xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision a56f2822d0d3ff3ac1d289a8b7834d7f90415f6d)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/CodeGen/WinEHFuncInfo.h"
65 #include "llvm/IR/Argument.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallSite.h"
70 #include "llvm/IR/CallingConv.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfoMetadata.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstrTypes.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicInst.h"
85 #include "llvm/IR/Intrinsics.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Metadata.h"
88 #include "llvm/IR/Module.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include "llvm/Transforms/Utils/Local.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstddef>
115 #include <cstdint>
116 #include <cstring>
117 #include <iterator>
118 #include <limits>
119 #include <numeric>
120 #include <tuple>
121 #include <utility>
122 #include <vector>
123 
124 using namespace llvm;
125 using namespace PatternMatch;
126 
127 #define DEBUG_TYPE "isel"
128 
129 /// LimitFloatPrecision - Generate low-precision inline sequences for
130 /// some float libcalls (6, 8 or 12 bits).
131 static unsigned LimitFloatPrecision;
132 
133 static cl::opt<unsigned, true>
134     LimitFPPrecision("limit-float-precision",
135                      cl::desc("Generate low-precision inline sequences "
136                               "for some float libcalls"),
137                      cl::location(LimitFloatPrecision), cl::Hidden,
138                      cl::init(0));
139 
140 static cl::opt<unsigned> SwitchPeelThreshold(
141     "switch-peel-threshold", cl::Hidden, cl::init(66),
142     cl::desc("Set the case probability threshold for peeling the case from a "
143              "switch statement. A value greater than 100 will void this "
144              "optimization"));
145 
146 // Limit the width of DAG chains. This is important in general to prevent
147 // DAG-based analysis from blowing up. For example, alias analysis and
148 // load clustering may not complete in reasonable time. It is difficult to
149 // recognize and avoid this situation within each individual analysis, and
150 // future analyses are likely to have the same behavior. Limiting DAG width is
151 // the safe approach and will be especially important with global DAGs.
152 //
153 // MaxParallelChains default is arbitrarily high to avoid affecting
154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
155 // sequence over this should have been converted to llvm.memcpy by the
156 // frontend. It is easy to induce this behavior with .ll code such as:
157 // %buffer = alloca [4096 x i8]
158 // %data = load [4096 x i8]* %argPtr
159 // store [4096 x i8] %data, [4096 x i8]* %buffer
160 static const unsigned MaxParallelChains = 64;
161 
162 // Return the calling convention if the Value passed requires ABI mangling as it
163 // is a parameter to a function or a return value from a function which is not
164 // an intrinsic.
165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
166   if (auto *R = dyn_cast<ReturnInst>(V))
167     return R->getParent()->getParent()->getCallingConv();
168 
169   if (auto *CI = dyn_cast<CallInst>(V)) {
170     const bool IsInlineAsm = CI->isInlineAsm();
171     const bool IsIndirectFunctionCall =
172         !IsInlineAsm && !CI->getCalledFunction();
173 
174     // It is possible that the call instruction is an inline asm statement or an
175     // indirect function call in which case the return value of
176     // getCalledFunction() would be nullptr.
177     const bool IsInstrinsicCall =
178         !IsInlineAsm && !IsIndirectFunctionCall &&
179         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
180 
181     if (!IsInlineAsm && !IsInstrinsicCall)
182       return CI->getCallingConv();
183   }
184 
185   return None;
186 }
187 
188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
189                                       const SDValue *Parts, unsigned NumParts,
190                                       MVT PartVT, EVT ValueVT, const Value *V,
191                                       Optional<CallingConv::ID> CC);
192 
193 /// getCopyFromParts - Create a value that contains the specified legal parts
194 /// combined into the value they represent.  If the parts combine to a type
195 /// larger than ValueVT then AssertOp can be used to specify whether the extra
196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
197 /// (ISD::AssertSext).
198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
199                                 const SDValue *Parts, unsigned NumParts,
200                                 MVT PartVT, EVT ValueVT, const Value *V,
201                                 Optional<CallingConv::ID> CC = None,
202                                 Optional<ISD::NodeType> AssertOp = None) {
203   if (ValueVT.isVector())
204     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
205                                   CC);
206 
207   assert(NumParts > 0 && "No parts to assemble!");
208   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
209   SDValue Val = Parts[0];
210 
211   if (NumParts > 1) {
212     // Assemble the value from multiple parts.
213     if (ValueVT.isInteger()) {
214       unsigned PartBits = PartVT.getSizeInBits();
215       unsigned ValueBits = ValueVT.getSizeInBits();
216 
217       // Assemble the power of 2 part.
218       unsigned RoundParts = NumParts & (NumParts - 1) ?
219         1 << Log2_32(NumParts) : NumParts;
220       unsigned RoundBits = PartBits * RoundParts;
221       EVT RoundVT = RoundBits == ValueBits ?
222         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
223       SDValue Lo, Hi;
224 
225       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
226 
227       if (RoundParts > 2) {
228         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
229                               PartVT, HalfVT, V);
230         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
231                               RoundParts / 2, PartVT, HalfVT, V);
232       } else {
233         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
234         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
235       }
236 
237       if (DAG.getDataLayout().isBigEndian())
238         std::swap(Lo, Hi);
239 
240       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
241 
242       if (RoundParts < NumParts) {
243         // Assemble the trailing non-power-of-2 part.
244         unsigned OddParts = NumParts - RoundParts;
245         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
246         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
247                               OddVT, V, CC);
248 
249         // Combine the round and odd parts.
250         Lo = Val;
251         if (DAG.getDataLayout().isBigEndian())
252           std::swap(Lo, Hi);
253         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
254         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
255         Hi =
256             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
257                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
258                                         TLI.getPointerTy(DAG.getDataLayout())));
259         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
260         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
261       }
262     } else if (PartVT.isFloatingPoint()) {
263       // FP split into multiple FP parts (for ppcf128)
264       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
265              "Unexpected split");
266       SDValue Lo, Hi;
267       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
268       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
269       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
270         std::swap(Lo, Hi);
271       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
272     } else {
273       // FP split into integer parts (soft fp)
274       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
275              !PartVT.isVector() && "Unexpected split");
276       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
277       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
278     }
279   }
280 
281   // There is now one part, held in Val.  Correct it to match ValueVT.
282   // PartEVT is the type of the register class that holds the value.
283   // ValueVT is the type of the inline asm operation.
284   EVT PartEVT = Val.getValueType();
285 
286   if (PartEVT == ValueVT)
287     return Val;
288 
289   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
290       ValueVT.bitsLT(PartEVT)) {
291     // For an FP value in an integer part, we need to truncate to the right
292     // width first.
293     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
294     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
295   }
296 
297   // Handle types that have the same size.
298   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle types with different sizes.
302   if (PartEVT.isInteger() && ValueVT.isInteger()) {
303     if (ValueVT.bitsLT(PartEVT)) {
304       // For a truncate, see if we have any information to
305       // indicate whether the truncated bits will always be
306       // zero or sign-extension.
307       if (AssertOp.hasValue())
308         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
309                           DAG.getValueType(ValueVT));
310       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
311     }
312     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
313   }
314 
315   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316     // FP_ROUND's are always exact here.
317     if (ValueVT.bitsLT(Val.getValueType()))
318       return DAG.getNode(
319           ISD::FP_ROUND, DL, ValueVT, Val,
320           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
321 
322     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
323   }
324 
325   llvm_unreachable("Unknown mismatch!");
326 }
327 
328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
329                                               const Twine &ErrMsg) {
330   const Instruction *I = dyn_cast_or_null<Instruction>(V);
331   if (!V)
332     return Ctx.emitError(ErrMsg);
333 
334   const char *AsmError = ", possible invalid constraint for vector type";
335   if (const CallInst *CI = dyn_cast<CallInst>(I))
336     if (isa<InlineAsm>(CI->getCalledValue()))
337       return Ctx.emitError(I, ErrMsg + AsmError);
338 
339   return Ctx.emitError(I, ErrMsg);
340 }
341 
342 /// getCopyFromPartsVector - Create a value that contains the specified legal
343 /// parts combined into the value they represent.  If the parts combine to a
344 /// type larger than ValueVT then AssertOp can be used to specify whether the
345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
346 /// ValueVT (ISD::AssertSext).
347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
348                                       const SDValue *Parts, unsigned NumParts,
349                                       MVT PartVT, EVT ValueVT, const Value *V,
350                                       Optional<CallingConv::ID> CallConv) {
351   assert(ValueVT.isVector() && "Not a vector value");
352   assert(NumParts > 0 && "No parts to assemble!");
353   const bool IsABIRegCopy = CallConv.hasValue();
354 
355   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
356   SDValue Val = Parts[0];
357 
358   // Handle a multi-element vector.
359   if (NumParts > 1) {
360     EVT IntermediateVT;
361     MVT RegisterVT;
362     unsigned NumIntermediates;
363     unsigned NumRegs;
364 
365     if (IsABIRegCopy) {
366       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
367           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
368           NumIntermediates, RegisterVT);
369     } else {
370       NumRegs =
371           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
372                                      NumIntermediates, RegisterVT);
373     }
374 
375     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
376     NumParts = NumRegs; // Silence a compiler warning.
377     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
378     assert(RegisterVT.getSizeInBits() ==
379            Parts[0].getSimpleValueType().getSizeInBits() &&
380            "Part type sizes don't match!");
381 
382     // Assemble the parts into intermediate operands.
383     SmallVector<SDValue, 8> Ops(NumIntermediates);
384     if (NumIntermediates == NumParts) {
385       // If the register was not expanded, truncate or copy the value,
386       // as appropriate.
387       for (unsigned i = 0; i != NumParts; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
389                                   PartVT, IntermediateVT, V);
390     } else if (NumParts > 0) {
391       // If the intermediate type was expanded, build the intermediate
392       // operands from the parts.
393       assert(NumParts % NumIntermediates == 0 &&
394              "Must expand into a divisible number of parts!");
395       unsigned Factor = NumParts / NumIntermediates;
396       for (unsigned i = 0; i != NumIntermediates; ++i)
397         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
398                                   PartVT, IntermediateVT, V);
399     }
400 
401     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
402     // intermediate operands.
403     EVT BuiltVectorTy =
404         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
405                          (IntermediateVT.isVector()
406                               ? IntermediateVT.getVectorNumElements() * NumParts
407                               : NumIntermediates));
408     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
409                                                 : ISD::BUILD_VECTOR,
410                       DL, BuiltVectorTy, Ops);
411   }
412 
413   // There is now one part, held in Val.  Correct it to match ValueVT.
414   EVT PartEVT = Val.getValueType();
415 
416   if (PartEVT == ValueVT)
417     return Val;
418 
419   if (PartEVT.isVector()) {
420     // If the element type of the source/dest vectors are the same, but the
421     // parts vector has more elements than the value vector, then we have a
422     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
423     // elements we want.
424     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
425       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
426              "Cannot narrow, it would be a lossy transformation");
427       return DAG.getNode(
428           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
429           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
430     }
431 
432     // Vector/Vector bitcast.
433     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
434       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435 
436     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
437       "Cannot handle this kind of promotion");
438     // Promoted vector extract
439     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
440 
441   }
442 
443   // Trivial bitcast if the types are the same size and the destination
444   // vector type is legal.
445   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
446       TLI.isTypeLegal(ValueVT))
447     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
448 
449   if (ValueVT.getVectorNumElements() != 1) {
450      // Certain ABIs require that vectors are passed as integers. For vectors
451      // are the same size, this is an obvious bitcast.
452      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
453        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
454      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
455        // Bitcast Val back the original type and extract the corresponding
456        // vector we want.
457        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
458        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
459                                            ValueVT.getVectorElementType(), Elts);
460        Val = DAG.getBitcast(WiderVecType, Val);
461        return DAG.getNode(
462            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
463            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
464      }
465 
466      diagnosePossiblyInvalidConstraint(
467          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468      return DAG.getUNDEF(ValueVT);
469   }
470 
471   // Handle cases such as i8 -> <1 x i1>
472   EVT ValueSVT = ValueVT.getVectorElementType();
473   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
474     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
475                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
476 
477   return DAG.getBuildVector(ValueVT, DL, Val);
478 }
479 
480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
481                                  SDValue Val, SDValue *Parts, unsigned NumParts,
482                                  MVT PartVT, const Value *V,
483                                  Optional<CallingConv::ID> CallConv);
484 
485 /// getCopyToParts - Create a series of nodes that contain the specified value
486 /// split into legal parts.  If the parts contain more bits than Val, then, for
487 /// integers, ExtendKind can be used to specify how to generate the extra bits.
488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
489                            SDValue *Parts, unsigned NumParts, MVT PartVT,
490                            const Value *V,
491                            Optional<CallingConv::ID> CallConv = None,
492                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
493   EVT ValueVT = Val.getValueType();
494 
495   // Handle the vector case separately.
496   if (ValueVT.isVector())
497     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
498                                 CallConv);
499 
500   unsigned PartBits = PartVT.getSizeInBits();
501   unsigned OrigNumParts = NumParts;
502   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
503          "Copying to an illegal type!");
504 
505   if (NumParts == 0)
506     return;
507 
508   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
509   EVT PartEVT = PartVT;
510   if (PartEVT == ValueVT) {
511     assert(NumParts == 1 && "No-op copy with multiple parts!");
512     Parts[0] = Val;
513     return;
514   }
515 
516   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
517     // If the parts cover more bits than the value has, promote the value.
518     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
519       assert(NumParts == 1 && "Do not know what to promote to!");
520       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
521     } else {
522       if (ValueVT.isFloatingPoint()) {
523         // FP values need to be bitcast, then extended if they are being put
524         // into a larger container.
525         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
526         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
527       }
528       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
529              ValueVT.isInteger() &&
530              "Unknown mismatch!");
531       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
532       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
533       if (PartVT == MVT::x86mmx)
534         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
535     }
536   } else if (PartBits == ValueVT.getSizeInBits()) {
537     // Different types of the same size.
538     assert(NumParts == 1 && PartEVT != ValueVT);
539     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
540   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
541     // If the parts cover less bits than value has, truncate the value.
542     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
543            ValueVT.isInteger() &&
544            "Unknown mismatch!");
545     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
546     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
547     if (PartVT == MVT::x86mmx)
548       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
549   }
550 
551   // The value may have changed - recompute ValueVT.
552   ValueVT = Val.getValueType();
553   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
554          "Failed to tile the value with PartVT!");
555 
556   if (NumParts == 1) {
557     if (PartEVT != ValueVT) {
558       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
559                                         "scalar-to-vector conversion failed");
560       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561     }
562 
563     Parts[0] = Val;
564     return;
565   }
566 
567   // Expand the value into multiple parts.
568   if (NumParts & (NumParts - 1)) {
569     // The number of parts is not a power of 2.  Split off and copy the tail.
570     assert(PartVT.isInteger() && ValueVT.isInteger() &&
571            "Do not know what to expand to!");
572     unsigned RoundParts = 1 << Log2_32(NumParts);
573     unsigned RoundBits = RoundParts * PartBits;
574     unsigned OddParts = NumParts - RoundParts;
575     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
576       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
577 
578     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
579                    CallConv);
580 
581     if (DAG.getDataLayout().isBigEndian())
582       // The odd parts were reversed by getCopyToParts - unreverse them.
583       std::reverse(Parts + RoundParts, Parts + NumParts);
584 
585     NumParts = RoundParts;
586     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
587     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
588   }
589 
590   // The number of parts is a power of 2.  Repeatedly bisect the value using
591   // EXTRACT_ELEMENT.
592   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
593                          EVT::getIntegerVT(*DAG.getContext(),
594                                            ValueVT.getSizeInBits()),
595                          Val);
596 
597   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
598     for (unsigned i = 0; i < NumParts; i += StepSize) {
599       unsigned ThisBits = StepSize * PartBits / 2;
600       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
601       SDValue &Part0 = Parts[i];
602       SDValue &Part1 = Parts[i+StepSize/2];
603 
604       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
605                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
606       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
607                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
608 
609       if (ThisBits == PartBits && ThisVT != PartVT) {
610         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
611         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
612       }
613     }
614   }
615 
616   if (DAG.getDataLayout().isBigEndian())
617     std::reverse(Parts, Parts + OrigNumParts);
618 }
619 
620 static SDValue widenVectorToPartType(SelectionDAG &DAG,
621                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
622   if (!PartVT.isVector())
623     return SDValue();
624 
625   EVT ValueVT = Val.getValueType();
626   unsigned PartNumElts = PartVT.getVectorNumElements();
627   unsigned ValueNumElts = ValueVT.getVectorNumElements();
628   if (PartNumElts > ValueNumElts &&
629       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
630     EVT ElementVT = PartVT.getVectorElementType();
631     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
632     // undef elements.
633     SmallVector<SDValue, 16> Ops;
634     DAG.ExtractVectorElements(Val, Ops);
635     SDValue EltUndef = DAG.getUNDEF(ElementVT);
636     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
637       Ops.push_back(EltUndef);
638 
639     // FIXME: Use CONCAT for 2x -> 4x.
640     return DAG.getBuildVector(PartVT, DL, Ops);
641   }
642 
643   return SDValue();
644 }
645 
646 /// getCopyToPartsVector - Create a series of nodes that contain the specified
647 /// value split into legal parts.
648 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
649                                  SDValue Val, SDValue *Parts, unsigned NumParts,
650                                  MVT PartVT, const Value *V,
651                                  Optional<CallingConv::ID> CallConv) {
652   EVT ValueVT = Val.getValueType();
653   assert(ValueVT.isVector() && "Not a vector");
654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
655   const bool IsABIRegCopy = CallConv.hasValue();
656 
657   if (NumParts == 1) {
658     EVT PartEVT = PartVT;
659     if (PartEVT == ValueVT) {
660       // Nothing to do.
661     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
662       // Bitconvert vector->vector case.
663       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
664     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
665       Val = Widened;
666     } else if (PartVT.isVector() &&
667                PartEVT.getVectorElementType().bitsGE(
668                  ValueVT.getVectorElementType()) &&
669                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
670 
671       // Promoted vector extract
672       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
673     } else {
674       if (ValueVT.getVectorNumElements() == 1) {
675         Val = DAG.getNode(
676             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
677             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
678       } else {
679         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
680                "lossy conversion of vector to scalar type");
681         EVT IntermediateType =
682             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
683         Val = DAG.getBitcast(IntermediateType, Val);
684         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
685       }
686     }
687 
688     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
689     Parts[0] = Val;
690     return;
691   }
692 
693   // Handle a multi-element vector.
694   EVT IntermediateVT;
695   MVT RegisterVT;
696   unsigned NumIntermediates;
697   unsigned NumRegs;
698   if (IsABIRegCopy) {
699     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
700         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
701         NumIntermediates, RegisterVT);
702   } else {
703     NumRegs =
704         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
705                                    NumIntermediates, RegisterVT);
706   }
707 
708   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
709   NumParts = NumRegs; // Silence a compiler warning.
710   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
711 
712   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
713     IntermediateVT.getVectorNumElements() : 1;
714 
715   // Convert the vector to the appropiate type if necessary.
716   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
717 
718   EVT BuiltVectorTy = EVT::getVectorVT(
719       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
720   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
721   if (ValueVT != BuiltVectorTy) {
722     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
723       Val = Widened;
724 
725     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
726   }
727 
728   // Split the vector into intermediate operands.
729   SmallVector<SDValue, 8> Ops(NumIntermediates);
730   for (unsigned i = 0; i != NumIntermediates; ++i) {
731     if (IntermediateVT.isVector()) {
732       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
733                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
734     } else {
735       Ops[i] = DAG.getNode(
736           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
737           DAG.getConstant(i, DL, IdxVT));
738     }
739   }
740 
741   // Split the intermediate operands into legal parts.
742   if (NumParts == NumIntermediates) {
743     // If the register was not expanded, promote or copy the value,
744     // as appropriate.
745     for (unsigned i = 0; i != NumParts; ++i)
746       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
747   } else if (NumParts > 0) {
748     // If the intermediate type was expanded, split each the value into
749     // legal parts.
750     assert(NumIntermediates != 0 && "division by zero");
751     assert(NumParts % NumIntermediates == 0 &&
752            "Must expand into a divisible number of parts!");
753     unsigned Factor = NumParts / NumIntermediates;
754     for (unsigned i = 0; i != NumIntermediates; ++i)
755       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
756                      CallConv);
757   }
758 }
759 
760 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
761                            EVT valuevt, Optional<CallingConv::ID> CC)
762     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
763       RegCount(1, regs.size()), CallConv(CC) {}
764 
765 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
766                            const DataLayout &DL, unsigned Reg, Type *Ty,
767                            Optional<CallingConv::ID> CC) {
768   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
769 
770   CallConv = CC;
771 
772   for (EVT ValueVT : ValueVTs) {
773     unsigned NumRegs =
774         isABIMangled()
775             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
776             : TLI.getNumRegisters(Context, ValueVT);
777     MVT RegisterVT =
778         isABIMangled()
779             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
780             : TLI.getRegisterType(Context, ValueVT);
781     for (unsigned i = 0; i != NumRegs; ++i)
782       Regs.push_back(Reg + i);
783     RegVTs.push_back(RegisterVT);
784     RegCount.push_back(NumRegs);
785     Reg += NumRegs;
786   }
787 }
788 
789 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
790                                       FunctionLoweringInfo &FuncInfo,
791                                       const SDLoc &dl, SDValue &Chain,
792                                       SDValue *Flag, const Value *V) const {
793   // A Value with type {} or [0 x %t] needs no registers.
794   if (ValueVTs.empty())
795     return SDValue();
796 
797   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
798 
799   // Assemble the legal parts into the final values.
800   SmallVector<SDValue, 4> Values(ValueVTs.size());
801   SmallVector<SDValue, 8> Parts;
802   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
803     // Copy the legal parts from the registers.
804     EVT ValueVT = ValueVTs[Value];
805     unsigned NumRegs = RegCount[Value];
806     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
807                                           *DAG.getContext(),
808                                           CallConv.getValue(), RegVTs[Value])
809                                     : RegVTs[Value];
810 
811     Parts.resize(NumRegs);
812     for (unsigned i = 0; i != NumRegs; ++i) {
813       SDValue P;
814       if (!Flag) {
815         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
816       } else {
817         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
818         *Flag = P.getValue(2);
819       }
820 
821       Chain = P.getValue(1);
822       Parts[i] = P;
823 
824       // If the source register was virtual and if we know something about it,
825       // add an assert node.
826       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
827           !RegisterVT.isInteger())
828         continue;
829 
830       const FunctionLoweringInfo::LiveOutInfo *LOI =
831         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
832       if (!LOI)
833         continue;
834 
835       unsigned RegSize = RegisterVT.getScalarSizeInBits();
836       unsigned NumSignBits = LOI->NumSignBits;
837       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
838 
839       if (NumZeroBits == RegSize) {
840         // The current value is a zero.
841         // Explicitly express that as it would be easier for
842         // optimizations to kick in.
843         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
844         continue;
845       }
846 
847       // FIXME: We capture more information than the dag can represent.  For
848       // now, just use the tightest assertzext/assertsext possible.
849       bool isSExt;
850       EVT FromVT(MVT::Other);
851       if (NumZeroBits) {
852         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
853         isSExt = false;
854       } else if (NumSignBits > 1) {
855         FromVT =
856             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
857         isSExt = true;
858       } else {
859         continue;
860       }
861       // Add an assertion node.
862       assert(FromVT != MVT::Other);
863       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
864                              RegisterVT, P, DAG.getValueType(FromVT));
865     }
866 
867     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
868                                      RegisterVT, ValueVT, V, CallConv);
869     Part += NumRegs;
870     Parts.clear();
871   }
872 
873   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
874 }
875 
876 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
877                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
878                                  const Value *V,
879                                  ISD::NodeType PreferredExtendType) const {
880   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
881   ISD::NodeType ExtendKind = PreferredExtendType;
882 
883   // Get the list of the values's legal parts.
884   unsigned NumRegs = Regs.size();
885   SmallVector<SDValue, 8> Parts(NumRegs);
886   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
887     unsigned NumParts = RegCount[Value];
888 
889     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
890                                           *DAG.getContext(),
891                                           CallConv.getValue(), RegVTs[Value])
892                                     : RegVTs[Value];
893 
894     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
895       ExtendKind = ISD::ZERO_EXTEND;
896 
897     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
898                    NumParts, RegisterVT, V, CallConv, ExtendKind);
899     Part += NumParts;
900   }
901 
902   // Copy the parts into the registers.
903   SmallVector<SDValue, 8> Chains(NumRegs);
904   for (unsigned i = 0; i != NumRegs; ++i) {
905     SDValue Part;
906     if (!Flag) {
907       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
908     } else {
909       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
910       *Flag = Part.getValue(1);
911     }
912 
913     Chains[i] = Part.getValue(0);
914   }
915 
916   if (NumRegs == 1 || Flag)
917     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
918     // flagged to it. That is the CopyToReg nodes and the user are considered
919     // a single scheduling unit. If we create a TokenFactor and return it as
920     // chain, then the TokenFactor is both a predecessor (operand) of the
921     // user as well as a successor (the TF operands are flagged to the user).
922     // c1, f1 = CopyToReg
923     // c2, f2 = CopyToReg
924     // c3     = TokenFactor c1, c2
925     // ...
926     //        = op c3, ..., f2
927     Chain = Chains[NumRegs-1];
928   else
929     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
930 }
931 
932 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
933                                         unsigned MatchingIdx, const SDLoc &dl,
934                                         SelectionDAG &DAG,
935                                         std::vector<SDValue> &Ops) const {
936   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
937 
938   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
939   if (HasMatching)
940     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
941   else if (!Regs.empty() &&
942            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
943     // Put the register class of the virtual registers in the flag word.  That
944     // way, later passes can recompute register class constraints for inline
945     // assembly as well as normal instructions.
946     // Don't do this for tied operands that can use the regclass information
947     // from the def.
948     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
949     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
950     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
951   }
952 
953   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
954   Ops.push_back(Res);
955 
956   if (Code == InlineAsm::Kind_Clobber) {
957     // Clobbers should always have a 1:1 mapping with registers, and may
958     // reference registers that have illegal (e.g. vector) types. Hence, we
959     // shouldn't try to apply any sort of splitting logic to them.
960     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
961            "No 1:1 mapping from clobbers to regs?");
962     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
963     (void)SP;
964     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
965       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
966       assert(
967           (Regs[I] != SP ||
968            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
969           "If we clobbered the stack pointer, MFI should know about it.");
970     }
971     return;
972   }
973 
974   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
975     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
976     MVT RegisterVT = RegVTs[Value];
977     for (unsigned i = 0; i != NumRegs; ++i) {
978       assert(Reg < Regs.size() && "Mismatch in # registers expected");
979       unsigned TheReg = Regs[Reg++];
980       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
981     }
982   }
983 }
984 
985 SmallVector<std::pair<unsigned, unsigned>, 4>
986 RegsForValue::getRegsAndSizes() const {
987   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
988   unsigned I = 0;
989   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
990     unsigned RegCount = std::get<0>(CountAndVT);
991     MVT RegisterVT = std::get<1>(CountAndVT);
992     unsigned RegisterSize = RegisterVT.getSizeInBits();
993     for (unsigned E = I + RegCount; I != E; ++I)
994       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
995   }
996   return OutVec;
997 }
998 
999 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1000                                const TargetLibraryInfo *li) {
1001   AA = aa;
1002   GFI = gfi;
1003   LibInfo = li;
1004   DL = &DAG.getDataLayout();
1005   Context = DAG.getContext();
1006   LPadToCallSiteMap.clear();
1007 }
1008 
1009 void SelectionDAGBuilder::clear() {
1010   NodeMap.clear();
1011   UnusedArgNodeMap.clear();
1012   PendingLoads.clear();
1013   PendingExports.clear();
1014   CurInst = nullptr;
1015   HasTailCall = false;
1016   SDNodeOrder = LowestSDNodeOrder;
1017   StatepointLowering.clear();
1018 }
1019 
1020 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1021   DanglingDebugInfoMap.clear();
1022 }
1023 
1024 SDValue SelectionDAGBuilder::getRoot() {
1025   if (PendingLoads.empty())
1026     return DAG.getRoot();
1027 
1028   if (PendingLoads.size() == 1) {
1029     SDValue Root = PendingLoads[0];
1030     DAG.setRoot(Root);
1031     PendingLoads.clear();
1032     return Root;
1033   }
1034 
1035   // Otherwise, we have to make a token factor node.
1036   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1037   PendingLoads.clear();
1038   DAG.setRoot(Root);
1039   return Root;
1040 }
1041 
1042 SDValue SelectionDAGBuilder::getControlRoot() {
1043   SDValue Root = DAG.getRoot();
1044 
1045   if (PendingExports.empty())
1046     return Root;
1047 
1048   // Turn all of the CopyToReg chains into one factored node.
1049   if (Root.getOpcode() != ISD::EntryToken) {
1050     unsigned i = 0, e = PendingExports.size();
1051     for (; i != e; ++i) {
1052       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1053       if (PendingExports[i].getNode()->getOperand(0) == Root)
1054         break;  // Don't add the root if we already indirectly depend on it.
1055     }
1056 
1057     if (i == e)
1058       PendingExports.push_back(Root);
1059   }
1060 
1061   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1062                      PendingExports);
1063   PendingExports.clear();
1064   DAG.setRoot(Root);
1065   return Root;
1066 }
1067 
1068 void SelectionDAGBuilder::visit(const Instruction &I) {
1069   // Set up outgoing PHI node register values before emitting the terminator.
1070   if (I.isTerminator()) {
1071     HandlePHINodesInSuccessorBlocks(I.getParent());
1072   }
1073 
1074   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1075   if (!isa<DbgInfoIntrinsic>(I))
1076     ++SDNodeOrder;
1077 
1078   CurInst = &I;
1079 
1080   visit(I.getOpcode(), I);
1081 
1082   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1083     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1084     // maps to this instruction.
1085     // TODO: We could handle all flags (nsw, etc) here.
1086     // TODO: If an IR instruction maps to >1 node, only the final node will have
1087     //       flags set.
1088     if (SDNode *Node = getNodeForIRValue(&I)) {
1089       SDNodeFlags IncomingFlags;
1090       IncomingFlags.copyFMF(*FPMO);
1091       if (!Node->getFlags().isDefined())
1092         Node->setFlags(IncomingFlags);
1093       else
1094         Node->intersectFlagsWith(IncomingFlags);
1095     }
1096   }
1097 
1098   if (!I.isTerminator() && !HasTailCall &&
1099       !isStatepoint(&I)) // statepoints handle their exports internally
1100     CopyToExportRegsIfNeeded(&I);
1101 
1102   CurInst = nullptr;
1103 }
1104 
1105 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1106   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1107 }
1108 
1109 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1110   // Note: this doesn't use InstVisitor, because it has to work with
1111   // ConstantExpr's in addition to instructions.
1112   switch (Opcode) {
1113   default: llvm_unreachable("Unknown instruction type encountered!");
1114     // Build the switch statement using the Instruction.def file.
1115 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1116     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1117 #include "llvm/IR/Instruction.def"
1118   }
1119 }
1120 
1121 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1122                                                 const DIExpression *Expr) {
1123   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1124     const DbgValueInst *DI = DDI.getDI();
1125     DIVariable *DanglingVariable = DI->getVariable();
1126     DIExpression *DanglingExpr = DI->getExpression();
1127     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1128       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1129       return true;
1130     }
1131     return false;
1132   };
1133 
1134   for (auto &DDIMI : DanglingDebugInfoMap) {
1135     DanglingDebugInfoVector &DDIV = DDIMI.second;
1136 
1137     // If debug info is to be dropped, run it through final checks to see
1138     // whether it can be salvaged.
1139     for (auto &DDI : DDIV)
1140       if (isMatchingDbgValue(DDI))
1141         salvageUnresolvedDbgValue(DDI);
1142 
1143     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1144   }
1145 }
1146 
1147 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1148 // generate the debug data structures now that we've seen its definition.
1149 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1150                                                    SDValue Val) {
1151   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1152   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1153     return;
1154 
1155   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1156   for (auto &DDI : DDIV) {
1157     const DbgValueInst *DI = DDI.getDI();
1158     assert(DI && "Ill-formed DanglingDebugInfo");
1159     DebugLoc dl = DDI.getdl();
1160     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1161     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1162     DILocalVariable *Variable = DI->getVariable();
1163     DIExpression *Expr = DI->getExpression();
1164     assert(Variable->isValidLocationForIntrinsic(dl) &&
1165            "Expected inlined-at fields to agree");
1166     SDDbgValue *SDV;
1167     if (Val.getNode()) {
1168       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1169       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1170       // we couldn't resolve it directly when examining the DbgValue intrinsic
1171       // in the first place we should not be more successful here). Unless we
1172       // have some test case that prove this to be correct we should avoid
1173       // calling EmitFuncArgumentDbgValue here.
1174       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1175         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1176                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1177         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1178         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1179         // inserted after the definition of Val when emitting the instructions
1180         // after ISel. An alternative could be to teach
1181         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1182         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1183                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1184                    << ValSDNodeOrder << "\n");
1185         SDV = getDbgValue(Val, Variable, Expr, dl,
1186                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1187         DAG.AddDbgValue(SDV, Val.getNode(), false);
1188       } else
1189         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1190                           << "in EmitFuncArgumentDbgValue\n");
1191     } else {
1192       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1193       auto Undef =
1194           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1195       auto SDV =
1196           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1197       DAG.AddDbgValue(SDV, nullptr, false);
1198     }
1199   }
1200   DDIV.clear();
1201 }
1202 
1203 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1204   Value *V = DDI.getDI()->getValue();
1205   DILocalVariable *Var = DDI.getDI()->getVariable();
1206   DIExpression *Expr = DDI.getDI()->getExpression();
1207   DebugLoc DL = DDI.getdl();
1208   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1209   unsigned SDOrder = DDI.getSDNodeOrder();
1210 
1211   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1212   // that DW_OP_stack_value is desired.
1213   assert(isa<DbgValueInst>(DDI.getDI()));
1214   bool StackValue = true;
1215 
1216   // Can this Value can be encoded without any further work?
1217   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1218     return;
1219 
1220   // Attempt to salvage back through as many instructions as possible. Bail if
1221   // a non-instruction is seen, such as a constant expression or global
1222   // variable. FIXME: Further work could recover those too.
1223   while (isa<Instruction>(V)) {
1224     Instruction &VAsInst = *cast<Instruction>(V);
1225     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1226 
1227     // If we cannot salvage any further, and haven't yet found a suitable debug
1228     // expression, bail out.
1229     if (!NewExpr)
1230       break;
1231 
1232     // New value and expr now represent this debuginfo.
1233     V = VAsInst.getOperand(0);
1234     Expr = NewExpr;
1235 
1236     // Some kind of simplification occurred: check whether the operand of the
1237     // salvaged debug expression can be encoded in this DAG.
1238     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1239       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1240                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1241       return;
1242     }
1243   }
1244 
1245   // This was the final opportunity to salvage this debug information, and it
1246   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1247   // any earlier variable location.
1248   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1249   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1250   DAG.AddDbgValue(SDV, nullptr, false);
1251 
1252   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1253                     << "\n");
1254   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1255                     << "\n");
1256 }
1257 
1258 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1259                                            DIExpression *Expr, DebugLoc dl,
1260                                            DebugLoc InstDL, unsigned Order) {
1261   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1262   SDDbgValue *SDV;
1263   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1264       isa<ConstantPointerNull>(V)) {
1265     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1266     DAG.AddDbgValue(SDV, nullptr, false);
1267     return true;
1268   }
1269 
1270   // If the Value is a frame index, we can create a FrameIndex debug value
1271   // without relying on the DAG at all.
1272   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1273     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1274     if (SI != FuncInfo.StaticAllocaMap.end()) {
1275       auto SDV =
1276           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1277                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1278       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1279       // is still available even if the SDNode gets optimized out.
1280       DAG.AddDbgValue(SDV, nullptr, false);
1281       return true;
1282     }
1283   }
1284 
1285   // Do not use getValue() in here; we don't want to generate code at
1286   // this point if it hasn't been done yet.
1287   SDValue N = NodeMap[V];
1288   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1289     N = UnusedArgNodeMap[V];
1290   if (N.getNode()) {
1291     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1292       return true;
1293     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1294     DAG.AddDbgValue(SDV, N.getNode(), false);
1295     return true;
1296   }
1297 
1298   // Special rules apply for the first dbg.values of parameter variables in a
1299   // function. Identify them by the fact they reference Argument Values, that
1300   // they're parameters, and they are parameters of the current function. We
1301   // need to let them dangle until they get an SDNode.
1302   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1303                        !InstDL.getInlinedAt();
1304   if (!IsParamOfFunc) {
1305     // The value is not used in this block yet (or it would have an SDNode).
1306     // We still want the value to appear for the user if possible -- if it has
1307     // an associated VReg, we can refer to that instead.
1308     auto VMI = FuncInfo.ValueMap.find(V);
1309     if (VMI != FuncInfo.ValueMap.end()) {
1310       unsigned Reg = VMI->second;
1311       // If this is a PHI node, it may be split up into several MI PHI nodes
1312       // (in FunctionLoweringInfo::set).
1313       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1314                        V->getType(), None);
1315       if (RFV.occupiesMultipleRegs()) {
1316         unsigned Offset = 0;
1317         unsigned BitsToDescribe = 0;
1318         if (auto VarSize = Var->getSizeInBits())
1319           BitsToDescribe = *VarSize;
1320         if (auto Fragment = Expr->getFragmentInfo())
1321           BitsToDescribe = Fragment->SizeInBits;
1322         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1323           unsigned RegisterSize = RegAndSize.second;
1324           // Bail out if all bits are described already.
1325           if (Offset >= BitsToDescribe)
1326             break;
1327           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1328               ? BitsToDescribe - Offset
1329               : RegisterSize;
1330           auto FragmentExpr = DIExpression::createFragmentExpression(
1331               Expr, Offset, FragmentSize);
1332           if (!FragmentExpr)
1333               continue;
1334           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1335                                     false, dl, SDNodeOrder);
1336           DAG.AddDbgValue(SDV, nullptr, false);
1337           Offset += RegisterSize;
1338         }
1339       } else {
1340         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1341         DAG.AddDbgValue(SDV, nullptr, false);
1342       }
1343       return true;
1344     }
1345   }
1346 
1347   return false;
1348 }
1349 
1350 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1351   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1352   for (auto &Pair : DanglingDebugInfoMap)
1353     for (auto &DDI : Pair.getSecond())
1354       salvageUnresolvedDbgValue(DDI);
1355   clearDanglingDebugInfo();
1356 }
1357 
1358 /// getCopyFromRegs - If there was virtual register allocated for the value V
1359 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1360 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1361   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1362   SDValue Result;
1363 
1364   if (It != FuncInfo.ValueMap.end()) {
1365     unsigned InReg = It->second;
1366 
1367     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1368                      DAG.getDataLayout(), InReg, Ty,
1369                      None); // This is not an ABI copy.
1370     SDValue Chain = DAG.getEntryNode();
1371     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1372                                  V);
1373     resolveDanglingDebugInfo(V, Result);
1374   }
1375 
1376   return Result;
1377 }
1378 
1379 /// getValue - Return an SDValue for the given Value.
1380 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1381   // If we already have an SDValue for this value, use it. It's important
1382   // to do this first, so that we don't create a CopyFromReg if we already
1383   // have a regular SDValue.
1384   SDValue &N = NodeMap[V];
1385   if (N.getNode()) return N;
1386 
1387   // If there's a virtual register allocated and initialized for this
1388   // value, use it.
1389   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1390     return copyFromReg;
1391 
1392   // Otherwise create a new SDValue and remember it.
1393   SDValue Val = getValueImpl(V);
1394   NodeMap[V] = Val;
1395   resolveDanglingDebugInfo(V, Val);
1396   return Val;
1397 }
1398 
1399 // Return true if SDValue exists for the given Value
1400 bool SelectionDAGBuilder::findValue(const Value *V) const {
1401   return (NodeMap.find(V) != NodeMap.end()) ||
1402     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1403 }
1404 
1405 /// getNonRegisterValue - Return an SDValue for the given Value, but
1406 /// don't look in FuncInfo.ValueMap for a virtual register.
1407 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1408   // If we already have an SDValue for this value, use it.
1409   SDValue &N = NodeMap[V];
1410   if (N.getNode()) {
1411     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1412       // Remove the debug location from the node as the node is about to be used
1413       // in a location which may differ from the original debug location.  This
1414       // is relevant to Constant and ConstantFP nodes because they can appear
1415       // as constant expressions inside PHI nodes.
1416       N->setDebugLoc(DebugLoc());
1417     }
1418     return N;
1419   }
1420 
1421   // Otherwise create a new SDValue and remember it.
1422   SDValue Val = getValueImpl(V);
1423   NodeMap[V] = Val;
1424   resolveDanglingDebugInfo(V, Val);
1425   return Val;
1426 }
1427 
1428 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1429 /// Create an SDValue for the given value.
1430 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1431   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1432 
1433   if (const Constant *C = dyn_cast<Constant>(V)) {
1434     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1435 
1436     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1437       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1438 
1439     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1440       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1441 
1442     if (isa<ConstantPointerNull>(C)) {
1443       unsigned AS = V->getType()->getPointerAddressSpace();
1444       return DAG.getConstant(0, getCurSDLoc(),
1445                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1446     }
1447 
1448     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1449       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1450 
1451     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1452       return DAG.getUNDEF(VT);
1453 
1454     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1455       visit(CE->getOpcode(), *CE);
1456       SDValue N1 = NodeMap[V];
1457       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1458       return N1;
1459     }
1460 
1461     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1462       SmallVector<SDValue, 4> Constants;
1463       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1464            OI != OE; ++OI) {
1465         SDNode *Val = getValue(*OI).getNode();
1466         // If the operand is an empty aggregate, there are no values.
1467         if (!Val) continue;
1468         // Add each leaf value from the operand to the Constants list
1469         // to form a flattened list of all the values.
1470         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1471           Constants.push_back(SDValue(Val, i));
1472       }
1473 
1474       return DAG.getMergeValues(Constants, getCurSDLoc());
1475     }
1476 
1477     if (const ConstantDataSequential *CDS =
1478           dyn_cast<ConstantDataSequential>(C)) {
1479       SmallVector<SDValue, 4> Ops;
1480       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1481         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1482         // Add each leaf value from the operand to the Constants list
1483         // to form a flattened list of all the values.
