT = RegVT; 6895 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6896 // If the input is a FP value and we want it in FP registers, do a 6897 // bitcast to the corresponding integer type. This turns an f64 value 6898 // into i64, which can be passed with two i32 values on a 32-bit 6899 // machine. 6900 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6901 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6902 RegVT, OpInfo.CallOperand); 6903 OpInfo.ConstraintVT = RegVT; 6904 } 6905 } 6906 6907 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6908 } 6909 6910 MVT RegVT; 6911 EVT ValueVT = OpInfo.ConstraintVT; 6912 6913 // If this is a constraint for a specific physical register, like {r17}, 6914 // assign it now. 6915 if (unsigned AssignedReg = PhysReg.first) { 6916 const TargetRegisterClass *RC = PhysReg.second; 6917 if (OpInfo.ConstraintVT == MVT::Other) 6918 ValueVT = *TRI.legalclasstypes_begin(*RC); 6919 6920 // Get the actual register value type. This is important, because the user 6921 // may have asked for (e.g.) the AX register in i32 type. We need to 6922 // remember that AX is actually i16 to get the right extension. 6923 RegVT = *TRI.legalclasstypes_begin(*RC); 6924 6925 // This is a explicit reference to a physical register. 6926 Regs.push_back(AssignedReg); 6927 6928 // If this is an expanded reference, add the rest of the regs to Regs. 6929 if (NumRegs != 1) { 6930 TargetRegisterClass::iterator I = RC->begin(); 6931 for (; *I != AssignedReg; ++I) 6932 assert(I != RC->end() && "Didn't find reg!"); 6933 6934 // Already added the first reg. 6935 --NumRegs; ++I; 6936 for (; NumRegs; --NumRegs, ++I) { 6937 assert(I != RC->end() && "Ran out of registers to allocate!"); 6938 Regs.push_back(*I); 6939 } 6940 } 6941 6942 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6943 return; 6944 } 6945 6946 // Otherwise, if this was a reference to an LLVM register class, create vregs 6947 // for this reference. 6948 if (const TargetRegisterClass *RC = PhysReg.second) { 6949 RegVT = *TRI.legalclasstypes_begin(*RC); 6950 if (OpInfo.ConstraintVT == MVT::Other) 6951 ValueVT = RegVT; 6952 6953 // Create the appropriate number of virtual registers. 6954 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6955 for (; NumRegs; --NumRegs) 6956 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6957 6958 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6959 return; 6960 } 6961 6962 // Otherwise, we couldn't allocate enough registers for this. 6963 } 6964 6965 static unsigned 6966 findMatchingInlineAsmOperand(unsigned OperandNo, 6967 const std::vector<SDValue> &AsmNodeOperands) { 6968 // Scan until we find the definition we already emitted of this operand. 6969 unsigned CurOp = InlineAsm::Op_FirstOperand; 6970 for (; OperandNo; --OperandNo) { 6971 // Advance to the next operand. 6972 unsigned OpFlag = 6973 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6974 assert((InlineAsm::isRegDefKind(OpFlag) || 6975 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6976 InlineAsm::isMemKind(OpFlag)) && 6977 "Skipped past definitions?"); 6978 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 6979 } 6980 return CurOp; 6981 } 6982 6983 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 6984 /// \return true if it has succeeded, false otherwise 6985 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 6986 MVT RegVT, SelectionDAG &DAG) { 6987 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6988 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6989 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 6990 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6991 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6992 else 6993 return false; 6994 } 6995 return true; 6996 } 6997 6998 class ExtraFlags { 6999 unsigned Flags = 0; 7000 7001 public: 7002 explicit ExtraFlags(ImmutableCallSite CS) { 7003 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7004 if (IA->hasSideEffects()) 7005 Flags |= InlineAsm::Extra_HasSideEffects; 7006 if (IA->isAlignStack()) 7007 Flags |= InlineAsm::Extra_IsAlignStack; 7008 if (CS.isConvergent()) 7009 Flags |= InlineAsm::Extra_IsConvergent; 7010 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7011 } 7012 7013 void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) { 7014 // Ideally, we would only check against memory constraints. However, the 7015 // meaning of an Other constraint can be target-specific and we can't easily 7016 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7017 // for Other constraints as well. 7018 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7019 OpInfo.ConstraintType == TargetLowering::C_Other) { 7020 if (OpInfo.Type == InlineAsm::isInput) 7021 Flags |= InlineAsm::Extra_MayLoad; 7022 else if (OpInfo.Type == InlineAsm::isOutput) 7023 Flags |= InlineAsm::Extra_MayStore; 7024 else if (OpInfo.Type == InlineAsm::isClobber) 7025 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7026 } 7027 } 7028 7029 unsigned get() const { return Flags; } 7030 }; 7031 7032 /// visitInlineAsm - Handle a call to an InlineAsm object. 7033 /// 7034 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7035 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7036 7037 /// ConstraintOperands - Information about all of the constraints. 7038 SDISelAsmOperandInfoVector ConstraintOperands; 7039 7040 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7041 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7042 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7043 7044 bool hasMemory = false; 7045 7046 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7047 ExtraFlags ExtraInfo(CS); 7048 7049 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7050 unsigned ResNo = 0; // ResNo - The result number of the next output. 7051 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7052 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7053 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7054 7055 MVT OpVT = MVT::Other; 7056 7057 // Compute the value type for each operand. 7058 if (OpInfo.Type == InlineAsm::isInput || 7059 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7060 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7061 7062 // Process the call argument. BasicBlocks are labels, currently appearing 7063 // only in asm's. 7064 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7065 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7066 } else { 7067 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7068 } 7069 7070 OpVT = 7071 OpInfo 7072 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7073 .getSimpleVT(); 7074 } 7075 7076 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7077 // The return value of the call is this value. As such, there is no 7078 // corresponding argument. 7079 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7080 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7081 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7082 STy->getElementType(ResNo)); 7083 } else { 7084 assert(ResNo == 0 && "Asm only has one result!"); 7085 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7086 } 7087 ++ResNo; 7088 } 7089 7090 OpInfo.ConstraintVT = OpVT; 7091 7092 if (!hasMemory) 7093 hasMemory = OpInfo.hasMemory(TLI); 7094 7095 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7096 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7097 auto TargetConstraint = TargetConstraints[i]; 7098 7099 // Compute the constraint code and ConstraintType to use. 7100 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7101 7102 ExtraInfo.update(TargetConstraint); 7103 } 7104 7105 SDValue Chain, Flag; 7106 7107 // We won't need to flush pending loads if this asm doesn't touch 7108 // memory and is nonvolatile. 7109 if (hasMemory || IA->hasSideEffects()) 7110 Chain = getRoot(); 7111 else 7112 Chain = DAG.getRoot(); 7113 7114 // Second pass over the constraints: compute which constraint option to use 7115 // and assign registers to constraints that want a specific physreg. 7116 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7117 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7118 7119 // If this is an output operand with a matching input operand, look up the 7120 // matching input. If their types mismatch, e.g. one is an integer, the 7121 // other is floating point, or their sizes are different, flag it as an 7122 // error. 7123 if (OpInfo.hasMatchingInput()) { 7124 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7125 patchMatchingInput(OpInfo, Input, DAG); 7126 } 7127 7128 // Compute the constraint code and ConstraintType to use. 7129 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7130 7131 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7132 OpInfo.Type == InlineAsm::isClobber) 7133 continue; 7134 7135 // If this is a memory input, and if the operand is not indirect, do what we 7136 // need to to provide an address for the memory input. 7137 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7138 !OpInfo.isIndirect) { 7139 assert((OpInfo.isMultipleAlternative || 7140 (OpInfo.Type == InlineAsm::isInput)) && 7141 "Can only indirectify direct input operands!"); 7142 7143 // Memory operands really want the address of the value. 7144 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7145 7146 // There is no longer a Value* corresponding to this operand. 7147 OpInfo.CallOperandVal = nullptr; 7148 7149 // It is now an indirect operand. 7150 OpInfo.isIndirect = true; 7151 } 7152 7153 // If this constraint is for a specific register, allocate it before 7154 // anything else. 7155 if (OpInfo.ConstraintType == TargetLowering::C_Register) 7156 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7157 } 7158 7159 // Third pass - Loop over all of the operands, assigning virtual or physregs 7160 // to register class operands. 7161 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7162 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7163 7164 // C_Register operands have already been allocated, Other/Memory don't need 7165 // to be. 7166 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7167 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7168 } 7169 7170 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7171 std::vector<SDValue> AsmNodeOperands; 7172 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7173 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7174 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7175 7176 // If we have a !srcloc metadata node associated with it, we want to attach 7177 // this to the ultimately generated inline asm machineinstr. To do this, we 7178 // pass in the third operand as this (potentially null) inline asm MDNode. 7179 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7180 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7181 7182 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7183 // bits as operand 3. 7184 AsmNodeOperands.push_back(DAG.getTargetConstant( 7185 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7186 7187 // Loop over all of the inputs, copying the operand values into the 7188 // appropriate registers and processing the output regs. 7189 RegsForValue RetValRegs; 7190 7191 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7192 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 7193 7194 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7195 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7196 7197 switch (OpInfo.Type) { 7198 case InlineAsm::isOutput: { 7199 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7200 OpInfo.ConstraintType != TargetLowering::C_Register) { 7201 // Memory output, or 'other' output (e.g. 'X' constraint). 7202 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7203 7204 unsigned ConstraintID = 7205 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7206 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7207 "Failed to convert memory constraint code to constraint id."); 7208 7209 // Add information to the INLINEASM node to know about this output. 7210 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7211 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7212 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7213 MVT::i32)); 7214 AsmNodeOperands.push_back(OpInfo.CallOperand); 7215 break; 7216 } 7217 7218 // Otherwise, this is a register or register class output. 7219 7220 // Copy the output from the appropriate register. Find a register that 7221 // we can use. 7222 if (OpInfo.AssignedRegs.Regs.empty()) { 7223 emitInlineAsmError( 7224 CS, "couldn't allocate output register for constraint '" + 7225 Twine(OpInfo.ConstraintCode) + "'"); 7226 return; 7227 } 7228 7229 // If this is an indirect operand, store through the pointer after the 7230 // asm. 7231 if (OpInfo.isIndirect) { 7232 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7233 OpInfo.CallOperandVal)); 7234 } else { 7235 // This is the result value of the call. 7236 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7237 // Concatenate this output onto the outputs list. 7238 RetValRegs.append(OpInfo.AssignedRegs); 7239 } 7240 7241 // Add information to the INLINEASM node to know that this register is 7242 // set. 7243 OpInfo.AssignedRegs 7244 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7245 ? InlineAsm::Kind_RegDefEarlyClobber 7246 : InlineAsm::Kind_RegDef, 7247 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7248 break; 7249 } 7250 case InlineAsm::isInput: { 7251 SDValue InOperandVal = OpInfo.CallOperand; 7252 7253 if (OpInfo.isMatchingInputConstraint()) { 7254 // If this is required to match an output register we have already set, 7255 // just use its register. 