xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision a524f84780297f12d4aba18c002ce3e7b3675011)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
33 #include "llvm/CodeGen/CodeGenCommonISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
41 #include "llvm/CodeGen/MachineMemOperand.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/RuntimeLibcalls.h"
46 #include "llvm/CodeGen/SelectionDAG.h"
47 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
48 #include "llvm/CodeGen/StackMaps.h"
49 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
50 #include "llvm/CodeGen/TargetFrameLowering.h"
51 #include "llvm/CodeGen/TargetInstrInfo.h"
52 #include "llvm/CodeGen/TargetOpcodes.h"
53 #include "llvm/CodeGen/TargetRegisterInfo.h"
54 #include "llvm/CodeGen/TargetSubtargetInfo.h"
55 #include "llvm/CodeGen/WinEHFuncInfo.h"
56 #include "llvm/IR/Argument.h"
57 #include "llvm/IR/Attributes.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/CFG.h"
60 #include "llvm/IR/CallingConv.h"
61 #include "llvm/IR/Constant.h"
62 #include "llvm/IR/ConstantRange.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DataLayout.h"
65 #include "llvm/IR/DebugInfo.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/DiagnosticInfo.h"
69 #include "llvm/IR/EHPersonalities.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GetElementPtrTypeIterator.h"
72 #include "llvm/IR/InlineAsm.h"
73 #include "llvm/IR/InstrTypes.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/IntrinsicsAArch64.h"
78 #include "llvm/IR/IntrinsicsWebAssembly.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/Operator.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Statepoint.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/Support/AtomicOrdering.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Compiler.h"
93 #include "llvm/Support/Debug.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Target/TargetIntrinsicInfo.h"
97 #include "llvm/Target/TargetMachine.h"
98 #include "llvm/Target/TargetOptions.h"
99 #include "llvm/TargetParser/Triple.h"
100 #include "llvm/Transforms/Utils/Local.h"
101 #include <cstddef>
102 #include <iterator>
103 #include <limits>
104 #include <optional>
105 #include <tuple>
106 
107 using namespace llvm;
108 using namespace PatternMatch;
109 using namespace SwitchCG;
110 
111 #define DEBUG_TYPE "isel"
112 
113 /// LimitFloatPrecision - Generate low-precision inline sequences for
114 /// some float libcalls (6, 8 or 12 bits).
115 static unsigned LimitFloatPrecision;
116 
117 static cl::opt<bool>
118     InsertAssertAlign("insert-assert-align", cl::init(true),
119                       cl::desc("Insert the experimental `assertalign` node."),
120                       cl::ReallyHidden);
121 
122 static cl::opt<unsigned, true>
123     LimitFPPrecision("limit-float-precision",
124                      cl::desc("Generate low-precision inline sequences "
125                               "for some float libcalls"),
126                      cl::location(LimitFloatPrecision), cl::Hidden,
127                      cl::init(0));
128 
129 static cl::opt<unsigned> SwitchPeelThreshold(
130     "switch-peel-threshold", cl::Hidden, cl::init(66),
131     cl::desc("Set the case probability threshold for peeling the case from a "
132              "switch statement. A value greater than 100 will void this "
133              "optimization"));
134 
135 // Limit the width of DAG chains. This is important in general to prevent
136 // DAG-based analysis from blowing up. For example, alias analysis and
137 // load clustering may not complete in reasonable time. It is difficult to
138 // recognize and avoid this situation within each individual analysis, and
139 // future analyses are likely to have the same behavior. Limiting DAG width is
140 // the safe approach and will be especially important with global DAGs.
141 //
142 // MaxParallelChains default is arbitrarily high to avoid affecting
143 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
144 // sequence over this should have been converted to llvm.memcpy by the
145 // frontend. It is easy to induce this behavior with .ll code such as:
146 // %buffer = alloca [4096 x i8]
147 // %data = load [4096 x i8]* %argPtr
148 // store [4096 x i8] %data, [4096 x i8]* %buffer
149 static const unsigned MaxParallelChains = 64;
150 
151 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
152                                       const SDValue *Parts, unsigned NumParts,
153                                       MVT PartVT, EVT ValueVT, const Value *V,
154                                       std::optional<CallingConv::ID> CC);
155 
156 /// getCopyFromParts - Create a value that contains the specified legal parts
157 /// combined into the value they represent.  If the parts combine to a type
158 /// larger than ValueVT then AssertOp can be used to specify whether the extra
159 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
160 /// (ISD::AssertSext).
161 static SDValue
162 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
163                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
164                  std::optional<CallingConv::ID> CC = std::nullopt,
165                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
166   // Let the target assemble the parts if it wants to
167   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
168   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
169                                                    PartVT, ValueVT, CC))
170     return Val;
171 
172   if (ValueVT.isVector())
173     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
174                                   CC);
175 
176   assert(NumParts > 0 && "No parts to assemble!");
177   SDValue Val = Parts[0];
178 
179   if (NumParts > 1) {
180     // Assemble the value from multiple parts.
181     if (ValueVT.isInteger()) {
182       unsigned PartBits = PartVT.getSizeInBits();
183       unsigned ValueBits = ValueVT.getSizeInBits();
184 
185       // Assemble the power of 2 part.
186       unsigned RoundParts = llvm::bit_floor(NumParts);
187       unsigned RoundBits = PartBits * RoundParts;
188       EVT RoundVT = RoundBits == ValueBits ?
189         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
190       SDValue Lo, Hi;
191 
192       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
193 
194       if (RoundParts > 2) {
195         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
196                               PartVT, HalfVT, V);
197         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
198                               RoundParts / 2, PartVT, HalfVT, V);
199       } else {
200         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
201         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
202       }
203 
204       if (DAG.getDataLayout().isBigEndian())
205         std::swap(Lo, Hi);
206 
207       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
208 
209       if (RoundParts < NumParts) {
210         // Assemble the trailing non-power-of-2 part.
211         unsigned OddParts = NumParts - RoundParts;
212         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
213         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
214                               OddVT, V, CC);
215 
216         // Combine the round and odd parts.
217         Lo = Val;
218         if (DAG.getDataLayout().isBigEndian())
219           std::swap(Lo, Hi);
220         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
221         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
222         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
223                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
224                                          TLI.getShiftAmountTy(
225                                              TotalVT, DAG.getDataLayout())));
226         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
227         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
228       }
229     } else if (PartVT.isFloatingPoint()) {
230       // FP split into multiple FP parts (for ppcf128)
231       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
232              "Unexpected split");
233       SDValue Lo, Hi;
234       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
235       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
236       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
237         std::swap(Lo, Hi);
238       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
239     } else {
240       // FP split into integer parts (soft fp)
241       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
242              !PartVT.isVector() && "Unexpected split");
243       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
244       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
245     }
246   }
247 
248   // There is now one part, held in Val.  Correct it to match ValueVT.
249   // PartEVT is the type of the register class that holds the value.
250   // ValueVT is the type of the inline asm operation.
251   EVT PartEVT = Val.getValueType();
252 
253   if (PartEVT == ValueVT)
254     return Val;
255 
256   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
257       ValueVT.bitsLT(PartEVT)) {
258     // For an FP value in an integer part, we need to truncate to the right
259     // width first.
260     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
261     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
262   }
263 
264   // Handle types that have the same size.
265   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
266     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
267 
268   // Handle types with different sizes.
269   if (PartEVT.isInteger() && ValueVT.isInteger()) {
270     if (ValueVT.bitsLT(PartEVT)) {
271       // For a truncate, see if we have any information to
272       // indicate whether the truncated bits will always be
273       // zero or sign-extension.
274       if (AssertOp)
275         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
276                           DAG.getValueType(ValueVT));
277       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
278     }
279     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
280   }
281 
282   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
283     // FP_ROUND's are always exact here.
284     if (ValueVT.bitsLT(Val.getValueType()))
285       return DAG.getNode(
286           ISD::FP_ROUND, DL, ValueVT, Val,
287           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
288 
289     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
290   }
291 
292   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
293   // then truncating.