1484         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1485           Ops.push_back(SDValue(Val, i));
1486       }
1487 
1488       if (isa<ArrayType>(CDS->getType()))
1489         return DAG.getMergeValues(Ops, getCurSDLoc());
1490       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1491     }
1492 
1493     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1494       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1495              "Unknown struct or array constant!");
1496 
1497       SmallVector<EVT, 4> ValueVTs;
1498       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1499       unsigned NumElts = ValueVTs.size();
1500       if (NumElts == 0)
1501         return SDValue(); // empty struct
1502       SmallVector<SDValue, 4> Constants(NumElts);
1503       for (unsigned i = 0; i != NumElts; ++i) {
1504         EVT EltVT = ValueVTs[i];
1505         if (isa<UndefValue>(C))
1506           Constants[i] = DAG.getUNDEF(EltVT);
1507         else if (EltVT.isFloatingPoint())
1508           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1509         else
1510           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1511       }
1512 
1513       return DAG.getMergeValues(Constants, getCurSDLoc());
1514     }
1515 
1516     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1517       return DAG.getBlockAddress(BA, VT);
1518 
1519     VectorType *VecTy = cast<VectorType>(V->getType());
1520     unsigned NumElements = VecTy->getNumElements();
1521 
1522     // Now that we know the number and type of the elements, get that number of
1523     // elements into the Ops array based on what kind of constant it is.
1524     SmallVector<SDValue, 16> Ops;
1525     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1526       for (unsigned i = 0; i != NumElements; ++i)
1527         Ops.push_back(getValue(CV->getOperand(i)));
1528     } else {
1529       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1530       EVT EltVT =
1531           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1532 
1533       SDValue Op;
1534       if (EltVT.isFloatingPoint())
1535         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1536       else
1537         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1538       Ops.assign(NumElements, Op);
1539     }
1540 
1541     // Create a BUILD_VECTOR node.
1542     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1543   }
1544 
1545   // If this is a static alloca, generate it as the frameindex instead of
1546   // computation.
1547   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1548     DenseMap<const AllocaInst*, int>::iterator SI =
1549       FuncInfo.StaticAllocaMap.find(AI);
1550     if (SI != FuncInfo.StaticAllocaMap.end())
1551       return DAG.getFrameIndex(SI->second,
1552                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1553   }
1554 
1555   // If this is an instruction which fast-isel has deferred, select it now.
1556   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1557     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1558 
1559     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1560                      Inst->getType(), getABIRegCopyCC(V));
1561     SDValue Chain = DAG.getEntryNode();
1562     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1563   }
1564 
1565   llvm_unreachable("Can't get register for value!");
1566 }
1567 
1568 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1569   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1570   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1571   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1572   bool IsSEH = isAsynchronousEHPersonality(Pers);
1573   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1574   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1575   if (!IsSEH)
1576     CatchPadMBB->setIsEHScopeEntry();
1577   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1578   if (IsMSVCCXX || IsCoreCLR)
1579     CatchPadMBB->setIsEHFuncletEntry();
1580   // Wasm does not need catchpads anymore
1581   if (!IsWasmCXX)
1582     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1583                             getControlRoot()));
1584 }
1585 
1586 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1587   // Update machine-CFG edge.
1588   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1589   FuncInfo.MBB->addSuccessor(TargetMBB);
1590 
1591   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1592   bool IsSEH = isAsynchronousEHPersonality(Pers);
1593   if (IsSEH) {
1594     // If this is not a fall-through branch or optimizations are switched off,
1595     // emit the branch.
1596     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1597         TM.getOptLevel() == CodeGenOpt::None)
1598       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1599                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1600     return;
1601   }
1602 
1603   // Figure out the funclet membership for the catchret's successor.
1604   // This will be used by the FuncletLayout pass to determine how to order the
1605   // BB's.
1606   // A 'catchret' returns to the outer scope's color.
1607   Value *ParentPad = I.getCatchSwitchParentPad();
1608   const BasicBlock *SuccessorColor;
1609   if (isa<ConstantTokenNone>(ParentPad))
1610     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1611   else
1612     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1613   assert(SuccessorColor && "No parent funclet for catchret!");
1614   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1615   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1616 
1617   // Create the terminator node.
1618   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1619                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1620                             DAG.getBasicBlock(SuccessorColorMBB));
1621   DAG.setRoot(Ret);
1622 }
1623 
1624 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1625   // Don't emit any special code for the cleanuppad instruction. It just marks
1626   // the start of an EH scope/funclet.
1627   FuncInfo.MBB->setIsEHScopeEntry();
1628   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1629   if (Pers != EHPersonality::Wasm_CXX) {
1630     FuncInfo.MBB->setIsEHFuncletEntry();
1631     FuncInfo.MBB->setIsCleanupFuncletEntry();
1632   }
1633 }
1634 
1635 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1636 // the control flow always stops at the single catch pad, as it does for a
1637 // cleanup pad. In case the exception caught is not of the types the catch pad
1638 // catches, it will be rethrown by a rethrow.
1639 static void findWasmUnwindDestinations(
1640     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1641     BranchProbability Prob,
1642     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1643         &UnwindDests) {
1644   while (EHPadBB) {
1645     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1646     if (isa<CleanupPadInst>(Pad)) {
1647       // Stop on cleanup pads.
1648       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1649       UnwindDests.back().first->setIsEHScopeEntry();
1650       break;
1651     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1652       // Add the catchpad handlers to the possible destinations. We don't
1653       // continue to the unwind destination of the catchswitch for wasm.
1654       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1655         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1656         UnwindDests.back().first->setIsEHScopeEntry();
1657       }
1658       break;
1659     } else {
1660       continue;
1661     }
1662   }
1663 }
1664 
1665 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1666 /// many places it could ultimately go. In the IR, we have a single unwind
1667 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1668 /// This function skips over imaginary basic blocks that hold catchswitch
1669 /// instructions, and finds all the "real" machine
1670 /// basic block destinations. As those destinations may not be successors of
1671 /// EHPadBB, here we also calculate the edge probability to those destinations.
1672 /// The passed-in Prob is the edge probability to EHPadBB.
1673 static void findUnwindDestinations(
1674     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1675     BranchProbability Prob,
1676     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1677         &UnwindDests) {
1678   EHPersonality Personality =
1679     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1680   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1681   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1682   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1683   bool IsSEH = isAsynchronousEHPersonality(Personality);
1684 
1685   if (IsWasmCXX) {
1686     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1687     assert(UnwindDests.size() <= 1 &&
1688            "There should be at most one unwind destination for wasm");
1689     return;
1690   }
1691 
1692   while (EHPadBB) {
1693     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1694     BasicBlock *NewEHPadBB = nullptr;
1695     if (isa<LandingPadInst>(Pad)) {
1696       // Stop on landingpads. They are not funclets.
1697       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1698       break;
1699     } else if (isa<CleanupPadInst>(Pad)) {
1700       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1701       // personalities.
1702       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1703       UnwindDests.back().first->setIsEHScopeEntry();
1704       UnwindDests.back().first->setIsEHFuncletEntry();
1705       break;
1706     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1707       // Add the catchpad handlers to the possible destinations.
1708       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1709         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1710         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1711         if (IsMSVCCXX || IsCoreCLR)
1712           UnwindDests.back().first->setIsEHFuncletEntry();
1713         if (!IsSEH)
1714           UnwindDests.back().first->setIsEHScopeEntry();
1715       }
1716       NewEHPadBB = CatchSwitch->getUnwindDest();
1717     } else {
1718       continue;
1719     }
1720 
1721     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1722     if (BPI && NewEHPadBB)
1723       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1724     EHPadBB = NewEHPadBB;
1725   }
1726 }
1727 
1728 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1729   // Update successor info.
1730   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1731   auto UnwindDest = I.getUnwindDest();
1732   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1733   BranchProbability UnwindDestProb =
1734       (BPI && UnwindDest)
1735           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1736           : BranchProbability::getZero();
1737   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1738   for (auto &UnwindDest : UnwindDests) {
1739     UnwindDest.first->setIsEHPad();
1740     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1741   }
1742   FuncInfo.MBB->normalizeSuccProbs();
1743 
1744   // Create the terminator node.
1745   SDValue Ret =
1746       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1747   DAG.setRoot(Ret);
1748 }
1749 
1750 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1751   report_fatal_error("visitCatchSwitch not yet implemented!");
1752 }
1753 
1754 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1755   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1756   auto &DL = DAG.getDataLayout();
1757   SDValue Chain = getControlRoot();
1758   SmallVector<ISD::OutputArg, 8> Outs;
1759   SmallVector<SDValue, 8> OutVals;
1760 
1761   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1762   // lower
1763   //
1764   //   %val = call <ty> @llvm.experimental.deoptimize()
1765   //   ret <ty> %val
1766   //
1767   // differently.
1768   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1769     LowerDeoptimizingReturn();
1770     return;
1771   }
1772 
1773   if (!FuncInfo.CanLowerReturn) {
1774     unsigned DemoteReg = FuncInfo.DemoteRegister;
1775     const Function *F = I.getParent()->getParent();
1776 
1777     // Emit a store of the return value through the virtual register.
1778     // Leave Outs empty so that LowerReturn won't try to load return
1779     // registers the usual way.
1780     SmallVector<EVT, 1> PtrValueVTs;
1781     ComputeValueVTs(TLI, DL,
1782                     F->getReturnType()->getPointerTo(
1783                         DAG.getDataLayout().getAllocaAddrSpace()),
1784                     PtrValueVTs);
1785 
1786     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1787                                         DemoteReg, PtrValueVTs[0]);
1788     SDValue RetOp = getValue(I.getOperand(0));
1789 
1790     SmallVector<EVT, 4> ValueVTs;
1791     SmallVector<uint64_t, 4> Offsets;
1792     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1793     unsigned NumValues = ValueVTs.size();
1794 
1795     SmallVector<SDValue, 4> Chains(NumValues);
1796     for (unsigned i = 0; i != NumValues; ++i) {
1797       // An aggregate return value cannot wrap around the address space, so
1798       // offsets to its parts don't wrap either.
1799       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1800       Chains[i] = DAG.getStore(
1801           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1802           // FIXME: better loc info would be nice.
1803           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1804     }
1805 
1806     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1807                         MVT::Other, Chains);
1808   } else if (I.getNumOperands() != 0) {
1809     SmallVector<EVT, 4> ValueVTs;
1810     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1811     unsigned NumValues = ValueVTs.size();
1812     if (NumValues) {
1813       SDValue RetOp = getValue(I.getOperand(0));
1814 
1815       const Function *F = I.getParent()->getParent();
1816 
1817       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1818       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1819                                           Attribute::SExt))
1820         ExtendKind = ISD::SIGN_EXTEND;
1821       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1822                                                Attribute::ZExt))
1823         ExtendKind = ISD::ZERO_EXTEND;
1824 
1825       LLVMContext &Context = F->getContext();
1826       bool RetInReg = F->getAttributes().hasAttribute(
1827           AttributeList::ReturnIndex, Attribute::InReg);
1828 
1829       for (unsigned j = 0; j != NumValues; ++j) {
1830         EVT VT = ValueVTs[j];
1831 
1832         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1833           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1834 
1835         CallingConv::ID CC = F->getCallingConv();
1836 
1837         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1838         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1839         SmallVector<SDValue, 4> Parts(NumParts);
1840         getCopyToParts(DAG, getCurSDLoc(),
1841                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1842                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1843 
1844         // 'inreg' on function refers to return value
1845         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1846         if (RetInReg)
1847           Flags.setInReg();
1848 
1849         // Propagate extension type if any
1850         if (ExtendKind == ISD::SIGN_EXTEND)
1851           Flags.setSExt();
1852         else if (ExtendKind == ISD::ZERO_EXTEND)
1853           Flags.setZExt();
1854 
1855         for (unsigned i = 0; i < NumParts; ++i) {
1856           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1857                                         VT, /*isfixed=*/true, 0, 0));
1858           OutVals.push_back(Parts[i]);
1859         }
1860       }
1861     }
1862   }
1863 
1864   // Push in swifterror virtual register as the last element of Outs. This makes
1865   // sure swifterror virtual register will be returned in the swifterror
1866   // physical register.
1867   const Function *F = I.getParent()->getParent();
1868   if (TLI.supportSwiftError() &&
1869       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1870     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1871     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1872     Flags.setSwiftError();
1873     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1874                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1875                                   true /*isfixed*/, 1 /*origidx*/,
1876                                   0 /*partOffs*/));
1877     // Create SDNode for the swifterror virtual register.
1878     OutVals.push_back(
1879         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1880                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1881                         EVT(TLI.getPointerTy(DL))));
1882   }
1883 
1884   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1885   CallingConv::ID CallConv =
1886     DAG.getMachineFunction().getFunction().getCallingConv();
1887   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1888       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1889 
1890   // Verify that the target's LowerReturn behaved as expected.
1891   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1892          "LowerReturn didn't return a valid chain!");
1893 
1894   // Update the DAG with the new chain value resulting from return lowering.
1895   DAG.setRoot(Chain);
1896 }
1897 
1898 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1899 /// created for it, emit nodes to copy the value into the virtual
1900 /// registers.
1901 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1902   // Skip empty types
1903   if (V->getType()->isEmptyTy())
1904     return;
1905 
1906   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1907   if (VMI != FuncInfo.ValueMap.end()) {
1908     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1909     CopyValueToVirtualRegister(V, VMI->second);
1910   }
1911 }
1912 
1913 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1914 /// the current basic block, add it to ValueMap now so that we'll get a
1915 /// CopyTo/FromReg.
1916 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1917   // No need to export constants.
1918   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1919 
1920   // Already exported?
1921   if (FuncInfo.isExportedInst(V)) return;
1922 
1923   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1924   CopyValueToVirtualRegister(V, Reg);
1925 }
1926 
1927 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1928                                                      const BasicBlock *FromBB) {
1929   // The operands of the setcc have to be in this block.  We don't know
1930   // how to export them from some other block.
1931   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1932     // Can export from current BB.
1933     if (VI->getParent() == FromBB)
1934       return true;
1935 
1936     // Is already exported, noop.
1937     return FuncInfo.isExportedInst(V);
1938   }
1939 
1940   // If this is an argument, we can export it if the BB is the entry block or
1941   // if it is already exported.
1942   if (isa<Argument>(V)) {
1943     if (FromBB == &FromBB->getParent()->getEntryBlock())
1944       return true;
1945 
1946     // Otherwise, can only export this if it is already exported.
1947     return FuncInfo.isExportedInst(V);
1948   }
1949 
1950   // Otherwise, constants can always be exported.
1951   return true;
1952 }
1953 
1954 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1955 BranchProbability
1956 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1957                                         const MachineBasicBlock *Dst) const {
1958   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1959   const BasicBlock *SrcBB = Src->getBasicBlock();
1960   const BasicBlock *DstBB = Dst->getBasicBlock();
1961   if (!BPI) {
1962     // If BPI is not available, set the default probability as 1 / N, where N is
1963     // the number of successors.
1964     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1965     return BranchProbability(1, SuccSize);
1966   }
1967   return BPI->getEdgeProbability(SrcBB, DstBB);
1968 }
1969 
1970 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1971                                                MachineBasicBlock *Dst,
1972                                                BranchProbability Prob) {
1973   if (!FuncInfo.BPI)
1974     Src->addSuccessorWithoutProb(Dst);
1975   else {
1976     if (Prob.isUnknown())
1977       Prob = getEdgeProbability(Src, Dst);
1978     Src->addSuccessor(Dst, Prob);
1979   }
1980 }
1981 
1982 static bool InBlock(const Value *V, const BasicBlock *BB) {
1983   if (const Instruction *I = dyn_cast<Instruction>(V))
1984     return I->getParent() == BB;
1985   return true;
1986 }
1987 
1988 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1989 /// This function emits a branch and is used at the leaves of an OR or an
1990 /// AND operator tree.
1991 void
1992 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1993                                                   MachineBasicBlock *TBB,
1994                                                   MachineBasicBlock *FBB,
1995                                                   MachineBasicBlock *CurBB,
1996                                                   MachineBasicBlock *SwitchBB,
1997                                                   BranchProbability TProb,
1998                                                   BranchProbability FProb,
1999                                                   bool InvertCond) {
2000   const BasicBlock *BB = CurBB->getBasicBlock();
2001 
2002   // If the leaf of the tree is a comparison, merge the condition into
2003   // the caseblock.
2004   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2005     // The operands of the cmp have to be in this block.  We don't know
2006     // how to export them from some other block.  If this is the first block
2007     // of the sequence, no exporting is needed.
2008     if (CurBB == SwitchBB ||
2009         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2010          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2011       ISD::CondCode Condition;
2012       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2013         ICmpInst::Predicate Pred =
2014             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2015         Condition = getICmpCondCode(Pred);
2016       } else {
2017         const FCmpInst *FC = cast<FCmpInst>(Cond);
2018         FCmpInst::Predicate Pred =
2019             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2020         Condition = getFCmpCondCode(Pred);
2021         if (TM.Options.NoNaNsFPMath)
2022           Condition = getFCmpCodeWithoutNaN(Condition);
2023       }
2024 
2025       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2026                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2027       SwitchCases.push_back(CB);
2028       return;
2029     }
2030   }
2031 
2032   // Create a CaseBlock record representing this branch.
2033   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2034   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2035                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2036   SwitchCases.push_back(CB);
2037 }
2038 
2039 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2040                                                MachineBasicBlock *TBB,
2041                                                MachineBasicBlock *FBB,
2042                                                MachineBasicBlock *CurBB,
2043                                                MachineBasicBlock *SwitchBB,
2044                                                Instruction::BinaryOps Opc,
2045                                                BranchProbability TProb,
2046                                                BranchProbability FProb,
2047                                                bool InvertCond) {
2048   // Skip over not part of the tree and remember to invert op and operands at
2049   // next level.
2050   Value *NotCond;
2051   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2052       InBlock(NotCond, CurBB->getBasicBlock())) {
2053     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2054                          !InvertCond);
2055     return;
2056   }
2057 
2058   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2059   // Compute the effective opcode for Cond, taking into account whether it needs
2060   // to be inverted, e.g.
2061   //   and (not (or A, B)), C
2062   // gets lowered as
2063   //   and (and (not A, not B), C)
2064   unsigned BOpc = 0;
2065   if (BOp) {
2066     BOpc = BOp->getOpcode();
2067     if (InvertCond) {
2068       if (BOpc == Instruction::And)
2069         BOpc = Instruction::Or;
2070       else if (BOpc == Instruction::Or)
2071         BOpc = Instruction::And;
2072     }
2073   }
2074 
2075   // If this node is not part of the or/and tree, emit it as a branch.
2076   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2077       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2078       BOp->getParent() != CurBB->getBasicBlock() ||
2079       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2080       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2081     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2082                                  TProb, FProb, InvertCond);
2083     return;
2084   }
2085 
2086   //  Create TmpBB after CurBB.
2087   MachineFunction::iterator BBI(CurBB);
2088   MachineFunction &MF = DAG.getMachineFunction();
2089   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2090   CurBB->getParent()->insert(++BBI, TmpBB);
2091 
2092   if (Opc == Instruction::Or) {
2093     // Codegen X | Y as:
2094     // BB1:
2095     //   jmp_if_X TBB
2096     //   jmp TmpBB
2097     // TmpBB:
2098     //   jmp_if_Y TBB
2099     //   jmp FBB
2100     //
2101 
2102     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2103     // The requirement is that
2104     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2105     //     = TrueProb for original BB.
2106     // Assuming the original probabilities are A and B, one choice is to set
2107     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2108     // A/(1+B) and 2B/(1+B). This choice assumes that
2109     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2110     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2111     // TmpBB, but the math is more complicated.
2112 
2113     auto NewTrueProb = TProb / 2;
2114     auto NewFalseProb = TProb / 2 + FProb;
2115     // Emit the LHS condition.
2116     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2117                          NewTrueProb, NewFalseProb, InvertCond);
2118 
2119     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2120     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2121     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2122     // Emit the RHS condition into TmpBB.
2123     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2124                          Probs[0], Probs[1], InvertCond);
2125   } else {
2126     assert(Opc == Instruction::And && "Unknown merge op!");
2127     // Codegen X & Y as:
2128     // BB1:
2129     //   jmp_if_X TmpBB
2130     //   jmp FBB
2131     // TmpBB:
2132     //   jmp_if_Y TBB
2133     //   jmp FBB
2134     //
2135     //  This requires creation of TmpBB after CurBB.
2136 
2137     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2138     // The requirement is that
2139     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2140     //     = FalseProb for original BB.
2141     // Assuming the original probabilities are A and B, one choice is to set
2142     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2143     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2144     // TrueProb for BB1 * FalseProb for TmpBB.
2145 
2146     auto NewTrueProb = TProb + FProb / 2;
2147     auto NewFalseProb = FProb / 2;
2148     // Emit the LHS condition.
2149     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2150                          NewTrueProb, NewFalseProb, InvertCond);
2151 
2152     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2153     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2154     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2155     // Emit the RHS condition into TmpBB.
2156     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2157                          Probs[0], Probs[1], InvertCond);
2158   }
2159 }
2160 
2161 /// If the set of cases should be emitted as a series of branches, return true.
2162 /// If we should emit this as a bunch of and/or'd together conditions, return
2163 /// false.
2164 bool
2165 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2166   if (Cases.size() != 2) return true;
2167 
2168   // If this is two comparisons of the same values or'd or and'd together, they
2169   // will get folded into a single comparison, so don't emit two blocks.
2170   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2171        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2172       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2173        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2174     return false;
2175   }
2176 
2177   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2178   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2179   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2180       Cases[0].CC == Cases[1].CC &&
2181       isa<Constant>(Cases[0].CmpRHS) &&
2182       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2183     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2184       return false;
2185     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2186       return false;
2187   }
2188 
2189   return true;
2190 }
2191 
2192 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2193   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2194 
2195   // Update machine-CFG edges.
2196   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2197 
2198   if (I.isUnconditional()) {
2199     // Update machine-CFG edges.
2200     BrMBB->addSuccessor(Succ0MBB);
2201 
2202     // If this is not a fall-through branch or optimizations are switched off,
2203     // emit the branch.
2204     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2205       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2206                               MVT::Other, getControlRoot(),
2207                               DAG.getBasicBlock(Succ0MBB)));
2208 
2209     return;
2210   }
2211 
2212   // If this condition is one of the special cases we handle, do special stuff
2213   // now.
2214   const Value *CondVal = I.getCondition();
2215   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2216 
2217   // If this is a series of conditions that are or'd or and'd together, emit
2218   // this as a sequence of branches instead of setcc's with and/or operations.
2219   // As long as jumps are not expensive, this should improve performance.
2220   // For example, instead of something like:
2221   //     cmp A, B
2222   //     C = seteq
2223   //     cmp D, E
2224   //     F = setle
2225   //     or C, F
2226   //     jnz foo
2227   // Emit:
2228   //     cmp A, B
2229   //     je foo
2230   //     cmp D, E
2231   //     jle foo
2232   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2233     Instruction::BinaryOps Opcode = BOp->getOpcode();
2234     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2235         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2236         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2237       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2238                            Opcode,
2239                            getEdgeProbability(BrMBB, Succ0MBB),
2240                            getEdgeProbability(BrMBB, Succ1MBB),
2241                            /*InvertCond=*/false);
2242       // If the compares in later blocks need to use values not currently
2243       // exported from this block, export them now.  This block should always
2244       // be the first entry.
2245       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2246 
2247       // Allow some cases to be rejected.
2248       if (ShouldEmitAsBranches(SwitchCases)) {
2249         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2250           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2251           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2252         }
2253 
2254         // Emit the branch for this block.
2255         visitSwitchCase(SwitchCases[0], BrMBB);
2256         SwitchCases.erase(SwitchCases.begin());
2257         return;
2258       }
2259 
2260       // Okay, we decided not to do this, remove any inserted MBB's and clear
2261       // SwitchCases.
2262       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2263         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2264 
2265       SwitchCases.clear();
2266     }
2267   }
2268 
2269   // Create a CaseBlock record representing this branch.
2270   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2271                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2272 
2273   // Use visitSwitchCase to actually insert the fast branch sequence for this
2274   // cond branch.
2275   visitSwitchCase(CB, BrMBB);
2276 }
2277 
2278 /// visitSwitchCase - Emits the necessary code to represent a single node in
2279 /// the binary search tree resulting from lowering a switch instruction.
2280 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2281                                           MachineBasicBlock *SwitchBB) {
2282   SDValue Cond;
2283   SDValue CondLHS = getValue(CB.CmpLHS);
2284   SDLoc dl = CB.DL;
2285 
2286   // Build the setcc now.
2287   if (!CB.CmpMHS) {
2288     // Fold "(X == true)" to X and "(X == false)" to !X to
2289     // handle common cases produced by branch lowering.
2290     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2291         CB.CC == ISD::SETEQ)
2292       Cond = CondLHS;
2293     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2294              CB.CC == ISD::SETEQ) {
2295       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2296       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2297     } else
2298       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2299   } else {
2300     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2301 
2302     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2303     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2304 
2305     SDValue CmpOp = getValue(CB.CmpMHS);
2306     EVT VT = CmpOp.getValueType();
2307 
2308     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2309       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2310                           ISD::SETLE);
2311     } else {
2312       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2313                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2314       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2315                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2316     }
2317   }
2318 
2319   // Update successor info
2320   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2321   // TrueBB and FalseBB are always different unless the incoming IR is
2322   // degenerate. This only happens when running llc on weird IR.
2323   if (CB.TrueBB != CB.FalseBB)
2324     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2325   SwitchBB->normalizeSuccProbs();
2326 
2327   // If the lhs block is the next block, invert the condition so that we can
2328   // fall through to the lhs instead of the rhs block.
2329   if (CB.TrueBB == NextBlock(SwitchBB)) {
2330     std::swap(CB.TrueBB, CB.FalseBB);
2331     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2332     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2333   }
2334 
2335   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2336                                MVT::Other, getControlRoot(), Cond,
2337                                DAG.getBasicBlock(CB.TrueBB));
2338 
2339   // Insert the false branch. Do this even if it's a fall through branch,
2340   // this makes it easier to do DAG optimizations which require inverting
2341   // the branch condition.
2342   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2343                        DAG.getBasicBlock(CB.FalseBB));
2344 
2345   DAG.setRoot(BrCond);
2346 }
2347 
2348 /// visitJumpTable - Emit JumpTable node in the current MBB
2349 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2350   // Emit the code for the jump table
2351   assert(JT.Reg != -1U && "Should lower JT Header first!");
2352   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2353   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2354                                      JT.Reg, PTy);
2355   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2356   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2357                                     MVT::Other, Index.getValue(1),
2358                                     Table, Index);
2359   DAG.setRoot(BrJumpTable);
2360 }
2361 
2362 /// visitJumpTableHeader - This function emits necessary code to produce index
2363 /// in the JumpTable from switch case.
2364 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2365                                                JumpTableHeader &JTH,
2366                                                MachineBasicBlock *SwitchBB) {
2367   SDLoc dl = getCurSDLoc();
2368 
2369   // Subtract the lowest switch case value from the value being switched on and
2370   // conditional branch to default mbb if the result is greater than the
2371   // difference between smallest and largest cases.
2372   SDValue SwitchOp = getValue(JTH.SValue);
2373   EVT VT = SwitchOp.getValueType();
2374   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2375                             DAG.getConstant(JTH.First, dl, VT));
2376 
2377   // The SDNode we just created, which holds the value being switched on minus
2378   // the smallest case value, needs to be copied to a virtual register so it
2379   // can be used as an index into the jump table in a subsequent basic block.
2380   // This value may be smaller or larger than the target's pointer type, and
2381   // therefore require extension or truncating.
2382   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2383   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2384 
2385   unsigned JumpTableReg =
2386       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2387   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2388                                     JumpTableReg, SwitchOp);
2389   JT.Reg = JumpTableReg;
2390 
2391   // Emit the range check for the jump table, and branch to the default block
2392   // for the switch statement if the value being switched on exceeds the largest
2393   // case in the switch.
2394   SDValue CMP = DAG.getSetCC(
2395       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2396                                  Sub.getValueType()),
2397       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2398 
2399   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2400                                MVT::Other, CopyTo, CMP,
2401                                DAG.getBasicBlock(JT.Default));
2402 
2403   // Avoid emitting unnecessary branches to the next block.
2404   if (JT.MBB != NextBlock(SwitchBB))
2405     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2406                          DAG.getBasicBlock(JT.MBB));
2407 
2408   DAG.setRoot(BrCond);
2409 }
2410 
2411 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2412 /// variable if there exists one.
2413 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2414                                  SDValue &Chain) {
2415   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2416   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2417   MachineFunction &MF = DAG.getMachineFunction();
2418   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2419   MachineSDNode *Node =
2420       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2421   if (Global) {
2422     MachinePointerInfo MPInfo(Global);
2423     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2424                  MachineMemOperand::MODereferenceable;
2425     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2426         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2427     DAG.setNodeMemRefs(Node, {MemRef});
2428   }
2429   return SDValue(Node, 0);
2430 }
2431 
2432 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2433 /// tail spliced into a stack protector check success bb.
2434 ///
2435 /// For a high level explanation of how this fits into the stack protector
2436 /// generation see the comment on the declaration of class
2437 /// StackProtectorDescriptor.
2438 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2439                                                   MachineBasicBlock *ParentBB) {
2440 
2441   // First create the loads to the guard/stack slot for the comparison.
2442   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2443   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2444 
2445   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2446   int FI = MFI.getStackProtectorIndex();
2447 
2448   SDValue Guard;
2449   SDLoc dl = getCurSDLoc();
2450   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2451   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2452   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2453 
2454   // Generate code to load the content of the guard slot.
2455   SDValue GuardVal = DAG.getLoad(
2456       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2457       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2458       MachineMemOperand::MOVolatile);
2459 
2460   if (TLI.useStackGuardXorFP())
2461     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2462 
2463   // Retrieve guard check function, nullptr if instrumentation is inlined.
2464   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2465     // The target provides a guard check function to validate the guard value.
2466     // Generate a call to that function with the content of the guard slot as
2467     // argument.
2468     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2469     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2470 
2471     TargetLowering::ArgListTy Args;
2472     TargetLowering::ArgListEntry Entry;
2473     Entry.Node = GuardVal;
2474     Entry.Ty = FnTy->getParamType(0);
2475     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2476       Entry.IsInReg = true;
2477     Args.push_back(Entry);
2478 
2479     TargetLowering::CallLoweringInfo CLI(DAG);
2480     CLI.setDebugLoc(getCurSDLoc())
2481         .setChain(DAG.getEntryNode())
2482         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2483                    getValue(GuardCheckFn), std::move(Args));
2484 
2485     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2486     DAG.setRoot(Result.second);
2487     return;
2488   }
2489 
2490   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2491   // Otherwise, emit a volatile load to retrieve the stack guard value.
2492   SDValue Chain = DAG.getEntryNode();
2493   if (TLI.useLoadStackGuardNode()) {
2494     Guard = getLoadStackGuard(DAG, dl, Chain);
2495   } else {
2496     const Value *IRGuard = TLI.getSDagStackGuard(M);
2497     SDValue GuardPtr = getValue(IRGuard);
2498 
2499     Guard =
2500         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2501                     Align, MachineMemOperand::MOVolatile);
2502   }
2503 
2504   // Perform the comparison via a subtract/getsetcc.
2505   EVT VT = Guard.getValueType();
2506   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2507 
2508   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2509                                                         *DAG.getContext(),
2510                                                         Sub.getValueType()),
2511                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2512 
2513   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2514   // branch to failure MBB.
2515   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2516                                MVT::Other, GuardVal.getOperand(0),
2517                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2518   // Otherwise branch to success MBB.
2519   SDValue Br = DAG.getNode(ISD::BR, dl,
2520                            MVT::Other, BrCond,
2521                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2522 
2523   DAG.setRoot(Br);
2524 }
2525 
2526 /// Codegen the failure basic block for a stack protector check.
2527 ///
2528 /// A failure stack protector machine basic block consists simply of a call to
2529 /// __stack_chk_fail().
2530 ///
2531 /// For a high level explanation of how this fits into the stack protector
2532 /// generation see the comment on the declaration of class
2533 /// StackProtectorDescriptor.
2534 void
2535 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2536   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2537   SDValue Chain =
2538       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2539                       None, false, getCurSDLoc(), false, false).second;
2540   // On PS4, the "return address" must still be within the calling function,
2541   // even if it's at the very end, so emit an explicit TRAP here.
2542   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2543   if (TM.getTargetTriple().isPS4CPU())
2544     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2545 
2546   DAG.setRoot(Chain);
2547 }
2548 
2549 /// visitBitTestHeader - This function emits necessary code to produce value
2550 /// suitable for "bit tests"
2551 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2552                                              MachineBasicBlock *SwitchBB) {
2553   SDLoc dl = getCurSDLoc();
2554 
2555   // Subtract the minimum value
2556   SDValue SwitchOp = getValue(B.SValue);
2557   EVT VT = SwitchOp.getValueType();
2558   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2559                             DAG.getConstant(B.First, dl, VT));
2560 
2561   // Check range
2562   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2563   SDValue RangeCmp = DAG.getSetCC(
2564       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2565                                  Sub.getValueType()),
2566       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2567 
2568   // Determine the type of the test operands.
2569   bool UsePtrType = false;
2570   if (!TLI.isTypeLegal(VT))
2571     UsePtrType = true;
2572   else {
2573     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2574       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2575         // Switch table case range are encoded into series of masks.
2576         // Just use pointer type, it's guaranteed to fit.
2577         UsePtrType = true;
2578         break;
2579       }
2580   }
2581   if (UsePtrType) {
2582     VT = TLI.getPointerTy(DAG.getDataLayout());
2583     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2584   }
2585 
2586   B.RegVT = VT.getSimpleVT();
2587   B.Reg = FuncInfo.CreateReg(B.RegVT);
2588   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2589 
2590   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2591 
2592   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2593   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2594   SwitchBB->normalizeSuccProbs();
2595 
2596   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2597                                 MVT::Other, CopyTo, RangeCmp,
2598                                 DAG.getBasicBlock(B.Default));
2599 
2600   // Avoid emitting unnecessary branches to the next block.
2601   if (MBB != NextBlock(SwitchBB))
2602     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2603                           DAG.getBasicBlock(MBB));
2604 
2605   DAG.setRoot(BrRange);
2606 }
2607 
2608 /// visitBitTestCase - this function produces one "bit test"
2609 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2610                                            MachineBasicBlock* NextMBB,
2611                                            BranchProbability BranchProbToNext,
2612                                            unsigned Reg,
2613                                            BitTestCase &B,
2614                                            MachineBasicBlock *SwitchBB) {
2615   SDLoc dl = getCurSDLoc();
2616   MVT VT = BB.RegVT;
2617   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2618   SDValue Cmp;
2619   unsigned PopCount = countPopulation(B.Mask);
2620   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2621   if (PopCount == 1) {
2622     // Testing for a single bit; just compare the shift count with what it
2623     // would need to be to shift a 1 bit in that position.
2624     Cmp = DAG.getSetCC(
2625         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2626         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2627         ISD::SETEQ);
2628   } else if (PopCount == BB.Range) {
2629     // There is only one zero bit in the range, test for it directly.
2630     Cmp = DAG.getSetCC(
2631         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2632         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2633         ISD::SETNE);
2634   } else {
2635     // Make desired shift
2636     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2637                                     DAG.getConstant(1, dl, VT), ShiftOp);
2638 
2639     // Emit bit tests and jumps
2640     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2641                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2642     Cmp = DAG.getSetCC(
2643         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2644         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2645   }
2646 
2647   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2648   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2649   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2650   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2651   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2652   // one as they are relative probabilities (and thus work more like weights),
2653   // and hence we need to normalize them to let the sum of them become one.
2654   SwitchBB->normalizeSuccProbs();
2655 
2656   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2657                               MVT::Other, getControlRoot(),
2658                               Cmp, DAG.getBasicBlock(B.TargetBB));
2659 
2660   // Avoid emitting unnecessary branches to the next block.
2661   if (NextMBB != NextBlock(SwitchBB))
2662     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2663                         DAG.getBasicBlock(NextMBB));
2664 
2665   DAG.setRoot(BrAnd);
2666 }
2667 
2668 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2669   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2670 
2671   // Retrieve successors. Look through artificial IR level blocks like
2672   // catchswitch for successors.
2673   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2674   const BasicBlock *EHPadBB = I.getSuccessor(1);
2675 
2676   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2677   // have to do anything here to lower funclet bundles.
2678   assert(!I.hasOperandBundlesOtherThan(
2679              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2680          "Cannot lower invokes with arbitrary operand bundles yet!");
2681 
2682   const Value *Callee(I.getCalledValue());
2683   const Function *Fn = dyn_cast<Function>(Callee);
2684   if (isa<InlineAsm>(Callee))
2685     visitInlineAsm(&I);
2686   else if (Fn && Fn->isIntrinsic()) {
2687     switch (Fn->getIntrinsicID()) {
2688     default:
2689       llvm_unreachable("Cannot invoke this intrinsic");
2690     case Intrinsic::donothing:
2691       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2692       break;
2693     case Intrinsic::experimental_patchpoint_void:
2694     case Intrinsic::experimental_patchpoint_i64:
2695       visitPatchpoint(&I, EHPadBB);
2696       break;
2697     case Intrinsic::experimental_gc_statepoint:
2698       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2699       break;
2700     case Intrinsic::wasm_rethrow_in_catch: {
2701       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2702       // special because it can be invoked, so we manually lower it to a DAG
2703       // node here.
2704       SmallVector<SDValue, 8> Ops;
2705       Ops.push_back(getRoot()); // inchain
2706       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2707       Ops.push_back(
2708           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2709                                 TLI.getPointerTy(DAG.getDataLayout())));
2710       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2711       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2712       break;
2713     }
2714     }
2715   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2716     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2717     // Eventually we will support lowering the @llvm.experimental.deoptimize
2718     // intrinsic, and right now there are no plans to support other intrinsics
2719     // with deopt state.
2720     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2721   } else {
2722     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2723   }
2724 
2725   // If the value of the invoke is used outside of its defining block, make it
2726   // available as a virtual register.
2727   // We already took care of the exported value for the statepoint instruction
2728   // during call to the LowerStatepoint.
2729   if (!isStatepoint(I)) {
2730     CopyToExportRegsIfNeeded(&I);
2731   }
2732 
2733   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2734   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2735   BranchProbability EHPadBBProb =
2736       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2737           : BranchProbability::getZero();
2738   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2739 
2740   // Update successor info.
2741   addSuccessorWithProb(InvokeMBB, Return);
2742   for (auto &UnwindDest : UnwindDests) {
2743     UnwindDest.first->setIsEHPad();
2744     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2745   }
2746   InvokeMBB->normalizeSuccProbs();
2747 
2748   // Drop into normal successor.
2749   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2750                           DAG.getBasicBlock(Return)));
2751 }
2752 
2753 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2754   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2755 
2756   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2757   // have to do anything here to lower funclet bundles.
2758   assert(!I.hasOperandBundlesOtherThan(
2759              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2760          "Cannot lower callbrs with arbitrary operand bundles yet!");
2761 
2762   assert(isa<InlineAsm>(I.getCalledValue()) &&
2763          "Only know how to handle inlineasm callbr");
2764   visitInlineAsm(&I);
2765 
2766   // Retrieve successors.
2767   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2768 
2769   // Update successor info.
2770   addSuccessorWithProb(CallBrMBB, Return);
2771   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2772     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2773     addSuccessorWithProb(CallBrMBB, Target);
2774   }
2775   CallBrMBB->normalizeSuccProbs();
2776 
2777   // Drop into default successor.
2778   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2779                           MVT::Other, getControlRoot(),
2780                           DAG.getBasicBlock(Return)));
2781 }
2782 
2783 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2784   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2785 }
2786 
2787 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2788   assert(FuncInfo.MBB->isEHPad() &&
2789          "Call to landingpad not in landing pad!");
2790 
2791   // If there aren't registers to copy the values into (e.g., during SjLj
2792   // exceptions), then don't bother to create these DAG nodes.
2793   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2794   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2795   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2796       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2797     return;
2798 
2799   // If landingpad's return type is token type, we don't create DAG nodes
2800   // for its exception pointer and selector value. The extraction of exception
2801   // pointer or selector value from token type landingpads is not currently
2802   // supported.
2803   if (LP.getType()->isTokenTy())
2804     return;
2805 
2806   SmallVector<EVT, 2> ValueVTs;
2807   SDLoc dl = getCurSDLoc();
2808   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2809   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2810 
2811   // Get the two live-in registers as SDValues. The physregs have already been
2812   // copied into virtual registers.
2813   SDValue Ops[2];
2814   if (FuncInfo.ExceptionPointerVirtReg) {
2815     Ops[0] = DAG.getZExtOrTrunc(
2816         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2817                            FuncInfo.ExceptionPointerVirtReg,
2818                            TLI.getPointerTy(DAG.getDataLayout())),
2819         dl, ValueVTs[0]);
2820   } else {
2821     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2822   }
2823   Ops[1] = DAG.getZExtOrTrunc(
2824       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2825                          FuncInfo.ExceptionSelectorVirtReg,
2826                          TLI.getPointerTy(DAG.getDataLayout())),
2827       dl, ValueVTs[1]);
2828 
2829   // Merge into one.
2830   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2831                             DAG.getVTList(ValueVTs), Ops);
2832   setValue(&LP, Res);
2833 }
2834 
2835 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2836 #ifndef NDEBUG
2837   for (const CaseCluster &CC : Clusters)
2838     assert(CC.Low == CC.High && "Input clusters must be single-case");
2839 #endif
2840 
2841   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2842     return a.Low->getValue().slt(b.Low->getValue());
2843   });
2844 
2845   // Merge adjacent clusters with the same destination.
2846   const unsigned N = Clusters.size();
2847   unsigned DstIndex = 0;
2848   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2849     CaseCluster &CC = Clusters[SrcIndex];
2850     const ConstantInt *CaseVal = CC.Low;
2851     MachineBasicBlock *Succ = CC.MBB;
2852 
2853     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2854         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2855       // If this case has the same successor and is a neighbour, merge it into
2856       // the previous cluster.
