1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/CodeGen/ValueTypes.h" 64 #include "llvm/CodeGen/WinEHFuncInfo.h" 65 #include "llvm/IR/Argument.h" 66 #include "llvm/IR/Attributes.h" 67 #include "llvm/IR/BasicBlock.h" 68 #include "llvm/IR/CFG.h" 69 #include "llvm/IR/CallSite.h" 70 #include "llvm/IR/CallingConv.h" 71 #include "llvm/IR/Constant.h" 72 #include "llvm/IR/ConstantRange.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfoMetadata.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/InlineAsm.h" 81 #include "llvm/IR/InstrTypes.h" 82 #include "llvm/IR/Instruction.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/Intrinsics.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Metadata.h" 88 #include "llvm/IR/Module.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/PatternMatch.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include "llvm/Transforms/Utils/Local.h" 112 #include <algorithm> 113 #include <cassert> 114 #include <cstddef> 115 #include <cstdint> 116 #include <cstring> 117 #include <iterator> 118 #include <limits> 119 #include <numeric> 120 #include <tuple> 121 #include <utility> 122 #include <vector> 123 124 using namespace llvm; 125 using namespace PatternMatch; 126 127 #define DEBUG_TYPE "isel" 128 129 /// LimitFloatPrecision - Generate low-precision inline sequences for 130 /// some float libcalls (6, 8 or 12 bits). 131 static unsigned LimitFloatPrecision; 132 133 static cl::opt<unsigned, true> 134 LimitFPPrecision("limit-float-precision", 135 cl::desc("Generate low-precision inline sequences " 136 "for some float libcalls"), 137 cl::location(LimitFloatPrecision), cl::Hidden, 138 cl::init(0)); 139 140 static cl::opt<unsigned> SwitchPeelThreshold( 141 "switch-peel-threshold", cl::Hidden, cl::init(66), 142 cl::desc("Set the case probability threshold for peeling the case from a " 143 "switch statement. A value greater than 100 will void this " 144 "optimization")); 145 146 // Limit the width of DAG chains. This is important in general to prevent 147 // DAG-based analysis from blowing up. For example, alias analysis and 148 // load clustering may not complete in reasonable time. It is difficult to 149 // recognize and avoid this situation within each individual analysis, and 150 // future analyses are likely to have the same behavior. Limiting DAG width is 151 // the safe approach and will be especially important with global DAGs. 152 // 153 // MaxParallelChains default is arbitrarily high to avoid affecting 154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 155 // sequence over this should have been converted to llvm.memcpy by the 156 // frontend. It is easy to induce this behavior with .ll code such as: 157 // %buffer = alloca [4096 x i8] 158 // %data = load [4096 x i8]* %argPtr 159 // store [4096 x i8] %data, [4096 x i8]* %buffer 160 static const unsigned MaxParallelChains = 64; 161 162 // Return the calling convention if the Value passed requires ABI mangling as it 163 // is a parameter to a function or a return value from a function which is not 164 // an intrinsic. 165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 166 if (auto *R = dyn_cast<ReturnInst>(V)) 167 return R->getParent()->getParent()->getCallingConv(); 168 169 if (auto *CI = dyn_cast<CallInst>(V)) { 170 const bool IsInlineAsm = CI->isInlineAsm(); 171 const bool IsIndirectFunctionCall = 172 !IsInlineAsm && !CI->getCalledFunction(); 173 174 // It is possible that the call instruction is an inline asm statement or an 175 // indirect function call in which case the return value of 176 // getCalledFunction() would be nullptr. 177 const bool IsInstrinsicCall = 178 !IsInlineAsm && !IsIndirectFunctionCall && 179 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 180 181 if (!IsInlineAsm && !IsInstrinsicCall) 182 return CI->getCallingConv(); 183 } 184 185 return None; 186 } 187 188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 189 const SDValue *Parts, unsigned NumParts, 190 MVT PartVT, EVT ValueVT, const Value *V, 191 Optional<CallingConv::ID> CC); 192 193 /// getCopyFromParts - Create a value that contains the specified legal parts 194 /// combined into the value they represent. If the parts combine to a type 195 /// larger than ValueVT then AssertOp can be used to specify whether the extra 196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 197 /// (ISD::AssertSext). 198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 199 const SDValue *Parts, unsigned NumParts, 200 MVT PartVT, EVT ValueVT, const Value *V, 201 Optional<CallingConv::ID> CC = None, 202 Optional<ISD::NodeType> AssertOp = None) { 203 if (ValueVT.isVector()) 204 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 205 CC); 206 207 assert(NumParts > 0 && "No parts to assemble!"); 208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 209 SDValue Val = Parts[0]; 210 211 if (NumParts > 1) { 212 // Assemble the value from multiple parts. 213 if (ValueVT.isInteger()) { 214 unsigned PartBits = PartVT.getSizeInBits(); 215 unsigned ValueBits = ValueVT.getSizeInBits(); 216 217 // Assemble the power of 2 part. 218 unsigned RoundParts = NumParts & (NumParts - 1) ? 219 1 << Log2_32(NumParts) : NumParts; 220 unsigned RoundBits = PartBits * RoundParts; 221 EVT RoundVT = RoundBits == ValueBits ? 222 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 223 SDValue Lo, Hi; 224 225 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 226 227 if (RoundParts > 2) { 228 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 229 PartVT, HalfVT, V); 230 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 231 RoundParts / 2, PartVT, HalfVT, V); 232 } else { 233 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 235 } 236 237 if (DAG.getDataLayout().isBigEndian()) 238 std::swap(Lo, Hi); 239 240 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 241 242 if (RoundParts < NumParts) { 243 // Assemble the trailing non-power-of-2 part. 244 unsigned OddParts = NumParts - RoundParts; 245 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 246 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 247 OddVT, V, CC); 248 249 // Combine the round and odd parts. 250 Lo = Val; 251 if (DAG.getDataLayout().isBigEndian()) 252 std::swap(Lo, Hi); 253 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 254 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 255 Hi = 256 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 257 DAG.getConstant(Lo.getValueSizeInBits(), DL, 258 TLI.getPointerTy(DAG.getDataLayout()))); 259 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 260 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 261 } 262 } else if (PartVT.isFloatingPoint()) { 263 // FP split into multiple FP parts (for ppcf128) 264 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 265 "Unexpected split"); 266 SDValue Lo, Hi; 267 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 268 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 269 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 270 std::swap(Lo, Hi); 271 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 272 } else { 273 // FP split into integer parts (soft fp) 274 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 275 !PartVT.isVector() && "Unexpected split"); 276 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 277 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 278 } 279 } 280 281 // There is now one part, held in Val. Correct it to match ValueVT. 282 // PartEVT is the type of the register class that holds the value. 283 // ValueVT is the type of the inline asm operation. 284 EVT PartEVT = Val.getValueType(); 285 286 if (PartEVT == ValueVT) 287 return Val; 288 289 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 290 ValueVT.bitsLT(PartEVT)) { 291 // For an FP value in an integer part, we need to truncate to the right 292 // width first. 293 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 294 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 295 } 296 297 // Handle types that have the same size. 298 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle types with different sizes. 302 if (PartEVT.isInteger() && ValueVT.isInteger()) { 303 if (ValueVT.bitsLT(PartEVT)) { 304 // For a truncate, see if we have any information to 305 // indicate whether the truncated bits will always be 306 // zero or sign-extension. 307 if (AssertOp.hasValue()) 308 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 309 DAG.getValueType(ValueVT)); 310 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 311 } 312 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 313 } 314 315 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 316 // FP_ROUND's are always exact here. 317 if (ValueVT.bitsLT(Val.getValueType())) 318 return DAG.getNode( 319 ISD::FP_ROUND, DL, ValueVT, Val, 320 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 321 322 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 323 } 324 325 llvm_unreachable("Unknown mismatch!"); 326 } 327 328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 329 const Twine &ErrMsg) { 330 const Instruction *I = dyn_cast_or_null<Instruction>(V); 331 if (!V) 332 return Ctx.emitError(ErrMsg); 333 334 const char *AsmError = ", possible invalid constraint for vector type"; 335 if (const CallInst *CI = dyn_cast<CallInst>(I)) 336 if (isa<InlineAsm>(CI->getCalledValue())) 337 return Ctx.emitError(I, ErrMsg + AsmError); 338 339 return Ctx.emitError(I, ErrMsg); 340 } 341 342 /// getCopyFromPartsVector - Create a value that contains the specified legal 343 /// parts combined into the value they represent. If the parts combine to a 344 /// type larger than ValueVT then AssertOp can be used to specify whether the 345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 346 /// ValueVT (ISD::AssertSext). 347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 348 const SDValue *Parts, unsigned NumParts, 349 MVT PartVT, EVT ValueVT, const Value *V, 350 Optional<CallingConv::ID> CallConv) { 351 assert(ValueVT.isVector() && "Not a vector value"); 352 assert(NumParts > 0 && "No parts to assemble!"); 353 const bool IsABIRegCopy = CallConv.hasValue(); 354 355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 356 SDValue Val = Parts[0]; 357 358 // Handle a multi-element vector. 359 if (NumParts > 1) { 360 EVT IntermediateVT; 361 MVT RegisterVT; 362 unsigned NumIntermediates; 363 unsigned NumRegs; 364 365 if (IsABIRegCopy) { 366 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 367 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 368 NumIntermediates, RegisterVT); 369 } else { 370 NumRegs = 371 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 372 NumIntermediates, RegisterVT); 373 } 374 375 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 376 NumParts = NumRegs; // Silence a compiler warning. 377 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 378 assert(RegisterVT.getSizeInBits() == 379 Parts[0].getSimpleValueType().getSizeInBits() && 380 "Part type sizes don't match!"); 381 382 // Assemble the parts into intermediate operands. 383 SmallVector<SDValue, 8> Ops(NumIntermediates); 384 if (NumIntermediates == NumParts) { 385 // If the register was not expanded, truncate or copy the value, 386 // as appropriate. 387 for (unsigned i = 0; i != NumParts; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 389 PartVT, IntermediateVT, V); 390 } else if (NumParts > 0) { 391 // If the intermediate type was expanded, build the intermediate 392 // operands from the parts. 393 assert(NumParts % NumIntermediates == 0 && 394 "Must expand into a divisible number of parts!"); 395 unsigned Factor = NumParts / NumIntermediates; 396 for (unsigned i = 0; i != NumIntermediates; ++i) 397 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 398 PartVT, IntermediateVT, V); 399 } 400 401 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 402 // intermediate operands. 403 EVT BuiltVectorTy = 404 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 405 (IntermediateVT.isVector() 406 ? IntermediateVT.getVectorNumElements() * NumParts 407 : NumIntermediates)); 408 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 409 : ISD::BUILD_VECTOR, 410 DL, BuiltVectorTy, Ops); 411 } 412 413 // There is now one part, held in Val. Correct it to match ValueVT. 414 EVT PartEVT = Val.getValueType(); 415 416 if (PartEVT == ValueVT) 417 return Val; 418 419 if (PartEVT.isVector()) { 420 // If the element type of the source/dest vectors are the same, but the 421 // parts vector has more elements than the value vector, then we have a 422 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 423 // elements we want. 424 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 425 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 426 "Cannot narrow, it would be a lossy transformation"); 427 return DAG.getNode( 428 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 429 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 430 } 431 432 // Vector/Vector bitcast. 433 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 435 436 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 437 "Cannot handle this kind of promotion"); 438 // Promoted vector extract 439 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 440 441 } 442 443 // Trivial bitcast if the types are the same size and the destination 444 // vector type is legal. 445 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 446 TLI.isTypeLegal(ValueVT)) 447 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 448 449 if (ValueVT.getVectorNumElements() != 1) { 450 // Certain ABIs require that vectors are passed as integers. For vectors 451 // are the same size, this is an obvious bitcast. 452 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 454 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 455 // Bitcast Val back the original type and extract the corresponding 456 // vector we want. 457 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 458 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 459 ValueVT.getVectorElementType(), Elts); 460 Val = DAG.getBitcast(WiderVecType, Val); 461 return DAG.getNode( 462 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 463 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 464 } 465 466 diagnosePossiblyInvalidConstraint( 467 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 468 return DAG.getUNDEF(ValueVT); 469 } 470 471 // Handle cases such as i8 -> <1 x i1> 472 EVT ValueSVT = ValueVT.getVectorElementType(); 473 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 474 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 475 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 476 477 return DAG.getBuildVector(ValueVT, DL, Val); 478 } 479 480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 481 SDValue Val, SDValue *Parts, unsigned NumParts, 482 MVT PartVT, const Value *V, 483 Optional<CallingConv::ID> CallConv); 484 485 /// getCopyToParts - Create a series of nodes that contain the specified value 486 /// split into legal parts. If the parts contain more bits than Val, then, for 487 /// integers, ExtendKind can be used to specify how to generate the extra bits. 488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 489 SDValue *Parts, unsigned NumParts, MVT PartVT, 490 const Value *V, 491 Optional<CallingConv::ID> CallConv = None, 492 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 493 EVT ValueVT = Val.getValueType(); 494 495 // Handle the vector case separately. 496 if (ValueVT.isVector()) 497 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 498 CallConv); 499 500 unsigned PartBits = PartVT.getSizeInBits(); 501 unsigned OrigNumParts = NumParts; 502 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 503 "Copying to an illegal type!"); 504 505 if (NumParts == 0) 506 return; 507 508 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 509 EVT PartEVT = PartVT; 510 if (PartEVT == ValueVT) { 511 assert(NumParts == 1 && "No-op copy with multiple parts!"); 512 Parts[0] = Val; 513 return; 514 } 515 516 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 517 // If the parts cover more bits than the value has, promote the value. 518 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 519 assert(NumParts == 1 && "Do not know what to promote to!"); 520 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 521 } else { 522 if (ValueVT.isFloatingPoint()) { 523 // FP values need to be bitcast, then extended if they are being put 524 // into a larger container. 525 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 526 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 527 } 528 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 529 ValueVT.isInteger() && 530 "Unknown mismatch!"); 531 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 532 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 533 if (PartVT == MVT::x86mmx) 534 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 535 } 536 } else if (PartBits == ValueVT.getSizeInBits()) { 537 // Different types of the same size. 538 assert(NumParts == 1 && PartEVT != ValueVT); 539 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 540 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 541 // If the parts cover less bits than value has, truncate the value. 542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 543 ValueVT.isInteger() && 544 "Unknown mismatch!"); 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 546 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 547 if (PartVT == MVT::x86mmx) 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } 550 551 // The value may have changed - recompute ValueVT. 552 ValueVT = Val.getValueType(); 553 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 554 "Failed to tile the value with PartVT!"); 555 556 if (NumParts == 1) { 557 if (PartEVT != ValueVT) { 558 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 559 "scalar-to-vector conversion failed"); 560 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 561 } 562 563 Parts[0] = Val; 564 return; 565 } 566 567 // Expand the value into multiple parts. 568 if (NumParts & (NumParts - 1)) { 569 // The number of parts is not a power of 2. Split off and copy the tail. 570 assert(PartVT.isInteger() && ValueVT.isInteger() && 571 "Do not know what to expand to!"); 572 unsigned RoundParts = 1 << Log2_32(NumParts); 573 unsigned RoundBits = RoundParts * PartBits; 574 unsigned OddParts = NumParts - RoundParts; 575 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 576 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 577 578 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 579 CallConv); 580 581 if (DAG.getDataLayout().isBigEndian()) 582 // The odd parts were reversed by getCopyToParts - unreverse them. 583 std::reverse(Parts + RoundParts, Parts + NumParts); 584 585 NumParts = RoundParts; 586 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 587 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 588 } 589 590 // The number of parts is a power of 2. Repeatedly bisect the value using 591 // EXTRACT_ELEMENT. 592 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 593 EVT::getIntegerVT(*DAG.getContext(), 594 ValueVT.getSizeInBits()), 595 Val); 596 597 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 598 for (unsigned i = 0; i < NumParts; i += StepSize) { 599 unsigned ThisBits = StepSize * PartBits / 2; 600 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 601 SDValue &Part0 = Parts[i]; 602 SDValue &Part1 = Parts[i+StepSize/2]; 603 604 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 605 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 606 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 607 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 608 609 if (ThisBits == PartBits && ThisVT != PartVT) { 610 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 611 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 612 } 613 } 614 } 615 616 if (DAG.getDataLayout().isBigEndian()) 617 std::reverse(Parts, Parts + OrigNumParts); 618 } 619 620 static SDValue widenVectorToPartType(SelectionDAG &DAG, 621 SDValue Val, const SDLoc &DL, EVT PartVT) { 622 if (!PartVT.isVector()) 623 return SDValue(); 624 625 EVT ValueVT = Val.getValueType(); 626 unsigned PartNumElts = PartVT.getVectorNumElements(); 627 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 628 if (PartNumElts > ValueNumElts && 629 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 630 EVT ElementVT = PartVT.getVectorElementType(); 631 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 632 // undef elements. 633 SmallVector<SDValue, 16> Ops; 634 DAG.ExtractVectorElements(Val, Ops); 635 SDValue EltUndef = DAG.getUNDEF(ElementVT); 636 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 637 Ops.push_back(EltUndef); 638 639 // FIXME: Use CONCAT for 2x -> 4x. 640 return DAG.getBuildVector(PartVT, DL, Ops); 641 } 642 643 return SDValue(); 644 } 645 646 /// getCopyToPartsVector - Create a series of nodes that contain the specified 647 /// value split into legal parts. 648 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 649 SDValue Val, SDValue *Parts, unsigned NumParts, 650 MVT PartVT, const Value *V, 651 Optional<CallingConv::ID> CallConv) { 652 EVT ValueVT = Val.getValueType(); 653 assert(ValueVT.isVector() && "Not a vector"); 654 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 655 const bool IsABIRegCopy = CallConv.hasValue(); 656 657 if (NumParts == 1) { 658 EVT PartEVT = PartVT; 659 if (PartEVT == ValueVT) { 660 // Nothing to do. 661 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 662 // Bitconvert vector->vector case. 663 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 664 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 665 Val = Widened; 666 } else if (PartVT.isVector() && 667 PartEVT.getVectorElementType().bitsGE( 668 ValueVT.getVectorElementType()) && 669 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 670 671 // Promoted vector extract 672 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 673 } else { 674 if (ValueVT.getVectorNumElements() == 1) { 675 Val = DAG.getNode( 676 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 677 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 678 } else { 679 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 680 "lossy conversion of vector to scalar type"); 681 EVT IntermediateType = 682 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 683 Val = DAG.getBitcast(IntermediateType, Val); 684 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 685 } 686 } 687 688 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 689 Parts[0] = Val; 690 return; 691 } 692 693 // Handle a multi-element vector. 694 EVT IntermediateVT; 695 MVT RegisterVT; 696 unsigned NumIntermediates; 697 unsigned NumRegs; 698 if (IsABIRegCopy) { 699 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 700 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 701 NumIntermediates, RegisterVT); 702 } else { 703 NumRegs = 704 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 705 NumIntermediates, RegisterVT); 706 } 707 708 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 709 NumParts = NumRegs; // Silence a compiler warning. 710 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 711 712 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 713 IntermediateVT.getVectorNumElements() : 1; 714 715 // Convert the vector to the appropiate type if necessary. 716 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 717 718 EVT BuiltVectorTy = EVT::getVectorVT( 719 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 720 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 721 if (ValueVT != BuiltVectorTy) { 722 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 723 Val = Widened; 724 725 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 726 } 727 728 // Split the vector into intermediate operands. 729 SmallVector<SDValue, 8> Ops(NumIntermediates); 730 for (unsigned i = 0; i != NumIntermediates; ++i) { 731 if (IntermediateVT.isVector()) { 732 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 733 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 734 } else { 735 Ops[i] = DAG.getNode( 736 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 737 DAG.getConstant(i, DL, IdxVT)); 738 } 739 } 740 741 // Split the intermediate operands into legal parts. 742 if (NumParts == NumIntermediates) { 743 // If the register was not expanded, promote or copy the value, 744 // as appropriate. 745 for (unsigned i = 0; i != NumParts; ++i) 746 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 747 } else if (NumParts > 0) { 748 // If the intermediate type was expanded, split each the value into 749 // legal parts. 750 assert(NumIntermediates != 0 && "division by zero"); 751 assert(NumParts % NumIntermediates == 0 && 752 "Must expand into a divisible number of parts!"); 753 unsigned Factor = NumParts / NumIntermediates; 754 for (unsigned i = 0; i != NumIntermediates; ++i) 755 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 756 CallConv); 757 } 758 } 759 760 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 761 EVT valuevt, Optional<CallingConv::ID> CC) 762 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 763 RegCount(1, regs.size()), CallConv(CC) {} 764 765 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 766 const DataLayout &DL, unsigned Reg, Type *Ty, 767 Optional<CallingConv::ID> CC) { 768 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 769 770 CallConv = CC; 771 772 for (EVT ValueVT : ValueVTs) { 773 unsigned NumRegs = 774 isABIMangled() 775 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 776 : TLI.getNumRegisters(Context, ValueVT); 777 MVT RegisterVT = 778 isABIMangled() 779 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 780 : TLI.getRegisterType(Context, ValueVT); 781 for (unsigned i = 0; i != NumRegs; ++i) 782 Regs.push_back(Reg + i); 783 RegVTs.push_back(RegisterVT); 784 RegCount.push_back(NumRegs); 785 Reg += NumRegs; 786 } 787 } 788 789 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 790 FunctionLoweringInfo &FuncInfo, 791 const SDLoc &dl, SDValue &Chain, 792 SDValue *Flag, const Value *V) const { 793 // A Value with type {} or [0 x %t] needs no registers. 794 if (ValueVTs.empty()) 795 return SDValue(); 796 797 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 798 799 // Assemble the legal parts into the final values. 800 SmallVector<SDValue, 4> Values(ValueVTs.size()); 801 SmallVector<SDValue, 8> Parts; 802 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 803 // Copy the legal parts from the registers. 804 EVT ValueVT = ValueVTs[Value]; 805 unsigned NumRegs = RegCount[Value]; 806 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 807 *DAG.getContext(), 808 CallConv.getValue(), RegVTs[Value]) 809 : RegVTs[Value]; 810 811 Parts.resize(NumRegs); 812 for (unsigned i = 0; i != NumRegs; ++i) { 813 SDValue P; 814 if (!Flag) { 815 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 816 } else { 817 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 818 *Flag = P.getValue(2); 819 } 820 821 Chain = P.getValue(1); 822 Parts[i] = P; 823 824 // If the source register was virtual and if we know something about it, 825 // add an assert node. 826 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 827 !RegisterVT.isInteger()) 828 continue; 829 830 const FunctionLoweringInfo::LiveOutInfo *LOI = 831 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 832 if (!LOI) 833 continue; 834 835 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 836 unsigned NumSignBits = LOI->NumSignBits; 837 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 838 839 if (NumZeroBits == RegSize) { 840 // The current value is a zero. 841 // Explicitly express that as it would be easier for 842 // optimizations to kick in. 843 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 844 continue; 845 } 846 847 // FIXME: We capture more information than the dag can represent. For 848 // now, just use the tightest assertzext/assertsext possible. 849 bool isSExt; 850 EVT FromVT(MVT::Other); 851 if (NumZeroBits) { 852 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 853 isSExt = false; 854 } else if (NumSignBits > 1) { 855 FromVT = 856 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 857 isSExt = true; 858 } else { 859 continue; 860 } 861 // Add an assertion node. 862 assert(FromVT != MVT::Other); 863 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 864 RegisterVT, P, DAG.getValueType(FromVT)); 865 } 866 867 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 868 RegisterVT, ValueVT, V, CallConv); 869 Part += NumRegs; 870 Parts.clear(); 871 } 872 873 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 874 } 875 876 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 877 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 878 const Value *V, 879 ISD::NodeType PreferredExtendType) const { 880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 881 ISD::NodeType ExtendKind = PreferredExtendType; 882 883 // Get the list of the values's legal parts. 884 unsigned NumRegs = Regs.size(); 885 SmallVector<SDValue, 8> Parts(NumRegs); 886 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 887 unsigned NumParts = RegCount[Value]; 888 889 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 890 *DAG.getContext(), 891 CallConv.getValue(), RegVTs[Value]) 892 : RegVTs[Value]; 893 894 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 895 ExtendKind = ISD::ZERO_EXTEND; 896 897 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 898 NumParts, RegisterVT, V, CallConv, ExtendKind); 899 Part += NumParts; 900 } 901 902 // Copy the parts into the registers. 903 SmallVector<SDValue, 8> Chains(NumRegs); 904 for (unsigned i = 0; i != NumRegs; ++i) { 905 SDValue Part; 906 if (!Flag) { 907 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 908 } else { 909 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 910 *Flag = Part.getValue(1); 911 } 912 913 Chains[i] = Part.getValue(0); 914 } 915 916 if (NumRegs == 1 || Flag) 917 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 918 // flagged to it. That is the CopyToReg nodes and the user are considered 919 // a single scheduling unit. If we create a TokenFactor and return it as 920 // chain, then the TokenFactor is both a predecessor (operand) of the 921 // user as well as a successor (the TF operands are flagged to the user). 922 // c1, f1 = CopyToReg 923 // c2, f2 = CopyToReg 924 // c3 = TokenFactor c1, c2 925 // ... 926 // = op c3, ..., f2 927 Chain = Chains[NumRegs-1]; 928 else 929 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 930 } 931 932 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 933 unsigned MatchingIdx, const SDLoc &dl, 934 SelectionDAG &DAG, 935 std::vector<SDValue> &Ops) const { 936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 937 938 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 939 if (HasMatching) 940 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 941 else if (!Regs.empty() && 942 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 943 // Put the register class of the virtual registers in the flag word. That 944 // way, later passes can recompute register class constraints for inline 945 // assembly as well as normal instructions. 946 // Don't do this for tied operands that can use the regclass information 947 // from the def. 948 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 949 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 950 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 951 } 952 953 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 954 Ops.push_back(Res); 955 956 if (Code == InlineAsm::Kind_Clobber) { 957 // Clobbers should always have a 1:1 mapping with registers, and may 958 // reference registers that have illegal (e.g. vector) types. Hence, we 959 // shouldn't try to apply any sort of splitting logic to them. 960 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 961 "No 1:1 mapping from clobbers to regs?"); 962 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 963 (void)SP; 964 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 965 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 966 assert( 967 (Regs[I] != SP || 968 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 969 "If we clobbered the stack pointer, MFI should know about it."); 970 } 971 return; 972 } 973 974 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 975 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 976 MVT RegisterVT = RegVTs[Value]; 977 for (unsigned i = 0; i != NumRegs; ++i) { 978 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 979 unsigned TheReg = Regs[Reg++]; 980 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 981 } 982 } 983 } 984 985 SmallVector<std::pair<unsigned, unsigned>, 4> 986 RegsForValue::getRegsAndSizes() const { 987 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 988 unsigned I = 0; 989 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 990 unsigned RegCount = std::get<0>(CountAndVT); 991 MVT RegisterVT = std::get<1>(CountAndVT); 992 unsigned RegisterSize = RegisterVT.getSizeInBits(); 993 for (unsigned E = I + RegCount; I != E; ++I) 994 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 995 } 996 return OutVec; 997 } 998 999 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1000 const TargetLibraryInfo *li) { 1001 AA = aa; 1002 GFI = gfi; 1003 LibInfo = li; 1004 DL = &DAG.getDataLayout(); 1005 Context = DAG.getContext(); 1006 LPadToCallSiteMap.clear(); 1007 } 1008 1009 void SelectionDAGBuilder::clear() { 1010 NodeMap.clear(); 1011 UnusedArgNodeMap.clear(); 1012 PendingLoads.clear(); 1013 PendingExports.clear(); 1014 CurInst = nullptr; 1015 HasTailCall = false; 1016 SDNodeOrder = LowestSDNodeOrder; 1017 StatepointLowering.clear(); 1018 } 1019 1020 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1021 DanglingDebugInfoMap.clear(); 1022 } 1023 1024 SDValue SelectionDAGBuilder::getRoot() { 1025 if (PendingLoads.empty()) 1026 return DAG.getRoot(); 1027 1028 if (PendingLoads.size() == 1) { 1029 SDValue Root = PendingLoads[0]; 1030 DAG.setRoot(Root); 1031 PendingLoads.clear(); 1032 return Root; 1033 } 1034 1035 // Otherwise, we have to make a token factor node. 1036 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1037 PendingLoads.clear(); 1038 DAG.setRoot(Root); 1039 return Root; 1040 } 1041 1042 SDValue SelectionDAGBuilder::getControlRoot() { 1043 SDValue Root = DAG.getRoot(); 1044 1045 if (PendingExports.empty()) 1046 return Root; 1047 1048 // Turn all of the CopyToReg chains into one factored node. 1049 if (Root.getOpcode() != ISD::EntryToken) { 1050 unsigned i = 0, e = PendingExports.size(); 1051 for (; i != e; ++i) { 1052 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1053 if (PendingExports[i].getNode()->getOperand(0) == Root) 1054 break; // Don't add the root if we already indirectly depend on it. 1055 } 1056 1057 if (i == e) 1058 PendingExports.push_back(Root); 1059 } 1060 1061 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1062 PendingExports); 1063 PendingExports.clear(); 1064 DAG.setRoot(Root); 1065 return Root; 1066 } 1067 1068 void SelectionDAGBuilder::visit(const Instruction &I) { 1069 // Set up outgoing PHI node register values before emitting the terminator. 1070 if (I.isTerminator()) { 1071 HandlePHINodesInSuccessorBlocks(I.getParent()); 1072 } 1073 1074 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1075 if (!isa<DbgInfoIntrinsic>(I)) 1076 ++SDNodeOrder; 1077 1078 CurInst = &I; 1079 1080 visit(I.getOpcode(), I); 1081 1082 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1083 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1084 // maps to this instruction. 1085 // TODO: We could handle all flags (nsw, etc) here. 1086 // TODO: If an IR instruction maps to >1 node, only the final node will have 1087 // flags set. 1088 if (SDNode *Node = getNodeForIRValue(&I)) { 1089 SDNodeFlags IncomingFlags; 1090 IncomingFlags.copyFMF(*FPMO); 1091 if (!Node->getFlags().isDefined()) 1092 Node->setFlags(IncomingFlags); 1093 else 1094 Node->intersectFlagsWith(IncomingFlags); 1095 } 1096 } 1097 1098 if (!I.isTerminator() && !HasTailCall && 1099 !isStatepoint(&I)) // statepoints handle their exports internally 1100 CopyToExportRegsIfNeeded(&I); 1101 1102 CurInst = nullptr; 1103 } 1104 1105 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1106 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1107 } 1108 1109 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1110 // Note: this doesn't use InstVisitor, because it has to work with 1111 // ConstantExpr's in addition to instructions. 1112 switch (Opcode) { 1113 default: llvm_unreachable("Unknown instruction type encountered!"); 1114 // Build the switch statement using the Instruction.def file. 1115 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1116 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1117 #include "llvm/IR/Instruction.def" 1118 } 1119 } 1120 1121 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1122 const DIExpression *Expr) { 1123 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1124 const DbgValueInst *DI = DDI.getDI(); 1125 DIVariable *DanglingVariable = DI->getVariable(); 1126 DIExpression *DanglingExpr = DI->getExpression(); 1127 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1128 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1129 return true; 1130 } 1131 return false; 1132 }; 1133 1134 for (auto &DDIMI : DanglingDebugInfoMap) { 1135 DanglingDebugInfoVector &DDIV = DDIMI.second; 1136 1137 // If debug info is to be dropped, run it through final checks to see 1138 // whether it can be salvaged. 1139 for (auto &DDI : DDIV) 1140 if (isMatchingDbgValue(DDI)) 1141 salvageUnresolvedDbgValue(DDI); 1142 1143 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1144 } 1145 } 1146 1147 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1148 // generate the debug data structures now that we've seen its definition. 1149 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1150 SDValue Val) { 1151 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1152 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1153 return; 1154 1155 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1156 for (auto &DDI : DDIV) { 1157 const DbgValueInst *DI = DDI.getDI(); 1158 assert(DI && "Ill-formed DanglingDebugInfo"); 1159 DebugLoc dl = DDI.getdl(); 1160 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1161 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1162 DILocalVariable *Variable = DI->getVariable(); 1163 DIExpression *Expr = DI->getExpression(); 1164 assert(Variable->isValidLocationForIntrinsic(dl) && 1165 "Expected inlined-at fields to agree"); 1166 SDDbgValue *SDV; 1167 if (Val.getNode()) { 1168 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1169 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1170 // we couldn't resolve it directly when examining the DbgValue intrinsic 1171 // in the first place we should not be more successful here). Unless we 1172 // have some test case that prove this to be correct we should avoid 1173 // calling EmitFuncArgumentDbgValue here. 1174 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1175 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1176 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1177 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1178 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1179 // inserted after the definition of Val when emitting the instructions 1180 // after ISel. An alternative could be to teach 1181 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1182 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1183 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1184 << ValSDNodeOrder << "\n"); 1185 SDV = getDbgValue(Val, Variable, Expr, dl, 1186 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1187 DAG.AddDbgValue(SDV, Val.getNode(), false); 1188 } else 1189 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1190 << "in EmitFuncArgumentDbgValue\n"); 1191 } else { 1192 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1193 auto Undef = 1194 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1195 auto SDV = 1196 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1197 DAG.AddDbgValue(SDV, nullptr, false); 1198 } 1199 } 1200 DDIV.clear(); 1201 } 1202 1203 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1204 Value *V = DDI.getDI()->getValue(); 1205 DILocalVariable *Var = DDI.getDI()->getVariable(); 1206 DIExpression *Expr = DDI.getDI()->getExpression(); 1207 DebugLoc DL = DDI.getdl(); 1208 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1209 unsigned SDOrder = DDI.getSDNodeOrder(); 1210 1211 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1212 // that DW_OP_stack_value is desired. 1213 assert(isa<DbgValueInst>(DDI.getDI())); 1214 bool StackValue = true; 1215 1216 // Can this Value can be encoded without any further work? 1217 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1218 return; 1219 1220 // Attempt to salvage back through as many instructions as possible. Bail if 1221 // a non-instruction is seen, such as a constant expression or global 1222 // variable. FIXME: Further work could recover those too. 1223 while (isa<Instruction>(V)) { 1224 Instruction &VAsInst = *cast<Instruction>(V); 1225 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1226 1227 // If we cannot salvage any further, and haven't yet found a suitable debug 1228 // expression, bail out. 1229 if (!NewExpr) 1230 break; 1231 1232 // New value and expr now represent this debuginfo. 1233 V = VAsInst.getOperand(0); 1234 Expr = NewExpr; 1235 1236 // Some kind of simplification occurred: check whether the operand of the 1237 // salvaged debug expression can be encoded in this DAG. 1238 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1239 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1240 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1241 return; 1242 } 1243 } 1244 1245 // This was the final opportunity to salvage this debug information, and it 1246 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1247 // any earlier variable location. 1248 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1249 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1250 DAG.AddDbgValue(SDV, nullptr, false); 1251 1252 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1253 << "\n"); 1254 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1255 << "\n"); 1256 } 1257 1258 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1259 DIExpression *Expr, DebugLoc dl, 1260 DebugLoc InstDL, unsigned Order) { 1261 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1262 SDDbgValue *SDV; 1263 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1264 isa<ConstantPointerNull>(V)) { 1265 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1266 DAG.AddDbgValue(SDV, nullptr, false); 1267 return true; 1268 } 1269 1270 // If the Value is a frame index, we can create a FrameIndex debug value 1271 // without relying on the DAG at all. 1272 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1273 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1274 if (SI != FuncInfo.StaticAllocaMap.end()) { 1275 auto SDV = 1276 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1277 /*IsIndirect*/ false, dl, SDNodeOrder); 1278 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1279 // is still available even if the SDNode gets optimized out. 1280 DAG.AddDbgValue(SDV, nullptr, false); 1281 return true; 1282 } 1283 } 1284 1285 // Do not use getValue() in here; we don't want to generate code at 1286 // this point if it hasn't been done yet. 1287 SDValue N = NodeMap[V]; 1288 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1289 N = UnusedArgNodeMap[V]; 1290 if (N.getNode()) { 1291 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1292 return true; 1293 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1294 DAG.AddDbgValue(SDV, N.getNode(), false); 1295 return true; 1296 } 1297 1298 // Special rules apply for the first dbg.values of parameter variables in a 1299 // function. Identify them by the fact they reference Argument Values, that 1300 // they're parameters, and they are parameters of the current function. We 1301 // need to let them dangle until they get an SDNode. 1302 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1303 !InstDL.getInlinedAt(); 1304 if (!IsParamOfFunc) { 1305 // The value is not used in this block yet (or it would have an SDNode). 1306 // We still want the value to appear for the user if possible -- if it has 1307 // an associated VReg, we can refer to that instead. 1308 auto VMI = FuncInfo.ValueMap.find(V); 1309 if (VMI != FuncInfo.ValueMap.end()) { 1310 unsigned Reg = VMI->second; 1311 // If this is a PHI node, it may be split up into several MI PHI nodes 1312 // (in FunctionLoweringInfo::set). 1313 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1314 V->getType(), None); 1315 if (RFV.occupiesMultipleRegs()) { 1316 unsigned Offset = 0; 1317 unsigned BitsToDescribe = 0; 1318 if (auto VarSize = Var->getSizeInBits()) 1319 BitsToDescribe = *VarSize; 1320 if (auto Fragment = Expr->getFragmentInfo()) 1321 BitsToDescribe = Fragment->SizeInBits; 1322 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1323 unsigned RegisterSize = RegAndSize.second; 1324 // Bail out if all bits are described already. 1325 if (Offset >= BitsToDescribe) 1326 break; 1327 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1328 ? BitsToDescribe - Offset 1329 : RegisterSize; 1330 auto FragmentExpr = DIExpression::createFragmentExpression( 1331 Expr, Offset, FragmentSize); 1332 if (!FragmentExpr) 1333 continue; 1334 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1335 false, dl, SDNodeOrder); 1336 DAG.AddDbgValue(SDV, nullptr, false); 1337 Offset += RegisterSize; 1338 } 1339 } else { 1340 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1341 DAG.AddDbgValue(SDV, nullptr, false); 1342 } 1343 return true; 1344 } 1345 } 1346 1347 return false; 1348 } 1349 1350 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1351 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1352 for (auto &Pair : DanglingDebugInfoMap) 1353 for (auto &DDI : Pair.getSecond()) 1354 salvageUnresolvedDbgValue(DDI); 1355 clearDanglingDebugInfo(); 1356 } 1357 1358 /// getCopyFromRegs - If there was virtual register allocated for the value V 1359 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1360 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1361 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1362 SDValue Result; 1363 1364 if (It != FuncInfo.ValueMap.end()) { 1365 unsigned InReg = It->second; 1366 1367 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1368 DAG.getDataLayout(), InReg, Ty, 1369 None); // This is not an ABI copy. 1370 SDValue Chain = DAG.getEntryNode(); 1371 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1372 V); 1373 resolveDanglingDebugInfo(V, Result); 1374 } 1375 1376 return Result; 1377 } 1378 1379 /// getValue - Return an SDValue for the given Value. 1380 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1381 // If we already have an SDValue for this value, use it. It's important 1382 // to do this first, so that we don't create a CopyFromReg if we already 1383 // have a regular SDValue. 1384 SDValue &N = NodeMap[V]; 1385 if (N.getNode()) return N; 1386 1387 // If there's a virtual register allocated and initialized for this 1388 // value, use it. 1389 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1390 return copyFromReg; 1391 1392 // Otherwise create a new SDValue and remember it. 1393 SDValue Val = getValueImpl(V); 1394 NodeMap[V] = Val; 1395 resolveDanglingDebugInfo(V, Val); 1396 return Val; 1397 } 1398 1399 // Return true if SDValue exists for the given Value 1400 bool SelectionDAGBuilder::findValue(const Value *V) const { 1401 return (NodeMap.find(V) != NodeMap.end()) || 1402 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1403 } 1404 1405 /// getNonRegisterValue - Return an SDValue for the given Value, but 1406 /// don't look in FuncInfo.ValueMap for a virtual register. 1407 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1408 // If we already have an SDValue for this value, use it. 1409 SDValue &N = NodeMap[V]; 1410 if (N.getNode()) { 1411 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1412 // Remove the debug location from the node as the node is about to be used 1413 // in a location which may differ from the original debug location. This 1414 // is relevant to Constant and ConstantFP nodes because they can appear 1415 // as constant expressions inside PHI nodes. 1416 N->setDebugLoc(DebugLoc()); 1417 } 1418 return N; 1419 } 1420 1421 // Otherwise create a new SDValue and remember it. 1422 SDValue Val = getValueImpl(V); 1423 NodeMap[V] = Val; 1424 resolveDanglingDebugInfo(V, Val); 1425 return Val; 1426 } 1427 1428 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1429 /// Create an SDValue for the given value. 