294   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
295       ValueVT.bitsLT(PartEVT)) {
296     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
297     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
298   }
299 
300   report_fatal_error("Unknown mismatch in getCopyFromParts!");
301 }
302 
303 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
304                                               const Twine &ErrMsg) {
305   const Instruction *I = dyn_cast_or_null<Instruction>(V);
306   if (!V)
307     return Ctx.emitError(ErrMsg);
308 
309   const char *AsmError = ", possible invalid constraint for vector type";
310   if (const CallInst *CI = dyn_cast<CallInst>(I))
311     if (CI->isInlineAsm())
312       return Ctx.emitError(I, ErrMsg + AsmError);
313 
314   return Ctx.emitError(I, ErrMsg);
315 }
316 
317 /// getCopyFromPartsVector - Create a value that contains the specified legal
318 /// parts combined into the value they represent.  If the parts combine to a
319 /// type larger than ValueVT then AssertOp can be used to specify whether the
320 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
321 /// ValueVT (ISD::AssertSext).
322 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
323                                       const SDValue *Parts, unsigned NumParts,
324                                       MVT PartVT, EVT ValueVT, const Value *V,
325                                       std::optional<CallingConv::ID> CallConv) {
326   assert(ValueVT.isVector() && "Not a vector value");
327   assert(NumParts > 0 && "No parts to assemble!");
328   const bool IsABIRegCopy = CallConv.has_value();
329 
330   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
331   SDValue Val = Parts[0];
332 
333   // Handle a multi-element vector.
334   if (NumParts > 1) {
335     EVT IntermediateVT;
336     MVT RegisterVT;
337     unsigned NumIntermediates;
338     unsigned NumRegs;
339 
340     if (IsABIRegCopy) {
341       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
342           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
343           NumIntermediates, RegisterVT);
344     } else {
345       NumRegs =
346           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
347                                      NumIntermediates, RegisterVT);
348     }
349 
350     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
351     NumParts = NumRegs; // Silence a compiler warning.
352     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
353     assert(RegisterVT.getSizeInBits() ==
354            Parts[0].getSimpleValueType().getSizeInBits() &&
355            "Part type sizes don't match!");
356 
357     // Assemble the parts into intermediate operands.
358     SmallVector<SDValue, 8> Ops(NumIntermediates);
359     if (NumIntermediates == NumParts) {
360       // If the register was not expanded, truncate or copy the value,
361       // as appropriate.
362       for (unsigned i = 0; i != NumParts; ++i)
363         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
364                                   PartVT, IntermediateVT, V, CallConv);
365     } else if (NumParts > 0) {
366       // If the intermediate type was expanded, build the intermediate
367       // operands from the parts.
368       assert(NumParts % NumIntermediates == 0 &&
369              "Must expand into a divisible number of parts!");
370       unsigned Factor = NumParts / NumIntermediates;
371       for (unsigned i = 0; i != NumIntermediates; ++i)
372         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
373                                   PartVT, IntermediateVT, V, CallConv);
374     }
375 
376     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
377     // intermediate operands.
378     EVT BuiltVectorTy =
379         IntermediateVT.isVector()
380             ? EVT::getVectorVT(
381                   *DAG.getContext(), IntermediateVT.getScalarType(),
382                   IntermediateVT.getVectorElementCount() * NumParts)
383             : EVT::getVectorVT(*DAG.getContext(),
384                                IntermediateVT.getScalarType(),
385                                NumIntermediates);
386     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
387                                                 : ISD::BUILD_VECTOR,
388                       DL, BuiltVectorTy, Ops);
389   }
390 
391   // There is now one part, held in Val.  Correct it to match ValueVT.
392   EVT PartEVT = Val.getValueType();
393 
394   if (PartEVT == ValueVT)
395     return Val;
396 
397   if (PartEVT.isVector()) {
398     // Vector/Vector bitcast.
399     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
400       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
401 
402     // If the parts vector has more elements than the value vector, then we
403     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
404     // Extract the elements we want.
405     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
406       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
407               ValueVT.getVectorElementCount().getKnownMinValue()) &&
408              (PartEVT.getVectorElementCount().isScalable() ==
409               ValueVT.getVectorElementCount().isScalable()) &&
410              "Cannot narrow, it would be a lossy transformation");
411       PartEVT =
412           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
413                            ValueVT.getVectorElementCount());
414       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
415                         DAG.getVectorIdxConstant(0, DL));
416       if (PartEVT == ValueVT)
417         return Val;
418       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
419         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
420     }
421 
422     // Promoted vector extract
423     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
424   }
425 
426   // Trivial bitcast if the types are the same size and the destination
427   // vector type is legal.
428   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
429       TLI.isTypeLegal(ValueVT))
430     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
431 
432   if (ValueVT.getVectorNumElements() != 1) {
433      // Certain ABIs require that vectors are passed as integers. For vectors
434      // are the same size, this is an obvious bitcast.
435      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
436        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
437      } else if (ValueVT.bitsLT(PartEVT)) {
438        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
439        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
440        // Drop the extra bits.
441        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
442        return DAG.getBitcast(ValueVT, Val);
443      }
444 
445      diagnosePossiblyInvalidConstraint(
446          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
447      return DAG.getUNDEF(ValueVT);
448   }
449 
450   // Handle cases such as i8 -> <1 x i1>
451   EVT ValueSVT = ValueVT.getVectorElementType();
452   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
453     unsigned ValueSize = ValueSVT.getSizeInBits();
454     if (ValueSize == PartEVT.getSizeInBits()) {
455       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
456     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
457       // It's possible a scalar floating point type gets softened to integer and
458       // then promoted to a larger integer. If PartEVT is the larger integer
459       // we need to truncate it and then bitcast to the FP type.
460       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
461       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
462       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
463       Val = DAG.getBitcast(ValueSVT, Val);
464     } else {
465       Val = ValueVT.isFloatingPoint()
466                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
467                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
468     }
469   }
470 
471   return DAG.getBuildVector(ValueVT, DL, Val);
472 }
473 
474 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
475                                  SDValue Val, SDValue *Parts, unsigned NumParts,
476                                  MVT PartVT, const Value *V,
477                                  std::optional<CallingConv::ID> CallConv);
478 
479 /// getCopyToParts - Create a series of nodes that contain the specified value
480 /// split into legal parts.  If the parts contain more bits than Val, then, for
481 /// integers, ExtendKind can be used to specify how to generate the extra bits.
482 static void
483 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
484                unsigned NumParts, MVT PartVT, const Value *V,
485                std::optional<CallingConv::ID> CallConv = std::nullopt,
486                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
487   // Let the target split the parts if it wants to
488   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
489   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
490                                       CallConv))
491     return;
492   EVT ValueVT = Val.getValueType();
493 
494   // Handle the vector case separately.
495   if (ValueVT.isVector())
496     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
497                                 CallConv);
498 
499   unsigned OrigNumParts = NumParts;
500   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
501          "Copying to an illegal type!");
502 
503   if (NumParts == 0)
504     return;
505 
506   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
507   EVT PartEVT = PartVT;
508   if (PartEVT == ValueVT) {
509     assert(NumParts == 1 && "No-op copy with multiple parts!");
510     Parts[0] = Val;
511     return;
512   }
513 
514   unsigned PartBits = PartVT.getSizeInBits();
515   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
516     // If the parts cover more bits than the value has, promote the value.
517     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
518       assert(NumParts == 1 && "Do not know what to promote to!");
519       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
520     } else {
521       if (ValueVT.isFloatingPoint()) {
522         // FP values need to be bitcast, then extended if they are being put
523         // into a larger container.
524         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
525         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
526       }
527       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
528              ValueVT.isInteger() &&
529              "Unknown mismatch!");
530       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
531       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
532       if (PartVT == MVT::x86mmx)
533         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
534     }
535   } else if (PartBits == ValueVT.getSizeInBits()) {
536     // Different types of the same size.