2857       Clusters[DstIndex - 1].High = CaseVal;
2858       Clusters[DstIndex - 1].Prob += CC.Prob;
2859     } else {
2860       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2861                    sizeof(Clusters[SrcIndex]));
2862     }
2863   }
2864   Clusters.resize(DstIndex);
2865 }
2866 
2867 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2868                                            MachineBasicBlock *Last) {
2869   // Update JTCases.
2870   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2871     if (JTCases[i].first.HeaderBB == First)
2872       JTCases[i].first.HeaderBB = Last;
2873 
2874   // Update BitTestCases.
2875   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2876     if (BitTestCases[i].Parent == First)
2877       BitTestCases[i].Parent = Last;
2878 }
2879 
2880 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2881   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2882 
2883   // Update machine-CFG edges with unique successors.
2884   SmallSet<BasicBlock*, 32> Done;
2885   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2886     BasicBlock *BB = I.getSuccessor(i);
2887     bool Inserted = Done.insert(BB).second;
2888     if (!Inserted)
2889         continue;
2890 
2891     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2892     addSuccessorWithProb(IndirectBrMBB, Succ);
2893   }
2894   IndirectBrMBB->normalizeSuccProbs();
2895 
2896   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2897                           MVT::Other, getControlRoot(),
2898                           getValue(I.getAddress())));
2899 }
2900 
2901 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2902   if (!DAG.getTarget().Options.TrapUnreachable)
2903     return;
2904 
2905   // We may be able to ignore unreachable behind a noreturn call.
2906   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2907     const BasicBlock &BB = *I.getParent();
2908     if (&I != &BB.front()) {
2909       BasicBlock::const_iterator PredI =
2910         std::prev(BasicBlock::const_iterator(&I));
2911       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2912         if (Call->doesNotReturn())
2913           return;
2914       }
2915     }
2916   }
2917 
2918   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2919 }
2920 
2921 void SelectionDAGBuilder::visitFSub(const User &I) {
2922   // -0.0 - X --> fneg
2923   Type *Ty = I.getType();
2924   if (isa<Constant>(I.getOperand(0)) &&
2925       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2926     SDValue Op2 = getValue(I.getOperand(1));
2927     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2928                              Op2.getValueType(), Op2));
2929     return;
2930   }
2931 
2932   visitBinary(I, ISD::FSUB);
2933 }
2934 
2935 /// Checks if the given instruction performs a vector reduction, in which case
2936 /// we have the freedom to alter the elements in the result as long as the
2937 /// reduction of them stays unchanged.
2938 static bool isVectorReductionOp(const User *I) {
2939   const Instruction *Inst = dyn_cast<Instruction>(I);
2940   if (!Inst || !Inst->getType()->isVectorTy())
2941     return false;
2942 
2943   auto OpCode = Inst->getOpcode();
2944   switch (OpCode) {
2945   case Instruction::Add:
2946   case Instruction::Mul:
2947   case Instruction::And:
2948   case Instruction::Or:
2949   case Instruction::Xor:
2950     break;
2951   case Instruction::FAdd:
2952   case Instruction::FMul:
2953     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2954       if (FPOp->getFastMathFlags().isFast())
2955         break;
2956     LLVM_FALLTHROUGH;
2957   default:
2958     return false;
2959   }
2960 
2961   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2962   // Ensure the reduction size is a power of 2.
2963   if (!isPowerOf2_32(ElemNum))
2964     return false;
2965 
2966   unsigned ElemNumToReduce = ElemNum;
2967 
2968   // Do DFS search on the def-use chain from the given instruction. We only
2969   // allow four kinds of operations during the search until we reach the
2970   // instruction that extracts the first element from the vector:
2971   //
2972   //   1. The reduction operation of the same opcode as the given instruction.
2973   //
2974   //   2. PHI node.
2975   //
2976   //   3. ShuffleVector instruction together with a reduction operation that
2977   //      does a partial reduction.
2978   //
2979   //   4. ExtractElement that extracts the first element from the vector, and we
2980   //      stop searching the def-use chain here.
2981   //
2982   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2983   // from 1-3 to the stack to continue the DFS. The given instruction is not
2984   // a reduction operation if we meet any other instructions other than those
2985   // listed above.
2986 
2987   SmallVector<const User *, 16> UsersToVisit{Inst};
2988   SmallPtrSet<const User *, 16> Visited;
2989   bool ReduxExtracted = false;
2990 
2991   while (!UsersToVisit.empty()) {
2992     auto User = UsersToVisit.back();
2993     UsersToVisit.pop_back();
2994     if (!Visited.insert(User).second)
2995       continue;
2996 
2997     for (const auto &U : User->users()) {
2998       auto Inst = dyn_cast<Instruction>(U);
2999       if (!Inst)
3000         return false;
3001 
3002       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3003         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3004           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3005             return false;
3006         UsersToVisit.push_back(U);
3007       } else if (const ShuffleVectorInst *ShufInst =
3008                      dyn_cast<ShuffleVectorInst>(U)) {
3009         // Detect the following pattern: A ShuffleVector instruction together
3010         // with a reduction that do partial reduction on the first and second
3011         // ElemNumToReduce / 2 elements, and store the result in
3012         // ElemNumToReduce / 2 elements in another vector.
3013 
3014         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3015         if (ResultElements < ElemNum)
3016           return false;
3017 
3018         if (ElemNumToReduce == 1)
3019           return false;
3020         if (!isa<UndefValue>(U->getOperand(1)))
3021           return false;
3022         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3023           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3024             return false;
3025         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3026           if (ShufInst->getMaskValue(i) != -1)
3027             return false;
3028 
3029         // There is only one user of this ShuffleVector instruction, which
3030         // must be a reduction operation.
3031         if (!U->hasOneUse())
3032           return false;
3033 
3034         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3035         if (!U2 || U2->getOpcode() != OpCode)
3036           return false;
3037 
3038         // Check operands of the reduction operation.
3039         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3040             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3041           UsersToVisit.push_back(U2);
3042           ElemNumToReduce /= 2;
3043         } else
3044           return false;
3045       } else if (isa<ExtractElementInst>(U)) {
3046         // At this moment we should have reduced all elements in the vector.
3047         if (ElemNumToReduce != 1)
3048           return false;
3049 
3050         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3051         if (!Val || !Val->isZero())
3052           return false;
3053 
3054         ReduxExtracted = true;
3055       } else
3056         return false;
3057     }
3058   }
3059   return ReduxExtracted;
3060 }
3061 
3062 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3063   SDNodeFlags Flags;
3064 
3065   SDValue Op = getValue(I.getOperand(0));
3066   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3067                                     Op, Flags);
3068   setValue(&I, UnNodeValue);
3069 }
3070 
3071 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3072   SDNodeFlags Flags;
3073   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3074     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3075     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3076   }
3077   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3078     Flags.setExact(ExactOp->isExact());
3079   }
3080   if (isVectorReductionOp(&I)) {
3081     Flags.setVectorReduction(true);
3082     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3083   }
3084 
3085   SDValue Op1 = getValue(I.getOperand(0));
3086   SDValue Op2 = getValue(I.getOperand(1));
3087   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3088                                      Op1, Op2, Flags);
3089   setValue(&I, BinNodeValue);
3090 }
3091 
3092 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3093   SDValue Op1 = getValue(I.getOperand(0));
3094   SDValue Op2 = getValue(I.getOperand(1));
3095 
3096   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3097       Op1.getValueType(), DAG.getDataLayout());
3098 
3099   // Coerce the shift amount to the right type if we can.
3100   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3101     unsigned ShiftSize = ShiftTy.getSizeInBits();
3102     unsigned Op2Size = Op2.getValueSizeInBits();
3103     SDLoc DL = getCurSDLoc();
3104 
3105     // If the operand is smaller than the shift count type, promote it.
3106     if (ShiftSize > Op2Size)
3107       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3108 
3109     // If the operand is larger than the shift count type but the shift
3110     // count type has enough bits to represent any shift value, truncate
3111     // it now. This is a common case and it exposes the truncate to
3112     // optimization early.
3113     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3114       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3115     // Otherwise we'll need to temporarily settle for some other convenient
3116     // type.  Type legalization will make adjustments once the shiftee is split.
3117     else
3118       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3119   }
3120 
3121   bool nuw = false;
3122   bool nsw = false;
3123   bool exact = false;
3124 
3125   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3126 
3127     if (const OverflowingBinaryOperator *OFBinOp =
3128             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3129       nuw = OFBinOp->hasNoUnsignedWrap();
3130       nsw = OFBinOp->hasNoSignedWrap();
3131     }
3132     if (const PossiblyExactOperator *ExactOp =
3133             dyn_cast<const PossiblyExactOperator>(&I))
3134       exact = ExactOp->isExact();
3135   }
3136   SDNodeFlags Flags;
3137   Flags.setExact(exact);
3138   Flags.setNoSignedWrap(nsw);
3139   Flags.setNoUnsignedWrap(nuw);
3140   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3141                             Flags);
3142   setValue(&I, Res);
3143 }
3144 
3145 void SelectionDAGBuilder::visitSDiv(const User &I) {
3146   SDValue Op1 = getValue(I.getOperand(0));
3147   SDValue Op2 = getValue(I.getOperand(1));
3148 
3149   SDNodeFlags Flags;
3150   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3151                  cast<PossiblyExactOperator>(&I)->isExact());
3152   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3153                            Op2, Flags));
3154 }
3155 
3156 void SelectionDAGBuilder::visitICmp(const User &I) {
3157   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3158   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3159     predicate = IC->getPredicate();
3160   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3161     predicate = ICmpInst::Predicate(IC->getPredicate());
3162   SDValue Op1 = getValue(I.getOperand(0));
3163   SDValue Op2 = getValue(I.getOperand(1));
3164   ISD::CondCode Opcode = getICmpCondCode(predicate);
3165 
3166   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3167                                                         I.getType());
3168   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3169 }
3170 
3171 void SelectionDAGBuilder::visitFCmp(const User &I) {
3172   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3173   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3174     predicate = FC->getPredicate();
3175   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3176     predicate = FCmpInst::Predicate(FC->getPredicate());
3177   SDValue Op1 = getValue(I.getOperand(0));
3178   SDValue Op2 = getValue(I.getOperand(1));
3179 
3180   ISD::CondCode Condition = getFCmpCondCode(predicate);
3181   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3182   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3183     Condition = getFCmpCodeWithoutNaN(Condition);
3184 
3185   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3186                                                         I.getType());
3187   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3188 }
3189 
3190 // Check if the condition of the select has one use or two users that are both
3191 // selects with the same condition.
3192 static bool hasOnlySelectUsers(const Value *Cond) {
3193   return llvm::all_of(Cond->users(), [](const Value *V) {
3194     return isa<SelectInst>(V);
3195   });
3196 }
3197 
3198 void SelectionDAGBuilder::visitSelect(const User &I) {
3199   SmallVector<EVT, 4> ValueVTs;
3200   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3201                   ValueVTs);
3202   unsigned NumValues = ValueVTs.size();
3203   if (NumValues == 0) return;
3204 
3205   SmallVector<SDValue, 4> Values(NumValues);
3206   SDValue Cond     = getValue(I.getOperand(0));
3207   SDValue LHSVal   = getValue(I.getOperand(1));
3208   SDValue RHSVal   = getValue(I.getOperand(2));
3209   auto BaseOps = {Cond};
3210   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3211     ISD::VSELECT : ISD::SELECT;
3212 
3213   bool IsUnaryAbs = false;
3214 
3215   // Min/max matching is only viable if all output VTs are the same.
3216   if (is_splat(ValueVTs)) {
3217     EVT VT = ValueVTs[0];
3218     LLVMContext &Ctx = *DAG.getContext();
3219     auto &TLI = DAG.getTargetLoweringInfo();
3220 
3221     // We care about the legality of the operation after it has been type
3222     // legalized.
3223     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
3224            VT != TLI.getTypeToTransformTo(Ctx, VT))
3225       VT = TLI.getTypeToTransformTo(Ctx, VT);
3226 
3227     // If the vselect is legal, assume we want to leave this as a vector setcc +
3228     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3229     // min/max is legal on the scalar type.
3230     bool UseScalarMinMax = VT.isVector() &&
3231       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3232 
3233     Value *LHS, *RHS;
3234     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3235     ISD::NodeType Opc = ISD::DELETED_NODE;
3236     switch (SPR.Flavor) {
3237     case SPF_UMAX:    Opc = ISD::UMAX; break;
3238     case SPF_UMIN:    Opc = ISD::UMIN; break;
3239     case SPF_SMAX:    Opc = ISD::SMAX; break;
3240     case SPF_SMIN:    Opc = ISD::SMIN; break;
3241     case SPF_FMINNUM:
3242       switch (SPR.NaNBehavior) {
3243       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3244       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3245       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3246       case SPNB_RETURNS_ANY: {
3247         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3248           Opc = ISD::FMINNUM;
3249         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3250           Opc = ISD::FMINIMUM;
3251         else if (UseScalarMinMax)
3252           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3253             ISD::FMINNUM : ISD::FMINIMUM;
3254         break;
3255       }
3256       }
3257       break;
3258     case SPF_FMAXNUM:
3259       switch (SPR.NaNBehavior) {
3260       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3261       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3262       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3263       case SPNB_RETURNS_ANY:
3264 
3265         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3266           Opc = ISD::FMAXNUM;
3267         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3268           Opc = ISD::FMAXIMUM;
3269         else if (UseScalarMinMax)
3270           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3271             ISD::FMAXNUM : ISD::FMAXIMUM;
3272         break;
3273       }
3274       break;
3275     case SPF_ABS:
3276       IsUnaryAbs = true;
3277       Opc = ISD::ABS;
3278       break;
3279     case SPF_NABS:
3280       // TODO: we need to produce sub(0, abs(X)).
3281     default: break;
3282     }
3283 
3284     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3285         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3286          (UseScalarMinMax &&
3287           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3288         // If the underlying comparison instruction is used by any other
3289         // instruction, the consumed instructions won't be destroyed, so it is
3290         // not profitable to convert to a min/max.
3291         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3292       OpCode = Opc;
3293       LHSVal = getValue(LHS);
3294       RHSVal = getValue(RHS);
3295       BaseOps = {};
3296     }
3297 
3298     if (IsUnaryAbs) {
3299       OpCode = Opc;
3300       LHSVal = getValue(LHS);
3301       BaseOps = {};
3302     }
3303   }
3304 
3305   if (IsUnaryAbs) {
3306     for (unsigned i = 0; i != NumValues; ++i) {
3307       Values[i] =
3308           DAG.getNode(OpCode, getCurSDLoc(),
3309                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3310                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3311     }
3312   } else {
3313     for (unsigned i = 0; i != NumValues; ++i) {
3314       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3315       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3316       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3317       Values[i] = DAG.getNode(
3318           OpCode, getCurSDLoc(),
3319           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3320     }
3321   }
3322 
3323   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3324                            DAG.getVTList(ValueVTs), Values));
3325 }
3326 
3327 void SelectionDAGBuilder::visitTrunc(const User &I) {
3328   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3329   SDValue N = getValue(I.getOperand(0));
3330   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3331                                                         I.getType());
3332   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3333 }
3334 
3335 void SelectionDAGBuilder::visitZExt(const User &I) {
3336   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3337   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3338   SDValue N = getValue(I.getOperand(0));
3339   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3340                                                         I.getType());
3341   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3342 }
3343 
3344 void SelectionDAGBuilder::visitSExt(const User &I) {
3345   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3346   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3347   SDValue N = getValue(I.getOperand(0));
3348   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3349                                                         I.getType());
3350   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3351 }
3352 
3353 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3354   // FPTrunc is never a no-op cast, no need to check
3355   SDValue N = getValue(I.getOperand(0));
3356   SDLoc dl = getCurSDLoc();
3357   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3358   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3359   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3360                            DAG.getTargetConstant(
3361                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3362 }
3363 
3364 void SelectionDAGBuilder::visitFPExt(const User &I) {
3365   // FPExt is never a no-op cast, no need to check
3366   SDValue N = getValue(I.getOperand(0));
3367   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3368                                                         I.getType());
3369   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3370 }
3371 
3372 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3373   // FPToUI is never a no-op cast, no need to check
3374   SDValue N = getValue(I.getOperand(0));
3375   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3376                                                         I.getType());
3377   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3378 }
3379 
3380 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3381   // FPToSI is never a no-op cast, no need to check
3382   SDValue N = getValue(I.getOperand(0));
3383   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3384                                                         I.getType());
3385   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3386 }
3387 
3388 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3389   // UIToFP is never a no-op cast, no need to check
3390   SDValue N = getValue(I.getOperand(0));
3391   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3392                                                         I.getType());
3393   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3394 }
3395 
3396 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3397   // SIToFP is never a no-op cast, no need to check
3398   SDValue N = getValue(I.getOperand(0));
3399   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3400                                                         I.getType());
3401   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3402 }
3403 
3404 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3405   // What to do depends on the size of the integer and the size of the pointer.
3406   // We can either truncate, zero extend, or no-op, accordingly.
3407   SDValue N = getValue(I.getOperand(0));
3408   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3409                                                         I.getType());
3410   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3411 }
3412 
3413 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3414   // What to do depends on the size of the integer and the size of the pointer.
3415   // We can either truncate, zero extend, or no-op, accordingly.
3416   SDValue N = getValue(I.getOperand(0));
3417   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3418                                                         I.getType());
3419   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3420 }
3421 
3422 void SelectionDAGBuilder::visitBitCast(const User &I) {
3423   SDValue N = getValue(I.getOperand(0));
3424   SDLoc dl = getCurSDLoc();
3425   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3426                                                         I.getType());
3427 
3428   // BitCast assures us that source and destination are the same size so this is
3429   // either a BITCAST or a no-op.
3430   if (DestVT != N.getValueType())
3431     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3432                              DestVT, N)); // convert types.
3433   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3434   // might fold any kind of constant expression to an integer constant and that
3435   // is not what we are looking for. Only recognize a bitcast of a genuine
3436   // constant integer as an opaque constant.
3437   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3438     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3439                                  /*isOpaque*/true));
3440   else
3441     setValue(&I, N);            // noop cast.
3442 }
3443 
3444 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3445   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3446   const Value *SV = I.getOperand(0);
3447   SDValue N = getValue(SV);
3448   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3449 
3450   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3451   unsigned DestAS = I.getType()->getPointerAddressSpace();
3452 
3453   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3454     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3455 
3456   setValue(&I, N);
3457 }
3458 
3459 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3460   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3461   SDValue InVec = getValue(I.getOperand(0));
3462   SDValue InVal = getValue(I.getOperand(1));
3463   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3464                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3465   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3466                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3467                            InVec, InVal, InIdx));
3468 }
3469 
3470 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3471   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3472   SDValue InVec = getValue(I.getOperand(0));
3473   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3474                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3475   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3476                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3477                            InVec, InIdx));
3478 }
3479 
3480 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3481   SDValue Src1 = getValue(I.getOperand(0));
3482   SDValue Src2 = getValue(I.getOperand(1));
3483   SDLoc DL = getCurSDLoc();
3484 
3485   SmallVector<int, 8> Mask;
3486   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3487   unsigned MaskNumElts = Mask.size();
3488 
3489   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3490   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3491   EVT SrcVT = Src1.getValueType();
3492   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3493 
3494   if (SrcNumElts == MaskNumElts) {
3495     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3496     return;
3497   }
3498 
3499   // Normalize the shuffle vector since mask and vector length don't match.
3500   if (SrcNumElts < MaskNumElts) {
3501     // Mask is longer than the source vectors. We can use concatenate vector to
3502     // make the mask and vectors lengths match.
3503 
3504     if (MaskNumElts % SrcNumElts == 0) {
3505       // Mask length is a multiple of the source vector length.
3506       // Check if the shuffle is some kind of concatenation of the input
3507       // vectors.
3508       unsigned NumConcat = MaskNumElts / SrcNumElts;
3509       bool IsConcat = true;
3510       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3511       for (unsigned i = 0; i != MaskNumElts; ++i) {
3512         int Idx = Mask[i];
3513         if (Idx < 0)
3514           continue;
3515         // Ensure the indices in each SrcVT sized piece are sequential and that
3516         // the same source is used for the whole piece.
3517         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3518             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3519              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3520           IsConcat = false;
3521           break;
3522         }
3523         // Remember which source this index came from.
3524         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3525       }
3526 
3527       // The shuffle is concatenating multiple vectors together. Just emit
3528       // a CONCAT_VECTORS operation.
3529       if (IsConcat) {
3530         SmallVector<SDValue, 8> ConcatOps;
3531         for (auto Src : ConcatSrcs) {
3532           if (Src < 0)
3533             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3534           else if (Src == 0)
3535             ConcatOps.push_back(Src1);
3536           else
3537             ConcatOps.push_back(Src2);
3538         }
3539         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3540         return;
3541       }
3542     }
3543 
3544     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3545     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3546     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3547                                     PaddedMaskNumElts);
3548 
3549     // Pad both vectors with undefs to make them the same length as the mask.
3550     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3551 
3552     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3553     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3554     MOps1[0] = Src1;
3555     MOps2[0] = Src2;
3556 
3557     Src1 = Src1.isUndef()
3558                ? DAG.getUNDEF(PaddedVT)
3559                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3560     Src2 = Src2.isUndef()
3561                ? DAG.getUNDEF(PaddedVT)
3562                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3563 
3564     // Readjust mask for new input vector length.
3565     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3566     for (unsigned i = 0; i != MaskNumElts; ++i) {
3567       int Idx = Mask[i];
3568       if (Idx >= (int)SrcNumElts)
3569         Idx -= SrcNumElts - PaddedMaskNumElts;
3570       MappedOps[i] = Idx;
3571     }
3572 
3573     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3574 
3575     // If the concatenated vector was padded, extract a subvector with the
3576     // correct number of elements.
3577     if (MaskNumElts != PaddedMaskNumElts)
3578       Result = DAG.getNode(
3579           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3580           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3581 
3582     setValue(&I, Result);
3583     return;
3584   }
3585 
3586   if (SrcNumElts > MaskNumElts) {
3587     // Analyze the access pattern of the vector to see if we can extract
3588     // two subvectors and do the shuffle.
3589     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3590     bool CanExtract = true;
3591     for (int Idx : Mask) {
3592       unsigned Input = 0;
3593       if (Idx < 0)
3594         continue;
3595 
3596       if (Idx >= (int)SrcNumElts) {
3597         Input = 1;
3598         Idx -= SrcNumElts;
3599       }
3600 
3601       // If all the indices come from the same MaskNumElts sized portion of
3602       // the sources we can use extract. Also make sure the extract wouldn't
3603       // extract past the end of the source.
3604       int NewStartIdx = alignDown(Idx, MaskNumElts);
3605       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3606           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3607         CanExtract = false;
3608       // Make sure we always update StartIdx as we use it to track if all
3609       // elements are undef.
3610       StartIdx[Input] = NewStartIdx;
3611     }
3612 
3613     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3614       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3615       return;
3616     }
3617     if (CanExtract) {
3618       // Extract appropriate subvector and generate a vector shuffle
3619       for (unsigned Input = 0; Input < 2; ++Input) {
3620         SDValue &Src = Input == 0 ? Src1 : Src2;
3621         if (StartIdx[Input] < 0)
3622           Src = DAG.getUNDEF(VT);
3623         else {
3624           Src = DAG.getNode(
3625               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3626               DAG.getConstant(StartIdx[Input], DL,
3627                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3628         }
3629       }
3630 
3631       // Calculate new mask.
3632       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3633       for (int &Idx : MappedOps) {
3634         if (Idx >= (int)SrcNumElts)
3635           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3636         else if (Idx >= 0)
3637           Idx -= StartIdx[0];
3638       }
3639 
3640       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3641       return;
3642     }
3643   }
3644 
3645   // We can't use either concat vectors or extract subvectors so fall back to
3646   // replacing the shuffle with extract and build vector.
3647   // to insert and build vector.
3648   EVT EltVT = VT.getVectorElementType();
3649   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3650   SmallVector<SDValue,8> Ops;
3651   for (int Idx : Mask) {
3652     SDValue Res;
3653 
3654     if (Idx < 0) {
3655       Res = DAG.getUNDEF(EltVT);
3656     } else {
3657       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3658       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3659 
3660       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3661                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3662     }
3663 
3664     Ops.push_back(Res);
3665   }
3666 
3667   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3668 }
3669 
3670 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3671   ArrayRef<unsigned> Indices;
3672   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3673     Indices = IV->getIndices();
3674   else
3675     Indices = cast<ConstantExpr>(&I)->getIndices();
3676 
3677   const Value *Op0 = I.getOperand(0);
3678   const Value *Op1 = I.getOperand(1);
3679   Type *AggTy = I.getType();
3680   Type *ValTy = Op1->getType();
3681   bool IntoUndef = isa<UndefValue>(Op0);
3682   bool FromUndef = isa<UndefValue>(Op1);
3683 
3684   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3685 
3686   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3687   SmallVector<EVT, 4> AggValueVTs;
3688   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3689   SmallVector<EVT, 4> ValValueVTs;
3690   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3691 
3692   unsigned NumAggValues = AggValueVTs.size();
3693   unsigned NumValValues = ValValueVTs.size();
3694   SmallVector<SDValue, 4> Values(NumAggValues);
3695 
3696   // Ignore an insertvalue that produces an empty object
3697   if (!NumAggValues) {
3698     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3699     return;
3700   }
3701 
3702   SDValue Agg = getValue(Op0);
3703   unsigned i = 0;
3704   // Copy the beginning value(s) from the original aggregate.
3705   for (; i != LinearIndex; ++i)
3706     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3707                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3708   // Copy values from the inserted value(s).
3709   if (NumValValues) {
3710     SDValue Val = getValue(Op1);
3711     for (; i != LinearIndex + NumValValues; ++i)
3712       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3713                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3714   }
3715   // Copy remaining value(s) from the original aggregate.
3716   for (; i != NumAggValues; ++i)
3717     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3718                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3719 
3720   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3721                            DAG.getVTList(AggValueVTs), Values));
3722 }
3723 
3724 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3725   ArrayRef<unsigned> Indices;
3726   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3727     Indices = EV->getIndices();
3728   else
3729     Indices = cast<ConstantExpr>(&I)->getIndices();
3730 
3731   const Value *Op0 = I.getOperand(0);
3732   Type *AggTy = Op0->getType();
3733   Type *ValTy = I.getType();
3734   bool OutOfUndef = isa<UndefValue>(Op0);
3735 
3736   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3737 
3738   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3739   SmallVector<EVT, 4> ValValueVTs;
3740   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3741 
3742   unsigned NumValValues = ValValueVTs.size();
3743 
3744   // Ignore a extractvalue that produces an empty object
3745   if (!NumValValues) {
3746     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3747     return;
3748   }
3749 
3750   SmallVector<SDValue, 4> Values(NumValValues);
3751 
3752   SDValue Agg = getValue(Op0);
3753   // Copy out the selected value(s).
3754   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3755     Values[i - LinearIndex] =
3756       OutOfUndef ?
3757         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3758         SDValue(Agg.getNode(), Agg.getResNo() + i);
3759 
3760   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3761                            DAG.getVTList(ValValueVTs), Values));
3762 }
3763 
3764 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3765   Value *Op0 = I.getOperand(0);
3766   // Note that the pointer operand may be a vector of pointers. Take the scalar
3767   // element which holds a pointer.
3768   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3769   SDValue N = getValue(Op0);
3770   SDLoc dl = getCurSDLoc();
3771 
3772   // Normalize Vector GEP - all scalar operands should be converted to the
3773   // splat vector.
3774   unsigned VectorWidth = I.getType()->isVectorTy() ?
3775     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3776 
3777   if (VectorWidth && !N.getValueType().isVector()) {
3778     LLVMContext &Context = *DAG.getContext();
3779     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3780     N = DAG.getSplatBuildVector(VT, dl, N);
3781   }
3782 
3783   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3784        GTI != E; ++GTI) {
3785     const Value *Idx = GTI.getOperand();
3786     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3787       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3788       if (Field) {
3789         // N = N + Offset
3790         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3791 
3792         // In an inbounds GEP with an offset that is nonnegative even when
3793         // interpreted as signed, assume there is no unsigned overflow.
3794         SDNodeFlags Flags;
3795         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3796           Flags.setNoUnsignedWrap(true);
3797 
3798         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3799                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3800       }
3801     } else {
3802       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3803       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3804       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3805 
3806       // If this is a scalar constant or a splat vector of constants,
3807       // handle it quickly.
3808       const auto *CI = dyn_cast<ConstantInt>(Idx);
3809       if (!CI && isa<ConstantDataVector>(Idx) &&
3810           cast<ConstantDataVector>(Idx)->getSplatValue())
3811         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3812 
3813       if (CI) {
3814         if (CI->isZero())
3815           continue;
3816         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3817         LLVMContext &Context = *DAG.getContext();
3818         SDValue OffsVal = VectorWidth ?
3819           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3820           DAG.getConstant(Offs, dl, IdxTy);
3821 
3822         // In an inbouds GEP with an offset that is nonnegative even when
3823         // interpreted as signed, assume there is no unsigned overflow.
3824         SDNodeFlags Flags;
3825         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3826           Flags.setNoUnsignedWrap(true);
3827 
3828         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3829         continue;
3830       }
3831 
3832       // N = N + Idx * ElementSize;
3833       SDValue IdxN = getValue(Idx);
3834 
3835       if (!IdxN.getValueType().isVector() && VectorWidth) {
3836         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3837         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3838       }
3839 
3840       // If the index is smaller or larger than intptr_t, truncate or extend
3841       // it.
3842       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3843 
3844       // If this is a multiply by a power of two, turn it into a shl
3845       // immediately.  This is a very common case.
3846       if (ElementSize != 1) {
3847         if (ElementSize.isPowerOf2()) {
3848           unsigned Amt = ElementSize.logBase2();
3849           IdxN = DAG.getNode(ISD::SHL, dl,
3850                              N.getValueType(), IdxN,
3851                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3852         } else {
3853           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3854           IdxN = DAG.getNode(ISD::MUL, dl,
3855                              N.getValueType(), IdxN, Scale);
3856         }
3857       }
3858 
3859       N = DAG.getNode(ISD::ADD, dl,
3860                       N.getValueType(), N, IdxN);
3861     }
3862   }
3863 
3864   setValue(&I, N);
3865 }
3866 
3867 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3868   // If this is a fixed sized alloca in the entry block of the function,
3869   // allocate it statically on the stack.
3870   if (FuncInfo.StaticAllocaMap.count(&I))
3871     return;   // getValue will auto-populate this.
3872 
3873   SDLoc dl = getCurSDLoc();
3874   Type *Ty = I.getAllocatedType();
3875   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3876   auto &DL = DAG.getDataLayout();
3877   uint64_t TySize = DL.getTypeAllocSize(Ty);
3878   unsigned Align =
3879       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3880 
3881   SDValue AllocSize = getValue(I.getArraySize());
3882 
3883   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3884   if (AllocSize.getValueType() != IntPtr)
3885     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3886 
3887   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3888                           AllocSize,
3889                           DAG.getConstant(TySize, dl, IntPtr));
3890 
3891   // Handle alignment.  If the requested alignment is less than or equal to
3892   // the stack alignment, ignore it.  If the size is greater than or equal to
3893   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3894   unsigned StackAlign =
3895       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3896   if (Align <= StackAlign)
3897     Align = 0;
3898 
3899   // Round the size of the allocation up to the stack alignment size
3900   // by add SA-1 to the size. This doesn't overflow because we're computing
3901   // an address inside an alloca.
3902   SDNodeFlags Flags;
3903   Flags.setNoUnsignedWrap(true);
3904   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3905                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3906 
3907   // Mask out the low bits for alignment purposes.
3908   AllocSize =
3909       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3910                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3911 
3912   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3913   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3914   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3915   setValue(&I, DSA);
3916   DAG.setRoot(DSA.getValue(1));
3917 
3918   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3919 }
3920 
3921 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3922   if (I.isAtomic())
3923     return visitAtomicLoad(I);
3924 
3925   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3926   const Value *SV = I.getOperand(0);
3927   if (TLI.supportSwiftError()) {
3928     // Swifterror values can come from either a function parameter with
3929     // swifterror attribute or an alloca with swifterror attribute.
3930     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3931       if (Arg->hasSwiftErrorAttr())
3932         return visitLoadFromSwiftError(I);
3933     }
3934 
3935     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3936       if (Alloca->isSwiftError())
3937         return visitLoadFromSwiftError(I);
3938     }
3939   }
3940 
3941   SDValue Ptr = getValue(SV);
3942 
3943   Type *Ty = I.getType();
3944 
3945   bool isVolatile = I.isVolatile();
3946   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3947   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3948   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3949   unsigned Alignment = I.getAlignment();
3950 
3951   AAMDNodes AAInfo;
3952   I.getAAMetadata(AAInfo);
3953   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3954 
3955   SmallVector<EVT, 4> ValueVTs;
3956   SmallVector<uint64_t, 4> Offsets;
3957   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3958   unsigned NumValues = ValueVTs.size();
3959   if (NumValues == 0)
3960     return;
3961 
3962   SDValue Root;
3963   bool ConstantMemory = false;
3964   if (isVolatile || NumValues > MaxParallelChains)
3965     // Serialize volatile loads with other side effects.
3966     Root = getRoot();
3967   else if (AA &&
3968            AA->pointsToConstantMemory(MemoryLocation(
3969                SV,
3970                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3971                AAInfo))) {
3972     // Do not serialize (non-volatile) loads of constant memory with anything.
3973     Root = DAG.getEntryNode();
3974     ConstantMemory = true;
3975   } else {
3976     // Do not serialize non-volatile loads against each other.
3977     Root = DAG.getRoot();
3978   }
3979 
3980   SDLoc dl = getCurSDLoc();
3981 
3982   if (isVolatile)
3983     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3984 
3985   // An aggregate load cannot wrap around the address space, so offsets to its
3986   // parts don't wrap either.
3987   SDNodeFlags Flags;
3988   Flags.setNoUnsignedWrap(true);
3989 
3990   SmallVector<SDValue, 4> Values(NumValues);
3991   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3992   EVT PtrVT = Ptr.getValueType();
3993   unsigned ChainI = 0;
3994   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3995     // Serializing loads here may result in excessive register pressure, and
3996     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3997     // could recover a bit by hoisting nodes upward in the chain by recognizing
3998     // they are side-effect free or do not alias. The optimizer should really
3999     // avoid this case by converting large object/array copies to llvm.memcpy
4000     // (MaxParallelChains should always remain as failsafe).
4001     if (ChainI == MaxParallelChains) {
4002       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4003       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4004                                   makeArrayRef(Chains.data(), ChainI));
4005       Root = Chain;
4006       ChainI = 0;
4007     }
4008     SDValue A = DAG.getNode(ISD::ADD, dl,
4009                             PtrVT, Ptr,
4010                             DAG.getConstant(Offsets[i], dl, PtrVT),
4011                             Flags);
4012     auto MMOFlags = MachineMemOperand::MONone;
4013     if (isVolatile)
4014       MMOFlags |= MachineMemOperand::MOVolatile;
4015     if (isNonTemporal)
4016       MMOFlags |= MachineMemOperand::MONonTemporal;
4017     if (isInvariant)
4018       MMOFlags |= MachineMemOperand::MOInvariant;
4019     if (isDereferenceable)
4020       MMOFlags |= MachineMemOperand::MODereferenceable;
4021     MMOFlags |= TLI.getMMOFlags(I);
4022 
4023     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
4024                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4025                             MMOFlags, AAInfo, Ranges);
4026 
4027     Values[i] = L;
4028     Chains[ChainI] = L.getValue(1);
4029   }
4030 
4031   if (!ConstantMemory) {
4032     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4033                                 makeArrayRef(Chains.data(), ChainI));
4034     if (isVolatile)
4035       DAG.setRoot(Chain);
4036     else
4037       PendingLoads.push_back(Chain);
4038   }
4039 
4040   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4041                            DAG.getVTList(ValueVTs), Values));
4042 }
4043 
4044 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4045   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4046          "call visitStoreToSwiftError when backend supports swifterror");
4047 
4048   SmallVector<EVT, 4> ValueVTs;
4049   SmallVector<uint64_t, 4> Offsets;
4050   const Value *SrcV = I.getOperand(0);
4051   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4052                   SrcV->getType(), ValueVTs, &Offsets);
4053   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4054          "expect a single EVT for swifterror");
4055 
4056   SDValue Src = getValue(SrcV);
4057   // Create a virtual register, then update the virtual register.
4058   unsigned VReg; bool CreatedVReg;
4059   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
4060   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4061   // Chain can be getRoot or getControlRoot.
4062   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4063                                       SDValue(Src.getNode(), Src.getResNo()));
4064   DAG.setRoot(CopyNode);
4065   if (CreatedVReg)
4066     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
4067 }
4068 
4069 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4070   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4071          "call visitLoadFromSwiftError when backend supports swifterror");
4072 
4073   assert(!I.isVolatile() &&
4074          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
4075          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
4076          "Support volatile, non temporal, invariant for load_from_swift_error");
4077 
4078   const Value *SV = I.getOperand(0);
4079   Type *Ty = I.getType();
4080   AAMDNodes AAInfo;
4081   I.getAAMetadata(AAInfo);
4082   assert(
4083       (!AA ||
4084        !AA->pointsToConstantMemory(MemoryLocation(
4085            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4086            AAInfo))) &&
4087       "load_from_swift_error should not be constant memory");
4088 
4089   SmallVector<EVT, 4> ValueVTs;
4090   SmallVector<uint64_t, 4> Offsets;
4091   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4092                   ValueVTs, &Offsets);
4093   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4094          "expect a single EVT for swifterror");
4095 
4096   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4097   SDValue L = DAG.getCopyFromReg(
4098       getRoot(), getCurSDLoc(),
4099       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
4100       ValueVTs[0]);
4101 
4102   setValue(&I, L);
4103 }
4104 
4105 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4106   if (I.isAtomic())
4107     return visitAtomicStore(I);
4108 
4109   const Value *SrcV = I.getOperand(0);
4110   const Value *PtrV = I.getOperand(1);
4111 
4112   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4113   if (TLI.supportSwiftError()) {
4114     // Swifterror values can come from either a function parameter with
4115     // swifterror attribute or an alloca with swifterror attribute.
4116     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4117       if (Arg->hasSwiftErrorAttr())
4118         return visitStoreToSwiftError(I);
4119     }
4120 
4121     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4122       if (Alloca->isSwiftError())
4123         return visitStoreToSwiftError(I);
4124     }
4125   }
4126 
4127   SmallVector<EVT, 4> ValueVTs;
4128   SmallVector<uint64_t, 4> Offsets;
4129   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4130                   SrcV->getType(), ValueVTs, &Offsets);
4131   unsigned NumValues = ValueVTs.size();
4132   if (NumValues == 0)
4133     return;
4134 
4135   // Get the lowered operands. Note that we do this after
4136   // checking if NumResults is zero, because with zero results
4137   // the operands won't have values in the map.
4138   SDValue Src = getValue(SrcV);
4139   SDValue Ptr = getValue(PtrV);
4140 
4141   SDValue Root = getRoot();
4142   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4143   SDLoc dl = getCurSDLoc();
4144   EVT PtrVT = Ptr.getValueType();
4145   unsigned Alignment = I.getAlignment();
4146   AAMDNodes AAInfo;
4147   I.getAAMetadata(AAInfo);
4148 
4149   auto MMOFlags = MachineMemOperand::MONone;
4150   if (I.isVolatile())
4151     MMOFlags |= MachineMemOperand::MOVolatile;
4152   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
4153     MMOFlags |= MachineMemOperand::MONonTemporal;
4154   MMOFlags |= TLI.getMMOFlags(I);
4155 
4156   // An aggregate load cannot wrap around the address space, so offsets to its
4157   // parts don't wrap either.
4158   SDNodeFlags Flags;
4159   Flags.setNoUnsignedWrap(true);
4160 
4161   unsigned ChainI = 0;
4162   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4163     // See visitLoad comments.
4164     if (ChainI == MaxParallelChains) {
4165       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4166                                   makeArrayRef(Chains.data(), ChainI));
4167       Root = Chain;
4168       ChainI = 0;
4169     }
4170     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4171                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4172     SDValue St = DAG.getStore(
4173         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
4174         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
4175     Chains[ChainI] = St;
4176   }
4177 
4178   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4179                                   makeArrayRef(Chains.data(), ChainI));
4180   DAG.setRoot(StoreNode);
4181 }
4182 
4183 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4184                                            bool IsCompressing) {
4185   SDLoc sdl = getCurSDLoc();
4186 
4187   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4188                            unsigned& Alignment) {
4189     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4190     Src0 = I.getArgOperand(0);
4191     Ptr = I.getArgOperand(1);
4192     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4193     Mask = I.getArgOperand(3);
4194   };
4195   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4196                            unsigned& Alignment) {
4197     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4198     Src0 = I.getArgOperand(0);
4199     Ptr = I.getArgOperand(1);
4200     Mask = I.getArgOperand(2);
4201     Alignment = 0;
4202   };
4203 
4204   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4205   unsigned Alignment;
4206   if (IsCompressing)
4207     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4208   else
4209     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4210 
4211   SDValue Ptr = getValue(PtrOperand);
4212   SDValue Src0 = getValue(Src0Operand);
4213   SDValue Mask = getValue(MaskOperand);
4214 
4215   EVT VT = Src0.getValueType();
4216   if (!Alignment)
4217     Alignment = DAG.getEVTAlignment(VT);
4218 
4219   AAMDNodes AAInfo;
4220   I.getAAMetadata(AAInfo);
4221 
4222   MachineMemOperand *MMO =
4223     DAG.getMachineFunction().
4224     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4225                           MachineMemOperand::MOStore,  VT.getStoreSize(),
4226                           Alignment, AAInfo);
4227   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4228                                          MMO, false /* Truncating */,
4229                                          IsCompressing);
4230   DAG.setRoot(StoreNode);
4231   setValue(&I, StoreNode);
4232 }
4233 
4234 // Get a uniform base for the Gather/Scatter intrinsic.
4235 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4236 // We try to represent it as a base pointer + vector of indices.
4237 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4238 // The first operand of the GEP may be a single pointer or a vector of pointers
4239 // Example:
4240 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4241 //  or
4242 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4243 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4244 //
4245 // When the first GEP operand is a single pointer - it is the uniform base we
4246 // are looking for. If first operand of the GEP is a splat vector - we
4247 // extract the splat value and use it as a uniform base.
4248 // In all other cases the function returns 'false'.