1430 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1431 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1432 1433 if (const Constant *C = dyn_cast<Constant>(V)) { 1434 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1435 1436 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1437 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1438 1439 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1440 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1441 1442 if (isa<ConstantPointerNull>(C)) { 1443 unsigned AS = V->getType()->getPointerAddressSpace(); 1444 return DAG.getConstant(0, getCurSDLoc(), 1445 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1446 } 1447 1448 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1449 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1450 1451 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1452 return DAG.getUNDEF(VT); 1453 1454 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1455 visit(CE->getOpcode(), *CE); 1456 SDValue N1 = NodeMap[V]; 1457 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1458 return N1; 1459 } 1460 1461 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1462 SmallVector<SDValue, 4> Constants; 1463 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1464 OI != OE; ++OI) { 1465 SDNode *Val = getValue(*OI).getNode(); 1466 // If the operand is an empty aggregate, there are no values. 1467 if (!Val) continue; 1468 // Add each leaf value from the operand to the Constants list 1469 // to form a flattened list of all the values. 1470 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1471 Constants.push_back(SDValue(Val, i)); 1472 } 1473 1474 return DAG.getMergeValues(Constants, getCurSDLoc()); 1475 } 1476 1477 if (const ConstantDataSequential *CDS = 1478 dyn_cast<ConstantDataSequential>(C)) { 1479 SmallVector<SDValue, 4> Ops; 1480 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1481 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1482 // Add each leaf value from the operand to the Constants list 1483 // to form a flattened list of all the values. 1484 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1485 Ops.push_back(SDValue(Val, i)); 1486 } 1487 1488 if (isa<ArrayType>(CDS->getType())) 1489 return DAG.getMergeValues(Ops, getCurSDLoc()); 1490 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1491 } 1492 1493 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1494 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1495 "Unknown struct or array constant!"); 1496 1497 SmallVector<EVT, 4> ValueVTs; 1498 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1499 unsigned NumElts = ValueVTs.size(); 1500 if (NumElts == 0) 1501 return SDValue(); // empty struct 1502 SmallVector<SDValue, 4> Constants(NumElts); 1503 for (unsigned i = 0; i != NumElts; ++i) { 1504 EVT EltVT = ValueVTs[i]; 1505 if (isa<UndefValue>(C)) 1506 Constants[i] = DAG.getUNDEF(EltVT); 1507 else if (EltVT.isFloatingPoint()) 1508 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1509 else 1510 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1511 } 1512 1513 return DAG.getMergeValues(Constants, getCurSDLoc()); 1514 } 1515 1516 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1517 return DAG.getBlockAddress(BA, VT); 1518 1519 VectorType *VecTy = cast<VectorType>(V->getType()); 1520 unsigned NumElements = VecTy->getNumElements(); 1521 1522 // Now that we know the number and type of the elements, get that number of 1523 // elements into the Ops array based on what kind of constant it is. 1524 SmallVector<SDValue, 16> Ops; 1525 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1526 for (unsigned i = 0; i != NumElements; ++i) 1527 Ops.push_back(getValue(CV->getOperand(i))); 1528 } else { 1529 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1530 EVT EltVT = 1531 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1532 1533 SDValue Op; 1534 if (EltVT.isFloatingPoint()) 1535 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1536 else 1537 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1538 Ops.assign(NumElements, Op); 1539 } 1540 1541 // Create a BUILD_VECTOR node. 1542 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1543 } 1544 1545 // If this is a static alloca, generate it as the frameindex instead of 1546 // computation. 1547 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1548 DenseMap<const AllocaInst*, int>::iterator SI = 1549 FuncInfo.StaticAllocaMap.find(AI); 1550 if (SI != FuncInfo.StaticAllocaMap.end()) 1551 return DAG.getFrameIndex(SI->second, 1552 TLI.getFrameIndexTy(DAG.getDataLayout())); 1553 } 1554 1555 // If this is an instruction which fast-isel has deferred, select it now. 1556 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1557 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1558 1559 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1560 Inst->getType(), getABIRegCopyCC(V)); 1561 SDValue Chain = DAG.getEntryNode(); 1562 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1563 } 1564 1565 llvm_unreachable("Can't get register for value!"); 1566 } 1567 1568 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1569 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1570 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1571 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1572 bool IsSEH = isAsynchronousEHPersonality(Pers); 1573 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1574 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1575 if (!IsSEH) 1576 CatchPadMBB->setIsEHScopeEntry(); 1577 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1578 if (IsMSVCCXX || IsCoreCLR) 1579 CatchPadMBB->setIsEHFuncletEntry(); 1580 // Wasm does not need catchpads anymore 1581 if (!IsWasmCXX) 1582 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1583 getControlRoot())); 1584 } 1585 1586 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1587 // Update machine-CFG edge. 1588 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1589 FuncInfo.MBB->addSuccessor(TargetMBB); 1590 1591 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1592 bool IsSEH = isAsynchronousEHPersonality(Pers); 1593 if (IsSEH) { 1594 // If this is not a fall-through branch or optimizations are switched off, 1595 // emit the branch. 1596 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1597 TM.getOptLevel() == CodeGenOpt::None) 1598 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1599 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1600 return; 1601 } 1602 1603 // Figure out the funclet membership for the catchret's successor. 1604 // This will be used by the FuncletLayout pass to determine how to order the 1605 // BB's. 1606 // A 'catchret' returns to the outer scope's color. 1607 Value *ParentPad = I.getCatchSwitchParentPad(); 1608 const BasicBlock *SuccessorColor; 1609 if (isa<ConstantTokenNone>(ParentPad)) 1610 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1611 else 1612 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1613 assert(SuccessorColor && "No parent funclet for catchret!"); 1614 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1615 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1616 1617 // Create the terminator node. 1618 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1619 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1620 DAG.getBasicBlock(SuccessorColorMBB)); 1621 DAG.setRoot(Ret); 1622 } 1623 1624 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1625 // Don't emit any special code for the cleanuppad instruction. It just marks 1626 // the start of an EH scope/funclet. 1627 FuncInfo.MBB->setIsEHScopeEntry(); 1628 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1629 if (Pers != EHPersonality::Wasm_CXX) { 1630 FuncInfo.MBB->setIsEHFuncletEntry(); 1631 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1632 } 1633 } 1634 1635 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1636 // the control flow always stops at the single catch pad, as it does for a 1637 // cleanup pad. In case the exception caught is not of the types the catch pad 1638 // catches, it will be rethrown by a rethrow. 1639 static void findWasmUnwindDestinations( 1640 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1641 BranchProbability Prob, 1642 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1643 &UnwindDests) { 1644 while (EHPadBB) { 1645 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1646 if (isa<CleanupPadInst>(Pad)) { 1647 // Stop on cleanup pads. 1648 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1649 UnwindDests.back().first->setIsEHScopeEntry(); 1650 break; 1651 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1652 // Add the catchpad handlers to the possible destinations. We don't 1653 // continue to the unwind destination of the catchswitch for wasm. 1654 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1655 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1656 UnwindDests.back().first->setIsEHScopeEntry(); 1657 } 1658 break; 1659 } else { 1660 continue; 1661 } 1662 } 1663 } 1664 1665 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1666 /// many places it could ultimately go. In the IR, we have a single unwind 1667 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1668 /// This function skips over imaginary basic blocks that hold catchswitch 1669 /// instructions, and finds all the "real" machine 1670 /// basic block destinations. As those destinations may not be successors of 1671 /// EHPadBB, here we also calculate the edge probability to those destinations. 1672 /// The passed-in Prob is the edge probability to EHPadBB. 1673 static void findUnwindDestinations( 1674 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1675 BranchProbability Prob, 1676 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1677 &UnwindDests) { 1678 EHPersonality Personality = 1679 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1680 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1681 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1682 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1683 bool IsSEH = isAsynchronousEHPersonality(Personality); 1684 1685 if (IsWasmCXX) { 1686 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1687 assert(UnwindDests.size() <= 1 && 1688 "There should be at most one unwind destination for wasm"); 1689 return; 1690 } 1691 1692 while (EHPadBB) { 1693 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1694 BasicBlock *NewEHPadBB = nullptr; 1695 if (isa<LandingPadInst>(Pad)) { 1696 // Stop on landingpads. They are not funclets. 1697 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1698 break; 1699 } else if (isa<CleanupPadInst>(Pad)) { 1700 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1701 // personalities. 1702 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1703 UnwindDests.back().first->setIsEHScopeEntry(); 1704 UnwindDests.back().first->setIsEHFuncletEntry(); 1705 break; 1706 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1707 // Add the catchpad handlers to the possible destinations. 1708 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1709 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1710 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1711 if (IsMSVCCXX || IsCoreCLR) 1712 UnwindDests.back().first->setIsEHFuncletEntry(); 1713 if (!IsSEH) 1714 UnwindDests.back().first->setIsEHScopeEntry(); 1715 } 1716 NewEHPadBB = CatchSwitch->getUnwindDest(); 1717 } else { 1718 continue; 1719 } 1720 1721 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1722 if (BPI && NewEHPadBB) 1723 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1724 EHPadBB = NewEHPadBB; 1725 } 1726 } 1727 1728 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1729 // Update successor info. 1730 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1731 auto UnwindDest = I.getUnwindDest(); 1732 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1733 BranchProbability UnwindDestProb = 1734 (BPI && UnwindDest) 1735 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1736 : BranchProbability::getZero(); 1737 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1738 for (auto &UnwindDest : UnwindDests) { 1739 UnwindDest.first->setIsEHPad(); 1740 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1741 } 1742 FuncInfo.MBB->normalizeSuccProbs(); 1743 1744 // Create the terminator node. 1745 SDValue Ret = 1746 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1747 DAG.setRoot(Ret); 1748 } 1749 1750 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1751 report_fatal_error("visitCatchSwitch not yet implemented!"); 1752 } 1753 1754 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1755 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1756 auto &DL = DAG.getDataLayout(); 1757 SDValue Chain = getControlRoot(); 1758 SmallVector<ISD::OutputArg, 8> Outs; 1759 SmallVector<SDValue, 8> OutVals; 1760 1761 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1762 // lower 1763 // 1764 // %val = call <ty> @llvm.experimental.deoptimize() 1765 // ret <ty> %val 1766 // 1767 // differently. 1768 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1769 LowerDeoptimizingReturn(); 1770 return; 1771 } 1772 1773 if (!FuncInfo.CanLowerReturn) { 1774 unsigned DemoteReg = FuncInfo.DemoteRegister; 1775 const Function *F = I.getParent()->getParent(); 1776 1777 // Emit a store of the return value through the virtual register. 1778 // Leave Outs empty so that LowerReturn won't try to load return 1779 // registers the usual way. 1780 SmallVector<EVT, 1> PtrValueVTs; 1781 ComputeValueVTs(TLI, DL, 1782 F->getReturnType()->getPointerTo( 1783 DAG.getDataLayout().getAllocaAddrSpace()), 1784 PtrValueVTs); 1785 1786 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1787 DemoteReg, PtrValueVTs[0]); 1788 SDValue RetOp = getValue(I.getOperand(0)); 1789 1790 SmallVector<EVT, 4> ValueVTs; 1791 SmallVector<uint64_t, 4> Offsets; 1792 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1793 unsigned NumValues = ValueVTs.size(); 1794 1795 SmallVector<SDValue, 4> Chains(NumValues); 1796 for (unsigned i = 0; i != NumValues; ++i) { 1797 // An aggregate return value cannot wrap around the address space, so 1798 // offsets to its parts don't wrap either. 1799 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1800 Chains[i] = DAG.getStore( 1801 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1802 // FIXME: better loc info would be nice. 1803 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1804 } 1805 1806 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1807 MVT::Other, Chains); 1808 } else if (I.getNumOperands() != 0) { 1809 SmallVector<EVT, 4> ValueVTs; 1810 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1811 unsigned NumValues = ValueVTs.size(); 1812 if (NumValues) { 1813 SDValue RetOp = getValue(I.getOperand(0)); 1814 1815 const Function *F = I.getParent()->getParent(); 1816 1817 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1818 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1819 Attribute::SExt)) 1820 ExtendKind = ISD::SIGN_EXTEND; 1821 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1822 Attribute::ZExt)) 1823 ExtendKind = ISD::ZERO_EXTEND; 1824 1825 LLVMContext &Context = F->getContext(); 1826 bool RetInReg = F->getAttributes().hasAttribute( 1827 AttributeList::ReturnIndex, Attribute::InReg); 1828 1829 for (unsigned j = 0; j != NumValues; ++j) { 1830 EVT VT = ValueVTs[j]; 1831 1832 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1833 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1834 1835 CallingConv::ID CC = F->getCallingConv(); 1836 1837 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1838 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1839 SmallVector<SDValue, 4> Parts(NumParts); 1840 getCopyToParts(DAG, getCurSDLoc(), 1841 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1842 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1843 1844 // 'inreg' on function refers to return value 1845 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1846 if (RetInReg) 1847 Flags.setInReg(); 1848 1849 // Propagate extension type if any 1850 if (ExtendKind == ISD::SIGN_EXTEND) 1851 Flags.setSExt(); 1852 else if (ExtendKind == ISD::ZERO_EXTEND) 1853 Flags.setZExt(); 1854 1855 for (unsigned i = 0; i < NumParts; ++i) { 1856 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1857 VT, /*isfixed=*/true, 0, 0)); 1858 OutVals.push_back(Parts[i]); 1859 } 1860 } 1861 } 1862 } 1863 1864 // Push in swifterror virtual register as the last element of Outs. This makes 1865 // sure swifterror virtual register will be returned in the swifterror 1866 // physical register. 1867 const Function *F = I.getParent()->getParent(); 1868 if (TLI.supportSwiftError() && 1869 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1870 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1871 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1872 Flags.setSwiftError(); 1873 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1874 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1875 true /*isfixed*/, 1 /*origidx*/, 1876 0 /*partOffs*/)); 1877 // Create SDNode for the swifterror virtual register. 1878 OutVals.push_back( 1879 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1880 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1881 EVT(TLI.getPointerTy(DL)))); 1882 } 1883 1884 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1885 CallingConv::ID CallConv = 1886 DAG.getMachineFunction().getFunction().getCallingConv(); 1887 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1888 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1889 1890 // Verify that the target's LowerReturn behaved as expected. 1891 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1892 "LowerReturn didn't return a valid chain!"); 1893 1894 // Update the DAG with the new chain value resulting from return lowering. 1895 DAG.setRoot(Chain); 1896 } 1897 1898 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1899 /// created for it, emit nodes to copy the value into the virtual 1900 /// registers. 1901 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1902 // Skip empty types 1903 if (V->getType()->isEmptyTy()) 1904 return; 1905 1906 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1907 if (VMI != FuncInfo.ValueMap.end()) { 1908 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1909 CopyValueToVirtualRegister(V, VMI->second); 1910 } 1911 } 1912 1913 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1914 /// the current basic block, add it to ValueMap now so that we'll get a 1915 /// CopyTo/FromReg. 1916 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1917 // No need to export constants. 1918 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1919 1920 // Already exported? 1921 if (FuncInfo.isExportedInst(V)) return; 1922 1923 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1924 CopyValueToVirtualRegister(V, Reg); 1925 } 1926 1927 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1928 const BasicBlock *FromBB) { 1929 // The operands of the setcc have to be in this block. We don't know 1930 // how to export them from some other block. 1931 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1932 // Can export from current BB. 1933 if (VI->getParent() == FromBB) 1934 return true; 1935 1936 // Is already exported, noop. 1937 return FuncInfo.isExportedInst(V); 1938 } 1939 1940 // If this is an argument, we can export it if the BB is the entry block or 1941 // if it is already exported. 1942 if (isa<Argument>(V)) { 1943 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1944 return true; 1945 1946 // Otherwise, can only export this if it is already exported. 1947 return FuncInfo.isExportedInst(V); 1948 } 1949 1950 // Otherwise, constants can always be exported. 1951 return true; 1952 } 1953 1954 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1955 BranchProbability 1956 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1957 const MachineBasicBlock *Dst) const { 1958 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1959 const BasicBlock *SrcBB = Src->getBasicBlock(); 1960 const BasicBlock *DstBB = Dst->getBasicBlock(); 1961 if (!BPI) { 1962 // If BPI is not available, set the default probability as 1 / N, where N is 1963 // the number of successors. 1964 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1965 return BranchProbability(1, SuccSize); 1966 } 1967 return BPI->getEdgeProbability(SrcBB, DstBB); 1968 } 1969 1970 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1971 MachineBasicBlock *Dst, 1972 BranchProbability Prob) { 1973 if (!FuncInfo.BPI) 1974 Src->addSuccessorWithoutProb(Dst); 1975 else { 1976 if (Prob.isUnknown()) 1977 Prob = getEdgeProbability(Src, Dst); 1978 Src->addSuccessor(Dst, Prob); 1979 } 1980 } 1981 1982 static bool InBlock(const Value *V, const BasicBlock *BB) { 1983 if (const Instruction *I = dyn_cast<Instruction>(V)) 1984 return I->getParent() == BB; 1985 return true; 1986 } 1987 1988 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1989 /// This function emits a branch and is used at the leaves of an OR or an 1990 /// AND operator tree. 1991 void 1992 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1993 MachineBasicBlock *TBB, 1994 MachineBasicBlock *FBB, 1995 MachineBasicBlock *CurBB, 1996 MachineBasicBlock *SwitchBB, 1997 BranchProbability TProb, 1998 BranchProbability FProb, 1999 bool InvertCond) { 2000 const BasicBlock *BB = CurBB->getBasicBlock(); 2001 2002 // If the leaf of the tree is a comparison, merge the condition into 2003 // the caseblock. 2004 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2005 // The operands of the cmp have to be in this block. We don't know 2006 // how to export them from some other block. If this is the first block 2007 // of the sequence, no exporting is needed. 2008 if (CurBB == SwitchBB || 2009 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2010 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2011 ISD::CondCode Condition; 2012 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2013 ICmpInst::Predicate Pred = 2014 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2015 Condition = getICmpCondCode(Pred); 2016 } else { 2017 const FCmpInst *FC = cast<FCmpInst>(Cond); 2018 FCmpInst::Predicate Pred = 2019 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2020 Condition = getFCmpCondCode(Pred); 2021 if (TM.Options.NoNaNsFPMath) 2022 Condition = getFCmpCodeWithoutNaN(Condition); 2023 } 2024 2025 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2026 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2027 SwitchCases.push_back(CB); 2028 return; 2029 } 2030 } 2031 2032 // Create a CaseBlock record representing this branch. 2033 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2034 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2035 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2036 SwitchCases.push_back(CB); 2037 } 2038 2039 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2040 MachineBasicBlock *TBB, 2041 MachineBasicBlock *FBB, 2042 MachineBasicBlock *CurBB, 2043 MachineBasicBlock *SwitchBB, 2044 Instruction::BinaryOps Opc, 2045 BranchProbability TProb, 2046 BranchProbability FProb, 2047 bool InvertCond) { 2048 // Skip over not part of the tree and remember to invert op and operands at 2049 // next level. 2050 Value *NotCond; 2051 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2052 InBlock(NotCond, CurBB->getBasicBlock())) { 2053 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2054 !InvertCond); 2055 return; 2056 } 2057 2058 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2059 // Compute the effective opcode for Cond, taking into account whether it needs 2060 // to be inverted, e.g. 2061 // and (not (or A, B)), C 2062 // gets lowered as 2063 // and (and (not A, not B), C) 2064 unsigned BOpc = 0; 2065 if (BOp) { 2066 BOpc = BOp->getOpcode(); 2067 if (InvertCond) { 2068 if (BOpc == Instruction::And) 2069 BOpc = Instruction::Or; 2070 else if (BOpc == Instruction::Or) 2071 BOpc = Instruction::And; 2072 } 2073 } 2074 2075 // If this node is not part of the or/and tree, emit it as a branch. 2076 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2077 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2078 BOp->getParent() != CurBB->getBasicBlock() || 2079 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2080 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2081 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2082 TProb, FProb, InvertCond); 2083 return; 2084 } 2085 2086 // Create TmpBB after CurBB. 2087 MachineFunction::iterator BBI(CurBB); 2088 MachineFunction &MF = DAG.getMachineFunction(); 2089 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2090 CurBB->getParent()->insert(++BBI, TmpBB); 2091 2092 if (Opc == Instruction::Or) { 2093 // Codegen X | Y as: 2094 // BB1: 2095 // jmp_if_X TBB 2096 // jmp TmpBB 2097 // TmpBB: 2098 // jmp_if_Y TBB 2099 // jmp FBB 2100 // 2101 2102 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2103 // The requirement is that 2104 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2105 // = TrueProb for original BB. 2106 // Assuming the original probabilities are A and B, one choice is to set 2107 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2108 // A/(1+B) and 2B/(1+B). This choice assumes that 2109 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2110 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2111 // TmpBB, but the math is more complicated. 2112 2113 auto NewTrueProb = TProb / 2; 2114 auto NewFalseProb = TProb / 2 + FProb; 2115 // Emit the LHS condition. 2116 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2117 NewTrueProb, NewFalseProb, InvertCond); 2118 2119 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2120 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2121 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2122 // Emit the RHS condition into TmpBB. 2123 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2124 Probs[0], Probs[1], InvertCond); 2125 } else { 2126 assert(Opc == Instruction::And && "Unknown merge op!"); 2127 // Codegen X & Y as: 2128 // BB1: 2129 // jmp_if_X TmpBB 2130 // jmp FBB 2131 // TmpBB: 2132 // jmp_if_Y TBB 2133 // jmp FBB 2134 // 2135 // This requires creation of TmpBB after CurBB. 2136 2137 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2138 // The requirement is that 2139 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2140 // = FalseProb for original BB. 2141 // Assuming the original probabilities are A and B, one choice is to set 2142 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2143 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2144 // TrueProb for BB1 * FalseProb for TmpBB. 2145 2146 auto NewTrueProb = TProb + FProb / 2; 2147 auto NewFalseProb = FProb / 2; 2148 // Emit the LHS condition. 2149 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2150 NewTrueProb, NewFalseProb, InvertCond); 2151 2152 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2153 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2154 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2155 // Emit the RHS condition into TmpBB. 2156 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2157 Probs[0], Probs[1], InvertCond); 2158 } 2159 } 2160 2161 /// If the set of cases should be emitted as a series of branches, return true. 2162 /// If we should emit this as a bunch of and/or'd together conditions, return 2163 /// false. 2164 bool 2165 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2166 if (Cases.size() != 2) return true; 2167 2168 // If this is two comparisons of the same values or'd or and'd together, they 2169 // will get folded into a single comparison, so don't emit two blocks. 2170 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2171 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2172 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2173 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2174 return false; 2175 } 2176 2177 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2178 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2179 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2180 Cases[0].CC == Cases[1].CC && 2181 isa<Constant>(Cases[0].CmpRHS) && 2182 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2183 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2184 return false; 2185 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2186 return false; 2187 } 2188 2189 return true; 2190 } 2191 2192 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2193 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2194 2195 // Update machine-CFG edges. 2196 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2197 2198 if (I.isUnconditional()) { 2199 // Update machine-CFG edges. 2200 BrMBB->addSuccessor(Succ0MBB); 2201 2202 // If this is not a fall-through branch or optimizations are switched off, 2203 // emit the branch. 2204 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2205 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2206 MVT::Other, getControlRoot(), 2207 DAG.getBasicBlock(Succ0MBB))); 2208 2209 return; 2210 } 2211 2212 // If this condition is one of the special cases we handle, do special stuff 2213 // now. 2214 const Value *CondVal = I.getCondition(); 2215 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2216 2217 // If this is a series of conditions that are or'd or and'd together, emit 2218 // this as a sequence of branches instead of setcc's with and/or operations. 2219 // As long as jumps are not expensive, this should improve performance. 2220 // For example, instead of something like: 2221 // cmp A, B 2222 // C = seteq 2223 // cmp D, E 2224 // F = setle 2225 // or C, F 2226 // jnz foo 2227 // Emit: 2228 // cmp A, B 2229 // je foo 2230 // cmp D, E 2231 // jle foo 2232 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2233 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2234 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2235 !I.getMetadata(LLVMContext::MD_unpredictable) && 2236 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2237 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2238 Opcode, 2239 getEdgeProbability(BrMBB, Succ0MBB), 2240 getEdgeProbability(BrMBB, Succ1MBB), 2241 /*InvertCond=*/false); 2242 // If the compares in later blocks need to use values not currently 2243 // exported from this block, export them now. This block should always 2244 // be the first entry. 2245 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2246 2247 // Allow some cases to be rejected. 2248 if (ShouldEmitAsBranches(SwitchCases)) { 2249 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2250 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2251 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2252 } 2253 2254 // Emit the branch for this block. 2255 visitSwitchCase(SwitchCases[0], BrMBB); 2256 SwitchCases.erase(SwitchCases.begin()); 2257 return; 2258 } 2259 2260 // Okay, we decided not to do this, remove any inserted MBB's and clear 2261 // SwitchCases. 2262 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2263 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2264 2265 SwitchCases.clear(); 2266 } 2267 } 2268 2269 // Create a CaseBlock record representing this branch. 2270 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2271 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2272 2273 // Use visitSwitchCase to actually insert the fast branch sequence for this 2274 // cond branch. 2275 visitSwitchCase(CB, BrMBB); 2276 } 2277 2278 /// visitSwitchCase - Emits the necessary code to represent a single node in 2279 /// the binary search tree resulting from lowering a switch instruction. 2280 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2281 MachineBasicBlock *SwitchBB) { 2282 SDValue Cond; 2283 SDValue CondLHS = getValue(CB.CmpLHS); 2284 SDLoc dl = CB.DL; 2285 2286 // Build the setcc now. 2287 if (!CB.CmpMHS) { 2288 // Fold "(X == true)" to X and "(X == false)" to !X to 2289 // handle common cases produced by branch lowering. 2290 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2291 CB.CC == ISD::SETEQ) 2292 Cond = CondLHS; 2293 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2294 CB.CC == ISD::SETEQ) { 2295 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2296 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2297 } else 2298 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2299 } else { 2300 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2301 2302 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2303 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2304 2305 SDValue CmpOp = getValue(CB.CmpMHS); 2306 EVT VT = CmpOp.getValueType(); 2307 2308 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2309 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2310 ISD::SETLE); 2311 } else { 2312 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2313 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2314 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2315 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2316 } 2317 } 2318 2319 // Update successor info 2320 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2321 // TrueBB and FalseBB are always different unless the incoming IR is 2322 // degenerate. This only happens when running llc on weird IR. 2323 if (CB.TrueBB != CB.FalseBB) 2324 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2325 SwitchBB->normalizeSuccProbs(); 2326 2327 // If the lhs block is the next block, invert the condition so that we can 2328 // fall through to the lhs instead of the rhs block. 2329 if (CB.TrueBB == NextBlock(SwitchBB)) { 2330 std::swap(CB.TrueBB, CB.FalseBB); 2331 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2332 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2333 } 2334 2335 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2336 MVT::Other, getControlRoot(), Cond, 2337 DAG.getBasicBlock(CB.TrueBB)); 2338 2339 // Insert the false branch. Do this even if it's a fall through branch, 2340 // this makes it easier to do DAG optimizations which require inverting 2341 // the branch condition. 2342 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2343 DAG.getBasicBlock(CB.FalseBB)); 2344 2345 DAG.setRoot(BrCond); 2346 } 2347 2348 /// visitJumpTable - Emit JumpTable node in the current MBB 2349 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2350 // Emit the code for the jump table 2351 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2352 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2353 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2354 JT.Reg, PTy); 2355 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2356 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2357 MVT::Other, Index.getValue(1), 2358 Table, Index); 2359 DAG.setRoot(BrJumpTable); 2360 } 2361 2362 /// visitJumpTableHeader - This function emits necessary code to produce index 2363 /// in the JumpTable from switch case. 2364 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2365 JumpTableHeader &JTH, 2366 MachineBasicBlock *SwitchBB) { 2367 SDLoc dl = getCurSDLoc(); 2368 2369 // Subtract the lowest switch case value from the value being switched on and 2370 // conditional branch to default mbb if the result is greater than the 2371 // difference between smallest and largest cases. 2372 SDValue SwitchOp = getValue(JTH.SValue); 2373 EVT VT = SwitchOp.getValueType(); 2374 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2375 DAG.getConstant(JTH.First, dl, VT)); 2376 2377 // The SDNode we just created, which holds the value being switched on minus 2378 // the smallest case value, needs to be copied to a virtual register so it 2379 // can be used as an index into the jump table in a subsequent basic block. 2380 // This value may be smaller or larger than the target's pointer type, and 2381 // therefore require extension or truncating. 2382 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2383 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2384 2385 unsigned JumpTableReg = 2386 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2387 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2388 JumpTableReg, SwitchOp); 2389 JT.Reg = JumpTableReg; 2390 2391 // Emit the range check for the jump table, and branch to the default block 2392 // for the switch statement if the value being switched on exceeds the largest 2393 // case in the switch. 2394 SDValue CMP = DAG.getSetCC( 2395 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2396 Sub.getValueType()), 2397 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2398 2399 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2400 MVT::Other, CopyTo, CMP, 2401 DAG.getBasicBlock(JT.Default)); 2402 2403 // Avoid emitting unnecessary branches to the next block. 2404 if (JT.MBB != NextBlock(SwitchBB)) 2405 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2406 DAG.getBasicBlock(JT.MBB)); 2407 2408 DAG.setRoot(BrCond); 2409 } 2410 2411 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2412 /// variable if there exists one. 2413 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2414 SDValue &Chain) { 2415 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2416 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2417 MachineFunction &MF = DAG.getMachineFunction(); 2418 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2419 MachineSDNode *Node = 2420 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2421 if (Global) { 2422 MachinePointerInfo MPInfo(Global); 2423 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2424 MachineMemOperand::MODereferenceable; 2425 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2426 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2427 DAG.setNodeMemRefs(Node, {MemRef}); 2428 } 2429 return SDValue(Node, 0); 2430 } 2431 2432 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2433 /// tail spliced into a stack protector check success bb. 2434 /// 2435 /// For a high level explanation of how this fits into the stack protector 2436 /// generation see the comment on the declaration of class 2437 /// StackProtectorDescriptor. 2438 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2439 MachineBasicBlock *ParentBB) { 2440 2441 // First create the loads to the guard/stack slot for the comparison. 2442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2443 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2444 2445 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2446 int FI = MFI.getStackProtectorIndex(); 2447 2448 SDValue Guard; 2449 SDLoc dl = getCurSDLoc(); 2450 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2451 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2452 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2453 2454 // Generate code to load the content of the guard slot. 2455 SDValue GuardVal = DAG.getLoad( 2456 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2457 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2458 MachineMemOperand::MOVolatile); 2459 2460 if (TLI.useStackGuardXorFP()) 2461 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2462 2463 // Retrieve guard check function, nullptr if instrumentation is inlined. 2464 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2465 // The target provides a guard check function to validate the guard value. 2466 // Generate a call to that function with the content of the guard slot as 2467 // argument. 2468 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2469 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2470 2471 TargetLowering::ArgListTy Args; 2472 TargetLowering::ArgListEntry Entry; 2473 Entry.Node = GuardVal; 2474 Entry.Ty = FnTy->getParamType(0); 2475 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2476 Entry.IsInReg = true; 2477 Args.push_back(Entry); 2478 2479 TargetLowering::CallLoweringInfo CLI(DAG); 2480 CLI.setDebugLoc(getCurSDLoc()) 2481 .setChain(DAG.getEntryNode()) 2482 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2483 getValue(GuardCheckFn), std::move(Args)); 2484 2485 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2486 DAG.setRoot(Result.second); 2487 return; 2488 } 2489 2490 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2491 // Otherwise, emit a volatile load to retrieve the stack guard value. 2492 SDValue Chain = DAG.getEntryNode(); 2493 if (TLI.useLoadStackGuardNode()) { 2494 Guard = getLoadStackGuard(DAG, dl, Chain); 2495 } else { 2496 const Value *IRGuard = TLI.getSDagStackGuard(M); 2497 SDValue GuardPtr = getValue(IRGuard); 2498 2499 Guard = 2500 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2501 Align, MachineMemOperand::MOVolatile); 2502 } 2503 2504 // Perform the comparison via a subtract/getsetcc. 2505 EVT VT = Guard.getValueType(); 2506 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2507 2508 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2509 *DAG.getContext(), 2510 Sub.getValueType()), 2511 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2512 2513 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2514 // branch to failure MBB. 2515 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2516 MVT::Other, GuardVal.getOperand(0), 2517 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2518 // Otherwise branch to success MBB. 2519 SDValue Br = DAG.getNode(ISD::BR, dl, 2520 MVT::Other, BrCond, 2521 DAG.getBasicBlock(SPD.getSuccessMBB())); 2522 2523 DAG.setRoot(Br); 2524 } 2525 2526 /// Codegen the failure basic block for a stack protector check. 2527 /// 2528 /// A failure stack protector machine basic block consists simply of a call to 2529 /// __stack_chk_fail(). 2530 /// 2531 /// For a high level explanation of how this fits into the stack protector 2532 /// generation see the comment on the declaration of class 2533 /// StackProtectorDescriptor. 2534 void 2535 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2537 SDValue Chain = 2538 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2539 None, false, getCurSDLoc(), false, false).second; 2540 // On PS4, the "return address" must still be within the calling function, 2541 // even if it's at the very end, so emit an explicit TRAP here. 2542 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2543 if (TM.getTargetTriple().isPS4CPU()) 2544 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2545 2546 DAG.setRoot(Chain); 2547 } 2548 2549 /// visitBitTestHeader - This function emits necessary code to produce value 2550 /// suitable for "bit tests" 2551 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2552 MachineBasicBlock *SwitchBB) { 2553 SDLoc dl = getCurSDLoc(); 2554 2555 // Subtract the minimum value 2556 SDValue SwitchOp = getValue(B.SValue); 2557 EVT VT = SwitchOp.getValueType(); 2558 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2559 DAG.getConstant(B.First, dl, VT)); 2560 2561 // Check range 2562 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2563 SDValue RangeCmp = DAG.getSetCC( 2564 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2565 Sub.getValueType()), 2566 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2567 2568 // Determine the type of the test operands. 2569 bool UsePtrType = false; 2570 if (!TLI.isTypeLegal(VT)) 2571 UsePtrType = true; 2572 else { 2573 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2574 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2575 // Switch table case range are encoded into series of masks. 2576 // Just use pointer type, it's guaranteed to fit. 2577 UsePtrType = true; 2578 break; 2579 } 2580 } 2581 if (UsePtrType) { 2582 VT = TLI.getPointerTy(DAG.getDataLayout()); 2583 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2584 } 2585 2586 B.RegVT = VT.getSimpleVT(); 2587 B.Reg = FuncInfo.CreateReg(B.RegVT); 2588 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2589 2590 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2591 2592 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2593 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2594 SwitchBB->normalizeSuccProbs(); 2595 2596 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2597 MVT::Other, CopyTo, RangeCmp, 2598 DAG.getBasicBlock(B.Default)); 2599 2600 // Avoid emitting unnecessary branches to the next block. 2601 if (MBB != NextBlock(SwitchBB)) 2602 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2603 DAG.getBasicBlock(MBB)); 2604 2605 DAG.setRoot(BrRange); 2606 } 2607 2608 /// visitBitTestCase - this function produces one "bit test" 2609 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2610 MachineBasicBlock* NextMBB, 2611 BranchProbability BranchProbToNext, 2612 unsigned Reg, 2613 BitTestCase &B, 2614 MachineBasicBlock *SwitchBB) { 2615 SDLoc dl = getCurSDLoc(); 2616 MVT VT = BB.RegVT; 2617 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2618 SDValue Cmp; 2619 unsigned PopCount = countPopulation(B.Mask); 2620 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2621 if (PopCount == 1) { 2622 // Testing for a single bit; just compare the shift count with what it 2623 // would need to be to shift a 1 bit in that position. 2624 Cmp = DAG.getSetCC( 2625 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2626 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2627 ISD::SETEQ); 2628 } else if (PopCount == BB.Range) { 2629 // There is only one zero bit in the range, test for it directly. 2630 Cmp = DAG.getSetCC( 2631 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2632 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2633 ISD::SETNE); 2634 } else { 2635 // Make desired shift 2636 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2637 DAG.getConstant(1, dl, VT), ShiftOp); 2638 2639 // Emit bit tests and jumps 2640 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2641 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2642 Cmp = DAG.getSetCC( 2643 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2644 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2645 } 2646 2647 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2648 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2649 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2650 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2651 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2652 // one as they are relative probabilities (and thus work more like weights), 2653 // and hence we need to normalize them to let the sum of them become one. 2654 SwitchBB->normalizeSuccProbs(); 2655 2656 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2657 MVT::Other, getControlRoot(), 2658 Cmp, DAG.getBasicBlock(B.TargetBB)); 2659 2660 // Avoid emitting unnecessary branches to the next block. 2661 if (NextMBB != NextBlock(SwitchBB)) 2662 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2663 DAG.getBasicBlock(NextMBB)); 2664 2665 DAG.setRoot(BrAnd); 2666 } 2667 2668 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2669 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2670 2671 // Retrieve successors. Look through artificial IR level blocks like 2672 // catchswitch for successors. 2673 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2674 const BasicBlock *EHPadBB = I.getSuccessor(1); 2675 2676 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2677 // have to do anything here to lower funclet bundles. 2678 assert(!I.hasOperandBundlesOtherThan( 2679 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2680 "Cannot lower invokes with arbitrary operand bundles yet!"); 2681 2682 const Value *Callee(I.getCalledValue()); 2683 const Function *Fn = dyn_cast<Function>(Callee); 2684 if (isa<InlineAsm>(Callee)) 2685 visitInlineAsm(&I); 2686 else if (Fn && Fn->isIntrinsic()) { 2687 switch (Fn->getIntrinsicID()) { 2688 default: 2689 llvm_unreachable("Cannot invoke this intrinsic"); 2690 case Intrinsic::donothing: 2691 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2692 break; 2693 case Intrinsic::experimental_patchpoint_void: 2694 case Intrinsic::experimental_patchpoint_i64: 2695 visitPatchpoint(&I, EHPadBB); 2696 break; 2697 case Intrinsic::experimental_gc_statepoint: 2698 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2699 break; 2700 case Intrinsic::wasm_rethrow_in_catch: { 2701 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2702 // special because it can be invoked, so we manually lower it to a DAG 2703 // node here. 2704 SmallVector<SDValue, 8> Ops; 2705 Ops.push_back(getRoot()); // inchain 2706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2707 Ops.push_back( 2708 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2709 TLI.getPointerTy(DAG.getDataLayout()))); 2710 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2711 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2712 break; 2713 } 2714 } 2715 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2716 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2717 // Eventually we will support lowering the @llvm.experimental.deoptimize 2718 // intrinsic, and right now there are no plans to support other intrinsics 2719 // with deopt state. 2720 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2721 } else { 2722 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2723 } 2724 2725 // If the value of the invoke is used outside of its defining block, make it 2726 // available as a virtual register. 2727 // We already took care of the exported value for the statepoint instruction 2728 // during call to the LowerStatepoint. 2729 if (!isStatepoint(I)) { 2730 CopyToExportRegsIfNeeded(&I); 2731 } 2732 2733 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2734 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2735 BranchProbability EHPadBBProb = 2736 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2737 : BranchProbability::getZero(); 2738 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2739 2740 // Update successor info. 2741 addSuccessorWithProb(InvokeMBB, Return); 2742 for (auto &UnwindDest : UnwindDests) { 2743 UnwindDest.first->setIsEHPad(); 2744 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2745 } 2746 InvokeMBB->normalizeSuccProbs(); 2747 2748 // Drop into normal successor. 