7256 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7257 AsmNodeOperands); 7258 unsigned OpFlag = 7259 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7260 if (InlineAsm::isRegDefKind(OpFlag) || 7261 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7262 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7263 if (OpInfo.isIndirect) { 7264 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7265 emitInlineAsmError(CS, "inline asm not supported yet:" 7266 " don't know how to handle tied " 7267 "indirect register inputs"); 7268 return; 7269 } 7270 7271 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7272 SmallVector<unsigned, 4> Regs; 7273 7274 if (!createVirtualRegs(Regs, 7275 InlineAsm::getNumOperandRegisters(OpFlag), 7276 RegVT, DAG)) { 7277 emitInlineAsmError(CS, "inline asm error: This value type register " 7278 "class is not natively supported!"); 7279 return; 7280 } 7281 7282 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7283 7284 SDLoc dl = getCurSDLoc(); 7285 // Use the produced MatchedRegs object to 7286 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7287 CS.getInstruction()); 7288 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7289 true, OpInfo.getMatchedOperand(), dl, 7290 DAG, AsmNodeOperands); 7291 break; 7292 } 7293 7294 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7295 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7296 "Unexpected number of operands"); 7297 // Add information to the INLINEASM node to know about this input. 7298 // See InlineAsm.h isUseOperandTiedToDef. 7299 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7300 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7301 OpInfo.getMatchedOperand()); 7302 AsmNodeOperands.push_back(DAG.getTargetConstant( 7303 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7304 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7305 break; 7306 } 7307 7308 // Treat indirect 'X' constraint as memory. 7309 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7310 OpInfo.isIndirect) 7311 OpInfo.ConstraintType = TargetLowering::C_Memory; 7312 7313 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7314 std::vector<SDValue> Ops; 7315 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7316 Ops, DAG); 7317 if (Ops.empty()) { 7318 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7319 Twine(OpInfo.ConstraintCode) + "'"); 7320 return; 7321 } 7322 7323 // Add information to the INLINEASM node to know about this input. 7324 unsigned ResOpType = 7325 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7326 AsmNodeOperands.push_back(DAG.getTargetConstant( 7327 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7328 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7329 break; 7330 } 7331 7332 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7333 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7334 assert(InOperandVal.getValueType() == 7335 TLI.getPointerTy(DAG.getDataLayout()) && 7336 "Memory operands expect pointer values"); 7337 7338 unsigned ConstraintID = 7339 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7340 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7341 "Failed to convert memory constraint code to constraint id."); 7342 7343 // Add information to the INLINEASM node to know about this input. 7344 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7345 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7346 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7347 getCurSDLoc(), 7348 MVT::i32)); 7349 AsmNodeOperands.push_back(InOperandVal); 7350 break; 7351 } 7352 7353 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7354 OpInfo.ConstraintType == TargetLowering::C_Register) && 7355 "Unknown constraint type!"); 7356 7357 // TODO: Support this. 7358 if (OpInfo.isIndirect) { 7359 emitInlineAsmError( 7360 CS, "Don't know how to handle indirect register inputs yet " 7361 "for constraint '" + 7362 Twine(OpInfo.ConstraintCode) + "'"); 7363 return; 7364 } 7365 7366 // Copy the input into the appropriate registers. 7367 if (OpInfo.AssignedRegs.Regs.empty()) { 7368 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7369 Twine(OpInfo.ConstraintCode) + "'"); 7370 return; 7371 } 7372 7373 SDLoc dl = getCurSDLoc(); 7374 7375 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7376 Chain, &Flag, CS.getInstruction()); 7377 7378 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7379 dl, DAG, AsmNodeOperands); 7380 break; 7381 } 7382 case InlineAsm::isClobber: { 7383 // Add the clobbered value to the operand list, so that the register 7384 // allocator is aware that the physreg got clobbered. 7385 if (!OpInfo.AssignedRegs.Regs.empty()) 7386 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7387 false, 0, getCurSDLoc(), DAG, 7388 AsmNodeOperands); 7389 break; 7390 } 7391 } 7392 } 7393 7394 // Finish up input operands. Set the input chain and add the flag last. 7395 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7396 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7397 7398 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7399 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7400 Flag = Chain.getValue(1); 7401 7402 // If this asm returns a register value, copy the result from that register 7403 // and set it as the value of the call. 7404 if (!RetValRegs.Regs.empty()) { 7405 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7406 Chain, &Flag, CS.getInstruction()); 7407 7408 // FIXME: Why don't we do this for inline asms with MRVs? 7409 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7410 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7411 7412 // If any of the results of the inline asm is a vector, it may have the 7413 // wrong width/num elts. This can happen for register classes that can 7414 // contain multiple different value types. The preg or vreg allocated may 7415 // not have the same VT as was expected. Convert it to the right type 7416 // with bit_convert. 7417 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7418 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7419 ResultType, Val); 7420 7421 } else if (ResultType != Val.getValueType() && 7422 ResultType.isInteger() && Val.getValueType().isInteger()) { 7423 // If a result value was tied to an input value, the computed result may 7424 // have a wider width than the expected result. Extract the relevant 7425 // portion. 7426 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7427 } 7428 7429 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7430 } 7431 7432 setValue(CS.getInstruction(), Val); 7433 // Don't need to use this as a chain in this case. 7434 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7435 return; 7436 } 7437 7438 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 7439 7440 // Process indirect outputs, first output all of the flagged copies out of 7441 // physregs. 7442 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7443 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7444 const Value *Ptr = IndirectStoresToEmit[i].second; 7445 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7446 Chain, &Flag, IA); 7447 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7448 } 7449 7450 // Emit the non-flagged stores from the physregs. 7451 SmallVector<SDValue, 8> OutChains; 7452 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7453 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7454 getValue(StoresToEmit[i].second), 7455 MachinePointerInfo(StoresToEmit[i].second)); 7456 OutChains.push_back(Val); 7457 } 7458 7459 if (!OutChains.empty()) 7460 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7461 7462 DAG.setRoot(Chain); 7463 } 7464 7465 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7466 const Twine &Message) { 7467 LLVMContext &Ctx = *DAG.getContext(); 7468 Ctx.emitError(CS.getInstruction(), Message); 7469 7470 // Make sure we leave the DAG in a valid state 7471 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7472 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7473 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7474 } 7475 7476 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7477 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7478 MVT::Other, getRoot(), 7479 getValue(I.getArgOperand(0)), 7480 DAG.getSrcValue(I.getArgOperand(0)))); 7481 } 7482 7483 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7484 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7485 const DataLayout &DL = DAG.getDataLayout(); 7486 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7487 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7488 DAG.getSrcValue(I.getOperand(0)), 7489 DL.getABITypeAlignment(I.getType())); 7490 setValue(&I, V); 7491 DAG.setRoot(V.getValue(1)); 7492 } 7493 7494 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7495 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7496 MVT::Other, getRoot(), 7497 getValue(I.getArgOperand(0)), 7498 DAG.getSrcValue(I.getArgOperand(0)))); 7499 } 7500 7501 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7502 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7503 MVT::Other, getRoot(), 7504 getValue(I.getArgOperand(0)), 7505 getValue(I.getArgOperand(1)), 7506 DAG.getSrcValue(I.getArgOperand(0)), 7507 DAG.getSrcValue(I.getArgOperand(1)))); 7508 } 7509 7510 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7511 const Instruction &I, 7512 SDValue Op) { 7513 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7514 if (!Range) 7515 return Op; 7516 7517 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7518 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7519 return Op; 7520 7521 APInt Lo = CR.getUnsignedMin(); 7522 if (!Lo.isMinValue()) 7523 return Op; 7524 7525 APInt Hi = CR.getUnsignedMax(); 7526 unsigned Bits = Hi.getActiveBits(); 7527 7528 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7529 7530 SDLoc SL = getCurSDLoc(); 7531 7532 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7533 DAG.getValueType(SmallVT)); 7534 unsigned NumVals = Op.getNode()->getNumValues(); 7535 if (NumVals == 1) 7536 return ZExt; 7537 7538 SmallVector<SDValue, 4> Ops; 7539 7540 Ops.push_back(ZExt); 7541 for (unsigned I = 1; I != NumVals; ++I) 7542 Ops.push_back(Op.getValue(I)); 7543 7544 return DAG.getMergeValues(Ops, SL); 7545 } 7546 7547 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7548 /// the call being lowered. 7549 /// 7550 /// This is a helper for lowering intrinsics that follow a target calling 7551 /// convention or require stack pointer adjustment. Only a subset of the 7552 /// intrinsic's operands need to participate in the calling convention. 7553 void SelectionDAGBuilder::populateCallLoweringInfo( 7554 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7555 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7556 bool IsPatchPoint) { 7557 TargetLowering::ArgListTy Args; 7558 Args.reserve(NumArgs); 7559 7560 // Populate the argument list. 7561 // Attributes for args start at offset 1, after the return attribute. 7562 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7563 ArgI != ArgE; ++ArgI) { 7564 const Value *V = CS->getOperand(ArgI); 7565 7566 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7567 7568 TargetLowering::ArgListEntry Entry; 7569 Entry.Node = getValue(V); 7570 Entry.Ty = V->getType(); 7571 Entry.setAttributes(&CS, ArgIdx); 7572 Args.push_back(Entry); 7573 } 7574 7575 CLI.setDebugLoc(getCurSDLoc()) 7576 .setChain(getRoot()) 7577 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7578 .setDiscardResult(CS->use_empty()) 7579 .setIsPatchPoint(IsPatchPoint); 7580 } 7581 7582 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7583 /// or patchpoint target node's operand list. 7584 /// 7585 /// Constants are converted to TargetConstants purely as an optimization to 7586 /// avoid constant materialization and register allocation. 7587 /// 7588 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7589 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7590 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7591 /// address materialization and register allocation, but may also be required 7592 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7593 /// alloca in the entry block, then the runtime may assume that the alloca's 7594 /// StackMap location can be read immediately after compilation and that the 7595 /// location is valid at any point during execution (this is similar to the 7596 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7597 /// only available in a register, then the runtime would need to trap when 7598 /// execution reaches the StackMap in order to read the alloca's location. 7599 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7600 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7601 SelectionDAGBuilder &Builder) { 7602 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7603 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7604 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7605 Ops.push_back( 7606 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7607 Ops.push_back( 7608 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7609 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7610 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7611 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7612 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 7613 } else 7614 Ops.push_back(OpVal); 7615 } 7616 } 7617 7618 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7619 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7620 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7621 // [live variables...]) 