4249 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
4250                            SDValue &Scale, SelectionDAGBuilder* SDB) {
4251   SelectionDAG& DAG = SDB->DAG;
4252   LLVMContext &Context = *DAG.getContext();
4253 
4254   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4255   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4256   if (!GEP)
4257     return false;
4258 
4259   const Value *GEPPtr = GEP->getPointerOperand();
4260   if (!GEPPtr->getType()->isVectorTy())
4261     Ptr = GEPPtr;
4262   else if (!(Ptr = getSplatValue(GEPPtr)))
4263     return false;
4264 
4265   unsigned FinalIndex = GEP->getNumOperands() - 1;
4266   Value *IndexVal = GEP->getOperand(FinalIndex);
4267 
4268   // Ensure all the other indices are 0.
4269   for (unsigned i = 1; i < FinalIndex; ++i) {
4270     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
4271     if (!C || !C->isZero())
4272       return false;
4273   }
4274 
4275   // The operands of the GEP may be defined in another basic block.
4276   // In this case we'll not find nodes for the operands.
4277   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4278     return false;
4279 
4280   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4281   const DataLayout &DL = DAG.getDataLayout();
4282   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4283                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4284   Base = SDB->getValue(Ptr);
4285   Index = SDB->getValue(IndexVal);
4286 
4287   if (!Index.getValueType().isVector()) {
4288     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4289     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4290     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4291   }
4292   return true;
4293 }
4294 
4295 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4296   SDLoc sdl = getCurSDLoc();
4297 
4298   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4299   const Value *Ptr = I.getArgOperand(1);
4300   SDValue Src0 = getValue(I.getArgOperand(0));
4301   SDValue Mask = getValue(I.getArgOperand(3));
4302   EVT VT = Src0.getValueType();
4303   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4304   if (!Alignment)
4305     Alignment = DAG.getEVTAlignment(VT);
4306   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4307 
4308   AAMDNodes AAInfo;
4309   I.getAAMetadata(AAInfo);
4310 
4311   SDValue Base;
4312   SDValue Index;
4313   SDValue Scale;
4314   const Value *BasePtr = Ptr;
4315   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4316 
4317   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4318   MachineMemOperand *MMO = DAG.getMachineFunction().
4319     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4320                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4321                          Alignment, AAInfo);
4322   if (!UniformBase) {
4323     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4324     Index = getValue(Ptr);
4325     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4326   }
4327   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4328   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4329                                          Ops, MMO);
4330   DAG.setRoot(Scatter);
4331   setValue(&I, Scatter);
4332 }
4333 
4334 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4335   SDLoc sdl = getCurSDLoc();
4336 
4337   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4338                            unsigned& Alignment) {
4339     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4340     Ptr = I.getArgOperand(0);
4341     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4342     Mask = I.getArgOperand(2);
4343     Src0 = I.getArgOperand(3);
4344   };
4345   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4346                            unsigned& Alignment) {
4347     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4348     Ptr = I.getArgOperand(0);
4349     Alignment = 0;
4350     Mask = I.getArgOperand(1);
4351     Src0 = I.getArgOperand(2);
4352   };
4353 
4354   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4355   unsigned Alignment;
4356   if (IsExpanding)
4357     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4358   else
4359     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4360 
4361   SDValue Ptr = getValue(PtrOperand);
4362   SDValue Src0 = getValue(Src0Operand);
4363   SDValue Mask = getValue(MaskOperand);
4364 
4365   EVT VT = Src0.getValueType();
4366   if (!Alignment)
4367     Alignment = DAG.getEVTAlignment(VT);
4368 
4369   AAMDNodes AAInfo;
4370   I.getAAMetadata(AAInfo);
4371   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4372 
4373   // Do not serialize masked loads of constant memory with anything.
4374   bool AddToChain =
4375       !AA || !AA->pointsToConstantMemory(MemoryLocation(
4376                  PtrOperand,
4377                  LocationSize::precise(
4378                      DAG.getDataLayout().getTypeStoreSize(I.getType())),
4379                  AAInfo));
4380   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4381 
4382   MachineMemOperand *MMO =
4383     DAG.getMachineFunction().
4384     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4385                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4386                           Alignment, AAInfo, Ranges);
4387 
4388   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4389                                    ISD::NON_EXTLOAD, IsExpanding);
4390   if (AddToChain)
4391     PendingLoads.push_back(Load.getValue(1));
4392   setValue(&I, Load);
4393 }
4394 
4395 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4396   SDLoc sdl = getCurSDLoc();
4397 
4398   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4399   const Value *Ptr = I.getArgOperand(0);
4400   SDValue Src0 = getValue(I.getArgOperand(3));
4401   SDValue Mask = getValue(I.getArgOperand(2));
4402 
4403   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4404   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4405   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4406   if (!Alignment)
4407     Alignment = DAG.getEVTAlignment(VT);
4408 
4409   AAMDNodes AAInfo;
4410   I.getAAMetadata(AAInfo);
4411   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4412 
4413   SDValue Root = DAG.getRoot();
4414   SDValue Base;
4415   SDValue Index;
4416   SDValue Scale;
4417   const Value *BasePtr = Ptr;
4418   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4419   bool ConstantMemory = false;
4420   if (UniformBase && AA &&
4421       AA->pointsToConstantMemory(
4422           MemoryLocation(BasePtr,
4423                          LocationSize::precise(
4424                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4425                          AAInfo))) {
4426     // Do not serialize (non-volatile) loads of constant memory with anything.
4427     Root = DAG.getEntryNode();
4428     ConstantMemory = true;
4429   }
4430 
4431   MachineMemOperand *MMO =
4432     DAG.getMachineFunction().
4433     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4434                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4435                          Alignment, AAInfo, Ranges);
4436 
4437   if (!UniformBase) {
4438     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4439     Index = getValue(Ptr);
4440     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4441   }
4442   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4443   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4444                                        Ops, MMO);
4445 
4446   SDValue OutChain = Gather.getValue(1);
4447   if (!ConstantMemory)
4448     PendingLoads.push_back(OutChain);
4449   setValue(&I, Gather);
4450 }
4451 
4452 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4453   SDLoc dl = getCurSDLoc();
4454   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4455   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4456   SyncScope::ID SSID = I.getSyncScopeID();
4457 
4458   SDValue InChain = getRoot();
4459 
4460   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4461   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4462 
4463   auto Alignment = DAG.getEVTAlignment(MemVT);
4464 
4465   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4466   if (I.isVolatile())
4467     Flags |= MachineMemOperand::MOVolatile;
4468   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4469 
4470   MachineFunction &MF = DAG.getMachineFunction();
4471   MachineMemOperand *MMO =
4472     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4473                             Flags, MemVT.getStoreSize(), Alignment,
4474                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4475                             FailureOrdering);
4476 
4477   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4478                                    dl, MemVT, VTs, InChain,
4479                                    getValue(I.getPointerOperand()),
4480                                    getValue(I.getCompareOperand()),
4481                                    getValue(I.getNewValOperand()), MMO);
4482 
4483   SDValue OutChain = L.getValue(2);
4484 
4485   setValue(&I, L);
4486   DAG.setRoot(OutChain);
4487 }
4488 
4489 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4490   SDLoc dl = getCurSDLoc();
4491   ISD::NodeType NT;
4492   switch (I.getOperation()) {
4493   default: llvm_unreachable("Unknown atomicrmw operation");
4494   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4495   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4496   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4497   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4498   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4499   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4500   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4501   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4502   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4503   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4504   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4505   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4506   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4507   }
4508   AtomicOrdering Ordering = I.getOrdering();
4509   SyncScope::ID SSID = I.getSyncScopeID();
4510 
4511   SDValue InChain = getRoot();
4512 
4513   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4514   auto Alignment = DAG.getEVTAlignment(MemVT);
4515 
4516   auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4517   if (I.isVolatile())
4518     Flags |= MachineMemOperand::MOVolatile;
4519   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4520 
4521   MachineFunction &MF = DAG.getMachineFunction();
4522   MachineMemOperand *MMO =
4523     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4524                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4525                             nullptr, SSID, Ordering);
4526 
4527   SDValue L =
4528     DAG.getAtomic(NT, dl, MemVT, InChain,
4529                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4530                   MMO);
4531 
4532   SDValue OutChain = L.getValue(1);
4533 
4534   setValue(&I, L);
4535   DAG.setRoot(OutChain);
4536 }
4537 
4538 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4539   SDLoc dl = getCurSDLoc();
4540   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4541   SDValue Ops[3];
4542   Ops[0] = getRoot();
4543   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4544                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4545   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4546                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4547   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4548 }
4549 
4550 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4551   SDLoc dl = getCurSDLoc();
4552   AtomicOrdering Order = I.getOrdering();
4553   SyncScope::ID SSID = I.getSyncScopeID();
4554 
4555   SDValue InChain = getRoot();
4556 
4557   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4558   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4559 
4560   if (!TLI.supportsUnalignedAtomics() &&
4561       I.getAlignment() < VT.getStoreSize())
4562     report_fatal_error("Cannot generate unaligned atomic load");
4563 
4564   auto Flags = MachineMemOperand::MOLoad;
4565   if (I.isVolatile())
4566     Flags |= MachineMemOperand::MOVolatile;
4567   Flags |= TLI.getMMOFlags(I);
4568 
4569   MachineMemOperand *MMO =
4570       DAG.getMachineFunction().
4571       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4572                            Flags, VT.getStoreSize(),
4573                            I.getAlignment() ? I.getAlignment() :
4574                                               DAG.getEVTAlignment(VT),
4575                            AAMDNodes(), nullptr, SSID, Order);
4576 
4577   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4578   SDValue L =
4579       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4580                     getValue(I.getPointerOperand()), MMO);
4581 
4582   SDValue OutChain = L.getValue(1);
4583 
4584   setValue(&I, L);
4585   DAG.setRoot(OutChain);
4586 }
4587 
4588 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4589   SDLoc dl = getCurSDLoc();
4590 
4591   AtomicOrdering Ordering = I.getOrdering();
4592   SyncScope::ID SSID = I.getSyncScopeID();
4593 
4594   SDValue InChain = getRoot();
4595 
4596   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4597   EVT VT =
4598       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4599 
4600   if (I.getAlignment() < VT.getStoreSize())
4601     report_fatal_error("Cannot generate unaligned atomic store");
4602 
4603   auto Flags = MachineMemOperand::MOStore;
4604   if (I.isVolatile())
4605     Flags |= MachineMemOperand::MOVolatile;
4606   Flags |= TLI.getMMOFlags(I);
4607 
4608   MachineFunction &MF = DAG.getMachineFunction();
4609   MachineMemOperand *MMO =
4610     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4611                             VT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4612                             nullptr, SSID, Ordering);
4613   SDValue OutChain =
4614     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, InChain,
4615               getValue(I.getPointerOperand()), getValue(I.getValueOperand()),
4616               MMO);
4617 
4618 
4619   DAG.setRoot(OutChain);
4620 }
4621 
4622 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4623 /// node.
4624 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4625                                                unsigned Intrinsic) {
4626   // Ignore the callsite's attributes. A specific call site may be marked with
4627   // readnone, but the lowering code will expect the chain based on the
4628   // definition.
4629   const Function *F = I.getCalledFunction();
4630   bool HasChain = !F->doesNotAccessMemory();
4631   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4632 
4633   // Build the operand list.
4634   SmallVector<SDValue, 8> Ops;
4635   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4636     if (OnlyLoad) {
4637       // We don't need to serialize loads against other loads.
4638       Ops.push_back(DAG.getRoot());
4639     } else {
4640       Ops.push_back(getRoot());
4641     }
4642   }
4643 
4644   // Info is set by getTgtMemInstrinsic
4645   TargetLowering::IntrinsicInfo Info;
4646   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4647   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4648                                                DAG.getMachineFunction(),
4649                                                Intrinsic);
4650 
4651   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4652   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4653       Info.opc == ISD::INTRINSIC_W_CHAIN)
4654     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4655                                         TLI.getPointerTy(DAG.getDataLayout())));
4656 
4657   // Add all operands of the call to the operand list.
4658   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4659     SDValue Op = getValue(I.getArgOperand(i));
4660     Ops.push_back(Op);
4661   }
4662 
4663   SmallVector<EVT, 4> ValueVTs;
4664   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4665 
4666   if (HasChain)
4667     ValueVTs.push_back(MVT::Other);
4668 
4669   SDVTList VTs = DAG.getVTList(ValueVTs);
4670 
4671   // Create the node.
4672   SDValue Result;
4673   if (IsTgtIntrinsic) {
4674     // This is target intrinsic that touches memory
4675     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4676       Ops, Info.memVT,
4677       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4678       Info.flags, Info.size);
4679   } else if (!HasChain) {
4680     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4681   } else if (!I.getType()->isVoidTy()) {
4682     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4683   } else {
4684     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4685   }
4686 
4687   if (HasChain) {
4688     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4689     if (OnlyLoad)
4690       PendingLoads.push_back(Chain);
4691     else
4692       DAG.setRoot(Chain);
4693   }
4694 
4695   if (!I.getType()->isVoidTy()) {
4696     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4697       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4698       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4699     } else
4700       Result = lowerRangeToAssertZExt(DAG, I, Result);
4701 
4702     setValue(&I, Result);
4703   }
4704 }
4705 
4706 /// GetSignificand - Get the significand and build it into a floating-point
4707 /// number with exponent of 1:
4708 ///
4709 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4710 ///
4711 /// where Op is the hexadecimal representation of floating point value.
4712 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4713   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4714                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4715   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4716                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4717   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4718 }
4719 
4720 /// GetExponent - Get the exponent:
4721 ///
4722 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4723 ///
4724 /// where Op is the hexadecimal representation of floating point value.
4725 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4726                            const TargetLowering &TLI, const SDLoc &dl) {
4727   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4728                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4729   SDValue t1 = DAG.getNode(
4730       ISD::SRL, dl, MVT::i32, t0,
4731       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4732   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4733                            DAG.getConstant(127, dl, MVT::i32));
4734   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4735 }
4736 
4737 /// getF32Constant - Get 32-bit floating point constant.
4738 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4739                               const SDLoc &dl) {
4740   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4741                            MVT::f32);
4742 }
4743 
4744 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4745                                        SelectionDAG &DAG) {
4746   // TODO: What fast-math-flags should be set on the floating-point nodes?
4747 
4748   //   IntegerPartOfX = ((int32_t)(t0);
4749   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4750 
4751   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4752   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4753   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4754 
4755   //   IntegerPartOfX <<= 23;
4756   IntegerPartOfX = DAG.getNode(
4757       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4758       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4759                                   DAG.getDataLayout())));
4760 
4761   SDValue TwoToFractionalPartOfX;
4762   if (LimitFloatPrecision <= 6) {
4763     // For floating-point precision of 6:
4764     //
4765     //   TwoToFractionalPartOfX =
4766     //     0.997535578f +
4767     //       (0.735607626f + 0.252464424f * x) * x;
4768     //
4769     // error 0.0144103317, which is 6 bits
4770     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4771                              getF32Constant(DAG, 0x3e814304, dl));
4772     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4773                              getF32Constant(DAG, 0x3f3c50c8, dl));
4774     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4775     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4776                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4777   } else if (LimitFloatPrecision <= 12) {
4778     // For floating-point precision of 12:
4779     //
4780     //   TwoToFractionalPartOfX =
4781     //     0.999892986f +
4782     //       (0.696457318f +
4783     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4784     //
4785     // error 0.000107046256, which is 13 to 14 bits
4786     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4787                              getF32Constant(DAG, 0x3da235e3, dl));
4788     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4789                              getF32Constant(DAG, 0x3e65b8f3, dl));
4790     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4791     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4792                              getF32Constant(DAG, 0x3f324b07, dl));
4793     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4794     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4795                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4796   } else { // LimitFloatPrecision <= 18
4797     // For floating-point precision of 18:
4798     //
4799     //   TwoToFractionalPartOfX =
4800     //     0.999999982f +
4801     //       (0.693148872f +
4802     //         (0.240227044f +
4803     //           (0.554906021e-1f +
4804     //             (0.961591928e-2f +
4805     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4806     // error 2.47208000*10^(-7), which is better than 18 bits
4807     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4808                              getF32Constant(DAG, 0x3924b03e, dl));
4809     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4810                              getF32Constant(DAG, 0x3ab24b87, dl));
4811     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4812     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4813                              getF32Constant(DAG, 0x3c1d8c17, dl));
4814     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4815     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4816                              getF32Constant(DAG, 0x3d634a1d, dl));
4817     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4818     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4819                              getF32Constant(DAG, 0x3e75fe14, dl));
4820     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4821     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4822                               getF32Constant(DAG, 0x3f317234, dl));
4823     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4824     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4825                                          getF32Constant(DAG, 0x3f800000, dl));
4826   }
4827 
4828   // Add the exponent into the result in integer domain.
4829   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4830   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4831                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4832 }
4833 
4834 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4835 /// limited-precision mode.
4836 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4837                          const TargetLowering &TLI) {
4838   if (Op.getValueType() == MVT::f32 &&
4839       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4840 
4841     // Put the exponent in the right bit position for later addition to the
4842     // final result:
4843     //
4844     //   #define LOG2OFe 1.4426950f
4845     //   t0 = Op * LOG2OFe
4846 
4847     // TODO: What fast-math-flags should be set here?
4848     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4849                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4850     return getLimitedPrecisionExp2(t0, dl, DAG);
4851   }
4852 
4853   // No special expansion.
4854   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4855 }
4856 
4857 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4858 /// limited-precision mode.
4859 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4860                          const TargetLowering &TLI) {
4861   // TODO: What fast-math-flags should be set on the floating-point nodes?
4862 
4863   if (Op.getValueType() == MVT::f32 &&
4864       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4865     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4866 
4867     // Scale the exponent by log(2) [0.69314718f].
4868     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4869     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4870                                         getF32Constant(DAG, 0x3f317218, dl));
4871 
4872     // Get the significand and build it into a floating-point number with
4873     // exponent of 1.
4874     SDValue X = GetSignificand(DAG, Op1, dl);
4875 
4876     SDValue LogOfMantissa;
4877     if (LimitFloatPrecision <= 6) {
4878       // For floating-point precision of 6:
4879       //
4880       //   LogofMantissa =
4881       //     -1.1609546f +
4882       //       (1.4034025f - 0.23903021f * x) * x;
4883       //
4884       // error 0.0034276066, which is better than 8 bits
4885       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4886                                getF32Constant(DAG, 0xbe74c456, dl));
4887       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4888                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4889       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4890       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4891                                   getF32Constant(DAG, 0x3f949a29, dl));
4892     } else if (LimitFloatPrecision <= 12) {
4893       // For floating-point precision of 12:
4894       //
4895       //   LogOfMantissa =
4896       //     -1.7417939f +
4897       //       (2.8212026f +
4898       //         (-1.4699568f +
4899       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4900       //
4901       // error 0.000061011436, which is 14 bits
4902       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4903                                getF32Constant(DAG, 0xbd67b6d6, dl));
4904       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4905                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4906       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4907       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4908                                getF32Constant(DAG, 0x3fbc278b, dl));
4909       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4910       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4911                                getF32Constant(DAG, 0x40348e95, dl));
4912       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4913       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4914                                   getF32Constant(DAG, 0x3fdef31a, dl));
4915     } else { // LimitFloatPrecision <= 18
4916       // For floating-point precision of 18:
4917       //
4918       //   LogOfMantissa =
4919       //     -2.1072184f +
4920       //       (4.2372794f +
4921       //         (-3.7029485f +
4922       //           (2.2781945f +
4923       //             (-0.87823314f +
4924       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4925       //
4926       // error 0.0000023660568, which is better than 18 bits
4927       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4928                                getF32Constant(DAG, 0xbc91e5ac, dl));
4929       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4930                                getF32Constant(DAG, 0x3e4350aa, dl));
4931       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4932       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4933                                getF32Constant(DAG, 0x3f60d3e3, dl));
4934       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4935       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4936                                getF32Constant(DAG, 0x4011cdf0, dl));
4937       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4938       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4939                                getF32Constant(DAG, 0x406cfd1c, dl));
4940       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4941       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4942                                getF32Constant(DAG, 0x408797cb, dl));
4943       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4944       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4945                                   getF32Constant(DAG, 0x4006dcab, dl));
4946     }
4947 
4948     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4949   }
4950 
4951   // No special expansion.
4952   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4953 }
4954 
4955 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4956 /// limited-precision mode.
4957 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4958                           const TargetLowering &TLI) {
4959   // TODO: What fast-math-flags should be set on the floating-point nodes?
4960 
4961   if (Op.getValueType() == MVT::f32 &&
4962       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4963     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4964 
4965     // Get the exponent.
4966     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4967 
4968     // Get the significand and build it into a floating-point number with
4969     // exponent of 1.
4970     SDValue X = GetSignificand(DAG, Op1, dl);
4971 
4972     // Different possible minimax approximations of significand in
4973     // floating-point for various degrees of accuracy over [1,2].
4974     SDValue Log2ofMantissa;
4975     if (LimitFloatPrecision <= 6) {
4976       // For floating-point precision of 6:
4977       //
4978       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4979       //
4980       // error 0.0049451742, which is more than 7 bits
4981       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4982                                getF32Constant(DAG, 0xbeb08fe0, dl));
4983       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4984                                getF32Constant(DAG, 0x40019463, dl));
4985       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4986       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4987                                    getF32Constant(DAG, 0x3fd6633d, dl));
4988     } else if (LimitFloatPrecision <= 12) {
4989       // For floating-point precision of 12:
4990       //
4991       //   Log2ofMantissa =
4992       //     -2.51285454f +
4993       //       (4.07009056f +
4994       //         (-2.12067489f +
4995       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4996       //
4997       // error 0.0000876136000, which is better than 13 bits
4998       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4999                                getF32Constant(DAG, 0xbda7262e, dl));
5000       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5001                                getF32Constant(DAG, 0x3f25280b, dl));
5002       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5003       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5004                                getF32Constant(DAG, 0x4007b923, dl));
5005       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5006       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5007                                getF32Constant(DAG, 0x40823e2f, dl));
5008       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5009       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5010                                    getF32Constant(DAG, 0x4020d29c, dl));
5011     } else { // LimitFloatPrecision <= 18
5012       // For floating-point precision of 18:
5013       //
5014       //   Log2ofMantissa =
5015       //     -3.0400495f +
5016       //       (6.1129976f +
5017       //         (-5.3420409f +
5018       //           (3.2865683f +
5019       //             (-1.2669343f +
5020       //               (0.27515199f -
5021       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5022       //
5023       // error 0.0000018516, which is better than 18 bits
5024       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5025                                getF32Constant(DAG, 0xbcd2769e, dl));
5026       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5027                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5028       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5029       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5030                                getF32Constant(DAG, 0x3fa22ae7, dl));
5031       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5032       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5033                                getF32Constant(DAG, 0x40525723, dl));
5034       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5035       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5036                                getF32Constant(DAG, 0x40aaf200, dl));
5037       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5038       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5039                                getF32Constant(DAG, 0x40c39dad, dl));
5040       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5041       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5042                                    getF32Constant(DAG, 0x4042902c, dl));
5043     }
5044 
5045     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5046   }
5047 
5048   // No special expansion.
5049   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5050 }
5051 
5052 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5053 /// limited-precision mode.
5054 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5055                            const TargetLowering &TLI) {
5056   // TODO: What fast-math-flags should be set on the floating-point nodes?
5057 
5058   if (Op.getValueType() == MVT::f32 &&
5059       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5060     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5061 
5062     // Scale the exponent by log10(2) [0.30102999f].
5063     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5064     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5065                                         getF32Constant(DAG, 0x3e9a209a, dl));
5066 
5067     // Get the significand and build it into a floating-point number with
5068     // exponent of 1.
5069     SDValue X = GetSignificand(DAG, Op1, dl);
5070 
5071     SDValue Log10ofMantissa;
5072     if (LimitFloatPrecision <= 6) {
5073       // For floating-point precision of 6:
5074       //
5075       //   Log10ofMantissa =
5076       //     -0.50419619f +
5077       //       (0.60948995f - 0.10380950f * x) * x;
5078       //
5079       // error 0.0014886165, which is 6 bits
5080       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5081                                getF32Constant(DAG, 0xbdd49a13, dl));
5082       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5083                                getF32Constant(DAG, 0x3f1c0789, dl));
5084       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5085       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5086                                     getF32Constant(DAG, 0x3f011300, dl));
5087     } else if (LimitFloatPrecision <= 12) {
5088       // For floating-point precision of 12:
5089       //
5090       //   Log10ofMantissa =
5091       //     -0.64831180f +
5092       //       (0.91751397f +
5093       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5094       //
5095       // error 0.00019228036, which is better than 12 bits
5096       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5097                                getF32Constant(DAG, 0x3d431f31, dl));
5098       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5099                                getF32Constant(DAG, 0x3ea21fb2, dl));
5100       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5101       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5102                                getF32Constant(DAG, 0x3f6ae232, dl));
5103       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5104       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5105                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5106     } else { // LimitFloatPrecision <= 18
5107       // For floating-point precision of 18:
5108       //
5109       //   Log10ofMantissa =
5110       //     -0.84299375f +
5111       //       (1.5327582f +
5112       //         (-1.0688956f +
5113       //           (0.49102474f +
5114       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5115       //
5116       // error 0.0000037995730, which is better than 18 bits
5117       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5118                                getF32Constant(DAG, 0x3c5d51ce, dl));
5119       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5120                                getF32Constant(DAG, 0x3e00685a, dl));
5121       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5122       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5123                                getF32Constant(DAG, 0x3efb6798, dl));
5124       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5125       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5126                                getF32Constant(DAG, 0x3f88d192, dl));
5127       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5128       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5129                                getF32Constant(DAG, 0x3fc4316c, dl));
5130       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5131       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5132                                     getF32Constant(DAG, 0x3f57ce70, dl));
5133     }
5134 
5135     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5136   }
5137 
5138   // No special expansion.
5139   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5140 }
5141 
5142 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5143 /// limited-precision mode.
5144 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5145                           const TargetLowering &TLI) {
5146   if (Op.getValueType() == MVT::f32 &&
5147       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5148     return getLimitedPrecisionExp2(Op, dl, DAG);
5149 
5150   // No special expansion.
5151   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5152 }
5153 
5154 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5155 /// limited-precision mode with x == 10.0f.
5156 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5157                          SelectionDAG &DAG, const TargetLowering &TLI) {
5158   bool IsExp10 = false;
5159   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5160       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5161     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5162       APFloat Ten(10.0f);
5163       IsExp10 = LHSC->isExactlyValue(Ten);
5164     }
5165   }
5166 
5167   // TODO: What fast-math-flags should be set on the FMUL node?
5168   if (IsExp10) {
5169     // Put the exponent in the right bit position for later addition to the
5170     // final result:
5171     //
5172     //   #define LOG2OF10 3.3219281f
5173     //   t0 = Op * LOG2OF10;
5174     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5175                              getF32Constant(DAG, 0x40549a78, dl));
5176     return getLimitedPrecisionExp2(t0, dl, DAG);
5177   }
5178 
5179   // No special expansion.
5180   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5181 }
5182 
5183 /// ExpandPowI - Expand a llvm.powi intrinsic.
5184 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5185                           SelectionDAG &DAG) {
5186   // If RHS is a constant, we can expand this out to a multiplication tree,
5187   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5188   // optimizing for size, we only want to do this if the expansion would produce
5189   // a small number of multiplies, otherwise we do the full expansion.
5190   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5191     // Get the exponent as a positive value.
5192     unsigned Val = RHSC->getSExtValue();
5193     if ((int)Val < 0) Val = -Val;
5194 
5195     // powi(x, 0) -> 1.0
5196     if (Val == 0)
5197       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5198 
5199     const Function &F = DAG.getMachineFunction().getFunction();
5200     if (!F.optForSize() ||
5201         // If optimizing for size, don't insert too many multiplies.
5202         // This inserts up to 5 multiplies.
5203         countPopulation(Val) + Log2_32(Val) < 7) {
5204       // We use the simple binary decomposition method to generate the multiply
5205       // sequence.  There are more optimal ways to do this (for example,
5206       // powi(x,15) generates one more multiply than it should), but this has
5207       // the benefit of being both really simple and much better than a libcall.
5208       SDValue Res;  // Logically starts equal to 1.0
5209       SDValue CurSquare = LHS;
5210       // TODO: Intrinsics should have fast-math-flags that propagate to these
5211       // nodes.
5212       while (Val) {
5213         if (Val & 1) {
5214           if (Res.getNode())
5215             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5216           else
5217             Res = CurSquare;  // 1.0*CurSquare.
5218         }
5219 
5220         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5221                                 CurSquare, CurSquare);
5222         Val >>= 1;
5223       }
5224 
5225       // If the original was negative, invert the result, producing 1/(x*x*x).
5226       if (RHSC->getSExtValue() < 0)
5227         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5228                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5229       return Res;
5230     }
5231   }
5232 
5233   // Otherwise, expand to a libcall.
5234   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5235 }
5236 
5237 // getUnderlyingArgReg - Find underlying register used for a truncated or
5238 // bitcasted argument.
5239 static unsigned getUnderlyingArgReg(const SDValue &N) {
5240   switch (N.getOpcode()) {
5241   case ISD::CopyFromReg:
5242     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
5243   case ISD::BITCAST:
5244   case ISD::AssertZext:
5245   case ISD::AssertSext:
5246   case ISD::TRUNCATE:
5247     return getUnderlyingArgReg(N.getOperand(0));
5248   default:
5249     return 0;
5250   }
5251 }
5252 
5253 /// If the DbgValueInst is a dbg_value of a function argument, create the
5254 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5255 /// instruction selection, they will be inserted to the entry BB.
5256 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5257     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5258     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5259   const Argument *Arg = dyn_cast<Argument>(V);
5260   if (!Arg)
5261     return false;
5262 
5263   if (!IsDbgDeclare) {
5264     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5265     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5266     // the entry block.
5267     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5268     if (!IsInEntryBlock)
5269       return false;
5270 
5271     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5272     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5273     // variable that also is a param.
5274     //
5275     // Although, if we are at the top of the entry block already, we can still
5276     // emit using ArgDbgValue. This might catch some situations when the
5277     // dbg.value refers to an argument that isn't used in the entry block, so
5278     // any CopyToReg node would be optimized out and the only way to express
5279     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5280     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5281     // we should only emit as ArgDbgValue if the Variable is an argument to the
5282     // current function, and the dbg.value intrinsic is found in the entry
5283     // block.
5284     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5285         !DL->getInlinedAt();
5286     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5287     if (!IsInPrologue && !VariableIsFunctionInputArg)
5288       return false;
5289 
5290     // Here we assume that a function argument on IR level only can be used to
5291     // describe one input parameter on source level. If we for example have
5292     // source code like this
5293     //
5294     //    struct A { long x, y; };
5295     //    void foo(struct A a, long b) {
5296     //      ...
5297     //      b = a.x;
5298     //      ...
5299     //    }
5300     //
5301     // and IR like this
5302     //
5303     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5304     //  entry:
5305     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5306     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5307     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5308     //    ...
5309     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5310     //    ...
5311     //
5312     // then the last dbg.value is describing a parameter "b" using a value that
5313     // is an argument. But since we already has used %a1 to describe a parameter
5314     // we should not handle that last dbg.value here (that would result in an
5315     // incorrect hoisting of the DBG_VALUE to the function entry).
5316     // Notice that we allow one dbg.value per IR level argument, to accomodate
5317     // for the situation with fragments above.
5318     if (VariableIsFunctionInputArg) {
5319       unsigned ArgNo = Arg->getArgNo();
5320       if (ArgNo >= FuncInfo.DescribedArgs.size())
5321         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5322       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5323         return false;
5324       FuncInfo.DescribedArgs.set(ArgNo);
5325     }
5326   }
5327 
5328   MachineFunction &MF = DAG.getMachineFunction();
5329   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5330 
5331   bool IsIndirect = false;
5332   Optional<MachineOperand> Op;
5333   // Some arguments' frame index is recorded during argument lowering.
5334   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5335   if (FI != std::numeric_limits<int>::max())
5336     Op = MachineOperand::CreateFI(FI);
5337 
5338   if (!Op && N.getNode()) {
5339     unsigned Reg = getUnderlyingArgReg(N);
5340     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
5341       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5342       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
5343       if (PR)
5344         Reg = PR;
5345     }
5346     if (Reg) {
5347       Op = MachineOperand::CreateReg(Reg, false);
5348       IsIndirect = IsDbgDeclare;
5349     }
5350   }
5351 
5352   if (!Op && N.getNode()) {
5353     // Check if frame index is available.
5354     SDValue LCandidate = peekThroughBitcasts(N);
5355     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5356       if (FrameIndexSDNode *FINode =
5357           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5358         Op = MachineOperand::CreateFI(FINode->getIndex());
5359   }
5360 
5361   if (!Op) {
5362     // Check if ValueMap has reg number.
5363     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
5364     if (VMI != FuncInfo.ValueMap.end()) {
5365       const auto &TLI = DAG.getTargetLoweringInfo();
5366       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5367                        V->getType(), getABIRegCopyCC(V));
5368       if (RFV.occupiesMultipleRegs()) {
5369         unsigned Offset = 0;
5370         for (auto RegAndSize : RFV.getRegsAndSizes()) {
5371           Op = MachineOperand::CreateReg(RegAndSize.first, false);
5372           auto FragmentExpr = DIExpression::createFragmentExpression(
5373               Expr, Offset, RegAndSize.second);
5374           if (!FragmentExpr)
5375             continue;
5376           FuncInfo.ArgDbgValues.push_back(
5377               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5378                       Op->getReg(), Variable, *FragmentExpr));
5379           Offset += RegAndSize.second;
5380         }
5381         return true;
5382       }
5383       Op = MachineOperand::CreateReg(VMI->second, false);
5384       IsIndirect = IsDbgDeclare;
5385     }
5386   }
5387 
5388   if (!Op)
5389     return false;
5390 
5391   assert(Variable->isValidLocationForIntrinsic(DL) &&
5392          "Expected inlined-at fields to agree");
5393   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5394   FuncInfo.ArgDbgValues.push_back(
5395       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5396               *Op, Variable, Expr));
5397 
5398   return true;
5399 }
5400 
5401 /// Return the appropriate SDDbgValue based on N.
5402 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5403                                              DILocalVariable *Variable,
5404                                              DIExpression *Expr,
5405                                              const DebugLoc &dl,
5406                                              unsigned DbgSDNodeOrder) {
5407   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5408     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5409     // stack slot locations.
5410     //
5411     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5412     // debug values here after optimization:
5413     //
5414     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5415     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5416     //
5417     // Both describe the direct values of their associated variables.
5418     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5419                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5420   }
5421   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5422                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5423 }
5424 
5425 // VisualStudio defines setjmp as _setjmp
5426 #if defined(_MSC_VER) && defined(setjmp) && \
5427                          !defined(setjmp_undefined_for_msvc)
5428 #  pragma push_macro("setjmp")
5429 #  undef setjmp
5430 #  define setjmp_undefined_for_msvc
5431 #endif
5432 
5433 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5434   switch (Intrinsic) {
5435   case Intrinsic::smul_fix:
5436     return ISD::SMULFIX;
5437   case Intrinsic::umul_fix:
5438     return ISD::UMULFIX;
5439   default:
5440     llvm_unreachable("Unhandled fixed point intrinsic");
5441   }
5442 }
5443 
5444 /// Lower the call to the specified intrinsic function. If we want to emit this
5445 /// as a call to a named external function, return the name. Otherwise, lower it
5446 /// and return null.
5447 const char *
5448 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5449   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5450   SDLoc sdl = getCurSDLoc();
5451   DebugLoc dl = getCurDebugLoc();
5452   SDValue Res;
5453 
5454   switch (Intrinsic) {
5455   default:
5456     // By default, turn this into a target intrinsic node.
5457     visitTargetIntrinsic(I, Intrinsic);
5458     return nullptr;
5459   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5460   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5461   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5462   case Intrinsic::returnaddress:
5463     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5464                              TLI.getPointerTy(DAG.getDataLayout()),
5465                              getValue(I.getArgOperand(0))));
5466     return nullptr;
5467   case Intrinsic::addressofreturnaddress:
5468     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5469                              TLI.getPointerTy(DAG.getDataLayout())));
5470     return nullptr;
5471   case Intrinsic::sponentry:
5472     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5473                              TLI.getPointerTy(DAG.getDataLayout())));
5474     return nullptr;
5475   case Intrinsic::frameaddress:
5476     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5477                              TLI.getPointerTy(DAG.getDataLayout()),
5478                              getValue(I.getArgOperand(0))));
5479     return nullptr;
5480   case Intrinsic::read_register: {
5481     Value *Reg = I.getArgOperand(0);
5482     SDValue Chain = getRoot();
5483     SDValue RegName =
5484         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5485     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5486     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5487       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5488     setValue(&I, Res);
5489     DAG.setRoot(Res.getValue(1));
5490     return nullptr;
5491   }
5492   case Intrinsic::write_register: {
5493     Value *Reg = I.getArgOperand(0);
5494     Value *RegValue = I.getArgOperand(1);
5495     SDValue Chain = getRoot();
5496     SDValue RegName =
5497         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5498     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5499                             RegName, getValue(RegValue)));
5500     return nullptr;
5501   }
5502   case Intrinsic::setjmp:
5503     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5504   case Intrinsic::longjmp:
5505     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5506   case Intrinsic::memcpy: {
5507     const auto &MCI = cast<MemCpyInst>(I);
5508     SDValue Op1 = getValue(I.getArgOperand(0));
5509     SDValue Op2 = getValue(I.getArgOperand(1));
5510     SDValue Op3 = getValue(I.getArgOperand(2));
5511     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5512     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5513     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5514     unsigned Align = MinAlign(DstAlign, SrcAlign);
5515     bool isVol = MCI.isVolatile();
5516     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5517     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5518     // node.
5519     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5520                                false, isTC,
5521                                MachinePointerInfo(I.getArgOperand(0)),
5522                                MachinePointerInfo(I.getArgOperand(1)));
5523     updateDAGForMaybeTailCall(MC);
5524     return nullptr;
5525   }
5526   case Intrinsic::memset: {
5527     const auto &MSI = cast<MemSetInst>(I);
5528     SDValue Op1 = getValue(I.getArgOperand(0));
5529     SDValue Op2 = getValue(I.getArgOperand(1));
5530     SDValue Op3 = getValue(I.getArgOperand(2));
5531     // @llvm.memset defines 0 and 1 to both mean no alignment.
5532     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5533     bool isVol = MSI.isVolatile();
5534     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5535     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5536                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5537     updateDAGForMaybeTailCall(MS);
5538     return nullptr;
5539   }
5540   case Intrinsic::memmove: {
5541     const auto &MMI = cast<MemMoveInst>(I);
5542     SDValue Op1 = getValue(I.getArgOperand(0));
5543     SDValue Op2 = getValue(I.getArgOperand(1));
5544     SDValue Op3 = getValue(I.getArgOperand(2));
5545     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5546     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5547     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5548     unsigned Align = MinAlign(DstAlign, SrcAlign);
5549     bool isVol = MMI.isVolatile();
5550     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5551     // FIXME: Support passing different dest/src alignments to the memmove DAG
5552     // node.
5553     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5554                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5555                                 MachinePointerInfo(I.getArgOperand(1)));
5556     updateDAGForMaybeTailCall(MM);
5557     return nullptr;
5558   }
5559   case Intrinsic::memcpy_element_unordered_atomic: {
5560     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5561     SDValue Dst = getValue(MI.getRawDest());
5562     SDValue Src = getValue(MI.getRawSource());
5563     SDValue Length = getValue(MI.getLength());
5564 
5565     unsigned DstAlign = MI.getDestAlignment();
5566     unsigned SrcAlign = MI.getSourceAlignment();
5567     Type *LengthTy = MI.getLength()->getType();
5568     unsigned ElemSz = MI.getElementSizeInBytes();
5569     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5570     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5571                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5572                                      MachinePointerInfo(MI.getRawDest()),
5573                                      MachinePointerInfo(MI.getRawSource()));
5574     updateDAGForMaybeTailCall(MC);
5575     return nullptr;
5576   }
5577   case Intrinsic::memmove_element_unordered_atomic: {
5578     auto &MI = cast<AtomicMemMoveInst>(I);
5579     SDValue Dst = getValue(MI.getRawDest());
5580     SDValue Src = getValue(MI.getRawSource());
5581     SDValue Length = getValue(MI.getLength());
5582 
5583     unsigned DstAlign = MI.getDestAlignment();
5584     unsigned SrcAlign = MI.getSourceAlignment();
5585     Type *LengthTy = MI.getLength()->getType();
5586     unsigned ElemSz = MI.getElementSizeInBytes();
5587     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5588     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5589                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5590                                       MachinePointerInfo(MI.getRawDest()),
5591                                       MachinePointerInfo(MI.getRawSource()));
5592     updateDAGForMaybeTailCall(MC);
5593     return nullptr;
5594   }
5595   case Intrinsic::memset_element_unordered_atomic: {
5596     auto &MI = cast<AtomicMemSetInst>(I);
5597     SDValue Dst = getValue(MI.getRawDest());
5598     SDValue Val = getValue(MI.getValue());
5599     SDValue Length = getValue(MI.getLength());
5600 
5601     unsigned DstAlign = MI.getDestAlignment();
5602     Type *LengthTy = MI.getLength()->getType();
5603     unsigned ElemSz = MI.getElementSizeInBytes();
5604     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5605     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5606                                      LengthTy, ElemSz, isTC,
5607                                      MachinePointerInfo(MI.getRawDest()));
5608     updateDAGForMaybeTailCall(MC);
5609     return nullptr;
5610   }
5611   case Intrinsic::dbg_addr:
5612   case Intrinsic::dbg_declare: {
5613     const auto &DI = cast<DbgVariableIntrinsic>(I);
5614     DILocalVariable *Variable = DI.getVariable();
5615     DIExpression *Expression = DI.getExpression();
5616     dropDanglingDebugInfo(Variable, Expression);
5617     assert(Variable && "Missing variable");
5618 
5619     // Check if address has undef value.
5620     const Value *Address = DI.getVariableLocation();
5621     if (!Address || isa<UndefValue>(Address) ||
5622         (Address->use_empty() && !isa<Argument>(Address))) {
5623       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5624       return nullptr;
5625     }
5626 
5627     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5628 
5629     // Check if this variable can be described by a frame index, typically
5630     // either as a static alloca or a byval parameter.