2749 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2750 DAG.getBasicBlock(Return))); 2751 } 2752 2753 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2754 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2755 2756 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2757 // have to do anything here to lower funclet bundles. 2758 assert(!I.hasOperandBundlesOtherThan( 2759 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2760 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2761 2762 assert(isa<InlineAsm>(I.getCalledValue()) && 2763 "Only know how to handle inlineasm callbr"); 2764 visitInlineAsm(&I); 2765 2766 // Retrieve successors. 2767 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2768 2769 // Update successor info. 2770 addSuccessorWithProb(CallBrMBB, Return); 2771 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2772 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2773 addSuccessorWithProb(CallBrMBB, Target); 2774 } 2775 CallBrMBB->normalizeSuccProbs(); 2776 2777 // Drop into default successor. 2778 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2779 MVT::Other, getControlRoot(), 2780 DAG.getBasicBlock(Return))); 2781 } 2782 2783 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2784 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2785 } 2786 2787 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2788 assert(FuncInfo.MBB->isEHPad() && 2789 "Call to landingpad not in landing pad!"); 2790 2791 // If there aren't registers to copy the values into (e.g., during SjLj 2792 // exceptions), then don't bother to create these DAG nodes. 2793 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2794 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2795 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2796 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2797 return; 2798 2799 // If landingpad's return type is token type, we don't create DAG nodes 2800 // for its exception pointer and selector value. The extraction of exception 2801 // pointer or selector value from token type landingpads is not currently 2802 // supported. 2803 if (LP.getType()->isTokenTy()) 2804 return; 2805 2806 SmallVector<EVT, 2> ValueVTs; 2807 SDLoc dl = getCurSDLoc(); 2808 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2809 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2810 2811 // Get the two live-in registers as SDValues. The physregs have already been 2812 // copied into virtual registers. 2813 SDValue Ops[2]; 2814 if (FuncInfo.ExceptionPointerVirtReg) { 2815 Ops[0] = DAG.getZExtOrTrunc( 2816 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2817 FuncInfo.ExceptionPointerVirtReg, 2818 TLI.getPointerTy(DAG.getDataLayout())), 2819 dl, ValueVTs[0]); 2820 } else { 2821 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2822 } 2823 Ops[1] = DAG.getZExtOrTrunc( 2824 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2825 FuncInfo.ExceptionSelectorVirtReg, 2826 TLI.getPointerTy(DAG.getDataLayout())), 2827 dl, ValueVTs[1]); 2828 2829 // Merge into one. 2830 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2831 DAG.getVTList(ValueVTs), Ops); 2832 setValue(&LP, Res); 2833 } 2834 2835 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2836 #ifndef NDEBUG 2837 for (const CaseCluster &CC : Clusters) 2838 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2839 #endif 2840 2841 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { 2842 return a.Low->getValue().slt(b.Low->getValue()); 2843 }); 2844 2845 // Merge adjacent clusters with the same destination. 2846 const unsigned N = Clusters.size(); 2847 unsigned DstIndex = 0; 2848 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2849 CaseCluster &CC = Clusters[SrcIndex]; 2850 const ConstantInt *CaseVal = CC.Low; 2851 MachineBasicBlock *Succ = CC.MBB; 2852 2853 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2854 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2855 // If this case has the same successor and is a neighbour, merge it into 2856 // the previous cluster. 2857 Clusters[DstIndex - 1].High = CaseVal; 2858 Clusters[DstIndex - 1].Prob += CC.Prob; 2859 } else { 2860 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2861 sizeof(Clusters[SrcIndex])); 2862 } 2863 } 2864 Clusters.resize(DstIndex); 2865 } 2866 2867 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2868 MachineBasicBlock *Last) { 2869 // Update JTCases. 2870 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2871 if (JTCases[i].first.HeaderBB == First) 2872 JTCases[i].first.HeaderBB = Last; 2873 2874 // Update BitTestCases. 2875 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2876 if (BitTestCases[i].Parent == First) 2877 BitTestCases[i].Parent = Last; 2878 } 2879 2880 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2881 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2882 2883 // Update machine-CFG edges with unique successors. 2884 SmallSet<BasicBlock*, 32> Done; 2885 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2886 BasicBlock *BB = I.getSuccessor(i); 2887 bool Inserted = Done.insert(BB).second; 2888 if (!Inserted) 2889 continue; 2890 2891 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2892 addSuccessorWithProb(IndirectBrMBB, Succ); 2893 } 2894 IndirectBrMBB->normalizeSuccProbs(); 2895 2896 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2897 MVT::Other, getControlRoot(), 2898 getValue(I.getAddress()))); 2899 } 2900 2901 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2902 if (!DAG.getTarget().Options.TrapUnreachable) 2903 return; 2904 2905 // We may be able to ignore unreachable behind a noreturn call. 2906 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2907 const BasicBlock &BB = *I.getParent(); 2908 if (&I != &BB.front()) { 2909 BasicBlock::const_iterator PredI = 2910 std::prev(BasicBlock::const_iterator(&I)); 2911 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2912 if (Call->doesNotReturn()) 2913 return; 2914 } 2915 } 2916 } 2917 2918 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2919 } 2920 2921 void SelectionDAGBuilder::visitFSub(const User &I) { 2922 // -0.0 - X --> fneg 2923 Type *Ty = I.getType(); 2924 if (isa<Constant>(I.getOperand(0)) && 2925 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2926 SDValue Op2 = getValue(I.getOperand(1)); 2927 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2928 Op2.getValueType(), Op2)); 2929 return; 2930 } 2931 2932 visitBinary(I, ISD::FSUB); 2933 } 2934 2935 /// Checks if the given instruction performs a vector reduction, in which case 2936 /// we have the freedom to alter the elements in the result as long as the 2937 /// reduction of them stays unchanged. 2938 static bool isVectorReductionOp(const User *I) { 2939 const Instruction *Inst = dyn_cast<Instruction>(I); 2940 if (!Inst || !Inst->getType()->isVectorTy()) 2941 return false; 2942 2943 auto OpCode = Inst->getOpcode(); 2944 switch (OpCode) { 2945 case Instruction::Add: 2946 case Instruction::Mul: 2947 case Instruction::And: 2948 case Instruction::Or: 2949 case Instruction::Xor: 2950 break; 2951 case Instruction::FAdd: 2952 case Instruction::FMul: 2953 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2954 if (FPOp->getFastMathFlags().isFast()) 2955 break; 2956 LLVM_FALLTHROUGH; 2957 default: 2958 return false; 2959 } 2960 2961 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2962 // Ensure the reduction size is a power of 2. 2963 if (!isPowerOf2_32(ElemNum)) 2964 return false; 2965 2966 unsigned ElemNumToReduce = ElemNum; 2967 2968 // Do DFS search on the def-use chain from the given instruction. We only 2969 // allow four kinds of operations during the search until we reach the 2970 // instruction that extracts the first element from the vector: 2971 // 2972 // 1. The reduction operation of the same opcode as the given instruction. 2973 // 2974 // 2. PHI node. 2975 // 2976 // 3. ShuffleVector instruction together with a reduction operation that 2977 // does a partial reduction. 2978 // 2979 // 4. ExtractElement that extracts the first element from the vector, and we 2980 // stop searching the def-use chain here. 2981 // 2982 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2983 // from 1-3 to the stack to continue the DFS. The given instruction is not 2984 // a reduction operation if we meet any other instructions other than those 2985 // listed above. 2986 2987 SmallVector<const User *, 16> UsersToVisit{Inst}; 2988 SmallPtrSet<const User *, 16> Visited; 2989 bool ReduxExtracted = false; 2990 2991 while (!UsersToVisit.empty()) { 2992 auto User = UsersToVisit.back(); 2993 UsersToVisit.pop_back(); 2994 if (!Visited.insert(User).second) 2995 continue; 2996 2997 for (const auto &U : User->users()) { 2998 auto Inst = dyn_cast<Instruction>(U); 2999 if (!Inst) 3000 return false; 3001 3002 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3003 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3004 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3005 return false; 3006 UsersToVisit.push_back(U); 3007 } else if (const ShuffleVectorInst *ShufInst = 3008 dyn_cast<ShuffleVectorInst>(U)) { 3009 // Detect the following pattern: A ShuffleVector instruction together 3010 // with a reduction that do partial reduction on the first and second 3011 // ElemNumToReduce / 2 elements, and store the result in 3012 // ElemNumToReduce / 2 elements in another vector. 3013 3014 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3015 if (ResultElements < ElemNum) 3016 return false; 3017 3018 if (ElemNumToReduce == 1) 3019 return false; 3020 if (!isa<UndefValue>(U->getOperand(1))) 3021 return false; 3022 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3023 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3024 return false; 3025 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3026 if (ShufInst->getMaskValue(i) != -1) 3027 return false; 3028 3029 // There is only one user of this ShuffleVector instruction, which 3030 // must be a reduction operation. 3031 if (!U->hasOneUse()) 3032 return false; 3033 3034 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3035 if (!U2 || U2->getOpcode() != OpCode) 3036 return false; 3037 3038 // Check operands of the reduction operation. 3039 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3040 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3041 UsersToVisit.push_back(U2); 3042 ElemNumToReduce /= 2; 3043 } else 3044 return false; 3045 } else if (isa<ExtractElementInst>(U)) { 3046 // At this moment we should have reduced all elements in the vector. 3047 if (ElemNumToReduce != 1) 3048 return false; 3049 3050 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3051 if (!Val || !Val->isZero()) 3052 return false; 3053 3054 ReduxExtracted = true; 3055 } else 3056 return false; 3057 } 3058 } 3059 return ReduxExtracted; 3060 } 3061 3062 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3063 SDNodeFlags Flags; 3064 3065 SDValue Op = getValue(I.getOperand(0)); 3066 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3067 Op, Flags); 3068 setValue(&I, UnNodeValue); 3069 } 3070 3071 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3072 SDNodeFlags Flags; 3073 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3074 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3075 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3076 } 3077 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3078 Flags.setExact(ExactOp->isExact()); 3079 } 3080 if (isVectorReductionOp(&I)) { 3081 Flags.setVectorReduction(true); 3082 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3083 } 3084 3085 SDValue Op1 = getValue(I.getOperand(0)); 3086 SDValue Op2 = getValue(I.getOperand(1)); 3087 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3088 Op1, Op2, Flags); 3089 setValue(&I, BinNodeValue); 3090 } 3091 3092 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3093 SDValue Op1 = getValue(I.getOperand(0)); 3094 SDValue Op2 = getValue(I.getOperand(1)); 3095 3096 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3097 Op1.getValueType(), DAG.getDataLayout()); 3098 3099 // Coerce the shift amount to the right type if we can. 3100 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3101 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3102 unsigned Op2Size = Op2.getValueSizeInBits(); 3103 SDLoc DL = getCurSDLoc(); 3104 3105 // If the operand is smaller than the shift count type, promote it. 3106 if (ShiftSize > Op2Size) 3107 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3108 3109 // If the operand is larger than the shift count type but the shift 3110 // count type has enough bits to represent any shift value, truncate 3111 // it now. This is a common case and it exposes the truncate to 3112 // optimization early. 3113 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3114 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3115 // Otherwise we'll need to temporarily settle for some other convenient 3116 // type. Type legalization will make adjustments once the shiftee is split. 3117 else 3118 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3119 } 3120 3121 bool nuw = false; 3122 bool nsw = false; 3123 bool exact = false; 3124 3125 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3126 3127 if (const OverflowingBinaryOperator *OFBinOp = 3128 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3129 nuw = OFBinOp->hasNoUnsignedWrap(); 3130 nsw = OFBinOp->hasNoSignedWrap(); 3131 } 3132 if (const PossiblyExactOperator *ExactOp = 3133 dyn_cast<const PossiblyExactOperator>(&I)) 3134 exact = ExactOp->isExact(); 3135 } 3136 SDNodeFlags Flags; 3137 Flags.setExact(exact); 3138 Flags.setNoSignedWrap(nsw); 3139 Flags.setNoUnsignedWrap(nuw); 3140 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3141 Flags); 3142 setValue(&I, Res); 3143 } 3144 3145 void SelectionDAGBuilder::visitSDiv(const User &I) { 3146 SDValue Op1 = getValue(I.getOperand(0)); 3147 SDValue Op2 = getValue(I.getOperand(1)); 3148 3149 SDNodeFlags Flags; 3150 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3151 cast<PossiblyExactOperator>(&I)->isExact()); 3152 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3153 Op2, Flags)); 3154 } 3155 3156 void SelectionDAGBuilder::visitICmp(const User &I) { 3157 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3158 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3159 predicate = IC->getPredicate(); 3160 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3161 predicate = ICmpInst::Predicate(IC->getPredicate()); 3162 SDValue Op1 = getValue(I.getOperand(0)); 3163 SDValue Op2 = getValue(I.getOperand(1)); 3164 ISD::CondCode Opcode = getICmpCondCode(predicate); 3165 3166 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3167 I.getType()); 3168 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3169 } 3170 3171 void SelectionDAGBuilder::visitFCmp(const User &I) { 3172 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3173 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3174 predicate = FC->getPredicate(); 3175 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3176 predicate = FCmpInst::Predicate(FC->getPredicate()); 3177 SDValue Op1 = getValue(I.getOperand(0)); 3178 SDValue Op2 = getValue(I.getOperand(1)); 3179 3180 ISD::CondCode Condition = getFCmpCondCode(predicate); 3181 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3182 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3183 Condition = getFCmpCodeWithoutNaN(Condition); 3184 3185 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3186 I.getType()); 3187 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3188 } 3189 3190 // Check if the condition of the select has one use or two users that are both 3191 // selects with the same condition. 3192 static bool hasOnlySelectUsers(const Value *Cond) { 3193 return llvm::all_of(Cond->users(), [](const Value *V) { 3194 return isa<SelectInst>(V); 3195 }); 3196 } 3197 3198 void SelectionDAGBuilder::visitSelect(const User &I) { 3199 SmallVector<EVT, 4> ValueVTs; 3200 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3201 ValueVTs); 3202 unsigned NumValues = ValueVTs.size(); 3203 if (NumValues == 0) return; 3204 3205 SmallVector<SDValue, 4> Values(NumValues); 3206 SDValue Cond = getValue(I.getOperand(0)); 3207 SDValue LHSVal = getValue(I.getOperand(1)); 3208 SDValue RHSVal = getValue(I.getOperand(2)); 3209 auto BaseOps = {Cond}; 3210 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3211 ISD::VSELECT : ISD::SELECT; 3212 3213 bool IsUnaryAbs = false; 3214 3215 // Min/max matching is only viable if all output VTs are the same. 3216 if (is_splat(ValueVTs)) { 3217 EVT VT = ValueVTs[0]; 3218 LLVMContext &Ctx = *DAG.getContext(); 3219 auto &TLI = DAG.getTargetLoweringInfo(); 3220 3221 // We care about the legality of the operation after it has been type 3222 // legalized. 3223 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 3224 VT != TLI.getTypeToTransformTo(Ctx, VT)) 3225 VT = TLI.getTypeToTransformTo(Ctx, VT); 3226 3227 // If the vselect is legal, assume we want to leave this as a vector setcc + 3228 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3229 // min/max is legal on the scalar type. 3230 bool UseScalarMinMax = VT.isVector() && 3231 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3232 3233 Value *LHS, *RHS; 3234 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3235 ISD::NodeType Opc = ISD::DELETED_NODE; 3236 switch (SPR.Flavor) { 3237 case SPF_UMAX: Opc = ISD::UMAX; break; 3238 case SPF_UMIN: Opc = ISD::UMIN; break; 3239 case SPF_SMAX: Opc = ISD::SMAX; break; 3240 case SPF_SMIN: Opc = ISD::SMIN; break; 3241 case SPF_FMINNUM: 3242 switch (SPR.NaNBehavior) { 3243 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3244 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3245 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3246 case SPNB_RETURNS_ANY: { 3247 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3248 Opc = ISD::FMINNUM; 3249 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3250 Opc = ISD::FMINIMUM; 3251 else if (UseScalarMinMax) 3252 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3253 ISD::FMINNUM : ISD::FMINIMUM; 3254 break; 3255 } 3256 } 3257 break; 3258 case SPF_FMAXNUM: 3259 switch (SPR.NaNBehavior) { 3260 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3261 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3262 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3263 case SPNB_RETURNS_ANY: 3264 3265 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3266 Opc = ISD::FMAXNUM; 3267 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3268 Opc = ISD::FMAXIMUM; 3269 else if (UseScalarMinMax) 3270 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3271 ISD::FMAXNUM : ISD::FMAXIMUM; 3272 break; 3273 } 3274 break; 3275 case SPF_ABS: 3276 IsUnaryAbs = true; 3277 Opc = ISD::ABS; 3278 break; 3279 case SPF_NABS: 3280 // TODO: we need to produce sub(0, abs(X)). 3281 default: break; 3282 } 3283 3284 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3285 (TLI.isOperationLegalOrCustom(Opc, VT) || 3286 (UseScalarMinMax && 3287 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3288 // If the underlying comparison instruction is used by any other 3289 // instruction, the consumed instructions won't be destroyed, so it is 3290 // not profitable to convert to a min/max. 3291 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3292 OpCode = Opc; 3293 LHSVal = getValue(LHS); 3294 RHSVal = getValue(RHS); 3295 BaseOps = {}; 3296 } 3297 3298 if (IsUnaryAbs) { 3299 OpCode = Opc; 3300 LHSVal = getValue(LHS); 3301 BaseOps = {}; 3302 } 3303 } 3304 3305 if (IsUnaryAbs) { 3306 for (unsigned i = 0; i != NumValues; ++i) { 3307 Values[i] = 3308 DAG.getNode(OpCode, getCurSDLoc(), 3309 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3310 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3311 } 3312 } else { 3313 for (unsigned i = 0; i != NumValues; ++i) { 3314 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3315 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3316 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3317 Values[i] = DAG.getNode( 3318 OpCode, getCurSDLoc(), 3319 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3320 } 3321 } 3322 3323 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3324 DAG.getVTList(ValueVTs), Values)); 3325 } 3326 3327 void SelectionDAGBuilder::visitTrunc(const User &I) { 3328 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3329 SDValue N = getValue(I.getOperand(0)); 3330 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3331 I.getType()); 3332 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3333 } 3334 3335 void SelectionDAGBuilder::visitZExt(const User &I) { 3336 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3337 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3338 SDValue N = getValue(I.getOperand(0)); 3339 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3340 I.getType()); 3341 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3342 } 3343 3344 void SelectionDAGBuilder::visitSExt(const User &I) { 3345 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3346 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3347 SDValue N = getValue(I.getOperand(0)); 3348 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3349 I.getType()); 3350 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3351 } 3352 3353 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3354 // FPTrunc is never a no-op cast, no need to check 3355 SDValue N = getValue(I.getOperand(0)); 3356 SDLoc dl = getCurSDLoc(); 3357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3358 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3359 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3360 DAG.getTargetConstant( 3361 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3362 } 3363 3364 void SelectionDAGBuilder::visitFPExt(const User &I) { 3365 // FPExt is never a no-op cast, no need to check 3366 SDValue N = getValue(I.getOperand(0)); 3367 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3368 I.getType()); 3369 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3370 } 3371 3372 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3373 // FPToUI is never a no-op cast, no need to check 3374 SDValue N = getValue(I.getOperand(0)); 3375 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3376 I.getType()); 3377 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3378 } 3379 3380 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3381 // FPToSI is never a no-op cast, no need to check 3382 SDValue N = getValue(I.getOperand(0)); 3383 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3384 I.getType()); 3385 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3386 } 3387 3388 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3389 // UIToFP is never a no-op cast, no need to check 3390 SDValue N = getValue(I.getOperand(0)); 3391 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3392 I.getType()); 3393 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3394 } 3395 3396 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3397 // SIToFP is never a no-op cast, no need to check 3398 SDValue N = getValue(I.getOperand(0)); 3399 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3400 I.getType()); 3401 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3402 } 3403 3404 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3405 // What to do depends on the size of the integer and the size of the pointer. 3406 // We can either truncate, zero extend, or no-op, accordingly. 3407 SDValue N = getValue(I.getOperand(0)); 3408 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3409 I.getType()); 3410 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3411 } 3412 3413 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3414 // What to do depends on the size of the integer and the size of the pointer. 3415 // We can either truncate, zero extend, or no-op, accordingly. 3416 SDValue N = getValue(I.getOperand(0)); 3417 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3418 I.getType()); 3419 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3420 } 3421 3422 void SelectionDAGBuilder::visitBitCast(const User &I) { 3423 SDValue N = getValue(I.getOperand(0)); 3424 SDLoc dl = getCurSDLoc(); 3425 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3426 I.getType()); 3427 3428 // BitCast assures us that source and destination are the same size so this is 3429 // either a BITCAST or a no-op. 3430 if (DestVT != N.getValueType()) 3431 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3432 DestVT, N)); // convert types. 3433 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3434 // might fold any kind of constant expression to an integer constant and that 3435 // is not what we are looking for. Only recognize a bitcast of a genuine 3436 // constant integer as an opaque constant. 3437 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3438 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3439 /*isOpaque*/true)); 3440 else 3441 setValue(&I, N); // noop cast. 3442 } 3443 3444 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3445 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3446 const Value *SV = I.getOperand(0); 3447 SDValue N = getValue(SV); 3448 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3449 3450 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3451 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3452 3453 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3454 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3455 3456 setValue(&I, N); 3457 } 3458 3459 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3460 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3461 SDValue InVec = getValue(I.getOperand(0)); 3462 SDValue InVal = getValue(I.getOperand(1)); 3463 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3464 TLI.getVectorIdxTy(DAG.getDataLayout())); 3465 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3466 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3467 InVec, InVal, InIdx)); 3468 } 3469 3470 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3471 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3472 SDValue InVec = getValue(I.getOperand(0)); 3473 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3474 TLI.getVectorIdxTy(DAG.getDataLayout())); 3475 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3476 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3477 InVec, InIdx)); 3478 } 3479 3480 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3481 SDValue Src1 = getValue(I.getOperand(0)); 3482 SDValue Src2 = getValue(I.getOperand(1)); 3483 SDLoc DL = getCurSDLoc(); 3484 3485 SmallVector<int, 8> Mask; 3486 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3487 unsigned MaskNumElts = Mask.size(); 3488 3489 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3490 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3491 EVT SrcVT = Src1.getValueType(); 3492 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3493 3494 if (SrcNumElts == MaskNumElts) { 3495 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3496 return; 3497 } 3498 3499 // Normalize the shuffle vector since mask and vector length don't match. 3500 if (SrcNumElts < MaskNumElts) { 3501 // Mask is longer than the source vectors. We can use concatenate vector to 3502 // make the mask and vectors lengths match. 3503 3504 if (MaskNumElts % SrcNumElts == 0) { 3505 // Mask length is a multiple of the source vector length. 3506 // Check if the shuffle is some kind of concatenation of the input 3507 // vectors. 3508 unsigned NumConcat = MaskNumElts / SrcNumElts; 3509 bool IsConcat = true; 3510 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3511 for (unsigned i = 0; i != MaskNumElts; ++i) { 3512 int Idx = Mask[i]; 3513 if (Idx < 0) 3514 continue; 3515 // Ensure the indices in each SrcVT sized piece are sequential and that 3516 // the same source is used for the whole piece. 3517 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3518 (ConcatSrcs[i / SrcNumElts] >= 0 && 3519 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3520 IsConcat = false; 3521 break; 3522 } 3523 // Remember which source this index came from. 3524 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3525 } 3526 3527 // The shuffle is concatenating multiple vectors together. Just emit 3528 // a CONCAT_VECTORS operation. 3529 if (IsConcat) { 3530 SmallVector<SDValue, 8> ConcatOps; 3531 for (auto Src : ConcatSrcs) { 3532 if (Src < 0) 3533 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3534 else if (Src == 0) 3535 ConcatOps.push_back(Src1); 3536 else 3537 ConcatOps.push_back(Src2); 3538 } 3539 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3540 return; 3541 } 3542 } 3543 3544 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3545 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3546 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3547 PaddedMaskNumElts); 3548 3549 // Pad both vectors with undefs to make them the same length as the mask. 3550 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3551 3552 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3553 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3554 MOps1[0] = Src1; 3555 MOps2[0] = Src2; 3556 3557 Src1 = Src1.isUndef() 3558 ? DAG.getUNDEF(PaddedVT) 3559 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3560 Src2 = Src2.isUndef() 3561 ? DAG.getUNDEF(PaddedVT) 3562 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3563 3564 // Readjust mask for new input vector length. 3565 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3566 for (unsigned i = 0; i != MaskNumElts; ++i) { 3567 int Idx = Mask[i]; 3568 if (Idx >= (int)SrcNumElts) 3569 Idx -= SrcNumElts - PaddedMaskNumElts; 3570 MappedOps[i] = Idx; 3571 } 3572 3573 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3574 3575 // If the concatenated vector was padded, extract a subvector with the 3576 // correct number of elements. 3577 if (MaskNumElts != PaddedMaskNumElts) 3578 Result = DAG.getNode( 3579 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3580 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3581 3582 setValue(&I, Result); 3583 return; 3584 } 3585 3586 if (SrcNumElts > MaskNumElts) { 3587 // Analyze the access pattern of the vector to see if we can extract 3588 // two subvectors and do the shuffle. 3589 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3590 bool CanExtract = true; 3591 for (int Idx : Mask) { 3592 unsigned Input = 0; 3593 if (Idx < 0) 3594 continue; 3595 3596 if (Idx >= (int)SrcNumElts) { 3597 Input = 1; 3598 Idx -= SrcNumElts; 3599 } 3600 3601 // If all the indices come from the same MaskNumElts sized portion of 3602 // the sources we can use extract. Also make sure the extract wouldn't 3603 // extract past the end of the source. 3604 int NewStartIdx = alignDown(Idx, MaskNumElts); 3605 if (NewStartIdx + MaskNumElts > SrcNumElts || 3606 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3607 CanExtract = false; 3608 // Make sure we always update StartIdx as we use it to track if all 3609 // elements are undef. 3610 StartIdx[Input] = NewStartIdx; 3611 } 3612 3613 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3614 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3615 return; 3616 } 3617 if (CanExtract) { 3618 // Extract appropriate subvector and generate a vector shuffle 3619 for (unsigned Input = 0; Input < 2; ++Input) { 3620 SDValue &Src = Input == 0 ? Src1 : Src2; 3621 if (StartIdx[Input] < 0) 3622 Src = DAG.getUNDEF(VT); 3623 else { 3624 Src = DAG.getNode( 3625 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3626 DAG.getConstant(StartIdx[Input], DL, 3627 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3628 } 3629 } 3630 3631 // Calculate new mask. 3632 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3633 for (int &Idx : MappedOps) { 3634 if (Idx >= (int)SrcNumElts) 3635 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3636 else if (Idx >= 0) 3637 Idx -= StartIdx[0]; 3638 } 3639 3640 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3641 return; 3642 } 3643 } 3644 3645 // We can't use either concat vectors or extract subvectors so fall back to 3646 // replacing the shuffle with extract and build vector. 3647 // to insert and build vector. 3648 EVT EltVT = VT.getVectorElementType(); 3649 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3650 SmallVector<SDValue,8> Ops; 3651 for (int Idx : Mask) { 3652 SDValue Res; 3653 3654 if (Idx < 0) { 3655 Res = DAG.getUNDEF(EltVT); 3656 } else { 3657 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3658 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3659 3660 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3661 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3662 } 3663 3664 Ops.push_back(Res); 3665 } 3666 3667 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3668 } 3669 3670 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3671 ArrayRef<unsigned> Indices; 3672 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3673 Indices = IV->getIndices(); 3674 else 3675 Indices = cast<ConstantExpr>(&I)->getIndices(); 3676 3677 const Value *Op0 = I.getOperand(0); 3678 const Value *Op1 = I.getOperand(1); 3679 Type *AggTy = I.getType(); 3680 Type *ValTy = Op1->getType(); 3681 bool IntoUndef = isa<UndefValue>(Op0); 3682 bool FromUndef = isa<UndefValue>(Op1); 3683 3684 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3685 3686 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3687 SmallVector<EVT, 4> AggValueVTs; 3688 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3689 SmallVector<EVT, 4> ValValueVTs; 3690 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3691 3692 unsigned NumAggValues = AggValueVTs.size(); 3693 unsigned NumValValues = ValValueVTs.size(); 3694 SmallVector<SDValue, 4> Values(NumAggValues); 3695 3696 // Ignore an insertvalue that produces an empty object 3697 if (!NumAggValues) { 3698 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3699 return; 3700 } 3701 3702 SDValue Agg = getValue(Op0); 3703 unsigned i = 0; 3704 // Copy the beginning value(s) from the original aggregate. 3705 for (; i != LinearIndex; ++i) 3706 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3707 SDValue(Agg.getNode(), Agg.getResNo() + i); 3708 // Copy values from the inserted value(s). 3709 if (NumValValues) { 3710 SDValue Val = getValue(Op1); 3711 for (; i != LinearIndex + NumValValues; ++i) 3712 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3713 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3714 } 3715 // Copy remaining value(s) from the original aggregate. 3716 for (; i != NumAggValues; ++i) 3717 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3718 SDValue(Agg.getNode(), Agg.getResNo() + i); 3719 3720 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3721 DAG.getVTList(AggValueVTs), Values)); 3722 } 3723 3724 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3725 ArrayRef<unsigned> Indices; 3726 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3727 Indices = EV->getIndices(); 3728 else 3729 Indices = cast<ConstantExpr>(&I)->getIndices(); 3730 3731 const Value *Op0 = I.getOperand(0); 3732 Type *AggTy = Op0->getType(); 3733 Type *ValTy = I.getType(); 3734 bool OutOfUndef = isa<UndefValue>(Op0); 3735 3736 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3737 3738 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3739 SmallVector<EVT, 4> ValValueVTs; 3740 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3741 3742 unsigned NumValValues = ValValueVTs.size(); 3743 3744 // Ignore a extractvalue that produces an empty object 3745 if (!NumValValues) { 3746 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3747 return; 3748 } 3749 3750 SmallVector<SDValue, 4> Values(NumValValues); 3751 3752 SDValue Agg = getValue(Op0); 3753 // Copy out the selected value(s). 3754 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3755 Values[i - LinearIndex] = 3756 OutOfUndef ? 3757 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3758 SDValue(Agg.getNode(), Agg.getResNo() + i); 3759 3760 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3761 DAG.getVTList(ValValueVTs), Values)); 3762 } 3763 3764 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3765 Value *Op0 = I.getOperand(0); 3766 // Note that the pointer operand may be a vector of pointers. Take the scalar 3767 // element which holds a pointer. 3768 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3769 SDValue N = getValue(Op0); 3770 SDLoc dl = getCurSDLoc(); 3771 3772 // Normalize Vector GEP - all scalar operands should be converted to the 3773 // splat vector. 3774 unsigned VectorWidth = I.getType()->isVectorTy() ? 3775 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3776 3777 if (VectorWidth && !N.getValueType().isVector()) { 3778 LLVMContext &Context = *DAG.getContext(); 3779 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3780 N = DAG.getSplatBuildVector(VT, dl, N); 3781 } 3782 3783 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3784 GTI != E; ++GTI) { 3785 const Value *Idx = GTI.getOperand(); 3786 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3787 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3788 if (Field) { 3789 // N = N + Offset 3790 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3791 3792 // In an inbounds GEP with an offset that is nonnegative even when 3793 // interpreted as signed, assume there is no unsigned overflow. 3794 SDNodeFlags Flags; 3795 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3796 Flags.setNoUnsignedWrap(true); 3797 3798 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3799 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3800 } 3801 } else { 3802 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3803 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3804 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3805 3806 // If this is a scalar constant or a splat vector of constants, 3807 // handle it quickly. 3808 const auto *CI = dyn_cast<ConstantInt>(Idx); 3809 if (!CI && isa<ConstantDataVector>(Idx) && 3810 cast<ConstantDataVector>(Idx)->getSplatValue()) 3811 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3812 3813 if (CI) { 3814 if (CI->isZero()) 3815 continue; 3816 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3817 LLVMContext &Context = *DAG.getContext(); 3818 SDValue OffsVal = VectorWidth ? 3819 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3820 DAG.getConstant(Offs, dl, IdxTy); 3821 3822 // In an inbouds GEP with an offset that is nonnegative even when 3823 // interpreted as signed, assume there is no unsigned overflow. 3824 SDNodeFlags Flags; 3825 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3826 Flags.setNoUnsignedWrap(true); 3827 3828 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3829 continue; 3830 } 3831 3832 // N = N + Idx * ElementSize; 3833 SDValue IdxN = getValue(Idx); 3834 3835 if (!IdxN.getValueType().isVector() && VectorWidth) { 3836 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3837 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3838 } 3839 3840 // If the index is smaller or larger than intptr_t, truncate or extend 3841 // it. 3842 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3843 3844 // If this is a multiply by a power of two, turn it into a shl 3845 // immediately. This is a very common case. 3846 if (ElementSize != 1) { 3847 if (ElementSize.isPowerOf2()) { 3848 unsigned Amt = ElementSize.logBase2(); 3849 IdxN = DAG.getNode(ISD::SHL, dl, 3850 N.getValueType(), IdxN, 3851 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3852 } else { 3853 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3854 IdxN = DAG.getNode(ISD::MUL, dl, 3855 N.getValueType(), IdxN, Scale); 3856 } 3857 } 3858 3859 N = DAG.getNode(ISD::ADD, dl, 3860 N.getValueType(), N, IdxN); 3861 } 3862 } 3863 3864 setValue(&I, N); 3865 } 3866 3867 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3868 // If this is a fixed sized alloca in the entry block of the function, 3869 // allocate it statically on the stack. 3870 if (FuncInfo.StaticAllocaMap.count(&I)) 3871 return; // getValue will auto-populate this. 3872 3873 SDLoc dl = getCurSDLoc(); 3874 Type *Ty = I.getAllocatedType(); 3875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3876 auto &DL = DAG.getDataLayout(); 3877 uint64_t TySize = DL.getTypeAllocSize(Ty); 3878 unsigned Align = 3879 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3880 3881 SDValue AllocSize = getValue(I.getArraySize()); 3882 3883 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3884 if (AllocSize.getValueType() != IntPtr) 3885 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3886 3887 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3888 AllocSize, 3889 DAG.getConstant(TySize, dl, IntPtr)); 3890 3891 // Handle alignment. If the requested alignment is less than or equal to 3892 // the stack alignment, ignore it. If the size is greater than or equal to 3893 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3894 unsigned StackAlign = 3895 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3896 if (Align <= StackAlign) 3897 Align = 0; 3898 3899 // Round the size of the allocation up to the stack alignment size 3900 // by add SA-1 to the size. This doesn't overflow because we're computing 3901 // an address inside an alloca. 3902 SDNodeFlags Flags; 3903 Flags.setNoUnsignedWrap(true); 3904 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3905 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3906 3907 // Mask out the low bits for alignment purposes. 3908 AllocSize = 3909 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3910 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3911 3912 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3913 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3914 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3915 setValue(&I, DSA); 3916 DAG.setRoot(DSA.getValue(1)); 3917 3918 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3919 } 3920 3921 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3922 if (I.isAtomic()) 3923 return visitAtomicLoad(I); 3924 3925 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3926 const Value *SV = I.getOperand(0); 3927 if (TLI.supportSwiftError()) { 3928 // Swifterror values can come from either a function parameter with 3929 // swifterror attribute or an alloca with swifterror attribute. 3930 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3931 if (Arg->hasSwiftErrorAttr()) 3932 return visitLoadFromSwiftError(I); 3933 } 3934 3935 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3936 if (Alloca->isSwiftError()) 3937 return visitLoadFromSwiftError(I); 3938 } 3939 } 3940 3941 SDValue Ptr = getValue(SV); 3942 3943 Type *Ty = I.getType(); 3944 3945 bool isVolatile = I.isVolatile(); 3946 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3947 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3948 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3949 unsigned Alignment = I.getAlignment(); 3950 3951 AAMDNodes AAInfo; 3952 I.getAAMetadata(AAInfo); 3953 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3954 3955 SmallVector<EVT, 4> ValueVTs; 3956 SmallVector<uint64_t, 4> Offsets; 3957 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3958 unsigned NumValues = ValueVTs.size(); 3959 if (NumValues == 0) 3960 return; 3961 3962 SDValue Root; 3963 bool ConstantMemory = false; 3964 if (isVolatile || NumValues > MaxParallelChains) 3965 // Serialize volatile loads with other side effects. 3966 Root = getRoot(); 3967 else if (AA && 3968 AA->pointsToConstantMemory(MemoryLocation( 3969 SV, 3970 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3971 AAInfo))) { 3972 // Do not serialize (non-volatile) loads of constant memory with anything. 3973 Root = DAG.getEntryNode(); 3974 ConstantMemory = true; 3975 } else { 3976 // Do not serialize non-volatile loads against each other. 3977 Root = DAG.getRoot(); 3978 } 3979 3980 SDLoc dl = getCurSDLoc(); 3981 3982 if (isVolatile) 3983 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3984 3985 // An aggregate load cannot wrap around the address space, so offsets to its 3986 // parts don't wrap either. 3987 SDNodeFlags Flags; 3988 Flags.setNoUnsignedWrap(true); 3989 3990 SmallVector<SDValue, 4> Values(NumValues); 3991 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3992 EVT PtrVT = Ptr.getValueType(); 3993 unsigned ChainI = 0; 3994 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3995 // Serializing loads here may result in excessive register pressure, and 3996 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3997 // could recover a bit by hoisting nodes upward in the chain by recognizing 3998 // they are side-effect free or do not alias. The optimizer should really 3999 // avoid this case by converting large object/array copies to llvm.memcpy 4000 // (MaxParallelChains should always remain as failsafe). 4001 if (ChainI == MaxParallelChains) { 4002 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4003 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4004 makeArrayRef(Chains.data(), ChainI)); 4005 Root = Chain; 4006 ChainI = 0; 4007 } 4008 SDValue A = DAG.getNode(ISD::ADD, dl, 4009 PtrVT, Ptr, 4010 DAG.getConstant(Offsets[i], dl, PtrVT), 4011 Flags); 4012 auto MMOFlags = MachineMemOperand::MONone; 4013 if (isVolatile) 4014 MMOFlags |= MachineMemOperand::MOVolatile; 4015 if (isNonTemporal) 4016 MMOFlags |= MachineMemOperand::MONonTemporal; 4017 if (isInvariant) 4018 MMOFlags |= MachineMemOperand::MOInvariant; 4019 if (isDereferenceable) 4020 MMOFlags |= MachineMemOperand::MODereferenceable; 4021 MMOFlags |= TLI.getMMOFlags(I); 4022 4023 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 4024 MachinePointerInfo(SV, Offsets[i]), Alignment, 4025 MMOFlags, AAInfo, Ranges); 4026 4027 Values[i] = L; 4028 Chains[ChainI] = L.getValue(1); 4029 } 4030 4031 if (!ConstantMemory) { 4032 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4033 makeArrayRef(Chains.data(), ChainI)); 4034 if (isVolatile) 4035 DAG.setRoot(Chain); 4036 else 4037 PendingLoads.push_back(Chain); 4038 } 4039 4040 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4041 DAG.getVTList(ValueVTs), Values)); 4042 } 4043 4044 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4045 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4046 "call visitStoreToSwiftError when backend supports swifterror"); 4047 4048 SmallVector<EVT, 4> ValueVTs; 4049 SmallVector<uint64_t, 4> Offsets; 4050 const Value *SrcV = I.getOperand(0); 4051 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4052 SrcV->getType(), ValueVTs, &Offsets); 4053 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4054 "expect a single EVT for swifterror"); 4055 4056 SDValue Src = getValue(SrcV); 4057 // Create a virtual register, then update the virtual register. 4058 unsigned VReg; bool CreatedVReg; 4059 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 4060 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4061 // Chain can be getRoot or getControlRoot. 4062 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4063 SDValue(Src.getNode(), Src.getResNo())); 4064 DAG.setRoot(CopyNode); 4065 if (CreatedVReg) 4066 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 4067 } 4068 4069 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4070 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4071 "call visitLoadFromSwiftError when backend supports swifterror"); 4072 4073 assert(!I.isVolatile() && 4074 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 4075 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 4076 "Support volatile, non temporal, invariant for load_from_swift_error"); 4077 4078 const Value *SV = I.getOperand(0); 4079 Type *Ty = I.getType(); 4080 AAMDNodes AAInfo; 4081 I.getAAMetadata(AAInfo); 4082 assert( 4083 (!AA || 4084 !AA->pointsToConstantMemory(MemoryLocation( 4085 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4086 AAInfo))) && 4087 "load_from_swift_error should not be constant memory"); 4088 4089 SmallVector<EVT, 4> ValueVTs; 4090 SmallVector<uint64_t, 4> Offsets; 4091 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4092 ValueVTs, &Offsets); 4093 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4094 "expect a single EVT for swifterror"); 4095 4096 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4097 SDValue L = DAG.getCopyFromReg( 4098 getRoot(), getCurSDLoc(), 4099 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 4100 ValueVTs[0]); 4101 4102 setValue(&I, L); 4103 } 4104 4105 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4106 if (I.isAtomic()) 4107 return visitAtomicStore(I); 4108 4109 const Value *SrcV = I.getOperand(0); 4110 const Value *PtrV = I.getOperand(1); 4111 4112 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4113 if (TLI.supportSwiftError()) { 4114 // Swifterror values can come from either a function parameter with 4115 // swifterror attribute or an alloca with swifterror attribute. 