7622 7623 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7624 7625 SDValue Chain, InFlag, Callee, NullPtr; 7626 SmallVector<SDValue, 32> Ops; 7627 7628 SDLoc DL = getCurSDLoc(); 7629 Callee = getValue(CI.getCalledValue()); 7630 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7631 7632 // The stackmap intrinsic only records the live variables (the arguemnts 7633 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7634 // intrinsic, this won't be lowered to a function call. This means we don't 7635 // have to worry about calling conventions and target specific lowering code. 7636 // Instead we perform the call lowering right here. 7637 // 7638 // chain, flag = CALLSEQ_START(chain, 0, 0) 7639 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7640 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7641 // 7642 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 7643 InFlag = Chain.getValue(1); 7644 7645 // Add the <id> and <numBytes> constants. 7646 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7647 Ops.push_back(DAG.getTargetConstant( 7648 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7649 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7650 Ops.push_back(DAG.getTargetConstant( 7651 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7652 MVT::i32)); 7653 7654 // Push live variables for the stack map. 7655 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7656 7657 // We are not pushing any register mask info here on the operands list, 7658 // because the stackmap doesn't clobber anything. 7659 7660 // Push the chain and the glue flag. 7661 Ops.push_back(Chain); 7662 Ops.push_back(InFlag); 7663 7664 // Create the STACKMAP node. 7665 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7666 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7667 Chain = SDValue(SM, 0); 7668 InFlag = Chain.getValue(1); 7669 7670 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7671 7672 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7673 7674 // Set the root to the target-lowered call chain. 7675 DAG.setRoot(Chain); 7676 7677 // Inform the Frame Information that we have a stackmap in this function. 7678 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7679 } 7680 7681 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7682 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7683 const BasicBlock *EHPadBB) { 7684 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7685 // i32 <numBytes>, 7686 // i8* <target>, 7687 // i32 <numArgs>, 7688 // [Args...], 7689 // [live variables...]) 7690 7691 CallingConv::ID CC = CS.getCallingConv(); 7692 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7693 bool HasDef = !CS->getType()->isVoidTy(); 7694 SDLoc dl = getCurSDLoc(); 7695 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7696 7697 // Handle immediate and symbolic callees. 7698 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7699 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7700 /*isTarget=*/true); 7701 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7702 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7703 SDLoc(SymbolicCallee), 7704 SymbolicCallee->getValueType(0)); 7705 7706 // Get the real number of arguments participating in the call <numArgs> 7707 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7708 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7709 7710 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7711 // Intrinsics include all meta-operands up to but not including CC. 7712 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7713 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7714 "Not enough arguments provided to the patchpoint intrinsic"); 7715 7716 // For AnyRegCC the arguments are lowered later on manually. 7717 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7718 Type *ReturnTy = 7719 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7720 7721 TargetLowering::CallLoweringInfo CLI(DAG); 7722 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7723 true); 7724 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7725 7726 SDNode *CallEnd = Result.second.getNode(); 7727 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7728 CallEnd = CallEnd->getOperand(0).getNode(); 7729 7730 /// Get a call instruction from the call sequence chain. 7731 /// Tail calls are not allowed. 7732 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7733 "Expected a callseq node."); 7734 SDNode *Call = CallEnd->getOperand(0).getNode(); 7735 bool HasGlue = Call->getGluedNode(); 7736 7737 // Replace the target specific call node with the patchable intrinsic. 7738 SmallVector<SDValue, 8> Ops; 7739 7740 // Add the <id> and <numBytes> constants. 7741 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7742 Ops.push_back(DAG.getTargetConstant( 7743 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7744 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7745 Ops.push_back(DAG.getTargetConstant( 7746 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7747 MVT::i32)); 7748 7749 // Add the callee. 7750 Ops.push_back(Callee); 7751 7752 // Adjust <numArgs> to account for any arguments that have been passed on the 7753 // stack instead. 7754 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7755 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7756 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7757 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7758 7759 // Add the calling convention 7760 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7761 7762 // Add the arguments we omitted previously. The register allocator should 7763 // place these in any free register. 7764 if (IsAnyRegCC) 7765 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7766 Ops.push_back(getValue(CS.getArgument(i))); 7767 7768 // Push the arguments from the call instruction up to the register mask. 7769 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7770 Ops.append(Call->op_begin() + 2, e); 7771 7772 // Push live variables for the stack map. 7773 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7774 7775 // Push the register mask info. 7776 if (HasGlue) 7777 Ops.push_back(*(Call->op_end()-2)); 7778 else 7779 Ops.push_back(*(Call->op_end()-1)); 7780 7781 // Push the chain (this is originally the first operand of the call, but 7782 // becomes now the last or second to last operand). 7783 Ops.push_back(*(Call->op_begin())); 7784 7785 // Push the glue flag (last operand). 7786 if (HasGlue) 7787 Ops.push_back(*(Call->op_end()-1)); 7788 7789 SDVTList NodeTys; 7790 if (IsAnyRegCC && HasDef) { 7791 // Create the return types based on the intrinsic definition 7792 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7793 SmallVector<EVT, 3> ValueVTs; 7794 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7795 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7796 7797 // There is always a chain and a glue type at the end 7798 ValueVTs.push_back(MVT::Other); 7799 ValueVTs.push_back(MVT::Glue); 7800 NodeTys = DAG.getVTList(ValueVTs); 7801 } else 7802 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7803 7804 // Replace the target specific call node with a PATCHPOINT node. 7805 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7806 dl, NodeTys, Ops); 7807 7808 // Update the NodeMap. 7809 if (HasDef) { 7810 if (IsAnyRegCC) 7811 setValue(CS.getInstruction(), SDValue(MN, 0)); 7812 else 7813 setValue(CS.getInstruction(), Result.first); 7814 } 7815 7816 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7817 // call sequence. Furthermore the location of the chain and glue can change 7818 // when the AnyReg calling convention is used and the intrinsic returns a 7819 // value. 7820 if (IsAnyRegCC && HasDef) { 7821 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7822 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7823 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7824 } else 7825 DAG.ReplaceAllUsesWith(Call, MN); 7826 DAG.DeleteNode(Call); 7827 7828 // Inform the Frame Information that we have a patchpoint in this function. 7829 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 7830 } 7831 7832 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 7833 unsigned Intrinsic) { 7834 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7835 SDValue Op1 = getValue(I.getArgOperand(0)); 7836 SDValue Op2; 7837 if (I.getNumArgOperands() > 1) 7838 Op2 = getValue(I.getArgOperand(1)); 7839 SDLoc dl = getCurSDLoc(); 7840 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7841 SDValue Res; 7842 FastMathFlags FMF; 7843 if (isa<FPMathOperator>(I)) 7844 FMF = I.getFastMathFlags(); 7845 SDNodeFlags SDFlags; 7846 SDFlags.setNoNaNs(FMF.noNaNs()); 7847 7848 switch (Intrinsic) { 7849 case Intrinsic::experimental_vector_reduce_fadd: 7850 if (FMF.unsafeAlgebra()) 7851 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 7852 else 7853 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 7854 break; 7855 case Intrinsic::experimental_vector_reduce_fmul: 7856 if (FMF.unsafeAlgebra()) 7857 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 7858 else 7859 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 7860 break; 7861 case Intrinsic::experimental_vector_reduce_add: 7862 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 7863 break; 7864 case Intrinsic::experimental_vector_reduce_mul: 7865 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 7866 break; 7867 case Intrinsic::experimental_vector_reduce_and: 7868 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 7869 break; 7870 case Intrinsic::experimental_vector_reduce_or: 7871 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 7872 break; 7873 case Intrinsic::experimental_vector_reduce_xor: 7874 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 7875 break; 7876 case Intrinsic::experimental_vector_reduce_smax: 7877 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 7878 break; 7879 case Intrinsic::experimental_vector_reduce_smin: 7880 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 7881 break; 7882 case Intrinsic::experimental_vector_reduce_umax: 7883 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 7884 break; 7885 case Intrinsic::experimental_vector_reduce_umin: 7886 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 7887 break; 7888 case Intrinsic::experimental_vector_reduce_fmax: { 7889 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 7890 break; 7891 } 7892 case Intrinsic::experimental_vector_reduce_fmin: { 7893 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 7894 break; 7895 } 7896 default: 7897 llvm_unreachable("Unhandled vector reduce intrinsic"); 7898 } 7899 setValue(&I, Res); 7900 } 7901 7902 /// Returns an AttributeList representing the attributes applied to the return 7903 /// value of the given call. 7904 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7905 SmallVector<Attribute::AttrKind, 2> Attrs; 7906 if (CLI.RetSExt) 7907 Attrs.push_back(Attribute::SExt); 7908 if (CLI.RetZExt) 7909 Attrs.push_back(Attribute::ZExt); 7910 if (CLI.IsInReg) 7911 Attrs.push_back(Attribute::InReg); 7912 7913 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 7914 Attrs); 7915 } 7916 7917 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7918 /// implementation, which just calls LowerCall. 7919 /// FIXME: When all targets are 7920 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7921 std::pair<SDValue, SDValue> 7922 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7923 // Handle the incoming return values from the call. 7924 CLI.Ins.clear(); 7925 Type *OrigRetTy = CLI.RetTy; 7926 SmallVector<EVT, 4> RetTys; 7927 SmallVector<uint64_t, 4> Offsets; 7928 auto &DL = CLI.DAG.getDataLayout(); 7929 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7930 7931 if (CLI.IsPostTypeLegalization) { 7932 // If we are lowering a libcall after legalization, split the return type. 7933 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 7934 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 7935 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 7936 EVT RetVT = OldRetTys[i]; 7937 uint64_t Offset = OldOffsets[i]; 7938 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 7939 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 7940 unsigned RegisterVTSize = RegisterVT.getSizeInBits(); 7941 RetTys.append(NumRegs, RegisterVT); 7942 for (unsigned j = 0; j != NumRegs; ++j) 7943 Offsets.push_back(Offset + j * RegisterVTSize); 7944 } 7945 } 7946 7947 SmallVector<ISD::OutputArg, 4> Outs; 7948 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7949 7950 bool CanLowerReturn = 7951 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7952 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7953 7954 SDValue DemoteStackSlot; 7955 int DemoteStackIdx = -100; 7956 if (!CanLowerReturn) { 7957 // FIXME: equivalent assert? 7958 // assert(!CS.hasInAllocaArgument() && 7959 // "sret demotion is incompatible with inalloca"); 7960 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7961 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7962 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7963 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7964 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7965 7966 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 7967 ArgListEntry Entry; 7968 Entry.Node = DemoteStackSlot; 7969 Entry.Ty = StackSlotPtrType; 7970 Entry.IsSExt = false; 7971 Entry.IsZExt = false; 7972 Entry.IsInReg = false; 7973 Entry.IsSRet = true; 7974 Entry.IsNest = false; 7975 Entry.IsByVal = false; 7976 Entry.IsReturned = false; 7977 Entry.IsSwiftSelf = false; 7978 Entry.IsSwiftError = false; 7979 Entry.Alignment = Align; 7980 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7981 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7982 7983 // sret demotion isn't compatible with tail-calls, since the sret argument 7984 // points into the callers stack frame. 