5631     int FI = std::numeric_limits<int>::max();
5632     if (const auto *AI =
5633             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5634       if (AI->isStaticAlloca()) {
5635         auto I = FuncInfo.StaticAllocaMap.find(AI);
5636         if (I != FuncInfo.StaticAllocaMap.end())
5637           FI = I->second;
5638       }
5639     } else if (const auto *Arg = dyn_cast<Argument>(
5640                    Address->stripInBoundsConstantOffsets())) {
5641       FI = FuncInfo.getArgumentFrameIndex(Arg);
5642     }
5643 
5644     // llvm.dbg.addr is control dependent and always generates indirect
5645     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5646     // the MachineFunction variable table.
5647     if (FI != std::numeric_limits<int>::max()) {
5648       if (Intrinsic == Intrinsic::dbg_addr) {
5649         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5650             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5651         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5652       }
5653       return nullptr;
5654     }
5655 
5656     SDValue &N = NodeMap[Address];
5657     if (!N.getNode() && isa<Argument>(Address))
5658       // Check unused arguments map.
5659       N = UnusedArgNodeMap[Address];
5660     SDDbgValue *SDV;
5661     if (N.getNode()) {
5662       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5663         Address = BCI->getOperand(0);
5664       // Parameters are handled specially.
5665       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5666       if (isParameter && FINode) {
5667         // Byval parameter. We have a frame index at this point.
5668         SDV =
5669             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5670                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5671       } else if (isa<Argument>(Address)) {
5672         // Address is an argument, so try to emit its dbg value using
5673         // virtual register info from the FuncInfo.ValueMap.
5674         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5675         return nullptr;
5676       } else {
5677         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5678                               true, dl, SDNodeOrder);
5679       }
5680       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5681     } else {
5682       // If Address is an argument then try to emit its dbg value using
5683       // virtual register info from the FuncInfo.ValueMap.
5684       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5685                                     N)) {
5686         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5687       }
5688     }
5689     return nullptr;
5690   }
5691   case Intrinsic::dbg_label: {
5692     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5693     DILabel *Label = DI.getLabel();
5694     assert(Label && "Missing label");
5695 
5696     SDDbgLabel *SDV;
5697     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5698     DAG.AddDbgLabel(SDV);
5699     return nullptr;
5700   }
5701   case Intrinsic::dbg_value: {
5702     const DbgValueInst &DI = cast<DbgValueInst>(I);
5703     assert(DI.getVariable() && "Missing variable");
5704 
5705     DILocalVariable *Variable = DI.getVariable();
5706     DIExpression *Expression = DI.getExpression();
5707     dropDanglingDebugInfo(Variable, Expression);
5708     const Value *V = DI.getValue();
5709     if (!V)
5710       return nullptr;
5711 
5712     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5713         SDNodeOrder))
5714       return nullptr;
5715 
5716     // TODO: Dangling debug info will eventually either be resolved or produce
5717     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5718     // between the original dbg.value location and its resolved DBG_VALUE, which
5719     // we should ideally fill with an extra Undef DBG_VALUE.
5720 
5721     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5722     return nullptr;
5723   }
5724 
5725   case Intrinsic::eh_typeid_for: {
5726     // Find the type id for the given typeinfo.
5727     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5728     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5729     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5730     setValue(&I, Res);
5731     return nullptr;
5732   }
5733 
5734   case Intrinsic::eh_return_i32:
5735   case Intrinsic::eh_return_i64:
5736     DAG.getMachineFunction().setCallsEHReturn(true);
5737     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5738                             MVT::Other,
5739                             getControlRoot(),
5740                             getValue(I.getArgOperand(0)),
5741                             getValue(I.getArgOperand(1))));
5742     return nullptr;
5743   case Intrinsic::eh_unwind_init:
5744     DAG.getMachineFunction().setCallsUnwindInit(true);
5745     return nullptr;
5746   case Intrinsic::eh_dwarf_cfa:
5747     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5748                              TLI.getPointerTy(DAG.getDataLayout()),
5749                              getValue(I.getArgOperand(0))));
5750     return nullptr;
5751   case Intrinsic::eh_sjlj_callsite: {
5752     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5753     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5754     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5755     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5756 
5757     MMI.setCurrentCallSite(CI->getZExtValue());
5758     return nullptr;
5759   }
5760   case Intrinsic::eh_sjlj_functioncontext: {
5761     // Get and store the index of the function context.
5762     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5763     AllocaInst *FnCtx =
5764       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5765     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5766     MFI.setFunctionContextIndex(FI);
5767     return nullptr;
5768   }
5769   case Intrinsic::eh_sjlj_setjmp: {
5770     SDValue Ops[2];
5771     Ops[0] = getRoot();
5772     Ops[1] = getValue(I.getArgOperand(0));
5773     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5774                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5775     setValue(&I, Op.getValue(0));
5776     DAG.setRoot(Op.getValue(1));
5777     return nullptr;
5778   }
5779   case Intrinsic::eh_sjlj_longjmp:
5780     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5781                             getRoot(), getValue(I.getArgOperand(0))));
5782     return nullptr;
5783   case Intrinsic::eh_sjlj_setup_dispatch:
5784     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5785                             getRoot()));
5786     return nullptr;
5787   case Intrinsic::masked_gather:
5788     visitMaskedGather(I);
5789     return nullptr;
5790   case Intrinsic::masked_load:
5791     visitMaskedLoad(I);
5792     return nullptr;
5793   case Intrinsic::masked_scatter:
5794     visitMaskedScatter(I);
5795     return nullptr;
5796   case Intrinsic::masked_store:
5797     visitMaskedStore(I);
5798     return nullptr;
5799   case Intrinsic::masked_expandload:
5800     visitMaskedLoad(I, true /* IsExpanding */);
5801     return nullptr;
5802   case Intrinsic::masked_compressstore:
5803     visitMaskedStore(I, true /* IsCompressing */);
5804     return nullptr;
5805   case Intrinsic::x86_mmx_pslli_w:
5806   case Intrinsic::x86_mmx_pslli_d:
5807   case Intrinsic::x86_mmx_pslli_q:
5808   case Intrinsic::x86_mmx_psrli_w:
5809   case Intrinsic::x86_mmx_psrli_d:
5810   case Intrinsic::x86_mmx_psrli_q:
5811   case Intrinsic::x86_mmx_psrai_w:
5812   case Intrinsic::x86_mmx_psrai_d: {
5813     SDValue ShAmt = getValue(I.getArgOperand(1));
5814     if (isa<ConstantSDNode>(ShAmt)) {
5815       visitTargetIntrinsic(I, Intrinsic);
5816       return nullptr;
5817     }
5818     unsigned NewIntrinsic = 0;
5819     EVT ShAmtVT = MVT::v2i32;
5820     switch (Intrinsic) {
5821     case Intrinsic::x86_mmx_pslli_w:
5822       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5823       break;
5824     case Intrinsic::x86_mmx_pslli_d:
5825       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5826       break;
5827     case Intrinsic::x86_mmx_pslli_q:
5828       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5829       break;
5830     case Intrinsic::x86_mmx_psrli_w:
5831       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5832       break;
5833     case Intrinsic::x86_mmx_psrli_d:
5834       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5835       break;
5836     case Intrinsic::x86_mmx_psrli_q:
5837       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5838       break;
5839     case Intrinsic::x86_mmx_psrai_w:
5840       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5841       break;
5842     case Intrinsic::x86_mmx_psrai_d:
5843       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5844       break;
5845     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5846     }
5847 
5848     // The vector shift intrinsics with scalars uses 32b shift amounts but
5849     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5850     // to be zero.
5851     // We must do this early because v2i32 is not a legal type.
5852     SDValue ShOps[2];
5853     ShOps[0] = ShAmt;
5854     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5855     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5856     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5857     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5858     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5859                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5860                        getValue(I.getArgOperand(0)), ShAmt);
5861     setValue(&I, Res);
5862     return nullptr;
5863   }
5864   case Intrinsic::powi:
5865     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5866                             getValue(I.getArgOperand(1)), DAG));
5867     return nullptr;
5868   case Intrinsic::log:
5869     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5870     return nullptr;
5871   case Intrinsic::log2:
5872     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5873     return nullptr;
5874   case Intrinsic::log10:
5875     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5876     return nullptr;
5877   case Intrinsic::exp:
5878     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5879     return nullptr;
5880   case Intrinsic::exp2:
5881     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5882     return nullptr;
5883   case Intrinsic::pow:
5884     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5885                            getValue(I.getArgOperand(1)), DAG, TLI));
5886     return nullptr;
5887   case Intrinsic::sqrt:
5888   case Intrinsic::fabs:
5889   case Intrinsic::sin:
5890   case Intrinsic::cos:
5891   case Intrinsic::floor:
5892   case Intrinsic::ceil:
5893   case Intrinsic::trunc:
5894   case Intrinsic::rint:
5895   case Intrinsic::nearbyint:
5896   case Intrinsic::round:
5897   case Intrinsic::canonicalize: {
5898     unsigned Opcode;
5899     switch (Intrinsic) {
5900     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5901     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5902     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5903     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5904     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5905     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5906     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5907     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5908     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5909     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5910     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5911     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5912     }
5913 
5914     setValue(&I, DAG.getNode(Opcode, sdl,
5915                              getValue(I.getArgOperand(0)).getValueType(),
5916                              getValue(I.getArgOperand(0))));
5917     return nullptr;
5918   }
5919   case Intrinsic::minnum: {
5920     auto VT = getValue(I.getArgOperand(0)).getValueType();
5921     unsigned Opc =
5922         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
5923             ? ISD::FMINIMUM
5924             : ISD::FMINNUM;
5925     setValue(&I, DAG.getNode(Opc, sdl, VT,
5926                              getValue(I.getArgOperand(0)),
5927                              getValue(I.getArgOperand(1))));
5928     return nullptr;
5929   }
5930   case Intrinsic::maxnum: {
5931     auto VT = getValue(I.getArgOperand(0)).getValueType();
5932     unsigned Opc =
5933         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
5934             ? ISD::FMAXIMUM
5935             : ISD::FMAXNUM;
5936     setValue(&I, DAG.getNode(Opc, sdl, VT,
5937                              getValue(I.getArgOperand(0)),
5938                              getValue(I.getArgOperand(1))));
5939     return nullptr;
5940   }
5941   case Intrinsic::minimum:
5942     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
5943                              getValue(I.getArgOperand(0)).getValueType(),
5944                              getValue(I.getArgOperand(0)),
5945                              getValue(I.getArgOperand(1))));
5946     return nullptr;
5947   case Intrinsic::maximum:
5948     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
5949                              getValue(I.getArgOperand(0)).getValueType(),
5950                              getValue(I.getArgOperand(0)),
5951                              getValue(I.getArgOperand(1))));
5952     return nullptr;
5953   case Intrinsic::copysign:
5954     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5955                              getValue(I.getArgOperand(0)).getValueType(),
5956                              getValue(I.getArgOperand(0)),
5957                              getValue(I.getArgOperand(1))));
5958     return nullptr;
5959   case Intrinsic::fma:
5960     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5961                              getValue(I.getArgOperand(0)).getValueType(),
5962                              getValue(I.getArgOperand(0)),
5963                              getValue(I.getArgOperand(1)),
5964                              getValue(I.getArgOperand(2))));
5965     return nullptr;
5966   case Intrinsic::experimental_constrained_fadd:
5967   case Intrinsic::experimental_constrained_fsub:
5968   case Intrinsic::experimental_constrained_fmul:
5969   case Intrinsic::experimental_constrained_fdiv:
5970   case Intrinsic::experimental_constrained_frem:
5971   case Intrinsic::experimental_constrained_fma:
5972   case Intrinsic::experimental_constrained_sqrt:
5973   case Intrinsic::experimental_constrained_pow:
5974   case Intrinsic::experimental_constrained_powi:
5975   case Intrinsic::experimental_constrained_sin:
5976   case Intrinsic::experimental_constrained_cos:
5977   case Intrinsic::experimental_constrained_exp:
5978   case Intrinsic::experimental_constrained_exp2:
5979   case Intrinsic::experimental_constrained_log:
5980   case Intrinsic::experimental_constrained_log10:
5981   case Intrinsic::experimental_constrained_log2:
5982   case Intrinsic::experimental_constrained_rint:
5983   case Intrinsic::experimental_constrained_nearbyint:
5984   case Intrinsic::experimental_constrained_maxnum:
5985   case Intrinsic::experimental_constrained_minnum:
5986   case Intrinsic::experimental_constrained_ceil:
5987   case Intrinsic::experimental_constrained_floor:
5988   case Intrinsic::experimental_constrained_round:
5989   case Intrinsic::experimental_constrained_trunc:
5990     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5991     return nullptr;
5992   case Intrinsic::fmuladd: {
5993     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5994     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5995         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5996       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5997                                getValue(I.getArgOperand(0)).getValueType(),
5998                                getValue(I.getArgOperand(0)),
5999                                getValue(I.getArgOperand(1)),
6000                                getValue(I.getArgOperand(2))));
6001     } else {
6002       // TODO: Intrinsic calls should have fast-math-flags.
6003       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6004                                 getValue(I.getArgOperand(0)).getValueType(),
6005                                 getValue(I.getArgOperand(0)),
6006                                 getValue(I.getArgOperand(1)));
6007       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6008                                 getValue(I.getArgOperand(0)).getValueType(),
6009                                 Mul,
6010                                 getValue(I.getArgOperand(2)));
6011       setValue(&I, Add);
6012     }
6013     return nullptr;
6014   }
6015   case Intrinsic::convert_to_fp16:
6016     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6017                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6018                                          getValue(I.getArgOperand(0)),
6019                                          DAG.getTargetConstant(0, sdl,
6020                                                                MVT::i32))));
6021     return nullptr;
6022   case Intrinsic::convert_from_fp16:
6023     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6024                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6025                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6026                                          getValue(I.getArgOperand(0)))));
6027     return nullptr;
6028   case Intrinsic::pcmarker: {
6029     SDValue Tmp = getValue(I.getArgOperand(0));
6030     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6031     return nullptr;
6032   }
6033   case Intrinsic::readcyclecounter: {
6034     SDValue Op = getRoot();
6035     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6036                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6037     setValue(&I, Res);
6038     DAG.setRoot(Res.getValue(1));
6039     return nullptr;
6040   }
6041   case Intrinsic::bitreverse:
6042     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6043                              getValue(I.getArgOperand(0)).getValueType(),
6044                              getValue(I.getArgOperand(0))));
6045     return nullptr;
6046   case Intrinsic::bswap:
6047     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6048                              getValue(I.getArgOperand(0)).getValueType(),
6049                              getValue(I.getArgOperand(0))));
6050     return nullptr;
6051   case Intrinsic::cttz: {
6052     SDValue Arg = getValue(I.getArgOperand(0));
6053     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6054     EVT Ty = Arg.getValueType();
6055     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6056                              sdl, Ty, Arg));
6057     return nullptr;
6058   }
6059   case Intrinsic::ctlz: {
6060     SDValue Arg = getValue(I.getArgOperand(0));
6061     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6062     EVT Ty = Arg.getValueType();
6063     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6064                              sdl, Ty, Arg));
6065     return nullptr;
6066   }
6067   case Intrinsic::ctpop: {
6068     SDValue Arg = getValue(I.getArgOperand(0));
6069     EVT Ty = Arg.getValueType();
6070     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6071     return nullptr;
6072   }
6073   case Intrinsic::fshl:
6074   case Intrinsic::fshr: {
6075     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6076     SDValue X = getValue(I.getArgOperand(0));
6077     SDValue Y = getValue(I.getArgOperand(1));
6078     SDValue Z = getValue(I.getArgOperand(2));
6079     EVT VT = X.getValueType();
6080     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6081     SDValue Zero = DAG.getConstant(0, sdl, VT);
6082     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6083 
6084     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6085     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6086       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6087       return nullptr;
6088     }
6089 
6090     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6091     // avoid the select that is necessary in the general case to filter out
6092     // the 0-shift possibility that leads to UB.
6093     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6094       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6095       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6096         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6097         return nullptr;
6098       }
6099 
6100       // Some targets only rotate one way. Try the opposite direction.
6101       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6102       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6103         // Negate the shift amount because it is safe to ignore the high bits.
6104         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6105         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6106         return nullptr;
6107       }
6108 
6109       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6110       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6111       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6112       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6113       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6114       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6115       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6116       return nullptr;
6117     }
6118 
6119     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6120     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6121     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6122     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6123     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6124     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6125 
6126     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6127     // and that is undefined. We must compare and select to avoid UB.
6128     EVT CCVT = MVT::i1;
6129     if (VT.isVector())
6130       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6131 
6132     // For fshl, 0-shift returns the 1st arg (X).
6133     // For fshr, 0-shift returns the 2nd arg (Y).
6134     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6135     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6136     return nullptr;
6137   }
6138   case Intrinsic::sadd_sat: {
6139     SDValue Op1 = getValue(I.getArgOperand(0));
6140     SDValue Op2 = getValue(I.getArgOperand(1));
6141     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6142     return nullptr;
6143   }
6144   case Intrinsic::uadd_sat: {
6145     SDValue Op1 = getValue(I.getArgOperand(0));
6146     SDValue Op2 = getValue(I.getArgOperand(1));
6147     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6148     return nullptr;
6149   }
6150   case Intrinsic::ssub_sat: {
6151     SDValue Op1 = getValue(I.getArgOperand(0));
6152     SDValue Op2 = getValue(I.getArgOperand(1));
6153     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6154     return nullptr;
6155   }
6156   case Intrinsic::usub_sat: {
6157     SDValue Op1 = getValue(I.getArgOperand(0));
6158     SDValue Op2 = getValue(I.getArgOperand(1));
6159     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6160     return nullptr;
6161   }
6162   case Intrinsic::smul_fix:
6163   case Intrinsic::umul_fix: {
6164     SDValue Op1 = getValue(I.getArgOperand(0));
6165     SDValue Op2 = getValue(I.getArgOperand(1));
6166     SDValue Op3 = getValue(I.getArgOperand(2));
6167     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6168                              Op1.getValueType(), Op1, Op2, Op3));
6169     return nullptr;
6170   }
6171   case Intrinsic::stacksave: {
6172     SDValue Op = getRoot();
6173     Res = DAG.getNode(
6174         ISD::STACKSAVE, sdl,
6175         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6176     setValue(&I, Res);
6177     DAG.setRoot(Res.getValue(1));
6178     return nullptr;
6179   }
6180   case Intrinsic::stackrestore:
6181     Res = getValue(I.getArgOperand(0));
6182     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6183     return nullptr;
6184   case Intrinsic::get_dynamic_area_offset: {
6185     SDValue Op = getRoot();
6186     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6187     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6188     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6189     // target.
6190     if (PtrTy != ResTy)
6191       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6192                          " intrinsic!");
6193     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6194                       Op);
6195     DAG.setRoot(Op);
6196     setValue(&I, Res);
6197     return nullptr;
6198   }
6199   case Intrinsic::stackguard: {
6200     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6201     MachineFunction &MF = DAG.getMachineFunction();
6202     const Module &M = *MF.getFunction().getParent();
6203     SDValue Chain = getRoot();
6204     if (TLI.useLoadStackGuardNode()) {
6205       Res = getLoadStackGuard(DAG, sdl, Chain);
6206     } else {
6207       const Value *Global = TLI.getSDagStackGuard(M);
6208       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6209       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6210                         MachinePointerInfo(Global, 0), Align,
6211                         MachineMemOperand::MOVolatile);
6212     }
6213     if (TLI.useStackGuardXorFP())
6214       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6215     DAG.setRoot(Chain);
6216     setValue(&I, Res);
6217     return nullptr;
6218   }
6219   case Intrinsic::stackprotector: {
6220     // Emit code into the DAG to store the stack guard onto the stack.
6221     MachineFunction &MF = DAG.getMachineFunction();
6222     MachineFrameInfo &MFI = MF.getFrameInfo();
6223     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6224     SDValue Src, Chain = getRoot();
6225 
6226     if (TLI.useLoadStackGuardNode())
6227       Src = getLoadStackGuard(DAG, sdl, Chain);
6228     else
6229       Src = getValue(I.getArgOperand(0));   // The guard's value.
6230 
6231     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6232 
6233     int FI = FuncInfo.StaticAllocaMap[Slot];
6234     MFI.setStackProtectorIndex(FI);
6235 
6236     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6237 
6238     // Store the stack protector onto the stack.
6239     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6240                                                  DAG.getMachineFunction(), FI),
6241                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6242     setValue(&I, Res);
6243     DAG.setRoot(Res);
6244     return nullptr;
6245   }
6246   case Intrinsic::objectsize: {
6247     // If we don't know by now, we're never going to know.
6248     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
6249 
6250     assert(CI && "Non-constant type in __builtin_object_size?");
6251 
6252     SDValue Arg = getValue(I.getCalledValue());
6253     EVT Ty = Arg.getValueType();
6254 
6255     if (CI->isZero())
6256       Res = DAG.getConstant(-1ULL, sdl, Ty);
6257     else
6258       Res = DAG.getConstant(0, sdl, Ty);
6259 
6260     setValue(&I, Res);
6261     return nullptr;
6262   }
6263 
6264   case Intrinsic::is_constant:
6265     // If this wasn't constant-folded away by now, then it's not a
6266     // constant.
6267     setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
6268     return nullptr;
6269 
6270   case Intrinsic::annotation:
6271   case Intrinsic::ptr_annotation:
6272   case Intrinsic::launder_invariant_group:
6273   case Intrinsic::strip_invariant_group:
6274     // Drop the intrinsic, but forward the value
6275     setValue(&I, getValue(I.getOperand(0)));
6276     return nullptr;
6277   case Intrinsic::assume:
6278   case Intrinsic::var_annotation:
6279   case Intrinsic::sideeffect:
6280     // Discard annotate attributes, assumptions, and artificial side-effects.
6281     return nullptr;
6282 
6283   case Intrinsic::codeview_annotation: {
6284     // Emit a label associated with this metadata.
6285     MachineFunction &MF = DAG.getMachineFunction();
6286     MCSymbol *Label =
6287         MF.getMMI().getContext().createTempSymbol("annotation", true);
6288     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6289     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6290     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6291     DAG.setRoot(Res);
6292     return nullptr;
6293   }
6294 
6295   case Intrinsic::init_trampoline: {
6296     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6297 
6298     SDValue Ops[6];
6299     Ops[0] = getRoot();
6300     Ops[1] = getValue(I.getArgOperand(0));
6301     Ops[2] = getValue(I.getArgOperand(1));
6302     Ops[3] = getValue(I.getArgOperand(2));
6303     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6304     Ops[5] = DAG.getSrcValue(F);
6305 
6306     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6307 
6308     DAG.setRoot(Res);
6309     return nullptr;
6310   }
6311   case Intrinsic::adjust_trampoline:
6312     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6313                              TLI.getPointerTy(DAG.getDataLayout()),
6314                              getValue(I.getArgOperand(0))));
6315     return nullptr;
6316   case Intrinsic::gcroot: {
6317     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6318            "only valid in functions with gc specified, enforced by Verifier");
6319     assert(GFI && "implied by previous");
6320     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6321     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6322 
6323     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6324     GFI->addStackRoot(FI->getIndex(), TypeMap);
6325     return nullptr;
6326   }
6327   case Intrinsic::gcread:
6328   case Intrinsic::gcwrite:
6329     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6330   case Intrinsic::flt_rounds:
6331     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6332     return nullptr;
6333 
6334   case Intrinsic::expect:
6335     // Just replace __builtin_expect(exp, c) with EXP.
6336     setValue(&I, getValue(I.getArgOperand(0)));
6337     return nullptr;
6338 
6339   case Intrinsic::debugtrap:
6340   case Intrinsic::trap: {
6341     StringRef TrapFuncName =
6342         I.getAttributes()
6343             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6344             .getValueAsString();
6345     if (TrapFuncName.empty()) {
6346       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6347         ISD::TRAP : ISD::DEBUGTRAP;
6348       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6349       return nullptr;
6350     }
6351     TargetLowering::ArgListTy Args;
6352 
6353     TargetLowering::CallLoweringInfo CLI(DAG);
6354     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6355         CallingConv::C, I.getType(),
6356         DAG.getExternalSymbol(TrapFuncName.data(),
6357                               TLI.getPointerTy(DAG.getDataLayout())),
6358         std::move(Args));
6359 
6360     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6361     DAG.setRoot(Result.second);
6362     return nullptr;
6363   }
6364 
6365   case Intrinsic::uadd_with_overflow:
6366   case Intrinsic::sadd_with_overflow:
6367   case Intrinsic::usub_with_overflow:
6368   case Intrinsic::ssub_with_overflow:
6369   case Intrinsic::umul_with_overflow:
6370   case Intrinsic::smul_with_overflow: {
6371     ISD::NodeType Op;
6372     switch (Intrinsic) {
6373     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6374     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6375     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6376     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6377     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6378     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6379     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6380     }
6381     SDValue Op1 = getValue(I.getArgOperand(0));
6382     SDValue Op2 = getValue(I.getArgOperand(1));
6383 
6384     EVT ResultVT = Op1.getValueType();
6385     EVT OverflowVT = MVT::i1;
6386     if (ResultVT.isVector())
6387       OverflowVT = EVT::getVectorVT(
6388           *Context, OverflowVT, ResultVT.getVectorNumElements());
6389 
6390     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6391     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6392     return nullptr;
6393   }
6394   case Intrinsic::prefetch: {
6395     SDValue Ops[5];
6396     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6397     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6398     Ops[0] = DAG.getRoot();
6399     Ops[1] = getValue(I.getArgOperand(0));
6400     Ops[2] = getValue(I.getArgOperand(1));
6401     Ops[3] = getValue(I.getArgOperand(2));
6402     Ops[4] = getValue(I.getArgOperand(3));
6403     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6404                                              DAG.getVTList(MVT::Other), Ops,
6405                                              EVT::getIntegerVT(*Context, 8),
6406                                              MachinePointerInfo(I.getArgOperand(0)),
6407                                              0, /* align */
6408                                              Flags);
6409 
6410     // Chain the prefetch in parallell with any pending loads, to stay out of
6411     // the way of later optimizations.
6412     PendingLoads.push_back(Result);
6413     Result = getRoot();
6414     DAG.setRoot(Result);
6415     return nullptr;
6416   }
6417   case Intrinsic::lifetime_start:
6418   case Intrinsic::lifetime_end: {
6419     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6420     // Stack coloring is not enabled in O0, discard region information.
6421     if (TM.getOptLevel() == CodeGenOpt::None)
6422       return nullptr;
6423 
6424     const int64_t ObjectSize =
6425         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6426     Value *const ObjectPtr = I.getArgOperand(1);
6427     SmallVector<Value *, 4> Allocas;
6428     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6429 
6430     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
6431            E = Allocas.end(); Object != E; ++Object) {
6432       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6433 
6434       // Could not find an Alloca.
6435       if (!LifetimeObject)
6436         continue;
6437 
6438       // First check that the Alloca is static, otherwise it won't have a
6439       // valid frame index.
6440       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6441       if (SI == FuncInfo.StaticAllocaMap.end())
6442         return nullptr;
6443 
6444       const int FrameIndex = SI->second;
6445       int64_t Offset;
6446       if (GetPointerBaseWithConstantOffset(
6447               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6448         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6449       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6450                                 Offset);
6451       DAG.setRoot(Res);
6452     }
6453     return nullptr;
6454   }
6455   case Intrinsic::invariant_start:
6456     // Discard region information.
6457     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6458     return nullptr;
6459   case Intrinsic::invariant_end:
6460     // Discard region information.
6461     return nullptr;
6462   case Intrinsic::clear_cache:
6463     return TLI.getClearCacheBuiltinName();
6464   case Intrinsic::donothing:
6465     // ignore
6466     return nullptr;
6467   case Intrinsic::experimental_stackmap:
6468     visitStackmap(I);
6469     return nullptr;
6470   case Intrinsic::experimental_patchpoint_void:
6471   case Intrinsic::experimental_patchpoint_i64:
6472     visitPatchpoint(&I);
6473     return nullptr;
6474   case Intrinsic::experimental_gc_statepoint:
6475     LowerStatepoint(ImmutableStatepoint(&I));
6476     return nullptr;
6477   case Intrinsic::experimental_gc_result:
6478     visitGCResult(cast<GCResultInst>(I));
6479     return nullptr;
6480   case Intrinsic::experimental_gc_relocate:
6481     visitGCRelocate(cast<GCRelocateInst>(I));
6482     return nullptr;
6483   case Intrinsic::instrprof_increment:
6484     llvm_unreachable("instrprof failed to lower an increment");
6485   case Intrinsic::instrprof_value_profile:
6486     llvm_unreachable("instrprof failed to lower a value profiling call");
6487   case Intrinsic::localescape: {
6488     MachineFunction &MF = DAG.getMachineFunction();
6489     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6490 
6491     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6492     // is the same on all targets.
6493     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6494       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6495       if (isa<ConstantPointerNull>(Arg))
6496         continue; // Skip null pointers. They represent a hole in index space.
6497       AllocaInst *Slot = cast<AllocaInst>(Arg);
6498       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6499              "can only escape static allocas");
6500       int FI = FuncInfo.StaticAllocaMap[Slot];
6501       MCSymbol *FrameAllocSym =
6502           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6503               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6504       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6505               TII->get(TargetOpcode::LOCAL_ESCAPE))
6506           .addSym(FrameAllocSym)
6507           .addFrameIndex(FI);
6508     }
6509 
6510     return nullptr;
6511   }
6512 
6513   case Intrinsic::localrecover: {
6514     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6515     MachineFunction &MF = DAG.getMachineFunction();
6516     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6517 
6518     // Get the symbol that defines the frame offset.
6519     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6520     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6521     unsigned IdxVal =
6522         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6523     MCSymbol *FrameAllocSym =
6524         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6525             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6526 
6527     // Create a MCSymbol for the label to avoid any target lowering
6528     // that would make this PC relative.
6529     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6530     SDValue OffsetVal =
6531         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6532 
6533     // Add the offset to the FP.
6534     Value *FP = I.getArgOperand(1);
6535     SDValue FPVal = getValue(FP);
6536     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6537     setValue(&I, Add);
6538 
6539     return nullptr;
6540   }
6541 
6542   case Intrinsic::eh_exceptionpointer:
6543   case Intrinsic::eh_exceptioncode: {
6544     // Get the exception pointer vreg, copy from it, and resize it to fit.
6545     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6546     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6547     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6548     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6549     SDValue N =
6550         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6551     if (Intrinsic == Intrinsic::eh_exceptioncode)
6552       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6553     setValue(&I, N);
6554     return nullptr;
6555   }
6556   case Intrinsic::xray_customevent: {
6557     // Here we want to make sure that the intrinsic behaves as if it has a
6558     // specific calling convention, and only for x86_64.
6559     // FIXME: Support other platforms later.
6560     const auto &Triple = DAG.getTarget().getTargetTriple();
6561     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6562       return nullptr;
6563 
6564     SDLoc DL = getCurSDLoc();
6565     SmallVector<SDValue, 8> Ops;
6566 
6567     // We want to say that we always want the arguments in registers.
6568     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6569     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6570     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6571     SDValue Chain = getRoot();
6572     Ops.push_back(LogEntryVal);
6573     Ops.push_back(StrSizeVal);
6574     Ops.push_back(Chain);
6575 
6576     // We need to enforce the calling convention for the callsite, so that
6577     // argument ordering is enforced correctly, and that register allocation can
6578     // see that some registers may be assumed clobbered and have to preserve
6579     // them across calls to the intrinsic.
6580     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6581                                            DL, NodeTys, Ops);
6582     SDValue patchableNode = SDValue(MN, 0);
6583     DAG.setRoot(patchableNode);
6584     setValue(&I, patchableNode);
6585     return nullptr;
6586   }
6587   case Intrinsic::xray_typedevent: {
6588     // Here we want to make sure that the intrinsic behaves as if it has a
6589     // specific calling convention, and only for x86_64.
6590     // FIXME: Support other platforms later.
6591     const auto &Triple = DAG.getTarget().getTargetTriple();
6592     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6593       return nullptr;
6594 
6595     SDLoc DL = getCurSDLoc();
6596     SmallVector<SDValue, 8> Ops;
6597 
6598     // We want to say that we always want the arguments in registers.
6599     // It's unclear to me how manipulating the selection DAG here forces callers
6600     // to provide arguments in registers instead of on the stack.
6601     SDValue LogTypeId = getValue(I.getArgOperand(0));
6602     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6603     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6604     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6605     SDValue Chain = getRoot();
6606     Ops.push_back(LogTypeId);
6607     Ops.push_back(LogEntryVal);
6608     Ops.push_back(StrSizeVal);
6609     Ops.push_back(Chain);
6610 
6611     // We need to enforce the calling convention for the callsite, so that
6612     // argument ordering is enforced correctly, and that register allocation can
6613     // see that some registers may be assumed clobbered and have to preserve
6614     // them across calls to the intrinsic.
6615     MachineSDNode *MN = DAG.getMachineNode(
6616         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6617     SDValue patchableNode = SDValue(MN, 0);
6618     DAG.setRoot(patchableNode);
6619     setValue(&I, patchableNode);
6620     return nullptr;
6621   }
6622   case Intrinsic::experimental_deoptimize:
6623     LowerDeoptimizeCall(&I);
6624     return nullptr;
6625 
6626   case Intrinsic::experimental_vector_reduce_fadd:
6627   case Intrinsic::experimental_vector_reduce_fmul:
6628   case Intrinsic::experimental_vector_reduce_add:
6629   case Intrinsic::experimental_vector_reduce_mul:
6630   case Intrinsic::experimental_vector_reduce_and:
6631   case Intrinsic::experimental_vector_reduce_or:
6632   case Intrinsic::experimental_vector_reduce_xor:
6633   case Intrinsic::experimental_vector_reduce_smax:
6634   case Intrinsic::experimental_vector_reduce_smin:
6635   case Intrinsic::experimental_vector_reduce_umax:
6636   case Intrinsic::experimental_vector_reduce_umin:
6637   case Intrinsic::experimental_vector_reduce_fmax:
6638   case Intrinsic::experimental_vector_reduce_fmin:
6639     visitVectorReduce(I, Intrinsic);
6640     return nullptr;
6641 
6642   case Intrinsic::icall_branch_funnel: {
6643     SmallVector<SDValue, 16> Ops;
6644     Ops.push_back(DAG.getRoot());
6645     Ops.push_back(getValue(I.getArgOperand(0)));
6646 
6647     int64_t Offset;
6648     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6649         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6650     if (!Base)
6651       report_fatal_error(
6652           "llvm.icall.branch.funnel operand must be a GlobalValue");
6653     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6654 
6655     struct BranchFunnelTarget {
6656       int64_t Offset;
6657       SDValue Target;
6658     };
6659     SmallVector<BranchFunnelTarget, 8> Targets;
6660 
6661     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6662       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6663           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6664       if (ElemBase != Base)
6665         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6666                            "to the same GlobalValue");
6667 
6668       SDValue Val = getValue(I.getArgOperand(Op + 1));
6669       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6670       if (!GA)
6671         report_fatal_error(
6672             "llvm.icall.branch.funnel operand must be a GlobalValue");
6673       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6674                                      GA->getGlobal(), getCurSDLoc(),
6675                                      Val.getValueType(), GA->getOffset())});
6676     }
6677     llvm::sort(Targets,
6678                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6679                  return T1.Offset < T2.Offset;
6680                });
6681 
6682     for (auto &T : Targets) {
6683       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6684       Ops.push_back(T.Target);
6685     }
6686 
6687     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6688                                  getCurSDLoc(), MVT::Other, Ops),
6689               0);
6690     DAG.setRoot(N);
6691     setValue(&I, N);
6692     HasTailCall = true;
6693     return nullptr;
6694   }
6695 
6696   case Intrinsic::wasm_landingpad_index:
6697     // Information this intrinsic contained has been transferred to
6698     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6699     // delete it now.
6700     return nullptr;
6701   }
6702 }
6703 
6704 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6705     const ConstrainedFPIntrinsic &FPI) {
6706   SDLoc sdl = getCurSDLoc();
6707   unsigned Opcode;
6708   switch (FPI.getIntrinsicID()) {
6709   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6710   case Intrinsic::experimental_constrained_fadd:
6711     Opcode = ISD::STRICT_FADD;
6712     break;
6713   case Intrinsic::experimental_constrained_fsub:
6714     Opcode = ISD::STRICT_FSUB;
6715     break;
6716   case Intrinsic::experimental_constrained_fmul:
6717     Opcode = ISD::STRICT_FMUL;
6718     break;
6719   case Intrinsic::experimental_constrained_fdiv:
6720     Opcode = ISD::STRICT_FDIV;
6721     break;
6722   case Intrinsic::experimental_constrained_frem:
6723     Opcode = ISD::STRICT_FREM;
6724     break;
6725   case Intrinsic::experimental_constrained_fma:
6726     Opcode = ISD::STRICT_FMA;
6727     break;
6728   case Intrinsic::experimental_constrained_sqrt:
6729     Opcode = ISD::STRICT_FSQRT;
6730     break;
6731   case Intrinsic::experimental_constrained_pow:
6732     Opcode = ISD::STRICT_FPOW;
6733     break;
6734   case Intrinsic::experimental_constrained_powi:
6735     Opcode = ISD::STRICT_FPOWI;
6736     break;
6737   case Intrinsic::experimental_constrained_sin:
6738     Opcode = ISD::STRICT_FSIN;
6739     break;
6740   case Intrinsic::experimental_constrained_cos:
6741     Opcode = ISD::STRICT_FCOS;
6742     break;
6743   case Intrinsic::experimental_constrained_exp:
6744     Opcode = ISD::STRICT_FEXP;
6745     break;
6746   case Intrinsic::experimental_constrained_exp2:
6747     Opcode = ISD::STRICT_FEXP2;
6748     break;
6749   case Intrinsic::experimental_constrained_log:
6750     Opcode = ISD::STRICT_FLOG;
6751     break;
6752   case Intrinsic::experimental_constrained_log10:
6753     Opcode = ISD::STRICT_FLOG10;
6754     break;
6755   case Intrinsic::experimental_constrained_log2:
6756     Opcode = ISD::STRICT_FLOG2;
6757     break;
6758   case Intrinsic::experimental_constrained_rint:
6759     Opcode = ISD::STRICT_FRINT;
6760     break;
6761   case Intrinsic::experimental_constrained_nearbyint:
6762     Opcode = ISD::STRICT_FNEARBYINT;
6763     break;
6764   case Intrinsic::experimental_constrained_maxnum:
6765     Opcode = ISD::STRICT_FMAXNUM;
6766     break;
6767   case Intrinsic::experimental_constrained_minnum:
6768     Opcode = ISD::STRICT_FMINNUM;
6769     break;
6770   case Intrinsic::experimental_constrained_ceil:
6771     Opcode = ISD::STRICT_FCEIL;
6772     break;
6773   case Intrinsic::experimental_constrained_floor:
6774     Opcode = ISD::STRICT_FFLOOR;
6775     break;
6776   case Intrinsic::experimental_constrained_round:
6777     Opcode = ISD::STRICT_FROUND;
6778     break;
6779   case Intrinsic::experimental_constrained_trunc:
6780     Opcode = ISD::STRICT_FTRUNC;
6781     break;
6782   }
6783   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6784   SDValue Chain = getRoot();
6785   SmallVector<EVT, 4> ValueVTs;
6786   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6787   ValueVTs.push_back(MVT::Other); // Out chain
6788 
6789   SDVTList VTs = DAG.getVTList(ValueVTs);
6790   SDValue Result;
6791   if (FPI.isUnaryOp())
6792     Result = DAG.getNode(Opcode, sdl, VTs,
6793                          { Chain, getValue(FPI.getArgOperand(0)) });
6794   else if (FPI.isTernaryOp())
6795     Result = DAG.getNode(Opcode, sdl, VTs,
6796                          { Chain, getValue(FPI.getArgOperand(0)),
6797                                   getValue(FPI.getArgOperand(1)),
6798                                   getValue(FPI.getArgOperand(2)) });
6799   else
6800     Result = DAG.getNode(Opcode, sdl, VTs,
6801                          { Chain, getValue(FPI.getArgOperand(0)),
6802                            getValue(FPI.getArgOperand(1))  });
6803 
6804   assert(Result.getNode()->getNumValues() == 2);
6805   SDValue OutChain = Result.getValue(1);
6806   DAG.setRoot(OutChain);
6807   SDValue FPResult = Result.getValue(0);
6808   setValue(&FPI, FPResult);
6809 }
6810 
6811 std::pair<SDValue, SDValue>
6812 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6813                                     const BasicBlock *EHPadBB) {
6814   MachineFunction &MF = DAG.getMachineFunction();
6815   MachineModuleInfo &MMI = MF.getMMI();
6816   MCSymbol *BeginLabel = nullptr;
6817 
6818   if (EHPadBB) {
6819     // Insert a label before the invoke call to mark the try range.  This can be
6820     // used to detect deletion of the invoke via the MachineModuleInfo.
6821     BeginLabel = MMI.getContext().createTempSymbol();
6822 
6823     // For SjLj, keep track of which landing pads go with which invokes
6824     // so as to maintain the ordering of pads in the LSDA.
6825     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6826     if (CallSiteIndex) {
6827       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6828       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6829 
6830       // Now that the call site is handled, stop tracking it.
6831       MMI.setCurrentCallSite(0);
6832     }
6833 
6834     // Both PendingLoads and PendingExports must be flushed here;
6835     // this call might not return.
6836     (void)getRoot();
6837     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6838 
6839     CLI.setChain(getRoot());
6840   }
6841   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6842   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6843 
6844   assert((CLI.IsTailCall || Result.second.getNode()) &&
6845          "Non-null chain expected with non-tail call!");
6846   assert((Result.second.getNode() || !Result.first.getNode()) &&
6847          "Null value expected with tail call!");
6848 
6849   if (!Result.second.getNode()) {
6850     // As a special case, a null chain means that a tail call has been emitted
6851     // and the DAG root is already updated.
6852     HasTailCall = true;
6853 
6854     // Since there's no actual continuation from this block, nothing can be
6855     // relying on us setting vregs for them.
6856     PendingExports.clear();
6857   } else {
6858     DAG.setRoot(Result.second);
6859   }
6860 
6861   if (EHPadBB) {
6862     // Insert a label at the end of the invoke call to mark the try range.  This
6863     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6864     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6865     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6866 
6867     // Inform MachineModuleInfo of range.