4116 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4117 if (Arg->hasSwiftErrorAttr()) 4118 return visitStoreToSwiftError(I); 4119 } 4120 4121 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4122 if (Alloca->isSwiftError()) 4123 return visitStoreToSwiftError(I); 4124 } 4125 } 4126 4127 SmallVector<EVT, 4> ValueVTs; 4128 SmallVector<uint64_t, 4> Offsets; 4129 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4130 SrcV->getType(), ValueVTs, &Offsets); 4131 unsigned NumValues = ValueVTs.size(); 4132 if (NumValues == 0) 4133 return; 4134 4135 // Get the lowered operands. Note that we do this after 4136 // checking if NumResults is zero, because with zero results 4137 // the operands won't have values in the map. 4138 SDValue Src = getValue(SrcV); 4139 SDValue Ptr = getValue(PtrV); 4140 4141 SDValue Root = getRoot(); 4142 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4143 SDLoc dl = getCurSDLoc(); 4144 EVT PtrVT = Ptr.getValueType(); 4145 unsigned Alignment = I.getAlignment(); 4146 AAMDNodes AAInfo; 4147 I.getAAMetadata(AAInfo); 4148 4149 auto MMOFlags = MachineMemOperand::MONone; 4150 if (I.isVolatile()) 4151 MMOFlags |= MachineMemOperand::MOVolatile; 4152 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 4153 MMOFlags |= MachineMemOperand::MONonTemporal; 4154 MMOFlags |= TLI.getMMOFlags(I); 4155 4156 // An aggregate load cannot wrap around the address space, so offsets to its 4157 // parts don't wrap either. 4158 SDNodeFlags Flags; 4159 Flags.setNoUnsignedWrap(true); 4160 4161 unsigned ChainI = 0; 4162 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4163 // See visitLoad comments. 4164 if (ChainI == MaxParallelChains) { 4165 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4166 makeArrayRef(Chains.data(), ChainI)); 4167 Root = Chain; 4168 ChainI = 0; 4169 } 4170 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 4171 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 4172 SDValue St = DAG.getStore( 4173 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 4174 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 4175 Chains[ChainI] = St; 4176 } 4177 4178 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4179 makeArrayRef(Chains.data(), ChainI)); 4180 DAG.setRoot(StoreNode); 4181 } 4182 4183 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4184 bool IsCompressing) { 4185 SDLoc sdl = getCurSDLoc(); 4186 4187 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4188 unsigned& Alignment) { 4189 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4190 Src0 = I.getArgOperand(0); 4191 Ptr = I.getArgOperand(1); 4192 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4193 Mask = I.getArgOperand(3); 4194 }; 4195 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4196 unsigned& Alignment) { 4197 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4198 Src0 = I.getArgOperand(0); 4199 Ptr = I.getArgOperand(1); 4200 Mask = I.getArgOperand(2); 4201 Alignment = 0; 4202 }; 4203 4204 Value *PtrOperand, *MaskOperand, *Src0Operand; 4205 unsigned Alignment; 4206 if (IsCompressing) 4207 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4208 else 4209 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4210 4211 SDValue Ptr = getValue(PtrOperand); 4212 SDValue Src0 = getValue(Src0Operand); 4213 SDValue Mask = getValue(MaskOperand); 4214 4215 EVT VT = Src0.getValueType(); 4216 if (!Alignment) 4217 Alignment = DAG.getEVTAlignment(VT); 4218 4219 AAMDNodes AAInfo; 4220 I.getAAMetadata(AAInfo); 4221 4222 MachineMemOperand *MMO = 4223 DAG.getMachineFunction(). 4224 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4225 MachineMemOperand::MOStore, VT.getStoreSize(), 4226 Alignment, AAInfo); 4227 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 4228 MMO, false /* Truncating */, 4229 IsCompressing); 4230 DAG.setRoot(StoreNode); 4231 setValue(&I, StoreNode); 4232 } 4233 4234 // Get a uniform base for the Gather/Scatter intrinsic. 4235 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4236 // We try to represent it as a base pointer + vector of indices. 4237 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4238 // The first operand of the GEP may be a single pointer or a vector of pointers 4239 // Example: 4240 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4241 // or 4242 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4243 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4244 // 4245 // When the first GEP operand is a single pointer - it is the uniform base we 4246 // are looking for. If first operand of the GEP is a splat vector - we 4247 // extract the splat value and use it as a uniform base. 4248 // In all other cases the function returns 'false'. 4249 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 4250 SDValue &Scale, SelectionDAGBuilder* SDB) { 4251 SelectionDAG& DAG = SDB->DAG; 4252 LLVMContext &Context = *DAG.getContext(); 4253 4254 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4255 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4256 if (!GEP) 4257 return false; 4258 4259 const Value *GEPPtr = GEP->getPointerOperand(); 4260 if (!GEPPtr->getType()->isVectorTy()) 4261 Ptr = GEPPtr; 4262 else if (!(Ptr = getSplatValue(GEPPtr))) 4263 return false; 4264 4265 unsigned FinalIndex = GEP->getNumOperands() - 1; 4266 Value *IndexVal = GEP->getOperand(FinalIndex); 4267 4268 // Ensure all the other indices are 0. 4269 for (unsigned i = 1; i < FinalIndex; ++i) { 4270 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 4271 if (!C || !C->isZero()) 4272 return false; 4273 } 4274 4275 // The operands of the GEP may be defined in another basic block. 4276 // In this case we'll not find nodes for the operands. 4277 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4278 return false; 4279 4280 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4281 const DataLayout &DL = DAG.getDataLayout(); 4282 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4283 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4284 Base = SDB->getValue(Ptr); 4285 Index = SDB->getValue(IndexVal); 4286 4287 if (!Index.getValueType().isVector()) { 4288 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4289 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4290 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4291 } 4292 return true; 4293 } 4294 4295 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4296 SDLoc sdl = getCurSDLoc(); 4297 4298 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4299 const Value *Ptr = I.getArgOperand(1); 4300 SDValue Src0 = getValue(I.getArgOperand(0)); 4301 SDValue Mask = getValue(I.getArgOperand(3)); 4302 EVT VT = Src0.getValueType(); 4303 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4304 if (!Alignment) 4305 Alignment = DAG.getEVTAlignment(VT); 4306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4307 4308 AAMDNodes AAInfo; 4309 I.getAAMetadata(AAInfo); 4310 4311 SDValue Base; 4312 SDValue Index; 4313 SDValue Scale; 4314 const Value *BasePtr = Ptr; 4315 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4316 4317 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4318 MachineMemOperand *MMO = DAG.getMachineFunction(). 4319 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4320 MachineMemOperand::MOStore, VT.getStoreSize(), 4321 Alignment, AAInfo); 4322 if (!UniformBase) { 4323 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4324 Index = getValue(Ptr); 4325 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4326 } 4327 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4328 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4329 Ops, MMO); 4330 DAG.setRoot(Scatter); 4331 setValue(&I, Scatter); 4332 } 4333 4334 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4335 SDLoc sdl = getCurSDLoc(); 4336 4337 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4338 unsigned& Alignment) { 4339 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4340 Ptr = I.getArgOperand(0); 4341 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4342 Mask = I.getArgOperand(2); 4343 Src0 = I.getArgOperand(3); 4344 }; 4345 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4346 unsigned& Alignment) { 4347 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4348 Ptr = I.getArgOperand(0); 4349 Alignment = 0; 4350 Mask = I.getArgOperand(1); 4351 Src0 = I.getArgOperand(2); 4352 }; 4353 4354 Value *PtrOperand, *MaskOperand, *Src0Operand; 4355 unsigned Alignment; 4356 if (IsExpanding) 4357 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4358 else 4359 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4360 4361 SDValue Ptr = getValue(PtrOperand); 4362 SDValue Src0 = getValue(Src0Operand); 4363 SDValue Mask = getValue(MaskOperand); 4364 4365 EVT VT = Src0.getValueType(); 4366 if (!Alignment) 4367 Alignment = DAG.getEVTAlignment(VT); 4368 4369 AAMDNodes AAInfo; 4370 I.getAAMetadata(AAInfo); 4371 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4372 4373 // Do not serialize masked loads of constant memory with anything. 4374 bool AddToChain = 4375 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4376 PtrOperand, 4377 LocationSize::precise( 4378 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4379 AAInfo)); 4380 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4381 4382 MachineMemOperand *MMO = 4383 DAG.getMachineFunction(). 4384 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4385 MachineMemOperand::MOLoad, VT.getStoreSize(), 4386 Alignment, AAInfo, Ranges); 4387 4388 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4389 ISD::NON_EXTLOAD, IsExpanding); 4390 if (AddToChain) 4391 PendingLoads.push_back(Load.getValue(1)); 4392 setValue(&I, Load); 4393 } 4394 4395 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4396 SDLoc sdl = getCurSDLoc(); 4397 4398 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4399 const Value *Ptr = I.getArgOperand(0); 4400 SDValue Src0 = getValue(I.getArgOperand(3)); 4401 SDValue Mask = getValue(I.getArgOperand(2)); 4402 4403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4404 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4405 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4406 if (!Alignment) 4407 Alignment = DAG.getEVTAlignment(VT); 4408 4409 AAMDNodes AAInfo; 4410 I.getAAMetadata(AAInfo); 4411 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4412 4413 SDValue Root = DAG.getRoot(); 4414 SDValue Base; 4415 SDValue Index; 4416 SDValue Scale; 4417 const Value *BasePtr = Ptr; 4418 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4419 bool ConstantMemory = false; 4420 if (UniformBase && AA && 4421 AA->pointsToConstantMemory( 4422 MemoryLocation(BasePtr, 4423 LocationSize::precise( 4424 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4425 AAInfo))) { 4426 // Do not serialize (non-volatile) loads of constant memory with anything. 4427 Root = DAG.getEntryNode(); 4428 ConstantMemory = true; 4429 } 4430 4431 MachineMemOperand *MMO = 4432 DAG.getMachineFunction(). 4433 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4434 MachineMemOperand::MOLoad, VT.getStoreSize(), 4435 Alignment, AAInfo, Ranges); 4436 4437 if (!UniformBase) { 4438 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4439 Index = getValue(Ptr); 4440 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4441 } 4442 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4443 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4444 Ops, MMO); 4445 4446 SDValue OutChain = Gather.getValue(1); 4447 if (!ConstantMemory) 4448 PendingLoads.push_back(OutChain); 4449 setValue(&I, Gather); 4450 } 4451 4452 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4453 SDLoc dl = getCurSDLoc(); 4454 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4455 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4456 SyncScope::ID SSID = I.getSyncScopeID(); 4457 4458 SDValue InChain = getRoot(); 4459 4460 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4461 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4462 4463 auto Alignment = DAG.getEVTAlignment(MemVT); 4464 4465 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4466 if (I.isVolatile()) 4467 Flags |= MachineMemOperand::MOVolatile; 4468 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4469 4470 MachineFunction &MF = DAG.getMachineFunction(); 4471 MachineMemOperand *MMO = 4472 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4473 Flags, MemVT.getStoreSize(), Alignment, 4474 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4475 FailureOrdering); 4476 4477 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4478 dl, MemVT, VTs, InChain, 4479 getValue(I.getPointerOperand()), 4480 getValue(I.getCompareOperand()), 4481 getValue(I.getNewValOperand()), MMO); 4482 4483 SDValue OutChain = L.getValue(2); 4484 4485 setValue(&I, L); 4486 DAG.setRoot(OutChain); 4487 } 4488 4489 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4490 SDLoc dl = getCurSDLoc(); 4491 ISD::NodeType NT; 4492 switch (I.getOperation()) { 4493 default: llvm_unreachable("Unknown atomicrmw operation"); 4494 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4495 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4496 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4497 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4498 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4499 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4500 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4501 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4502 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4503 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4504 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4505 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4506 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4507 } 4508 AtomicOrdering Ordering = I.getOrdering(); 4509 SyncScope::ID SSID = I.getSyncScopeID(); 4510 4511 SDValue InChain = getRoot(); 4512 4513 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4514 auto Alignment = DAG.getEVTAlignment(MemVT); 4515 4516 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4517 if (I.isVolatile()) 4518 Flags |= MachineMemOperand::MOVolatile; 4519 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4520 4521 MachineFunction &MF = DAG.getMachineFunction(); 4522 MachineMemOperand *MMO = 4523 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4524 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4525 nullptr, SSID, Ordering); 4526 4527 SDValue L = 4528 DAG.getAtomic(NT, dl, MemVT, InChain, 4529 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4530 MMO); 4531 4532 SDValue OutChain = L.getValue(1); 4533 4534 setValue(&I, L); 4535 DAG.setRoot(OutChain); 4536 } 4537 4538 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4539 SDLoc dl = getCurSDLoc(); 4540 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4541 SDValue Ops[3]; 4542 Ops[0] = getRoot(); 4543 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4544 TLI.getFenceOperandTy(DAG.getDataLayout())); 4545 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4546 TLI.getFenceOperandTy(DAG.getDataLayout())); 4547 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4548 } 4549 4550 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4551 SDLoc dl = getCurSDLoc(); 4552 AtomicOrdering Order = I.getOrdering(); 4553 SyncScope::ID SSID = I.getSyncScopeID(); 4554 4555 SDValue InChain = getRoot(); 4556 4557 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4558 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4559 4560 if (!TLI.supportsUnalignedAtomics() && 4561 I.getAlignment() < VT.getStoreSize()) 4562 report_fatal_error("Cannot generate unaligned atomic load"); 4563 4564 auto Flags = MachineMemOperand::MOLoad; 4565 if (I.isVolatile()) 4566 Flags |= MachineMemOperand::MOVolatile; 4567 Flags |= TLI.getMMOFlags(I); 4568 4569 MachineMemOperand *MMO = 4570 DAG.getMachineFunction(). 4571 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4572 Flags, VT.getStoreSize(), 4573 I.getAlignment() ? I.getAlignment() : 4574 DAG.getEVTAlignment(VT), 4575 AAMDNodes(), nullptr, SSID, Order); 4576 4577 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4578 SDValue L = 4579 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4580 getValue(I.getPointerOperand()), MMO); 4581 4582 SDValue OutChain = L.getValue(1); 4583 4584 setValue(&I, L); 4585 DAG.setRoot(OutChain); 4586 } 4587 4588 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4589 SDLoc dl = getCurSDLoc(); 4590 4591 AtomicOrdering Ordering = I.getOrdering(); 4592 SyncScope::ID SSID = I.getSyncScopeID(); 4593 4594 SDValue InChain = getRoot(); 4595 4596 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4597 EVT VT = 4598 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4599 4600 if (I.getAlignment() < VT.getStoreSize()) 4601 report_fatal_error("Cannot generate unaligned atomic store"); 4602 4603 auto Flags = MachineMemOperand::MOStore; 4604 if (I.isVolatile()) 4605 Flags |= MachineMemOperand::MOVolatile; 4606 Flags |= TLI.getMMOFlags(I); 4607 4608 MachineFunction &MF = DAG.getMachineFunction(); 4609 MachineMemOperand *MMO = 4610 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4611 VT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4612 nullptr, SSID, Ordering); 4613 SDValue OutChain = 4614 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, InChain, 4615 getValue(I.getPointerOperand()), getValue(I.getValueOperand()), 4616 MMO); 4617 4618 4619 DAG.setRoot(OutChain); 4620 } 4621 4622 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4623 /// node. 4624 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4625 unsigned Intrinsic) { 4626 // Ignore the callsite's attributes. A specific call site may be marked with 4627 // readnone, but the lowering code will expect the chain based on the 4628 // definition. 4629 const Function *F = I.getCalledFunction(); 4630 bool HasChain = !F->doesNotAccessMemory(); 4631 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4632 4633 // Build the operand list. 4634 SmallVector<SDValue, 8> Ops; 4635 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4636 if (OnlyLoad) { 4637 // We don't need to serialize loads against other loads. 4638 Ops.push_back(DAG.getRoot()); 4639 } else { 4640 Ops.push_back(getRoot()); 4641 } 4642 } 4643 4644 // Info is set by getTgtMemInstrinsic 4645 TargetLowering::IntrinsicInfo Info; 4646 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4647 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4648 DAG.getMachineFunction(), 4649 Intrinsic); 4650 4651 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4652 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4653 Info.opc == ISD::INTRINSIC_W_CHAIN) 4654 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4655 TLI.getPointerTy(DAG.getDataLayout()))); 4656 4657 // Add all operands of the call to the operand list. 4658 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4659 SDValue Op = getValue(I.getArgOperand(i)); 4660 Ops.push_back(Op); 4661 } 4662 4663 SmallVector<EVT, 4> ValueVTs; 4664 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4665 4666 if (HasChain) 4667 ValueVTs.push_back(MVT::Other); 4668 4669 SDVTList VTs = DAG.getVTList(ValueVTs); 4670 4671 // Create the node. 4672 SDValue Result; 4673 if (IsTgtIntrinsic) { 4674 // This is target intrinsic that touches memory 4675 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4676 Ops, Info.memVT, 4677 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4678 Info.flags, Info.size); 4679 } else if (!HasChain) { 4680 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4681 } else if (!I.getType()->isVoidTy()) { 4682 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4683 } else { 4684 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4685 } 4686 4687 if (HasChain) { 4688 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4689 if (OnlyLoad) 4690 PendingLoads.push_back(Chain); 4691 else 4692 DAG.setRoot(Chain); 4693 } 4694 4695 if (!I.getType()->isVoidTy()) { 4696 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4697 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4698 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4699 } else 4700 Result = lowerRangeToAssertZExt(DAG, I, Result); 4701 4702 setValue(&I, Result); 4703 } 4704 } 4705 4706 /// GetSignificand - Get the significand and build it into a floating-point 4707 /// number with exponent of 1: 4708 /// 4709 /// Op = (Op & 0x007fffff) | 0x3f800000; 4710 /// 4711 /// where Op is the hexadecimal representation of floating point value. 4712 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4713 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4714 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4715 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4716 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4717 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4718 } 4719 4720 /// GetExponent - Get the exponent: 4721 /// 4722 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4723 /// 4724 /// where Op is the hexadecimal representation of floating point value. 4725 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4726 const TargetLowering &TLI, const SDLoc &dl) { 4727 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4728 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4729 SDValue t1 = DAG.getNode( 4730 ISD::SRL, dl, MVT::i32, t0, 4731 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4732 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4733 DAG.getConstant(127, dl, MVT::i32)); 4734 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4735 } 4736 4737 /// getF32Constant - Get 32-bit floating point constant. 4738 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4739 const SDLoc &dl) { 4740 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4741 MVT::f32); 4742 } 4743 4744 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4745 SelectionDAG &DAG) { 4746 // TODO: What fast-math-flags should be set on the floating-point nodes? 4747 4748 // IntegerPartOfX = ((int32_t)(t0); 4749 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4750 4751 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4752 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4753 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4754 4755 // IntegerPartOfX <<= 23; 4756 IntegerPartOfX = DAG.getNode( 4757 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4758 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4759 DAG.getDataLayout()))); 4760 4761 SDValue TwoToFractionalPartOfX; 4762 if (LimitFloatPrecision <= 6) { 4763 // For floating-point precision of 6: 4764 // 4765 // TwoToFractionalPartOfX = 4766 // 0.997535578f + 4767 // (0.735607626f + 0.252464424f * x) * x; 4768 // 4769 // error 0.0144103317, which is 6 bits 4770 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4771 getF32Constant(DAG, 0x3e814304, dl)); 4772 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4773 getF32Constant(DAG, 0x3f3c50c8, dl)); 4774 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4775 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4776 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4777 } else if (LimitFloatPrecision <= 12) { 4778 // For floating-point precision of 12: 4779 // 4780 // TwoToFractionalPartOfX = 4781 // 0.999892986f + 4782 // (0.696457318f + 4783 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4784 // 4785 // error 0.000107046256, which is 13 to 14 bits 4786 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4787 getF32Constant(DAG, 0x3da235e3, dl)); 4788 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4789 getF32Constant(DAG, 0x3e65b8f3, dl)); 4790 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4791 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4792 getF32Constant(DAG, 0x3f324b07, dl)); 4793 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4794 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4795 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4796 } else { // LimitFloatPrecision <= 18 4797 // For floating-point precision of 18: 4798 // 4799 // TwoToFractionalPartOfX = 4800 // 0.999999982f + 4801 // (0.693148872f + 4802 // (0.240227044f + 4803 // (0.554906021e-1f + 4804 // (0.961591928e-2f + 4805 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4806 // error 2.47208000*10^(-7), which is better than 18 bits 4807 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4808 getF32Constant(DAG, 0x3924b03e, dl)); 4809 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4810 getF32Constant(DAG, 0x3ab24b87, dl)); 4811 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4812 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4813 getF32Constant(DAG, 0x3c1d8c17, dl)); 4814 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4815 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4816 getF32Constant(DAG, 0x3d634a1d, dl)); 4817 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4818 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4819 getF32Constant(DAG, 0x3e75fe14, dl)); 4820 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4821 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4822 getF32Constant(DAG, 0x3f317234, dl)); 4823 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4824 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4825 getF32Constant(DAG, 0x3f800000, dl)); 4826 } 4827 4828 // Add the exponent into the result in integer domain. 4829 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4830 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4831 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4832 } 4833 4834 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4835 /// limited-precision mode. 4836 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4837 const TargetLowering &TLI) { 4838 if (Op.getValueType() == MVT::f32 && 4839 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4840 4841 // Put the exponent in the right bit position for later addition to the 4842 // final result: 4843 // 4844 // #define LOG2OFe 1.4426950f 4845 // t0 = Op * LOG2OFe 4846 4847 // TODO: What fast-math-flags should be set here? 4848 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4849 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4850 return getLimitedPrecisionExp2(t0, dl, DAG); 4851 } 4852 4853 // No special expansion. 4854 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4855 } 4856 4857 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4858 /// limited-precision mode. 4859 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4860 const TargetLowering &TLI) { 4861 // TODO: What fast-math-flags should be set on the floating-point nodes? 4862 4863 if (Op.getValueType() == MVT::f32 && 4864 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4865 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4866 4867 // Scale the exponent by log(2) [0.69314718f]. 4868 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4869 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4870 getF32Constant(DAG, 0x3f317218, dl)); 4871 4872 // Get the significand and build it into a floating-point number with 4873 // exponent of 1. 4874 SDValue X = GetSignificand(DAG, Op1, dl); 4875 4876 SDValue LogOfMantissa; 4877 if (LimitFloatPrecision <= 6) { 4878 // For floating-point precision of 6: 4879 // 4880 // LogofMantissa = 4881 // -1.1609546f + 4882 // (1.4034025f - 0.23903021f * x) * x; 4883 // 4884 // error 0.0034276066, which is better than 8 bits 4885 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4886 getF32Constant(DAG, 0xbe74c456, dl)); 4887 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4888 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4889 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4890 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4891 getF32Constant(DAG, 0x3f949a29, dl)); 4892 } else if (LimitFloatPrecision <= 12) { 4893 // For floating-point precision of 12: 4894 // 4895 // LogOfMantissa = 4896 // -1.7417939f + 4897 // (2.8212026f + 4898 // (-1.4699568f + 4899 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4900 // 4901 // error 0.000061011436, which is 14 bits 4902 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4903 getF32Constant(DAG, 0xbd67b6d6, dl)); 4904 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4905 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4906 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4907 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4908 getF32Constant(DAG, 0x3fbc278b, dl)); 4909 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4910 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4911 getF32Constant(DAG, 0x40348e95, dl)); 4912 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4913 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4914 getF32Constant(DAG, 0x3fdef31a, dl)); 4915 } else { // LimitFloatPrecision <= 18 4916 // For floating-point precision of 18: 4917 // 4918 // LogOfMantissa = 4919 // -2.1072184f + 4920 // (4.2372794f + 4921 // (-3.7029485f + 4922 // (2.2781945f + 4923 // (-0.87823314f + 4924 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4925 // 4926 // error 0.0000023660568, which is better than 18 bits 4927 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4928 getF32Constant(DAG, 0xbc91e5ac, dl)); 4929 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4930 getF32Constant(DAG, 0x3e4350aa, dl)); 4931 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4932 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4933 getF32Constant(DAG, 0x3f60d3e3, dl)); 4934 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4935 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4936 getF32Constant(DAG, 0x4011cdf0, dl)); 4937 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4938 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4939 getF32Constant(DAG, 0x406cfd1c, dl)); 4940 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4941 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4942 getF32Constant(DAG, 0x408797cb, dl)); 4943 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4944 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4945 getF32Constant(DAG, 0x4006dcab, dl)); 4946 } 4947 4948 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4949 } 4950 4951 // No special expansion. 4952 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4953 } 4954 4955 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4956 /// limited-precision mode. 4957 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4958 const TargetLowering &TLI) { 4959 // TODO: What fast-math-flags should be set on the floating-point nodes? 4960 4961 if (Op.getValueType() == MVT::f32 && 4962 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4963 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4964 4965 // Get the exponent. 4966 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4967 4968 // Get the significand and build it into a floating-point number with 4969 // exponent of 1. 4970 SDValue X = GetSignificand(DAG, Op1, dl); 4971 4972 // Different possible minimax approximations of significand in 4973 // floating-point for various degrees of accuracy over [1,2]. 4974 SDValue Log2ofMantissa; 4975 if (LimitFloatPrecision <= 6) { 4976 // For floating-point precision of 6: 4977 // 4978 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4979 // 4980 // error 0.0049451742, which is more than 7 bits 4981 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4982 getF32Constant(DAG, 0xbeb08fe0, dl)); 4983 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4984 getF32Constant(DAG, 0x40019463, dl)); 4985 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4986 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4987 getF32Constant(DAG, 0x3fd6633d, dl)); 4988 } else if (LimitFloatPrecision <= 12) { 4989 // For floating-point precision of 12: 4990 // 4991 // Log2ofMantissa = 4992 // -2.51285454f + 4993 // (4.07009056f + 4994 // (-2.12067489f + 4995 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4996 // 4997 // error 0.0000876136000, which is better than 13 bits 4998 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4999 getF32Constant(DAG, 0xbda7262e, dl)); 5000 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5001 getF32Constant(DAG, 0x3f25280b, dl)); 5002 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5003 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5004 getF32Constant(DAG, 0x4007b923, dl)); 5005 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5006 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5007 getF32Constant(DAG, 0x40823e2f, dl)); 5008 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5009 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5010 getF32Constant(DAG, 0x4020d29c, dl)); 5011 } else { // LimitFloatPrecision <= 18 5012 // For floating-point precision of 18: 5013 // 5014 // Log2ofMantissa = 5015 // -3.0400495f + 5016 // (6.1129976f + 5017 // (-5.3420409f + 5018 // (3.2865683f + 5019 // (-1.2669343f + 5020 // (0.27515199f - 5021 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5022 // 5023 // error 0.0000018516, which is better than 18 bits 5024 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5025 getF32Constant(DAG, 0xbcd2769e, dl)); 5026 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5027 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5028 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5029 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5030 getF32Constant(DAG, 0x3fa22ae7, dl)); 5031 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5032 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5033 getF32Constant(DAG, 0x40525723, dl)); 5034 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5035 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5036 getF32Constant(DAG, 0x40aaf200, dl)); 5037 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5038 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5039 getF32Constant(DAG, 0x40c39dad, dl)); 5040 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5041 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5042 getF32Constant(DAG, 0x4042902c, dl)); 5043 } 5044 5045 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5046 } 5047 5048 // No special expansion. 5049 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5050 } 5051 5052 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5053 /// limited-precision mode. 5054 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5055 const TargetLowering &TLI) { 5056 // TODO: What fast-math-flags should be set on the floating-point nodes? 5057 5058 if (Op.getValueType() == MVT::f32 && 5059 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5060 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5061 5062 // Scale the exponent by log10(2) [0.30102999f]. 5063 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5064 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5065 getF32Constant(DAG, 0x3e9a209a, dl)); 5066 5067 // Get the significand and build it into a floating-point number with 5068 // exponent of 1. 5069 SDValue X = GetSignificand(DAG, Op1, dl); 5070 5071 SDValue Log10ofMantissa; 5072 if (LimitFloatPrecision <= 6) { 5073 // For floating-point precision of 6: 5074 // 5075 // Log10ofMantissa = 5076 // -0.50419619f + 5077 // (0.60948995f - 0.10380950f * x) * x; 5078 // 5079 // error 0.0014886165, which is 6 bits 5080 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5081 getF32Constant(DAG, 0xbdd49a13, dl)); 5082 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5083 getF32Constant(DAG, 0x3f1c0789, dl)); 5084 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5085 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5086 getF32Constant(DAG, 0x3f011300, dl)); 5087 } else if (LimitFloatPrecision <= 12) { 5088 // For floating-point precision of 12: 5089 // 5090 // Log10ofMantissa = 5091 // -0.64831180f + 5092 // (0.91751397f + 5093 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5094 // 5095 // error 0.00019228036, which is better than 12 bits 5096 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5097 getF32Constant(DAG, 0x3d431f31, dl)); 5098 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5099 getF32Constant(DAG, 0x3ea21fb2, dl)); 5100 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5101 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5102 getF32Constant(DAG, 0x3f6ae232, dl)); 5103 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5104 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5105 getF32Constant(DAG, 0x3f25f7c3, dl)); 5106 } else { // LimitFloatPrecision <= 18 5107 // For floating-point precision of 18: 5108 // 5109 // Log10ofMantissa = 5110 // -0.84299375f + 5111 // (1.5327582f + 5112 // (-1.0688956f + 5113 // (0.49102474f + 5114 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5115 // 5116 // error 0.0000037995730, which is better than 18 bits 5117 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5118 getF32Constant(DAG, 0x3c5d51ce, dl)); 5119 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5120 getF32Constant(DAG, 0x3e00685a, dl)); 5121 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5122 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5123 getF32Constant(DAG, 0x3efb6798, dl)); 5124 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5125 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5126 getF32Constant(DAG, 0x3f88d192, dl)); 5127 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5128 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5129 getF32Constant(DAG, 0x3fc4316c, dl)); 5130 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5131 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5132 getF32Constant(DAG, 0x3f57ce70, dl)); 5133 } 5134 5135 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5136 } 5137 5138 // No special expansion. 5139 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5140 } 5141 5142 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5143 /// limited-precision mode. 5144 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5145 const TargetLowering &TLI) { 5146 if (Op.getValueType() == MVT::f32 && 5147 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5148 return getLimitedPrecisionExp2(Op, dl, DAG); 5149 5150 // No special expansion. 5151 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5152 } 5153 5154 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5155 /// limited-precision mode with x == 10.0f. 5156 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5157 SelectionDAG &DAG, const TargetLowering &TLI) { 5158 bool IsExp10 = false; 5159 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5160 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5161 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5162 APFloat Ten(10.0f); 5163 IsExp10 = LHSC->isExactlyValue(Ten); 5164 } 5165 } 5166 5167 // TODO: What fast-math-flags should be set on the FMUL node? 5168 if (IsExp10) { 5169 // Put the exponent in the right bit position for later addition to the 5170 // final result: 5171 // 5172 // #define LOG2OF10 3.3219281f 5173 // t0 = Op * LOG2OF10; 5174 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5175 getF32Constant(DAG, 0x40549a78, dl)); 5176 return getLimitedPrecisionExp2(t0, dl, DAG); 5177 } 5178 5179 // No special expansion. 5180 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5181 } 5182 5183 /// ExpandPowI - Expand a llvm.powi intrinsic. 5184 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5185 SelectionDAG &DAG) { 5186 // If RHS is a constant, we can expand this out to a multiplication tree, 5187 // otherwise we end up lowering to a call to __powidf2 (for example). When 5188 // optimizing for size, we only want to do this if the expansion would produce 5189 // a small number of multiplies, otherwise we do the full expansion. 5190 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5191 // Get the exponent as a positive value. 5192 unsigned Val = RHSC->getSExtValue(); 5193 if ((int)Val < 0) Val = -Val; 5194 5195 // powi(x, 0) -> 1.0 5196 if (Val == 0) 5197 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5198 5199 const Function &F = DAG.getMachineFunction().getFunction(); 5200 if (!F.optForSize() || 5201 // If optimizing for size, don't insert too many multiplies. 5202 // This inserts up to 5 multiplies. 5203 countPopulation(Val) + Log2_32(Val) < 7) { 5204 // We use the simple binary decomposition method to generate the multiply 5205 // sequence. There are more optimal ways to do this (for example, 5206 // powi(x,15) generates one more multiply than it should), but this has 5207 // the benefit of being both really simple and much better than a libcall. 5208 SDValue Res; // Logically starts equal to 1.0 5209 SDValue CurSquare = LHS; 5210 // TODO: Intrinsics should have fast-math-flags that propagate to these 5211 // nodes. 5212 while (Val) { 5213 if (Val & 1) { 5214 if (Res.getNode()) 5215 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5216 else 5217 Res = CurSquare; // 1.0*CurSquare. 5218 } 5219 5220 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5221 CurSquare, CurSquare); 5222 Val >>= 1; 5223 } 5224 5225 // If the original was negative, invert the result, producing 1/(x*x*x). 5226 if (RHSC->getSExtValue() < 0) 5227 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5228 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5229 return Res; 5230 } 5231 } 5232 5233 // Otherwise, expand to a libcall. 5234 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5235 } 5236 5237 // getUnderlyingArgReg - Find underlying register used for a truncated or 5238 // bitcasted argument. 5239 static unsigned getUnderlyingArgReg(const SDValue &N) { 5240 switch (N.getOpcode()) { 5241 case ISD::CopyFromReg: 5242 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 5243 case ISD::BITCAST: 5244 case ISD::AssertZext: 5245 case ISD::AssertSext: 5246 case ISD::TRUNCATE: 5247 return getUnderlyingArgReg(N.getOperand(0)); 5248 default: 5249 return 0; 5250 } 5251 } 5252 5253 /// If the DbgValueInst is a dbg_value of a function argument, create the 5254 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5255 /// instruction selection, they will be inserted to the entry BB. 5256 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5257 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5258 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5259 const Argument *Arg = dyn_cast<Argument>(V); 5260 if (!Arg) 5261 return false; 5262 5263 if (!IsDbgDeclare) { 5264 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5265 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5266 // the entry block. 5267 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5268 if (!IsInEntryBlock) 5269 return false; 5270 5271 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5272 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5273 // variable that also is a param. 5274 // 5275 // Although, if we are at the top of the entry block already, we can still 5276 // emit using ArgDbgValue. This might catch some situations when the 5277 // dbg.value refers to an argument that isn't used in the entry block, so 5278 // any CopyToReg node would be optimized out and the only way to express 5279 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5280 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5281 // we should only emit as ArgDbgValue if the Variable is an argument to the 5282 // current function, and the dbg.value intrinsic is found in the entry 5283 // block. 5284 bool VariableIsFunctionInputArg = Variable->isParameter() && 5285 !DL->getInlinedAt(); 5286 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5287 if (!IsInPrologue && !VariableIsFunctionInputArg) 5288 return false; 5289 5290 // Here we assume that a function argument on IR level only can be used to 5291 // describe one input parameter on source level. If we for example have 5292 // source code like this 5293 // 5294 // struct A { long x, y; }; 5295 // void foo(struct A a, long b) { 5296 // ... 5297 // b = a.x; 5298 // ... 5299 // } 5300 // 5301 // and IR like this 5302 // 5303 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5304 // entry: 5305 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5306 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5307 // call void @llvm.dbg.value(metadata i32 %b, "b", 5308 // ... 5309 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5310 // ... 5311 // 5312 // then the last dbg.value is describing a parameter "b" using a value that 5313 // is an argument. But since we already has used %a1 to describe a parameter 5314 // we should not handle that last dbg.value here (that would result in an 5315 // incorrect hoisting of the DBG_VALUE to the function entry). 5316 // Notice that we allow one dbg.value per IR level argument, to accomodate 5317 // for the situation with fragments above. 5318 if (VariableIsFunctionInputArg) { 5319 unsigned ArgNo = Arg->getArgNo(); 5320 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5321 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5322 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5323 return false; 5324 FuncInfo.DescribedArgs.set(ArgNo); 5325 } 5326 } 5327 5328 MachineFunction &MF = DAG.getMachineFunction(); 5329 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5330 5331 bool IsIndirect = false; 5332 Optional<MachineOperand> Op; 5333 // Some arguments' frame index is recorded during argument lowering. 5334 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5335 if (FI != std::numeric_limits<int>::max()) 5336 Op = MachineOperand::CreateFI(FI); 5337 5338 if (!Op && N.getNode()) { 5339 unsigned Reg = getUnderlyingArgReg(N); 5340 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 5341 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5342 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 5343 if (PR) 5344 Reg = PR; 5345 } 5346 if (Reg) { 5347 Op = MachineOperand::CreateReg(Reg, false); 5348 IsIndirect = IsDbgDeclare; 5349 } 5350 } 5351 5352 if (!Op && N.getNode()) { 5353 // Check if frame index is available. 5354 SDValue LCandidate = peekThroughBitcasts(N); 5355 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5356 if (FrameIndexSDNode *FINode = 5357 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5358 Op = MachineOperand::CreateFI(FINode->getIndex()); 5359 } 5360 5361 if (!Op) { 5362 // Check if ValueMap has reg number. 5363 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 5364 if (VMI != FuncInfo.ValueMap.end()) { 5365 const auto &TLI = DAG.getTargetLoweringInfo(); 5366 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5367 V->getType(), getABIRegCopyCC(V)); 5368 if (RFV.occupiesMultipleRegs()) { 5369 unsigned Offset = 0; 5370 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5371 Op = MachineOperand::CreateReg(RegAndSize.first, false); 5372 auto FragmentExpr = DIExpression::createFragmentExpression( 5373 Expr, Offset, RegAndSize.second); 5374 if (!FragmentExpr) 5375 continue; 5376 FuncInfo.ArgDbgValues.push_back( 5377 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5378 Op->getReg(), Variable, *FragmentExpr)); 5379 Offset += RegAndSize.second; 5380 } 5381 return true; 5382 } 5383 Op = MachineOperand::CreateReg(VMI->second, false); 5384 IsIndirect = IsDbgDeclare; 5385 } 5386 } 5387 5388 if (!Op) 5389 return false; 5390 5391 assert(Variable->isValidLocationForIntrinsic(DL) && 5392 "Expected inlined-at fields to agree"); 5393 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5394 FuncInfo.ArgDbgValues.push_back( 5395 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5396 *Op, Variable, Expr)); 5397 5398 return true; 5399 } 5400 5401 /// Return the appropriate SDDbgValue based on N. 5402 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5403 DILocalVariable *Variable, 5404 DIExpression *Expr, 5405 const DebugLoc &dl, 5406 unsigned DbgSDNodeOrder) { 5407 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5408 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5409 // stack slot locations. 5410 // 5411 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5412 // debug values here after optimization: 5413 // 5414 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5415 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5416 // 5417 // Both describe the direct values of their associated variables. 