7985 CLI.IsTailCall = false; 7986 } else { 7987 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7988 EVT VT = RetTys[I]; 7989 MVT RegisterVT = 7990 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 7991 unsigned NumRegs = 7992 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 7993 for (unsigned i = 0; i != NumRegs; ++i) { 7994 ISD::InputArg MyFlags; 7995 MyFlags.VT = RegisterVT; 7996 MyFlags.ArgVT = VT; 7997 MyFlags.Used = CLI.IsReturnValueUsed; 7998 if (CLI.RetSExt) 7999 MyFlags.Flags.setSExt(); 8000 if (CLI.RetZExt) 8001 MyFlags.Flags.setZExt(); 8002 if (CLI.IsInReg) 8003 MyFlags.Flags.setInReg(); 8004 CLI.Ins.push_back(MyFlags); 8005 } 8006 } 8007 } 8008 8009 // We push in swifterror return as the last element of CLI.Ins. 8010 ArgListTy &Args = CLI.getArgs(); 8011 if (supportSwiftError()) { 8012 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8013 if (Args[i].IsSwiftError) { 8014 ISD::InputArg MyFlags; 8015 MyFlags.VT = getPointerTy(DL); 8016 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8017 MyFlags.Flags.setSwiftError(); 8018 CLI.Ins.push_back(MyFlags); 8019 } 8020 } 8021 } 8022 8023 // Handle all of the outgoing arguments. 8024 CLI.Outs.clear(); 8025 CLI.OutVals.clear(); 8026 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8027 SmallVector<EVT, 4> ValueVTs; 8028 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8029 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8030 Type *FinalType = Args[i].Ty; 8031 if (Args[i].IsByVal) 8032 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8033 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8034 FinalType, CLI.CallConv, CLI.IsVarArg); 8035 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8036 ++Value) { 8037 EVT VT = ValueVTs[Value]; 8038 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8039 SDValue Op = SDValue(Args[i].Node.getNode(), 8040 Args[i].Node.getResNo() + Value); 8041 ISD::ArgFlagsTy Flags; 8042 8043 // Certain targets (such as MIPS), may have a different ABI alignment 8044 // for a type depending on the context. Give the target a chance to 8045 // specify the alignment it wants. 8046 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8047 8048 if (Args[i].IsZExt) 8049 Flags.setZExt(); 8050 if (Args[i].IsSExt) 8051 Flags.setSExt(); 8052 if (Args[i].IsInReg) { 8053 // If we are using vectorcall calling convention, a structure that is 8054 // passed InReg - is surely an HVA 8055 if (CLI.CallConv == CallingConv::X86_VectorCall && 8056 isa<StructType>(FinalType)) { 8057 // The first value of a structure is marked 8058 if (0 == Value) 8059 Flags.setHvaStart(); 8060 Flags.setHva(); 8061 } 8062 // Set InReg Flag 8063 Flags.setInReg(); 8064 } 8065 if (Args[i].IsSRet) 8066 Flags.setSRet(); 8067 if (Args[i].IsSwiftSelf) 8068 Flags.setSwiftSelf(); 8069 if (Args[i].IsSwiftError) 8070 Flags.setSwiftError(); 8071 if (Args[i].IsByVal) 8072 Flags.setByVal(); 8073 if (Args[i].IsInAlloca) { 8074 Flags.setInAlloca(); 8075 // Set the byval flag for CCAssignFn callbacks that don't know about 8076 // inalloca. This way we can know how many bytes we should've allocated 8077 // and how many bytes a callee cleanup function will pop. If we port 8078 // inalloca to more targets, we'll have to add custom inalloca handling 8079 // in the various CC lowering callbacks. 8080 Flags.setByVal(); 8081 } 8082 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8083 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8084 Type *ElementTy = Ty->getElementType(); 8085 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8086 // For ByVal, alignment should come from FE. BE will guess if this 8087 // info is not there but there are cases it cannot get right. 8088 unsigned FrameAlign; 8089 if (Args[i].Alignment) 8090 FrameAlign = Args[i].Alignment; 8091 else 8092 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8093 Flags.setByValAlign(FrameAlign); 8094 } 8095 if (Args[i].IsNest) 8096 Flags.setNest(); 8097 if (NeedsRegBlock) 8098 Flags.setInConsecutiveRegs(); 8099 Flags.setOrigAlign(OriginalAlignment); 8100 8101 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8102 unsigned NumParts = 8103 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8104 SmallVector<SDValue, 4> Parts(NumParts); 8105 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8106 8107 if (Args[i].IsSExt) 8108 ExtendKind = ISD::SIGN_EXTEND; 8109 else if (Args[i].IsZExt) 8110 ExtendKind = ISD::ZERO_EXTEND; 8111 8112 // Conservatively only handle 'returned' on non-vectors for now 8113 if (Args[i].IsReturned && !Op.getValueType().isVector()) { 8114 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8115 "unexpected use of 'returned'"); 8116 // Before passing 'returned' to the target lowering code, ensure that 8117 // either the register MVT and the actual EVT are the same size or that 8118 // the return value and argument are extended in the same way; in these 8119 // cases it's safe to pass the argument register value unchanged as the 8120 // return register value (although it's at the target's option whether 8121 // to do so) 8122 // TODO: allow code generation to take advantage of partially preserved 8123 // registers rather than clobbering the entire register when the 8124 // parameter extension method is not compatible with the return 8125 // extension method 8126 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8127 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8128 CLI.RetZExt == Args[i].IsZExt)) 8129 Flags.setReturned(); 8130 } 8131 8132 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8133 CLI.CS.getInstruction(), ExtendKind, true); 8134 8135 for (unsigned j = 0; j != NumParts; ++j) { 8136 // if it isn't first piece, alignment must be 1 8137 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8138 i < CLI.NumFixedArgs, 8139 i, j*Parts[j].getValueType().getStoreSize()); 8140 if (NumParts > 1 && j == 0) 8141 MyFlags.Flags.setSplit(); 8142 else if (j != 0) { 8143 MyFlags.Flags.setOrigAlign(1); 8144 if (j == NumParts - 1) 8145 MyFlags.Flags.setSplitEnd(); 8146 } 8147 8148 CLI.Outs.push_back(MyFlags); 8149 CLI.OutVals.push_back(Parts[j]); 8150 } 8151 8152 if (NeedsRegBlock && Value == NumValues - 1) 8153 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8154 } 8155 } 8156 8157 SmallVector<SDValue, 4> InVals; 8158 CLI.Chain = LowerCall(CLI, InVals); 8159 8160 // Update CLI.InVals to use outside of this function. 8161 CLI.InVals = InVals; 8162 8163 // Verify that the target's LowerCall behaved as expected. 8164 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8165 "LowerCall didn't return a valid chain!"); 8166 assert((!CLI.IsTailCall || InVals.empty()) && 8167 "LowerCall emitted a return value for a tail call!"); 8168 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8169 "LowerCall didn't emit the correct number of values!"); 8170 8171 // For a tail call, the return value is merely live-out and there aren't 8172 // any nodes in the DAG representing it. Return a special value to 8173 // indicate that a tail call has been emitted and no more Instructions 8174 // should be processed in the current block. 8175 if (CLI.IsTailCall) { 8176 CLI.DAG.setRoot(CLI.Chain); 8177 return std::make_pair(SDValue(), SDValue()); 8178 } 8179 8180 #ifndef NDEBUG 8181 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8182 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8183 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8184 "LowerCall emitted a value with the wrong type!"); 8185 } 8186 #endif 8187 8188 SmallVector<SDValue, 4> ReturnValues; 8189 if (!CanLowerReturn) { 8190 // The instruction result is the result of loading from the 8191 // hidden sret parameter. 8192 SmallVector<EVT, 1> PVTs; 8193 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 8194 8195 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8196 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8197 EVT PtrVT = PVTs[0]; 8198 8199 unsigned NumValues = RetTys.size(); 8200 ReturnValues.resize(NumValues); 8201 SmallVector<SDValue, 4> Chains(NumValues); 8202 8203 // An aggregate return value cannot wrap around the address space, so 8204 // offsets to its parts don't wrap either. 8205 SDNodeFlags Flags; 8206 Flags.setNoUnsignedWrap(true); 8207 8208 for (unsigned i = 0; i < NumValues; ++i) { 8209 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8210 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8211 PtrVT), Flags); 8212 SDValue L = CLI.DAG.getLoad( 8213 RetTys[i], CLI.DL, CLI.Chain, Add, 8214 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8215 DemoteStackIdx, Offsets[i]), 8216 /* Alignment = */ 1); 8217 ReturnValues[i] = L; 8218 Chains[i] = L.getValue(1); 8219 } 8220 8221 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8222 } else { 8223 // Collect the legal value parts into potentially illegal values 8224 // that correspond to the original function's return values. 8225 Optional<ISD::NodeType> AssertOp; 8226 if (CLI.RetSExt) 8227 AssertOp = ISD::AssertSext; 8228 else if (CLI.RetZExt) 8229 AssertOp = ISD::AssertZext; 8230 unsigned CurReg = 0; 8231 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8232 EVT VT = RetTys[I]; 8233 MVT RegisterVT = 8234 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8235 unsigned NumRegs = 8236 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8237 8238 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8239 NumRegs, RegisterVT, VT, nullptr, 8240 AssertOp, true)); 8241 CurReg += NumRegs; 8242 } 8243 8244 // For a function returning void, there is no return value. We can't create 8245 // such a node, so we just return a null return value in that case. In 8246 // that case, nothing will actually look at the value. 8247 if (ReturnValues.empty()) 8248 return std::make_pair(SDValue(), CLI.Chain); 8249 } 8250 8251 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8252 CLI.DAG.getVTList(RetTys), ReturnValues); 8253 return std::make_pair(Res, CLI.Chain); 8254 } 8255 8256 void TargetLowering::LowerOperationWrapper(SDNode *N, 8257 SmallVectorImpl<SDValue> &Results, 8258 SelectionDAG &DAG) const { 8259 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8260 Results.push_back(Res); 8261 } 8262 8263 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8264 llvm_unreachable("LowerOperation not implemented for this target!"); 8265 } 8266 8267 void 8268 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8269 SDValue Op = getNonRegisterValue(V); 8270 assert((Op.getOpcode() != ISD::CopyFromReg || 8271 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8272 "Copy from a reg to the same reg!"); 8273 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8274 8275 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8276 // If this is an InlineAsm we have to match the registers required, not the 8277 // notional registers required by the type. 8278 bool IsABIRegCopy = 8279 V && ((isa<CallInst>(V) && 8280 !(static_cast<const CallInst *>(V))->isInlineAsm()) || 8281 isa<ReturnInst>(V)); 8282 8283 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8284 V->getType(), IsABIRegCopy); 8285 SDValue Chain = DAG.getEntryNode(); 8286 8287 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8288 FuncInfo.PreferredExtendType.end()) 8289 ? ISD::ANY_EXTEND 8290 : FuncInfo.PreferredExtendType[V]; 8291 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8292 PendingExports.push_back(Chain); 8293 } 8294 8295 #include "llvm/CodeGen/SelectionDAGISel.h" 8296 8297 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8298 /// entry block, return true. This includes arguments used by switches, since 8299 /// the switch may expand into multiple basic blocks. 8300 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8301 // With FastISel active, we may be splitting blocks, so force creation 8302 // of virtual registers for all non-dead arguments. 8303 if (FastISel) 8304 return A->use_empty(); 8305 8306 const BasicBlock &Entry = A->getParent()->front(); 8307 for (const User *U : A->users()) 8308 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8309 return false; // Use not in entry block. 8310 8311 return true; 8312 } 8313 8314 typedef DenseMap<const Argument *, 8315 std::pair<const AllocaInst *, const StoreInst *>> 8316 ArgCopyElisionMapTy; 8317 8318 /// Scan the entry block of the function in FuncInfo for arguments that look 8319 /// like copies into a local alloca. Record any copied arguments in 8320 /// ArgCopyElisionCandidates. 8321 static void 8322 findArgumentCopyElisionCandidates(const DataLayout &DL, 8323 FunctionLoweringInfo *FuncInfo, 8324 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8325 // Record the state of every static alloca used in the entry block. Argument 8326 // allocas are all used in the entry block, so we need approximately as many 8327 // entries as we have arguments. 8328 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8329 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8330 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8331 StaticAllocas.reserve(NumArgs * 2); 8332 8333 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8334 if (!V) 8335 return nullptr; 8336 V = V->stripPointerCasts(); 8337 const auto *AI = dyn_cast<AllocaInst>(V); 8338 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8339 return nullptr; 8340 auto Iter = StaticAllocas.insert({AI, Unknown}); 8341 return &Iter.first->second; 8342 }; 8343 8344 // Look for stores of arguments to static allocas. Look through bitcasts and 8345 // GEPs to handle type coercions, as long as the alloca is fully initialized 8346 // by the store. Any non-store use of an alloca escapes it and any subsequent 8347 // unanalyzed store might write it. 8348 // FIXME: Handle structs initialized with multiple stores. 