6868     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6869     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6870     // actually use outlined funclets and their LSDA info style.
6871     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6872       assert(CLI.CS);
6873       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6874       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6875                                 BeginLabel, EndLabel);
6876     } else if (!isScopedEHPersonality(Pers)) {
6877       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6878     }
6879   }
6880 
6881   return Result;
6882 }
6883 
6884 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6885                                       bool isTailCall,
6886                                       const BasicBlock *EHPadBB) {
6887   auto &DL = DAG.getDataLayout();
6888   FunctionType *FTy = CS.getFunctionType();
6889   Type *RetTy = CS.getType();
6890 
6891   TargetLowering::ArgListTy Args;
6892   Args.reserve(CS.arg_size());
6893 
6894   const Value *SwiftErrorVal = nullptr;
6895   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6896 
6897   // We can't tail call inside a function with a swifterror argument. Lowering
6898   // does not support this yet. It would have to move into the swifterror
6899   // register before the call.
6900   auto *Caller = CS.getInstruction()->getParent()->getParent();
6901   if (TLI.supportSwiftError() &&
6902       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6903     isTailCall = false;
6904 
6905   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6906        i != e; ++i) {
6907     TargetLowering::ArgListEntry Entry;
6908     const Value *V = *i;
6909 
6910     // Skip empty types
6911     if (V->getType()->isEmptyTy())
6912       continue;
6913 
6914     SDValue ArgNode = getValue(V);
6915     Entry.Node = ArgNode; Entry.Ty = V->getType();
6916 
6917     Entry.setAttributes(&CS, i - CS.arg_begin());
6918 
6919     // Use swifterror virtual register as input to the call.
6920     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6921       SwiftErrorVal = V;
6922       // We find the virtual register for the actual swifterror argument.
6923       // Instead of using the Value, we use the virtual register instead.
6924       Entry.Node = DAG.getRegister(FuncInfo
6925                                        .getOrCreateSwiftErrorVRegUseAt(
6926                                            CS.getInstruction(), FuncInfo.MBB, V)
6927                                        .first,
6928                                    EVT(TLI.getPointerTy(DL)));
6929     }
6930 
6931     Args.push_back(Entry);
6932 
6933     // If we have an explicit sret argument that is an Instruction, (i.e., it
6934     // might point to function-local memory), we can't meaningfully tail-call.
6935     if (Entry.IsSRet && isa<Instruction>(V))
6936       isTailCall = false;
6937   }
6938 
6939   // Check if target-independent constraints permit a tail call here.
6940   // Target-dependent constraints are checked within TLI->LowerCallTo.
6941   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6942     isTailCall = false;
6943 
6944   // Disable tail calls if there is an swifterror argument. Targets have not
6945   // been updated to support tail calls.
6946   if (TLI.supportSwiftError() && SwiftErrorVal)
6947     isTailCall = false;
6948 
6949   TargetLowering::CallLoweringInfo CLI(DAG);
6950   CLI.setDebugLoc(getCurSDLoc())
6951       .setChain(getRoot())
6952       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6953       .setTailCall(isTailCall)
6954       .setConvergent(CS.isConvergent());
6955   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6956 
6957   if (Result.first.getNode()) {
6958     const Instruction *Inst = CS.getInstruction();
6959     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6960     setValue(Inst, Result.first);
6961   }
6962 
6963   // The last element of CLI.InVals has the SDValue for swifterror return.
6964   // Here we copy it to a virtual register and update SwiftErrorMap for
6965   // book-keeping.
6966   if (SwiftErrorVal && TLI.supportSwiftError()) {
6967     // Get the last element of InVals.
6968     SDValue Src = CLI.InVals.back();
6969     unsigned VReg; bool CreatedVReg;
6970     std::tie(VReg, CreatedVReg) =
6971         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6972     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6973     // We update the virtual register for the actual swifterror argument.
6974     if (CreatedVReg)
6975       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6976     DAG.setRoot(CopyNode);
6977   }
6978 }
6979 
6980 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6981                              SelectionDAGBuilder &Builder) {
6982   // Check to see if this load can be trivially constant folded, e.g. if the
6983   // input is from a string literal.
6984   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6985     // Cast pointer to the type we really want to load.
6986     Type *LoadTy =
6987         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6988     if (LoadVT.isVector())
6989       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6990 
6991     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6992                                          PointerType::getUnqual(LoadTy));
6993 
6994     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6995             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6996       return Builder.getValue(LoadCst);
6997   }
6998 
6999   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7000   // still constant memory, the input chain can be the entry node.
7001   SDValue Root;
7002   bool ConstantMemory = false;
7003 
7004   // Do not serialize (non-volatile) loads of constant memory with anything.
7005   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7006     Root = Builder.DAG.getEntryNode();
7007     ConstantMemory = true;
7008   } else {
7009     // Do not serialize non-volatile loads against each other.
7010     Root = Builder.DAG.getRoot();
7011   }
7012 
7013   SDValue Ptr = Builder.getValue(PtrVal);
7014   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7015                                         Ptr, MachinePointerInfo(PtrVal),
7016                                         /* Alignment = */ 1);
7017 
7018   if (!ConstantMemory)
7019     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7020   return LoadVal;
7021 }
7022 
7023 /// Record the value for an instruction that produces an integer result,
7024 /// converting the type where necessary.
7025 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7026                                                   SDValue Value,
7027                                                   bool IsSigned) {
7028   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7029                                                     I.getType(), true);
7030   if (IsSigned)
7031     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7032   else
7033     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7034   setValue(&I, Value);
7035 }
7036 
7037 /// See if we can lower a memcmp call into an optimized form. If so, return
7038 /// true and lower it. Otherwise return false, and it will be lowered like a
7039 /// normal call.
7040 /// The caller already checked that \p I calls the appropriate LibFunc with a
7041 /// correct prototype.
7042 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7043   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7044   const Value *Size = I.getArgOperand(2);
7045   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7046   if (CSize && CSize->getZExtValue() == 0) {
7047     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7048                                                           I.getType(), true);
7049     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7050     return true;
7051   }
7052 
7053   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7054   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7055       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7056       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7057   if (Res.first.getNode()) {
7058     processIntegerCallValue(I, Res.first, true);
7059     PendingLoads.push_back(Res.second);
7060     return true;
7061   }
7062 
7063   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7064   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7065   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7066     return false;
7067 
7068   // If the target has a fast compare for the given size, it will return a
7069   // preferred load type for that size. Require that the load VT is legal and
7070   // that the target supports unaligned loads of that type. Otherwise, return
7071   // INVALID.
7072   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7073     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7074     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7075     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7076       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7077       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7078       // TODO: Check alignment of src and dest ptrs.
7079       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7080       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7081       if (!TLI.isTypeLegal(LVT) ||
7082           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7083           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7084         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7085     }
7086 
7087     return LVT;
7088   };
7089 
7090   // This turns into unaligned loads. We only do this if the target natively
7091   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7092   // we'll only produce a small number of byte loads.
7093   MVT LoadVT;
7094   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7095   switch (NumBitsToCompare) {
7096   default:
7097     return false;
7098   case 16:
7099     LoadVT = MVT::i16;
7100     break;
7101   case 32:
7102     LoadVT = MVT::i32;
7103     break;
7104   case 64:
7105   case 128:
7106   case 256:
7107     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7108     break;
7109   }
7110 
7111   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7112     return false;
7113 
7114   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7115   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7116 
7117   // Bitcast to a wide integer type if the loads are vectors.
7118   if (LoadVT.isVector()) {
7119     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7120     LoadL = DAG.getBitcast(CmpVT, LoadL);
7121     LoadR = DAG.getBitcast(CmpVT, LoadR);
7122   }
7123 
7124   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7125   processIntegerCallValue(I, Cmp, false);
7126   return true;
7127 }
7128 
7129 /// See if we can lower a memchr call into an optimized form. If so, return
7130 /// true and lower it. Otherwise return false, and it will be lowered like a
7131 /// normal call.
7132 /// The caller already checked that \p I calls the appropriate LibFunc with a
7133 /// correct prototype.
7134 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7135   const Value *Src = I.getArgOperand(0);
7136   const Value *Char = I.getArgOperand(1);
7137   const Value *Length = I.getArgOperand(2);
7138 
7139   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7140   std::pair<SDValue, SDValue> Res =
7141     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7142                                 getValue(Src), getValue(Char), getValue(Length),
7143                                 MachinePointerInfo(Src));
7144   if (Res.first.getNode()) {
7145     setValue(&I, Res.first);
7146     PendingLoads.push_back(Res.second);
7147     return true;
7148   }
7149 
7150   return false;
7151 }
7152 
7153 /// See if we can lower a mempcpy call into an optimized form. If so, return
7154 /// true and lower it. Otherwise return false, and it will be lowered like a
7155 /// normal call.
7156 /// The caller already checked that \p I calls the appropriate LibFunc with a
7157 /// correct prototype.
7158 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7159   SDValue Dst = getValue(I.getArgOperand(0));
7160   SDValue Src = getValue(I.getArgOperand(1));
7161   SDValue Size = getValue(I.getArgOperand(2));
7162 
7163   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7164   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7165   unsigned Align = std::min(DstAlign, SrcAlign);
7166   if (Align == 0) // Alignment of one or both could not be inferred.
7167     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7168 
7169   bool isVol = false;
7170   SDLoc sdl = getCurSDLoc();
7171 
7172   // In the mempcpy context we need to pass in a false value for isTailCall
7173   // because the return pointer needs to be adjusted by the size of
7174   // the copied memory.
7175   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7176                              false, /*isTailCall=*/false,
7177                              MachinePointerInfo(I.getArgOperand(0)),
7178                              MachinePointerInfo(I.getArgOperand(1)));
7179   assert(MC.getNode() != nullptr &&
7180          "** memcpy should not be lowered as TailCall in mempcpy context **");
7181   DAG.setRoot(MC);
7182 
7183   // Check if Size needs to be truncated or extended.
7184   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7185 
7186   // Adjust return pointer to point just past the last dst byte.
7187   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7188                                     Dst, Size);
7189   setValue(&I, DstPlusSize);
7190   return true;
7191 }
7192 
7193 /// See if we can lower a strcpy call into an optimized form.  If so, return
7194 /// true and lower it, otherwise return false and it will be lowered like a
7195 /// normal call.
7196 /// The caller already checked that \p I calls the appropriate LibFunc with a
7197 /// correct prototype.
7198 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7199   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7200 
7201   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7202   std::pair<SDValue, SDValue> Res =
7203     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7204                                 getValue(Arg0), getValue(Arg1),
7205                                 MachinePointerInfo(Arg0),
7206                                 MachinePointerInfo(Arg1), isStpcpy);
7207   if (Res.first.getNode()) {
7208     setValue(&I, Res.first);
7209     DAG.setRoot(Res.second);
7210     return true;
7211   }
7212 
7213   return false;
7214 }
7215 
7216 /// See if we can lower a strcmp call into an optimized form.  If so, return
7217 /// true and lower it, otherwise return false and it will be lowered like a
7218 /// normal call.
7219 /// The caller already checked that \p I calls the appropriate LibFunc with a
7220 /// correct prototype.
7221 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7222   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7223 
7224   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7225   std::pair<SDValue, SDValue> Res =
7226     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7227                                 getValue(Arg0), getValue(Arg1),
7228                                 MachinePointerInfo(Arg0),
7229                                 MachinePointerInfo(Arg1));
7230   if (Res.first.getNode()) {
7231     processIntegerCallValue(I, Res.first, true);
7232     PendingLoads.push_back(Res.second);
7233     return true;
7234   }
7235 
7236   return false;
7237 }
7238 
7239 /// See if we can lower a strlen call into an optimized form.  If so, return
7240 /// true and lower it, otherwise return false and it will be lowered like a
7241 /// normal call.
7242 /// The caller already checked that \p I calls the appropriate LibFunc with a
7243 /// correct prototype.
7244 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7245   const Value *Arg0 = I.getArgOperand(0);
7246 
7247   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7248   std::pair<SDValue, SDValue> Res =
7249     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7250                                 getValue(Arg0), MachinePointerInfo(Arg0));
7251   if (Res.first.getNode()) {
7252     processIntegerCallValue(I, Res.first, false);
7253     PendingLoads.push_back(Res.second);
7254     return true;
7255   }
7256 
7257   return false;
7258 }
7259 
7260 /// See if we can lower a strnlen call into an optimized form.  If so, return
7261 /// true and lower it, otherwise return false and it will be lowered like a
7262 /// normal call.
7263 /// The caller already checked that \p I calls the appropriate LibFunc with a
7264 /// correct prototype.
7265 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7266   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7267 
7268   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7269   std::pair<SDValue, SDValue> Res =
7270     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7271                                  getValue(Arg0), getValue(Arg1),
7272                                  MachinePointerInfo(Arg0));
7273   if (Res.first.getNode()) {
7274     processIntegerCallValue(I, Res.first, false);
7275     PendingLoads.push_back(Res.second);
7276     return true;
7277   }
7278 
7279   return false;
7280 }
7281 
7282 /// See if we can lower a unary floating-point operation into an SDNode with
7283 /// the specified Opcode.  If so, return true and lower it, otherwise return
7284 /// false and it will be lowered like a normal call.
7285 /// The caller already checked that \p I calls the appropriate LibFunc with a
7286 /// correct prototype.
7287 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7288                                               unsigned Opcode) {
7289   // We already checked this call's prototype; verify it doesn't modify errno.
7290   if (!I.onlyReadsMemory())
7291     return false;
7292 
7293   SDValue Tmp = getValue(I.getArgOperand(0));
7294   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7295   return true;
7296 }
7297 
7298 /// See if we can lower a binary floating-point operation into an SDNode with
7299 /// the specified Opcode. If so, return true and lower it. Otherwise return
7300 /// false, and it will be lowered like a normal call.
7301 /// The caller already checked that \p I calls the appropriate LibFunc with a
7302 /// correct prototype.
7303 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7304                                                unsigned Opcode) {
7305   // We already checked this call's prototype; verify it doesn't modify errno.
7306   if (!I.onlyReadsMemory())
7307     return false;
7308 
7309   SDValue Tmp0 = getValue(I.getArgOperand(0));
7310   SDValue Tmp1 = getValue(I.getArgOperand(1));
7311   EVT VT = Tmp0.getValueType();
7312   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7313   return true;
7314 }
7315 
7316 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7317   // Handle inline assembly differently.
7318   if (isa<InlineAsm>(I.getCalledValue())) {
7319     visitInlineAsm(&I);
7320     return;
7321   }
7322 
7323   const char *RenameFn = nullptr;
7324   if (Function *F = I.getCalledFunction()) {
7325     if (F->isDeclaration()) {
7326       // Is this an LLVM intrinsic or a target-specific intrinsic?
7327       unsigned IID = F->getIntrinsicID();
7328       if (!IID)
7329         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7330           IID = II->getIntrinsicID(F);
7331 
7332       if (IID) {
7333         RenameFn = visitIntrinsicCall(I, IID);
7334         if (!RenameFn)
7335           return;
7336       }
7337     }
7338 
7339     // Check for well-known libc/libm calls.  If the function is internal, it
7340     // can't be a library call.  Don't do the check if marked as nobuiltin for
7341     // some reason or the call site requires strict floating point semantics.
7342     LibFunc Func;
7343     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7344         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7345         LibInfo->hasOptimizedCodeGen(Func)) {
7346       switch (Func) {
7347       default: break;
7348       case LibFunc_copysign:
7349       case LibFunc_copysignf:
7350       case LibFunc_copysignl:
7351         // We already checked this call's prototype; verify it doesn't modify
7352         // errno.
7353         if (I.onlyReadsMemory()) {
7354           SDValue LHS = getValue(I.getArgOperand(0));
7355           SDValue RHS = getValue(I.getArgOperand(1));
7356           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7357                                    LHS.getValueType(), LHS, RHS));
7358           return;
7359         }
7360         break;
7361       case LibFunc_fabs:
7362       case LibFunc_fabsf:
7363       case LibFunc_fabsl:
7364         if (visitUnaryFloatCall(I, ISD::FABS))
7365           return;
7366         break;
7367       case LibFunc_fmin:
7368       case LibFunc_fminf:
7369       case LibFunc_fminl:
7370         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7371           return;
7372         break;
7373       case LibFunc_fmax:
7374       case LibFunc_fmaxf:
7375       case LibFunc_fmaxl:
7376         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7377           return;
7378         break;
7379       case LibFunc_sin:
7380       case LibFunc_sinf:
7381       case LibFunc_sinl:
7382         if (visitUnaryFloatCall(I, ISD::FSIN))
7383           return;
7384         break;
7385       case LibFunc_cos:
7386       case LibFunc_cosf:
7387       case LibFunc_cosl:
7388         if (visitUnaryFloatCall(I, ISD::FCOS))
7389           return;
7390         break;
7391       case LibFunc_sqrt:
7392       case LibFunc_sqrtf:
7393       case LibFunc_sqrtl:
7394       case LibFunc_sqrt_finite:
7395       case LibFunc_sqrtf_finite:
7396       case LibFunc_sqrtl_finite:
7397         if (visitUnaryFloatCall(I, ISD::FSQRT))
7398           return;
7399         break;
7400       case LibFunc_floor:
7401       case LibFunc_floorf:
7402       case LibFunc_floorl:
7403         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7404           return;
7405         break;
7406       case LibFunc_nearbyint:
7407       case LibFunc_nearbyintf:
7408       case LibFunc_nearbyintl:
7409         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7410           return;
7411         break;
7412       case LibFunc_ceil:
7413       case LibFunc_ceilf:
7414       case LibFunc_ceill:
7415         if (visitUnaryFloatCall(I, ISD::FCEIL))
7416           return;
7417         break;
7418       case LibFunc_rint:
7419       case LibFunc_rintf:
7420       case LibFunc_rintl:
7421         if (visitUnaryFloatCall(I, ISD::FRINT))
7422           return;
7423         break;
7424       case LibFunc_round:
7425       case LibFunc_roundf:
7426       case LibFunc_roundl:
7427         if (visitUnaryFloatCall(I, ISD::FROUND))
7428           return;
7429         break;
7430       case LibFunc_trunc:
7431       case LibFunc_truncf:
7432       case LibFunc_truncl:
7433         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7434           return;
7435         break;
7436       case LibFunc_log2:
7437       case LibFunc_log2f:
7438       case LibFunc_log2l:
7439         if (visitUnaryFloatCall(I, ISD::FLOG2))
7440           return;
7441         break;
7442       case LibFunc_exp2:
7443       case LibFunc_exp2f:
7444       case LibFunc_exp2l:
7445         if (visitUnaryFloatCall(I, ISD::FEXP2))
7446           return;
7447         break;
7448       case LibFunc_memcmp:
7449         if (visitMemCmpCall(I))
7450           return;
7451         break;
7452       case LibFunc_mempcpy:
7453         if (visitMemPCpyCall(I))
7454           return;
7455         break;
7456       case LibFunc_memchr:
7457         if (visitMemChrCall(I))
7458           return;
7459         break;
7460       case LibFunc_strcpy:
7461         if (visitStrCpyCall(I, false))
7462           return;
7463         break;
7464       case LibFunc_stpcpy:
7465         if (visitStrCpyCall(I, true))
7466           return;
7467         break;
7468       case LibFunc_strcmp:
7469         if (visitStrCmpCall(I))
7470           return;
7471         break;
7472       case LibFunc_strlen:
7473         if (visitStrLenCall(I))
7474           return;
7475         break;
7476       case LibFunc_strnlen:
7477         if (visitStrNLenCall(I))
7478           return;
7479         break;
7480       }
7481     }
7482   }
7483 
7484   SDValue Callee;
7485   if (!RenameFn)
7486     Callee = getValue(I.getCalledValue());
7487   else
7488     Callee = DAG.getExternalSymbol(
7489         RenameFn,
7490         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7491 
7492   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7493   // have to do anything here to lower funclet bundles.
7494   assert(!I.hasOperandBundlesOtherThan(
7495              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7496          "Cannot lower calls with arbitrary operand bundles!");
7497 
7498   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7499     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7500   else
7501     // Check if we can potentially perform a tail call. More detailed checking
7502     // is be done within LowerCallTo, after more information about the call is
7503     // known.
7504     LowerCallTo(&I, Callee, I.isTailCall());
7505 }
7506 
7507 namespace {
7508 
7509 /// AsmOperandInfo - This contains information for each constraint that we are
7510 /// lowering.
7511 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7512 public:
7513   /// CallOperand - If this is the result output operand or a clobber
7514   /// this is null, otherwise it is the incoming operand to the CallInst.
7515   /// This gets modified as the asm is processed.
7516   SDValue CallOperand;
7517 
7518   /// AssignedRegs - If this is a register or register class operand, this
7519   /// contains the set of register corresponding to the operand.
7520   RegsForValue AssignedRegs;
7521 
7522   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7523     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7524   }
7525 
7526   /// Whether or not this operand accesses memory
7527   bool hasMemory(const TargetLowering &TLI) const {
7528     // Indirect operand accesses access memory.
7529     if (isIndirect)
7530       return true;
7531 
7532     for (const auto &Code : Codes)
7533       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7534         return true;
7535 
7536     return false;
7537   }
7538 
7539   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7540   /// corresponds to.  If there is no Value* for this operand, it returns
7541   /// MVT::Other.
7542   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7543                            const DataLayout &DL) const {
7544     if (!CallOperandVal) return MVT::Other;
7545 
7546     if (isa<BasicBlock>(CallOperandVal))
7547       return TLI.getPointerTy(DL);
7548 
7549     llvm::Type *OpTy = CallOperandVal->getType();
7550 
7551     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7552     // If this is an indirect operand, the operand is a pointer to the
7553     // accessed type.
7554     if (isIndirect) {
7555       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7556       if (!PtrTy)
7557         report_fatal_error("Indirect operand for inline asm not a pointer!");
7558       OpTy = PtrTy->getElementType();
7559     }
7560 
7561     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7562     if (StructType *STy = dyn_cast<StructType>(OpTy))
7563       if (STy->getNumElements() == 1)
7564         OpTy = STy->getElementType(0);
7565 
7566     // If OpTy is not a single value, it may be a struct/union that we
7567     // can tile with integers.
7568     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7569       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7570       switch (BitSize) {
7571       default: break;
7572       case 1:
7573       case 8:
7574       case 16:
7575       case 32:
7576       case 64:
7577       case 128:
7578         OpTy = IntegerType::get(Context, BitSize);
7579         break;
7580       }
7581     }
7582 
7583     return TLI.getValueType(DL, OpTy, true);
7584   }
7585 };
7586 
7587 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7588 
7589 } // end anonymous namespace
7590 
7591 /// Make sure that the output operand \p OpInfo and its corresponding input
7592 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7593 /// out).
7594 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7595                                SDISelAsmOperandInfo &MatchingOpInfo,
7596                                SelectionDAG &DAG) {
7597   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7598     return;
7599 
7600   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7601   const auto &TLI = DAG.getTargetLoweringInfo();
7602 
7603   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7604       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7605                                        OpInfo.ConstraintVT);
7606   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7607       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7608                                        MatchingOpInfo.ConstraintVT);
7609   if ((OpInfo.ConstraintVT.isInteger() !=
7610        MatchingOpInfo.ConstraintVT.isInteger()) ||
7611       (MatchRC.second != InputRC.second)) {
7612     // FIXME: error out in a more elegant fashion
7613     report_fatal_error("Unsupported asm: input constraint"
7614                        " with a matching output constraint of"
7615                        " incompatible type!");
7616   }
7617   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7618 }
7619 
7620 /// Get a direct memory input to behave well as an indirect operand.
7621 /// This may introduce stores, hence the need for a \p Chain.
7622 /// \return The (possibly updated) chain.
7623 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7624                                         SDISelAsmOperandInfo &OpInfo,
7625                                         SelectionDAG &DAG) {
7626   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7627 
7628   // If we don't have an indirect input, put it in the constpool if we can,
7629   // otherwise spill it to a stack slot.
7630   // TODO: This isn't quite right. We need to handle these according to
7631   // the addressing mode that the constraint wants. Also, this may take
7632   // an additional register for the computation and we don't want that
7633   // either.
7634 
7635   // If the operand is a float, integer, or vector constant, spill to a
7636   // constant pool entry to get its address.
7637   const Value *OpVal = OpInfo.CallOperandVal;
7638   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7639       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7640     OpInfo.CallOperand = DAG.getConstantPool(
7641         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7642     return Chain;
7643   }
7644 
7645   // Otherwise, create a stack slot and emit a store to it before the asm.
7646   Type *Ty = OpVal->getType();
7647   auto &DL = DAG.getDataLayout();
7648   uint64_t TySize = DL.getTypeAllocSize(Ty);
7649   unsigned Align = DL.getPrefTypeAlignment(Ty);
7650   MachineFunction &MF = DAG.getMachineFunction();
7651   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7652   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7653   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7654                        MachinePointerInfo::getFixedStack(MF, SSFI));
7655   OpInfo.CallOperand = StackSlot;
7656 
7657   return Chain;
7658 }
7659 
7660 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7661 /// specified operand.  We prefer to assign virtual registers, to allow the
7662 /// register allocator to handle the assignment process.  However, if the asm
7663 /// uses features that we can't model on machineinstrs, we have SDISel do the
7664 /// allocation.  This produces generally horrible, but correct, code.
7665 ///
7666 ///   OpInfo describes the operand
7667 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7668 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7669                                  SDISelAsmOperandInfo &OpInfo,
7670                                  SDISelAsmOperandInfo &RefOpInfo) {
7671   LLVMContext &Context = *DAG.getContext();
7672   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7673 
7674   MachineFunction &MF = DAG.getMachineFunction();
7675   SmallVector<unsigned, 4> Regs;
7676   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7677 
7678   // No work to do for memory operations.
7679   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7680     return;
7681 
7682   // If this is a constraint for a single physreg, or a constraint for a
7683   // register class, find it.
7684   unsigned AssignedReg;
7685   const TargetRegisterClass *RC;
7686   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7687       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7688   // RC is unset only on failure. Return immediately.
7689   if (!RC)
7690     return;
7691 
7692   // Get the actual register value type.  This is important, because the user
7693   // may have asked for (e.g.) the AX register in i32 type.  We need to
7694   // remember that AX is actually i16 to get the right extension.
7695   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7696 
7697   if (OpInfo.ConstraintVT != MVT::Other) {
7698     // If this is an FP operand in an integer register (or visa versa), or more
7699     // generally if the operand value disagrees with the register class we plan
7700     // to stick it in, fix the operand type.
7701     //
7702     // If this is an input value, the bitcast to the new type is done now.
7703     // Bitcast for output value is done at the end of visitInlineAsm().
7704     if ((OpInfo.Type == InlineAsm::isOutput ||
7705          OpInfo.Type == InlineAsm::isInput) &&
7706         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7707       // Try to convert to the first EVT that the reg class contains.  If the
7708       // types are identical size, use a bitcast to convert (e.g. two differing
7709       // vector types).  Note: output bitcast is done at the end of
7710       // visitInlineAsm().
7711       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7712         // Exclude indirect inputs while they are unsupported because the code
7713         // to perform the load is missing and thus OpInfo.CallOperand still
7714         // refers to the input address rather than the pointed-to value.
7715         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7716           OpInfo.CallOperand =
7717               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7718         OpInfo.ConstraintVT = RegVT;
7719         // If the operand is an FP value and we want it in integer registers,
7720         // use the corresponding integer type. This turns an f64 value into
7721         // i64, which can be passed with two i32 values on a 32-bit machine.
7722       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7723         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7724         if (OpInfo.Type == InlineAsm::isInput)
7725           OpInfo.CallOperand =
7726               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7727         OpInfo.ConstraintVT = VT;
7728       }
7729     }
7730   }
7731 
7732   // No need to allocate a matching input constraint since the constraint it's
7733   // matching to has already been allocated.
7734   if (OpInfo.isMatchingInputConstraint())
7735     return;
7736 
7737   EVT ValueVT = OpInfo.ConstraintVT;
7738   if (OpInfo.ConstraintVT == MVT::Other)
7739     ValueVT = RegVT;
7740 
7741   // Initialize NumRegs.
7742   unsigned NumRegs = 1;
7743   if (OpInfo.ConstraintVT != MVT::Other)
7744     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7745 
7746   // If this is a constraint for a specific physical register, like {r17},
7747   // assign it now.
7748 
7749   // If this associated to a specific register, initialize iterator to correct
7750   // place. If virtual, make sure we have enough registers
7751 
7752   // Initialize iterator if necessary
7753   TargetRegisterClass::iterator I = RC->begin();
7754   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7755 
7756   // Do not check for single registers.
7757   if (AssignedReg) {
7758       for (; *I != AssignedReg; ++I)
7759         assert(I != RC->end() && "AssignedReg should be member of RC");
7760   }
7761 
7762   for (; NumRegs; --NumRegs, ++I) {
7763     assert(I != RC->end() && "Ran out of registers to allocate!");
7764     auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC);
7765     Regs.push_back(R);
7766   }
7767 
7768   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7769 }
7770 
7771 static unsigned
7772 findMatchingInlineAsmOperand(unsigned OperandNo,
7773                              const std::vector<SDValue> &AsmNodeOperands) {
7774   // Scan until we find the definition we already emitted of this operand.
7775   unsigned CurOp = InlineAsm::Op_FirstOperand;
7776   for (; OperandNo; --OperandNo) {
7777     // Advance to the next operand.
7778     unsigned OpFlag =
7779         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7780     assert((InlineAsm::isRegDefKind(OpFlag) ||
7781             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7782             InlineAsm::isMemKind(OpFlag)) &&
7783            "Skipped past definitions?");
7784     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7785   }
7786   return CurOp;
7787 }
7788 
7789 namespace {
7790 
7791 class ExtraFlags {
7792   unsigned Flags = 0;
7793 
7794 public:
7795   explicit ExtraFlags(ImmutableCallSite CS) {
7796     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7797     if (IA->hasSideEffects())
7798       Flags |= InlineAsm::Extra_HasSideEffects;
7799     if (IA->isAlignStack())
7800       Flags |= InlineAsm::Extra_IsAlignStack;
7801     if (CS.isConvergent())
7802       Flags |= InlineAsm::Extra_IsConvergent;
7803     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7804   }
7805 
7806   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7807     // Ideally, we would only check against memory constraints.  However, the
7808     // meaning of an Other constraint can be target-specific and we can't easily
7809     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7810     // for Other constraints as well.
7811     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7812         OpInfo.ConstraintType == TargetLowering::C_Other) {
7813       if (OpInfo.Type == InlineAsm::isInput)
7814         Flags |= InlineAsm::Extra_MayLoad;
7815       else if (OpInfo.Type == InlineAsm::isOutput)
7816         Flags |= InlineAsm::Extra_MayStore;
7817       else if (OpInfo.Type == InlineAsm::isClobber)
7818         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7819     }
7820   }
7821 
7822   unsigned get() const { return Flags; }
7823 };
7824 
7825 } // end anonymous namespace
7826 
7827 /// visitInlineAsm - Handle a call to an InlineAsm object.
7828 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7829   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7830 
7831   /// ConstraintOperands - Information about all of the constraints.
7832   SDISelAsmOperandInfoVector ConstraintOperands;
7833 
7834   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7835   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7836       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7837 
7838   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
7839   // AsmDialect, MayLoad, MayStore).
7840   bool HasSideEffect = IA->hasSideEffects();
7841   ExtraFlags ExtraInfo(CS);
7842 
7843   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7844   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7845   for (auto &T : TargetConstraints) {
7846     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
7847     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7848 
7849     // Compute the value type for each operand.
7850     if (OpInfo.Type == InlineAsm::isInput ||
7851         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7852       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7853 
7854       // Process the call argument. BasicBlocks are labels, currently appearing
7855       // only in asm's.
7856       const Instruction *I = CS.getInstruction();
7857       if (isa<CallBrInst>(I) &&
7858           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
7859                           cast<CallBrInst>(I)->getNumIndirectDests())) {
7860         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
7861         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
7862         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
7863       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7864         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7865       } else {
7866         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7867       }
7868 
7869       OpInfo.ConstraintVT =
7870           OpInfo
7871               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7872               .getSimpleVT();
7873     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7874       // The return value of the call is this value.  As such, there is no
7875       // corresponding argument.
7876       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7877       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7878         OpInfo.ConstraintVT = TLI.getSimpleValueType(
7879             DAG.getDataLayout(), STy->getElementType(ResNo));
7880       } else {
7881         assert(ResNo == 0 && "Asm only has one result!");
7882         OpInfo.ConstraintVT =
7883             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7884       }
7885       ++ResNo;
7886     } else {
7887       OpInfo.ConstraintVT = MVT::Other;
7888     }
7889 
7890     if (!HasSideEffect)
7891       HasSideEffect = OpInfo.hasMemory(TLI);
7892 
7893     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7894     // FIXME: Could we compute this on OpInfo rather than T?
7895 
7896     // Compute the constraint code and ConstraintType to use.
7897     TLI.ComputeConstraintToUse(T, SDValue());
7898 
7899     ExtraInfo.update(T);
7900   }
7901 
7902   // We won't need to flush pending loads if this asm doesn't touch
7903   // memory and is nonvolatile.
7904   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
7905 
7906   // Second pass over the constraints: compute which constraint option to use.
7907   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7908     // If this is an output operand with a matching input operand, look up the
7909     // matching input. If their types mismatch, e.g. one is an integer, the
7910     // other is floating point, or their sizes are different, flag it as an
7911     // error.
7912     if (OpInfo.hasMatchingInput()) {
7913       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7914       patchMatchingInput(OpInfo, Input, DAG);
7915     }
7916 
7917     // Compute the constraint code and ConstraintType to use.
7918     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7919 
7920     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7921         OpInfo.Type == InlineAsm::isClobber)
7922       continue;
7923 
7924     // If this is a memory input, and if the operand is not indirect, do what we
7925     // need to provide an address for the memory input.
7926     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7927         !OpInfo.isIndirect) {
7928       assert((OpInfo.isMultipleAlternative ||
7929               (OpInfo.Type == InlineAsm::isInput)) &&
7930              "Can only indirectify direct input operands!");
7931 
7932       // Memory operands really want the address of the value.
7933       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7934 
7935       // There is no longer a Value* corresponding to this operand.
7936       OpInfo.CallOperandVal = nullptr;
7937 
7938       // It is now an indirect operand.
7939       OpInfo.isIndirect = true;
7940     }
7941 
7942   }
7943 
7944   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7945   std::vector<SDValue> AsmNodeOperands;
7946   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7947   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7948       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7949 
7950   // If we have a !srcloc metadata node associated with it, we want to attach
7951   // this to the ultimately generated inline asm machineinstr.  To do this, we
7952   // pass in the third operand as this (potentially null) inline asm MDNode.
7953   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7954   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7955 
7956   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7957   // bits as operand 3.
7958   AsmNodeOperands.push_back(DAG.getTargetConstant(
7959       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7960 
7961   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
7962   // this, assign virtual and physical registers for inputs and otput.
7963   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7964     // Assign Registers.
7965     SDISelAsmOperandInfo &RefOpInfo =
7966         OpInfo.isMatchingInputConstraint()
7967             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7968             : OpInfo;
7969     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
7970 
7971     switch (OpInfo.Type) {
7972     case InlineAsm::isOutput:
7973       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7974           (OpInfo.ConstraintType == TargetLowering::C_Other &&
7975            OpInfo.isIndirect)) {
7976         unsigned ConstraintID =
7977             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7978         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7979                "Failed to convert memory constraint code to constraint id.");
7980 
7981         // Add information to the INLINEASM node to know about this output.
7982         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7983         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7984         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7985                                                         MVT::i32));
7986         AsmNodeOperands.push_back(OpInfo.CallOperand);
7987         break;
7988       } else if ((OpInfo.ConstraintType == TargetLowering::C_Other &&
7989                   !OpInfo.isIndirect) ||
7990                  OpInfo.ConstraintType == TargetLowering::C_Register ||
7991                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
7992         // Otherwise, this outputs to a register (directly for C_Register /
7993         // C_RegisterClass, and a target-defined fashion for C_Other). Find a
7994         // register that we can use.
7995         if (OpInfo.AssignedRegs.Regs.empty()) {
7996           emitInlineAsmError(
7997               CS, "couldn't allocate output register for constraint '" +
7998                       Twine(OpInfo.ConstraintCode) + "'");
7999           return;
8000         }
8001 
8002         // Add information to the INLINEASM node to know that this register is
8003         // set.
8004         OpInfo.AssignedRegs.AddInlineAsmOperands(
8005             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8006                                   : InlineAsm::Kind_RegDef,
8007             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8008       }
8009       break;
8010 
8011     case InlineAsm::isInput: {
8012       SDValue InOperandVal = OpInfo.CallOperand;
8013 
8014       if (OpInfo.isMatchingInputConstraint()) {
8015         // If this is required to match an output register we have already set,
8016         // just use its register.
8017         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8018                                                   AsmNodeOperands);
8019         unsigned OpFlag =
8020           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8021         if (InlineAsm::isRegDefKind(OpFlag) ||
8022             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8023           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8024           if (OpInfo.isIndirect) {
8025             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8026             emitInlineAsmError(CS, "inline asm not supported yet:"
8027                                    " don't know how to handle tied "
8028                                    "indirect register inputs");
8029             return;
8030           }
8031 
8032           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8033           SmallVector<unsigned, 4> Regs;
8034 
8035           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8036             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8037             MachineRegisterInfo &RegInfo =
8038                 DAG.getMachineFunction().getRegInfo();
8039             for (unsigned i = 0; i != NumRegs; ++i)
8040               Regs.push_back(RegInfo.createVirtualRegister(RC));
8041           } else {
8042             emitInlineAsmError(CS, "inline asm error: This value type register "
8043                                    "class is not natively supported!");
8044             return;
8045           }
8046 
8047           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8048 
8049           SDLoc dl = getCurSDLoc();
8050           // Use the produced MatchedRegs object to
8051           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8052                                     CS.getInstruction());
8053           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8054                                            true, OpInfo.getMatchedOperand(), dl,
8055                                            DAG, AsmNodeOperands);
8056           break;
8057         }
8058 
8059         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8060         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8061                "Unexpected number of operands");
8062         // Add information to the INLINEASM node to know about this input.
8063         // See InlineAsm.h isUseOperandTiedToDef.
8064         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8065         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8066                                                     OpInfo.getMatchedOperand());
8067         AsmNodeOperands.push_back(DAG.getTargetConstant(
8068             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8069         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8070         break;
8071       }
8072 
8073       // Treat indirect 'X' constraint as memory.
8074       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8075           OpInfo.isIndirect)
8076         OpInfo.ConstraintType = TargetLowering::C_Memory;
8077 
8078       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
8079         std::vector<SDValue> Ops;
8080         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8081                                           Ops, DAG);
8082         if (Ops.empty()) {
8083           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8084                                      Twine(OpInfo.ConstraintCode) + "'");
8085           return;
8086         }
8087 
8088         // Add information to the INLINEASM node to know about this input.
8089         unsigned ResOpType =
8090           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8091         AsmNodeOperands.push_back(DAG.getTargetConstant(
8092             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8093         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8094         break;
8095       }
8096 
8097       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8098         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8099         assert(InOperandVal.getValueType() ==
8100                    TLI.getPointerTy(DAG.getDataLayout()) &&
8101                "Memory operands expect pointer values");
8102 
8103         unsigned ConstraintID =
8104             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8105         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8106                "Failed to convert memory constraint code to constraint id.");
8107 
8108         // Add information to the INLINEASM node to know about this input.
8109         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8110         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8111         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8112                                                         getCurSDLoc(),
8113                                                         MVT::i32));
8114         AsmNodeOperands.push_back(InOperandVal);
8115         break;
8116       }
8117 
8118       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8119               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8120              "Unknown constraint type!");
8121 
8122       // TODO: Support this.
8123       if (OpInfo.isIndirect) {
8124         emitInlineAsmError(
8125             CS, "Don't know how to handle indirect register inputs yet "
8126                 "for constraint '" +
8127                     Twine(OpInfo.ConstraintCode) + "'");
8128         return;
8129       }
8130 
8131       // Copy the input into the appropriate registers.
8132       if (OpInfo.AssignedRegs.Regs.empty()) {
8133         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8134                                    Twine(OpInfo.ConstraintCode) + "'");
8135         return;
8136       }
8137 
8138       SDLoc dl = getCurSDLoc();
8139 
8140       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8141                                         Chain, &Flag, CS.getInstruction());
8142 
8143       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8144                                                dl, DAG, AsmNodeOperands);
8145       break;
8146     }
8147     case InlineAsm::isClobber:
8148       // Add the clobbered value to the operand list, so that the register
8149       // allocator is aware that the physreg got clobbered.
8150       if (!OpInfo.AssignedRegs.Regs.empty())
8151         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8152                                                  false, 0, getCurSDLoc(), DAG,
8153                                                  AsmNodeOperands);
8154       break;
8155     }
8156   }
8157 
8158   // Finish up input operands.  Set the input chain and add the flag last.
8159   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8160   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8161 
8162   unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR : ISD::INLINEASM;
8163   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8164                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8165   Flag = Chain.getValue(1);
8166 
8167   // Do additional work to generate outputs.
8168 
8169   SmallVector<EVT, 1> ResultVTs;
8170   SmallVector<SDValue, 1> ResultValues;
8171   SmallVector<SDValue, 8> OutChains;
8172 
8173   llvm::Type *CSResultType = CS.getType();
8174   ArrayRef<Type *> ResultTypes;
8175   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8176     ResultTypes = StructResult->elements();
8177   else if (!CSResultType->isVoidTy())
8178     ResultTypes = makeArrayRef(CSResultType);
8179 
8180   auto CurResultType = ResultTypes.begin();
8181   auto handleRegAssign = [&](SDValue V) {
8182     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8183     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8184     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8185     ++CurResultType;
8186     // If the type of the inline asm call site return value is different but has
8187     // same size as the type of the asm output bitcast it.  One example of this
8188     // is for vectors with different width / number of elements.  This can
8189     // happen for register classes that can contain multiple different value
8190     // types.  The preg or vreg allocated may not have the same VT as was
8191     // expected.
8192     //
8193     // This can also happen for a return value that disagrees with the register
8194     // class it is put in, eg. a double in a general-purpose register on a
8195     // 32-bit machine.