537     assert(NumParts == 1 && PartEVT != ValueVT);
538     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
540     // If the parts cover less bits than value has, truncate the value.
541     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
542            ValueVT.isInteger() &&
543            "Unknown mismatch!");
544     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
545     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
546     if (PartVT == MVT::x86mmx)
547       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
548   }
549 
550   // The value may have changed - recompute ValueVT.
551   ValueVT = Val.getValueType();
552   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
553          "Failed to tile the value with PartVT!");
554 
555   if (NumParts == 1) {
556     if (PartEVT != ValueVT) {
557       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
558                                         "scalar-to-vector conversion failed");
559       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
560     }
561 
562     Parts[0] = Val;
563     return;
564   }
565 
566   // Expand the value into multiple parts.
567   if (NumParts & (NumParts - 1)) {
568     // The number of parts is not a power of 2.  Split off and copy the tail.
569     assert(PartVT.isInteger() && ValueVT.isInteger() &&
570            "Do not know what to expand to!");
571     unsigned RoundParts = llvm::bit_floor(NumParts);
572     unsigned RoundBits = RoundParts * PartBits;
573     unsigned OddParts = NumParts - RoundParts;
574     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
575       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
576 
577     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
578                    CallConv);
579 
580     if (DAG.getDataLayout().isBigEndian())
581       // The odd parts were reversed by getCopyToParts - unreverse them.
582       std::reverse(Parts + RoundParts, Parts + NumParts);
583 
584     NumParts = RoundParts;
585     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
586     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
587   }
588 
589   // The number of parts is a power of 2.  Repeatedly bisect the value using
590   // EXTRACT_ELEMENT.
591   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
592                          EVT::getIntegerVT(*DAG.getContext(),
593                                            ValueVT.getSizeInBits()),
594                          Val);
595 
596   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
597     for (unsigned i = 0; i < NumParts; i += StepSize) {
598       unsigned ThisBits = StepSize * PartBits / 2;
599       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
600       SDValue &Part0 = Parts[i];
601       SDValue &Part1 = Parts[i+StepSize/2];
602 
603       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
604                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
605       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
606                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
607 
608       if (ThisBits == PartBits && ThisVT != PartVT) {
609         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
610         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
611       }
612     }
613   }
614 
615   if (DAG.getDataLayout().isBigEndian())
616     std::reverse(Parts, Parts + OrigNumParts);
617 }
618 
619 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
620                                      const SDLoc &DL, EVT PartVT) {
621   if (!PartVT.isVector())
622     return SDValue();
623 
624   EVT ValueVT = Val.getValueType();
625   ElementCount PartNumElts = PartVT.getVectorElementCount();
626   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
627 
628   // We only support widening vectors with equivalent element types and
629   // fixed/scalable properties. If a target needs to widen a fixed-length type
630   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
631   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
632       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
633       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
634     return SDValue();
635 
636   // Widening a scalable vector to another scalable vector is done by inserting
637   // the vector into a larger undef one.
638   if (PartNumElts.isScalable())
639     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
640                        Val, DAG.getVectorIdxConstant(0, DL));
641 
642   EVT ElementVT = PartVT.getVectorElementType();
643   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
644   // undef elements.
645   SmallVector<SDValue, 16> Ops;
646   DAG.ExtractVectorElements(Val, Ops);
647   SDValue EltUndef = DAG.getUNDEF(ElementVT);
648   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
649 
650   // FIXME: Use CONCAT for 2x -> 4x.
651   return DAG.getBuildVector(PartVT, DL, Ops);
652 }
653 
654 /// getCopyToPartsVector - Create a series of nodes that contain the specified
655 /// value split into legal parts.
656 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
657                                  SDValue Val, SDValue *Parts, unsigned NumParts,
658                                  MVT PartVT, const Value *V,
659                                  std::optional<CallingConv::ID> CallConv) {
660   EVT ValueVT = Val.getValueType();
661   assert(ValueVT.isVector() && "Not a vector");
662   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
663   const bool IsABIRegCopy = CallConv.has_value();
664 
665   if (NumParts == 1) {
666     EVT PartEVT = PartVT;
667     if (PartEVT == ValueVT) {
668       // Nothing to do.
669     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
670       // Bitconvert vector->vector case.
671       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
672     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
673       Val = Widened;
674     } else if (PartVT.isVector() &&
675                PartEVT.getVectorElementType().bitsGE(
676                    ValueVT.getVectorElementType()) &&
677                PartEVT.getVectorElementCount() ==
678                    ValueVT.getVectorElementCount()) {
679 
680       // Promoted vector extract
681       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
682     } else if (PartEVT.isVector() &&
683                PartEVT.getVectorElementType() !=
684                    ValueVT.getVectorElementType() &&
685                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
686                    TargetLowering::TypeWidenVector) {
687       // Combination of widening and promotion.
688       EVT WidenVT =
689           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
690                            PartVT.getVectorElementCount());
691       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
692       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
693     } else {
694       // Don't extract an integer from a float vector. This can happen if the
695       // FP type gets softened to integer and then promoted. The promotion
696       // prevents it from being picked up by the earlier bitcast case.
697       if (ValueVT.getVectorElementCount().isScalar() &&
698           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
699         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
700                           DAG.getVectorIdxConstant(0, DL));
701       } else {
702         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
703         assert(PartVT.getFixedSizeInBits() > ValueSize &&
704                "lossy conversion of vector to scalar type");
705         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
706         Val = DAG.getBitcast(IntermediateType, Val);
707         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
708       }
709     }
710 
711     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
712     Parts[0] = Val;
713     return;
714   }
715 
716   // Handle a multi-element vector.
717   EVT IntermediateVT;
718   MVT RegisterVT;
719   unsigned NumIntermediates;
720   unsigned NumRegs;
721   if (IsABIRegCopy) {
722     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
723         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
724         RegisterVT);
725   } else {
726     NumRegs =
727         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
728                                    NumIntermediates, RegisterVT);
729   }
730 
731   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
732   NumParts = NumRegs; // Silence a compiler warning.
733   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
734 
735   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
736          "Mixing scalable and fixed vectors when copying in parts");
737 
738   std::optional<ElementCount> DestEltCnt;
739 
740   if (IntermediateVT.isVector())
741     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
742   else
743     DestEltCnt = ElementCount::getFixed(NumIntermediates);
744 
745   EVT BuiltVectorTy = EVT::getVectorVT(
746       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
747 
748   if (ValueVT == BuiltVectorTy) {
749     // Nothing to do.
750   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
751     // Bitconvert vector->vector case.
752     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
753   } else {
754     if (BuiltVectorTy.getVectorElementType().bitsGT(
755             ValueVT.getVectorElementType())) {
756       // Integer promotion.
757       ValueVT = EVT::getVectorVT(*DAG.getContext(),
758                                  BuiltVectorTy.getVectorElementType(),
759                                  ValueVT.getVectorElementCount());
760       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
761     }
762 
763     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
764       Val = Widened;
765     }
766   }
767 
768   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
769 
770   // Split the vector into intermediate operands.
771   SmallVector<SDValue, 8> Ops(NumIntermediates);
772   for (unsigned i = 0; i != NumIntermediates; ++i) {
773     if (IntermediateVT.isVector()) {
774       // This does something sensible for scalable vectors - see the
775       // definition of EXTRACT_SUBVECTOR for further details.
776       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
777       Ops[i] =
778           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
779                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
780     } else {
781       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
782                            DAG.getVectorIdxConstant(i, DL));
783     }
784   }
785 
786   // Split the intermediate operands into legal parts.
787   if (NumParts == NumIntermediates) {
788     // If the register was not expanded, promote or copy the value,
789     // as appropriate.
790     for (unsigned i = 0; i != NumParts; ++i)
791       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
792   } else if (NumParts > 0) {
793     // If the intermediate type was expanded, split each the value into
794     // legal parts.