8349 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8350 // Look for stores, and handle non-store uses conservatively. 8351 const auto *SI = dyn_cast<StoreInst>(&I); 8352 if (!SI) { 8353 // We will look through cast uses, so ignore them completely. 8354 if (I.isCast()) 8355 continue; 8356 // Ignore debug info intrinsics, they don't escape or store to allocas. 8357 if (isa<DbgInfoIntrinsic>(I)) 8358 continue; 8359 // This is an unknown instruction. Assume it escapes or writes to all 8360 // static alloca operands. 8361 for (const Use &U : I.operands()) { 8362 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8363 *Info = StaticAllocaInfo::Clobbered; 8364 } 8365 continue; 8366 } 8367 8368 // If the stored value is a static alloca, mark it as escaped. 8369 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8370 *Info = StaticAllocaInfo::Clobbered; 8371 8372 // Check if the destination is a static alloca. 8373 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8374 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8375 if (!Info) 8376 continue; 8377 const AllocaInst *AI = cast<AllocaInst>(Dst); 8378 8379 // Skip allocas that have been initialized or clobbered. 8380 if (*Info != StaticAllocaInfo::Unknown) 8381 continue; 8382 8383 // Check if the stored value is an argument, and that this store fully 8384 // initializes the alloca. Don't elide copies from the same argument twice. 8385 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8386 const auto *Arg = dyn_cast<Argument>(Val); 8387 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8388 Arg->getType()->isEmptyTy() || 8389 DL.getTypeStoreSize(Arg->getType()) != 8390 DL.getTypeAllocSize(AI->getAllocatedType()) || 8391 ArgCopyElisionCandidates.count(Arg)) { 8392 *Info = StaticAllocaInfo::Clobbered; 8393 continue; 8394 } 8395 8396 DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n'); 8397 8398 // Mark this alloca and store for argument copy elision. 8399 *Info = StaticAllocaInfo::Elidable; 8400 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8401 8402 // Stop scanning if we've seen all arguments. This will happen early in -O0 8403 // builds, which is useful, because -O0 builds have large entry blocks and 8404 // many allocas. 8405 if (ArgCopyElisionCandidates.size() == NumArgs) 8406 break; 8407 } 8408 } 8409 8410 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8411 /// ArgVal is a load from a suitable fixed stack object. 8412 static void tryToElideArgumentCopy( 8413 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8414 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8415 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8416 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8417 SDValue ArgVal, bool &ArgHasUses) { 8418 // Check if this is a load from a fixed stack object. 8419 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8420 if (!LNode) 8421 return; 8422 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8423 if (!FINode) 8424 return; 8425 8426 // Check that the fixed stack object is the right size and alignment. 8427 // Look at the alignment that the user wrote on the alloca instead of looking 8428 // at the stack object. 8429 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8430 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8431 const AllocaInst *AI = ArgCopyIter->second.first; 8432 int FixedIndex = FINode->getIndex(); 8433 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8434 int OldIndex = AllocaIndex; 8435 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8436 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8437 DEBUG(dbgs() << " argument copy elision failed due to bad fixed stack " 8438 "object size\n"); 8439 return; 8440 } 8441 unsigned RequiredAlignment = AI->getAlignment(); 8442 if (!RequiredAlignment) { 8443 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8444 AI->getAllocatedType()); 8445 } 8446 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8447 DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8448 "greater than stack argument alignment (" 8449 << RequiredAlignment << " vs " 8450 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8451 return; 8452 } 8453 8454 // Perform the elision. Delete the old stack object and replace its only use 8455 // in the variable info map. Mark the stack object as mutable. 8456 DEBUG({ 8457 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8458 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8459 << '\n'; 8460 }); 8461 MFI.RemoveStackObject(OldIndex); 8462 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8463 AllocaIndex = FixedIndex; 8464 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8465 Chains.push_back(ArgVal.getValue(1)); 8466 8467 // Avoid emitting code for the store implementing the copy. 8468 const StoreInst *SI = ArgCopyIter->second.second; 8469 ElidedArgCopyInstrs.insert(SI); 8470 8471 // Check for uses of the argument again so that we can avoid exporting ArgVal 8472 // if it is't used by anything other than the store. 8473 for (const Value *U : Arg.users()) { 8474 if (U != SI) { 8475 ArgHasUses = true; 8476 break; 8477 } 8478 } 8479 } 8480 8481 void SelectionDAGISel::LowerArguments(const Function &F) { 8482 SelectionDAG &DAG = SDB->DAG; 8483 SDLoc dl = SDB->getCurSDLoc(); 8484 const DataLayout &DL = DAG.getDataLayout(); 8485 SmallVector<ISD::InputArg, 16> Ins; 8486 8487 if (!FuncInfo->CanLowerReturn) { 8488 // Put in an sret pointer parameter before all the other parameters. 8489 SmallVector<EVT, 1> ValueVTs; 8490 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8491 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8492 8493 // NOTE: Assuming that a pointer will never break down to more than one VT 8494 // or one register. 8495 ISD::ArgFlagsTy Flags; 8496 Flags.setSRet(); 8497 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8498 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8499 ISD::InputArg::NoArgIndex, 0); 8500 Ins.push_back(RetArg); 8501 } 8502 8503 // Look for stores of arguments to static allocas. Mark such arguments with a 8504 // flag to ask the target to give us the memory location of that argument if 8505 // available. 8506 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8507 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8508 8509 // Set up the incoming argument description vector. 8510 for (const Argument &Arg : F.args()) { 8511 unsigned ArgNo = Arg.getArgNo(); 8512 SmallVector<EVT, 4> ValueVTs; 8513 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8514 bool isArgValueUsed = !Arg.use_empty(); 8515 unsigned PartBase = 0; 8516 Type *FinalType = Arg.getType(); 8517 if (Arg.hasAttribute(Attribute::ByVal)) 8518 FinalType = cast<PointerType>(FinalType)->getElementType(); 8519 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8520 FinalType, F.getCallingConv(), F.isVarArg()); 8521 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8522 Value != NumValues; ++Value) { 8523 EVT VT = ValueVTs[Value]; 8524 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8525 ISD::ArgFlagsTy Flags; 8526 8527 // Certain targets (such as MIPS), may have a different ABI alignment 8528 // for a type depending on the context. Give the target a chance to 8529 // specify the alignment it wants. 8530 unsigned OriginalAlignment = 8531 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8532 8533 if (Arg.hasAttribute(Attribute::ZExt)) 8534 Flags.setZExt(); 8535 if (Arg.hasAttribute(Attribute::SExt)) 8536 Flags.setSExt(); 8537 if (Arg.hasAttribute(Attribute::InReg)) { 8538 // If we are using vectorcall calling convention, a structure that is 8539 // passed InReg - is surely an HVA 8540 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8541 isa<StructType>(Arg.getType())) { 8542 // The first value of a structure is marked 8543 if (0 == Value) 8544 Flags.setHvaStart(); 8545 Flags.setHva(); 8546 } 8547 // Set InReg Flag 8548 Flags.setInReg(); 8549 } 8550 if (Arg.hasAttribute(Attribute::StructRet)) 8551 Flags.setSRet(); 8552 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8553 Flags.setSwiftSelf(); 8554 if (Arg.hasAttribute(Attribute::SwiftError)) 8555 Flags.setSwiftError(); 8556 if (Arg.hasAttribute(Attribute::ByVal)) 8557 Flags.setByVal(); 8558 if (Arg.hasAttribute(Attribute::InAlloca)) { 8559 Flags.setInAlloca(); 8560 // Set the byval flag for CCAssignFn callbacks that don't know about 8561 // inalloca. This way we can know how many bytes we should've allocated 8562 // and how many bytes a callee cleanup function will pop. If we port 8563 // inalloca to more targets, we'll have to add custom inalloca handling 8564 // in the various CC lowering callbacks. 8565 Flags.setByVal(); 8566 } 8567 if (F.getCallingConv() == CallingConv::X86_INTR) { 8568 // IA Interrupt passes frame (1st parameter) by value in the stack. 8569 if (ArgNo == 0) 8570 Flags.setByVal(); 8571 } 8572 if (Flags.isByVal() || Flags.isInAlloca()) { 8573 PointerType *Ty = cast<PointerType>(Arg.getType()); 8574 Type *ElementTy = Ty->getElementType(); 8575 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8576 // For ByVal, alignment should be passed from FE. BE will guess if 8577 // this info is not there but there are cases it cannot get right. 8578 unsigned FrameAlign; 8579 if (Arg.getParamAlignment()) 8580 FrameAlign = Arg.getParamAlignment(); 8581 else 8582 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8583 Flags.setByValAlign(FrameAlign); 8584 } 8585 if (Arg.hasAttribute(Attribute::Nest)) 8586 Flags.setNest(); 8587 if (NeedsRegBlock) 8588 Flags.setInConsecutiveRegs(); 8589 Flags.setOrigAlign(OriginalAlignment); 8590 if (ArgCopyElisionCandidates.count(&Arg)) 8591 Flags.setCopyElisionCandidate(); 8592 8593 MVT RegisterVT = 8594 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8595 unsigned NumRegs = 8596 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8597 for (unsigned i = 0; i != NumRegs; ++i) { 8598 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8599 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 8600 if (NumRegs > 1 && i == 0) 8601 MyFlags.Flags.setSplit(); 8602 // if it isn't first piece, alignment must be 1 8603 else if (i > 0) { 8604 MyFlags.Flags.setOrigAlign(1); 8605 if (i == NumRegs - 1) 8606 MyFlags.Flags.setSplitEnd(); 8607 } 8608 Ins.push_back(MyFlags); 8609 } 8610 if (NeedsRegBlock && Value == NumValues - 1) 8611 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8612 PartBase += VT.getStoreSize(); 8613 } 8614 } 8615 8616 // Call the target to set up the argument values. 8617 SmallVector<SDValue, 8> InVals; 8618 SDValue NewRoot = TLI->LowerFormalArguments( 8619 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8620 8621 // Verify that the target's LowerFormalArguments behaved as expected. 8622 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8623 "LowerFormalArguments didn't return a valid chain!"); 8624 assert(InVals.size() == Ins.size() && 8625 "LowerFormalArguments didn't emit the correct number of values!"); 8626 DEBUG({ 8627 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8628 assert(InVals[i].getNode() && 8629 "LowerFormalArguments emitted a null value!"); 8630 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8631 "LowerFormalArguments emitted a value with the wrong type!"); 8632 } 8633 }); 8634 8635 // Update the DAG with the new chain value resulting from argument lowering. 8636 DAG.setRoot(NewRoot); 8637 8638 // Set up the argument values. 8639 unsigned i = 0; 8640 if (!FuncInfo->CanLowerReturn) { 8641 // Create a virtual register for the sret pointer, and put in a copy 8642 // from the sret argument into it. 8643 SmallVector<EVT, 1> ValueVTs; 8644 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8645 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8646 MVT VT = ValueVTs[0].getSimpleVT(); 8647 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8648 Optional<ISD::NodeType> AssertOp = None; 8649 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8650 RegVT, VT, nullptr, AssertOp); 8651 8652 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8653 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8654 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8655 FuncInfo->DemoteRegister = SRetReg; 8656 NewRoot = 8657 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8658 DAG.setRoot(NewRoot); 8659 8660 // i indexes lowered arguments. Bump it past the hidden sret argument. 8661 ++i; 8662 } 8663 8664 SmallVector<SDValue, 4> Chains; 8665 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8666 for (const Argument &Arg : F.args()) { 8667 SmallVector<SDValue, 4> ArgValues; 8668 SmallVector<EVT, 4> ValueVTs; 8669 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8670 unsigned NumValues = ValueVTs.size(); 8671 if (NumValues == 0) 8672 continue; 8673 8674 bool ArgHasUses = !Arg.use_empty(); 8675 8676 // Elide the copying store if the target loaded this argument from a 8677 // suitable fixed stack object. 8678 if (Ins[i].Flags.isCopyElisionCandidate()) { 8679 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8680 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8681 InVals[i], ArgHasUses); 8682 } 8683 8684 // If this argument is unused then remember its value. It is used to generate 8685 // debugging information. 