8196     if (ResultVT != V.getValueType() &&
8197         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8198       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8199     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8200              V.getValueType().isInteger()) {
8201       // If a result value was tied to an input value, the computed result
8202       // may have a wider width than the expected result.  Extract the
8203       // relevant portion.
8204       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8205     }
8206     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8207     ResultVTs.push_back(ResultVT);
8208     ResultValues.push_back(V);
8209   };
8210 
8211   // Deal with output operands.
8212   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8213     if (OpInfo.Type == InlineAsm::isOutput) {
8214       SDValue Val;
8215       // Skip trivial output operands.
8216       if (OpInfo.AssignedRegs.Regs.empty())
8217         continue;
8218 
8219       switch (OpInfo.ConstraintType) {
8220       case TargetLowering::C_Register:
8221       case TargetLowering::C_RegisterClass:
8222         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8223             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8224         break;
8225       case TargetLowering::C_Other:
8226         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8227                                               OpInfo, DAG);
8228         break;
8229       case TargetLowering::C_Memory:
8230         break; // Already handled.
8231       case TargetLowering::C_Unknown:
8232         assert(false && "Unexpected unknown constraint");
8233       }
8234 
8235       // Indirect output manifest as stores. Record output chains.
8236       if (OpInfo.isIndirect) {
8237         const Value *Ptr = OpInfo.CallOperandVal;
8238         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8239         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8240                                      MachinePointerInfo(Ptr));
8241         OutChains.push_back(Store);
8242       } else {
8243         // generate CopyFromRegs to associated registers.
8244         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8245         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8246           for (const SDValue &V : Val->op_values())
8247             handleRegAssign(V);
8248         } else
8249           handleRegAssign(Val);
8250       }
8251     }
8252   }
8253 
8254   // Set results.
8255   if (!ResultValues.empty()) {
8256     assert(CurResultType == ResultTypes.end() &&
8257            "Mismatch in number of ResultTypes");
8258     assert(ResultValues.size() == ResultTypes.size() &&
8259            "Mismatch in number of output operands in asm result");
8260 
8261     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8262                             DAG.getVTList(ResultVTs), ResultValues);
8263     setValue(CS.getInstruction(), V);
8264   }
8265 
8266   // Collect store chains.
8267   if (!OutChains.empty())
8268     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8269 
8270   // Only Update Root if inline assembly has a memory effect.
8271   if (ResultValues.empty() || HasSideEffect || !OutChains.empty())
8272     DAG.setRoot(Chain);
8273 }
8274 
8275 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8276                                              const Twine &Message) {
8277   LLVMContext &Ctx = *DAG.getContext();
8278   Ctx.emitError(CS.getInstruction(), Message);
8279 
8280   // Make sure we leave the DAG in a valid state
8281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8282   SmallVector<EVT, 1> ValueVTs;
8283   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8284 
8285   if (ValueVTs.empty())
8286     return;
8287 
8288   SmallVector<SDValue, 1> Ops;
8289   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8290     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8291 
8292   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8293 }
8294 
8295 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8296   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8297                           MVT::Other, getRoot(),
8298                           getValue(I.getArgOperand(0)),
8299                           DAG.getSrcValue(I.getArgOperand(0))));
8300 }
8301 
8302 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8303   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8304   const DataLayout &DL = DAG.getDataLayout();
8305   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
8306                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
8307                            DAG.getSrcValue(I.getOperand(0)),
8308                            DL.getABITypeAlignment(I.getType()));
8309   setValue(&I, V);
8310   DAG.setRoot(V.getValue(1));
8311 }
8312 
8313 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8314   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8315                           MVT::Other, getRoot(),
8316                           getValue(I.getArgOperand(0)),
8317                           DAG.getSrcValue(I.getArgOperand(0))));
8318 }
8319 
8320 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8321   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8322                           MVT::Other, getRoot(),
8323                           getValue(I.getArgOperand(0)),
8324                           getValue(I.getArgOperand(1)),
8325                           DAG.getSrcValue(I.getArgOperand(0)),
8326                           DAG.getSrcValue(I.getArgOperand(1))));
8327 }
8328 
8329 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8330                                                     const Instruction &I,
8331                                                     SDValue Op) {
8332   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8333   if (!Range)
8334     return Op;
8335 
8336   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8337   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
8338     return Op;
8339 
8340   APInt Lo = CR.getUnsignedMin();
8341   if (!Lo.isMinValue())
8342     return Op;
8343 
8344   APInt Hi = CR.getUnsignedMax();
8345   unsigned Bits = std::max(Hi.getActiveBits(),
8346                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8347 
8348   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8349 
8350   SDLoc SL = getCurSDLoc();
8351 
8352   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8353                              DAG.getValueType(SmallVT));
8354   unsigned NumVals = Op.getNode()->getNumValues();
8355   if (NumVals == 1)
8356     return ZExt;
8357 
8358   SmallVector<SDValue, 4> Ops;
8359 
8360   Ops.push_back(ZExt);
8361   for (unsigned I = 1; I != NumVals; ++I)
8362     Ops.push_back(Op.getValue(I));
8363 
8364   return DAG.getMergeValues(Ops, SL);
8365 }
8366 
8367 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8368 /// the call being lowered.
8369 ///
8370 /// This is a helper for lowering intrinsics that follow a target calling
8371 /// convention or require stack pointer adjustment. Only a subset of the
8372 /// intrinsic's operands need to participate in the calling convention.
8373 void SelectionDAGBuilder::populateCallLoweringInfo(
8374     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8375     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8376     bool IsPatchPoint) {
8377   TargetLowering::ArgListTy Args;
8378   Args.reserve(NumArgs);
8379 
8380   // Populate the argument list.
8381   // Attributes for args start at offset 1, after the return attribute.
8382   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8383        ArgI != ArgE; ++ArgI) {
8384     const Value *V = Call->getOperand(ArgI);
8385 
8386     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8387 
8388     TargetLowering::ArgListEntry Entry;
8389     Entry.Node = getValue(V);
8390     Entry.Ty = V->getType();
8391     Entry.setAttributes(Call, ArgI);
8392     Args.push_back(Entry);
8393   }
8394 
8395   CLI.setDebugLoc(getCurSDLoc())
8396       .setChain(getRoot())
8397       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8398       .setDiscardResult(Call->use_empty())
8399       .setIsPatchPoint(IsPatchPoint);
8400 }
8401 
8402 /// Add a stack map intrinsic call's live variable operands to a stackmap
8403 /// or patchpoint target node's operand list.
8404 ///
8405 /// Constants are converted to TargetConstants purely as an optimization to
8406 /// avoid constant materialization and register allocation.
8407 ///
8408 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8409 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8410 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8411 /// address materialization and register allocation, but may also be required
8412 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8413 /// alloca in the entry block, then the runtime may assume that the alloca's
8414 /// StackMap location can be read immediately after compilation and that the
8415 /// location is valid at any point during execution (this is similar to the
8416 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8417 /// only available in a register, then the runtime would need to trap when
8418 /// execution reaches the StackMap in order to read the alloca's location.
8419 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8420                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8421                                 SelectionDAGBuilder &Builder) {
8422   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8423     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8424     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8425       Ops.push_back(
8426         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8427       Ops.push_back(
8428         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8429     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8430       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8431       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8432           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8433     } else
8434       Ops.push_back(OpVal);
8435   }
8436 }
8437 
8438 /// Lower llvm.experimental.stackmap directly to its target opcode.
8439 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8440   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8441   //                                  [live variables...])
8442 
8443   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8444 
8445   SDValue Chain, InFlag, Callee, NullPtr;
8446   SmallVector<SDValue, 32> Ops;
8447 
8448   SDLoc DL = getCurSDLoc();
8449   Callee = getValue(CI.getCalledValue());
8450   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8451 
8452   // The stackmap intrinsic only records the live variables (the arguemnts
8453   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8454   // intrinsic, this won't be lowered to a function call. This means we don't
8455   // have to worry about calling conventions and target specific lowering code.
8456   // Instead we perform the call lowering right here.
8457   //
8458   // chain, flag = CALLSEQ_START(chain, 0, 0)
8459   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8460   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8461   //
8462   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8463   InFlag = Chain.getValue(1);
8464 
8465   // Add the <id> and <numBytes> constants.
8466   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8467   Ops.push_back(DAG.getTargetConstant(
8468                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8469   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8470   Ops.push_back(DAG.getTargetConstant(
8471                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8472                   MVT::i32));
8473 
8474   // Push live variables for the stack map.
8475   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8476 
8477   // We are not pushing any register mask info here on the operands list,
8478   // because the stackmap doesn't clobber anything.
8479 
8480   // Push the chain and the glue flag.
8481   Ops.push_back(Chain);
8482   Ops.push_back(InFlag);
8483 
8484   // Create the STACKMAP node.
8485   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8486   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8487   Chain = SDValue(SM, 0);
8488   InFlag = Chain.getValue(1);
8489 
8490   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8491 
8492   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8493 
8494   // Set the root to the target-lowered call chain.
8495   DAG.setRoot(Chain);
8496 
8497   // Inform the Frame Information that we have a stackmap in this function.
8498   FuncInfo.MF->getFrameInfo().setHasStackMap();
8499 }
8500 
8501 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8502 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8503                                           const BasicBlock *EHPadBB) {
8504   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8505   //                                                 i32 <numBytes>,
8506   //                                                 i8* <target>,
8507   //                                                 i32 <numArgs>,
8508   //                                                 [Args...],
8509   //                                                 [live variables...])
8510 
8511   CallingConv::ID CC = CS.getCallingConv();
8512   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8513   bool HasDef = !CS->getType()->isVoidTy();
8514   SDLoc dl = getCurSDLoc();
8515   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8516 
8517   // Handle immediate and symbolic callees.
8518   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8519     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8520                                    /*isTarget=*/true);
8521   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8522     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8523                                          SDLoc(SymbolicCallee),
8524                                          SymbolicCallee->getValueType(0));
8525 
8526   // Get the real number of arguments participating in the call <numArgs>
8527   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8528   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8529 
8530   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8531   // Intrinsics include all meta-operands up to but not including CC.
8532   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8533   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8534          "Not enough arguments provided to the patchpoint intrinsic");
8535 
8536   // For AnyRegCC the arguments are lowered later on manually.
8537   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8538   Type *ReturnTy =
8539     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8540 
8541   TargetLowering::CallLoweringInfo CLI(DAG);
8542   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8543                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8544   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8545 
8546   SDNode *CallEnd = Result.second.getNode();
8547   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8548     CallEnd = CallEnd->getOperand(0).getNode();
8549 
8550   /// Get a call instruction from the call sequence chain.
8551   /// Tail calls are not allowed.
8552   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8553          "Expected a callseq node.");
8554   SDNode *Call = CallEnd->getOperand(0).getNode();
8555   bool HasGlue = Call->getGluedNode();
8556 
8557   // Replace the target specific call node with the patchable intrinsic.
8558   SmallVector<SDValue, 8> Ops;
8559 
8560   // Add the <id> and <numBytes> constants.
8561   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8562   Ops.push_back(DAG.getTargetConstant(
8563                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8564   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8565   Ops.push_back(DAG.getTargetConstant(
8566                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8567                   MVT::i32));
8568 
8569   // Add the callee.
8570   Ops.push_back(Callee);
8571 
8572   // Adjust <numArgs> to account for any arguments that have been passed on the
8573   // stack instead.
8574   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8575   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8576   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8577   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8578 
8579   // Add the calling convention
8580   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8581 
8582   // Add the arguments we omitted previously. The register allocator should
8583   // place these in any free register.
8584   if (IsAnyRegCC)
8585     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8586       Ops.push_back(getValue(CS.getArgument(i)));
8587 
8588   // Push the arguments from the call instruction up to the register mask.
8589   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8590   Ops.append(Call->op_begin() + 2, e);
8591 
8592   // Push live variables for the stack map.
8593   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8594 
8595   // Push the register mask info.
8596   if (HasGlue)
8597     Ops.push_back(*(Call->op_end()-2));
8598   else
8599     Ops.push_back(*(Call->op_end()-1));
8600 
8601   // Push the chain (this is originally the first operand of the call, but
8602   // becomes now the last or second to last operand).
8603   Ops.push_back(*(Call->op_begin()));
8604 
8605   // Push the glue flag (last operand).
8606   if (HasGlue)
8607     Ops.push_back(*(Call->op_end()-1));
8608 
8609   SDVTList NodeTys;
8610   if (IsAnyRegCC && HasDef) {
8611     // Create the return types based on the intrinsic definition
8612     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8613     SmallVector<EVT, 3> ValueVTs;
8614     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8615     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8616 
8617     // There is always a chain and a glue type at the end
8618     ValueVTs.push_back(MVT::Other);
8619     ValueVTs.push_back(MVT::Glue);
8620     NodeTys = DAG.getVTList(ValueVTs);
8621   } else
8622     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8623 
8624   // Replace the target specific call node with a PATCHPOINT node.
8625   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8626                                          dl, NodeTys, Ops);
8627 
8628   // Update the NodeMap.
8629   if (HasDef) {
8630     if (IsAnyRegCC)
8631       setValue(CS.getInstruction(), SDValue(MN, 0));
8632     else
8633       setValue(CS.getInstruction(), Result.first);
8634   }
8635 
8636   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8637   // call sequence. Furthermore the location of the chain and glue can change
8638   // when the AnyReg calling convention is used and the intrinsic returns a
8639   // value.
8640   if (IsAnyRegCC && HasDef) {
8641     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8642     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8643     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8644   } else
8645     DAG.ReplaceAllUsesWith(Call, MN);
8646   DAG.DeleteNode(Call);
8647 
8648   // Inform the Frame Information that we have a patchpoint in this function.
8649   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8650 }
8651 
8652 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8653                                             unsigned Intrinsic) {
8654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8655   SDValue Op1 = getValue(I.getArgOperand(0));
8656   SDValue Op2;
8657   if (I.getNumArgOperands() > 1)
8658     Op2 = getValue(I.getArgOperand(1));
8659   SDLoc dl = getCurSDLoc();
8660   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8661   SDValue Res;
8662   FastMathFlags FMF;
8663   if (isa<FPMathOperator>(I))
8664     FMF = I.getFastMathFlags();
8665 
8666   switch (Intrinsic) {
8667   case Intrinsic::experimental_vector_reduce_fadd:
8668     if (FMF.isFast())
8669       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8670     else
8671       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8672     break;
8673   case Intrinsic::experimental_vector_reduce_fmul:
8674     if (FMF.isFast())
8675       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8676     else
8677       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8678     break;
8679   case Intrinsic::experimental_vector_reduce_add:
8680     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8681     break;
8682   case Intrinsic::experimental_vector_reduce_mul:
8683     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8684     break;
8685   case Intrinsic::experimental_vector_reduce_and:
8686     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8687     break;
8688   case Intrinsic::experimental_vector_reduce_or:
8689     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8690     break;
8691   case Intrinsic::experimental_vector_reduce_xor:
8692     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8693     break;
8694   case Intrinsic::experimental_vector_reduce_smax:
8695     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8696     break;
8697   case Intrinsic::experimental_vector_reduce_smin:
8698     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8699     break;
8700   case Intrinsic::experimental_vector_reduce_umax:
8701     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8702     break;
8703   case Intrinsic::experimental_vector_reduce_umin:
8704     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8705     break;
8706   case Intrinsic::experimental_vector_reduce_fmax:
8707     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8708     break;
8709   case Intrinsic::experimental_vector_reduce_fmin:
8710     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8711     break;
8712   default:
8713     llvm_unreachable("Unhandled vector reduce intrinsic");
8714   }
8715   setValue(&I, Res);
8716 }
8717 
8718 /// Returns an AttributeList representing the attributes applied to the return
8719 /// value of the given call.
8720 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8721   SmallVector<Attribute::AttrKind, 2> Attrs;
8722   if (CLI.RetSExt)
8723     Attrs.push_back(Attribute::SExt);
8724   if (CLI.RetZExt)
8725     Attrs.push_back(Attribute::ZExt);
8726   if (CLI.IsInReg)
8727     Attrs.push_back(Attribute::InReg);
8728 
8729   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8730                             Attrs);
8731 }
8732 
8733 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8734 /// implementation, which just calls LowerCall.
8735 /// FIXME: When all targets are
8736 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8737 std::pair<SDValue, SDValue>
8738 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8739   // Handle the incoming return values from the call.
8740   CLI.Ins.clear();
8741   Type *OrigRetTy = CLI.RetTy;
8742   SmallVector<EVT, 4> RetTys;
8743   SmallVector<uint64_t, 4> Offsets;
8744   auto &DL = CLI.DAG.getDataLayout();
8745   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8746 
8747   if (CLI.IsPostTypeLegalization) {
8748     // If we are lowering a libcall after legalization, split the return type.
8749     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8750     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8751     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8752       EVT RetVT = OldRetTys[i];
8753       uint64_t Offset = OldOffsets[i];
8754       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8755       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8756       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8757       RetTys.append(NumRegs, RegisterVT);
8758       for (unsigned j = 0; j != NumRegs; ++j)
8759         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8760     }
8761   }
8762 
8763   SmallVector<ISD::OutputArg, 4> Outs;
8764   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8765 
8766   bool CanLowerReturn =
8767       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8768                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8769 
8770   SDValue DemoteStackSlot;
8771   int DemoteStackIdx = -100;
8772   if (!CanLowerReturn) {
8773     // FIXME: equivalent assert?
8774     // assert(!CS.hasInAllocaArgument() &&
8775     //        "sret demotion is incompatible with inalloca");
8776     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8777     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8778     MachineFunction &MF = CLI.DAG.getMachineFunction();
8779     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8780     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8781                                               DL.getAllocaAddrSpace());
8782 
8783     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8784     ArgListEntry Entry;
8785     Entry.Node = DemoteStackSlot;
8786     Entry.Ty = StackSlotPtrType;
8787     Entry.IsSExt = false;
8788     Entry.IsZExt = false;
8789     Entry.IsInReg = false;
8790     Entry.IsSRet = true;
8791     Entry.IsNest = false;
8792     Entry.IsByVal = false;
8793     Entry.IsReturned = false;
8794     Entry.IsSwiftSelf = false;
8795     Entry.IsSwiftError = false;
8796     Entry.Alignment = Align;
8797     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8798     CLI.NumFixedArgs += 1;
8799     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8800 
8801     // sret demotion isn't compatible with tail-calls, since the sret argument
8802     // points into the callers stack frame.
8803     CLI.IsTailCall = false;
8804   } else {
8805     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8806       EVT VT = RetTys[I];
8807       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8808                                                      CLI.CallConv, VT);
8809       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8810                                                        CLI.CallConv, VT);
8811       for (unsigned i = 0; i != NumRegs; ++i) {
8812         ISD::InputArg MyFlags;
8813         MyFlags.VT = RegisterVT;
8814         MyFlags.ArgVT = VT;
8815         MyFlags.Used = CLI.IsReturnValueUsed;
8816         if (CLI.RetSExt)
8817           MyFlags.Flags.setSExt();
8818         if (CLI.RetZExt)
8819           MyFlags.Flags.setZExt();
8820         if (CLI.IsInReg)
8821           MyFlags.Flags.setInReg();
8822         CLI.Ins.push_back(MyFlags);
8823       }
8824     }
8825   }
8826 
8827   // We push in swifterror return as the last element of CLI.Ins.
8828   ArgListTy &Args = CLI.getArgs();
8829   if (supportSwiftError()) {
8830     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8831       if (Args[i].IsSwiftError) {
8832         ISD::InputArg MyFlags;
8833         MyFlags.VT = getPointerTy(DL);
8834         MyFlags.ArgVT = EVT(getPointerTy(DL));
8835         MyFlags.Flags.setSwiftError();
8836         CLI.Ins.push_back(MyFlags);
8837       }
8838     }
8839   }
8840 
8841   // Handle all of the outgoing arguments.
8842   CLI.Outs.clear();
8843   CLI.OutVals.clear();
8844   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8845     SmallVector<EVT, 4> ValueVTs;
8846     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8847     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8848     Type *FinalType = Args[i].Ty;
8849     if (Args[i].IsByVal)
8850       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8851     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8852         FinalType, CLI.CallConv, CLI.IsVarArg);
8853     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8854          ++Value) {
8855       EVT VT = ValueVTs[Value];
8856       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8857       SDValue Op = SDValue(Args[i].Node.getNode(),
8858                            Args[i].Node.getResNo() + Value);
8859       ISD::ArgFlagsTy Flags;
8860 
8861       // Certain targets (such as MIPS), may have a different ABI alignment
8862       // for a type depending on the context. Give the target a chance to
8863       // specify the alignment it wants.
8864       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8865 
8866       if (Args[i].IsZExt)
8867         Flags.setZExt();
8868       if (Args[i].IsSExt)
8869         Flags.setSExt();
8870       if (Args[i].IsInReg) {
8871         // If we are using vectorcall calling convention, a structure that is
8872         // passed InReg - is surely an HVA
8873         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8874             isa<StructType>(FinalType)) {
8875           // The first value of a structure is marked
8876           if (0 == Value)
8877             Flags.setHvaStart();
8878           Flags.setHva();
8879         }
8880         // Set InReg Flag
8881         Flags.setInReg();
8882       }
8883       if (Args[i].IsSRet)
8884         Flags.setSRet();
8885       if (Args[i].IsSwiftSelf)
8886         Flags.setSwiftSelf();
8887       if (Args[i].IsSwiftError)
8888         Flags.setSwiftError();
8889       if (Args[i].IsByVal)
8890         Flags.setByVal();
8891       if (Args[i].IsInAlloca) {
8892         Flags.setInAlloca();
8893         // Set the byval flag for CCAssignFn callbacks that don't know about
8894         // inalloca.  This way we can know how many bytes we should've allocated
8895         // and how many bytes a callee cleanup function will pop.  If we port
8896         // inalloca to more targets, we'll have to add custom inalloca handling
8897         // in the various CC lowering callbacks.
8898         Flags.setByVal();
8899       }
8900       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8901         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8902         Type *ElementTy = Ty->getElementType();
8903         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8904         // For ByVal, alignment should come from FE.  BE will guess if this
8905         // info is not there but there are cases it cannot get right.
8906         unsigned FrameAlign;
8907         if (Args[i].Alignment)
8908           FrameAlign = Args[i].Alignment;
8909         else
8910           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8911         Flags.setByValAlign(FrameAlign);
8912       }
8913       if (Args[i].IsNest)
8914         Flags.setNest();
8915       if (NeedsRegBlock)
8916         Flags.setInConsecutiveRegs();
8917       Flags.setOrigAlign(OriginalAlignment);
8918 
8919       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8920                                                  CLI.CallConv, VT);
8921       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8922                                                         CLI.CallConv, VT);
8923       SmallVector<SDValue, 4> Parts(NumParts);
8924       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8925 
8926       if (Args[i].IsSExt)
8927         ExtendKind = ISD::SIGN_EXTEND;
8928       else if (Args[i].IsZExt)
8929         ExtendKind = ISD::ZERO_EXTEND;
8930 
8931       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8932       // for now.
8933       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8934           CanLowerReturn) {
8935         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8936                "unexpected use of 'returned'");
8937         // Before passing 'returned' to the target lowering code, ensure that
8938         // either the register MVT and the actual EVT are the same size or that
8939         // the return value and argument are extended in the same way; in these
8940         // cases it's safe to pass the argument register value unchanged as the
8941         // return register value (although it's at the target's option whether
8942         // to do so)
8943         // TODO: allow code generation to take advantage of partially preserved
8944         // registers rather than clobbering the entire register when the
8945         // parameter extension method is not compatible with the return
8946         // extension method
8947         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8948             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8949              CLI.RetZExt == Args[i].IsZExt))
8950           Flags.setReturned();
8951       }
8952 
8953       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8954                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
8955 
8956       for (unsigned j = 0; j != NumParts; ++j) {
8957         // if it isn't first piece, alignment must be 1
8958         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8959                                i < CLI.NumFixedArgs,
8960                                i, j*Parts[j].getValueType().getStoreSize());
8961         if (NumParts > 1 && j == 0)
8962           MyFlags.Flags.setSplit();
8963         else if (j != 0) {
8964           MyFlags.Flags.setOrigAlign(1);
8965           if (j == NumParts - 1)
8966             MyFlags.Flags.setSplitEnd();
8967         }
8968 
8969         CLI.Outs.push_back(MyFlags);
8970         CLI.OutVals.push_back(Parts[j]);
8971       }
8972 
8973       if (NeedsRegBlock && Value == NumValues - 1)
8974         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8975     }
8976   }
8977 
8978   SmallVector<SDValue, 4> InVals;
8979   CLI.Chain = LowerCall(CLI, InVals);
8980 
8981   // Update CLI.InVals to use outside of this function.
8982   CLI.InVals = InVals;
8983 
8984   // Verify that the target's LowerCall behaved as expected.
8985   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8986          "LowerCall didn't return a valid chain!");
8987   assert((!CLI.IsTailCall || InVals.empty()) &&
8988          "LowerCall emitted a return value for a tail call!");
8989   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8990          "LowerCall didn't emit the correct number of values!");
8991 
8992   // For a tail call, the return value is merely live-out and there aren't
8993   // any nodes in the DAG representing it. Return a special value to
8994   // indicate that a tail call has been emitted and no more Instructions
8995   // should be processed in the current block.
8996   if (CLI.IsTailCall) {
8997     CLI.DAG.setRoot(CLI.Chain);
8998     return std::make_pair(SDValue(), SDValue());
8999   }
9000 
9001 #ifndef NDEBUG
9002   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9003     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9004     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9005            "LowerCall emitted a value with the wrong type!");
9006   }
9007 #endif
9008 
9009   SmallVector<SDValue, 4> ReturnValues;
9010   if (!CanLowerReturn) {
9011     // The instruction result is the result of loading from the
9012     // hidden sret parameter.
9013     SmallVector<EVT, 1> PVTs;
9014     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9015 
9016     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9017     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9018     EVT PtrVT = PVTs[0];
9019 
9020     unsigned NumValues = RetTys.size();
9021     ReturnValues.resize(NumValues);
9022     SmallVector<SDValue, 4> Chains(NumValues);
9023 
9024     // An aggregate return value cannot wrap around the address space, so
9025     // offsets to its parts don't wrap either.
9026     SDNodeFlags Flags;
9027     Flags.setNoUnsignedWrap(true);
9028 
9029     for (unsigned i = 0; i < NumValues; ++i) {
9030       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9031                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9032                                                         PtrVT), Flags);
9033       SDValue L = CLI.DAG.getLoad(
9034           RetTys[i], CLI.DL, CLI.Chain, Add,
9035           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9036                                             DemoteStackIdx, Offsets[i]),
9037           /* Alignment = */ 1);
9038       ReturnValues[i] = L;
9039       Chains[i] = L.getValue(1);
9040     }
9041 
9042     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9043   } else {
9044     // Collect the legal value parts into potentially illegal values
9045     // that correspond to the original function's return values.
9046     Optional<ISD::NodeType> AssertOp;
9047     if (CLI.RetSExt)
9048       AssertOp = ISD::AssertSext;
9049     else if (CLI.RetZExt)
9050       AssertOp = ISD::AssertZext;
9051     unsigned CurReg = 0;
9052     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9053       EVT VT = RetTys[I];
9054       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9055                                                      CLI.CallConv, VT);
9056       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9057                                                        CLI.CallConv, VT);
9058 
9059       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9060                                               NumRegs, RegisterVT, VT, nullptr,
9061                                               CLI.CallConv, AssertOp));
9062       CurReg += NumRegs;
9063     }
9064 
9065     // For a function returning void, there is no return value. We can't create
9066     // such a node, so we just return a null return value in that case. In
9067     // that case, nothing will actually look at the value.
9068     if (ReturnValues.empty())
9069       return std::make_pair(SDValue(), CLI.Chain);
9070   }
9071 
9072   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9073                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9074   return std::make_pair(Res, CLI.Chain);
9075 }
9076 
9077 void TargetLowering::LowerOperationWrapper(SDNode *N,
9078                                            SmallVectorImpl<SDValue> &Results,
9079                                            SelectionDAG &DAG) const {
9080   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9081     Results.push_back(Res);
9082 }
9083 
9084 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9085   llvm_unreachable("LowerOperation not implemented for this target!");
9086 }
9087 
9088 void
9089 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9090   SDValue Op = getNonRegisterValue(V);
9091   assert((Op.getOpcode() != ISD::CopyFromReg ||
9092           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9093          "Copy from a reg to the same reg!");
9094   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
9095 
9096   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9097   // If this is an InlineAsm we have to match the registers required, not the
9098   // notional registers required by the type.
9099 
9100   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9101                    None); // This is not an ABI copy.
9102   SDValue Chain = DAG.getEntryNode();
9103 
9104   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9105                               FuncInfo.PreferredExtendType.end())
9106                                  ? ISD::ANY_EXTEND
9107                                  : FuncInfo.PreferredExtendType[V];
9108   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9109   PendingExports.push_back(Chain);
9110 }
9111 
9112 #include "llvm/CodeGen/SelectionDAGISel.h"
9113 
9114 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9115 /// entry block, return true.  This includes arguments used by switches, since
9116 /// the switch may expand into multiple basic blocks.
9117 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9118   // With FastISel active, we may be splitting blocks, so force creation
9119   // of virtual registers for all non-dead arguments.
9120   if (FastISel)
9121     return A->use_empty();
9122 
9123   const BasicBlock &Entry = A->getParent()->front();
9124   for (const User *U : A->users())
9125     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9126       return false;  // Use not in entry block.
9127 
9128   return true;
9129 }
9130 
9131 using ArgCopyElisionMapTy =
9132     DenseMap<const Argument *,
9133              std::pair<const AllocaInst *, const StoreInst *>>;
9134 
9135 /// Scan the entry block of the function in FuncInfo for arguments that look
9136 /// like copies into a local alloca. Record any copied arguments in
9137 /// ArgCopyElisionCandidates.
9138 static void
9139 findArgumentCopyElisionCandidates(const DataLayout &DL,
9140                                   FunctionLoweringInfo *FuncInfo,
9141                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9142   // Record the state of every static alloca used in the entry block. Argument
9143   // allocas are all used in the entry block, so we need approximately as many
9144   // entries as we have arguments.
9145   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9146   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9147   unsigned NumArgs = FuncInfo->Fn->arg_size();
9148   StaticAllocas.reserve(NumArgs * 2);
9149 
9150   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9151     if (!V)
9152       return nullptr;
9153     V = V->stripPointerCasts();
9154     const auto *AI = dyn_cast<AllocaInst>(V);
9155     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9156       return nullptr;
9157     auto Iter = StaticAllocas.insert({AI, Unknown});
9158     return &Iter.first->second;
9159   };
9160 
9161   // Look for stores of arguments to static allocas. Look through bitcasts and
9162   // GEPs to handle type coercions, as long as the alloca is fully initialized
9163   // by the store. Any non-store use of an alloca escapes it and any subsequent
9164   // unanalyzed store might write it.
9165   // FIXME: Handle structs initialized with multiple stores.
9166   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9167     // Look for stores, and handle non-store uses conservatively.
9168     const auto *SI = dyn_cast<StoreInst>(&I);
9169     if (!SI) {
9170       // We will look through cast uses, so ignore them completely.
9171       if (I.isCast())
9172         continue;
9173       // Ignore debug info intrinsics, they don't escape or store to allocas.
9174       if (isa<DbgInfoIntrinsic>(I))
9175         continue;
9176       // This is an unknown instruction. Assume it escapes or writes to all
9177       // static alloca operands.
9178       for (const Use &U : I.operands()) {
9179         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9180           *Info = StaticAllocaInfo::Clobbered;
9181       }
9182       continue;
9183     }
9184 
9185     // If the stored value is a static alloca, mark it as escaped.
9186     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9187       *Info = StaticAllocaInfo::Clobbered;
9188 
9189     // Check if the destination is a static alloca.
9190     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9191     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9192     if (!Info)
9193       continue;
9194     const AllocaInst *AI = cast<AllocaInst>(Dst);
9195 
9196     // Skip allocas that have been initialized or clobbered.
9197     if (*Info != StaticAllocaInfo::Unknown)
9198       continue;
9199 
9200     // Check if the stored value is an argument, and that this store fully
9201     // initializes the alloca. Don't elide copies from the same argument twice.
9202     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9203     const auto *Arg = dyn_cast<Argument>(Val);
9204     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9205         Arg->getType()->isEmptyTy() ||
9206         DL.getTypeStoreSize(Arg->getType()) !=
9207             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9208         ArgCopyElisionCandidates.count(Arg)) {
9209       *Info = StaticAllocaInfo::Clobbered;
9210       continue;
9211     }
9212 
9213     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9214                       << '\n');
9215 
9216     // Mark this alloca and store for argument copy elision.
9217     *Info = StaticAllocaInfo::Elidable;
9218     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9219 
9220     // Stop scanning if we've seen all arguments. This will happen early in -O0
9221     // builds, which is useful, because -O0 builds have large entry blocks and
9222     // many allocas.
9223     if (ArgCopyElisionCandidates.size() == NumArgs)
9224       break;
9225   }
9226 }
9227 
9228 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9229 /// ArgVal is a load from a suitable fixed stack object.
9230 static void tryToElideArgumentCopy(
9231     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9232     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9233     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9234     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9235     SDValue ArgVal, bool &ArgHasUses) {
9236   // Check if this is a load from a fixed stack object.
9237   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9238   if (!LNode)
9239     return;
9240   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9241   if (!FINode)
9242     return;
9243 
9244   // Check that the fixed stack object is the right size and alignment.
9245   // Look at the alignment that the user wrote on the alloca instead of looking
9246   // at the stack object.
9247   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9248   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9249   const AllocaInst *AI = ArgCopyIter->second.first;
9250   int FixedIndex = FINode->getIndex();
9251   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9252   int OldIndex = AllocaIndex;
9253   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9254   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9255     LLVM_DEBUG(
9256         dbgs() << "  argument copy elision failed due to bad fixed stack "
9257                   "object size\n");
9258     return;
9259   }
9260   unsigned RequiredAlignment = AI->getAlignment();
9261   if (!RequiredAlignment) {
9262     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9263         AI->getAllocatedType());
9264   }
9265   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9266     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9267                          "greater than stack argument alignment ("
9268                       << RequiredAlignment << " vs "
9269                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9270     return;
9271   }
9272 
9273   // Perform the elision. Delete the old stack object and replace its only use
9274   // in the variable info map. Mark the stack object as mutable.
9275   LLVM_DEBUG({
9276     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9277            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9278            << '\n';
9279   });
9280   MFI.RemoveStackObject(OldIndex);
9281   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9282   AllocaIndex = FixedIndex;
9283   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9284   Chains.push_back(ArgVal.getValue(1));
9285 
9286   // Avoid emitting code for the store implementing the copy.
9287   const StoreInst *SI = ArgCopyIter->second.second;
9288   ElidedArgCopyInstrs.insert(SI);
9289 
9290   // Check for uses of the argument again so that we can avoid exporting ArgVal
9291   // if it is't used by anything other than the store.
9292   for (const Value *U : Arg.users()) {
9293     if (U != SI) {
9294       ArgHasUses = true;
9295       break;
9296     }
9297   }
9298 }
9299 
9300 void SelectionDAGISel::LowerArguments(const Function &F) {
9301   SelectionDAG &DAG = SDB->DAG;
9302   SDLoc dl = SDB->getCurSDLoc();
9303   const DataLayout &DL = DAG.getDataLayout();
9304   SmallVector<ISD::InputArg, 16> Ins;
9305 
9306   if (!FuncInfo->CanLowerReturn) {
9307     // Put in an sret pointer parameter before all the other parameters.
9308     SmallVector<EVT, 1> ValueVTs;
9309     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9310                     F.getReturnType()->getPointerTo(
9311                         DAG.getDataLayout().getAllocaAddrSpace()),
9312                     ValueVTs);
9313 
9314     // NOTE: Assuming that a pointer will never break down to more than one VT
9315     // or one register.
9316     ISD::ArgFlagsTy Flags;
9317     Flags.setSRet();
9318     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9319     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9320                          ISD::InputArg::NoArgIndex, 0);
9321     Ins.push_back(RetArg);
9322   }
9323 
9324   // Look for stores of arguments to static allocas. Mark such arguments with a
9325   // flag to ask the target to give us the memory location of that argument if
9326   // available.
9327   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9328   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9329 
9330   // Set up the incoming argument description vector.
9331   for (const Argument &Arg : F.args()) {
9332     unsigned ArgNo = Arg.getArgNo();
9333     SmallVector<EVT, 4> ValueVTs;
9334     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9335     bool isArgValueUsed = !Arg.use_empty();
9336     unsigned PartBase = 0;
9337     Type *FinalType = Arg.getType();
9338     if (Arg.hasAttribute(Attribute::ByVal))
9339       FinalType = cast<PointerType>(FinalType)->getElementType();
9340     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9341         FinalType, F.getCallingConv(), F.isVarArg());
9342     for (unsigned Value = 0, NumValues = ValueVTs.size();
9343          Value != NumValues; ++Value) {
9344       EVT VT = ValueVTs[Value];
9345       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9346       ISD::ArgFlagsTy Flags;
9347 
9348       // Certain targets (such as MIPS), may have a different ABI alignment
9349       // for a type depending on the context. Give the target a chance to
9350       // specify the alignment it wants.
9351       unsigned OriginalAlignment =
9352           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9353 
9354       if (Arg.hasAttribute(Attribute::ZExt))
9355         Flags.setZExt();
9356       if (Arg.hasAttribute(Attribute::SExt))
9357         Flags.setSExt();
9358       if (Arg.hasAttribute(Attribute::InReg)) {
9359         // If we are using vectorcall calling convention, a structure that is
9360         // passed InReg - is surely an HVA
9361         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9362             isa<StructType>(Arg.getType())) {
9363           // The first value of a structure is marked
9364           if (0 == Value)
9365             Flags.setHvaStart();
9366           Flags.setHva();
9367         }
9368         // Set InReg Flag
9369         Flags.setInReg();
9370       }
9371       if (Arg.hasAttribute(Attribute::StructRet))
9372         Flags.setSRet();
9373       if (Arg.hasAttribute(Attribute::SwiftSelf))
9374         Flags.setSwiftSelf();
9375       if (Arg.hasAttribute(Attribute::SwiftError))
9376         Flags.setSwiftError();
9377       if (Arg.hasAttribute(Attribute::ByVal))
9378         Flags.setByVal();
9379       if (Arg.hasAttribute(Attribute::InAlloca)) {
9380         Flags.setInAlloca();
9381         // Set the byval flag for CCAssignFn callbacks that don't know about
9382         // inalloca.  This way we can know how many bytes we should've allocated
9383         // and how many bytes a callee cleanup function will pop.  If we port
9384         // inalloca to more targets, we'll have to add custom inalloca handling
9385         // in the various CC lowering callbacks.
9386         Flags.setByVal();
9387       }
9388       if (F.getCallingConv() == CallingConv::X86_INTR) {
9389         // IA Interrupt passes frame (1st parameter) by value in the stack.
9390         if (ArgNo == 0)
9391           Flags.setByVal();
9392       }
9393       if (Flags.isByVal() || Flags.isInAlloca()) {
9394         PointerType *Ty = cast<PointerType>(Arg.getType());
9395         Type *ElementTy = Ty->getElementType();
9396         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9397         // For ByVal, alignment should be passed from FE.  BE will guess if
9398         // this info is not there but there are cases it cannot get right.
9399         unsigned FrameAlign;
9400         if (Arg.getParamAlignment())
9401           FrameAlign = Arg.getParamAlignment();
9402         else
9403           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9404         Flags.setByValAlign(FrameAlign);
9405       }
9406       if (Arg.hasAttribute(Attribute::Nest))
9407         Flags.setNest();
9408       if (NeedsRegBlock)
9409         Flags.setInConsecutiveRegs();
9410       Flags.setOrigAlign(OriginalAlignment);
9411       if (ArgCopyElisionCandidates.count(&Arg))
9412         Flags.setCopyElisionCandidate();
9413 
9414       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9415           *CurDAG->getContext(), F.getCallingConv(), VT);
9416       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9417           *CurDAG->getContext(), F.getCallingConv(), VT);
9418       for (unsigned i = 0; i != NumRegs; ++i) {
9419         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9420                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9421         if (NumRegs > 1 && i == 0)
9422           MyFlags.Flags.setSplit();
9423         // if it isn't first piece, alignment must be 1
9424         else if (i > 0) {
9425           MyFlags.Flags.setOrigAlign(1);
9426           if (i == NumRegs - 1)
9427             MyFlags.Flags.setSplitEnd();
9428         }
9429         Ins.push_back(MyFlags);
9430       }
9431       if (NeedsRegBlock && Value == NumValues - 1)
9432         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9433       PartBase += VT.getStoreSize();
9434     }
9435   }
9436 
9437   // Call the target to set up the argument values.
9438   SmallVector<SDValue, 8> InVals;
9439   SDValue NewRoot = TLI->LowerFormalArguments(
9440       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9441 
9442   // Verify that the target's LowerFormalArguments behaved as expected.
9443   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9444          "LowerFormalArguments didn't return a valid chain!");
9445   assert(InVals.size() == Ins.size() &&
9446          "LowerFormalArguments didn't emit the correct number of values!");
9447   LLVM_DEBUG({
9448     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9449       assert(InVals[i].getNode() &&
9450              "LowerFormalArguments emitted a null value!");
9451       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9452              "LowerFormalArguments emitted a value with the wrong type!");
9453     }
9454   });
9455 
9456   // Update the DAG with the new chain value resulting from argument lowering.
9457   DAG.setRoot(NewRoot);
9458 
9459   // Set up the argument values.
9460   unsigned i = 0;
9461   if (!FuncInfo->CanLowerReturn) {
9462     // Create a virtual register for the sret pointer, and put in a copy
9463     // from the sret argument into it.
9464     SmallVector<EVT, 1> ValueVTs;
9465     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9466                     F.getReturnType()->getPointerTo(
9467                         DAG.getDataLayout().getAllocaAddrSpace()),
9468                     ValueVTs);
9469     MVT VT = ValueVTs[0].getSimpleVT();
9470     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9471     Optional<ISD::NodeType> AssertOp = None;
9472     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9473                                         nullptr, F.getCallingConv(), AssertOp);
9474 
9475     MachineFunction& MF = SDB->DAG.getMachineFunction();
9476     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9477     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9478     FuncInfo->DemoteRegister = SRetReg;
9479     NewRoot =
9480         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9481     DAG.setRoot(NewRoot);
9482 
9483     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9484     ++i;
9485   }
9486 
9487   SmallVector<SDValue, 4> Chains;
9488   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9489   for (const Argument &Arg : F.args()) {
9490     SmallVector<SDValue, 4> ArgValues;
9491     SmallVector<EVT, 4> ValueVTs;
9492     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9493     unsigned NumValues = ValueVTs.size();
9494     if (NumValues == 0)
9495       continue;
9496 
9497     bool ArgHasUses = !Arg.use_empty();
9498 
9499     // Elide the copying store if the target loaded this argument from a
9500     // suitable fixed stack object.