795     assert(NumIntermediates != 0 && "division by zero");
796     assert(NumParts % NumIntermediates == 0 &&
797            "Must expand into a divisible number of parts!");
798     unsigned Factor = NumParts / NumIntermediates;
799     for (unsigned i = 0; i != NumIntermediates; ++i)
800       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
801                      CallConv);
802   }
803 }
804 
805 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
806                            EVT valuevt, std::optional<CallingConv::ID> CC)
807     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
808       RegCount(1, regs.size()), CallConv(CC) {}
809 
810 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
811                            const DataLayout &DL, unsigned Reg, Type *Ty,
812                            std::optional<CallingConv::ID> CC) {
813   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
814 
815   CallConv = CC;
816 
817   for (EVT ValueVT : ValueVTs) {
818     unsigned NumRegs =
819         isABIMangled()
820             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
821             : TLI.getNumRegisters(Context, ValueVT);
822     MVT RegisterVT =
823         isABIMangled()
824             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
825             : TLI.getRegisterType(Context, ValueVT);
826     for (unsigned i = 0; i != NumRegs; ++i)
827       Regs.push_back(Reg + i);
828     RegVTs.push_back(RegisterVT);
829     RegCount.push_back(NumRegs);
830     Reg += NumRegs;
831   }
832 }
833 
834 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
835                                       FunctionLoweringInfo &FuncInfo,
836                                       const SDLoc &dl, SDValue &Chain,
837                                       SDValue *Glue, const Value *V) const {
838   // A Value with type {} or [0 x %t] needs no registers.
839   if (ValueVTs.empty())
840     return SDValue();
841 
842   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
843 
844   // Assemble the legal parts into the final values.
845   SmallVector<SDValue, 4> Values(ValueVTs.size());
846   SmallVector<SDValue, 8> Parts;
847   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
848     // Copy the legal parts from the registers.
849     EVT ValueVT = ValueVTs[Value];
850     unsigned NumRegs = RegCount[Value];
851     MVT RegisterVT = isABIMangled()
852                          ? TLI.getRegisterTypeForCallingConv(
853                                *DAG.getContext(), *CallConv, RegVTs[Value])
854                          : RegVTs[Value];
855 
856     Parts.resize(NumRegs);
857     for (unsigned i = 0; i != NumRegs; ++i) {
858       SDValue P;
859       if (!Glue) {
860         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
861       } else {
862         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
863         *Glue = P.getValue(2);
864       }
865 
866       Chain = P.getValue(1);
867       Parts[i] = P;
868 
869       // If the source register was virtual and if we know something about it,
870       // add an assert node.
871       if (!Register::isVirtualRegister(Regs[Part + i]) ||
872           !RegisterVT.isInteger())
873         continue;
874 
875       const FunctionLoweringInfo::LiveOutInfo *LOI =
876         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
877       if (!LOI)
878         continue;
879 
880       unsigned RegSize = RegisterVT.getScalarSizeInBits();
881       unsigned NumSignBits = LOI->NumSignBits;
882       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
883 
884       if (NumZeroBits == RegSize) {
885         // The current value is a zero.
886         // Explicitly express that as it would be easier for
887         // optimizations to kick in.
888         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
889         continue;
890       }
891 
892       // FIXME: We capture more information than the dag can represent.  For
893       // now, just use the tightest assertzext/assertsext possible.
894       bool isSExt;
895       EVT FromVT(MVT::Other);
896       if (NumZeroBits) {
897         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
898         isSExt = false;
899       } else if (NumSignBits > 1) {
900         FromVT =
901             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
902         isSExt = true;
903       } else {
904         continue;
905       }
906       // Add an assertion node.
907       assert(FromVT != MVT::Other);
908       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
909                              RegisterVT, P, DAG.getValueType(FromVT));
910     }
911 
912     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
913                                      RegisterVT, ValueVT, V, CallConv);
914     Part += NumRegs;
915     Parts.clear();
916   }
917 
918   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
919 }
920 
921 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
922                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
923                                  const Value *V,
924                                  ISD::NodeType PreferredExtendType) const {
925   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
926   ISD::NodeType ExtendKind = PreferredExtendType;
927 
928   // Get the list of the values's legal parts.
929   unsigned NumRegs = Regs.size();
930   SmallVector<SDValue, 8> Parts(NumRegs);
931   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
932     unsigned NumParts = RegCount[Value];
933 
934     MVT RegisterVT = isABIMangled()
935                          ? TLI.getRegisterTypeForCallingConv(
936                                *DAG.getContext(), *CallConv, RegVTs[Value])
937                          : RegVTs[Value];
938 
939     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
940       ExtendKind = ISD::ZERO_EXTEND;
941 
942     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
943                    NumParts, RegisterVT, V, CallConv, ExtendKind);
944     Part += NumParts;
945   }
946 
947   // Copy the parts into the registers.
948   SmallVector<SDValue, 8> Chains(NumRegs);
949   for (unsigned i = 0; i != NumRegs; ++i) {
950     SDValue Part;
951     if (!Glue) {
952       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
953     } else {
954       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
955       *Glue = Part.getValue(1);
956     }
957 
958     Chains[i] = Part.getValue(0);
959   }
960 
961   if (NumRegs == 1 || Glue)
962     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
963     // flagged to it. That is the CopyToReg nodes and the user are considered
964     // a single scheduling unit. If we create a TokenFactor and return it as
965     // chain, then the TokenFactor is both a predecessor (operand) of the
966     // user as well as a successor (the TF operands are flagged to the user).
967     // c1, f1 = CopyToReg
968     // c2, f2 = CopyToReg
969     // c3     = TokenFactor c1, c2
970     // ...
971     //        = op c3, ..., f2
972     Chain = Chains[NumRegs-1];
973   else
974     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
975 }
976 
977 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
978                                         unsigned MatchingIdx, const SDLoc &dl,
979                                         SelectionDAG &DAG,
980                                         std::vector<SDValue> &Ops) const {
981   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
982 
983   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
984   if (HasMatching)
985     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
986   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
987     // Put the register class of the virtual registers in the flag word.  That
988     // way, later passes can recompute register class constraints for inline
989     // assembly as well as normal instructions.
990     // Don't do this for tied operands that can use the regclass information
991     // from the def.
992     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
993     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
994     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
995   }
996 
997   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
998   Ops.push_back(Res);
999 
1000   if (Code == InlineAsm::Kind_Clobber) {
1001     // Clobbers should always have a 1:1 mapping with registers, and may
1002     // reference registers that have illegal (e.g. vector) types. Hence, we
1003     // shouldn't try to apply any sort of splitting logic to them.
1004     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1005            "No 1:1 mapping from clobbers to regs?");
1006     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1007     (void)SP;
1008     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1009       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1010       assert(
1011           (Regs[I] != SP ||
1012            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1013           "If we clobbered the stack pointer, MFI should know about it.");
1014     }
1015     return;
1016   }
1017 
1018   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1019     MVT RegisterVT = RegVTs[Value];
1020     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1021                                            RegisterVT);
1022     for (unsigned i = 0; i != NumRegs; ++i) {
1023       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1024       unsigned TheReg = Regs[Reg++];
1025       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1026     }
1027   }
1028 }
1029 
1030 SmallVector<std::pair<unsigned, TypeSize>, 4>
1031 RegsForValue::getRegsAndSizes() const {
1032   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1033   unsigned I = 0;
1034   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1035     unsigned RegCount = std::get<0>(CountAndVT);
1036     MVT RegisterVT = std::get<1>(CountAndVT);
1037     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1038     for (unsigned E = I + RegCount; I != E; ++I)
1039       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1040   }
1041   return OutVec;
1042 }
1043 
1044 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1045                                AssumptionCache *ac,
1046                                const TargetLibraryInfo *li) {
1047   AA = aa;
1048   AC = ac;
1049   GFI = gfi;
1050   LibInfo = li;
1051   Context = DAG.getContext();
1052   LPadToCallSiteMap.clear();
1053   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1054   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1055       *DAG.getMachineFunction().getFunction().getParent());
1056 }
1057 
1058 void SelectionDAGBuilder::clear() {
1059   NodeMap.clear();
1060   UnusedArgNodeMap.clear();
1061   PendingLoads.clear();
1062   PendingExports.clear();
1063   PendingConstrainedFP.clear();
1064   PendingConstrainedFPStrict.clear();
1065   CurInst = nullptr;
1066   HasTailCall = false;
1067   SDNodeOrder = LowestSDNodeOrder;
1068   StatepointLowering.clear();
1069 }
1070 
1071 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1072   DanglingDebugInfoMap.clear();
1073 }
1074 
1075 // Update DAG root to include dependencies on Pending chains.