5418 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5419 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5420 } 5421 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5422 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5423 } 5424 5425 // VisualStudio defines setjmp as _setjmp 5426 #if defined(_MSC_VER) && defined(setjmp) && \ 5427 !defined(setjmp_undefined_for_msvc) 5428 # pragma push_macro("setjmp") 5429 # undef setjmp 5430 # define setjmp_undefined_for_msvc 5431 #endif 5432 5433 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5434 switch (Intrinsic) { 5435 case Intrinsic::smul_fix: 5436 return ISD::SMULFIX; 5437 case Intrinsic::umul_fix: 5438 return ISD::UMULFIX; 5439 default: 5440 llvm_unreachable("Unhandled fixed point intrinsic"); 5441 } 5442 } 5443 5444 /// Lower the call to the specified intrinsic function. If we want to emit this 5445 /// as a call to a named external function, return the name. Otherwise, lower it 5446 /// and return null. 5447 const char * 5448 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 5449 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5450 SDLoc sdl = getCurSDLoc(); 5451 DebugLoc dl = getCurDebugLoc(); 5452 SDValue Res; 5453 5454 switch (Intrinsic) { 5455 default: 5456 // By default, turn this into a target intrinsic node. 5457 visitTargetIntrinsic(I, Intrinsic); 5458 return nullptr; 5459 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5460 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5461 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5462 case Intrinsic::returnaddress: 5463 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5464 TLI.getPointerTy(DAG.getDataLayout()), 5465 getValue(I.getArgOperand(0)))); 5466 return nullptr; 5467 case Intrinsic::addressofreturnaddress: 5468 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5469 TLI.getPointerTy(DAG.getDataLayout()))); 5470 return nullptr; 5471 case Intrinsic::sponentry: 5472 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5473 TLI.getPointerTy(DAG.getDataLayout()))); 5474 return nullptr; 5475 case Intrinsic::frameaddress: 5476 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5477 TLI.getPointerTy(DAG.getDataLayout()), 5478 getValue(I.getArgOperand(0)))); 5479 return nullptr; 5480 case Intrinsic::read_register: { 5481 Value *Reg = I.getArgOperand(0); 5482 SDValue Chain = getRoot(); 5483 SDValue RegName = 5484 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5485 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5486 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5487 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5488 setValue(&I, Res); 5489 DAG.setRoot(Res.getValue(1)); 5490 return nullptr; 5491 } 5492 case Intrinsic::write_register: { 5493 Value *Reg = I.getArgOperand(0); 5494 Value *RegValue = I.getArgOperand(1); 5495 SDValue Chain = getRoot(); 5496 SDValue RegName = 5497 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5498 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5499 RegName, getValue(RegValue))); 5500 return nullptr; 5501 } 5502 case Intrinsic::setjmp: 5503 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5504 case Intrinsic::longjmp: 5505 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5506 case Intrinsic::memcpy: { 5507 const auto &MCI = cast<MemCpyInst>(I); 5508 SDValue Op1 = getValue(I.getArgOperand(0)); 5509 SDValue Op2 = getValue(I.getArgOperand(1)); 5510 SDValue Op3 = getValue(I.getArgOperand(2)); 5511 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5512 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5513 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5514 unsigned Align = MinAlign(DstAlign, SrcAlign); 5515 bool isVol = MCI.isVolatile(); 5516 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5517 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5518 // node. 5519 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5520 false, isTC, 5521 MachinePointerInfo(I.getArgOperand(0)), 5522 MachinePointerInfo(I.getArgOperand(1))); 5523 updateDAGForMaybeTailCall(MC); 5524 return nullptr; 5525 } 5526 case Intrinsic::memset: { 5527 const auto &MSI = cast<MemSetInst>(I); 5528 SDValue Op1 = getValue(I.getArgOperand(0)); 5529 SDValue Op2 = getValue(I.getArgOperand(1)); 5530 SDValue Op3 = getValue(I.getArgOperand(2)); 5531 // @llvm.memset defines 0 and 1 to both mean no alignment. 5532 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5533 bool isVol = MSI.isVolatile(); 5534 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5535 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5536 isTC, MachinePointerInfo(I.getArgOperand(0))); 5537 updateDAGForMaybeTailCall(MS); 5538 return nullptr; 5539 } 5540 case Intrinsic::memmove: { 5541 const auto &MMI = cast<MemMoveInst>(I); 5542 SDValue Op1 = getValue(I.getArgOperand(0)); 5543 SDValue Op2 = getValue(I.getArgOperand(1)); 5544 SDValue Op3 = getValue(I.getArgOperand(2)); 5545 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5546 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5547 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5548 unsigned Align = MinAlign(DstAlign, SrcAlign); 5549 bool isVol = MMI.isVolatile(); 5550 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5551 // FIXME: Support passing different dest/src alignments to the memmove DAG 5552 // node. 5553 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5554 isTC, MachinePointerInfo(I.getArgOperand(0)), 5555 MachinePointerInfo(I.getArgOperand(1))); 5556 updateDAGForMaybeTailCall(MM); 5557 return nullptr; 5558 } 5559 case Intrinsic::memcpy_element_unordered_atomic: { 5560 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5561 SDValue Dst = getValue(MI.getRawDest()); 5562 SDValue Src = getValue(MI.getRawSource()); 5563 SDValue Length = getValue(MI.getLength()); 5564 5565 unsigned DstAlign = MI.getDestAlignment(); 5566 unsigned SrcAlign = MI.getSourceAlignment(); 5567 Type *LengthTy = MI.getLength()->getType(); 5568 unsigned ElemSz = MI.getElementSizeInBytes(); 5569 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5570 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5571 SrcAlign, Length, LengthTy, ElemSz, isTC, 5572 MachinePointerInfo(MI.getRawDest()), 5573 MachinePointerInfo(MI.getRawSource())); 5574 updateDAGForMaybeTailCall(MC); 5575 return nullptr; 5576 } 5577 case Intrinsic::memmove_element_unordered_atomic: { 5578 auto &MI = cast<AtomicMemMoveInst>(I); 5579 SDValue Dst = getValue(MI.getRawDest()); 5580 SDValue Src = getValue(MI.getRawSource()); 5581 SDValue Length = getValue(MI.getLength()); 5582 5583 unsigned DstAlign = MI.getDestAlignment(); 5584 unsigned SrcAlign = MI.getSourceAlignment(); 5585 Type *LengthTy = MI.getLength()->getType(); 5586 unsigned ElemSz = MI.getElementSizeInBytes(); 5587 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5588 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5589 SrcAlign, Length, LengthTy, ElemSz, isTC, 5590 MachinePointerInfo(MI.getRawDest()), 5591 MachinePointerInfo(MI.getRawSource())); 5592 updateDAGForMaybeTailCall(MC); 5593 return nullptr; 5594 } 5595 case Intrinsic::memset_element_unordered_atomic: { 5596 auto &MI = cast<AtomicMemSetInst>(I); 5597 SDValue Dst = getValue(MI.getRawDest()); 5598 SDValue Val = getValue(MI.getValue()); 5599 SDValue Length = getValue(MI.getLength()); 5600 5601 unsigned DstAlign = MI.getDestAlignment(); 5602 Type *LengthTy = MI.getLength()->getType(); 5603 unsigned ElemSz = MI.getElementSizeInBytes(); 5604 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5605 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5606 LengthTy, ElemSz, isTC, 5607 MachinePointerInfo(MI.getRawDest())); 5608 updateDAGForMaybeTailCall(MC); 5609 return nullptr; 5610 } 5611 case Intrinsic::dbg_addr: 5612 case Intrinsic::dbg_declare: { 5613 const auto &DI = cast<DbgVariableIntrinsic>(I); 5614 DILocalVariable *Variable = DI.getVariable(); 5615 DIExpression *Expression = DI.getExpression(); 5616 dropDanglingDebugInfo(Variable, Expression); 5617 assert(Variable && "Missing variable"); 5618 5619 // Check if address has undef value. 5620 const Value *Address = DI.getVariableLocation(); 5621 if (!Address || isa<UndefValue>(Address) || 5622 (Address->use_empty() && !isa<Argument>(Address))) { 5623 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5624 return nullptr; 5625 } 5626 5627 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5628 5629 // Check if this variable can be described by a frame index, typically 5630 // either as a static alloca or a byval parameter. 5631 int FI = std::numeric_limits<int>::max(); 5632 if (const auto *AI = 5633 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5634 if (AI->isStaticAlloca()) { 5635 auto I = FuncInfo.StaticAllocaMap.find(AI); 5636 if (I != FuncInfo.StaticAllocaMap.end()) 5637 FI = I->second; 5638 } 5639 } else if (const auto *Arg = dyn_cast<Argument>( 5640 Address->stripInBoundsConstantOffsets())) { 5641 FI = FuncInfo.getArgumentFrameIndex(Arg); 5642 } 5643 5644 // llvm.dbg.addr is control dependent and always generates indirect 5645 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5646 // the MachineFunction variable table. 5647 if (FI != std::numeric_limits<int>::max()) { 5648 if (Intrinsic == Intrinsic::dbg_addr) { 5649 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5650 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5651 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5652 } 5653 return nullptr; 5654 } 5655 5656 SDValue &N = NodeMap[Address]; 5657 if (!N.getNode() && isa<Argument>(Address)) 5658 // Check unused arguments map. 5659 N = UnusedArgNodeMap[Address]; 5660 SDDbgValue *SDV; 5661 if (N.getNode()) { 5662 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5663 Address = BCI->getOperand(0); 5664 // Parameters are handled specially. 5665 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5666 if (isParameter && FINode) { 5667 // Byval parameter. We have a frame index at this point. 5668 SDV = 5669 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5670 /*IsIndirect*/ true, dl, SDNodeOrder); 5671 } else if (isa<Argument>(Address)) { 5672 // Address is an argument, so try to emit its dbg value using 5673 // virtual register info from the FuncInfo.ValueMap. 5674 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5675 return nullptr; 5676 } else { 5677 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5678 true, dl, SDNodeOrder); 5679 } 5680 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5681 } else { 5682 // If Address is an argument then try to emit its dbg value using 5683 // virtual register info from the FuncInfo.ValueMap. 5684 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5685 N)) { 5686 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5687 } 5688 } 5689 return nullptr; 5690 } 5691 case Intrinsic::dbg_label: { 5692 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5693 DILabel *Label = DI.getLabel(); 5694 assert(Label && "Missing label"); 5695 5696 SDDbgLabel *SDV; 5697 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5698 DAG.AddDbgLabel(SDV); 5699 return nullptr; 5700 } 5701 case Intrinsic::dbg_value: { 5702 const DbgValueInst &DI = cast<DbgValueInst>(I); 5703 assert(DI.getVariable() && "Missing variable"); 5704 5705 DILocalVariable *Variable = DI.getVariable(); 5706 DIExpression *Expression = DI.getExpression(); 5707 dropDanglingDebugInfo(Variable, Expression); 5708 const Value *V = DI.getValue(); 5709 if (!V) 5710 return nullptr; 5711 5712 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5713 SDNodeOrder)) 5714 return nullptr; 5715 5716 // TODO: Dangling debug info will eventually either be resolved or produce 5717 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5718 // between the original dbg.value location and its resolved DBG_VALUE, which 5719 // we should ideally fill with an extra Undef DBG_VALUE. 5720 5721 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5722 return nullptr; 5723 } 5724 5725 case Intrinsic::eh_typeid_for: { 5726 // Find the type id for the given typeinfo. 5727 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5728 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5729 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5730 setValue(&I, Res); 5731 return nullptr; 5732 } 5733 5734 case Intrinsic::eh_return_i32: 5735 case Intrinsic::eh_return_i64: 5736 DAG.getMachineFunction().setCallsEHReturn(true); 5737 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5738 MVT::Other, 5739 getControlRoot(), 5740 getValue(I.getArgOperand(0)), 5741 getValue(I.getArgOperand(1)))); 5742 return nullptr; 5743 case Intrinsic::eh_unwind_init: 5744 DAG.getMachineFunction().setCallsUnwindInit(true); 5745 return nullptr; 5746 case Intrinsic::eh_dwarf_cfa: 5747 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5748 TLI.getPointerTy(DAG.getDataLayout()), 5749 getValue(I.getArgOperand(0)))); 5750 return nullptr; 5751 case Intrinsic::eh_sjlj_callsite: { 5752 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5753 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5754 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5755 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5756 5757 MMI.setCurrentCallSite(CI->getZExtValue()); 5758 return nullptr; 5759 } 5760 case Intrinsic::eh_sjlj_functioncontext: { 5761 // Get and store the index of the function context. 5762 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5763 AllocaInst *FnCtx = 5764 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5765 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5766 MFI.setFunctionContextIndex(FI); 5767 return nullptr; 5768 } 5769 case Intrinsic::eh_sjlj_setjmp: { 5770 SDValue Ops[2]; 5771 Ops[0] = getRoot(); 5772 Ops[1] = getValue(I.getArgOperand(0)); 5773 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5774 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5775 setValue(&I, Op.getValue(0)); 5776 DAG.setRoot(Op.getValue(1)); 5777 return nullptr; 5778 } 5779 case Intrinsic::eh_sjlj_longjmp: 5780 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5781 getRoot(), getValue(I.getArgOperand(0)))); 5782 return nullptr; 5783 case Intrinsic::eh_sjlj_setup_dispatch: 5784 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5785 getRoot())); 5786 return nullptr; 5787 case Intrinsic::masked_gather: 5788 visitMaskedGather(I); 5789 return nullptr; 5790 case Intrinsic::masked_load: 5791 visitMaskedLoad(I); 5792 return nullptr; 5793 case Intrinsic::masked_scatter: 5794 visitMaskedScatter(I); 5795 return nullptr; 5796 case Intrinsic::masked_store: 5797 visitMaskedStore(I); 5798 return nullptr; 5799 case Intrinsic::masked_expandload: 5800 visitMaskedLoad(I, true /* IsExpanding */); 5801 return nullptr; 5802 case Intrinsic::masked_compressstore: 5803 visitMaskedStore(I, true /* IsCompressing */); 5804 return nullptr; 5805 case Intrinsic::x86_mmx_pslli_w: 5806 case Intrinsic::x86_mmx_pslli_d: 5807 case Intrinsic::x86_mmx_pslli_q: 5808 case Intrinsic::x86_mmx_psrli_w: 5809 case Intrinsic::x86_mmx_psrli_d: 5810 case Intrinsic::x86_mmx_psrli_q: 5811 case Intrinsic::x86_mmx_psrai_w: 5812 case Intrinsic::x86_mmx_psrai_d: { 5813 SDValue ShAmt = getValue(I.getArgOperand(1)); 5814 if (isa<ConstantSDNode>(ShAmt)) { 5815 visitTargetIntrinsic(I, Intrinsic); 5816 return nullptr; 5817 } 5818 unsigned NewIntrinsic = 0; 5819 EVT ShAmtVT = MVT::v2i32; 5820 switch (Intrinsic) { 5821 case Intrinsic::x86_mmx_pslli_w: 5822 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5823 break; 5824 case Intrinsic::x86_mmx_pslli_d: 5825 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5826 break; 5827 case Intrinsic::x86_mmx_pslli_q: 5828 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5829 break; 5830 case Intrinsic::x86_mmx_psrli_w: 5831 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5832 break; 5833 case Intrinsic::x86_mmx_psrli_d: 5834 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5835 break; 5836 case Intrinsic::x86_mmx_psrli_q: 5837 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5838 break; 5839 case Intrinsic::x86_mmx_psrai_w: 5840 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5841 break; 5842 case Intrinsic::x86_mmx_psrai_d: 5843 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5844 break; 5845 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5846 } 5847 5848 // The vector shift intrinsics with scalars uses 32b shift amounts but 5849 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5850 // to be zero. 5851 // We must do this early because v2i32 is not a legal type. 5852 SDValue ShOps[2]; 5853 ShOps[0] = ShAmt; 5854 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5855 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5856 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5857 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5858 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5859 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5860 getValue(I.getArgOperand(0)), ShAmt); 5861 setValue(&I, Res); 5862 return nullptr; 5863 } 5864 case Intrinsic::powi: 5865 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5866 getValue(I.getArgOperand(1)), DAG)); 5867 return nullptr; 5868 case Intrinsic::log: 5869 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5870 return nullptr; 5871 case Intrinsic::log2: 5872 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5873 return nullptr; 5874 case Intrinsic::log10: 5875 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5876 return nullptr; 5877 case Intrinsic::exp: 5878 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5879 return nullptr; 5880 case Intrinsic::exp2: 5881 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5882 return nullptr; 5883 case Intrinsic::pow: 5884 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5885 getValue(I.getArgOperand(1)), DAG, TLI)); 5886 return nullptr; 5887 case Intrinsic::sqrt: 5888 case Intrinsic::fabs: 5889 case Intrinsic::sin: 5890 case Intrinsic::cos: 5891 case Intrinsic::floor: 5892 case Intrinsic::ceil: 5893 case Intrinsic::trunc: 5894 case Intrinsic::rint: 5895 case Intrinsic::nearbyint: 5896 case Intrinsic::round: 5897 case Intrinsic::canonicalize: { 5898 unsigned Opcode; 5899 switch (Intrinsic) { 5900 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5901 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5902 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5903 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5904 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5905 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5906 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5907 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5908 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5909 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5910 case Intrinsic::round: Opcode = ISD::FROUND; break; 5911 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5912 } 5913 5914 setValue(&I, DAG.getNode(Opcode, sdl, 5915 getValue(I.getArgOperand(0)).getValueType(), 5916 getValue(I.getArgOperand(0)))); 5917 return nullptr; 5918 } 5919 case Intrinsic::minnum: { 5920 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5921 unsigned Opc = 5922 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT) 5923 ? ISD::FMINIMUM 5924 : ISD::FMINNUM; 5925 setValue(&I, DAG.getNode(Opc, sdl, VT, 5926 getValue(I.getArgOperand(0)), 5927 getValue(I.getArgOperand(1)))); 5928 return nullptr; 5929 } 5930 case Intrinsic::maxnum: { 5931 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5932 unsigned Opc = 5933 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT) 5934 ? ISD::FMAXIMUM 5935 : ISD::FMAXNUM; 5936 setValue(&I, DAG.getNode(Opc, sdl, VT, 5937 getValue(I.getArgOperand(0)), 5938 getValue(I.getArgOperand(1)))); 5939 return nullptr; 5940 } 5941 case Intrinsic::minimum: 5942 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 5943 getValue(I.getArgOperand(0)).getValueType(), 5944 getValue(I.getArgOperand(0)), 5945 getValue(I.getArgOperand(1)))); 5946 return nullptr; 5947 case Intrinsic::maximum: 5948 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 5949 getValue(I.getArgOperand(0)).getValueType(), 5950 getValue(I.getArgOperand(0)), 5951 getValue(I.getArgOperand(1)))); 5952 return nullptr; 5953 case Intrinsic::copysign: 5954 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5955 getValue(I.getArgOperand(0)).getValueType(), 5956 getValue(I.getArgOperand(0)), 5957 getValue(I.getArgOperand(1)))); 5958 return nullptr; 5959 case Intrinsic::fma: 5960 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5961 getValue(I.getArgOperand(0)).getValueType(), 5962 getValue(I.getArgOperand(0)), 5963 getValue(I.getArgOperand(1)), 5964 getValue(I.getArgOperand(2)))); 5965 return nullptr; 5966 case Intrinsic::experimental_constrained_fadd: 5967 case Intrinsic::experimental_constrained_fsub: 5968 case Intrinsic::experimental_constrained_fmul: 5969 case Intrinsic::experimental_constrained_fdiv: 5970 case Intrinsic::experimental_constrained_frem: 5971 case Intrinsic::experimental_constrained_fma: 5972 case Intrinsic::experimental_constrained_sqrt: 5973 case Intrinsic::experimental_constrained_pow: 5974 case Intrinsic::experimental_constrained_powi: 5975 case Intrinsic::experimental_constrained_sin: 5976 case Intrinsic::experimental_constrained_cos: 5977 case Intrinsic::experimental_constrained_exp: 5978 case Intrinsic::experimental_constrained_exp2: 5979 case Intrinsic::experimental_constrained_log: 5980 case Intrinsic::experimental_constrained_log10: 5981 case Intrinsic::experimental_constrained_log2: 5982 case Intrinsic::experimental_constrained_rint: 5983 case Intrinsic::experimental_constrained_nearbyint: 5984 case Intrinsic::experimental_constrained_maxnum: 5985 case Intrinsic::experimental_constrained_minnum: 5986 case Intrinsic::experimental_constrained_ceil: 5987 case Intrinsic::experimental_constrained_floor: 5988 case Intrinsic::experimental_constrained_round: 5989 case Intrinsic::experimental_constrained_trunc: 5990 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5991 return nullptr; 5992 case Intrinsic::fmuladd: { 5993 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5994 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5995 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5996 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5997 getValue(I.getArgOperand(0)).getValueType(), 5998 getValue(I.getArgOperand(0)), 5999 getValue(I.getArgOperand(1)), 6000 getValue(I.getArgOperand(2)))); 6001 } else { 6002 // TODO: Intrinsic calls should have fast-math-flags. 6003 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6004 getValue(I.getArgOperand(0)).getValueType(), 6005 getValue(I.getArgOperand(0)), 6006 getValue(I.getArgOperand(1))); 6007 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6008 getValue(I.getArgOperand(0)).getValueType(), 6009 Mul, 6010 getValue(I.getArgOperand(2))); 6011 setValue(&I, Add); 6012 } 6013 return nullptr; 6014 } 6015 case Intrinsic::convert_to_fp16: 6016 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6017 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6018 getValue(I.getArgOperand(0)), 6019 DAG.getTargetConstant(0, sdl, 6020 MVT::i32)))); 6021 return nullptr; 6022 case Intrinsic::convert_from_fp16: 6023 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6024 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6025 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6026 getValue(I.getArgOperand(0))))); 6027 return nullptr; 6028 case Intrinsic::pcmarker: { 6029 SDValue Tmp = getValue(I.getArgOperand(0)); 6030 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6031 return nullptr; 6032 } 6033 case Intrinsic::readcyclecounter: { 6034 SDValue Op = getRoot(); 6035 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6036 DAG.getVTList(MVT::i64, MVT::Other), Op); 6037 setValue(&I, Res); 6038 DAG.setRoot(Res.getValue(1)); 6039 return nullptr; 6040 } 6041 case Intrinsic::bitreverse: 6042 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6043 getValue(I.getArgOperand(0)).getValueType(), 6044 getValue(I.getArgOperand(0)))); 6045 return nullptr; 6046 case Intrinsic::bswap: 6047 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6048 getValue(I.getArgOperand(0)).getValueType(), 6049 getValue(I.getArgOperand(0)))); 6050 return nullptr; 6051 case Intrinsic::cttz: { 6052 SDValue Arg = getValue(I.getArgOperand(0)); 6053 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6054 EVT Ty = Arg.getValueType(); 6055 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6056 sdl, Ty, Arg)); 6057 return nullptr; 6058 } 6059 case Intrinsic::ctlz: { 6060 SDValue Arg = getValue(I.getArgOperand(0)); 6061 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6062 EVT Ty = Arg.getValueType(); 6063 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6064 sdl, Ty, Arg)); 6065 return nullptr; 6066 } 6067 case Intrinsic::ctpop: { 6068 SDValue Arg = getValue(I.getArgOperand(0)); 6069 EVT Ty = Arg.getValueType(); 6070 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6071 return nullptr; 6072 } 6073 case Intrinsic::fshl: 6074 case Intrinsic::fshr: { 6075 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6076 SDValue X = getValue(I.getArgOperand(0)); 6077 SDValue Y = getValue(I.getArgOperand(1)); 6078 SDValue Z = getValue(I.getArgOperand(2)); 6079 EVT VT = X.getValueType(); 6080 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6081 SDValue Zero = DAG.getConstant(0, sdl, VT); 6082 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6083 6084 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6085 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6086 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6087 return nullptr; 6088 } 6089 6090 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6091 // avoid the select that is necessary in the general case to filter out 6092 // the 0-shift possibility that leads to UB. 6093 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6094 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6095 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6096 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6097 return nullptr; 6098 } 6099 6100 // Some targets only rotate one way. Try the opposite direction. 6101 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6102 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6103 // Negate the shift amount because it is safe to ignore the high bits. 6104 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6105 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6106 return nullptr; 6107 } 6108 6109 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6110 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6111 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6112 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6113 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6114 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6115 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6116 return nullptr; 6117 } 6118 6119 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6120 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6121 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6122 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6123 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6124 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6125 6126 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6127 // and that is undefined. We must compare and select to avoid UB. 6128 EVT CCVT = MVT::i1; 6129 if (VT.isVector()) 6130 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6131 6132 // For fshl, 0-shift returns the 1st arg (X). 6133 // For fshr, 0-shift returns the 2nd arg (Y). 6134 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6135 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6136 return nullptr; 6137 } 6138 case Intrinsic::sadd_sat: { 6139 SDValue Op1 = getValue(I.getArgOperand(0)); 6140 SDValue Op2 = getValue(I.getArgOperand(1)); 6141 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6142 return nullptr; 6143 } 6144 case Intrinsic::uadd_sat: { 6145 SDValue Op1 = getValue(I.getArgOperand(0)); 6146 SDValue Op2 = getValue(I.getArgOperand(1)); 6147 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6148 return nullptr; 6149 } 6150 case Intrinsic::ssub_sat: { 6151 SDValue Op1 = getValue(I.getArgOperand(0)); 6152 SDValue Op2 = getValue(I.getArgOperand(1)); 6153 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6154 return nullptr; 6155 } 6156 case Intrinsic::usub_sat: { 6157 SDValue Op1 = getValue(I.getArgOperand(0)); 6158 SDValue Op2 = getValue(I.getArgOperand(1)); 6159 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6160 return nullptr; 6161 } 6162 case Intrinsic::smul_fix: 6163 case Intrinsic::umul_fix: { 6164 SDValue Op1 = getValue(I.getArgOperand(0)); 6165 SDValue Op2 = getValue(I.getArgOperand(1)); 6166 SDValue Op3 = getValue(I.getArgOperand(2)); 6167 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6168 Op1.getValueType(), Op1, Op2, Op3)); 6169 return nullptr; 6170 } 6171 case Intrinsic::stacksave: { 6172 SDValue Op = getRoot(); 6173 Res = DAG.getNode( 6174 ISD::STACKSAVE, sdl, 6175 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6176 setValue(&I, Res); 6177 DAG.setRoot(Res.getValue(1)); 6178 return nullptr; 6179 } 6180 case Intrinsic::stackrestore: 6181 Res = getValue(I.getArgOperand(0)); 6182 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6183 return nullptr; 6184 case Intrinsic::get_dynamic_area_offset: { 6185 SDValue Op = getRoot(); 6186 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6187 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6188 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6189 // target. 6190 if (PtrTy != ResTy) 6191 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6192 " intrinsic!"); 6193 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6194 Op); 6195 DAG.setRoot(Op); 6196 setValue(&I, Res); 6197 return nullptr; 6198 } 6199 case Intrinsic::stackguard: { 6200 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6201 MachineFunction &MF = DAG.getMachineFunction(); 6202 const Module &M = *MF.getFunction().getParent(); 6203 SDValue Chain = getRoot(); 6204 if (TLI.useLoadStackGuardNode()) { 6205 Res = getLoadStackGuard(DAG, sdl, Chain); 6206 } else { 6207 const Value *Global = TLI.getSDagStackGuard(M); 6208 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6209 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6210 MachinePointerInfo(Global, 0), Align, 6211 MachineMemOperand::MOVolatile); 6212 } 6213 if (TLI.useStackGuardXorFP()) 6214 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6215 DAG.setRoot(Chain); 6216 setValue(&I, Res); 6217 return nullptr; 6218 } 6219 case Intrinsic::stackprotector: { 6220 // Emit code into the DAG to store the stack guard onto the stack. 6221 MachineFunction &MF = DAG.getMachineFunction(); 6222 MachineFrameInfo &MFI = MF.getFrameInfo(); 6223 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6224 SDValue Src, Chain = getRoot(); 6225 6226 if (TLI.useLoadStackGuardNode()) 6227 Src = getLoadStackGuard(DAG, sdl, Chain); 6228 else 6229 Src = getValue(I.getArgOperand(0)); // The guard's value. 6230 6231 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6232 6233 int FI = FuncInfo.StaticAllocaMap[Slot]; 6234 MFI.setStackProtectorIndex(FI); 6235 6236 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6237 6238 // Store the stack protector onto the stack. 6239 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6240 DAG.getMachineFunction(), FI), 6241 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6242 setValue(&I, Res); 6243 DAG.setRoot(Res); 6244 return nullptr; 6245 } 6246 case Intrinsic::objectsize: { 6247 // If we don't know by now, we're never going to know. 6248 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 6249 6250 assert(CI && "Non-constant type in __builtin_object_size?"); 6251 6252 SDValue Arg = getValue(I.getCalledValue()); 6253 EVT Ty = Arg.getValueType(); 6254 6255 if (CI->isZero()) 6256 Res = DAG.getConstant(-1ULL, sdl, Ty); 6257 else 6258 Res = DAG.getConstant(0, sdl, Ty); 6259 6260 setValue(&I, Res); 6261 return nullptr; 6262 } 6263 6264 case Intrinsic::is_constant: 6265 // If this wasn't constant-folded away by now, then it's not a 6266 // constant. 6267 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 6268 return nullptr; 6269 6270 case Intrinsic::annotation: 6271 case Intrinsic::ptr_annotation: 6272 case Intrinsic::launder_invariant_group: 6273 case Intrinsic::strip_invariant_group: 6274 // Drop the intrinsic, but forward the value 6275 setValue(&I, getValue(I.getOperand(0))); 6276 return nullptr; 6277 case Intrinsic::assume: 6278 case Intrinsic::var_annotation: 6279 case Intrinsic::sideeffect: 6280 // Discard annotate attributes, assumptions, and artificial side-effects. 6281 return nullptr; 6282 6283 case Intrinsic::codeview_annotation: { 6284 // Emit a label associated with this metadata. 6285 MachineFunction &MF = DAG.getMachineFunction(); 6286 MCSymbol *Label = 6287 MF.getMMI().getContext().createTempSymbol("annotation", true); 6288 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6289 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6290 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6291 DAG.setRoot(Res); 6292 return nullptr; 6293 } 6294 6295 case Intrinsic::init_trampoline: { 6296 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6297 6298 SDValue Ops[6]; 6299 Ops[0] = getRoot(); 6300 Ops[1] = getValue(I.getArgOperand(0)); 6301 Ops[2] = getValue(I.getArgOperand(1)); 6302 Ops[3] = getValue(I.getArgOperand(2)); 6303 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6304 Ops[5] = DAG.getSrcValue(F); 6305 6306 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6307 6308 DAG.setRoot(Res); 6309 return nullptr; 6310 } 6311 case Intrinsic::adjust_trampoline: 6312 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6313 TLI.getPointerTy(DAG.getDataLayout()), 6314 getValue(I.getArgOperand(0)))); 6315 return nullptr; 6316 case Intrinsic::gcroot: { 6317 assert(DAG.getMachineFunction().getFunction().hasGC() && 6318 "only valid in functions with gc specified, enforced by Verifier"); 6319 assert(GFI && "implied by previous"); 6320 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6321 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6322 6323 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6324 GFI->addStackRoot(FI->getIndex(), TypeMap); 6325 return nullptr; 6326 } 6327 case Intrinsic::gcread: 6328 case Intrinsic::gcwrite: 6329 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6330 case Intrinsic::flt_rounds: 6331 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6332 return nullptr; 6333 6334 case Intrinsic::expect: 6335 // Just replace __builtin_expect(exp, c) with EXP. 6336 setValue(&I, getValue(I.getArgOperand(0))); 6337 return nullptr; 6338 6339 case Intrinsic::debugtrap: 6340 case Intrinsic::trap: { 6341 StringRef TrapFuncName = 6342 I.getAttributes() 6343 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6344 .getValueAsString(); 6345 if (TrapFuncName.empty()) { 6346 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6347 ISD::TRAP : ISD::DEBUGTRAP; 6348 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6349 return nullptr; 6350 } 6351 TargetLowering::ArgListTy Args; 6352 6353 TargetLowering::CallLoweringInfo CLI(DAG); 6354 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6355 CallingConv::C, I.getType(), 6356 DAG.getExternalSymbol(TrapFuncName.data(), 6357 TLI.getPointerTy(DAG.getDataLayout())), 6358 std::move(Args)); 6359 6360 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6361 DAG.setRoot(Result.second); 6362 return nullptr; 6363 } 6364 6365 case Intrinsic::uadd_with_overflow: 6366 case Intrinsic::sadd_with_overflow: 6367 case Intrinsic::usub_with_overflow: 6368 case Intrinsic::ssub_with_overflow: 6369 case Intrinsic::umul_with_overflow: 6370 case Intrinsic::smul_with_overflow: { 6371 ISD::NodeType Op; 6372 switch (Intrinsic) { 6373 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6374 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6375 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6376 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6377 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6378 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6379 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6380 } 6381 SDValue Op1 = getValue(I.getArgOperand(0)); 6382 SDValue Op2 = getValue(I.getArgOperand(1)); 6383 6384 EVT ResultVT = Op1.getValueType(); 6385 EVT OverflowVT = MVT::i1; 6386 if (ResultVT.isVector()) 6387 OverflowVT = EVT::getVectorVT( 6388 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6389 6390 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6391 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6392 return nullptr; 6393 } 6394 case Intrinsic::prefetch: { 6395 SDValue Ops[5]; 6396 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6397 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6398 Ops[0] = DAG.getRoot(); 6399 Ops[1] = getValue(I.getArgOperand(0)); 6400 Ops[2] = getValue(I.getArgOperand(1)); 6401 Ops[3] = getValue(I.getArgOperand(2)); 6402 Ops[4] = getValue(I.getArgOperand(3)); 6403 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6404 DAG.getVTList(MVT::Other), Ops, 6405 EVT::getIntegerVT(*Context, 8), 6406 MachinePointerInfo(I.getArgOperand(0)), 6407 0, /* align */ 6408 Flags); 6409 6410 // Chain the prefetch in parallell with any pending loads, to stay out of 6411 // the way of later optimizations. 6412 PendingLoads.push_back(Result); 6413 Result = getRoot(); 6414 DAG.setRoot(Result); 6415 return nullptr; 6416 } 6417 case Intrinsic::lifetime_start: 6418 case Intrinsic::lifetime_end: { 6419 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6420 // Stack coloring is not enabled in O0, discard region information. 6421 if (TM.getOptLevel() == CodeGenOpt::None) 6422 return nullptr; 6423 6424 const int64_t ObjectSize = 6425 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6426 Value *const ObjectPtr = I.getArgOperand(1); 6427 SmallVector<Value *, 4> Allocas; 6428 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6429 6430 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 6431 E = Allocas.end(); Object != E; ++Object) { 6432 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6433 6434 // Could not find an Alloca. 6435 if (!LifetimeObject) 6436 continue; 6437 6438 // First check that the Alloca is static, otherwise it won't have a 6439 // valid frame index. 6440 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6441 if (SI == FuncInfo.StaticAllocaMap.end()) 6442 return nullptr; 6443 6444 const int FrameIndex = SI->second; 6445 int64_t Offset; 6446 if (GetPointerBaseWithConstantOffset( 6447 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6448 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6449 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6450 Offset); 6451 DAG.setRoot(Res); 6452 } 6453 return nullptr; 6454 } 6455 case Intrinsic::invariant_start: 6456 // Discard region information. 6457 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6458 return nullptr; 6459 case Intrinsic::invariant_end: 6460 // Discard region information. 6461 return nullptr; 6462 case Intrinsic::clear_cache: 6463 return TLI.getClearCacheBuiltinName(); 6464 case Intrinsic::donothing: 6465 // ignore 6466 return nullptr; 6467 case Intrinsic::experimental_stackmap: 6468 visitStackmap(I); 6469 return nullptr; 6470 case Intrinsic::experimental_patchpoint_void: 6471 case Intrinsic::experimental_patchpoint_i64: 6472 visitPatchpoint(&I); 6473 return nullptr; 6474 case Intrinsic::experimental_gc_statepoint: 6475 LowerStatepoint(ImmutableStatepoint(&I)); 6476 return nullptr; 6477 case Intrinsic::experimental_gc_result: 6478 visitGCResult(cast<GCResultInst>(I)); 6479 return nullptr; 6480 case Intrinsic::experimental_gc_relocate: 6481 visitGCRelocate(cast<GCRelocateInst>(I)); 6482 return nullptr; 6483 case Intrinsic::instrprof_increment: 6484 llvm_unreachable("instrprof failed to lower an increment"); 6485 case Intrinsic::instrprof_value_profile: 6486 llvm_unreachable("instrprof failed to lower a value profiling call"); 6487 case Intrinsic::localescape: { 6488 MachineFunction &MF = DAG.getMachineFunction(); 6489 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6490 6491 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6492 // is the same on all targets. 6493 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6494 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6495 if (isa<ConstantPointerNull>(Arg)) 6496 continue; // Skip null pointers. They represent a hole in index space. 6497 AllocaInst *Slot = cast<AllocaInst>(Arg); 6498 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6499 "can only escape static allocas"); 6500 int FI = FuncInfo.StaticAllocaMap[Slot]; 6501 MCSymbol *FrameAllocSym = 6502 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6503 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6504 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6505 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6506 .addSym(FrameAllocSym) 6507 .addFrameIndex(FI); 6508 } 6509 6510 return nullptr; 6511 } 6512 6513 case Intrinsic::localrecover: { 6514 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6515 MachineFunction &MF = DAG.getMachineFunction(); 6516 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6517 6518 // Get the symbol that defines the frame offset. 6519 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6520 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6521 unsigned IdxVal = 6522 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6523 MCSymbol *FrameAllocSym = 6524 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6525 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6526 6527 // Create a MCSymbol for the label to avoid any target lowering 6528 // that would make this PC relative. 6529 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6530 SDValue OffsetVal = 6531 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6532 6533 // Add the offset to the FP. 6534 Value *FP = I.getArgOperand(1); 6535 SDValue FPVal = getValue(FP); 6536 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6537 setValue(&I, Add); 6538 6539 return nullptr; 6540 } 6541 6542 case Intrinsic::eh_exceptionpointer: 6543 case Intrinsic::eh_exceptioncode: { 6544 // Get the exception pointer vreg, copy from it, and resize it to fit. 6545 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6546 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6547 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6548 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6549 SDValue N = 6550 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6551 if (Intrinsic == Intrinsic::eh_exceptioncode) 6552 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6553 setValue(&I, N); 6554 return nullptr; 6555 } 6556 case Intrinsic::xray_customevent: { 6557 // Here we want to make sure that the intrinsic behaves as if it has a 6558 // specific calling convention, and only for x86_64. 6559 // FIXME: Support other platforms later. 6560 const auto &Triple = DAG.getTarget().getTargetTriple(); 6561 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6562 return nullptr; 6563 6564 SDLoc DL = getCurSDLoc(); 6565 SmallVector<SDValue, 8> Ops; 6566 6567 // We want to say that we always want the arguments in registers. 6568 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6569 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6570 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6571 SDValue Chain = getRoot(); 6572 Ops.push_back(LogEntryVal); 6573 Ops.push_back(StrSizeVal); 6574 Ops.push_back(Chain); 6575 6576 // We need to enforce the calling convention for the callsite, so that 6577 // argument ordering is enforced correctly, and that register allocation can 6578 // see that some registers may be assumed clobbered and have to preserve 6579 // them across calls to the intrinsic. 6580 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6581 DL, NodeTys, Ops); 6582 SDValue patchableNode = SDValue(MN, 0); 6583 DAG.setRoot(patchableNode); 6584 setValue(&I, patchableNode); 6585 return nullptr; 6586 } 6587 case Intrinsic::xray_typedevent: { 6588 // Here we want to make sure that the intrinsic behaves as if it has a 6589 // specific calling convention, and only for x86_64. 6590 // FIXME: Support other platforms later. 6591 const auto &Triple = DAG.getTarget().getTargetTriple(); 6592 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6593 return nullptr; 6594 6595 SDLoc DL = getCurSDLoc(); 6596 SmallVector<SDValue, 8> Ops; 6597 6598 // We want to say that we always want the arguments in registers. 6599 // It's unclear to me how manipulating the selection DAG here forces callers 6600 // to provide arguments in registers instead of on the stack. 6601 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6602 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6603 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6604 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6605 SDValue Chain = getRoot(); 6606 Ops.push_back(LogTypeId); 6607 Ops.push_back(LogEntryVal); 6608 Ops.push_back(StrSizeVal); 6609 Ops.push_back(Chain); 6610 6611 // We need to enforce the calling convention for the callsite, so that 6612 // argument ordering is enforced correctly, and that register allocation can 6613 // see that some registers may be assumed clobbered and have to preserve 6614 // them across calls to the intrinsic. 6615 MachineSDNode *MN = DAG.getMachineNode( 6616 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6617 SDValue patchableNode = SDValue(MN, 0); 6618 DAG.setRoot(patchableNode); 6619 setValue(&I, patchableNode); 6620 return nullptr; 6621 } 6622 case Intrinsic::experimental_deoptimize: 6623 LowerDeoptimizeCall(&I); 6624 return nullptr; 6625 6626 case Intrinsic::experimental_vector_reduce_fadd: 6627 case Intrinsic::experimental_vector_reduce_fmul: 6628 case Intrinsic::experimental_vector_reduce_add: 6629 case Intrinsic::experimental_vector_reduce_mul: 6630 case Intrinsic::experimental_vector_reduce_and: 6631 case Intrinsic::experimental_vector_reduce_or: 6632 case Intrinsic::experimental_vector_reduce_xor: 6633 case Intrinsic::experimental_vector_reduce_smax: 6634 case Intrinsic::experimental_vector_reduce_smin: 6635 case Intrinsic::experimental_vector_reduce_umax: 6636 case Intrinsic::experimental_vector_reduce_umin: 6637 case Intrinsic::experimental_vector_reduce_fmax: 6638 case Intrinsic::experimental_vector_reduce_fmin: 6639 visitVectorReduce(I, Intrinsic); 6640 return nullptr; 6641 6642 case Intrinsic::icall_branch_funnel: { 6643 SmallVector<SDValue, 16> Ops; 6644 Ops.push_back(DAG.getRoot()); 6645 Ops.push_back(getValue(I.getArgOperand(0))); 6646 6647 int64_t Offset; 6648 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6649 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6650 if (!Base) 6651 report_fatal_error( 6652 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6653 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6654 6655 struct BranchFunnelTarget { 6656 int64_t Offset; 6657 SDValue Target; 6658 }; 6659 SmallVector<BranchFunnelTarget, 8> Targets; 6660 6661 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6662 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6663 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6664 if (ElemBase != Base) 6665 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6666 "to the same GlobalValue"); 6667 6668 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6669 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6670 if (!GA) 6671 report_fatal_error( 6672 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6673 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6674 GA->getGlobal(), getCurSDLoc(), 6675 Val.getValueType(), GA->getOffset())}); 6676 } 6677 llvm::sort(Targets, 6678 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6679 return T1.Offset < T2.Offset; 6680 }); 6681 6682 for (auto &T : Targets) { 6683 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6684 Ops.push_back(T.Target); 6685 } 6686 6687 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6688 getCurSDLoc(), MVT::Other, Ops), 6689 0); 6690 DAG.setRoot(N); 6691 setValue(&I, N); 6692 HasTailCall = true; 6693 return nullptr; 6694 } 6695 6696 case Intrinsic::wasm_landingpad_index: 6697 // Information this intrinsic contained has been transferred to 6698 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6699 // delete it now. 6700 return nullptr; 6701 } 6702 } 6703 6704 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6705 const ConstrainedFPIntrinsic &FPI) { 6706 SDLoc sdl = getCurSDLoc(); 6707 unsigned Opcode; 6708 switch (FPI.getIntrinsicID()) { 6709 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6710 case Intrinsic::experimental_constrained_fadd: 6711 Opcode = ISD::STRICT_FADD; 6712 break; 6713 case Intrinsic::experimental_constrained_fsub: 6714 Opcode = ISD::STRICT_FSUB; 6715 break; 6716 case Intrinsic::experimental_constrained_fmul: 6717 Opcode = ISD::STRICT_FMUL; 6718 break; 6719 case Intrinsic::experimental_constrained_fdiv: 6720 Opcode = ISD::STRICT_FDIV; 6721 break; 6722 case Intrinsic::experimental_constrained_frem: 6723 Opcode = ISD::STRICT_FREM; 6724 break; 6725 case Intrinsic::experimental_constrained_fma: 6726 Opcode = ISD::STRICT_FMA; 6727 break; 6728 case Intrinsic::experimental_constrained_sqrt: 6729 Opcode = ISD::STRICT_FSQRT; 6730 break; 6731 case Intrinsic::experimental_constrained_pow: 6732 Opcode = ISD::STRICT_FPOW; 6733 break; 6734 case Intrinsic::experimental_constrained_powi: 6735 Opcode = ISD::STRICT_FPOWI; 6736 break; 6737 case Intrinsic::experimental_constrained_sin: 6738 Opcode = ISD::STRICT_FSIN; 6739 break; 6740 case Intrinsic::experimental_constrained_cos: 6741 Opcode = ISD::STRICT_FCOS; 6742 break; 6743 case Intrinsic::experimental_constrained_exp: 6744 Opcode = ISD::STRICT_FEXP; 6745 break; 6746 case Intrinsic::experimental_constrained_exp2: 6747 Opcode = ISD::STRICT_FEXP2; 6748 break; 6749 case Intrinsic::experimental_constrained_log: 6750 Opcode = ISD::STRICT_FLOG; 6751 break; 6752 case Intrinsic::experimental_constrained_log10: 6753 Opcode = ISD::STRICT_FLOG10; 6754 break; 6755 case Intrinsic::experimental_constrained_log2: 6756 Opcode = ISD::STRICT_FLOG2; 6757 break; 6758 case Intrinsic::experimental_constrained_rint: 6759 Opcode = ISD::STRICT_FRINT; 6760 break; 6761 case Intrinsic::experimental_constrained_nearbyint: 6762 Opcode = ISD::STRICT_FNEARBYINT; 6763 break; 6764 case Intrinsic::experimental_constrained_maxnum: 6765 Opcode = ISD::STRICT_FMAXNUM; 6766 break; 6767 case Intrinsic::experimental_constrained_minnum: 6768 Opcode = ISD::STRICT_FMINNUM; 6769 break; 6770 case Intrinsic::experimental_constrained_ceil: 6771 Opcode = ISD::STRICT_FCEIL; 6772 break; 6773 case Intrinsic::experimental_constrained_floor: 6774 Opcode = ISD::STRICT_FFLOOR; 6775 break; 6776 case Intrinsic::experimental_constrained_round: 6777 Opcode = ISD::STRICT_FROUND; 6778 break; 6779 case Intrinsic::experimental_constrained_trunc: 6780 Opcode = ISD::STRICT_FTRUNC; 6781 break; 6782 } 6783 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6784 SDValue Chain = getRoot(); 6785 SmallVector<EVT, 4> ValueVTs; 6786 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6787 ValueVTs.push_back(MVT::Other); // Out chain 6788 6789 SDVTList VTs = DAG.getVTList(ValueVTs); 6790 SDValue Result; 6791 if (FPI.isUnaryOp()) 6792 Result = DAG.getNode(Opcode, sdl, VTs, 6793 { Chain, getValue(FPI.getArgOperand(0)) }); 6794 else if (FPI.isTernaryOp()) 6795 Result = DAG.getNode(Opcode, sdl, VTs, 6796 { Chain, getValue(FPI.getArgOperand(0)), 6797 getValue(FPI.getArgOperand(1)), 6798 getValue(FPI.getArgOperand(2)) }); 6799 else 6800 Result = DAG.getNode(Opcode, sdl, VTs, 6801 { Chain, getValue(FPI.getArgOperand(0)), 6802 getValue(FPI.getArgOperand(1)) }); 6803 6804 assert(Result.getNode()->getNumValues() == 2); 6805 SDValue OutChain = Result.getValue(1); 6806 DAG.setRoot(OutChain); 6807 SDValue FPResult = Result.getValue(0); 6808 setValue(&FPI, FPResult); 6809 } 6810 6811 std::pair<SDValue, SDValue> 6812 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6813 const BasicBlock *EHPadBB) { 6814 MachineFunction &MF = DAG.getMachineFunction(); 6815 MachineModuleInfo &MMI = MF.getMMI(); 6816 MCSymbol *BeginLabel = nullptr; 6817 6818 if (EHPadBB) { 6819 // Insert a label before the invoke call to mark the try range. This can be 6820 // used to detect deletion of the invoke via the MachineModuleInfo. 