9501     if (Ins[i].Flags.isCopyElisionCandidate()) {
9502       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9503                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9504                              InVals[i], ArgHasUses);
9505     }
9506 
9507     // If this argument is unused then remember its value. It is used to generate
9508     // debugging information.
9509     bool isSwiftErrorArg =
9510         TLI->supportSwiftError() &&
9511         Arg.hasAttribute(Attribute::SwiftError);
9512     if (!ArgHasUses && !isSwiftErrorArg) {
9513       SDB->setUnusedArgValue(&Arg, InVals[i]);
9514 
9515       // Also remember any frame index for use in FastISel.
9516       if (FrameIndexSDNode *FI =
9517           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9518         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9519     }
9520 
9521     for (unsigned Val = 0; Val != NumValues; ++Val) {
9522       EVT VT = ValueVTs[Val];
9523       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9524                                                       F.getCallingConv(), VT);
9525       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9526           *CurDAG->getContext(), F.getCallingConv(), VT);
9527 
9528       // Even an apparant 'unused' swifterror argument needs to be returned. So
9529       // we do generate a copy for it that can be used on return from the
9530       // function.
9531       if (ArgHasUses || isSwiftErrorArg) {
9532         Optional<ISD::NodeType> AssertOp;
9533         if (Arg.hasAttribute(Attribute::SExt))
9534           AssertOp = ISD::AssertSext;
9535         else if (Arg.hasAttribute(Attribute::ZExt))
9536           AssertOp = ISD::AssertZext;
9537 
9538         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9539                                              PartVT, VT, nullptr,
9540                                              F.getCallingConv(), AssertOp));
9541       }
9542 
9543       i += NumParts;
9544     }
9545 
9546     // We don't need to do anything else for unused arguments.
9547     if (ArgValues.empty())
9548       continue;
9549 
9550     // Note down frame index.
9551     if (FrameIndexSDNode *FI =
9552         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9553       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9554 
9555     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9556                                      SDB->getCurSDLoc());
9557 
9558     SDB->setValue(&Arg, Res);
9559     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9560       // We want to associate the argument with the frame index, among
9561       // involved operands, that correspond to the lowest address. The
9562       // getCopyFromParts function, called earlier, is swapping the order of
9563       // the operands to BUILD_PAIR depending on endianness. The result of
9564       // that swapping is that the least significant bits of the argument will
9565       // be in the first operand of the BUILD_PAIR node, and the most
9566       // significant bits will be in the second operand.
9567       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9568       if (LoadSDNode *LNode =
9569           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9570         if (FrameIndexSDNode *FI =
9571             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9572           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9573     }
9574 
9575     // Update the SwiftErrorVRegDefMap.
9576     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9577       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9578       if (TargetRegisterInfo::isVirtualRegister(Reg))
9579         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9580                                            FuncInfo->SwiftErrorArg, Reg);
9581     }
9582 
9583     // If this argument is live outside of the entry block, insert a copy from
9584     // wherever we got it to the vreg that other BB's will reference it as.
9585     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9586       // If we can, though, try to skip creating an unnecessary vreg.
9587       // FIXME: This isn't very clean... it would be nice to make this more
9588       // general.  It's also subtly incompatible with the hacks FastISel
9589       // uses with vregs.
9590       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9591       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9592         FuncInfo->ValueMap[&Arg] = Reg;
9593         continue;
9594       }
9595     }
9596     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9597       FuncInfo->InitializeRegForValue(&Arg);
9598       SDB->CopyToExportRegsIfNeeded(&Arg);
9599     }
9600   }
9601 
9602   if (!Chains.empty()) {
9603     Chains.push_back(NewRoot);
9604     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9605   }
9606 
9607   DAG.setRoot(NewRoot);
9608 
9609   assert(i == InVals.size() && "Argument register count mismatch!");
9610 
9611   // If any argument copy elisions occurred and we have debug info, update the
9612   // stale frame indices used in the dbg.declare variable info table.
9613   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9614   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9615     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9616       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9617       if (I != ArgCopyElisionFrameIndexMap.end())
9618         VI.Slot = I->second;
9619     }
9620   }
9621 
9622   // Finally, if the target has anything special to do, allow it to do so.
9623   EmitFunctionEntryCode();
9624 }
9625 
9626 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9627 /// ensure constants are generated when needed.  Remember the virtual registers
9628 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9629 /// directly add them, because expansion might result in multiple MBB's for one
9630 /// BB.  As such, the start of the BB might correspond to a different MBB than
9631 /// the end.
9632 void
9633 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9634   const Instruction *TI = LLVMBB->getTerminator();
9635 
9636   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9637 
9638   // Check PHI nodes in successors that expect a value to be available from this
9639   // block.
9640   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9641     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9642     if (!isa<PHINode>(SuccBB->begin())) continue;
9643     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9644 
9645     // If this terminator has multiple identical successors (common for
9646     // switches), only handle each succ once.
9647     if (!SuccsHandled.insert(SuccMBB).second)
9648       continue;
9649 
9650     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9651 
9652     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9653     // nodes and Machine PHI nodes, but the incoming operands have not been
9654     // emitted yet.
9655     for (const PHINode &PN : SuccBB->phis()) {
9656       // Ignore dead phi's.
9657       if (PN.use_empty())
9658         continue;
9659 
9660       // Skip empty types
9661       if (PN.getType()->isEmptyTy())
9662         continue;
9663 
9664       unsigned Reg;
9665       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9666 
9667       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9668         unsigned &RegOut = ConstantsOut[C];
9669         if (RegOut == 0) {
9670           RegOut = FuncInfo.CreateRegs(C->getType());
9671           CopyValueToVirtualRegister(C, RegOut);
9672         }
9673         Reg = RegOut;
9674       } else {
9675         DenseMap<const Value *, unsigned>::iterator I =
9676           FuncInfo.ValueMap.find(PHIOp);
9677         if (I != FuncInfo.ValueMap.end())
9678           Reg = I->second;
9679         else {
9680           assert(isa<AllocaInst>(PHIOp) &&
9681                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9682                  "Didn't codegen value into a register!??");
9683           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9684           CopyValueToVirtualRegister(PHIOp, Reg);
9685         }
9686       }
9687 
9688       // Remember that this register needs to added to the machine PHI node as
9689       // the input for this MBB.
9690       SmallVector<EVT, 4> ValueVTs;
9691       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9692       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9693       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9694         EVT VT = ValueVTs[vti];
9695         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9696         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9697           FuncInfo.PHINodesToUpdate.push_back(
9698               std::make_pair(&*MBBI++, Reg + i));
9699         Reg += NumRegisters;
9700       }
9701     }
9702   }
9703 
9704   ConstantsOut.clear();
9705 }
9706 
9707 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9708 /// is 0.
9709 MachineBasicBlock *
9710 SelectionDAGBuilder::StackProtectorDescriptor::
9711 AddSuccessorMBB(const BasicBlock *BB,
9712                 MachineBasicBlock *ParentMBB,
9713                 bool IsLikely,
9714                 MachineBasicBlock *SuccMBB) {
9715   // If SuccBB has not been created yet, create it.
9716   if (!SuccMBB) {
9717     MachineFunction *MF = ParentMBB->getParent();
9718     MachineFunction::iterator BBI(ParentMBB);
9719     SuccMBB = MF->CreateMachineBasicBlock(BB);
9720     MF->insert(++BBI, SuccMBB);
9721   }
9722   // Add it as a successor of ParentMBB.
9723   ParentMBB->addSuccessor(
9724       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9725   return SuccMBB;
9726 }
9727 
9728 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9729   MachineFunction::iterator I(MBB);
9730   if (++I == FuncInfo.MF->end())
9731     return nullptr;
9732   return &*I;
9733 }
9734 
9735 /// During lowering new call nodes can be created (such as memset, etc.).
9736 /// Those will become new roots of the current DAG, but complications arise
9737 /// when they are tail calls. In such cases, the call lowering will update
9738 /// the root, but the builder still needs to know that a tail call has been
9739 /// lowered in order to avoid generating an additional return.
9740 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9741   // If the node is null, we do have a tail call.
9742   if (MaybeTC.getNode() != nullptr)
9743     DAG.setRoot(MaybeTC);
9744   else
9745     HasTailCall = true;
9746 }
9747 
9748 uint64_t
9749 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9750                                        unsigned First, unsigned Last) const {
9751   assert(Last >= First);
9752   const APInt &LowCase = Clusters[First].Low->getValue();
9753   const APInt &HighCase = Clusters[Last].High->getValue();
9754   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9755 
9756   // FIXME: A range of consecutive cases has 100% density, but only requires one
9757   // comparison to lower. We should discriminate against such consecutive ranges
9758   // in jump tables.
9759 
9760   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9761 }
9762 
9763 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9764     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9765     unsigned Last) const {
9766   assert(Last >= First);
9767   assert(TotalCases[Last] >= TotalCases[First]);
9768   uint64_t NumCases =
9769       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9770   return NumCases;
9771 }
9772 
9773 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9774                                          unsigned First, unsigned Last,
9775                                          const SwitchInst *SI,
9776                                          MachineBasicBlock *DefaultMBB,
9777                                          CaseCluster &JTCluster) {
9778   assert(First <= Last);
9779 
9780   auto Prob = BranchProbability::getZero();
9781   unsigned NumCmps = 0;
9782   std::vector<MachineBasicBlock*> Table;
9783   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9784 
9785   // Initialize probabilities in JTProbs.
9786   for (unsigned I = First; I <= Last; ++I)
9787     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9788 
9789   for (unsigned I = First; I <= Last; ++I) {
9790     assert(Clusters[I].Kind == CC_Range);
9791     Prob += Clusters[I].Prob;
9792     const APInt &Low = Clusters[I].Low->getValue();
9793     const APInt &High = Clusters[I].High->getValue();
9794     NumCmps += (Low == High) ? 1 : 2;
9795     if (I != First) {
9796       // Fill the gap between this and the previous cluster.
9797       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9798       assert(PreviousHigh.slt(Low));
9799       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9800       for (uint64_t J = 0; J < Gap; J++)
9801         Table.push_back(DefaultMBB);
9802     }
9803     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9804     for (uint64_t J = 0; J < ClusterSize; ++J)
9805       Table.push_back(Clusters[I].MBB);
9806     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9807   }
9808 
9809   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9810   unsigned NumDests = JTProbs.size();
9811   if (TLI.isSuitableForBitTests(
9812           NumDests, NumCmps, Clusters[First].Low->getValue(),
9813           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9814     // Clusters[First..Last] should be lowered as bit tests instead.
9815     return false;
9816   }
9817 
9818   // Create the MBB that will load from and jump through the table.
9819   // Note: We create it here, but it's not inserted into the function yet.
9820   MachineFunction *CurMF = FuncInfo.MF;
9821   MachineBasicBlock *JumpTableMBB =
9822       CurMF->CreateMachineBasicBlock(SI->getParent());
9823 
9824   // Add successors. Note: use table order for determinism.
9825   SmallPtrSet<MachineBasicBlock *, 8> Done;
9826   for (MachineBasicBlock *Succ : Table) {
9827     if (Done.count(Succ))
9828       continue;
9829     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9830     Done.insert(Succ);
9831   }
9832   JumpTableMBB->normalizeSuccProbs();
9833 
9834   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9835                      ->createJumpTableIndex(Table);
9836 
9837   // Set up the jump table info.
9838   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9839   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9840                       Clusters[Last].High->getValue(), SI->getCondition(),
9841                       nullptr, false);
9842   JTCases.emplace_back(std::move(JTH), std::move(JT));
9843 
9844   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9845                                      JTCases.size() - 1, Prob);
9846   return true;
9847 }
9848 
9849 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9850                                          const SwitchInst *SI,
9851                                          MachineBasicBlock *DefaultMBB) {
9852 #ifndef NDEBUG
9853   // Clusters must be non-empty, sorted, and only contain Range clusters.
9854   assert(!Clusters.empty());
9855   for (CaseCluster &C : Clusters)
9856     assert(C.Kind == CC_Range);
9857   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9858     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9859 #endif
9860 
9861   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9862   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9863     return;
9864 
9865   const int64_t N = Clusters.size();
9866   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9867   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9868 
9869   if (N < 2 || N < MinJumpTableEntries)
9870     return;
9871 
9872   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9873   SmallVector<unsigned, 8> TotalCases(N);
9874   for (unsigned i = 0; i < N; ++i) {
9875     const APInt &Hi = Clusters[i].High->getValue();
9876     const APInt &Lo = Clusters[i].Low->getValue();
9877     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9878     if (i != 0)
9879       TotalCases[i] += TotalCases[i - 1];
9880   }
9881 
9882   // Cheap case: the whole range may be suitable for jump table.
9883   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9884   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9885   assert(NumCases < UINT64_MAX / 100);
9886   assert(Range >= NumCases);
9887   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9888     CaseCluster JTCluster;
9889     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9890       Clusters[0] = JTCluster;
9891       Clusters.resize(1);
9892       return;
9893     }
9894   }
9895 
9896   // The algorithm below is not suitable for -O0.
9897   if (TM.getOptLevel() == CodeGenOpt::None)
9898     return;
9899 
9900   // Split Clusters into minimum number of dense partitions. The algorithm uses
9901   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9902   // for the Case Statement'" (1994), but builds the MinPartitions array in
9903   // reverse order to make it easier to reconstruct the partitions in ascending
9904   // order. In the choice between two optimal partitionings, it picks the one
9905   // which yields more jump tables.
9906 
9907   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9908   SmallVector<unsigned, 8> MinPartitions(N);
9909   // LastElement[i] is the last element of the partition starting at i.
9910   SmallVector<unsigned, 8> LastElement(N);
9911   // PartitionsScore[i] is used to break ties when choosing between two
9912   // partitionings resulting in the same number of partitions.
9913   SmallVector<unsigned, 8> PartitionsScore(N);
9914   // For PartitionsScore, a small number of comparisons is considered as good as
9915   // a jump table and a single comparison is considered better than a jump
9916   // table.
9917   enum PartitionScores : unsigned {
9918     NoTable = 0,
9919     Table = 1,
9920     FewCases = 1,
9921     SingleCase = 2
9922   };
9923 
9924   // Base case: There is only one way to partition Clusters[N-1].
9925   MinPartitions[N - 1] = 1;
9926   LastElement[N - 1] = N - 1;
9927   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9928 
9929   // Note: loop indexes are signed to avoid underflow.
9930   for (int64_t i = N - 2; i >= 0; i--) {
9931     // Find optimal partitioning of Clusters[i..N-1].
9932     // Baseline: Put Clusters[i] into a partition on its own.
9933     MinPartitions[i] = MinPartitions[i + 1] + 1;
9934     LastElement[i] = i;
9935     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9936 
9937     // Search for a solution that results in fewer partitions.
9938     for (int64_t j = N - 1; j > i; j--) {
9939       // Try building a partition from Clusters[i..j].
9940       uint64_t Range = getJumpTableRange(Clusters, i, j);
9941       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9942       assert(NumCases < UINT64_MAX / 100);
9943       assert(Range >= NumCases);
9944       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9945         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9946         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9947         int64_t NumEntries = j - i + 1;
9948 
9949         if (NumEntries == 1)
9950           Score += PartitionScores::SingleCase;
9951         else if (NumEntries <= SmallNumberOfEntries)
9952           Score += PartitionScores::FewCases;
9953         else if (NumEntries >= MinJumpTableEntries)
9954           Score += PartitionScores::Table;
9955 
9956         // If this leads to fewer partitions, or to the same number of
9957         // partitions with better score, it is a better partitioning.
9958         if (NumPartitions < MinPartitions[i] ||
9959             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9960           MinPartitions[i] = NumPartitions;
9961           LastElement[i] = j;
9962           PartitionsScore[i] = Score;
9963         }
9964       }
9965     }
9966   }
9967 
9968   // Iterate over the partitions, replacing some with jump tables in-place.
9969   unsigned DstIndex = 0;
9970   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9971     Last = LastElement[First];
9972     assert(Last >= First);
9973     assert(DstIndex <= First);
9974     unsigned NumClusters = Last - First + 1;
9975 
9976     CaseCluster JTCluster;
9977     if (NumClusters >= MinJumpTableEntries &&
9978         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9979       Clusters[DstIndex++] = JTCluster;
9980     } else {
9981       for (unsigned I = First; I <= Last; ++I)
9982         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9983     }
9984   }
9985   Clusters.resize(DstIndex);
9986 }
9987 
9988 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9989                                         unsigned First, unsigned Last,
9990                                         const SwitchInst *SI,
9991                                         CaseCluster &BTCluster) {
9992   assert(First <= Last);
9993   if (First == Last)
9994     return false;
9995 
9996   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9997   unsigned NumCmps = 0;
9998   for (int64_t I = First; I <= Last; ++I) {
9999     assert(Clusters[I].Kind == CC_Range);
10000     Dests.set(Clusters[I].MBB->getNumber());
10001     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
10002   }
10003   unsigned NumDests = Dests.count();
10004 
10005   APInt Low = Clusters[First].Low->getValue();
10006   APInt High = Clusters[Last].High->getValue();
10007   assert(Low.slt(High));
10008 
10009   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10010   const DataLayout &DL = DAG.getDataLayout();
10011   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
10012     return false;
10013 
10014   APInt LowBound;
10015   APInt CmpRange;
10016 
10017   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
10018   assert(TLI.rangeFitsInWord(Low, High, DL) &&
10019          "Case range must fit in bit mask!");
10020 
10021   // Check if the clusters cover a contiguous range such that no value in the
10022   // range will jump to the default statement.
10023   bool ContiguousRange = true;
10024   for (int64_t I = First + 1; I <= Last; ++I) {
10025     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
10026       ContiguousRange = false;
10027       break;
10028     }
10029   }
10030 
10031   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
10032     // Optimize the case where all the case values fit in a word without having
10033     // to subtract minValue. In this case, we can optimize away the subtraction.
10034     LowBound = APInt::getNullValue(Low.getBitWidth());
10035     CmpRange = High;
10036     ContiguousRange = false;
10037   } else {
10038     LowBound = Low;
10039     CmpRange = High - Low;
10040   }
10041 
10042   CaseBitsVector CBV;
10043   auto TotalProb = BranchProbability::getZero();
10044   for (unsigned i = First; i <= Last; ++i) {
10045     // Find the CaseBits for this destination.
10046     unsigned j;
10047     for (j = 0; j < CBV.size(); ++j)
10048       if (CBV[j].BB == Clusters[i].MBB)
10049         break;
10050     if (j == CBV.size())
10051       CBV.push_back(
10052           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
10053     CaseBits *CB = &CBV[j];
10054 
10055     // Update Mask, Bits and ExtraProb.
10056     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
10057     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
10058     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
10059     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
10060     CB->Bits += Hi - Lo + 1;
10061     CB->ExtraProb += Clusters[i].Prob;
10062     TotalProb += Clusters[i].Prob;
10063   }
10064 
10065   BitTestInfo BTI;
10066   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
10067     // Sort by probability first, number of bits second, bit mask third.
10068     if (a.ExtraProb != b.ExtraProb)
10069       return a.ExtraProb > b.ExtraProb;
10070     if (a.Bits != b.Bits)
10071       return a.Bits > b.Bits;
10072     return a.Mask < b.Mask;
10073   });
10074 
10075   for (auto &CB : CBV) {
10076     MachineBasicBlock *BitTestBB =
10077         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
10078     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
10079   }
10080   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
10081                             SI->getCondition(), -1U, MVT::Other, false,
10082                             ContiguousRange, nullptr, nullptr, std::move(BTI),
10083                             TotalProb);
10084 
10085   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
10086                                     BitTestCases.size() - 1, TotalProb);
10087   return true;
10088 }
10089 
10090 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
10091                                               const SwitchInst *SI) {
10092 // Partition Clusters into as few subsets as possible, where each subset has a
10093 // range that fits in a machine word and has <= 3 unique destinations.
10094 
10095 #ifndef NDEBUG
10096   // Clusters must be sorted and contain Range or JumpTable clusters.
10097   assert(!Clusters.empty());
10098   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
10099   for (const CaseCluster &C : Clusters)
10100     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
10101   for (unsigned i = 1; i < Clusters.size(); ++i)
10102     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
10103 #endif
10104 
10105   // The algorithm below is not suitable for -O0.
10106   if (TM.getOptLevel() == CodeGenOpt::None)
10107     return;
10108 
10109   // If target does not have legal shift left, do not emit bit tests at all.
10110   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10111   const DataLayout &DL = DAG.getDataLayout();
10112 
10113   EVT PTy = TLI.getPointerTy(DL);
10114   if (!TLI.isOperationLegal(ISD::SHL, PTy))
10115     return;
10116 
10117   int BitWidth = PTy.getSizeInBits();
10118   const int64_t N = Clusters.size();
10119 
10120   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
10121   SmallVector<unsigned, 8> MinPartitions(N);
10122   // LastElement[i] is the last element of the partition starting at i.
10123   SmallVector<unsigned, 8> LastElement(N);
10124 
10125   // FIXME: This might not be the best algorithm for finding bit test clusters.
10126 
10127   // Base case: There is only one way to partition Clusters[N-1].
10128   MinPartitions[N - 1] = 1;
10129   LastElement[N - 1] = N - 1;
10130 
10131   // Note: loop indexes are signed to avoid underflow.
10132   for (int64_t i = N - 2; i >= 0; --i) {
10133     // Find optimal partitioning of Clusters[i..N-1].
10134     // Baseline: Put Clusters[i] into a partition on its own.
10135     MinPartitions[i] = MinPartitions[i + 1] + 1;
10136     LastElement[i] = i;
10137 
10138     // Search for a solution that results in fewer partitions.
10139     // Note: the search is limited by BitWidth, reducing time complexity.
10140     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
10141       // Try building a partition from Clusters[i..j].
10142 
10143       // Check the range.
10144       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
10145                                Clusters[j].High->getValue(), DL))
10146         continue;
10147 
10148       // Check nbr of destinations and cluster types.
10149       // FIXME: This works, but doesn't seem very efficient.
10150       bool RangesOnly = true;
10151       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10152       for (int64_t k = i; k <= j; k++) {
10153         if (Clusters[k].Kind != CC_Range) {
10154           RangesOnly = false;
10155           break;
10156         }
10157         Dests.set(Clusters[k].MBB->getNumber());
10158       }
10159       if (!RangesOnly || Dests.count() > 3)
10160         break;
10161 
10162       // Check if it's a better partition.
10163       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
10164       if (NumPartitions < MinPartitions[i]) {
10165         // Found a better partition.
10166         MinPartitions[i] = NumPartitions;
10167         LastElement[i] = j;
10168       }
10169     }
10170   }
10171 
10172   // Iterate over the partitions, replacing with bit-test clusters in-place.
10173   unsigned DstIndex = 0;
10174   for (unsigned First = 0, Last; First < N; First = Last + 1) {
10175     Last = LastElement[First];
10176     assert(First <= Last);
10177     assert(DstIndex <= First);
10178 
10179     CaseCluster BitTestCluster;
10180     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
10181       Clusters[DstIndex++] = BitTestCluster;
10182     } else {
10183       size_t NumClusters = Last - First + 1;
10184       std::memmove(&Clusters[DstIndex], &Clusters[First],
10185                    sizeof(Clusters[0]) * NumClusters);
10186       DstIndex += NumClusters;
10187     }
10188   }
10189   Clusters.resize(DstIndex);
10190 }
10191 
10192 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10193                                         MachineBasicBlock *SwitchMBB,
10194                                         MachineBasicBlock *DefaultMBB) {
10195   MachineFunction *CurMF = FuncInfo.MF;
10196   MachineBasicBlock *NextMBB = nullptr;
10197   MachineFunction::iterator BBI(W.MBB);
10198   if (++BBI != FuncInfo.MF->end())
10199     NextMBB = &*BBI;
10200 
10201   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10202 
10203   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10204 
10205   if (Size == 2 && W.MBB == SwitchMBB) {
10206     // If any two of the cases has the same destination, and if one value
10207     // is the same as the other, but has one bit unset that the other has set,
10208     // use bit manipulation to do two compares at once.  For example:
10209     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10210     // TODO: This could be extended to merge any 2 cases in switches with 3
10211     // cases.
10212     // TODO: Handle cases where W.CaseBB != SwitchBB.
10213     CaseCluster &Small = *W.FirstCluster;
10214     CaseCluster &Big = *W.LastCluster;
10215 
10216     if (Small.Low == Small.High && Big.Low == Big.High &&
10217         Small.MBB == Big.MBB) {
10218       const APInt &SmallValue = Small.Low->getValue();
10219       const APInt &BigValue = Big.Low->getValue();
10220 
10221       // Check that there is only one bit different.
10222       APInt CommonBit = BigValue ^ SmallValue;
10223       if (CommonBit.isPowerOf2()) {
10224         SDValue CondLHS = getValue(Cond);
10225         EVT VT = CondLHS.getValueType();
10226         SDLoc DL = getCurSDLoc();
10227 
10228         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10229                                  DAG.getConstant(CommonBit, DL, VT));
10230         SDValue Cond = DAG.getSetCC(
10231             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10232             ISD::SETEQ);
10233 
10234         // Update successor info.
10235         // Both Small and Big will jump to Small.BB, so we sum up the
10236         // probabilities.
10237         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10238         if (BPI)
10239           addSuccessorWithProb(
10240               SwitchMBB, DefaultMBB,
10241               // The default destination is the first successor in IR.
10242               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10243         else
10244           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10245 
10246         // Insert the true branch.
10247         SDValue BrCond =
10248             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10249                         DAG.getBasicBlock(Small.MBB));
10250         // Insert the false branch.
10251         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10252                              DAG.getBasicBlock(DefaultMBB));
10253 
10254         DAG.setRoot(BrCond);
10255         return;
10256       }
10257     }
10258   }
10259 
10260   if (TM.getOptLevel() != CodeGenOpt::None) {
10261     // Here, we order cases by probability so the most likely case will be
10262     // checked first. However, two clusters can have the same probability in
10263     // which case their relative ordering is non-deterministic. So we use Low
10264     // as a tie-breaker as clusters are guaranteed to never overlap.
10265     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10266                [](const CaseCluster &a, const CaseCluster &b) {
10267       return a.Prob != b.Prob ?
10268              a.Prob > b.Prob :
10269              a.Low->getValue().slt(b.Low->getValue());
10270     });
10271 
10272     // Rearrange the case blocks so that the last one falls through if possible
10273     // without changing the order of probabilities.
10274     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10275       --I;
10276       if (I->Prob > W.LastCluster->Prob)
10277         break;
10278       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10279         std::swap(*I, *W.LastCluster);
10280         break;
10281       }
10282     }
10283   }
10284 
10285   // Compute total probability.
10286   BranchProbability DefaultProb = W.DefaultProb;
10287   BranchProbability UnhandledProbs = DefaultProb;
10288   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10289     UnhandledProbs += I->Prob;
10290 
10291   MachineBasicBlock *CurMBB = W.MBB;
10292   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10293     MachineBasicBlock *Fallthrough;
10294     if (I == W.LastCluster) {
10295       // For the last cluster, fall through to the default destination.
10296       Fallthrough = DefaultMBB;
10297     } else {
10298       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10299       CurMF->insert(BBI, Fallthrough);
10300       // Put Cond in a virtual register to make it available from the new blocks.
10301       ExportFromCurrentBlock(Cond);
10302     }
10303     UnhandledProbs -= I->Prob;
10304 
10305     switch (I->Kind) {
10306       case CC_JumpTable: {
10307         // FIXME: Optimize away range check based on pivot comparisons.
10308         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
10309         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
10310 
10311         // The jump block hasn't been inserted yet; insert it here.
10312         MachineBasicBlock *JumpMBB = JT->MBB;
10313         CurMF->insert(BBI, JumpMBB);
10314 
10315         auto JumpProb = I->Prob;
10316         auto FallthroughProb = UnhandledProbs;
10317 
10318         // If the default statement is a target of the jump table, we evenly
10319         // distribute the default probability to successors of CurMBB. Also
10320         // update the probability on the edge from JumpMBB to Fallthrough.
10321         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10322                                               SE = JumpMBB->succ_end();
10323              SI != SE; ++SI) {
10324           if (*SI == DefaultMBB) {
10325             JumpProb += DefaultProb / 2;
10326             FallthroughProb -= DefaultProb / 2;
10327             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10328             JumpMBB->normalizeSuccProbs();
10329             break;
10330           }
10331         }
10332 
10333         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10334         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10335         CurMBB->normalizeSuccProbs();
10336 
10337         // The jump table header will be inserted in our current block, do the
10338         // range check, and fall through to our fallthrough block.
10339         JTH->HeaderBB = CurMBB;
10340         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10341 
10342         // If we're in the right place, emit the jump table header right now.
10343         if (CurMBB == SwitchMBB) {
10344           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10345           JTH->Emitted = true;
10346         }
10347         break;
10348       }
10349       case CC_BitTests: {
10350         // FIXME: Optimize away range check based on pivot comparisons.
10351         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
10352 
10353         // The bit test blocks haven't been inserted yet; insert them here.
10354         for (BitTestCase &BTC : BTB->Cases)
10355           CurMF->insert(BBI, BTC.ThisBB);
10356 
10357         // Fill in fields of the BitTestBlock.
10358         BTB->Parent = CurMBB;
10359         BTB->Default = Fallthrough;
10360 
10361         BTB->DefaultProb = UnhandledProbs;
10362         // If the cases in bit test don't form a contiguous range, we evenly
10363         // distribute the probability on the edge to Fallthrough to two
10364         // successors of CurMBB.
10365         if (!BTB->ContiguousRange) {
10366           BTB->Prob += DefaultProb / 2;
10367           BTB->DefaultProb -= DefaultProb / 2;
10368         }
10369 
10370         // If we're in the right place, emit the bit test header right now.
10371         if (CurMBB == SwitchMBB) {
10372           visitBitTestHeader(*BTB, SwitchMBB);
10373           BTB->Emitted = true;
10374         }
10375         break;
10376       }
10377       case CC_Range: {
10378         const Value *RHS, *LHS, *MHS;
10379         ISD::CondCode CC;
10380         if (I->Low == I->High) {
10381           // Check Cond == I->Low.
10382           CC = ISD::SETEQ;
10383           LHS = Cond;
10384           RHS=I->Low;
10385           MHS = nullptr;
10386         } else {
10387           // Check I->Low <= Cond <= I->High.
10388           CC = ISD::SETLE;
10389           LHS = I->Low;
10390           MHS = Cond;
10391           RHS = I->High;
10392         }
10393 
10394         // The false probability is the sum of all unhandled cases.
10395         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10396                      getCurSDLoc(), I->Prob, UnhandledProbs);
10397 
10398         if (CurMBB == SwitchMBB)
10399           visitSwitchCase(CB, SwitchMBB);
10400         else
10401           SwitchCases.push_back(CB);
10402 
10403         break;
10404       }
10405     }
10406     CurMBB = Fallthrough;
10407   }
10408 }
10409 
10410 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10411                                               CaseClusterIt First,
10412                                               CaseClusterIt Last) {
10413   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10414     if (X.Prob != CC.Prob)
10415       return X.Prob > CC.Prob;
10416 
10417     // Ties are broken by comparing the case value.
10418     return X.Low->getValue().slt(CC.Low->getValue());
10419   });
10420 }
10421 
10422 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10423                                         const SwitchWorkListItem &W,
10424                                         Value *Cond,
10425                                         MachineBasicBlock *SwitchMBB) {
10426   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10427          "Clusters not sorted?");
10428 
10429   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10430 
10431   // Balance the tree based on branch probabilities to create a near-optimal (in
10432   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10433   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10434   CaseClusterIt LastLeft = W.FirstCluster;
10435   CaseClusterIt FirstRight = W.LastCluster;
10436   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10437   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10438 
10439   // Move LastLeft and FirstRight towards each other from opposite directions to
10440   // find a partitioning of the clusters which balances the probability on both
10441   // sides. If LeftProb and RightProb are equal, alternate which side is
10442   // taken to ensure 0-probability nodes are distributed evenly.
10443   unsigned I = 0;
10444   while (LastLeft + 1 < FirstRight) {
10445     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10446       LeftProb += (++LastLeft)->Prob;
10447     else
10448       RightProb += (--FirstRight)->Prob;
10449     I++;
10450   }
10451 
10452   while (true) {
10453     // Our binary search tree differs from a typical BST in that ours can have up
10454     // to three values in each leaf. The pivot selection above doesn't take that
10455     // into account, which means the tree might require more nodes and be less
10456     // efficient. We compensate for this here.
10457 
10458     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10459     unsigned NumRight = W.LastCluster - FirstRight + 1;
10460 
10461     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10462       // If one side has less than 3 clusters, and the other has more than 3,
10463       // consider taking a cluster from the other side.
10464 
10465       if (NumLeft < NumRight) {
10466         // Consider moving the first cluster on the right to the left side.
10467         CaseCluster &CC = *FirstRight;
10468         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10469         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10470         if (LeftSideRank <= RightSideRank) {
10471           // Moving the cluster to the left does not demote it.
10472           ++LastLeft;
10473           ++FirstRight;
10474           continue;
10475         }
10476       } else {
10477         assert(NumRight < NumLeft);
10478         // Consider moving the last element on the left to the right side.
10479         CaseCluster &CC = *LastLeft;
10480         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10481         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10482         if (RightSideRank <= LeftSideRank) {
10483           // Moving the cluster to the right does not demot it.
10484           --LastLeft;
10485           --FirstRight;
10486           continue;
10487         }
10488       }
10489     }
10490     break;
10491   }
10492 
10493   assert(LastLeft + 1 == FirstRight);
10494   assert(LastLeft >= W.FirstCluster);
10495   assert(FirstRight <= W.LastCluster);
10496 
10497   // Use the first element on the right as pivot since we will make less-than
10498   // comparisons against it.
10499   CaseClusterIt PivotCluster = FirstRight;
10500   assert(PivotCluster > W.FirstCluster);
10501   assert(PivotCluster <= W.LastCluster);
10502 
10503   CaseClusterIt FirstLeft = W.FirstCluster;
10504   CaseClusterIt LastRight = W.LastCluster;
10505 
10506   const ConstantInt *Pivot = PivotCluster->Low;
10507 
10508   // New blocks will be inserted immediately after the current one.
10509   MachineFunction::iterator BBI(W.MBB);
10510   ++BBI;
10511 
10512   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10513   // we can branch to its destination directly if it's squeezed exactly in
10514   // between the known lower bound and Pivot - 1.
10515   MachineBasicBlock *LeftMBB;
10516   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10517       FirstLeft->Low == W.GE &&
10518       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10519     LeftMBB = FirstLeft->MBB;
10520   } else {
10521     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10522     FuncInfo.MF->insert(BBI, LeftMBB);
10523     WorkList.push_back(
10524         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10525     // Put Cond in a virtual register to make it available from the new blocks.
10526     ExportFromCurrentBlock(Cond);
10527   }
10528 
10529   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10530   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10531   // directly if RHS.High equals the current upper bound.
10532   MachineBasicBlock *RightMBB;
10533   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10534       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10535     RightMBB = FirstRight->MBB;
10536   } else {
10537     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10538     FuncInfo.MF->insert(BBI, RightMBB);
10539     WorkList.push_back(
10540         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10541     // Put Cond in a virtual register to make it available from the new blocks.
10542     ExportFromCurrentBlock(Cond);
10543   }
10544 
10545   // Create the CaseBlock record that will be used to lower the branch.
10546   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10547                getCurSDLoc(), LeftProb, RightProb);
10548 
10549   if (W.MBB == SwitchMBB)
10550     visitSwitchCase(CB, SwitchMBB);
10551   else
10552     SwitchCases.push_back(CB);
10553 }
10554 
10555 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10556 // from the swith statement.
10557 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10558                                             BranchProbability PeeledCaseProb) {
10559   if (PeeledCaseProb == BranchProbability::getOne())
10560     return BranchProbability::getZero();
10561   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10562 
10563   uint32_t Numerator = CaseProb.getNumerator();
10564   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10565   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10566 }
10567 
10568 // Try to peel the top probability case if it exceeds the threshold.
10569 // Return current MachineBasicBlock for the switch statement if the peeling
10570 // does not occur.
10571 // If the peeling is performed, return the newly created MachineBasicBlock
10572 // for the peeled switch statement. Also update Clusters to remove the peeled
10573 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10574 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10575     const SwitchInst &SI, CaseClusterVector &Clusters,
10576     BranchProbability &PeeledCaseProb) {
10577   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10578   // Don't perform if there is only one cluster or optimizing for size.
10579   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10580       TM.getOptLevel() == CodeGenOpt::None ||
10581       SwitchMBB->getParent()->getFunction().optForMinSize())
10582     return SwitchMBB;
10583 
10584   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10585   unsigned PeeledCaseIndex = 0;
10586   bool SwitchPeeled = false;
10587   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10588     CaseCluster &CC = Clusters[Index];
10589     if (CC.Prob < TopCaseProb)
10590       continue;
10591     TopCaseProb = CC.Prob;
10592     PeeledCaseIndex = Index;
10593     SwitchPeeled = true;
10594   }
10595   if (!SwitchPeeled)
10596     return SwitchMBB;
10597 
10598   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10599                     << TopCaseProb << "\n");
10600 
10601   // Record the MBB for the peeled switch statement.
10602   MachineFunction::iterator BBI(SwitchMBB);
10603   ++BBI;
10604   MachineBasicBlock *PeeledSwitchMBB =
10605       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10606   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10607 
10608   ExportFromCurrentBlock(SI.getCondition());
10609   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10610   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10611                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10612   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10613 
10614   Clusters.erase(PeeledCaseIt);
10615   for (CaseCluster &CC : Clusters) {
10616     LLVM_DEBUG(
10617         dbgs() << "Scale the probablity for one cluster, before scaling: "
10618                << CC.Prob << "\n");
10619     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10620     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10621   }
10622   PeeledCaseProb = TopCaseProb;
10623   return PeeledSwitchMBB;
10624 }
10625 
10626 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10627   // Extract cases from the switch.
10628   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10629   CaseClusterVector Clusters;
10630   Clusters.reserve(SI.getNumCases());
10631   for (auto I : SI.cases()) {
10632     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10633     const ConstantInt *CaseVal = I.getCaseValue();
10634     BranchProbability Prob =
10635         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10636             : BranchProbability(1, SI.getNumCases() + 1);
10637     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10638   }
10639 
10640   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10641 
10642   // Cluster adjacent cases with the same destination. We do this at all
10643   // optimization levels because it's cheap to do and will make codegen faster
10644   // if there are many clusters.
10645   sortAndRangeify(Clusters);
10646 
10647   if (TM.getOptLevel() != CodeGenOpt::None) {
10648     // Replace an unreachable default with the most popular destination.
10649     // FIXME: Exploit unreachable default more aggressively.
10650     bool UnreachableDefault =
10651         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10652     if (UnreachableDefault && !Clusters.empty()) {
10653       DenseMap<const BasicBlock *, unsigned> Popularity;
10654       unsigned MaxPop = 0;
10655       const BasicBlock *MaxBB = nullptr;
10656       for (auto I : SI.cases()) {
10657         const BasicBlock *BB = I.getCaseSuccessor();
10658         if (++Popularity[BB] > MaxPop) {
10659           MaxPop = Popularity[BB];
10660           MaxBB = BB;
10661         }
10662       }
10663       // Set new default.
10664       assert(MaxPop > 0 && MaxBB);
10665       DefaultMBB = FuncInfo.MBBMap[MaxBB];
10666 
10667       // Remove cases that were pointing to the destination that is now the
10668       // default.
10669       CaseClusterVector New;
10670       New.reserve(Clusters.size());
10671       for (CaseCluster &CC : Clusters) {
10672         if (CC.MBB != DefaultMBB)
10673           New.push_back(CC);
10674       }
10675       Clusters = std::move(New);
10676     }
10677   }
10678 
10679   // The branch probablity of the peeled case.
10680   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10681   MachineBasicBlock *PeeledSwitchMBB =
10682       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10683 
10684   // If there is only the default destination, jump there directly.
10685   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10686   if (Clusters.empty()) {
10687     assert(PeeledSwitchMBB == SwitchMBB);
10688     SwitchMBB->addSuccessor(DefaultMBB);
10689     if (DefaultMBB != NextBlock(SwitchMBB)) {
10690       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10691                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10692     }
10693     return;
10694   }
10695 
10696   findJumpTables(Clusters, &SI, DefaultMBB);
10697   findBitTestClusters(Clusters, &SI);
10698 
10699   LLVM_DEBUG({
10700     dbgs() << "Case clusters: ";
10701     for (const CaseCluster &C : Clusters) {
10702       if (C.Kind == CC_JumpTable)
10703         dbgs() << "JT:";
10704       if (C.Kind == CC_BitTests)
10705         dbgs() << "BT:";
10706 
10707       C.Low->getValue().print(dbgs(), true);
10708       if (C.Low != C.High) {
10709         dbgs() << '-';
10710         C.High->getValue().print(dbgs(), true);
10711       }
10712       dbgs() << ' ';
10713     }
10714     dbgs() << '\n';
10715   });
10716 
10717   assert(!Clusters.empty());
10718   SwitchWorkList WorkList;
10719   CaseClusterIt First = Clusters.begin();
10720   CaseClusterIt Last = Clusters.end() - 1;
10721   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10722   // Scale the branchprobability for DefaultMBB if the peel occurs and
10723   // DefaultMBB is not replaced.
10724   if (PeeledCaseProb != BranchProbability::getZero() &&
10725       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10726     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10727   WorkList.push_back(
10728       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10729 
10730   while (!WorkList.empty()) {
10731     SwitchWorkListItem W = WorkList.back();
10732     WorkList.pop_back();
10733     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10734 
10735     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10736         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10737       // For optimized builds, lower large range as a balanced binary tree.
10738       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10739       continue;
10740     }
10741 
10742     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10743   }
10744 }
10745