1076 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1077   SDValue Root = DAG.getRoot();
1078 
1079   if (Pending.empty())
1080     return Root;
1081 
1082   // Add current root to PendingChains, unless we already indirectly
1083   // depend on it.
1084   if (Root.getOpcode() != ISD::EntryToken) {
1085     unsigned i = 0, e = Pending.size();
1086     for (; i != e; ++i) {
1087       assert(Pending[i].getNode()->getNumOperands() > 1);
1088       if (Pending[i].getNode()->getOperand(0) == Root)
1089         break;  // Don't add the root if we already indirectly depend on it.
1090     }
1091 
1092     if (i == e)
1093       Pending.push_back(Root);
1094   }
1095 
1096   if (Pending.size() == 1)
1097     Root = Pending[0];
1098   else
1099     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1100 
1101   DAG.setRoot(Root);
1102   Pending.clear();
1103   return Root;
1104 }
1105 
1106 SDValue SelectionDAGBuilder::getMemoryRoot() {
1107   return updateRoot(PendingLoads);
1108 }
1109 
1110 SDValue SelectionDAGBuilder::getRoot() {
1111   // Chain up all pending constrained intrinsics together with all
1112   // pending loads, by simply appending them to PendingLoads and
1113   // then calling getMemoryRoot().
1114   PendingLoads.reserve(PendingLoads.size() +
1115                        PendingConstrainedFP.size() +
1116                        PendingConstrainedFPStrict.size());
1117   PendingLoads.append(PendingConstrainedFP.begin(),
1118                       PendingConstrainedFP.end());
1119   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1120                       PendingConstrainedFPStrict.end());
1121   PendingConstrainedFP.clear();
1122   PendingConstrainedFPStrict.clear();
1123   return getMemoryRoot();
1124 }
1125 
1126 SDValue SelectionDAGBuilder::getControlRoot() {
1127   // We need to emit pending fpexcept.strict constrained intrinsics,
1128   // so append them to the PendingExports list.
1129   PendingExports.append(PendingConstrainedFPStrict.begin(),
1130                         PendingConstrainedFPStrict.end());
1131   PendingConstrainedFPStrict.clear();
1132   return updateRoot(PendingExports);
1133 }
1134 
1135 void SelectionDAGBuilder::visit(const Instruction &I) {
1136   // Set up outgoing PHI node register values before emitting the terminator.
1137   if (I.isTerminator()) {
1138     HandlePHINodesInSuccessorBlocks(I.getParent());
1139   }
1140 
1141   // Add SDDbgValue nodes for any var locs here. Do so before updating
1142   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1143   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1144     // Add SDDbgValue nodes for any var locs here. Do so before updating
1145     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1146     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1147          It != End; ++It) {
1148       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1149       dropDanglingDebugInfo(Var, It->Expr);
1150       SmallVector<Value *> Values(It->Values.location_ops());
1151       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1152                             It->Values.hasArgList()))
1153         addDanglingDebugInfo(It, SDNodeOrder);
1154     }
1155   }
1156 
1157   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1158   if (!isa<DbgInfoIntrinsic>(I))
1159     ++SDNodeOrder;
1160 
1161   CurInst = &I;
1162 
1163   // Set inserted listener only if required.
1164   bool NodeInserted = false;
1165   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1166   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1167   if (PCSectionsMD) {
1168     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1169         DAG, [&](SDNode *) { NodeInserted = true; });
1170   }
1171 
1172   visit(I.getOpcode(), I);
1173 
1174   if (!I.isTerminator() && !HasTailCall &&
1175       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1176     CopyToExportRegsIfNeeded(&I);
1177 
1178   // Handle metadata.
1179   if (PCSectionsMD) {
1180     auto It = NodeMap.find(&I);
1181     if (It != NodeMap.end()) {
1182       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1183     } else if (NodeInserted) {
1184       // This should not happen; if it does, don't let it go unnoticed so we can
1185       // fix it. Relevant visit*() function is probably missing a setValue().
1186       errs() << "warning: loosing !pcsections metadata ["
1187              << I.getModule()->getName() << "]\n";
1188       LLVM_DEBUG(I.dump());
1189       assert(false);
1190     }
1191   }
1192 
1193   CurInst = nullptr;
1194 }
1195 
1196 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1197   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1198 }
1199 
1200 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1201   // Note: this doesn't use InstVisitor, because it has to work with
1202   // ConstantExpr's in addition to instructions.
1203   switch (Opcode) {
1204   default: llvm_unreachable("Unknown instruction type encountered!");
1205     // Build the switch statement using the Instruction.def file.
1206 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1207     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1208 #include "llvm/IR/Instruction.def"
1209   }
1210 }
1211 
1212 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1213                                             DILocalVariable *Variable,
1214                                             DebugLoc DL, unsigned Order,
1215                                             RawLocationWrapper Values,
1216                                             DIExpression *Expression) {
1217   if (!Values.hasArgList())
1218     return false;
1219   // For variadic dbg_values we will now insert an undef.
1220   // FIXME: We can potentially recover these!
1221   SmallVector<SDDbgOperand, 2> Locs;
1222   for (const Value *V : Values.location_ops()) {
1223     auto *Undef = UndefValue::get(V->getType());
1224     Locs.push_back(SDDbgOperand::fromConst(Undef));
1225   }
1226   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1227                                         /*IsIndirect=*/false, DL, Order,
1228                                         /*IsVariadic=*/true);
1229   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1230   return true;
1231 }
1232 
1233 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc,
1234                                                unsigned Order) {
1235   if (!handleDanglingVariadicDebugInfo(
1236           DAG,
1237           const_cast<DILocalVariable *>(DAG.getFunctionVarLocs()
1238                                             ->getVariable(VarLoc->VariableID)
1239                                             .getVariable()),
1240           VarLoc->DL, Order, VarLoc->Values, VarLoc->Expr)) {
1241     DanglingDebugInfoMap[VarLoc->Values.getVariableLocationOp(0)].emplace_back(
1242         VarLoc, Order);
1243   }
1244 }
1245 
1246 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1247                                                unsigned Order) {
1248   // We treat variadic dbg_values differently at this stage.
1249   if (!handleDanglingVariadicDebugInfo(
1250           DAG, DI->getVariable(), DI->getDebugLoc(), Order,
1251           DI->getWrappedLocation(), DI->getExpression())) {
1252     // TODO: Dangling debug info will eventually either be resolved or produce
1253     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1254     // between the original dbg.value location and its resolved DBG_VALUE,
1255     // which we should ideally fill with an extra Undef DBG_VALUE.
1256     assert(DI->getNumVariableLocationOps() == 1 &&
1257            "DbgValueInst without an ArgList should have a single location "
1258            "operand.");
1259     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order);
1260   }
1261 }
1262 
1263 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1264                                                 const DIExpression *Expr) {
1265   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1266     DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs());
1267     DIExpression *DanglingExpr = DDI.getExpression();
1268     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1269       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI)
1270                         << "\n");
1271       return true;
1272     }
1273     return false;
1274   };
1275 
1276   for (auto &DDIMI : DanglingDebugInfoMap) {
1277     DanglingDebugInfoVector &DDIV = DDIMI.second;
1278 
1279     // If debug info is to be dropped, run it through final checks to see
1280     // whether it can be salvaged.