8686 bool isSwiftErrorArg = 8687 TLI->supportSwiftError() && 8688 Arg.hasAttribute(Attribute::SwiftError); 8689 if (!ArgHasUses && !isSwiftErrorArg) { 8690 SDB->setUnusedArgValue(&Arg, InVals[i]); 8691 8692 // Also remember any frame index for use in FastISel. 8693 if (FrameIndexSDNode *FI = 8694 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8695 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8696 } 8697 8698 for (unsigned Val = 0; Val != NumValues; ++Val) { 8699 EVT VT = ValueVTs[Val]; 8700 MVT PartVT = 8701 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8702 unsigned NumParts = 8703 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8704 8705 // Even an apparant 'unused' swifterror argument needs to be returned. So 8706 // we do generate a copy for it that can be used on return from the 8707 // function. 8708 if (ArgHasUses || isSwiftErrorArg) { 8709 Optional<ISD::NodeType> AssertOp; 8710 if (Arg.hasAttribute(Attribute::SExt)) 8711 AssertOp = ISD::AssertSext; 8712 else if (Arg.hasAttribute(Attribute::ZExt)) 8713 AssertOp = ISD::AssertZext; 8714 8715 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8716 PartVT, VT, nullptr, AssertOp, 8717 true)); 8718 } 8719 8720 i += NumParts; 8721 } 8722 8723 // We don't need to do anything else for unused arguments. 8724 if (ArgValues.empty()) 8725 continue; 8726 8727 // Note down frame index. 8728 if (FrameIndexSDNode *FI = 8729 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8730 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8731 8732 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8733 SDB->getCurSDLoc()); 8734 8735 SDB->setValue(&Arg, Res); 8736 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8737 if (LoadSDNode *LNode = 8738 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 8739 if (FrameIndexSDNode *FI = 8740 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8741 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8742 } 8743 8744 // Update the SwiftErrorVRegDefMap. 8745 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 8746 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8747 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8748 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 8749 FuncInfo->SwiftErrorArg, Reg); 8750 } 8751 8752 // If this argument is live outside of the entry block, insert a copy from 8753 // wherever we got it to the vreg that other BB's will reference it as. 8754 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8755 // If we can, though, try to skip creating an unnecessary vreg. 8756 // FIXME: This isn't very clean... it would be nice to make this more 8757 // general. It's also subtly incompatible with the hacks FastISel 8758 // uses with vregs. 8759 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8760 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8761 FuncInfo->ValueMap[&Arg] = Reg; 8762 continue; 8763 } 8764 } 8765 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 8766 FuncInfo->InitializeRegForValue(&Arg); 8767 SDB->CopyToExportRegsIfNeeded(&Arg); 8768 } 8769 } 8770 8771 if (!Chains.empty()) { 8772 Chains.push_back(NewRoot); 8773 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 8774 } 8775 8776 DAG.setRoot(NewRoot); 8777 8778 assert(i == InVals.size() && "Argument register count mismatch!"); 8779 8780 // If any argument copy elisions occurred and we have debug info, update the 8781 // stale frame indices used in the dbg.declare variable info table. 8782 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 8783 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 8784 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 8785 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 8786 if (I != ArgCopyElisionFrameIndexMap.end()) 8787 VI.Slot = I->second; 8788 } 8789 } 8790 8791 // Finally, if the target has anything special to do, allow it to do so. 8792 EmitFunctionEntryCode(); 8793 } 8794 8795 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8796 /// ensure constants are generated when needed. Remember the virtual registers 8797 /// that need to be added to the Machine PHI nodes as input. We cannot just 8798 /// directly add them, because expansion might result in multiple MBB's for one 8799 /// BB. As such, the start of the BB might correspond to a different MBB than 8800 /// the end. 8801 /// 8802 void 8803 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8804 const TerminatorInst *TI = LLVMBB->getTerminator(); 8805 8806 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8807 8808 // Check PHI nodes in successors that expect a value to be available from this 8809 // block. 8810 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8811 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8812 if (!isa<PHINode>(SuccBB->begin())) continue; 8813 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8814 8815 // If this terminator has multiple identical successors (common for 8816 // switches), only handle each succ once. 8817 if (!SuccsHandled.insert(SuccMBB).second) 8818 continue; 8819 8820 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8821 8822 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8823 // nodes and Machine PHI nodes, but the incoming operands have not been 8824 // emitted yet. 8825 for (BasicBlock::const_iterator I = SuccBB->begin(); 8826 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8827 // Ignore dead phi's. 8828 if (PN->use_empty()) continue; 8829 8830 // Skip empty types 8831 if (PN->getType()->isEmptyTy()) 8832 continue; 8833 8834 unsigned Reg; 8835 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8836 8837 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8838 unsigned &RegOut = ConstantsOut[C]; 8839 if (RegOut == 0) { 8840 RegOut = FuncInfo.CreateRegs(C->getType()); 8841 CopyValueToVirtualRegister(C, RegOut); 8842 } 8843 Reg = RegOut; 8844 } else { 8845 DenseMap<const Value *, unsigned>::iterator I = 8846 FuncInfo.ValueMap.find(PHIOp); 8847 if (I != FuncInfo.ValueMap.end()) 8848 Reg = I->second; 8849 else { 8850 assert(isa<AllocaInst>(PHIOp) && 8851 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8852 "Didn't codegen value into a register!??"); 8853 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8854 CopyValueToVirtualRegister(PHIOp, Reg); 8855 } 8856 } 8857 8858 // Remember that this register needs to added to the machine PHI node as 8859 // the input for this MBB. 8860 SmallVector<EVT, 4> ValueVTs; 8861 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8862 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8863 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8864 EVT VT = ValueVTs[vti]; 8865 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8866 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8867 FuncInfo.PHINodesToUpdate.push_back( 8868 std::make_pair(&*MBBI++, Reg + i)); 8869 Reg += NumRegisters; 8870 } 8871 } 8872 } 8873 8874 ConstantsOut.clear(); 8875 } 8876 8877 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8878 /// is 0. 8879 MachineBasicBlock * 8880 SelectionDAGBuilder::StackProtectorDescriptor:: 8881 AddSuccessorMBB(const BasicBlock *BB, 8882 MachineBasicBlock *ParentMBB, 8883 bool IsLikely, 8884 MachineBasicBlock *SuccMBB) { 8885 // If SuccBB has not been created yet, create it. 8886 if (!SuccMBB) { 8887 MachineFunction *MF = ParentMBB->getParent(); 8888 MachineFunction::iterator BBI(ParentMBB); 8889 SuccMBB = MF->CreateMachineBasicBlock(BB); 8890 MF->insert(++BBI, SuccMBB); 8891 } 8892 // Add it as a successor of ParentMBB. 8893 ParentMBB->addSuccessor( 8894 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 8895 return SuccMBB; 8896 } 8897 8898 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 8899 MachineFunction::iterator I(MBB); 8900 if (++I == FuncInfo.MF->end()) 8901 return nullptr; 8902 return &*I; 8903 } 8904 8905 /// During lowering new call nodes can be created (such as memset, etc.). 8906 /// Those will become new roots of the current DAG, but complications arise 8907 /// when they are tail calls. In such cases, the call lowering will update 8908 /// the root, but the builder still needs to know that a tail call has been 8909 /// lowered in order to avoid generating an additional return. 8910 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 8911 // If the node is null, we do have a tail call. 8912 if (MaybeTC.getNode() != nullptr) 8913 DAG.setRoot(MaybeTC); 8914 else 8915 HasTailCall = true; 8916 } 8917 8918 uint64_t 8919 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 8920 unsigned First, unsigned Last) const { 8921 assert(Last >= First); 8922 const APInt &LowCase = Clusters[First].Low->getValue(); 8923 const APInt &HighCase = Clusters[Last].High->getValue(); 8924 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 8925 8926 // FIXME: A range of consecutive cases has 100% density, but only requires one 8927 // comparison to lower. We should discriminate against such consecutive ranges 8928 // in jump tables. 8929 8930 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 8931 } 8932 8933 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 8934 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 8935 unsigned Last) const { 8936 assert(Last >= First); 8937 assert(TotalCases[Last] >= TotalCases[First]); 8938 uint64_t NumCases = 8939 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 8940 return NumCases; 8941 } 8942 8943 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 8944 unsigned First, unsigned Last, 8945 const SwitchInst *SI, 8946 MachineBasicBlock *DefaultMBB, 8947 CaseCluster &JTCluster) { 8948 assert(First <= Last); 8949 8950 auto Prob = BranchProbability::getZero(); 8951 unsigned NumCmps = 0; 8952 std::vector<MachineBasicBlock*> Table; 8953 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 8954 8955 // Initialize probabilities in JTProbs. 8956 for (unsigned I = First; I <= Last; ++I) 8957 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 8958 8959 for (unsigned I = First; I <= Last; ++I) { 8960 assert(Clusters[I].Kind == CC_Range); 8961 Prob += Clusters[I].Prob; 8962 const APInt &Low = Clusters[I].Low->getValue(); 8963 const APInt &High = Clusters[I].High->getValue(); 8964 NumCmps += (Low == High) ? 1 : 2; 8965 if (I != First) { 8966 // Fill the gap between this and the previous cluster. 8967 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 8968 assert(PreviousHigh.slt(Low)); 8969 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 8970 for (uint64_t J = 0; J < Gap; J++) 8971 Table.push_back(DefaultMBB); 8972 } 8973 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 8974 for (uint64_t J = 0; J < ClusterSize; ++J) 8975 Table.push_back(Clusters[I].MBB); 8976 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 8977 } 8978 8979 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8980 unsigned NumDests = JTProbs.size(); 8981 if (TLI.isSuitableForBitTests( 8982 NumDests, NumCmps, Clusters[First].Low->getValue(), 8983 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 8984 // Clusters[First..Last] should be lowered as bit tests instead. 8985 return false; 8986 } 8987 8988 // Create the MBB that will load from and jump through the table. 8989 // Note: We create it here, but it's not inserted into the function yet. 8990 MachineFunction *CurMF = FuncInfo.MF; 8991 MachineBasicBlock *JumpTableMBB = 8992 CurMF->CreateMachineBasicBlock(SI->getParent()); 8993 8994 // Add successors. Note: use table order for determinism. 8995 SmallPtrSet<MachineBasicBlock *, 8> Done; 8996 for (MachineBasicBlock *Succ : Table) { 8997 if (Done.count(Succ)) 8998 continue; 8999 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9000 Done.insert(Succ); 9001 } 9002 JumpTableMBB->normalizeSuccProbs(); 9003 9004 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9005 ->createJumpTableIndex(Table); 9006 9007 // Set up the jump table info. 9008 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9009 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9010 Clusters[Last].High->getValue(), SI->getCondition(), 9011 nullptr, false); 9012 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9013 9014 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9015 JTCases.size() - 1, Prob); 9016 return true; 9017 } 9018 9019 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9020 const SwitchInst *SI, 9021 MachineBasicBlock *DefaultMBB) { 9022 #ifndef NDEBUG 9023 // Clusters must be non-empty, sorted, and only contain Range clusters. 9024 assert(!Clusters.empty()); 9025 for (CaseCluster &C : Clusters) 9026 assert(C.Kind == CC_Range); 9027 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9028 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9029 #endif 9030 9031 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9032 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9033 return; 9034 9035 const int64_t N = Clusters.size(); 9036 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9037 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9038 9039 if (N < 2 || N < MinJumpTableEntries) 9040 return; 9041 9042 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9043 SmallVector<unsigned, 8> TotalCases(N); 9044 for (unsigned i = 0; i < N; ++i) { 9045 const APInt &Hi = Clusters[i].High->getValue(); 9046 const APInt &Lo = Clusters[i].Low->getValue(); 9047 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9048 if (i != 0) 9049 TotalCases[i] += TotalCases[i - 1]; 9050 } 9051 9052 // Cheap case: the whole range may be suitable for jump table. 