6821 BeginLabel = MMI.getContext().createTempSymbol(); 6822 6823 // For SjLj, keep track of which landing pads go with which invokes 6824 // so as to maintain the ordering of pads in the LSDA. 6825 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6826 if (CallSiteIndex) { 6827 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6828 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6829 6830 // Now that the call site is handled, stop tracking it. 6831 MMI.setCurrentCallSite(0); 6832 } 6833 6834 // Both PendingLoads and PendingExports must be flushed here; 6835 // this call might not return. 6836 (void)getRoot(); 6837 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6838 6839 CLI.setChain(getRoot()); 6840 } 6841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6842 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6843 6844 assert((CLI.IsTailCall || Result.second.getNode()) && 6845 "Non-null chain expected with non-tail call!"); 6846 assert((Result.second.getNode() || !Result.first.getNode()) && 6847 "Null value expected with tail call!"); 6848 6849 if (!Result.second.getNode()) { 6850 // As a special case, a null chain means that a tail call has been emitted 6851 // and the DAG root is already updated. 6852 HasTailCall = true; 6853 6854 // Since there's no actual continuation from this block, nothing can be 6855 // relying on us setting vregs for them. 6856 PendingExports.clear(); 6857 } else { 6858 DAG.setRoot(Result.second); 6859 } 6860 6861 if (EHPadBB) { 6862 // Insert a label at the end of the invoke call to mark the try range. This 6863 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6864 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6865 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6866 6867 // Inform MachineModuleInfo of range. 6868 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6869 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6870 // actually use outlined funclets and their LSDA info style. 6871 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6872 assert(CLI.CS); 6873 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6874 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6875 BeginLabel, EndLabel); 6876 } else if (!isScopedEHPersonality(Pers)) { 6877 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6878 } 6879 } 6880 6881 return Result; 6882 } 6883 6884 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6885 bool isTailCall, 6886 const BasicBlock *EHPadBB) { 6887 auto &DL = DAG.getDataLayout(); 6888 FunctionType *FTy = CS.getFunctionType(); 6889 Type *RetTy = CS.getType(); 6890 6891 TargetLowering::ArgListTy Args; 6892 Args.reserve(CS.arg_size()); 6893 6894 const Value *SwiftErrorVal = nullptr; 6895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6896 6897 // We can't tail call inside a function with a swifterror argument. Lowering 6898 // does not support this yet. It would have to move into the swifterror 6899 // register before the call. 6900 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6901 if (TLI.supportSwiftError() && 6902 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6903 isTailCall = false; 6904 6905 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6906 i != e; ++i) { 6907 TargetLowering::ArgListEntry Entry; 6908 const Value *V = *i; 6909 6910 // Skip empty types 6911 if (V->getType()->isEmptyTy()) 6912 continue; 6913 6914 SDValue ArgNode = getValue(V); 6915 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6916 6917 Entry.setAttributes(&CS, i - CS.arg_begin()); 6918 6919 // Use swifterror virtual register as input to the call. 6920 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6921 SwiftErrorVal = V; 6922 // We find the virtual register for the actual swifterror argument. 6923 // Instead of using the Value, we use the virtual register instead. 6924 Entry.Node = DAG.getRegister(FuncInfo 6925 .getOrCreateSwiftErrorVRegUseAt( 6926 CS.getInstruction(), FuncInfo.MBB, V) 6927 .first, 6928 EVT(TLI.getPointerTy(DL))); 6929 } 6930 6931 Args.push_back(Entry); 6932 6933 // If we have an explicit sret argument that is an Instruction, (i.e., it 6934 // might point to function-local memory), we can't meaningfully tail-call. 6935 if (Entry.IsSRet && isa<Instruction>(V)) 6936 isTailCall = false; 6937 } 6938 6939 // Check if target-independent constraints permit a tail call here. 6940 // Target-dependent constraints are checked within TLI->LowerCallTo. 6941 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6942 isTailCall = false; 6943 6944 // Disable tail calls if there is an swifterror argument. Targets have not 6945 // been updated to support tail calls. 6946 if (TLI.supportSwiftError() && SwiftErrorVal) 6947 isTailCall = false; 6948 6949 TargetLowering::CallLoweringInfo CLI(DAG); 6950 CLI.setDebugLoc(getCurSDLoc()) 6951 .setChain(getRoot()) 6952 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6953 .setTailCall(isTailCall) 6954 .setConvergent(CS.isConvergent()); 6955 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6956 6957 if (Result.first.getNode()) { 6958 const Instruction *Inst = CS.getInstruction(); 6959 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6960 setValue(Inst, Result.first); 6961 } 6962 6963 // The last element of CLI.InVals has the SDValue for swifterror return. 6964 // Here we copy it to a virtual register and update SwiftErrorMap for 6965 // book-keeping. 6966 if (SwiftErrorVal && TLI.supportSwiftError()) { 6967 // Get the last element of InVals. 6968 SDValue Src = CLI.InVals.back(); 6969 unsigned VReg; bool CreatedVReg; 6970 std::tie(VReg, CreatedVReg) = 6971 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6972 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6973 // We update the virtual register for the actual swifterror argument. 6974 if (CreatedVReg) 6975 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6976 DAG.setRoot(CopyNode); 6977 } 6978 } 6979 6980 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6981 SelectionDAGBuilder &Builder) { 6982 // Check to see if this load can be trivially constant folded, e.g. if the 6983 // input is from a string literal. 6984 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6985 // Cast pointer to the type we really want to load. 6986 Type *LoadTy = 6987 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6988 if (LoadVT.isVector()) 6989 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6990 6991 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6992 PointerType::getUnqual(LoadTy)); 6993 6994 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6995 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6996 return Builder.getValue(LoadCst); 6997 } 6998 6999 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7000 // still constant memory, the input chain can be the entry node. 7001 SDValue Root; 7002 bool ConstantMemory = false; 7003 7004 // Do not serialize (non-volatile) loads of constant memory with anything. 7005 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7006 Root = Builder.DAG.getEntryNode(); 7007 ConstantMemory = true; 7008 } else { 7009 // Do not serialize non-volatile loads against each other. 7010 Root = Builder.DAG.getRoot(); 7011 } 7012 7013 SDValue Ptr = Builder.getValue(PtrVal); 7014 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7015 Ptr, MachinePointerInfo(PtrVal), 7016 /* Alignment = */ 1); 7017 7018 if (!ConstantMemory) 7019 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7020 return LoadVal; 7021 } 7022 7023 /// Record the value for an instruction that produces an integer result, 7024 /// converting the type where necessary. 7025 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7026 SDValue Value, 7027 bool IsSigned) { 7028 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7029 I.getType(), true); 7030 if (IsSigned) 7031 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7032 else 7033 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7034 setValue(&I, Value); 7035 } 7036 7037 /// See if we can lower a memcmp call into an optimized form. If so, return 7038 /// true and lower it. Otherwise return false, and it will be lowered like a 7039 /// normal call. 7040 /// The caller already checked that \p I calls the appropriate LibFunc with a 7041 /// correct prototype. 7042 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7043 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7044 const Value *Size = I.getArgOperand(2); 7045 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7046 if (CSize && CSize->getZExtValue() == 0) { 7047 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7048 I.getType(), true); 7049 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7050 return true; 7051 } 7052 7053 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7054 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7055 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7056 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7057 if (Res.first.getNode()) { 7058 processIntegerCallValue(I, Res.first, true); 7059 PendingLoads.push_back(Res.second); 7060 return true; 7061 } 7062 7063 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7064 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7065 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7066 return false; 7067 7068 // If the target has a fast compare for the given size, it will return a 7069 // preferred load type for that size. Require that the load VT is legal and 7070 // that the target supports unaligned loads of that type. Otherwise, return 7071 // INVALID. 7072 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7073 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7074 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7075 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7076 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7077 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7078 // TODO: Check alignment of src and dest ptrs. 7079 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7080 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7081 if (!TLI.isTypeLegal(LVT) || 7082 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7083 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7084 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7085 } 7086 7087 return LVT; 7088 }; 7089 7090 // This turns into unaligned loads. We only do this if the target natively 7091 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7092 // we'll only produce a small number of byte loads. 7093 MVT LoadVT; 7094 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7095 switch (NumBitsToCompare) { 7096 default: 7097 return false; 7098 case 16: 7099 LoadVT = MVT::i16; 7100 break; 7101 case 32: 7102 LoadVT = MVT::i32; 7103 break; 7104 case 64: 7105 case 128: 7106 case 256: 7107 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7108 break; 7109 } 7110 7111 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7112 return false; 7113 7114 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7115 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7116 7117 // Bitcast to a wide integer type if the loads are vectors. 7118 if (LoadVT.isVector()) { 7119 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7120 LoadL = DAG.getBitcast(CmpVT, LoadL); 7121 LoadR = DAG.getBitcast(CmpVT, LoadR); 7122 } 7123 7124 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7125 processIntegerCallValue(I, Cmp, false); 7126 return true; 7127 } 7128 7129 /// See if we can lower a memchr call into an optimized form. If so, return 7130 /// true and lower it. Otherwise return false, and it will be lowered like a 7131 /// normal call. 7132 /// The caller already checked that \p I calls the appropriate LibFunc with a 7133 /// correct prototype. 7134 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7135 const Value *Src = I.getArgOperand(0); 7136 const Value *Char = I.getArgOperand(1); 7137 const Value *Length = I.getArgOperand(2); 7138 7139 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7140 std::pair<SDValue, SDValue> Res = 7141 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7142 getValue(Src), getValue(Char), getValue(Length), 7143 MachinePointerInfo(Src)); 7144 if (Res.first.getNode()) { 7145 setValue(&I, Res.first); 7146 PendingLoads.push_back(Res.second); 7147 return true; 7148 } 7149 7150 return false; 7151 } 7152 7153 /// See if we can lower a mempcpy call into an optimized form. If so, return 7154 /// true and lower it. Otherwise return false, and it will be lowered like a 7155 /// normal call. 7156 /// The caller already checked that \p I calls the appropriate LibFunc with a 7157 /// correct prototype. 7158 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7159 SDValue Dst = getValue(I.getArgOperand(0)); 7160 SDValue Src = getValue(I.getArgOperand(1)); 7161 SDValue Size = getValue(I.getArgOperand(2)); 7162 7163 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7164 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7165 unsigned Align = std::min(DstAlign, SrcAlign); 7166 if (Align == 0) // Alignment of one or both could not be inferred. 7167 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7168 7169 bool isVol = false; 7170 SDLoc sdl = getCurSDLoc(); 7171 7172 // In the mempcpy context we need to pass in a false value for isTailCall 7173 // because the return pointer needs to be adjusted by the size of 7174 // the copied memory. 7175 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7176 false, /*isTailCall=*/false, 7177 MachinePointerInfo(I.getArgOperand(0)), 7178 MachinePointerInfo(I.getArgOperand(1))); 7179 assert(MC.getNode() != nullptr && 7180 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7181 DAG.setRoot(MC); 7182 7183 // Check if Size needs to be truncated or extended. 7184 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7185 7186 // Adjust return pointer to point just past the last dst byte. 7187 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7188 Dst, Size); 7189 setValue(&I, DstPlusSize); 7190 return true; 7191 } 7192 7193 /// See if we can lower a strcpy call into an optimized form. If so, return 7194 /// true and lower it, otherwise return false and it will be lowered like a 7195 /// normal call. 7196 /// The caller already checked that \p I calls the appropriate LibFunc with a 7197 /// correct prototype. 7198 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7199 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7200 7201 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7202 std::pair<SDValue, SDValue> Res = 7203 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7204 getValue(Arg0), getValue(Arg1), 7205 MachinePointerInfo(Arg0), 7206 MachinePointerInfo(Arg1), isStpcpy); 7207 if (Res.first.getNode()) { 7208 setValue(&I, Res.first); 7209 DAG.setRoot(Res.second); 7210 return true; 7211 } 7212 7213 return false; 7214 } 7215 7216 /// See if we can lower a strcmp call into an optimized form. If so, return 7217 /// true and lower it, otherwise return false and it will be lowered like a 7218 /// normal call. 7219 /// The caller already checked that \p I calls the appropriate LibFunc with a 7220 /// correct prototype. 7221 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7222 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7223 7224 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7225 std::pair<SDValue, SDValue> Res = 7226 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7227 getValue(Arg0), getValue(Arg1), 7228 MachinePointerInfo(Arg0), 7229 MachinePointerInfo(Arg1)); 7230 if (Res.first.getNode()) { 7231 processIntegerCallValue(I, Res.first, true); 7232 PendingLoads.push_back(Res.second); 7233 return true; 7234 } 7235 7236 return false; 7237 } 7238 7239 /// See if we can lower a strlen call into an optimized form. If so, return 7240 /// true and lower it, otherwise return false and it will be lowered like a 7241 /// normal call. 7242 /// The caller already checked that \p I calls the appropriate LibFunc with a 7243 /// correct prototype. 7244 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7245 const Value *Arg0 = I.getArgOperand(0); 7246 7247 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7248 std::pair<SDValue, SDValue> Res = 7249 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7250 getValue(Arg0), MachinePointerInfo(Arg0)); 7251 if (Res.first.getNode()) { 7252 processIntegerCallValue(I, Res.first, false); 7253 PendingLoads.push_back(Res.second); 7254 return true; 7255 } 7256 7257 return false; 7258 } 7259 7260 /// See if we can lower a strnlen call into an optimized form. If so, return 7261 /// true and lower it, otherwise return false and it will be lowered like a 7262 /// normal call. 7263 /// The caller already checked that \p I calls the appropriate LibFunc with a 7264 /// correct prototype. 7265 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7266 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7267 7268 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7269 std::pair<SDValue, SDValue> Res = 7270 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7271 getValue(Arg0), getValue(Arg1), 7272 MachinePointerInfo(Arg0)); 7273 if (Res.first.getNode()) { 7274 processIntegerCallValue(I, Res.first, false); 7275 PendingLoads.push_back(Res.second); 7276 return true; 7277 } 7278 7279 return false; 7280 } 7281 7282 /// See if we can lower a unary floating-point operation into an SDNode with 7283 /// the specified Opcode. If so, return true and lower it, otherwise return 7284 /// false and it will be lowered like a normal call. 7285 /// The caller already checked that \p I calls the appropriate LibFunc with a 7286 /// correct prototype. 7287 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7288 unsigned Opcode) { 7289 // We already checked this call's prototype; verify it doesn't modify errno. 7290 if (!I.onlyReadsMemory()) 7291 return false; 7292 7293 SDValue Tmp = getValue(I.getArgOperand(0)); 7294 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7295 return true; 7296 } 7297 7298 /// See if we can lower a binary floating-point operation into an SDNode with 7299 /// the specified Opcode. If so, return true and lower it. Otherwise return 7300 /// false, and it will be lowered like a normal call. 7301 /// The caller already checked that \p I calls the appropriate LibFunc with a 7302 /// correct prototype. 7303 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7304 unsigned Opcode) { 7305 // We already checked this call's prototype; verify it doesn't modify errno. 7306 if (!I.onlyReadsMemory()) 7307 return false; 7308 7309 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7310 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7311 EVT VT = Tmp0.getValueType(); 7312 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7313 return true; 7314 } 7315 7316 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7317 // Handle inline assembly differently. 7318 if (isa<InlineAsm>(I.getCalledValue())) { 7319 visitInlineAsm(&I); 7320 return; 7321 } 7322 7323 const char *RenameFn = nullptr; 7324 if (Function *F = I.getCalledFunction()) { 7325 if (F->isDeclaration()) { 7326 // Is this an LLVM intrinsic or a target-specific intrinsic? 7327 unsigned IID = F->getIntrinsicID(); 7328 if (!IID) 7329 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7330 IID = II->getIntrinsicID(F); 7331 7332 if (IID) { 7333 RenameFn = visitIntrinsicCall(I, IID); 7334 if (!RenameFn) 7335 return; 7336 } 7337 } 7338 7339 // Check for well-known libc/libm calls. If the function is internal, it 7340 // can't be a library call. Don't do the check if marked as nobuiltin for 7341 // some reason or the call site requires strict floating point semantics. 7342 LibFunc Func; 7343 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7344 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7345 LibInfo->hasOptimizedCodeGen(Func)) { 7346 switch (Func) { 7347 default: break; 7348 case LibFunc_copysign: 7349 case LibFunc_copysignf: 7350 case LibFunc_copysignl: 7351 // We already checked this call's prototype; verify it doesn't modify 7352 // errno. 7353 if (I.onlyReadsMemory()) { 7354 SDValue LHS = getValue(I.getArgOperand(0)); 7355 SDValue RHS = getValue(I.getArgOperand(1)); 7356 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7357 LHS.getValueType(), LHS, RHS)); 7358 return; 7359 } 7360 break; 7361 case LibFunc_fabs: 7362 case LibFunc_fabsf: 7363 case LibFunc_fabsl: 7364 if (visitUnaryFloatCall(I, ISD::FABS)) 7365 return; 7366 break; 7367 case LibFunc_fmin: 7368 case LibFunc_fminf: 7369 case LibFunc_fminl: 7370 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7371 return; 7372 break; 7373 case LibFunc_fmax: 7374 case LibFunc_fmaxf: 7375 case LibFunc_fmaxl: 7376 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7377 return; 7378 break; 7379 case LibFunc_sin: 7380 case LibFunc_sinf: 7381 case LibFunc_sinl: 7382 if (visitUnaryFloatCall(I, ISD::FSIN)) 7383 return; 7384 break; 7385 case LibFunc_cos: 7386 case LibFunc_cosf: 7387 case LibFunc_cosl: 7388 if (visitUnaryFloatCall(I, ISD::FCOS)) 7389 return; 7390 break; 7391 case LibFunc_sqrt: 7392 case LibFunc_sqrtf: 7393 case LibFunc_sqrtl: 7394 case LibFunc_sqrt_finite: 7395 case LibFunc_sqrtf_finite: 7396 case LibFunc_sqrtl_finite: 7397 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7398 return; 7399 break; 7400 case LibFunc_floor: 7401 case LibFunc_floorf: 7402 case LibFunc_floorl: 7403 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7404 return; 7405 break; 7406 case LibFunc_nearbyint: 7407 case LibFunc_nearbyintf: 7408 case LibFunc_nearbyintl: 7409 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7410 return; 7411 break; 7412 case LibFunc_ceil: 7413 case LibFunc_ceilf: 7414 case LibFunc_ceill: 7415 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7416 return; 7417 break; 7418 case LibFunc_rint: 7419 case LibFunc_rintf: 7420 case LibFunc_rintl: 7421 if (visitUnaryFloatCall(I, ISD::FRINT)) 7422 return; 7423 break; 7424 case LibFunc_round: 7425 case LibFunc_roundf: 7426 case LibFunc_roundl: 7427 if (visitUnaryFloatCall(I, ISD::FROUND)) 7428 return; 7429 break; 7430 case LibFunc_trunc: 7431 case LibFunc_truncf: 7432 case LibFunc_truncl: 7433 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7434 return; 7435 break; 7436 case LibFunc_log2: 7437 case LibFunc_log2f: 7438 case LibFunc_log2l: 7439 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7440 return; 7441 break; 7442 case LibFunc_exp2: 7443 case LibFunc_exp2f: 7444 case LibFunc_exp2l: 7445 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7446 return; 7447 break; 7448 case LibFunc_memcmp: 7449 if (visitMemCmpCall(I)) 7450 return; 7451 break; 7452 case LibFunc_mempcpy: 7453 if (visitMemPCpyCall(I)) 7454 return; 7455 break; 7456 case LibFunc_memchr: 7457 if (visitMemChrCall(I)) 7458 return; 7459 break; 7460 case LibFunc_strcpy: 7461 if (visitStrCpyCall(I, false)) 7462 return; 7463 break; 7464 case LibFunc_stpcpy: 7465 if (visitStrCpyCall(I, true)) 7466 return; 7467 break; 7468 case LibFunc_strcmp: 7469 if (visitStrCmpCall(I)) 7470 return; 7471 break; 7472 case LibFunc_strlen: 7473 if (visitStrLenCall(I)) 7474 return; 7475 break; 7476 case LibFunc_strnlen: 7477 if (visitStrNLenCall(I)) 7478 return; 7479 break; 7480 } 7481 } 7482 } 7483 7484 SDValue Callee; 7485 if (!RenameFn) 7486 Callee = getValue(I.getCalledValue()); 7487 else 7488 Callee = DAG.getExternalSymbol( 7489 RenameFn, 7490 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7491 7492 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7493 // have to do anything here to lower funclet bundles. 7494 assert(!I.hasOperandBundlesOtherThan( 7495 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7496 "Cannot lower calls with arbitrary operand bundles!"); 7497 7498 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7499 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7500 else 7501 // Check if we can potentially perform a tail call. More detailed checking 7502 // is be done within LowerCallTo, after more information about the call is 7503 // known. 7504 LowerCallTo(&I, Callee, I.isTailCall()); 7505 } 7506 7507 namespace { 7508 7509 /// AsmOperandInfo - This contains information for each constraint that we are 7510 /// lowering. 7511 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7512 public: 7513 /// CallOperand - If this is the result output operand or a clobber 7514 /// this is null, otherwise it is the incoming operand to the CallInst. 7515 /// This gets modified as the asm is processed. 7516 SDValue CallOperand; 7517 7518 /// AssignedRegs - If this is a register or register class operand, this 7519 /// contains the set of register corresponding to the operand. 7520 RegsForValue AssignedRegs; 7521 7522 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7523 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7524 } 7525 7526 /// Whether or not this operand accesses memory 7527 bool hasMemory(const TargetLowering &TLI) const { 7528 // Indirect operand accesses access memory. 7529 if (isIndirect) 7530 return true; 7531 7532 for (const auto &Code : Codes) 7533 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7534 return true; 7535 7536 return false; 7537 } 7538 7539 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7540 /// corresponds to. If there is no Value* for this operand, it returns 7541 /// MVT::Other. 7542 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7543 const DataLayout &DL) const { 7544 if (!CallOperandVal) return MVT::Other; 7545 7546 if (isa<BasicBlock>(CallOperandVal)) 7547 return TLI.getPointerTy(DL); 7548 7549 llvm::Type *OpTy = CallOperandVal->getType(); 7550 7551 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7552 // If this is an indirect operand, the operand is a pointer to the 7553 // accessed type. 7554 if (isIndirect) { 7555 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7556 if (!PtrTy) 7557 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7558 OpTy = PtrTy->getElementType(); 7559 } 7560 7561 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7562 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7563 if (STy->getNumElements() == 1) 7564 OpTy = STy->getElementType(0); 7565 7566 // If OpTy is not a single value, it may be a struct/union that we 7567 // can tile with integers. 7568 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7569 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7570 switch (BitSize) { 7571 default: break; 7572 case 1: 7573 case 8: 7574 case 16: 7575 case 32: 7576 case 64: 7577 case 128: 7578 OpTy = IntegerType::get(Context, BitSize); 7579 break; 7580 } 7581 } 7582 7583 return TLI.getValueType(DL, OpTy, true); 7584 } 7585 }; 7586 7587 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7588 7589 } // end anonymous namespace 7590 7591 /// Make sure that the output operand \p OpInfo and its corresponding input 7592 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7593 /// out). 7594 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7595 SDISelAsmOperandInfo &MatchingOpInfo, 7596 SelectionDAG &DAG) { 7597 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7598 return; 7599 7600 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7601 const auto &TLI = DAG.getTargetLoweringInfo(); 7602 7603 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7604 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7605 OpInfo.ConstraintVT); 7606 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7607 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7608 MatchingOpInfo.ConstraintVT); 7609 if ((OpInfo.ConstraintVT.isInteger() != 7610 MatchingOpInfo.ConstraintVT.isInteger()) || 7611 (MatchRC.second != InputRC.second)) { 7612 // FIXME: error out in a more elegant fashion 7613 report_fatal_error("Unsupported asm: input constraint" 7614 " with a matching output constraint of" 7615 " incompatible type!"); 7616 } 7617 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7618 } 7619 7620 /// Get a direct memory input to behave well as an indirect operand. 7621 /// This may introduce stores, hence the need for a \p Chain. 7622 /// \return The (possibly updated) chain. 7623 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7624 SDISelAsmOperandInfo &OpInfo, 7625 SelectionDAG &DAG) { 7626 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7627 7628 // If we don't have an indirect input, put it in the constpool if we can, 7629 // otherwise spill it to a stack slot. 7630 // TODO: This isn't quite right. We need to handle these according to 7631 // the addressing mode that the constraint wants. Also, this may take 7632 // an additional register for the computation and we don't want that 7633 // either. 7634 7635 // If the operand is a float, integer, or vector constant, spill to a 7636 // constant pool entry to get its address. 7637 const Value *OpVal = OpInfo.CallOperandVal; 7638 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7639 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7640 OpInfo.CallOperand = DAG.getConstantPool( 7641 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7642 return Chain; 7643 } 7644 7645 // Otherwise, create a stack slot and emit a store to it before the asm. 7646 Type *Ty = OpVal->getType(); 7647 auto &DL = DAG.getDataLayout(); 7648 uint64_t TySize = DL.getTypeAllocSize(Ty); 7649 unsigned Align = DL.getPrefTypeAlignment(Ty); 7650 MachineFunction &MF = DAG.getMachineFunction(); 7651 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7652 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7653 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7654 MachinePointerInfo::getFixedStack(MF, SSFI)); 7655 OpInfo.CallOperand = StackSlot; 7656 7657 return Chain; 7658 } 7659 7660 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7661 /// specified operand. We prefer to assign virtual registers, to allow the 7662 /// register allocator to handle the assignment process. However, if the asm 7663 /// uses features that we can't model on machineinstrs, we have SDISel do the 7664 /// allocation. This produces generally horrible, but correct, code. 7665 /// 7666 /// OpInfo describes the operand 7667 /// RefOpInfo describes the matching operand if any, the operand otherwise 7668 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7669 SDISelAsmOperandInfo &OpInfo, 7670 SDISelAsmOperandInfo &RefOpInfo) { 7671 LLVMContext &Context = *DAG.getContext(); 7672 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7673 7674 MachineFunction &MF = DAG.getMachineFunction(); 7675 SmallVector<unsigned, 4> Regs; 7676 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7677 7678 // No work to do for memory operations. 7679 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7680 return; 7681 7682 // If this is a constraint for a single physreg, or a constraint for a 7683 // register class, find it. 7684 unsigned AssignedReg; 7685 const TargetRegisterClass *RC; 7686 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7687 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7688 // RC is unset only on failure. Return immediately. 7689 if (!RC) 7690 return; 7691 7692 // Get the actual register value type. This is important, because the user 7693 // may have asked for (e.g.) the AX register in i32 type. We need to 7694 // remember that AX is actually i16 to get the right extension. 7695 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7696 7697 if (OpInfo.ConstraintVT != MVT::Other) { 7698 // If this is an FP operand in an integer register (or visa versa), or more 7699 // generally if the operand value disagrees with the register class we plan 7700 // to stick it in, fix the operand type. 7701 // 7702 // If this is an input value, the bitcast to the new type is done now. 7703 // Bitcast for output value is done at the end of visitInlineAsm(). 7704 if ((OpInfo.Type == InlineAsm::isOutput || 7705 OpInfo.Type == InlineAsm::isInput) && 7706 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7707 // Try to convert to the first EVT that the reg class contains. If the 7708 // types are identical size, use a bitcast to convert (e.g. two differing 7709 // vector types). Note: output bitcast is done at the end of 7710 // visitInlineAsm(). 7711 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7712 // Exclude indirect inputs while they are unsupported because the code 7713 // to perform the load is missing and thus OpInfo.CallOperand still 7714 // refers to the input address rather than the pointed-to value. 7715 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7716 OpInfo.CallOperand = 7717 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7718 OpInfo.ConstraintVT = RegVT; 7719 // If the operand is an FP value and we want it in integer registers, 7720 // use the corresponding integer type. This turns an f64 value into 7721 // i64, which can be passed with two i32 values on a 32-bit machine. 7722 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7723 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7724 if (OpInfo.Type == InlineAsm::isInput) 7725 OpInfo.CallOperand = 7726 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7727 OpInfo.ConstraintVT = VT; 7728 } 7729 } 7730 } 7731 7732 // No need to allocate a matching input constraint since the constraint it's 7733 // matching to has already been allocated. 7734 if (OpInfo.isMatchingInputConstraint()) 7735 return; 7736 7737 EVT ValueVT = OpInfo.ConstraintVT; 7738 if (OpInfo.ConstraintVT == MVT::Other) 7739 ValueVT = RegVT; 7740 7741 // Initialize NumRegs. 7742 unsigned NumRegs = 1; 7743 if (OpInfo.ConstraintVT != MVT::Other) 7744 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7745 7746 // If this is a constraint for a specific physical register, like {r17}, 7747 // assign it now. 7748 7749 // If this associated to a specific register, initialize iterator to correct 7750 // place. If virtual, make sure we have enough registers 7751 7752 // Initialize iterator if necessary 7753 TargetRegisterClass::iterator I = RC->begin(); 7754 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7755 7756 // Do not check for single registers. 7757 if (AssignedReg) { 7758 for (; *I != AssignedReg; ++I) 7759 assert(I != RC->end() && "AssignedReg should be member of RC"); 7760 } 7761 7762 for (; NumRegs; --NumRegs, ++I) { 7763 assert(I != RC->end() && "Ran out of registers to allocate!"); 7764 auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC); 7765 Regs.push_back(R); 7766 } 7767 7768 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7769 } 7770 7771 static unsigned 7772 findMatchingInlineAsmOperand(unsigned OperandNo, 7773 const std::vector<SDValue> &AsmNodeOperands) { 7774 // Scan until we find the definition we already emitted of this operand. 7775 unsigned CurOp = InlineAsm::Op_FirstOperand; 7776 for (; OperandNo; --OperandNo) { 7777 // Advance to the next operand. 7778 unsigned OpFlag = 7779 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7780 assert((InlineAsm::isRegDefKind(OpFlag) || 7781 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7782 InlineAsm::isMemKind(OpFlag)) && 7783 "Skipped past definitions?"); 7784 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7785 } 7786 return CurOp; 7787 } 7788 7789 namespace { 7790 7791 class ExtraFlags { 7792 unsigned Flags = 0; 7793 7794 public: 7795 explicit ExtraFlags(ImmutableCallSite CS) { 7796 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7797 if (IA->hasSideEffects()) 7798 Flags |= InlineAsm::Extra_HasSideEffects; 7799 if (IA->isAlignStack()) 7800 Flags |= InlineAsm::Extra_IsAlignStack; 7801 if (CS.isConvergent()) 7802 Flags |= InlineAsm::Extra_IsConvergent; 7803 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7804 } 7805 7806 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7807 // Ideally, we would only check against memory constraints. However, the 7808 // meaning of an Other constraint can be target-specific and we can't easily 7809 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7810 // for Other constraints as well. 7811 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7812 OpInfo.ConstraintType == TargetLowering::C_Other) { 7813 if (OpInfo.Type == InlineAsm::isInput) 7814 Flags |= InlineAsm::Extra_MayLoad; 7815 else if (OpInfo.Type == InlineAsm::isOutput) 7816 Flags |= InlineAsm::Extra_MayStore; 7817 else if (OpInfo.Type == InlineAsm::isClobber) 7818 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7819 } 7820 } 7821 7822 unsigned get() const { return Flags; } 7823 }; 7824 7825 } // end anonymous namespace 7826 7827 /// visitInlineAsm - Handle a call to an InlineAsm object. 7828 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7829 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7830 7831 /// ConstraintOperands - Information about all of the constraints. 7832 SDISelAsmOperandInfoVector ConstraintOperands; 7833 7834 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7835 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7836 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7837 7838 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 7839 // AsmDialect, MayLoad, MayStore). 7840 bool HasSideEffect = IA->hasSideEffects(); 7841 ExtraFlags ExtraInfo(CS); 7842 7843 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7844 unsigned ResNo = 0; // ResNo - The result number of the next output. 7845 for (auto &T : TargetConstraints) { 7846 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 7847 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7848 7849 // Compute the value type for each operand. 7850 if (OpInfo.Type == InlineAsm::isInput || 7851 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7852 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7853 7854 // Process the call argument. BasicBlocks are labels, currently appearing 7855 // only in asm's. 7856 const Instruction *I = CS.getInstruction(); 7857 if (isa<CallBrInst>(I) && 7858 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 7859 cast<CallBrInst>(I)->getNumIndirectDests())) { 7860 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 7861 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 7862 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 7863 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7864 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7865 } else { 7866 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7867 } 7868 7869 OpInfo.ConstraintVT = 7870 OpInfo 7871 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7872 .getSimpleVT(); 7873 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7874 // The return value of the call is this value. As such, there is no 7875 // corresponding argument. 7876 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7877 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7878 OpInfo.ConstraintVT = TLI.getSimpleValueType( 7879 DAG.getDataLayout(), STy->getElementType(ResNo)); 7880 } else { 7881 assert(ResNo == 0 && "Asm only has one result!"); 7882 OpInfo.ConstraintVT = 7883 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7884 } 7885 ++ResNo; 7886 } else { 7887 OpInfo.ConstraintVT = MVT::Other; 7888 } 7889 7890 if (!HasSideEffect) 7891 HasSideEffect = OpInfo.hasMemory(TLI); 7892 7893 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7894 // FIXME: Could we compute this on OpInfo rather than T? 7895 7896 // Compute the constraint code and ConstraintType to use. 7897 TLI.ComputeConstraintToUse(T, SDValue()); 7898 7899 ExtraInfo.update(T); 7900 } 7901 7902 // We won't need to flush pending loads if this asm doesn't touch 7903 // memory and is nonvolatile. 7904 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 7905 7906 // Second pass over the constraints: compute which constraint option to use. 7907 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7908 // If this is an output operand with a matching input operand, look up the 7909 // matching input. If their types mismatch, e.g. one is an integer, the 7910 // other is floating point, or their sizes are different, flag it as an 7911 // error. 7912 if (OpInfo.hasMatchingInput()) { 7913 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7914 patchMatchingInput(OpInfo, Input, DAG); 7915 } 7916 7917 // Compute the constraint code and ConstraintType to use. 7918 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7919 7920 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7921 OpInfo.Type == InlineAsm::isClobber) 7922 continue; 7923 7924 // If this is a memory input, and if the operand is not indirect, do what we 7925 // need to provide an address for the memory input. 7926 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7927 !OpInfo.isIndirect) { 7928 assert((OpInfo.isMultipleAlternative || 7929 (OpInfo.Type == InlineAsm::isInput)) && 7930 "Can only indirectify direct input operands!"); 7931 7932 // Memory operands really want the address of the value. 7933 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7934 7935 // There is no longer a Value* corresponding to this operand. 7936 OpInfo.CallOperandVal = nullptr; 7937 7938 // It is now an indirect operand. 7939 OpInfo.isIndirect = true; 7940 } 7941 7942 } 7943 7944 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7945 std::vector<SDValue> AsmNodeOperands; 7946 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7947 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7948 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7949 7950 // If we have a !srcloc metadata node associated with it, we want to attach 7951 // this to the ultimately generated inline asm machineinstr. To do this, we 7952 // pass in the third operand as this (potentially null) inline asm MDNode. 7953 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7954 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7955 7956 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7957 // bits as operand 3. 7958 AsmNodeOperands.push_back(DAG.getTargetConstant( 7959 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7960 7961 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 7962 // this, assign virtual and physical registers for inputs and otput. 7963 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7964 // Assign Registers. 7965 SDISelAsmOperandInfo &RefOpInfo = 7966 OpInfo.isMatchingInputConstraint() 7967 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7968 : OpInfo; 7969 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 7970 7971 switch (OpInfo.Type) { 7972 case InlineAsm::isOutput: 7973 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7974 (OpInfo.ConstraintType == TargetLowering::C_Other && 7975 OpInfo.isIndirect)) { 7976 unsigned ConstraintID = 7977 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7978 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7979 "Failed to convert memory constraint code to constraint id."); 7980 7981 // Add information to the INLINEASM node to know about this output. 7982 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7983 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7984 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7985 MVT::i32)); 7986 AsmNodeOperands.push_back(OpInfo.CallOperand); 7987 break; 7988 } else if ((OpInfo.ConstraintType == TargetLowering::C_Other && 7989 !OpInfo.isIndirect) || 7990 OpInfo.ConstraintType == TargetLowering::C_Register || 7991 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 7992 // Otherwise, this outputs to a register (directly for C_Register / 7993 // C_RegisterClass, and a target-defined fashion for C_Other). Find a 7994 // register that we can use. 7995 if (OpInfo.AssignedRegs.Regs.empty()) { 7996 emitInlineAsmError( 7997 CS, "couldn't allocate output register for constraint '" + 7998 Twine(OpInfo.ConstraintCode) + "'"); 7999 return; 8000 } 8001 8002 // Add information to the INLINEASM node to know that this register is 8003 // set. 8004 OpInfo.AssignedRegs.AddInlineAsmOperands( 8005 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8006 : InlineAsm::Kind_RegDef, 8007 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8008 } 8009 break; 8010 8011 case InlineAsm::isInput: { 8012 SDValue InOperandVal = OpInfo.CallOperand; 8013 8014 if (OpInfo.isMatchingInputConstraint()) { 8015 // If this is required to match an output register we have already set, 8016 // just use its register. 8017 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8018 AsmNodeOperands); 8019 unsigned OpFlag = 8020 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8021 if (InlineAsm::isRegDefKind(OpFlag) || 8022 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8023 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8024 if (OpInfo.isIndirect) { 8025 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8026 emitInlineAsmError(CS, "inline asm not supported yet:" 8027 " don't know how to handle tied " 8028 "indirect register inputs"); 8029 return; 8030 } 8031 8032 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8033 SmallVector<unsigned, 4> Regs; 8034 8035 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8036 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8037 MachineRegisterInfo &RegInfo = 8038 DAG.getMachineFunction().getRegInfo(); 8039 for (unsigned i = 0; i != NumRegs; ++i) 8040 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8041 } else { 8042 emitInlineAsmError(CS, "inline asm error: This value type register " 8043 "class is not natively supported!"); 8044 return; 8045 } 8046 8047 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8048 8049 SDLoc dl = getCurSDLoc(); 8050 // Use the produced MatchedRegs object to 8051 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8052 CS.getInstruction()); 8053 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8054 true, OpInfo.getMatchedOperand(), dl, 8055 DAG, AsmNodeOperands); 8056 break; 8057 } 8058 8059 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8060 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8061 "Unexpected number of operands"); 8062 // Add information to the INLINEASM node to know about this input. 8063 // See InlineAsm.h isUseOperandTiedToDef. 8064 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8065 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8066 OpInfo.getMatchedOperand()); 8067 AsmNodeOperands.push_back(DAG.getTargetConstant( 8068 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8069 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8070 break; 8071 } 8072 8073 // Treat indirect 'X' constraint as memory. 8074 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8075 OpInfo.isIndirect) 8076 OpInfo.ConstraintType = TargetLowering::C_Memory; 8077 8078 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 8079 std::vector<SDValue> Ops; 8080 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8081 Ops, DAG); 8082 if (Ops.empty()) { 8083 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8084 Twine(OpInfo.ConstraintCode) + "'"); 8085 return; 8086 } 8087 8088 // Add information to the INLINEASM node to know about this input. 8089 unsigned ResOpType = 8090 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8091 AsmNodeOperands.push_back(DAG.getTargetConstant( 8092 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8093 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8094 break; 8095 } 8096 8097 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8098 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8099 assert(InOperandVal.getValueType() == 8100 TLI.getPointerTy(DAG.getDataLayout()) && 8101 "Memory operands expect pointer values"); 8102 8103 unsigned ConstraintID = 8104 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8105 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8106 "Failed to convert memory constraint code to constraint id."); 8107 8108 // Add information to the INLINEASM node to know about this input. 