1281     for (auto &DDI : DDIV)
1282       if (isMatchingDbgValue(DDI))
1283         salvageUnresolvedDbgValue(DDI);
1284 
1285     erase_if(DDIV, isMatchingDbgValue);
1286   }
1287 }
1288 
1289 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1290 // generate the debug data structures now that we've seen its definition.
1291 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1292                                                    SDValue Val) {
1293   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1294   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1295     return;
1296 
1297   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1298   for (auto &DDI : DDIV) {
1299     DebugLoc DL = DDI.getDebugLoc();
1300     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1301     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1302     DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs());
1303     DIExpression *Expr = DDI.getExpression();
1304     assert(Variable->isValidLocationForIntrinsic(DL) &&
1305            "Expected inlined-at fields to agree");
1306     SDDbgValue *SDV;
1307     if (Val.getNode()) {
1308       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1309       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1310       // we couldn't resolve it directly when examining the DbgValue intrinsic
1311       // in the first place we should not be more successful here). Unless we
1312       // have some test case that prove this to be correct we should avoid
1313       // calling EmitFuncArgumentDbgValue here.
1314       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1315                                     FuncArgumentDbgValueKind::Value, Val)) {
1316         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI)
1317                           << "\n");
1318         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1319         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1320         // inserted after the definition of Val when emitting the instructions
1321         // after ISel. An alternative could be to teach
1322         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1323         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1324                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1325                    << ValSDNodeOrder << "\n");
1326         SDV = getDbgValue(Val, Variable, Expr, DL,
1327                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1328         DAG.AddDbgValue(SDV, false);
1329       } else
1330         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1331                           << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n");
1332     } else {
1333       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n");
1334       auto Undef = UndefValue::get(V->getType());
1335       auto SDV =
1336           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1337       DAG.AddDbgValue(SDV, false);
1338     }
1339   }
1340   DDIV.clear();
1341 }
1342 
1343 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1344   // TODO: For the variadic implementation, instead of only checking the fail
1345   // state of `handleDebugValue`, we need know specifically which values were
1346   // invalid, so that we attempt to salvage only those values when processing
1347   // a DIArgList.
1348   Value *V = DDI.getVariableLocationOp(0);
1349   Value *OrigV = V;
1350   DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs());
1351   DIExpression *Expr = DDI.getExpression();
1352   DebugLoc DL = DDI.getDebugLoc();
1353   unsigned SDOrder = DDI.getSDNodeOrder();
1354 
1355   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1356   // that DW_OP_stack_value is desired.
1357   bool StackValue = true;
1358 
1359   // Can this Value can be encoded without any further work?
1360   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1361     return;
1362 
1363   // Attempt to salvage back through as many instructions as possible. Bail if
1364   // a non-instruction is seen, such as a constant expression or global
1365   // variable. FIXME: Further work could recover those too.
1366   while (isa<Instruction>(V)) {
1367     Instruction &VAsInst = *cast<Instruction>(V);
1368     // Temporary "0", awaiting real implementation.
1369     SmallVector<uint64_t, 16> Ops;
1370     SmallVector<Value *, 4> AdditionalValues;
1371     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1372                              AdditionalValues);
1373     // If we cannot salvage any further, and haven't yet found a suitable debug
1374     // expression, bail out.
1375     if (!V)
1376       break;
1377 
1378     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1379     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1380     // here for variadic dbg_values, remove that condition.
1381     if (!AdditionalValues.empty())
1382       break;
1383 
1384     // New value and expr now represent this debuginfo.
1385     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1386 
1387     // Some kind of simplification occurred: check whether the operand of the
1388     // salvaged debug expression can be encoded in this DAG.
1389     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1390       LLVM_DEBUG(
1391           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1392                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1393       return;
1394     }
1395   }
1396 
1397   // This was the final opportunity to salvage this debug information, and it
1398   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1399   // any earlier variable location.
1400   assert(OrigV && "V shouldn't be null");
1401   auto *Undef = UndefValue::get(OrigV->getType());
1402   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1403   DAG.AddDbgValue(SDV, false);
1404   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << printDDI(DDI)
1405                     << "\n");
1406 }
1407 
1408 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1409                                                DIExpression *Expr,
1410                                                DebugLoc DbgLoc,
1411                                                unsigned Order) {
1412   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1413   DIExpression *NewExpr =
1414       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1415   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1416                    /*IsVariadic*/ false);
1417 }
1418 
1419 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1420                                            DILocalVariable *Var,
1421                                            DIExpression *Expr, DebugLoc DbgLoc,
1422                                            unsigned Order, bool IsVariadic) {
1423   if (Values.empty())
1424     return true;
1425   SmallVector<SDDbgOperand> LocationOps;
1426   SmallVector<SDNode *> Dependencies;
1427   for (const Value *V : Values) {
1428     // Constant value.
1429     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1430         isa<ConstantPointerNull>(V)) {
1431       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1432       continue;
1433     }
1434 
1435     // Look through IntToPtr constants.
1436     if (auto *CE = dyn_cast<ConstantExpr>(V))
1437       if (CE->getOpcode() == Instruction::IntToPtr) {
1438         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1439         continue;
1440       }
1441 
1442     // If the Value is a frame index, we can create a FrameIndex debug value
1443     // without relying on the DAG at all.
1444     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1445       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1446       if (SI != FuncInfo.StaticAllocaMap.end()) {
1447         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1448         continue;
1449       }
1450     }
1451 
1452     // Do not use getValue() in here; we don't want to generate code at
1453     // this point if it hasn't been done yet.
1454     SDValue N = NodeMap[V];
1455     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1456       N = UnusedArgNodeMap[V];
1457     if (N.getNode()) {
1458       // Only emit func arg dbg value for non-variadic dbg.values for now.
1459       if (!IsVariadic &&
1460           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1461                                    FuncArgumentDbgValueKind::Value, N))
1462         return true;
1463       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1464         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1465         // describe stack slot locations.
1466         //
1467         // Consider "int x = 0; int *px = &x;". There are two kinds of
1468         // interesting debug values here after optimization:
1469         //
1470         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1471         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1472         //
1473         // Both describe the direct values of their associated variables.
1474         Dependencies.push_back(N.getNode());
1475         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1476         continue;
1477       }
1478       LocationOps.emplace_back(
1479           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1480       continue;
1481     }
1482 
1483     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1484     // Special rules apply for the first dbg.values of parameter variables in a
1485     // function. Identify them by the fact they reference Argument Values, that
1486     // they're parameters, and they are parameters of the current function. We
1487     // need to let them dangle until they get an SDNode.
1488     bool IsParamOfFunc =
1489         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1490     if (IsParamOfFunc)
1491       return false;
1492 
1493     // The value is not used in this block yet (or it would have an SDNode).
1494     // We still want the value to appear for the user if possible -- if it has
1495     // an associated VReg, we can refer to that instead.
1496     auto VMI = FuncInfo.ValueMap.find(V);
1497     if (VMI != FuncInfo.ValueMap.end()) {
1498       unsigned Reg = VMI->second;
1499       // If this is a PHI node, it may be split up into several MI PHI nodes
1500       // (in FunctionLoweringInfo::set).
1501       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1502                        V->getType(), std::nullopt);
1503       if (RFV.occupiesMultipleRegs()) {
1504         // FIXME: We could potentially support variadic dbg_values here.
1505         if (IsVariadic)
1506           return false;
1507         unsigned Offset = 0;
1508         unsigned BitsToDescribe = 0;
1509         if (auto VarSize = Var->getSizeInBits())
1510           BitsToDescribe = *VarSize;
1511         if (auto Fragment = Expr->getFragmentInfo())
1512           BitsToDescribe = Fragment->SizeInBits;
1513         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1514           // Bail out if all bits are described already.
1515           if (Offset >= BitsToDescribe)
1516             break;
1517           // TODO: handle scalable vectors.