9053 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9054 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9055 assert(NumCases < UINT64_MAX / 100); 9056 assert(Range >= NumCases); 9057 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9058 CaseCluster JTCluster; 9059 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9060 Clusters[0] = JTCluster; 9061 Clusters.resize(1); 9062 return; 9063 } 9064 } 9065 9066 // The algorithm below is not suitable for -O0. 9067 if (TM.getOptLevel() == CodeGenOpt::None) 9068 return; 9069 9070 // Split Clusters into minimum number of dense partitions. The algorithm uses 9071 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9072 // for the Case Statement'" (1994), but builds the MinPartitions array in 9073 // reverse order to make it easier to reconstruct the partitions in ascending 9074 // order. In the choice between two optimal partitionings, it picks the one 9075 // which yields more jump tables. 9076 9077 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9078 SmallVector<unsigned, 8> MinPartitions(N); 9079 // LastElement[i] is the last element of the partition starting at i. 9080 SmallVector<unsigned, 8> LastElement(N); 9081 // PartitionsScore[i] is used to break ties when choosing between two 9082 // partitionings resulting in the same number of partitions. 9083 SmallVector<unsigned, 8> PartitionsScore(N); 9084 // For PartitionsScore, a small number of comparisons is considered as good as 9085 // a jump table and a single comparison is considered better than a jump 9086 // table. 9087 enum PartitionScores : unsigned { 9088 NoTable = 0, 9089 Table = 1, 9090 FewCases = 1, 9091 SingleCase = 2 9092 }; 9093 9094 // Base case: There is only one way to partition Clusters[N-1]. 9095 MinPartitions[N - 1] = 1; 9096 LastElement[N - 1] = N - 1; 9097 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9098 9099 // Note: loop indexes are signed to avoid underflow. 9100 for (int64_t i = N - 2; i >= 0; i--) { 9101 // Find optimal partitioning of Clusters[i..N-1]. 9102 // Baseline: Put Clusters[i] into a partition on its own. 9103 MinPartitions[i] = MinPartitions[i + 1] + 1; 9104 LastElement[i] = i; 9105 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9106 9107 // Search for a solution that results in fewer partitions. 9108 for (int64_t j = N - 1; j > i; j--) { 9109 // Try building a partition from Clusters[i..j]. 9110 uint64_t Range = getJumpTableRange(Clusters, i, j); 9111 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9112 assert(NumCases < UINT64_MAX / 100); 9113 assert(Range >= NumCases); 9114 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9115 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9116 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9117 int64_t NumEntries = j - i + 1; 9118 9119 if (NumEntries == 1) 9120 Score += PartitionScores::SingleCase; 9121 else if (NumEntries <= SmallNumberOfEntries) 9122 Score += PartitionScores::FewCases; 9123 else if (NumEntries >= MinJumpTableEntries) 9124 Score += PartitionScores::Table; 9125 9126 // If this leads to fewer partitions, or to the same number of 9127 // partitions with better score, it is a better partitioning. 9128 if (NumPartitions < MinPartitions[i] || 9129 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9130 MinPartitions[i] = NumPartitions; 9131 LastElement[i] = j; 9132 PartitionsScore[i] = Score; 9133 } 9134 } 9135 } 9136 } 9137 9138 // Iterate over the partitions, replacing some with jump tables in-place. 9139 unsigned DstIndex = 0; 9140 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9141 Last = LastElement[First]; 9142 assert(Last >= First); 9143 assert(DstIndex <= First); 9144 unsigned NumClusters = Last - First + 1; 9145 9146 CaseCluster JTCluster; 9147 if (NumClusters >= MinJumpTableEntries && 9148 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9149 Clusters[DstIndex++] = JTCluster; 9150 } else { 9151 for (unsigned I = First; I <= Last; ++I) 9152 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9153 } 9154 } 9155 Clusters.resize(DstIndex); 9156 } 9157 9158 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9159 unsigned First, unsigned Last, 9160 const SwitchInst *SI, 9161 CaseCluster &BTCluster) { 9162 assert(First <= Last); 9163 if (First == Last) 9164 return false; 9165 9166 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9167 unsigned NumCmps = 0; 9168 for (int64_t I = First; I <= Last; ++I) { 9169 assert(Clusters[I].Kind == CC_Range); 9170 Dests.set(Clusters[I].MBB->getNumber()); 9171 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9172 } 9173 unsigned NumDests = Dests.count(); 9174 9175 APInt Low = Clusters[First].Low->getValue(); 9176 APInt High = Clusters[Last].High->getValue(); 9177 assert(Low.slt(High)); 9178 9179 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9180 const DataLayout &DL = DAG.getDataLayout(); 9181 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9182 return false; 9183 9184 APInt LowBound; 9185 APInt CmpRange; 9186 9187 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9188 assert(TLI.rangeFitsInWord(Low, High, DL) && 9189 "Case range must fit in bit mask!"); 9190 9191 // Check if the clusters cover a contiguous range such that no value in the 9192 // range will jump to the default statement. 9193 bool ContiguousRange = true; 9194 for (int64_t I = First + 1; I <= Last; ++I) { 9195 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9196 ContiguousRange = false; 9197 break; 9198 } 9199 } 9200 9201 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9202 // Optimize the case where all the case values fit in a word without having 9203 // to subtract minValue. In this case, we can optimize away the subtraction. 9204 LowBound = APInt::getNullValue(Low.getBitWidth()); 9205 CmpRange = High; 9206 ContiguousRange = false; 9207 } else { 9208 LowBound = Low; 9209 CmpRange = High - Low; 9210 } 9211 9212 CaseBitsVector CBV; 9213 auto TotalProb = BranchProbability::getZero(); 9214 for (unsigned i = First; i <= Last; ++i) { 9215 // Find the CaseBits for this destination. 9216 unsigned j; 9217 for (j = 0; j < CBV.size(); ++j) 9218 if (CBV[j].BB == Clusters[i].MBB) 9219 break; 9220 if (j == CBV.size()) 9221 CBV.push_back( 9222 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9223 CaseBits *CB = &CBV[j]; 9224 9225 // Update Mask, Bits and ExtraProb. 9226 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9227 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9228 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9229 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9230 CB->Bits += Hi - Lo + 1; 9231 CB->ExtraProb += Clusters[i].Prob; 9232 TotalProb += Clusters[i].Prob; 9233 } 9234 9235 BitTestInfo BTI; 9236 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9237 // Sort by probability first, number of bits second. 9238 if (a.ExtraProb != b.ExtraProb) 9239 return a.ExtraProb > b.ExtraProb; 9240 return a.Bits > b.Bits; 9241 }); 9242 9243 for (auto &CB : CBV) { 9244 MachineBasicBlock *BitTestBB = 9245 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9246 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9247 } 9248 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9249 SI->getCondition(), -1U, MVT::Other, false, 9250 ContiguousRange, nullptr, nullptr, std::move(BTI), 9251 TotalProb); 9252 9253 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9254 BitTestCases.size() - 1, TotalProb); 9255 return true; 9256 } 9257 9258 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9259 const SwitchInst *SI) { 9260 // Partition Clusters into as few subsets as possible, where each subset has a 9261 // range that fits in a machine word and has <= 3 unique destinations. 9262 9263 #ifndef NDEBUG 9264 // Clusters must be sorted and contain Range or JumpTable clusters. 9265 assert(!Clusters.empty()); 9266 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9267 for (const CaseCluster &C : Clusters) 9268 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9269 for (unsigned i = 1; i < Clusters.size(); ++i) 9270 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9271 #endif 9272 9273 // The algorithm below is not suitable for -O0. 9274 if (TM.getOptLevel() == CodeGenOpt::None) 9275 return; 9276 9277 // If target does not have legal shift left, do not emit bit tests at all. 9278 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9279 const DataLayout &DL = DAG.getDataLayout(); 9280 9281 EVT PTy = TLI.getPointerTy(DL); 9282 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9283 return; 9284 9285 int BitWidth = PTy.getSizeInBits(); 9286 const int64_t N = Clusters.size(); 9287 9288 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9289 SmallVector<unsigned, 8> MinPartitions(N); 9290 // LastElement[i] is the last element of the partition starting at i. 9291 SmallVector<unsigned, 8> LastElement(N); 9292 9293 // FIXME: This might not be the best algorithm for finding bit test clusters. 9294 9295 // Base case: There is only one way to partition Clusters[N-1]. 9296 MinPartitions[N - 1] = 1; 9297 LastElement[N - 1] = N - 1; 9298 9299 // Note: loop indexes are signed to avoid underflow. 9300 for (int64_t i = N - 2; i >= 0; --i) { 9301 // Find optimal partitioning of Clusters[i..N-1]. 9302 // Baseline: Put Clusters[i] into a partition on its own. 9303 MinPartitions[i] = MinPartitions[i + 1] + 1; 9304 LastElement[i] = i; 9305 9306 // Search for a solution that results in fewer partitions. 9307 // Note: the search is limited by BitWidth, reducing time complexity. 9308 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9309 // Try building a partition from Clusters[i..j]. 9310 9311 // Check the range. 9312 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9313 Clusters[j].High->getValue(), DL)) 9314 continue; 9315 9316 // Check nbr of destinations and cluster types. 9317 // FIXME: This works, but doesn't seem very efficient. 9318 bool RangesOnly = true; 9319 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9320 for (int64_t k = i; k <= j; k++) { 9321 if (Clusters[k].Kind != CC_Range) { 9322 RangesOnly = false; 9323 break; 9324 } 9325 Dests.set(Clusters[k].MBB->getNumber()); 9326 } 9327 if (!RangesOnly || Dests.count() > 3) 9328 break; 9329 9330 // Check if it's a better partition. 9331 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9332 if (NumPartitions < MinPartitions[i]) { 9333 // Found a better partition. 9334 MinPartitions[i] = NumPartitions; 9335 LastElement[i] = j; 9336 } 9337 } 9338 } 9339 9340 // Iterate over the partitions, replacing with bit-test clusters in-place. 9341 unsigned DstIndex = 0; 9342 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9343 Last = LastElement[First]; 9344 assert(First <= Last); 9345 assert(DstIndex <= First); 9346 9347 CaseCluster BitTestCluster; 9348 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9349 Clusters[DstIndex++] = BitTestCluster; 9350 } else { 9351 size_t NumClusters = Last - First + 1; 9352 std::memmove(&Clusters[DstIndex], &Clusters[First], 9353 sizeof(Clusters[0]) * NumClusters); 9354 DstIndex += NumClusters; 9355 } 9356 } 9357 Clusters.resize(DstIndex); 9358 } 9359 9360 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9361 MachineBasicBlock *SwitchMBB, 9362 MachineBasicBlock *DefaultMBB) { 9363 MachineFunction *CurMF = FuncInfo.MF; 9364 MachineBasicBlock *NextMBB = nullptr; 9365 MachineFunction::iterator BBI(W.MBB); 9366 if (++BBI != FuncInfo.MF->end()) 9367 NextMBB = &*BBI; 9368 9369 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9370 9371 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9372 9373 if (Size == 2 && W.MBB == SwitchMBB) { 9374 // If any two of the cases has the same destination, and if one value 9375 // is the same as the other, but has one bit unset that the other has set, 9376 // use bit manipulation to do two compares at once. For example: 9377 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9378 // TODO: This could be extended to merge any 2 cases in switches with 3 9379 // cases. 9380 // TODO: Handle cases where W.CaseBB != SwitchBB. 9381 CaseCluster &Small = *W.FirstCluster; 9382 CaseCluster &Big = *W.LastCluster; 9383 9384 if (Small.Low == Small.High && Big.Low == Big.High && 9385 Small.MBB == Big.MBB) { 9386 const APInt &SmallValue = Small.Low->getValue(); 9387 const APInt &BigValue = Big.Low->getValue(); 9388 9389 // Check that there is only one bit different. 9390 APInt CommonBit = BigValue ^ SmallValue; 9391 if (CommonBit.isPowerOf2()) { 9392 SDValue CondLHS = getValue(Cond); 9393 EVT VT = CondLHS.getValueType(); 9394 SDLoc DL = getCurSDLoc(); 9395 9396 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9397 DAG.getConstant(CommonBit, DL, VT)); 9398 SDValue Cond = DAG.getSetCC( 9399 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9400 ISD::SETEQ); 9401 9402 // Update successor info. 9403 // Both Small and Big will jump to Small.BB, so we sum up the 9404 // probabilities. 9405 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9406 if (BPI) 9407 addSuccessorWithProb( 9408 SwitchMBB, DefaultMBB, 9409 // The default destination is the first successor in IR. 9410 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9411 else 9412 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9413 9414 // Insert the true branch. 9415 SDValue BrCond = 9416 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9417 DAG.getBasicBlock(Small.MBB)); 9418 // Insert the false branch. 9419 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9420 DAG.getBasicBlock(DefaultMBB)); 9421 9422 DAG.setRoot(BrCond); 9423 return; 9424 } 9425 } 9426 } 9427 9428 if (TM.getOptLevel() != CodeGenOpt::None) { 9429 // Order cases by probability so the most likely case will be checked first. 