8109 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8110 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8111 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8112 getCurSDLoc(), 8113 MVT::i32)); 8114 AsmNodeOperands.push_back(InOperandVal); 8115 break; 8116 } 8117 8118 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8119 OpInfo.ConstraintType == TargetLowering::C_Register) && 8120 "Unknown constraint type!"); 8121 8122 // TODO: Support this. 8123 if (OpInfo.isIndirect) { 8124 emitInlineAsmError( 8125 CS, "Don't know how to handle indirect register inputs yet " 8126 "for constraint '" + 8127 Twine(OpInfo.ConstraintCode) + "'"); 8128 return; 8129 } 8130 8131 // Copy the input into the appropriate registers. 8132 if (OpInfo.AssignedRegs.Regs.empty()) { 8133 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8134 Twine(OpInfo.ConstraintCode) + "'"); 8135 return; 8136 } 8137 8138 SDLoc dl = getCurSDLoc(); 8139 8140 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8141 Chain, &Flag, CS.getInstruction()); 8142 8143 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8144 dl, DAG, AsmNodeOperands); 8145 break; 8146 } 8147 case InlineAsm::isClobber: 8148 // Add the clobbered value to the operand list, so that the register 8149 // allocator is aware that the physreg got clobbered. 8150 if (!OpInfo.AssignedRegs.Regs.empty()) 8151 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8152 false, 0, getCurSDLoc(), DAG, 8153 AsmNodeOperands); 8154 break; 8155 } 8156 } 8157 8158 // Finish up input operands. Set the input chain and add the flag last. 8159 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8160 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8161 8162 unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR : ISD::INLINEASM; 8163 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8164 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8165 Flag = Chain.getValue(1); 8166 8167 // Do additional work to generate outputs. 8168 8169 SmallVector<EVT, 1> ResultVTs; 8170 SmallVector<SDValue, 1> ResultValues; 8171 SmallVector<SDValue, 8> OutChains; 8172 8173 llvm::Type *CSResultType = CS.getType(); 8174 ArrayRef<Type *> ResultTypes; 8175 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8176 ResultTypes = StructResult->elements(); 8177 else if (!CSResultType->isVoidTy()) 8178 ResultTypes = makeArrayRef(CSResultType); 8179 8180 auto CurResultType = ResultTypes.begin(); 8181 auto handleRegAssign = [&](SDValue V) { 8182 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8183 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8184 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8185 ++CurResultType; 8186 // If the type of the inline asm call site return value is different but has 8187 // same size as the type of the asm output bitcast it. One example of this 8188 // is for vectors with different width / number of elements. This can 8189 // happen for register classes that can contain multiple different value 8190 // types. The preg or vreg allocated may not have the same VT as was 8191 // expected. 8192 // 8193 // This can also happen for a return value that disagrees with the register 8194 // class it is put in, eg. a double in a general-purpose register on a 8195 // 32-bit machine. 8196 if (ResultVT != V.getValueType() && 8197 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8198 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8199 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8200 V.getValueType().isInteger()) { 8201 // If a result value was tied to an input value, the computed result 8202 // may have a wider width than the expected result. Extract the 8203 // relevant portion. 8204 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8205 } 8206 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8207 ResultVTs.push_back(ResultVT); 8208 ResultValues.push_back(V); 8209 }; 8210 8211 // Deal with output operands. 8212 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8213 if (OpInfo.Type == InlineAsm::isOutput) { 8214 SDValue Val; 8215 // Skip trivial output operands. 8216 if (OpInfo.AssignedRegs.Regs.empty()) 8217 continue; 8218 8219 switch (OpInfo.ConstraintType) { 8220 case TargetLowering::C_Register: 8221 case TargetLowering::C_RegisterClass: 8222 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8223 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8224 break; 8225 case TargetLowering::C_Other: 8226 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8227 OpInfo, DAG); 8228 break; 8229 case TargetLowering::C_Memory: 8230 break; // Already handled. 8231 case TargetLowering::C_Unknown: 8232 assert(false && "Unexpected unknown constraint"); 8233 } 8234 8235 // Indirect output manifest as stores. Record output chains. 8236 if (OpInfo.isIndirect) { 8237 const Value *Ptr = OpInfo.CallOperandVal; 8238 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8239 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8240 MachinePointerInfo(Ptr)); 8241 OutChains.push_back(Store); 8242 } else { 8243 // generate CopyFromRegs to associated registers. 8244 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8245 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8246 for (const SDValue &V : Val->op_values()) 8247 handleRegAssign(V); 8248 } else 8249 handleRegAssign(Val); 8250 } 8251 } 8252 } 8253 8254 // Set results. 8255 if (!ResultValues.empty()) { 8256 assert(CurResultType == ResultTypes.end() && 8257 "Mismatch in number of ResultTypes"); 8258 assert(ResultValues.size() == ResultTypes.size() && 8259 "Mismatch in number of output operands in asm result"); 8260 8261 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8262 DAG.getVTList(ResultVTs), ResultValues); 8263 setValue(CS.getInstruction(), V); 8264 } 8265 8266 // Collect store chains. 8267 if (!OutChains.empty()) 8268 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8269 8270 // Only Update Root if inline assembly has a memory effect. 8271 if (ResultValues.empty() || HasSideEffect || !OutChains.empty()) 8272 DAG.setRoot(Chain); 8273 } 8274 8275 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8276 const Twine &Message) { 8277 LLVMContext &Ctx = *DAG.getContext(); 8278 Ctx.emitError(CS.getInstruction(), Message); 8279 8280 // Make sure we leave the DAG in a valid state 8281 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8282 SmallVector<EVT, 1> ValueVTs; 8283 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8284 8285 if (ValueVTs.empty()) 8286 return; 8287 8288 SmallVector<SDValue, 1> Ops; 8289 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8290 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8291 8292 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8293 } 8294 8295 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8296 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8297 MVT::Other, getRoot(), 8298 getValue(I.getArgOperand(0)), 8299 DAG.getSrcValue(I.getArgOperand(0)))); 8300 } 8301 8302 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8303 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8304 const DataLayout &DL = DAG.getDataLayout(); 8305 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 8306 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 8307 DAG.getSrcValue(I.getOperand(0)), 8308 DL.getABITypeAlignment(I.getType())); 8309 setValue(&I, V); 8310 DAG.setRoot(V.getValue(1)); 8311 } 8312 8313 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8314 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8315 MVT::Other, getRoot(), 8316 getValue(I.getArgOperand(0)), 8317 DAG.getSrcValue(I.getArgOperand(0)))); 8318 } 8319 8320 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8321 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8322 MVT::Other, getRoot(), 8323 getValue(I.getArgOperand(0)), 8324 getValue(I.getArgOperand(1)), 8325 DAG.getSrcValue(I.getArgOperand(0)), 8326 DAG.getSrcValue(I.getArgOperand(1)))); 8327 } 8328 8329 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8330 const Instruction &I, 8331 SDValue Op) { 8332 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8333 if (!Range) 8334 return Op; 8335 8336 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8337 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 8338 return Op; 8339 8340 APInt Lo = CR.getUnsignedMin(); 8341 if (!Lo.isMinValue()) 8342 return Op; 8343 8344 APInt Hi = CR.getUnsignedMax(); 8345 unsigned Bits = std::max(Hi.getActiveBits(), 8346 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8347 8348 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8349 8350 SDLoc SL = getCurSDLoc(); 8351 8352 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8353 DAG.getValueType(SmallVT)); 8354 unsigned NumVals = Op.getNode()->getNumValues(); 8355 if (NumVals == 1) 8356 return ZExt; 8357 8358 SmallVector<SDValue, 4> Ops; 8359 8360 Ops.push_back(ZExt); 8361 for (unsigned I = 1; I != NumVals; ++I) 8362 Ops.push_back(Op.getValue(I)); 8363 8364 return DAG.getMergeValues(Ops, SL); 8365 } 8366 8367 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8368 /// the call being lowered. 8369 /// 8370 /// This is a helper for lowering intrinsics that follow a target calling 8371 /// convention or require stack pointer adjustment. Only a subset of the 8372 /// intrinsic's operands need to participate in the calling convention. 8373 void SelectionDAGBuilder::populateCallLoweringInfo( 8374 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8375 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8376 bool IsPatchPoint) { 8377 TargetLowering::ArgListTy Args; 8378 Args.reserve(NumArgs); 8379 8380 // Populate the argument list. 8381 // Attributes for args start at offset 1, after the return attribute. 8382 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8383 ArgI != ArgE; ++ArgI) { 8384 const Value *V = Call->getOperand(ArgI); 8385 8386 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8387 8388 TargetLowering::ArgListEntry Entry; 8389 Entry.Node = getValue(V); 8390 Entry.Ty = V->getType(); 8391 Entry.setAttributes(Call, ArgI); 8392 Args.push_back(Entry); 8393 } 8394 8395 CLI.setDebugLoc(getCurSDLoc()) 8396 .setChain(getRoot()) 8397 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8398 .setDiscardResult(Call->use_empty()) 8399 .setIsPatchPoint(IsPatchPoint); 8400 } 8401 8402 /// Add a stack map intrinsic call's live variable operands to a stackmap 8403 /// or patchpoint target node's operand list. 8404 /// 8405 /// Constants are converted to TargetConstants purely as an optimization to 8406 /// avoid constant materialization and register allocation. 8407 /// 8408 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8409 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 8410 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8411 /// address materialization and register allocation, but may also be required 8412 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8413 /// alloca in the entry block, then the runtime may assume that the alloca's 8414 /// StackMap location can be read immediately after compilation and that the 8415 /// location is valid at any point during execution (this is similar to the 8416 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8417 /// only available in a register, then the runtime would need to trap when 8418 /// execution reaches the StackMap in order to read the alloca's location. 8419 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8420 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8421 SelectionDAGBuilder &Builder) { 8422 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8423 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8424 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8425 Ops.push_back( 8426 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8427 Ops.push_back( 8428 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8429 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8430 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8431 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8432 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8433 } else 8434 Ops.push_back(OpVal); 8435 } 8436 } 8437 8438 /// Lower llvm.experimental.stackmap directly to its target opcode. 8439 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8440 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8441 // [live variables...]) 8442 8443 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8444 8445 SDValue Chain, InFlag, Callee, NullPtr; 8446 SmallVector<SDValue, 32> Ops; 8447 8448 SDLoc DL = getCurSDLoc(); 8449 Callee = getValue(CI.getCalledValue()); 8450 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8451 8452 // The stackmap intrinsic only records the live variables (the arguemnts 8453 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8454 // intrinsic, this won't be lowered to a function call. This means we don't 8455 // have to worry about calling conventions and target specific lowering code. 8456 // Instead we perform the call lowering right here. 8457 // 8458 // chain, flag = CALLSEQ_START(chain, 0, 0) 8459 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8460 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8461 // 8462 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8463 InFlag = Chain.getValue(1); 8464 8465 // Add the <id> and <numBytes> constants. 8466 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8467 Ops.push_back(DAG.getTargetConstant( 8468 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8469 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8470 Ops.push_back(DAG.getTargetConstant( 8471 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8472 MVT::i32)); 8473 8474 // Push live variables for the stack map. 8475 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8476 8477 // We are not pushing any register mask info here on the operands list, 8478 // because the stackmap doesn't clobber anything. 8479 8480 // Push the chain and the glue flag. 8481 Ops.push_back(Chain); 8482 Ops.push_back(InFlag); 8483 8484 // Create the STACKMAP node. 8485 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8486 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8487 Chain = SDValue(SM, 0); 8488 InFlag = Chain.getValue(1); 8489 8490 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8491 8492 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8493 8494 // Set the root to the target-lowered call chain. 8495 DAG.setRoot(Chain); 8496 8497 // Inform the Frame Information that we have a stackmap in this function. 8498 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8499 } 8500 8501 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8502 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8503 const BasicBlock *EHPadBB) { 8504 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8505 // i32 <numBytes>, 8506 // i8* <target>, 8507 // i32 <numArgs>, 8508 // [Args...], 8509 // [live variables...]) 8510 8511 CallingConv::ID CC = CS.getCallingConv(); 8512 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8513 bool HasDef = !CS->getType()->isVoidTy(); 8514 SDLoc dl = getCurSDLoc(); 8515 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8516 8517 // Handle immediate and symbolic callees. 8518 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8519 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8520 /*isTarget=*/true); 8521 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8522 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8523 SDLoc(SymbolicCallee), 8524 SymbolicCallee->getValueType(0)); 8525 8526 // Get the real number of arguments participating in the call <numArgs> 8527 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8528 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8529 8530 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8531 // Intrinsics include all meta-operands up to but not including CC. 8532 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8533 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8534 "Not enough arguments provided to the patchpoint intrinsic"); 8535 8536 // For AnyRegCC the arguments are lowered later on manually. 8537 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8538 Type *ReturnTy = 8539 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8540 8541 TargetLowering::CallLoweringInfo CLI(DAG); 8542 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8543 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8544 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8545 8546 SDNode *CallEnd = Result.second.getNode(); 8547 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8548 CallEnd = CallEnd->getOperand(0).getNode(); 8549 8550 /// Get a call instruction from the call sequence chain. 8551 /// Tail calls are not allowed. 8552 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8553 "Expected a callseq node."); 8554 SDNode *Call = CallEnd->getOperand(0).getNode(); 8555 bool HasGlue = Call->getGluedNode(); 8556 8557 // Replace the target specific call node with the patchable intrinsic. 8558 SmallVector<SDValue, 8> Ops; 8559 8560 // Add the <id> and <numBytes> constants. 8561 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8562 Ops.push_back(DAG.getTargetConstant( 8563 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8564 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8565 Ops.push_back(DAG.getTargetConstant( 8566 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8567 MVT::i32)); 8568 8569 // Add the callee. 8570 Ops.push_back(Callee); 8571 8572 // Adjust <numArgs> to account for any arguments that have been passed on the 8573 // stack instead. 8574 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8575 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8576 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8577 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8578 8579 // Add the calling convention 8580 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8581 8582 // Add the arguments we omitted previously. The register allocator should 8583 // place these in any free register. 8584 if (IsAnyRegCC) 8585 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8586 Ops.push_back(getValue(CS.getArgument(i))); 8587 8588 // Push the arguments from the call instruction up to the register mask. 8589 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8590 Ops.append(Call->op_begin() + 2, e); 8591 8592 // Push live variables for the stack map. 8593 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8594 8595 // Push the register mask info. 8596 if (HasGlue) 8597 Ops.push_back(*(Call->op_end()-2)); 8598 else 8599 Ops.push_back(*(Call->op_end()-1)); 8600 8601 // Push the chain (this is originally the first operand of the call, but 8602 // becomes now the last or second to last operand). 8603 Ops.push_back(*(Call->op_begin())); 8604 8605 // Push the glue flag (last operand). 8606 if (HasGlue) 8607 Ops.push_back(*(Call->op_end()-1)); 8608 8609 SDVTList NodeTys; 8610 if (IsAnyRegCC && HasDef) { 8611 // Create the return types based on the intrinsic definition 8612 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8613 SmallVector<EVT, 3> ValueVTs; 8614 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8615 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8616 8617 // There is always a chain and a glue type at the end 8618 ValueVTs.push_back(MVT::Other); 8619 ValueVTs.push_back(MVT::Glue); 8620 NodeTys = DAG.getVTList(ValueVTs); 8621 } else 8622 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8623 8624 // Replace the target specific call node with a PATCHPOINT node. 8625 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8626 dl, NodeTys, Ops); 8627 8628 // Update the NodeMap. 8629 if (HasDef) { 8630 if (IsAnyRegCC) 8631 setValue(CS.getInstruction(), SDValue(MN, 0)); 8632 else 8633 setValue(CS.getInstruction(), Result.first); 8634 } 8635 8636 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8637 // call sequence. Furthermore the location of the chain and glue can change 8638 // when the AnyReg calling convention is used and the intrinsic returns a 8639 // value. 8640 if (IsAnyRegCC && HasDef) { 8641 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8642 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8643 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8644 } else 8645 DAG.ReplaceAllUsesWith(Call, MN); 8646 DAG.DeleteNode(Call); 8647 8648 // Inform the Frame Information that we have a patchpoint in this function. 8649 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8650 } 8651 8652 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8653 unsigned Intrinsic) { 8654 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8655 SDValue Op1 = getValue(I.getArgOperand(0)); 8656 SDValue Op2; 8657 if (I.getNumArgOperands() > 1) 8658 Op2 = getValue(I.getArgOperand(1)); 8659 SDLoc dl = getCurSDLoc(); 8660 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8661 SDValue Res; 8662 FastMathFlags FMF; 8663 if (isa<FPMathOperator>(I)) 8664 FMF = I.getFastMathFlags(); 8665 8666 switch (Intrinsic) { 8667 case Intrinsic::experimental_vector_reduce_fadd: 8668 if (FMF.isFast()) 8669 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8670 else 8671 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8672 break; 8673 case Intrinsic::experimental_vector_reduce_fmul: 8674 if (FMF.isFast()) 8675 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8676 else 8677 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8678 break; 8679 case Intrinsic::experimental_vector_reduce_add: 8680 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8681 break; 8682 case Intrinsic::experimental_vector_reduce_mul: 8683 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8684 break; 8685 case Intrinsic::experimental_vector_reduce_and: 8686 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8687 break; 8688 case Intrinsic::experimental_vector_reduce_or: 8689 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8690 break; 8691 case Intrinsic::experimental_vector_reduce_xor: 8692 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8693 break; 8694 case Intrinsic::experimental_vector_reduce_smax: 8695 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8696 break; 8697 case Intrinsic::experimental_vector_reduce_smin: 8698 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8699 break; 8700 case Intrinsic::experimental_vector_reduce_umax: 8701 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8702 break; 8703 case Intrinsic::experimental_vector_reduce_umin: 8704 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8705 break; 8706 case Intrinsic::experimental_vector_reduce_fmax: 8707 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8708 break; 8709 case Intrinsic::experimental_vector_reduce_fmin: 8710 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8711 break; 8712 default: 8713 llvm_unreachable("Unhandled vector reduce intrinsic"); 8714 } 8715 setValue(&I, Res); 8716 } 8717 8718 /// Returns an AttributeList representing the attributes applied to the return 8719 /// value of the given call. 8720 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8721 SmallVector<Attribute::AttrKind, 2> Attrs; 8722 if (CLI.RetSExt) 8723 Attrs.push_back(Attribute::SExt); 8724 if (CLI.RetZExt) 8725 Attrs.push_back(Attribute::ZExt); 8726 if (CLI.IsInReg) 8727 Attrs.push_back(Attribute::InReg); 8728 8729 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8730 Attrs); 8731 } 8732 8733 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8734 /// implementation, which just calls LowerCall. 8735 /// FIXME: When all targets are 8736 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8737 std::pair<SDValue, SDValue> 8738 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8739 // Handle the incoming return values from the call. 8740 CLI.Ins.clear(); 8741 Type *OrigRetTy = CLI.RetTy; 8742 SmallVector<EVT, 4> RetTys; 8743 SmallVector<uint64_t, 4> Offsets; 8744 auto &DL = CLI.DAG.getDataLayout(); 8745 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8746 8747 if (CLI.IsPostTypeLegalization) { 8748 // If we are lowering a libcall after legalization, split the return type. 8749 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8750 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8751 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8752 EVT RetVT = OldRetTys[i]; 8753 uint64_t Offset = OldOffsets[i]; 8754 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8755 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8756 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8757 RetTys.append(NumRegs, RegisterVT); 8758 for (unsigned j = 0; j != NumRegs; ++j) 8759 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8760 } 8761 } 8762 8763 SmallVector<ISD::OutputArg, 4> Outs; 8764 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8765 8766 bool CanLowerReturn = 8767 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8768 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8769 8770 SDValue DemoteStackSlot; 8771 int DemoteStackIdx = -100; 8772 if (!CanLowerReturn) { 8773 // FIXME: equivalent assert? 8774 // assert(!CS.hasInAllocaArgument() && 8775 // "sret demotion is incompatible with inalloca"); 8776 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8777 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8778 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8779 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8780 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8781 DL.getAllocaAddrSpace()); 8782 8783 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8784 ArgListEntry Entry; 8785 Entry.Node = DemoteStackSlot; 8786 Entry.Ty = StackSlotPtrType; 8787 Entry.IsSExt = false; 8788 Entry.IsZExt = false; 8789 Entry.IsInReg = false; 8790 Entry.IsSRet = true; 8791 Entry.IsNest = false; 8792 Entry.IsByVal = false; 8793 Entry.IsReturned = false; 8794 Entry.IsSwiftSelf = false; 8795 Entry.IsSwiftError = false; 8796 Entry.Alignment = Align; 8797 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8798 CLI.NumFixedArgs += 1; 8799 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8800 8801 // sret demotion isn't compatible with tail-calls, since the sret argument 8802 // points into the callers stack frame. 8803 CLI.IsTailCall = false; 8804 } else { 8805 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8806 EVT VT = RetTys[I]; 8807 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8808 CLI.CallConv, VT); 8809 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8810 CLI.CallConv, VT); 8811 for (unsigned i = 0; i != NumRegs; ++i) { 8812 ISD::InputArg MyFlags; 8813 MyFlags.VT = RegisterVT; 8814 MyFlags.ArgVT = VT; 8815 MyFlags.Used = CLI.IsReturnValueUsed; 8816 if (CLI.RetSExt) 8817 MyFlags.Flags.setSExt(); 8818 if (CLI.RetZExt) 8819 MyFlags.Flags.setZExt(); 8820 if (CLI.IsInReg) 8821 MyFlags.Flags.setInReg(); 8822 CLI.Ins.push_back(MyFlags); 8823 } 8824 } 8825 } 8826 8827 // We push in swifterror return as the last element of CLI.Ins. 8828 ArgListTy &Args = CLI.getArgs(); 8829 if (supportSwiftError()) { 8830 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8831 if (Args[i].IsSwiftError) { 8832 ISD::InputArg MyFlags; 8833 MyFlags.VT = getPointerTy(DL); 8834 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8835 MyFlags.Flags.setSwiftError(); 8836 CLI.Ins.push_back(MyFlags); 8837 } 8838 } 8839 } 8840 8841 // Handle all of the outgoing arguments. 8842 CLI.Outs.clear(); 8843 CLI.OutVals.clear(); 8844 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8845 SmallVector<EVT, 4> ValueVTs; 8846 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8847 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8848 Type *FinalType = Args[i].Ty; 8849 if (Args[i].IsByVal) 8850 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8851 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8852 FinalType, CLI.CallConv, CLI.IsVarArg); 8853 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8854 ++Value) { 8855 EVT VT = ValueVTs[Value]; 8856 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8857 SDValue Op = SDValue(Args[i].Node.getNode(), 8858 Args[i].Node.getResNo() + Value); 8859 ISD::ArgFlagsTy Flags; 8860 8861 // Certain targets (such as MIPS), may have a different ABI alignment 8862 // for a type depending on the context. Give the target a chance to 8863 // specify the alignment it wants. 8864 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8865 8866 if (Args[i].IsZExt) 8867 Flags.setZExt(); 8868 if (Args[i].IsSExt) 8869 Flags.setSExt(); 8870 if (Args[i].IsInReg) { 8871 // If we are using vectorcall calling convention, a structure that is 8872 // passed InReg - is surely an HVA 8873 if (CLI.CallConv == CallingConv::X86_VectorCall && 8874 isa<StructType>(FinalType)) { 8875 // The first value of a structure is marked 8876 if (0 == Value) 8877 Flags.setHvaStart(); 8878 Flags.setHva(); 8879 } 8880 // Set InReg Flag 8881 Flags.setInReg(); 8882 } 8883 if (Args[i].IsSRet) 8884 Flags.setSRet(); 8885 if (Args[i].IsSwiftSelf) 8886 Flags.setSwiftSelf(); 8887 if (Args[i].IsSwiftError) 8888 Flags.setSwiftError(); 8889 if (Args[i].IsByVal) 8890 Flags.setByVal(); 8891 if (Args[i].IsInAlloca) { 8892 Flags.setInAlloca(); 8893 // Set the byval flag for CCAssignFn callbacks that don't know about 8894 // inalloca. This way we can know how many bytes we should've allocated 8895 // and how many bytes a callee cleanup function will pop. If we port 8896 // inalloca to more targets, we'll have to add custom inalloca handling 8897 // in the various CC lowering callbacks. 8898 Flags.setByVal(); 8899 } 8900 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8901 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8902 Type *ElementTy = Ty->getElementType(); 8903 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8904 // For ByVal, alignment should come from FE. BE will guess if this 8905 // info is not there but there are cases it cannot get right. 8906 unsigned FrameAlign; 8907 if (Args[i].Alignment) 8908 FrameAlign = Args[i].Alignment; 8909 else 8910 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8911 Flags.setByValAlign(FrameAlign); 8912 } 8913 if (Args[i].IsNest) 8914 Flags.setNest(); 8915 if (NeedsRegBlock) 8916 Flags.setInConsecutiveRegs(); 8917 Flags.setOrigAlign(OriginalAlignment); 8918 8919 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8920 CLI.CallConv, VT); 8921 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8922 CLI.CallConv, VT); 8923 SmallVector<SDValue, 4> Parts(NumParts); 8924 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8925 8926 if (Args[i].IsSExt) 8927 ExtendKind = ISD::SIGN_EXTEND; 8928 else if (Args[i].IsZExt) 8929 ExtendKind = ISD::ZERO_EXTEND; 8930 8931 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8932 // for now. 8933 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8934 CanLowerReturn) { 8935 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8936 "unexpected use of 'returned'"); 8937 // Before passing 'returned' to the target lowering code, ensure that 8938 // either the register MVT and the actual EVT are the same size or that 8939 // the return value and argument are extended in the same way; in these 8940 // cases it's safe to pass the argument register value unchanged as the 8941 // return register value (although it's at the target's option whether 8942 // to do so) 8943 // TODO: allow code generation to take advantage of partially preserved 8944 // registers rather than clobbering the entire register when the 8945 // parameter extension method is not compatible with the return 8946 // extension method 8947 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8948 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8949 CLI.RetZExt == Args[i].IsZExt)) 8950 Flags.setReturned(); 8951 } 8952 8953 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8954 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 8955 8956 for (unsigned j = 0; j != NumParts; ++j) { 8957 // if it isn't first piece, alignment must be 1 8958 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8959 i < CLI.NumFixedArgs, 8960 i, j*Parts[j].getValueType().getStoreSize()); 8961 if (NumParts > 1 && j == 0) 8962 MyFlags.Flags.setSplit(); 8963 else if (j != 0) { 8964 MyFlags.Flags.setOrigAlign(1); 8965 if (j == NumParts - 1) 8966 MyFlags.Flags.setSplitEnd(); 8967 } 8968 8969 CLI.Outs.push_back(MyFlags); 8970 CLI.OutVals.push_back(Parts[j]); 8971 } 8972 8973 if (NeedsRegBlock && Value == NumValues - 1) 8974 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8975 } 8976 } 8977 8978 SmallVector<SDValue, 4> InVals; 8979 CLI.Chain = LowerCall(CLI, InVals); 8980 8981 // Update CLI.InVals to use outside of this function. 8982 CLI.InVals = InVals; 8983 8984 // Verify that the target's LowerCall behaved as expected. 8985 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8986 "LowerCall didn't return a valid chain!"); 8987 assert((!CLI.IsTailCall || InVals.empty()) && 8988 "LowerCall emitted a return value for a tail call!"); 8989 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8990 "LowerCall didn't emit the correct number of values!"); 8991 8992 // For a tail call, the return value is merely live-out and there aren't 8993 // any nodes in the DAG representing it. Return a special value to 8994 // indicate that a tail call has been emitted and no more Instructions 8995 // should be processed in the current block. 8996 if (CLI.IsTailCall) { 8997 CLI.DAG.setRoot(CLI.Chain); 8998 return std::make_pair(SDValue(), SDValue()); 8999 } 9000 9001 #ifndef NDEBUG 9002 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9003 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9004 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9005 "LowerCall emitted a value with the wrong type!"); 9006 } 9007 #endif 9008 9009 SmallVector<SDValue, 4> ReturnValues; 9010 if (!CanLowerReturn) { 9011 // The instruction result is the result of loading from the 9012 // hidden sret parameter. 9013 SmallVector<EVT, 1> PVTs; 9014 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9015 9016 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9017 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9018 EVT PtrVT = PVTs[0]; 9019 9020 unsigned NumValues = RetTys.size(); 9021 ReturnValues.resize(NumValues); 9022 SmallVector<SDValue, 4> Chains(NumValues); 9023 9024 // An aggregate return value cannot wrap around the address space, so 9025 // offsets to its parts don't wrap either. 9026 SDNodeFlags Flags; 9027 Flags.setNoUnsignedWrap(true); 9028 9029 for (unsigned i = 0; i < NumValues; ++i) { 9030 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9031 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9032 PtrVT), Flags); 9033 SDValue L = CLI.DAG.getLoad( 9034 RetTys[i], CLI.DL, CLI.Chain, Add, 9035 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9036 DemoteStackIdx, Offsets[i]), 9037 /* Alignment = */ 1); 9038 ReturnValues[i] = L; 9039 Chains[i] = L.getValue(1); 9040 } 9041 9042 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9043 } else { 9044 // Collect the legal value parts into potentially illegal values 9045 // that correspond to the original function's return values. 9046 Optional<ISD::NodeType> AssertOp; 9047 if (CLI.RetSExt) 9048 AssertOp = ISD::AssertSext; 9049 else if (CLI.RetZExt) 9050 AssertOp = ISD::AssertZext; 9051 unsigned CurReg = 0; 9052 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9053 EVT VT = RetTys[I]; 9054 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9055 CLI.CallConv, VT); 9056 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9057 CLI.CallConv, VT); 9058 9059 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9060 NumRegs, RegisterVT, VT, nullptr, 9061 CLI.CallConv, AssertOp)); 9062 CurReg += NumRegs; 9063 } 9064 9065 // For a function returning void, there is no return value. We can't create 9066 // such a node, so we just return a null return value in that case. In 9067 // that case, nothing will actually look at the value. 9068 if (ReturnValues.empty()) 9069 return std::make_pair(SDValue(), CLI.Chain); 9070 } 9071 9072 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9073 CLI.DAG.getVTList(RetTys), ReturnValues); 9074 return std::make_pair(Res, CLI.Chain); 9075 } 9076 9077 void TargetLowering::LowerOperationWrapper(SDNode *N, 9078 SmallVectorImpl<SDValue> &Results, 9079 SelectionDAG &DAG) const { 9080 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9081 Results.push_back(Res); 9082 } 9083 9084 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9085 llvm_unreachable("LowerOperation not implemented for this target!"); 9086 } 9087 9088 void 9089 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9090 SDValue Op = getNonRegisterValue(V); 9091 assert((Op.getOpcode() != ISD::CopyFromReg || 9092 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9093 "Copy from a reg to the same reg!"); 9094 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 9095 9096 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9097 // If this is an InlineAsm we have to match the registers required, not the 9098 // notional registers required by the type. 9099 9100 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9101 None); // This is not an ABI copy. 9102 SDValue Chain = DAG.getEntryNode(); 9103 9104 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9105 FuncInfo.PreferredExtendType.end()) 9106 ? ISD::ANY_EXTEND 9107 : FuncInfo.PreferredExtendType[V]; 9108 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9109 PendingExports.push_back(Chain); 9110 } 9111 9112 #include "llvm/CodeGen/SelectionDAGISel.h" 9113 9114 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9115 /// entry block, return true. This includes arguments used by switches, since 9116 /// the switch may expand into multiple basic blocks. 9117 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9118 // With FastISel active, we may be splitting blocks, so force creation 9119 // of virtual registers for all non-dead arguments. 9120 if (FastISel) 9121 return A->use_empty(); 9122 9123 const BasicBlock &Entry = A->getParent()->front(); 9124 for (const User *U : A->users()) 9125 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9126 return false; // Use not in entry block. 9127 9128 return true; 9129 } 9130 9131 using ArgCopyElisionMapTy = 9132 DenseMap<const Argument *, 9133 std::pair<const AllocaInst *, const StoreInst *>>; 9134 9135 /// Scan the entry block of the function in FuncInfo for arguments that look 9136 /// like copies into a local alloca. Record any copied arguments in 9137 /// ArgCopyElisionCandidates. 9138 static void 9139 findArgumentCopyElisionCandidates(const DataLayout &DL, 9140 FunctionLoweringInfo *FuncInfo, 9141 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9142 // Record the state of every static alloca used in the entry block. Argument 9143 // allocas are all used in the entry block, so we need approximately as many 9144 // entries as we have arguments. 9145 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9146 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9147 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9148 StaticAllocas.reserve(NumArgs * 2); 9149 9150 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9151 if (!V) 9152 return nullptr; 9153 V = V->stripPointerCasts(); 9154 const auto *AI = dyn_cast<AllocaInst>(V); 9155 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9156 return nullptr; 9157 auto Iter = StaticAllocas.insert({AI, Unknown}); 9158 return &Iter.first->second; 9159 }; 9160 9161 // Look for stores of arguments to static allocas. Look through bitcasts and 9162 // GEPs to handle type coercions, as long as the alloca is fully initialized 9163 // by the store. Any non-store use of an alloca escapes it and any subsequent 9164 // unanalyzed store might write it. 9165 // FIXME: Handle structs initialized with multiple stores. 9166 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9167 // Look for stores, and handle non-store uses conservatively. 9168 const auto *SI = dyn_cast<StoreInst>(&I); 9169 if (!SI) { 9170 // We will look through cast uses, so ignore them completely. 9171 if (I.isCast()) 9172 continue; 9173 // Ignore debug info intrinsics, they don't escape or store to allocas. 9174 if (isa<DbgInfoIntrinsic>(I)) 9175 continue; 9176 // This is an unknown instruction. Assume it escapes or writes to all 9177 // static alloca operands. 9178 for (const Use &U : I.operands()) { 9179 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9180 *Info = StaticAllocaInfo::Clobbered; 9181 } 9182 continue; 9183 } 9184 9185 // If the stored value is a static alloca, mark it as escaped. 9186 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9187 *Info = StaticAllocaInfo::Clobbered; 9188 9189 // Check if the destination is a static alloca. 9190 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9191 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9192 if (!Info) 9193 continue; 9194 const AllocaInst *AI = cast<AllocaInst>(Dst); 9195 9196 // Skip allocas that have been initialized or clobbered. 9197 if (*Info != StaticAllocaInfo::Unknown) 9198 continue; 9199 9200 // Check if the stored value is an argument, and that this store fully 9201 // initializes the alloca. Don't elide copies from the same argument twice. 9202 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9203 const auto *Arg = dyn_cast<Argument>(Val); 9204 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9205 Arg->getType()->isEmptyTy() || 9206 DL.getTypeStoreSize(Arg->getType()) != 9207 DL.getTypeAllocSize(AI->getAllocatedType()) || 9208 ArgCopyElisionCandidates.count(Arg)) { 9209 *Info = StaticAllocaInfo::Clobbered; 9210 continue; 9211 } 9212 9213 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9214 << '\n'); 9215 9216 // Mark this alloca and store for argument copy elision. 9217 *Info = StaticAllocaInfo::Elidable; 9218 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9219 9220 // Stop scanning if we've seen all arguments. This will happen early in -O0 9221 // builds, which is useful, because -O0 builds have large entry blocks and 9222 // many allocas. 9223 if (ArgCopyElisionCandidates.size() == NumArgs) 9224 break; 9225 } 9226 } 9227 9228 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9229 /// ArgVal is a load from a suitable fixed stack object. 9230 static void tryToElideArgumentCopy( 9231 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9232 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9233 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9234 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9235 SDValue ArgVal, bool &ArgHasUses) { 9236 // Check if this is a load from a fixed stack object. 9237 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9238 if (!LNode) 9239 return; 9240 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9241 if (!FINode) 9242 return; 9243 9244 // Check that the fixed stack object is the right size and alignment. 9245 // Look at the alignment that the user wrote on the alloca instead of looking 9246 // at the stack object. 9247 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9248 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9249 const AllocaInst *AI = ArgCopyIter->second.first; 9250 int FixedIndex = FINode->getIndex(); 9251 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9252 int OldIndex = AllocaIndex; 9253 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9254 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9255 LLVM_DEBUG( 9256 dbgs() << " argument copy elision failed due to bad fixed stack " 9257 "object size\n"); 9258 return; 9259 } 9260 unsigned RequiredAlignment = AI->getAlignment(); 9261 if (!RequiredAlignment) { 9262 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9263 AI->getAllocatedType()); 9264 } 9265 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9266 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9267 "greater than stack argument alignment (" 9268 << RequiredAlignment << " vs " 9269 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9270 return; 9271 } 9272 9273 // Perform the elision. Delete the old stack object and replace its only use 9274 // in the variable info map. Mark the stack object as mutable. 9275 LLVM_DEBUG({ 9276 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9277 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9278 << '\n'; 9279 }); 9280 MFI.RemoveStackObject(OldIndex); 9281 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9282 AllocaIndex = FixedIndex; 9283 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9284 Chains.push_back(ArgVal.getValue(1)); 9285 9286 // Avoid emitting code for the store implementing the copy. 9287 const StoreInst *SI = ArgCopyIter->second.second; 9288 ElidedArgCopyInstrs.insert(SI); 9289 9290 // Check for uses of the argument again so that we can avoid exporting ArgVal 9291 // if it is't used by anything other than the store. 9292 for (const Value *U : Arg.users()) { 9293 if (U != SI) { 9294 ArgHasUses = true; 9295 break; 9296 } 9297 } 9298 } 9299 9300 void SelectionDAGISel::LowerArguments(const Function &F) { 9301 SelectionDAG &DAG = SDB->DAG; 9302 SDLoc dl = SDB->getCurSDLoc(); 9303 const DataLayout &DL = DAG.getDataLayout(); 9304 SmallVector<ISD::InputArg, 16> Ins; 9305 9306 if (!FuncInfo->CanLowerReturn) { 9307 // Put in an sret pointer parameter before all the other parameters. 9308 SmallVector<EVT, 1> ValueVTs; 9309 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9310 F.getReturnType()->getPointerTo( 9311 DAG.getDataLayout().getAllocaAddrSpace()), 9312 ValueVTs); 9313 9314 // NOTE: Assuming that a pointer will never break down to more than one VT 9315 // or one register. 9316 ISD::ArgFlagsTy Flags; 9317 Flags.setSRet(); 9318 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9319 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9320 ISD::InputArg::NoArgIndex, 0); 9321 Ins.push_back(RetArg); 9322 } 9323 9324 // Look for stores of arguments to static allocas. Mark such arguments with a 9325 // flag to ask the target to give us the memory location of that argument if 9326 // available. 9327 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9328 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9329 9330 // Set up the incoming argument description vector. 9331 for (const Argument &Arg : F.args()) { 9332 unsigned ArgNo = Arg.getArgNo(); 9333 SmallVector<EVT, 4> ValueVTs; 9334 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9335 bool isArgValueUsed = !Arg.use_empty(); 9336 unsigned PartBase = 0; 9337 Type *FinalType = Arg.getType(); 9338 if (Arg.hasAttribute(Attribute::ByVal)) 9339 FinalType = cast<PointerType>(FinalType)->getElementType(); 9340 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9341 FinalType, F.getCallingConv(), F.isVarArg()); 9342 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9343 Value != NumValues; ++Value) { 9344 EVT VT = ValueVTs[Value]; 9345 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9346 ISD::ArgFlagsTy Flags; 9347 9348 // Certain targets (such as MIPS), may have a different ABI alignment 9349 // for a type depending on the context. Give the target a chance to 9350 // specify the alignment it wants. 9351 unsigned OriginalAlignment = 9352 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9353 9354 if (Arg.hasAttribute(Attribute::ZExt)) 9355 Flags.setZExt(); 9356 if (Arg.hasAttribute(Attribute::SExt)) 9357 Flags.setSExt(); 9358 if (Arg.hasAttribute(Attribute::InReg)) { 9359 // If we are using vectorcall calling convention, a structure that is 9360 // passed InReg - is surely an HVA 9361 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9362 isa<StructType>(Arg.getType())) { 9363 // The first value of a structure is marked 9364 if (0 == Value) 9365 Flags.setHvaStart(); 9366 Flags.setHva(); 9367 } 9368 // Set InReg Flag 9369 Flags.setInReg(); 9370 } 9371 if (Arg.hasAttribute(Attribute::StructRet)) 9372 Flags.setSRet(); 9373 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9374 Flags.setSwiftSelf(); 9375 if (Arg.hasAttribute(Attribute::SwiftError)) 9376 Flags.setSwiftError(); 9377 if (Arg.hasAttribute(Attribute::ByVal)) 9378 Flags.setByVal(); 9379 if (Arg.hasAttribute(Attribute::InAlloca)) { 9380 Flags.setInAlloca(); 9381 // Set the byval flag for CCAssignFn callbacks that don't know about 9382 // inalloca. This way we can know how many bytes we should've allocated 9383 // and how many bytes a callee cleanup function will pop. If we port 9384 // inalloca to more targets, we'll have to add custom inalloca handling 9385 // in the various CC lowering callbacks. 9386 Flags.setByVal(); 9387 } 9388 if (F.getCallingConv() == CallingConv::X86_INTR) { 9389 // IA Interrupt passes frame (1st parameter) by value in the stack. 9390 if (ArgNo == 0) 9391 Flags.setByVal(); 9392 } 9393 if (Flags.isByVal() || Flags.isInAlloca()) { 9394 PointerType *Ty = cast<PointerType>(Arg.getType()); 9395 Type *ElementTy = Ty->getElementType(); 9396 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9397 // For ByVal, alignment should be passed from FE. BE will guess if 9398 // this info is not there but there are cases it cannot get right. 