1518           unsigned RegisterSize = RegAndSize.second;
1519           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1520                                       ? BitsToDescribe - Offset
1521                                       : RegisterSize;
1522           auto FragmentExpr = DIExpression::createFragmentExpression(
1523               Expr, Offset, FragmentSize);
1524           if (!FragmentExpr)
1525             continue;
1526           SDDbgValue *SDV = DAG.getVRegDbgValue(
1527               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1528           DAG.AddDbgValue(SDV, false);
1529           Offset += RegisterSize;
1530         }
1531         return true;
1532       }
1533       // We can use simple vreg locations for variadic dbg_values as well.
1534       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1535       continue;
1536     }
1537     // We failed to create a SDDbgOperand for V.
1538     return false;
1539   }
1540 
1541   // We have created a SDDbgOperand for each Value in Values.
1542   // Should use Order instead of SDNodeOrder?
1543   assert(!LocationOps.empty());
1544   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1545                                         /*IsIndirect=*/false, DbgLoc,
1546                                         SDNodeOrder, IsVariadic);
1547   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1548   return true;
1549 }
1550 
1551 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1552   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1553   for (auto &Pair : DanglingDebugInfoMap)
1554     for (auto &DDI : Pair.second)
1555       salvageUnresolvedDbgValue(DDI);
1556   clearDanglingDebugInfo();
1557 }
1558 
1559 /// getCopyFromRegs - If there was virtual register allocated for the value V
1560 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1561 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1562   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1563   SDValue Result;
1564 
1565   if (It != FuncInfo.ValueMap.end()) {
1566     Register InReg = It->second;
1567 
1568     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1569                      DAG.getDataLayout(), InReg, Ty,
1570                      std::nullopt); // This is not an ABI copy.
1571     SDValue Chain = DAG.getEntryNode();
1572     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1573                                  V);
1574     resolveDanglingDebugInfo(V, Result);
1575   }
1576 
1577   return Result;
1578 }
1579 
1580 /// getValue - Return an SDValue for the given Value.
1581 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1582   // If we already have an SDValue for this value, use it. It's important
1583   // to do this first, so that we don't create a CopyFromReg if we already
1584   // have a regular SDValue.
1585   SDValue &N = NodeMap[V];
1586   if (N.getNode()) return N;
1587 
1588   // If there's a virtual register allocated and initialized for this
1589   // value, use it.
1590   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1591     return copyFromReg;
1592 
1593   // Otherwise create a new SDValue and remember it.
1594   SDValue Val = getValueImpl(V);
1595   NodeMap[V] = Val;
1596   resolveDanglingDebugInfo(V, Val);
1597   return Val;
1598 }
1599 
1600 /// getNonRegisterValue - Return an SDValue for the given Value, but
1601 /// don't look in FuncInfo.ValueMap for a virtual register.
1602 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1603   // If we already have an SDValue for this value, use it.
1604   SDValue &N = NodeMap[V];
1605   if (N.getNode()) {
1606     if (isIntOrFPConstant(N)) {
1607       // Remove the debug location from the node as the node is about to be used
1608       // in a location which may differ from the original debug location.  This
1609       // is relevant to Constant and ConstantFP nodes because they can appear
1610       // as constant expressions inside PHI nodes.
1611       N->setDebugLoc(DebugLoc());
1612     }
1613     return N;
1614   }
1615 
1616   // Otherwise create a new SDValue and remember it.
1617   SDValue Val = getValueImpl(V);
1618   NodeMap[V] = Val;
1619   resolveDanglingDebugInfo(V, Val);
1620   return Val;
1621 }
1622 
1623 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1624 /// Create an SDValue for the given value.
1625 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1626   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1627 
1628   if (const Constant *C = dyn_cast<Constant>(V)) {
1629     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1630 
1631     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1632       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1633 
1634     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1635       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1636 
1637     if (isa<ConstantPointerNull>(C)) {
1638       unsigned AS = V->getType()->getPointerAddressSpace();
1639       return DAG.getConstant(0, getCurSDLoc(),
1640                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1641     }
1642 
1643     if (match(C, m_VScale()))
1644       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1645 
1646     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1647       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1648 
1649     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1650       return DAG.getUNDEF(VT);
1651 
1652     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1653       visit(CE->getOpcode(), *CE);
1654       SDValue N1 = NodeMap[V];
1655       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1656       return N1;
1657     }
1658 
1659     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1660       SmallVector<SDValue, 4> Constants;
1661       for (const Use &U : C->operands()) {
1662         SDNode *Val = getValue(U).getNode();
1663         // If the operand is an empty aggregate, there are no values.
1664         if (!Val) continue;
1665         // Add each leaf value from the operand to the Constants list
1666         // to form a flattened list of all the values.
1667         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1668           Constants.push_back(SDValue(Val, i));
1669       }
1670 
1671       return DAG.getMergeValues(Constants, getCurSDLoc());
1672     }
1673 
1674     if (const ConstantDataSequential *CDS =
1675           dyn_cast<ConstantDataSequential>(C)) {
1676       SmallVector<SDValue, 4> Ops;
1677       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1678         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1679         // Add each leaf value from the operand to the Constants list
1680         // to form a flattened list of all the values.
1681         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1682           Ops.push_back(SDValue(Val, i));
1683       }
1684 
1685       if (isa<ArrayType>(CDS->getType()))
1686         return DAG.getMergeValues(Ops, getCurSDLoc());
1687       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1688     }
1689 
1690     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1691       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1692              "Unknown struct or array constant!");
1693 
1694       SmallVector<EVT, 4> ValueVTs;
1695       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1696       unsigned NumElts = ValueVTs.size();
1697       if (NumElts == 0)
1698         return SDValue(); // empty struct
1699       SmallVector<SDValue, 4> Constants(NumElts);
1700       for (unsigned i = 0; i != NumElts; ++i) {
1701         EVT EltVT = ValueVTs[i];
1702         if (isa<UndefValue>(C))
1703           Constants[i] = DAG.getUNDEF(EltVT);
1704         else if (EltVT.isFloatingPoint())
1705           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1706         else
1707           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1708       }
1709 
1710       return DAG.getMergeValues(Constants, getCurSDLoc());
1711     }
1712 
1713     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1714       return DAG.getBlockAddress(BA, VT);
1715 
1716     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1717       return getValue(Equiv->getGlobalValue());
1718 
1719     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1720       return getValue(NC->getGlobalValue());
1721 
1722     VectorType *VecTy = cast<VectorType>(V->getType());
1723 
1724     // Now that we know the number and type of the elements, get that number of
1725     // elements into the Ops array based on what kind of constant it is.
1726     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1727       SmallVector<SDValue, 16> Ops;
1728       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1729       for (unsigned i = 0; i != NumElements; ++i)
1730         Ops.push_back(getValue(CV->getOperand(i)));
1731 
1732       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1733     }
1734 
1735     if (isa<ConstantAggregateZero>(C)) {
1736       EVT EltVT =
1737           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1738 
1739       SDValue Op;
1740       if (EltVT.isFloatingPoint())
1741         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1742       else
1743         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1744 
1745       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1746     }
1747 
1748     llvm_unreachable("Unknown vector constant");
1749   }
1750 
1751   // If this is a static alloca, generate it as the frameindex instead of
1752   // computation.
1753   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1754     DenseMap<const AllocaInst*, int>::iterator SI =
1755       FuncInfo.StaticAllocaMap.find(AI);
1756     if (SI != FuncInfo.StaticAllocaMap.end())
1757       return DAG.getFrameIndex(
1758           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1759   }
1760 
1761   // If this is an instruction which fast-isel has deferred, select it now.
1762   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1763     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1764 
1765     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1766                      Inst->getType(), std::nullopt);
1767     SDValue Chain = DAG.getEntryNode();
1768     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1769   }
1770 
1771   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1772     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1773 
1774   if (const auto *BB = dyn_cast<BasicBlock>(V))
1775     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1776 
1777   llvm_unreachable("Can't get register for value!");
1778 }
1779 
1780 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1781   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1782   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1783   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1784   bool IsSEH = isAsynchronousEHPersonality(Pers);
1785   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1786   if (!IsSEH)
1787     CatchPadMBB->setIsEHScopeEntry();
1788   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1789   if (IsMSVCCXX || IsCoreCLR)
1790     CatchPadMBB->setIsEHFuncletEntry();
1791 }
1792 
1793 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1794   // Update machine-CFG edge.