9430 std::sort(W.FirstCluster, W.LastCluster + 1, 9431 [](const CaseCluster &a, const CaseCluster &b) { 9432 return a.Prob > b.Prob; 9433 }); 9434 9435 // Rearrange the case blocks so that the last one falls through if possible 9436 // without without changing the order of probabilities. 9437 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9438 --I; 9439 if (I->Prob > W.LastCluster->Prob) 9440 break; 9441 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9442 std::swap(*I, *W.LastCluster); 9443 break; 9444 } 9445 } 9446 } 9447 9448 // Compute total probability. 9449 BranchProbability DefaultProb = W.DefaultProb; 9450 BranchProbability UnhandledProbs = DefaultProb; 9451 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9452 UnhandledProbs += I->Prob; 9453 9454 MachineBasicBlock *CurMBB = W.MBB; 9455 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9456 MachineBasicBlock *Fallthrough; 9457 if (I == W.LastCluster) { 9458 // For the last cluster, fall through to the default destination. 9459 Fallthrough = DefaultMBB; 9460 } else { 9461 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9462 CurMF->insert(BBI, Fallthrough); 9463 // Put Cond in a virtual register to make it available from the new blocks. 9464 ExportFromCurrentBlock(Cond); 9465 } 9466 UnhandledProbs -= I->Prob; 9467 9468 switch (I->Kind) { 9469 case CC_JumpTable: { 9470 // FIXME: Optimize away range check based on pivot comparisons. 9471 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9472 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9473 9474 // The jump block hasn't been inserted yet; insert it here. 9475 MachineBasicBlock *JumpMBB = JT->MBB; 9476 CurMF->insert(BBI, JumpMBB); 9477 9478 auto JumpProb = I->Prob; 9479 auto FallthroughProb = UnhandledProbs; 9480 9481 // If the default statement is a target of the jump table, we evenly 9482 // distribute the default probability to successors of CurMBB. Also 9483 // update the probability on the edge from JumpMBB to Fallthrough. 9484 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9485 SE = JumpMBB->succ_end(); 9486 SI != SE; ++SI) { 9487 if (*SI == DefaultMBB) { 9488 JumpProb += DefaultProb / 2; 9489 FallthroughProb -= DefaultProb / 2; 9490 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9491 JumpMBB->normalizeSuccProbs(); 9492 break; 9493 } 9494 } 9495 9496 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9497 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9498 CurMBB->normalizeSuccProbs(); 9499 9500 // The jump table header will be inserted in our current block, do the 9501 // range check, and fall through to our fallthrough block. 9502 JTH->HeaderBB = CurMBB; 9503 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9504 9505 // If we're in the right place, emit the jump table header right now. 9506 if (CurMBB == SwitchMBB) { 9507 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9508 JTH->Emitted = true; 9509 } 9510 break; 9511 } 9512 case CC_BitTests: { 9513 // FIXME: Optimize away range check based on pivot comparisons. 9514 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9515 9516 // The bit test blocks haven't been inserted yet; insert them here. 9517 for (BitTestCase &BTC : BTB->Cases) 9518 CurMF->insert(BBI, BTC.ThisBB); 9519 9520 // Fill in fields of the BitTestBlock. 9521 BTB->Parent = CurMBB; 9522 BTB->Default = Fallthrough; 9523 9524 BTB->DefaultProb = UnhandledProbs; 9525 // If the cases in bit test don't form a contiguous range, we evenly 9526 // distribute the probability on the edge to Fallthrough to two 9527 // successors of CurMBB. 9528 if (!BTB->ContiguousRange) { 9529 BTB->Prob += DefaultProb / 2; 9530 BTB->DefaultProb -= DefaultProb / 2; 9531 } 9532 9533 // If we're in the right place, emit the bit test header right now. 9534 if (CurMBB == SwitchMBB) { 9535 visitBitTestHeader(*BTB, SwitchMBB); 9536 BTB->Emitted = true; 9537 } 9538 break; 9539 } 9540 case CC_Range: { 9541 const Value *RHS, *LHS, *MHS; 9542 ISD::CondCode CC; 9543 if (I->Low == I->High) { 9544 // Check Cond == I->Low. 9545 CC = ISD::SETEQ; 9546 LHS = Cond; 9547 RHS=I->Low; 9548 MHS = nullptr; 9549 } else { 9550 // Check I->Low <= Cond <= I->High. 9551 CC = ISD::SETLE; 9552 LHS = I->Low; 9553 MHS = Cond; 9554 RHS = I->High; 9555 } 9556 9557 // The false probability is the sum of all unhandled cases. 9558 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 9559 UnhandledProbs); 9560 9561 if (CurMBB == SwitchMBB) 9562 visitSwitchCase(CB, SwitchMBB); 9563 else 9564 SwitchCases.push_back(CB); 9565 9566 break; 9567 } 9568 } 9569 CurMBB = Fallthrough; 9570 } 9571 } 9572 9573 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9574 CaseClusterIt First, 9575 CaseClusterIt Last) { 9576 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9577 if (X.Prob != CC.Prob) 9578 return X.Prob > CC.Prob; 9579 9580 // Ties are broken by comparing the case value. 9581 return X.Low->getValue().slt(CC.Low->getValue()); 9582 }); 9583 } 9584 9585 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9586 const SwitchWorkListItem &W, 9587 Value *Cond, 9588 MachineBasicBlock *SwitchMBB) { 9589 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9590 "Clusters not sorted?"); 9591 9592 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9593 9594 // Balance the tree based on branch probabilities to create a near-optimal (in 9595 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9596 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9597 CaseClusterIt LastLeft = W.FirstCluster; 9598 CaseClusterIt FirstRight = W.LastCluster; 9599 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9600 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9601 9602 // Move LastLeft and FirstRight towards each other from opposite directions to 9603 // find a partitioning of the clusters which balances the probability on both 9604 // sides. If LeftProb and RightProb are equal, alternate which side is 9605 // taken to ensure 0-probability nodes are distributed evenly. 9606 unsigned I = 0; 9607 while (LastLeft + 1 < FirstRight) { 9608 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9609 LeftProb += (++LastLeft)->Prob; 9610 else 9611 RightProb += (--FirstRight)->Prob; 9612 I++; 9613 } 9614 9615 for (;;) { 9616 // Our binary search tree differs from a typical BST in that ours can have up 9617 // to three values in each leaf. The pivot selection above doesn't take that 9618 // into account, which means the tree might require more nodes and be less 9619 // efficient. We compensate for this here. 9620 9621 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9622 unsigned NumRight = W.LastCluster - FirstRight + 1; 9623 9624 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9625 // If one side has less than 3 clusters, and the other has more than 3, 9626 // consider taking a cluster from the other side. 9627 9628 if (NumLeft < NumRight) { 9629 // Consider moving the first cluster on the right to the left side. 9630 CaseCluster &CC = *FirstRight; 9631 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9632 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9633 if (LeftSideRank <= RightSideRank) { 9634 // Moving the cluster to the left does not demote it. 9635 ++LastLeft; 9636 ++FirstRight; 9637 continue; 9638 } 9639 } else { 9640 assert(NumRight < NumLeft); 9641 // Consider moving the last element on the left to the right side. 9642 CaseCluster &CC = *LastLeft; 9643 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9644 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9645 if (RightSideRank <= LeftSideRank) { 9646 // Moving the cluster to the right does not demot it. 9647 --LastLeft; 9648 --FirstRight; 9649 continue; 9650 } 9651 } 9652 } 9653 break; 9654 } 9655 9656 assert(LastLeft + 1 == FirstRight); 9657 assert(LastLeft >= W.FirstCluster); 9658 assert(FirstRight <= W.LastCluster); 9659 9660 // Use the first element on the right as pivot since we will make less-than 9661 // comparisons against it. 9662 CaseClusterIt PivotCluster = FirstRight; 9663 assert(PivotCluster > W.FirstCluster); 9664 assert(PivotCluster <= W.LastCluster); 9665 9666 CaseClusterIt FirstLeft = W.FirstCluster; 9667 CaseClusterIt LastRight = W.LastCluster; 9668 9669 const ConstantInt *Pivot = PivotCluster->Low; 9670 9671 // New blocks will be inserted immediately after the current one. 9672 MachineFunction::iterator BBI(W.MBB); 9673 ++BBI; 9674 9675 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9676 // we can branch to its destination directly if it's squeezed exactly in 9677 // between the known lower bound and Pivot - 1. 9678 MachineBasicBlock *LeftMBB; 9679 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9680 FirstLeft->Low == W.GE && 9681 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9682 LeftMBB = FirstLeft->MBB; 9683 } else { 9684 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9685 FuncInfo.MF->insert(BBI, LeftMBB); 9686 WorkList.push_back( 9687 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9688 // Put Cond in a virtual register to make it available from the new blocks. 9689 ExportFromCurrentBlock(Cond); 9690 } 9691 9692 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9693 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9694 // directly if RHS.High equals the current upper bound. 9695 MachineBasicBlock *RightMBB; 9696 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9697 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9698 RightMBB = FirstRight->MBB; 9699 } else { 9700 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9701 FuncInfo.MF->insert(BBI, RightMBB); 9702 WorkList.push_back( 9703 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9704 // Put Cond in a virtual register to make it available from the new blocks. 9705 ExportFromCurrentBlock(Cond); 9706 } 9707 9708 // Create the CaseBlock record that will be used to lower the branch. 9709 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9710 LeftProb, RightProb); 9711 9712 if (W.MBB == SwitchMBB) 9713 visitSwitchCase(CB, SwitchMBB); 9714 else 9715 SwitchCases.push_back(CB); 9716 } 9717 9718 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 9719 // Extract cases from the switch. 9720 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9721 CaseClusterVector Clusters; 9722 Clusters.reserve(SI.getNumCases()); 9723 for (auto I : SI.cases()) { 9724 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 9725 const ConstantInt *CaseVal = I.getCaseValue(); 9726 BranchProbability Prob = 9727 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 9728 : BranchProbability(1, SI.getNumCases() + 1); 9729 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 9730 } 9731 9732 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 9733 9734 // Cluster adjacent cases with the same destination. We do this at all 9735 // optimization levels because it's cheap to do and will make codegen faster 9736 // if there are many clusters. 9737 sortAndRangeify(Clusters); 9738 9739 if (TM.getOptLevel() != CodeGenOpt::None) { 9740 // Replace an unreachable default with the most popular destination. 9741 // FIXME: Exploit unreachable default more aggressively. 9742 bool UnreachableDefault = 9743 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 9744 if (UnreachableDefault && !Clusters.empty()) { 9745 DenseMap<const BasicBlock *, unsigned> Popularity; 9746 unsigned MaxPop = 0; 9747 const BasicBlock *MaxBB = nullptr; 9748 for (auto I : SI.cases()) { 9749 const BasicBlock *BB = I.getCaseSuccessor(); 9750 if (++Popularity[BB] > MaxPop) { 9751 MaxPop = Popularity[BB]; 9752 MaxBB = BB; 9753 } 9754 } 9755 // Set new default. 9756 assert(MaxPop > 0 && MaxBB); 9757 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9758 9759 // Remove cases that were pointing to the destination that is now the 9760 // default. 9761 CaseClusterVector New; 9762 New.reserve(Clusters.size()); 9763 for (CaseCluster &CC : Clusters) { 9764 if (CC.MBB != DefaultMBB) 9765 New.push_back(CC); 9766 } 9767 Clusters = std::move(New); 9768 } 9769 } 9770 9771 // If there is only the default destination, jump there directly. 9772 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9773 if (Clusters.empty()) { 9774 SwitchMBB->addSuccessor(DefaultMBB); 9775 if (DefaultMBB != NextBlock(SwitchMBB)) { 9776 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9777 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9778 } 9779 return; 9780 } 9781 9782 findJumpTables(Clusters, &SI, DefaultMBB); 9783 findBitTestClusters(Clusters, &SI); 9784 9785 DEBUG({ 9786 dbgs() << "Case clusters: "; 9787 for (const CaseCluster &C : Clusters) { 9788 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9789 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9790 9791 C.Low->getValue().print(dbgs(), true); 9792 if (C.Low != C.High) { 9793 dbgs() << '-'; 9794 C.High->getValue().print(dbgs(), true); 9795 } 9796 dbgs() << ' '; 9797 } 9798 dbgs() << '\n'; 9799 }); 9800 9801 assert(!Clusters.empty()); 9802 SwitchWorkList WorkList; 9803 CaseClusterIt First = Clusters.begin(); 9804 CaseClusterIt Last = Clusters.end() - 1; 9805 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9806 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9807 9808 while (!WorkList.empty()) { 9809 SwitchWorkListItem W = WorkList.back(); 9810 WorkList.pop_back(); 9811 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9812 9813 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 9814 !DefaultMBB->getParent()->getFunction()->optForMinSize()) { 9815 // For optimized builds, lower large range as a balanced binary tree. 9816 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9817 continue; 9818 } 9819 9820 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9821 } 9822 } 9823