9399 unsigned FrameAlign; 9400 if (Arg.getParamAlignment()) 9401 FrameAlign = Arg.getParamAlignment(); 9402 else 9403 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9404 Flags.setByValAlign(FrameAlign); 9405 } 9406 if (Arg.hasAttribute(Attribute::Nest)) 9407 Flags.setNest(); 9408 if (NeedsRegBlock) 9409 Flags.setInConsecutiveRegs(); 9410 Flags.setOrigAlign(OriginalAlignment); 9411 if (ArgCopyElisionCandidates.count(&Arg)) 9412 Flags.setCopyElisionCandidate(); 9413 9414 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9415 *CurDAG->getContext(), F.getCallingConv(), VT); 9416 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9417 *CurDAG->getContext(), F.getCallingConv(), VT); 9418 for (unsigned i = 0; i != NumRegs; ++i) { 9419 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9420 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9421 if (NumRegs > 1 && i == 0) 9422 MyFlags.Flags.setSplit(); 9423 // if it isn't first piece, alignment must be 1 9424 else if (i > 0) { 9425 MyFlags.Flags.setOrigAlign(1); 9426 if (i == NumRegs - 1) 9427 MyFlags.Flags.setSplitEnd(); 9428 } 9429 Ins.push_back(MyFlags); 9430 } 9431 if (NeedsRegBlock && Value == NumValues - 1) 9432 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9433 PartBase += VT.getStoreSize(); 9434 } 9435 } 9436 9437 // Call the target to set up the argument values. 9438 SmallVector<SDValue, 8> InVals; 9439 SDValue NewRoot = TLI->LowerFormalArguments( 9440 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9441 9442 // Verify that the target's LowerFormalArguments behaved as expected. 9443 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9444 "LowerFormalArguments didn't return a valid chain!"); 9445 assert(InVals.size() == Ins.size() && 9446 "LowerFormalArguments didn't emit the correct number of values!"); 9447 LLVM_DEBUG({ 9448 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9449 assert(InVals[i].getNode() && 9450 "LowerFormalArguments emitted a null value!"); 9451 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9452 "LowerFormalArguments emitted a value with the wrong type!"); 9453 } 9454 }); 9455 9456 // Update the DAG with the new chain value resulting from argument lowering. 9457 DAG.setRoot(NewRoot); 9458 9459 // Set up the argument values. 9460 unsigned i = 0; 9461 if (!FuncInfo->CanLowerReturn) { 9462 // Create a virtual register for the sret pointer, and put in a copy 9463 // from the sret argument into it. 9464 SmallVector<EVT, 1> ValueVTs; 9465 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9466 F.getReturnType()->getPointerTo( 9467 DAG.getDataLayout().getAllocaAddrSpace()), 9468 ValueVTs); 9469 MVT VT = ValueVTs[0].getSimpleVT(); 9470 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9471 Optional<ISD::NodeType> AssertOp = None; 9472 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9473 nullptr, F.getCallingConv(), AssertOp); 9474 9475 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9476 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9477 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9478 FuncInfo->DemoteRegister = SRetReg; 9479 NewRoot = 9480 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9481 DAG.setRoot(NewRoot); 9482 9483 // i indexes lowered arguments. Bump it past the hidden sret argument. 9484 ++i; 9485 } 9486 9487 SmallVector<SDValue, 4> Chains; 9488 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9489 for (const Argument &Arg : F.args()) { 9490 SmallVector<SDValue, 4> ArgValues; 9491 SmallVector<EVT, 4> ValueVTs; 9492 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9493 unsigned NumValues = ValueVTs.size(); 9494 if (NumValues == 0) 9495 continue; 9496 9497 bool ArgHasUses = !Arg.use_empty(); 9498 9499 // Elide the copying store if the target loaded this argument from a 9500 // suitable fixed stack object. 9501 if (Ins[i].Flags.isCopyElisionCandidate()) { 9502 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9503 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9504 InVals[i], ArgHasUses); 9505 } 9506 9507 // If this argument is unused then remember its value. It is used to generate 9508 // debugging information. 9509 bool isSwiftErrorArg = 9510 TLI->supportSwiftError() && 9511 Arg.hasAttribute(Attribute::SwiftError); 9512 if (!ArgHasUses && !isSwiftErrorArg) { 9513 SDB->setUnusedArgValue(&Arg, InVals[i]); 9514 9515 // Also remember any frame index for use in FastISel. 9516 if (FrameIndexSDNode *FI = 9517 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9518 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9519 } 9520 9521 for (unsigned Val = 0; Val != NumValues; ++Val) { 9522 EVT VT = ValueVTs[Val]; 9523 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9524 F.getCallingConv(), VT); 9525 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9526 *CurDAG->getContext(), F.getCallingConv(), VT); 9527 9528 // Even an apparant 'unused' swifterror argument needs to be returned. So 9529 // we do generate a copy for it that can be used on return from the 9530 // function. 9531 if (ArgHasUses || isSwiftErrorArg) { 9532 Optional<ISD::NodeType> AssertOp; 9533 if (Arg.hasAttribute(Attribute::SExt)) 9534 AssertOp = ISD::AssertSext; 9535 else if (Arg.hasAttribute(Attribute::ZExt)) 9536 AssertOp = ISD::AssertZext; 9537 9538 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9539 PartVT, VT, nullptr, 9540 F.getCallingConv(), AssertOp)); 9541 } 9542 9543 i += NumParts; 9544 } 9545 9546 // We don't need to do anything else for unused arguments. 9547 if (ArgValues.empty()) 9548 continue; 9549 9550 // Note down frame index. 9551 if (FrameIndexSDNode *FI = 9552 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9553 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9554 9555 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9556 SDB->getCurSDLoc()); 9557 9558 SDB->setValue(&Arg, Res); 9559 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9560 // We want to associate the argument with the frame index, among 9561 // involved operands, that correspond to the lowest address. The 9562 // getCopyFromParts function, called earlier, is swapping the order of 9563 // the operands to BUILD_PAIR depending on endianness. The result of 9564 // that swapping is that the least significant bits of the argument will 9565 // be in the first operand of the BUILD_PAIR node, and the most 9566 // significant bits will be in the second operand. 9567 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9568 if (LoadSDNode *LNode = 9569 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9570 if (FrameIndexSDNode *FI = 9571 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9572 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9573 } 9574 9575 // Update the SwiftErrorVRegDefMap. 9576 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9577 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9578 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9579 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9580 FuncInfo->SwiftErrorArg, Reg); 9581 } 9582 9583 // If this argument is live outside of the entry block, insert a copy from 9584 // wherever we got it to the vreg that other BB's will reference it as. 9585 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9586 // If we can, though, try to skip creating an unnecessary vreg. 9587 // FIXME: This isn't very clean... it would be nice to make this more 9588 // general. It's also subtly incompatible with the hacks FastISel 9589 // uses with vregs. 9590 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9591 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9592 FuncInfo->ValueMap[&Arg] = Reg; 9593 continue; 9594 } 9595 } 9596 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9597 FuncInfo->InitializeRegForValue(&Arg); 9598 SDB->CopyToExportRegsIfNeeded(&Arg); 9599 } 9600 } 9601 9602 if (!Chains.empty()) { 9603 Chains.push_back(NewRoot); 9604 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9605 } 9606 9607 DAG.setRoot(NewRoot); 9608 9609 assert(i == InVals.size() && "Argument register count mismatch!"); 9610 9611 // If any argument copy elisions occurred and we have debug info, update the 9612 // stale frame indices used in the dbg.declare variable info table. 9613 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9614 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9615 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9616 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9617 if (I != ArgCopyElisionFrameIndexMap.end()) 9618 VI.Slot = I->second; 9619 } 9620 } 9621 9622 // Finally, if the target has anything special to do, allow it to do so. 9623 EmitFunctionEntryCode(); 9624 } 9625 9626 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9627 /// ensure constants are generated when needed. Remember the virtual registers 9628 /// that need to be added to the Machine PHI nodes as input. We cannot just 9629 /// directly add them, because expansion might result in multiple MBB's for one 9630 /// BB. As such, the start of the BB might correspond to a different MBB than 9631 /// the end. 9632 void 9633 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9634 const Instruction *TI = LLVMBB->getTerminator(); 9635 9636 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9637 9638 // Check PHI nodes in successors that expect a value to be available from this 9639 // block. 9640 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9641 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9642 if (!isa<PHINode>(SuccBB->begin())) continue; 9643 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9644 9645 // If this terminator has multiple identical successors (common for 9646 // switches), only handle each succ once. 9647 if (!SuccsHandled.insert(SuccMBB).second) 9648 continue; 9649 9650 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9651 9652 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9653 // nodes and Machine PHI nodes, but the incoming operands have not been 9654 // emitted yet. 9655 for (const PHINode &PN : SuccBB->phis()) { 9656 // Ignore dead phi's. 9657 if (PN.use_empty()) 9658 continue; 9659 9660 // Skip empty types 9661 if (PN.getType()->isEmptyTy()) 9662 continue; 9663 9664 unsigned Reg; 9665 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9666 9667 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9668 unsigned &RegOut = ConstantsOut[C]; 9669 if (RegOut == 0) { 9670 RegOut = FuncInfo.CreateRegs(C->getType()); 9671 CopyValueToVirtualRegister(C, RegOut); 9672 } 9673 Reg = RegOut; 9674 } else { 9675 DenseMap<const Value *, unsigned>::iterator I = 9676 FuncInfo.ValueMap.find(PHIOp); 9677 if (I != FuncInfo.ValueMap.end()) 9678 Reg = I->second; 9679 else { 9680 assert(isa<AllocaInst>(PHIOp) && 9681 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9682 "Didn't codegen value into a register!??"); 9683 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9684 CopyValueToVirtualRegister(PHIOp, Reg); 9685 } 9686 } 9687 9688 // Remember that this register needs to added to the machine PHI node as 9689 // the input for this MBB. 9690 SmallVector<EVT, 4> ValueVTs; 9691 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9692 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9693 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9694 EVT VT = ValueVTs[vti]; 9695 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9696 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9697 FuncInfo.PHINodesToUpdate.push_back( 9698 std::make_pair(&*MBBI++, Reg + i)); 9699 Reg += NumRegisters; 9700 } 9701 } 9702 } 9703 9704 ConstantsOut.clear(); 9705 } 9706 9707 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9708 /// is 0. 9709 MachineBasicBlock * 9710 SelectionDAGBuilder::StackProtectorDescriptor:: 9711 AddSuccessorMBB(const BasicBlock *BB, 9712 MachineBasicBlock *ParentMBB, 9713 bool IsLikely, 9714 MachineBasicBlock *SuccMBB) { 9715 // If SuccBB has not been created yet, create it. 9716 if (!SuccMBB) { 9717 MachineFunction *MF = ParentMBB->getParent(); 9718 MachineFunction::iterator BBI(ParentMBB); 9719 SuccMBB = MF->CreateMachineBasicBlock(BB); 9720 MF->insert(++BBI, SuccMBB); 9721 } 9722 // Add it as a successor of ParentMBB. 9723 ParentMBB->addSuccessor( 9724 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9725 return SuccMBB; 9726 } 9727 9728 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9729 MachineFunction::iterator I(MBB); 9730 if (++I == FuncInfo.MF->end()) 9731 return nullptr; 9732 return &*I; 9733 } 9734 9735 /// During lowering new call nodes can be created (such as memset, etc.). 9736 /// Those will become new roots of the current DAG, but complications arise 9737 /// when they are tail calls. In such cases, the call lowering will update 9738 /// the root, but the builder still needs to know that a tail call has been 9739 /// lowered in order to avoid generating an additional return. 9740 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9741 // If the node is null, we do have a tail call. 9742 if (MaybeTC.getNode() != nullptr) 9743 DAG.setRoot(MaybeTC); 9744 else 9745 HasTailCall = true; 9746 } 9747 9748 uint64_t 9749 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9750 unsigned First, unsigned Last) const { 9751 assert(Last >= First); 9752 const APInt &LowCase = Clusters[First].Low->getValue(); 9753 const APInt &HighCase = Clusters[Last].High->getValue(); 9754 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9755 9756 // FIXME: A range of consecutive cases has 100% density, but only requires one 9757 // comparison to lower. We should discriminate against such consecutive ranges 9758 // in jump tables. 9759 9760 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9761 } 9762 9763 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9764 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9765 unsigned Last) const { 9766 assert(Last >= First); 9767 assert(TotalCases[Last] >= TotalCases[First]); 9768 uint64_t NumCases = 9769 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9770 return NumCases; 9771 } 9772 9773 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9774 unsigned First, unsigned Last, 9775 const SwitchInst *SI, 9776 MachineBasicBlock *DefaultMBB, 9777 CaseCluster &JTCluster) { 9778 assert(First <= Last); 9779 9780 auto Prob = BranchProbability::getZero(); 9781 unsigned NumCmps = 0; 9782 std::vector<MachineBasicBlock*> Table; 9783 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9784 9785 // Initialize probabilities in JTProbs. 9786 for (unsigned I = First; I <= Last; ++I) 9787 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9788 9789 for (unsigned I = First; I <= Last; ++I) { 9790 assert(Clusters[I].Kind == CC_Range); 9791 Prob += Clusters[I].Prob; 9792 const APInt &Low = Clusters[I].Low->getValue(); 9793 const APInt &High = Clusters[I].High->getValue(); 9794 NumCmps += (Low == High) ? 1 : 2; 9795 if (I != First) { 9796 // Fill the gap between this and the previous cluster. 9797 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9798 assert(PreviousHigh.slt(Low)); 9799 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9800 for (uint64_t J = 0; J < Gap; J++) 9801 Table.push_back(DefaultMBB); 9802 } 9803 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9804 for (uint64_t J = 0; J < ClusterSize; ++J) 9805 Table.push_back(Clusters[I].MBB); 9806 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9807 } 9808 9809 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9810 unsigned NumDests = JTProbs.size(); 9811 if (TLI.isSuitableForBitTests( 9812 NumDests, NumCmps, Clusters[First].Low->getValue(), 9813 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9814 // Clusters[First..Last] should be lowered as bit tests instead. 9815 return false; 9816 } 9817 9818 // Create the MBB that will load from and jump through the table. 9819 // Note: We create it here, but it's not inserted into the function yet. 9820 MachineFunction *CurMF = FuncInfo.MF; 9821 MachineBasicBlock *JumpTableMBB = 9822 CurMF->CreateMachineBasicBlock(SI->getParent()); 9823 9824 // Add successors. Note: use table order for determinism. 9825 SmallPtrSet<MachineBasicBlock *, 8> Done; 9826 for (MachineBasicBlock *Succ : Table) { 9827 if (Done.count(Succ)) 9828 continue; 9829 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9830 Done.insert(Succ); 9831 } 9832 JumpTableMBB->normalizeSuccProbs(); 9833 9834 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9835 ->createJumpTableIndex(Table); 9836 9837 // Set up the jump table info. 9838 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9839 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9840 Clusters[Last].High->getValue(), SI->getCondition(), 9841 nullptr, false); 9842 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9843 9844 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9845 JTCases.size() - 1, Prob); 9846 return true; 9847 } 9848 9849 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9850 const SwitchInst *SI, 9851 MachineBasicBlock *DefaultMBB) { 9852 #ifndef NDEBUG 9853 // Clusters must be non-empty, sorted, and only contain Range clusters. 9854 assert(!Clusters.empty()); 9855 for (CaseCluster &C : Clusters) 9856 assert(C.Kind == CC_Range); 9857 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9858 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9859 #endif 9860 9861 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9862 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9863 return; 9864 9865 const int64_t N = Clusters.size(); 9866 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9867 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9868 9869 if (N < 2 || N < MinJumpTableEntries) 9870 return; 9871 9872 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9873 SmallVector<unsigned, 8> TotalCases(N); 9874 for (unsigned i = 0; i < N; ++i) { 9875 const APInt &Hi = Clusters[i].High->getValue(); 9876 const APInt &Lo = Clusters[i].Low->getValue(); 9877 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9878 if (i != 0) 9879 TotalCases[i] += TotalCases[i - 1]; 9880 } 9881 9882 // Cheap case: the whole range may be suitable for jump table. 9883 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9884 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9885 assert(NumCases < UINT64_MAX / 100); 9886 assert(Range >= NumCases); 9887 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9888 CaseCluster JTCluster; 9889 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9890 Clusters[0] = JTCluster; 9891 Clusters.resize(1); 9892 return; 9893 } 9894 } 9895 9896 // The algorithm below is not suitable for -O0. 9897 if (TM.getOptLevel() == CodeGenOpt::None) 9898 return; 9899 9900 // Split Clusters into minimum number of dense partitions. The algorithm uses 9901 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9902 // for the Case Statement'" (1994), but builds the MinPartitions array in 9903 // reverse order to make it easier to reconstruct the partitions in ascending 9904 // order. In the choice between two optimal partitionings, it picks the one 9905 // which yields more jump tables. 9906 9907 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9908 SmallVector<unsigned, 8> MinPartitions(N); 9909 // LastElement[i] is the last element of the partition starting at i. 9910 SmallVector<unsigned, 8> LastElement(N); 9911 // PartitionsScore[i] is used to break ties when choosing between two 9912 // partitionings resulting in the same number of partitions. 9913 SmallVector<unsigned, 8> PartitionsScore(N); 9914 // For PartitionsScore, a small number of comparisons is considered as good as 9915 // a jump table and a single comparison is considered better than a jump 9916 // table. 9917 enum PartitionScores : unsigned { 9918 NoTable = 0, 9919 Table = 1, 9920 FewCases = 1, 9921 SingleCase = 2 9922 }; 9923 9924 // Base case: There is only one way to partition Clusters[N-1]. 9925 MinPartitions[N - 1] = 1; 9926 LastElement[N - 1] = N - 1; 9927 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9928 9929 // Note: loop indexes are signed to avoid underflow. 9930 for (int64_t i = N - 2; i >= 0; i--) { 9931 // Find optimal partitioning of Clusters[i..N-1]. 9932 // Baseline: Put Clusters[i] into a partition on its own. 9933 MinPartitions[i] = MinPartitions[i + 1] + 1; 9934 LastElement[i] = i; 9935 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9936 9937 // Search for a solution that results in fewer partitions. 9938 for (int64_t j = N - 1; j > i; j--) { 9939 // Try building a partition from Clusters[i..j]. 9940 uint64_t Range = getJumpTableRange(Clusters, i, j); 9941 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9942 assert(NumCases < UINT64_MAX / 100); 9943 assert(Range >= NumCases); 9944 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9945 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9946 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9947 int64_t NumEntries = j - i + 1; 9948 9949 if (NumEntries == 1) 9950 Score += PartitionScores::SingleCase; 9951 else if (NumEntries <= SmallNumberOfEntries) 9952 Score += PartitionScores::FewCases; 9953 else if (NumEntries >= MinJumpTableEntries) 9954 Score += PartitionScores::Table; 9955 9956 // If this leads to fewer partitions, or to the same number of 9957 // partitions with better score, it is a better partitioning. 9958 if (NumPartitions < MinPartitions[i] || 9959 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9960 MinPartitions[i] = NumPartitions; 9961 LastElement[i] = j; 9962 PartitionsScore[i] = Score; 9963 } 9964 } 9965 } 9966 } 9967 9968 // Iterate over the partitions, replacing some with jump tables in-place. 9969 unsigned DstIndex = 0; 9970 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9971 Last = LastElement[First]; 9972 assert(Last >= First); 9973 assert(DstIndex <= First); 9974 unsigned NumClusters = Last - First + 1; 9975 9976 CaseCluster JTCluster; 9977 if (NumClusters >= MinJumpTableEntries && 9978 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9979 Clusters[DstIndex++] = JTCluster; 9980 } else { 9981 for (unsigned I = First; I <= Last; ++I) 9982 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9983 } 9984 } 9985 Clusters.resize(DstIndex); 9986 } 9987 9988 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9989 unsigned First, unsigned Last, 9990 const SwitchInst *SI, 9991 CaseCluster &BTCluster) { 9992 assert(First <= Last); 9993 if (First == Last) 9994 return false; 9995 9996 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9997 unsigned NumCmps = 0; 9998 for (int64_t I = First; I <= Last; ++I) { 9999 assert(Clusters[I].Kind == CC_Range); 10000 Dests.set(Clusters[I].MBB->getNumber()); 10001 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 10002 } 10003 unsigned NumDests = Dests.count(); 10004 10005 APInt Low = Clusters[First].Low->getValue(); 10006 APInt High = Clusters[Last].High->getValue(); 10007 assert(Low.slt(High)); 10008 10009 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10010 const DataLayout &DL = DAG.getDataLayout(); 10011 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 10012 return false; 10013 10014 APInt LowBound; 10015 APInt CmpRange; 10016 10017 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 10018 assert(TLI.rangeFitsInWord(Low, High, DL) && 10019 "Case range must fit in bit mask!"); 10020 10021 // Check if the clusters cover a contiguous range such that no value in the 10022 // range will jump to the default statement. 10023 bool ContiguousRange = true; 10024 for (int64_t I = First + 1; I <= Last; ++I) { 10025 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 10026 ContiguousRange = false; 10027 break; 10028 } 10029 } 10030 10031 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 10032 // Optimize the case where all the case values fit in a word without having 10033 // to subtract minValue. In this case, we can optimize away the subtraction. 10034 LowBound = APInt::getNullValue(Low.getBitWidth()); 10035 CmpRange = High; 10036 ContiguousRange = false; 10037 } else { 10038 LowBound = Low; 10039 CmpRange = High - Low; 10040 } 10041 10042 CaseBitsVector CBV; 10043 auto TotalProb = BranchProbability::getZero(); 10044 for (unsigned i = First; i <= Last; ++i) { 10045 // Find the CaseBits for this destination. 10046 unsigned j; 10047 for (j = 0; j < CBV.size(); ++j) 10048 if (CBV[j].BB == Clusters[i].MBB) 10049 break; 10050 if (j == CBV.size()) 10051 CBV.push_back( 10052 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 10053 CaseBits *CB = &CBV[j]; 10054 10055 // Update Mask, Bits and ExtraProb. 10056 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 10057 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 10058 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 10059 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 10060 CB->Bits += Hi - Lo + 1; 10061 CB->ExtraProb += Clusters[i].Prob; 10062 TotalProb += Clusters[i].Prob; 10063 } 10064 10065 BitTestInfo BTI; 10066 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { 10067 // Sort by probability first, number of bits second, bit mask third. 10068 if (a.ExtraProb != b.ExtraProb) 10069 return a.ExtraProb > b.ExtraProb; 10070 if (a.Bits != b.Bits) 10071 return a.Bits > b.Bits; 10072 return a.Mask < b.Mask; 10073 }); 10074 10075 for (auto &CB : CBV) { 10076 MachineBasicBlock *BitTestBB = 10077 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 10078 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 10079 } 10080 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 10081 SI->getCondition(), -1U, MVT::Other, false, 10082 ContiguousRange, nullptr, nullptr, std::move(BTI), 10083 TotalProb); 10084 10085 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 10086 BitTestCases.size() - 1, TotalProb); 10087 return true; 10088 } 10089 10090 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 10091 const SwitchInst *SI) { 10092 // Partition Clusters into as few subsets as possible, where each subset has a 10093 // range that fits in a machine word and has <= 3 unique destinations. 10094 10095 #ifndef NDEBUG 10096 // Clusters must be sorted and contain Range or JumpTable clusters. 10097 assert(!Clusters.empty()); 10098 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 10099 for (const CaseCluster &C : Clusters) 10100 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 10101 for (unsigned i = 1; i < Clusters.size(); ++i) 10102 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 10103 #endif 10104 10105 // The algorithm below is not suitable for -O0. 10106 if (TM.getOptLevel() == CodeGenOpt::None) 10107 return; 10108 10109 // If target does not have legal shift left, do not emit bit tests at all. 10110 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10111 const DataLayout &DL = DAG.getDataLayout(); 10112 10113 EVT PTy = TLI.getPointerTy(DL); 10114 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 10115 return; 10116 10117 int BitWidth = PTy.getSizeInBits(); 10118 const int64_t N = Clusters.size(); 10119 10120 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 10121 SmallVector<unsigned, 8> MinPartitions(N); 10122 // LastElement[i] is the last element of the partition starting at i. 10123 SmallVector<unsigned, 8> LastElement(N); 10124 10125 // FIXME: This might not be the best algorithm for finding bit test clusters. 10126 10127 // Base case: There is only one way to partition Clusters[N-1]. 10128 MinPartitions[N - 1] = 1; 10129 LastElement[N - 1] = N - 1; 10130 10131 // Note: loop indexes are signed to avoid underflow. 10132 for (int64_t i = N - 2; i >= 0; --i) { 10133 // Find optimal partitioning of Clusters[i..N-1]. 10134 // Baseline: Put Clusters[i] into a partition on its own. 10135 MinPartitions[i] = MinPartitions[i + 1] + 1; 10136 LastElement[i] = i; 10137 10138 // Search for a solution that results in fewer partitions. 10139 // Note: the search is limited by BitWidth, reducing time complexity. 10140 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 10141 // Try building a partition from Clusters[i..j]. 10142 10143 // Check the range. 10144 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 10145 Clusters[j].High->getValue(), DL)) 10146 continue; 10147 10148 // Check nbr of destinations and cluster types. 10149 // FIXME: This works, but doesn't seem very efficient. 10150 bool RangesOnly = true; 10151 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 10152 for (int64_t k = i; k <= j; k++) { 10153 if (Clusters[k].Kind != CC_Range) { 10154 RangesOnly = false; 10155 break; 10156 } 10157 Dests.set(Clusters[k].MBB->getNumber()); 10158 } 10159 if (!RangesOnly || Dests.count() > 3) 10160 break; 10161 10162 // Check if it's a better partition. 10163 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 10164 if (NumPartitions < MinPartitions[i]) { 10165 // Found a better partition. 10166 MinPartitions[i] = NumPartitions; 10167 LastElement[i] = j; 10168 } 10169 } 10170 } 10171 10172 // Iterate over the partitions, replacing with bit-test clusters in-place. 10173 unsigned DstIndex = 0; 10174 for (unsigned First = 0, Last; First < N; First = Last + 1) { 10175 Last = LastElement[First]; 10176 assert(First <= Last); 10177 assert(DstIndex <= First); 10178 10179 CaseCluster BitTestCluster; 10180 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 10181 Clusters[DstIndex++] = BitTestCluster; 10182 } else { 10183 size_t NumClusters = Last - First + 1; 10184 std::memmove(&Clusters[DstIndex], &Clusters[First], 10185 sizeof(Clusters[0]) * NumClusters); 10186 DstIndex += NumClusters; 10187 } 10188 } 10189 Clusters.resize(DstIndex); 10190 } 10191 10192 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10193 MachineBasicBlock *SwitchMBB, 10194 MachineBasicBlock *DefaultMBB) { 10195 MachineFunction *CurMF = FuncInfo.MF; 10196 MachineBasicBlock *NextMBB = nullptr; 10197 MachineFunction::iterator BBI(W.MBB); 10198 if (++BBI != FuncInfo.MF->end()) 10199 NextMBB = &*BBI; 10200 10201 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10202 10203 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10204 10205 if (Size == 2 && W.MBB == SwitchMBB) { 10206 // If any two of the cases has the same destination, and if one value 10207 // is the same as the other, but has one bit unset that the other has set, 10208 // use bit manipulation to do two compares at once. For example: 10209 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10210 // TODO: This could be extended to merge any 2 cases in switches with 3 10211 // cases. 10212 // TODO: Handle cases where W.CaseBB != SwitchBB. 10213 CaseCluster &Small = *W.FirstCluster; 10214 CaseCluster &Big = *W.LastCluster; 10215 10216 if (Small.Low == Small.High && Big.Low == Big.High && 10217 Small.MBB == Big.MBB) { 10218 const APInt &SmallValue = Small.Low->getValue(); 10219 const APInt &BigValue = Big.Low->getValue(); 10220 10221 // Check that there is only one bit different. 10222 APInt CommonBit = BigValue ^ SmallValue; 10223 if (CommonBit.isPowerOf2()) { 10224 SDValue CondLHS = getValue(Cond); 10225 EVT VT = CondLHS.getValueType(); 10226 SDLoc DL = getCurSDLoc(); 10227 10228 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10229 DAG.getConstant(CommonBit, DL, VT)); 10230 SDValue Cond = DAG.getSetCC( 10231 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10232 ISD::SETEQ); 10233 10234 // Update successor info. 10235 // Both Small and Big will jump to Small.BB, so we sum up the 10236 // probabilities. 10237 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10238 if (BPI) 10239 addSuccessorWithProb( 10240 SwitchMBB, DefaultMBB, 10241 // The default destination is the first successor in IR. 10242 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10243 else 10244 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10245 10246 // Insert the true branch. 10247 SDValue BrCond = 10248 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10249 DAG.getBasicBlock(Small.MBB)); 10250 // Insert the false branch. 10251 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10252 DAG.getBasicBlock(DefaultMBB)); 10253 10254 DAG.setRoot(BrCond); 10255 return; 10256 } 10257 } 10258 } 10259 10260 if (TM.getOptLevel() != CodeGenOpt::None) { 10261 // Here, we order cases by probability so the most likely case will be 10262 // checked first. However, two clusters can have the same probability in 10263 // which case their relative ordering is non-deterministic. So we use Low 10264 // as a tie-breaker as clusters are guaranteed to never overlap. 10265 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10266 [](const CaseCluster &a, const CaseCluster &b) { 10267 return a.Prob != b.Prob ? 10268 a.Prob > b.Prob : 10269 a.Low->getValue().slt(b.Low->getValue()); 10270 }); 10271 10272 // Rearrange the case blocks so that the last one falls through if possible 10273 // without changing the order of probabilities. 10274 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10275 --I; 10276 if (I->Prob > W.LastCluster->Prob) 10277 break; 10278 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10279 std::swap(*I, *W.LastCluster); 10280 break; 10281 } 10282 } 10283 } 10284 10285 // Compute total probability. 10286 BranchProbability DefaultProb = W.DefaultProb; 10287 BranchProbability UnhandledProbs = DefaultProb; 10288 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10289 UnhandledProbs += I->Prob; 10290 10291 MachineBasicBlock *CurMBB = W.MBB; 10292 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10293 MachineBasicBlock *Fallthrough; 10294 if (I == W.LastCluster) { 10295 // For the last cluster, fall through to the default destination. 10296 Fallthrough = DefaultMBB; 10297 } else { 10298 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10299 CurMF->insert(BBI, Fallthrough); 10300 // Put Cond in a virtual register to make it available from the new blocks. 10301 ExportFromCurrentBlock(Cond); 10302 } 10303 UnhandledProbs -= I->Prob; 10304 10305 switch (I->Kind) { 10306 case CC_JumpTable: { 10307 // FIXME: Optimize away range check based on pivot comparisons. 10308 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 10309 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 10310 10311 // The jump block hasn't been inserted yet; insert it here. 10312 MachineBasicBlock *JumpMBB = JT->MBB; 10313 CurMF->insert(BBI, JumpMBB); 10314 10315 auto JumpProb = I->Prob; 10316 auto FallthroughProb = UnhandledProbs; 10317 10318 // If the default statement is a target of the jump table, we evenly 10319 // distribute the default probability to successors of CurMBB. Also 10320 // update the probability on the edge from JumpMBB to Fallthrough. 10321 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10322 SE = JumpMBB->succ_end(); 10323 SI != SE; ++SI) { 10324 if (*SI == DefaultMBB) { 10325 JumpProb += DefaultProb / 2; 10326 FallthroughProb -= DefaultProb / 2; 10327 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10328 JumpMBB->normalizeSuccProbs(); 10329 break; 10330 } 10331 } 10332 10333 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10334 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10335 CurMBB->normalizeSuccProbs(); 10336 10337 // The jump table header will be inserted in our current block, do the 10338 // range check, and fall through to our fallthrough block. 10339 JTH->HeaderBB = CurMBB; 10340 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10341 10342 // If we're in the right place, emit the jump table header right now. 10343 if (CurMBB == SwitchMBB) { 10344 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10345 JTH->Emitted = true; 10346 } 10347 break; 10348 } 10349 case CC_BitTests: { 10350 // FIXME: Optimize away range check based on pivot comparisons. 10351 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 10352 10353 // The bit test blocks haven't been inserted yet; insert them here. 10354 for (BitTestCase &BTC : BTB->Cases) 10355 CurMF->insert(BBI, BTC.ThisBB); 10356 10357 // Fill in fields of the BitTestBlock. 10358 BTB->Parent = CurMBB; 10359 BTB->Default = Fallthrough; 10360 10361 BTB->DefaultProb = UnhandledProbs; 10362 // If the cases in bit test don't form a contiguous range, we evenly 10363 // distribute the probability on the edge to Fallthrough to two 10364 // successors of CurMBB. 10365 if (!BTB->ContiguousRange) { 10366 BTB->Prob += DefaultProb / 2; 10367 BTB->DefaultProb -= DefaultProb / 2; 10368 } 10369 10370 // If we're in the right place, emit the bit test header right now. 10371 if (CurMBB == SwitchMBB) { 10372 visitBitTestHeader(*BTB, SwitchMBB); 10373 BTB->Emitted = true; 10374 } 10375 break; 10376 } 10377 case CC_Range: { 10378 const Value *RHS, *LHS, *MHS; 10379 ISD::CondCode CC; 10380 if (I->Low == I->High) { 10381 // Check Cond == I->Low. 10382 CC = ISD::SETEQ; 10383 LHS = Cond; 10384 RHS=I->Low; 10385 MHS = nullptr; 10386 } else { 10387 // Check I->Low <= Cond <= I->High. 10388 CC = ISD::SETLE; 10389 LHS = I->Low; 10390 MHS = Cond; 10391 RHS = I->High; 10392 } 10393 10394 // The false probability is the sum of all unhandled cases. 10395 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10396 getCurSDLoc(), I->Prob, UnhandledProbs); 10397 10398 if (CurMBB == SwitchMBB) 10399 visitSwitchCase(CB, SwitchMBB); 10400 else 10401 SwitchCases.push_back(CB); 10402 10403 break; 10404 } 10405 } 10406 CurMBB = Fallthrough; 10407 } 10408 } 10409 10410 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10411 CaseClusterIt First, 10412 CaseClusterIt Last) { 10413 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10414 if (X.Prob != CC.Prob) 10415 return X.Prob > CC.Prob; 10416 10417 // Ties are broken by comparing the case value. 10418 return X.Low->getValue().slt(CC.Low->getValue()); 10419 }); 10420 } 10421 10422 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10423 const SwitchWorkListItem &W, 10424 Value *Cond, 10425 MachineBasicBlock *SwitchMBB) { 10426 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10427 "Clusters not sorted?"); 10428 10429 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10430 10431 // Balance the tree based on branch probabilities to create a near-optimal (in 10432 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10433 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10434 CaseClusterIt LastLeft = W.FirstCluster; 10435 CaseClusterIt FirstRight = W.LastCluster; 10436 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10437 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10438 10439 // Move LastLeft and FirstRight towards each other from opposite directions to 10440 // find a partitioning of the clusters which balances the probability on both 10441 // sides. If LeftProb and RightProb are equal, alternate which side is 10442 // taken to ensure 0-probability nodes are distributed evenly. 10443 unsigned I = 0; 10444 while (LastLeft + 1 < FirstRight) { 10445 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10446 LeftProb += (++LastLeft)->Prob; 10447 else 10448 RightProb += (--FirstRight)->Prob; 10449 I++; 10450 } 10451 10452 while (true) { 10453 // Our binary search tree differs from a typical BST in that ours can have up 10454 // to three values in each leaf. The pivot selection above doesn't take that 10455 // into account, which means the tree might require more nodes and be less 10456 // efficient. We compensate for this here. 10457 10458 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10459 unsigned NumRight = W.LastCluster - FirstRight + 1; 10460 10461 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10462 // If one side has less than 3 clusters, and the other has more than 3, 10463 // consider taking a cluster from the other side. 10464 10465 if (NumLeft < NumRight) { 10466 // Consider moving the first cluster on the right to the left side. 10467 CaseCluster &CC = *FirstRight; 10468 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10469 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10470 if (LeftSideRank <= RightSideRank) { 10471 // Moving the cluster to the left does not demote it. 10472 ++LastLeft; 10473 ++FirstRight; 10474 continue; 10475 } 10476 } else { 10477 assert(NumRight < NumLeft); 10478 // Consider moving the last element on the left to the right side. 10479 CaseCluster &CC = *LastLeft; 10480 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10481 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10482 if (RightSideRank <= LeftSideRank) { 10483 // Moving the cluster to the right does not demot it. 10484 --LastLeft; 10485 --FirstRight; 10486 continue; 10487 } 10488 } 10489 } 10490 break; 10491 } 10492 10493 assert(LastLeft + 1 == FirstRight); 10494 assert(LastLeft >= W.FirstCluster); 10495 assert(FirstRight <= W.LastCluster); 10496 10497 // Use the first element on the right as pivot since we will make less-than 10498 // comparisons against it. 10499 CaseClusterIt PivotCluster = FirstRight; 10500 assert(PivotCluster > W.FirstCluster); 10501 assert(PivotCluster <= W.LastCluster); 10502 10503 CaseClusterIt FirstLeft = W.FirstCluster; 10504 CaseClusterIt LastRight = W.LastCluster; 10505 10506 const ConstantInt *Pivot = PivotCluster->Low; 10507 10508 // New blocks will be inserted immediately after the current one. 10509 MachineFunction::iterator BBI(W.MBB); 10510 ++BBI; 10511 10512 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10513 // we can branch to its destination directly if it's squeezed exactly in 10514 // between the known lower bound and Pivot - 1. 10515 MachineBasicBlock *LeftMBB; 10516 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10517 FirstLeft->Low == W.GE && 10518 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10519 LeftMBB = FirstLeft->MBB; 10520 } else { 10521 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10522 FuncInfo.MF->insert(BBI, LeftMBB); 10523 WorkList.push_back( 10524 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10525 // Put Cond in a virtual register to make it available from the new blocks. 10526 ExportFromCurrentBlock(Cond); 10527 } 10528 10529 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10530 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10531 // directly if RHS.High equals the current upper bound. 10532 MachineBasicBlock *RightMBB; 10533 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10534 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10535 RightMBB = FirstRight->MBB; 10536 } else { 10537 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10538 FuncInfo.MF->insert(BBI, RightMBB); 10539 WorkList.push_back( 10540 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10541 // Put Cond in a virtual register to make it available from the new blocks. 10542 ExportFromCurrentBlock(Cond); 10543 } 10544 10545 // Create the CaseBlock record that will be used to lower the branch. 10546 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10547 getCurSDLoc(), LeftProb, RightProb); 10548 10549 if (W.MBB == SwitchMBB) 10550 visitSwitchCase(CB, SwitchMBB); 10551 else 10552 SwitchCases.push_back(CB); 10553 } 10554 10555 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10556 // from the swith statement. 10557 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10558 BranchProbability PeeledCaseProb) { 10559 if (PeeledCaseProb == BranchProbability::getOne()) 10560 return BranchProbability::getZero(); 10561 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10562 10563 uint32_t Numerator = CaseProb.getNumerator(); 10564 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10565 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10566 } 10567 10568 // Try to peel the top probability case if it exceeds the threshold. 10569 // Return current MachineBasicBlock for the switch statement if the peeling 10570 // does not occur. 10571 // If the peeling is performed, return the newly created MachineBasicBlock 10572 // for the peeled switch statement. Also update Clusters to remove the peeled 10573 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10574 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10575 const SwitchInst &SI, CaseClusterVector &Clusters, 10576 BranchProbability &PeeledCaseProb) { 10577 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10578 // Don't perform if there is only one cluster or optimizing for size. 10579 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10580 TM.getOptLevel() == CodeGenOpt::None || 10581 SwitchMBB->getParent()->getFunction().optForMinSize()) 10582 return SwitchMBB; 10583 10584 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10585 unsigned PeeledCaseIndex = 0; 10586 bool SwitchPeeled = false; 10587 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10588 CaseCluster &CC = Clusters[Index]; 10589 if (CC.Prob < TopCaseProb) 10590 continue; 10591 TopCaseProb = CC.Prob; 10592 PeeledCaseIndex = Index; 10593 SwitchPeeled = true; 10594 } 10595 if (!SwitchPeeled) 10596 return SwitchMBB; 10597 10598 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10599 << TopCaseProb << "\n"); 10600 10601 // Record the MBB for the peeled switch statement. 10602 MachineFunction::iterator BBI(SwitchMBB); 10603 ++BBI; 10604 MachineBasicBlock *PeeledSwitchMBB = 10605 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10606 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10607 10608 ExportFromCurrentBlock(SI.getCondition()); 10609 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10610 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10611 nullptr, nullptr, TopCaseProb.getCompl()}; 10612 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10613 10614 Clusters.erase(PeeledCaseIt); 10615 for (CaseCluster &CC : Clusters) { 10616 LLVM_DEBUG( 10617 dbgs() << "Scale the probablity for one cluster, before scaling: " 10618 << CC.Prob << "\n"); 10619 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10620 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10621 } 10622 PeeledCaseProb = TopCaseProb; 10623 return PeeledSwitchMBB; 10624 } 10625 10626 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10627 // Extract cases from the switch. 10628 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10629 CaseClusterVector Clusters; 10630 Clusters.reserve(SI.getNumCases()); 10631 for (auto I : SI.cases()) { 10632 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10633 const ConstantInt *CaseVal = I.getCaseValue(); 10634 BranchProbability Prob = 10635 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10636 : BranchProbability(1, SI.getNumCases() + 1); 10637 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10638 } 10639 10640 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10641 10642 // Cluster adjacent cases with the same destination. We do this at all 10643 // optimization levels because it's cheap to do and will make codegen faster 10644 // if there are many clusters. 10645 sortAndRangeify(Clusters); 10646 10647 if (TM.getOptLevel() != CodeGenOpt::None) { 10648 // Replace an unreachable default with the most popular destination. 10649 // FIXME: Exploit unreachable default more aggressively. 10650 bool UnreachableDefault = 10651 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10652 if (UnreachableDefault && !Clusters.empty()) { 10653 DenseMap<const BasicBlock *, unsigned> Popularity; 10654 unsigned MaxPop = 0; 10655 const BasicBlock *MaxBB = nullptr; 10656 for (auto I : SI.cases()) { 10657 const BasicBlock *BB = I.getCaseSuccessor(); 10658 if (++Popularity[BB] > MaxPop) { 10659 MaxPop = Popularity[BB]; 10660 MaxBB = BB; 10661 } 10662 } 10663 // Set new default. 10664 assert(MaxPop > 0 && MaxBB); 10665 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10666 10667 // Remove cases that were pointing to the destination that is now the 10668 // default. 10669 CaseClusterVector New; 10670 New.reserve(Clusters.size()); 10671 for (CaseCluster &CC : Clusters) { 10672 if (CC.MBB != DefaultMBB) 10673 New.push_back(CC); 10674 } 10675 Clusters = std::move(New); 10676 } 10677 } 10678 10679 // The branch probablity of the peeled case. 10680 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10681 MachineBasicBlock *PeeledSwitchMBB = 10682 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10683 10684 // If there is only the default destination, jump there directly. 10685 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10686 if (Clusters.empty()) { 10687 assert(PeeledSwitchMBB == SwitchMBB); 10688 SwitchMBB->addSuccessor(DefaultMBB); 10689 if (DefaultMBB != NextBlock(SwitchMBB)) { 10690 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10691 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10692 } 10693 return; 10694 } 10695 10696 findJumpTables(Clusters, &SI, DefaultMBB); 10697 findBitTestClusters(Clusters, &SI); 10698 10699 LLVM_DEBUG({ 10700 dbgs() << "Case clusters: "; 10701 for (const CaseCluster &C : Clusters) { 10702 if (C.Kind == CC_JumpTable) 10703 dbgs() << "JT:"; 10704 if (C.Kind == CC_BitTests) 10705 dbgs() << "BT:"; 10706 10707 C.Low->getValue().print(dbgs(), true); 10708 if (C.Low != C.High) { 10709 dbgs() << '-'; 10710 C.High->getValue().print(dbgs(), true); 10711 } 10712 dbgs() << ' '; 10713 } 10714 dbgs() << '\n'; 10715 }); 10716 10717 assert(!Clusters.empty()); 10718 SwitchWorkList WorkList; 10719 CaseClusterIt First = Clusters.begin(); 10720 CaseClusterIt Last = Clusters.end() - 1; 10721 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10722 // Scale the branchprobability for DefaultMBB if the peel occurs and 10723 // DefaultMBB is not replaced. 10724 if (PeeledCaseProb != BranchProbability::getZero() && 10725 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10726 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10727 WorkList.push_back( 10728 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10729 10730 while (!WorkList.empty()) { 10731 SwitchWorkListItem W = WorkList.back(); 10732 WorkList.pop_back(); 10733 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10734 10735 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10736 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10737 // For optimized builds, lower large range as a balanced binary tree. 10738 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10739 continue; 10740 } 10741 10742 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10743 } 10744 } 10745