1795   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1796   FuncInfo.MBB->addSuccessor(TargetMBB);
1797   TargetMBB->setIsEHCatchretTarget(true);
1798   DAG.getMachineFunction().setHasEHCatchret(true);
1799 
1800   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1801   bool IsSEH = isAsynchronousEHPersonality(Pers);
1802   if (IsSEH) {
1803     // If this is not a fall-through branch or optimizations are switched off,
1804     // emit the branch.
1805     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1806         TM.getOptLevel() == CodeGenOpt::None)
1807       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1808                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1809     return;
1810   }
1811 
1812   // Figure out the funclet membership for the catchret's successor.
1813   // This will be used by the FuncletLayout pass to determine how to order the
1814   // BB's.
1815   // A 'catchret' returns to the outer scope's color.
1816   Value *ParentPad = I.getCatchSwitchParentPad();
1817   const BasicBlock *SuccessorColor;
1818   if (isa<ConstantTokenNone>(ParentPad))
1819     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1820   else
1821     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1822   assert(SuccessorColor && "No parent funclet for catchret!");
1823   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1824   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1825 
1826   // Create the terminator node.
1827   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1828                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1829                             DAG.getBasicBlock(SuccessorColorMBB));
1830   DAG.setRoot(Ret);
1831 }
1832 
1833 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1834   // Don't emit any special code for the cleanuppad instruction. It just marks
1835   // the start of an EH scope/funclet.
1836   FuncInfo.MBB->setIsEHScopeEntry();
1837   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1838   if (Pers != EHPersonality::Wasm_CXX) {
1839     FuncInfo.MBB->setIsEHFuncletEntry();
1840     FuncInfo.MBB->setIsCleanupFuncletEntry();
1841   }
1842 }
1843 
1844 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1845 // not match, it is OK to add only the first unwind destination catchpad to the
1846 // successors, because there will be at least one invoke instruction within the
1847 // catch scope that points to the next unwind destination, if one exists, so
1848 // CFGSort cannot mess up with BB sorting order.
1849 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1850 // call within them, and catchpads only consisting of 'catch (...)' have a
1851 // '__cxa_end_catch' call within them, both of which generate invokes in case
1852 // the next unwind destination exists, i.e., the next unwind destination is not
1853 // the caller.)
1854 //
1855 // Having at most one EH pad successor is also simpler and helps later
1856 // transformations.
1857 //
1858 // For example,
1859 // current:
1860 //   invoke void @foo to ... unwind label %catch.dispatch
1861 // catch.dispatch:
1862 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1863 // catch.start:
1864 //   ...
1865 //   ... in this BB or some other child BB dominated by this BB there will be an
1866 //   invoke that points to 'next' BB as an unwind destination
1867 //
1868 // next: ; We don't need to add this to 'current' BB's successor
1869 //   ...
1870 static void findWasmUnwindDestinations(
1871     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1872     BranchProbability Prob,
1873     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1874         &UnwindDests) {
1875   while (EHPadBB) {
1876     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1877     if (isa<CleanupPadInst>(Pad)) {
1878       // Stop on cleanup pads.
1879       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1880       UnwindDests.back().first->setIsEHScopeEntry();
1881       break;
1882     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1883       // Add the catchpad handlers to the possible destinations. We don't
1884       // continue to the unwind destination of the catchswitch for wasm.
1885       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1886         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1887         UnwindDests.back().first->setIsEHScopeEntry();
1888       }
1889       break;
1890     } else {
1891       continue;
1892     }
1893   }
1894 }
1895 
1896 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1897 /// many places it could ultimately go. In the IR, we have a single unwind
1898 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1899 /// This function skips over imaginary basic blocks that hold catchswitch
1900 /// instructions, and finds all the "real" machine
1901 /// basic block destinations. As those destinations may not be successors of
1902 /// EHPadBB, here we also calculate the edge probability to those destinations.
1903 /// The passed-in Prob is the edge probability to EHPadBB.
1904 static void findUnwindDestinations(
1905     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1906     BranchProbability Prob,
1907     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1908         &UnwindDests) {
1909   EHPersonality Personality =
1910     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1911   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1912   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1913   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1914   bool IsSEH = isAsynchronousEHPersonality(Personality);
1915 
1916   if (IsWasmCXX) {
1917     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1918     assert(UnwindDests.size() <= 1 &&
1919            "There should be at most one unwind destination for wasm");
1920     return;
1921   }
1922 
1923   while (EHPadBB) {
1924     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1925     BasicBlock *NewEHPadBB = nullptr;
1926     if (isa<LandingPadInst>(Pad)) {
1927       // Stop on landingpads. They are not funclets.
1928       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1929       break;
1930     } else if (isa<CleanupPadInst>(Pad)) {
1931       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1932       // personalities.
1933       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1934       UnwindDests.back().first->setIsEHScopeEntry();
1935       UnwindDests.back().first->setIsEHFuncletEntry();
1936       break;
1937     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1938       // Add the catchpad handlers to the possible destinations.
1939       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1940         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1941         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1942         if (IsMSVCCXX || IsCoreCLR)
1943           UnwindDests.back().first->setIsEHFuncletEntry();
1944         if (!IsSEH)
1945           UnwindDests.back().first->setIsEHScopeEntry();
1946       }
1947       NewEHPadBB = CatchSwitch->getUnwindDest();
1948     } else {
1949       continue;
1950     }
1951 
1952     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1953     if (BPI && NewEHPadBB)
1954       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1955     EHPadBB = NewEHPadBB;
1956   }
1957 }
1958 
1959 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1960   // Update successor info.
1961   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1962   auto UnwindDest = I.getUnwindDest();
1963   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1964   BranchProbability UnwindDestProb =
1965       (BPI && UnwindDest)
1966           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1967           : BranchProbability::getZero();
1968   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1969   for (auto &UnwindDest : UnwindDests) {
1970     UnwindDest.first->setIsEHPad();
1971     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1972   }
1973   FuncInfo.MBB->normalizeSuccProbs();
1974 
1975   // Create the terminator node.
1976   SDValue Ret =
1977       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1978   DAG.setRoot(Ret);
1979 }
1980 
1981 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1982   report_fatal_error("visitCatchSwitch not yet implemented!");
1983 }
1984 
1985 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1986   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1987   auto &DL = DAG.getDataLayout();
1988   SDValue Chain = getControlRoot();
1989   SmallVector<ISD::OutputArg, 8> Outs;
1990   SmallVector<SDValue, 8> OutVals;
1991 
1992   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1993   // lower
1994   //
1995   //   %val = call <ty> @llvm.experimental.deoptimize()
1996   //   ret <ty> %val
1997   //
1998   // differently.
1999   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2000     LowerDeoptimizingReturn();
2001     return;
2002   }
2003 
2004   if (!FuncInfo.CanLowerReturn) {
2005     unsigned DemoteReg = FuncInfo.DemoteRegister;
2006     const Function *F = I.getParent()->getParent();
2007 
2008     // Emit a store of the return value through the virtual register.
2009     // Leave Outs empty so that LowerReturn won't try to load return
2010     // registers the usual way.
2011     SmallVector<EVT, 1> PtrValueVTs;
2012     ComputeValueVTs(TLI, DL,
2013                     F->getReturnType()->getPointerTo(
2014                         DAG.getDataLayout().getAllocaAddrSpace()),
2015                     PtrValueVTs);
2016 
2017     SDValue RetPtr =
2018         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2019     SDValue RetOp = getValue(I.getOperand(0));
2020 
2021     SmallVector<EVT, 4> ValueVTs, MemVTs;
2022     SmallVector<uint64_t, 4> Offsets;
2023     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2024                     &Offsets);
2025     unsigned NumValues = ValueVTs.size();
2026 
2027     SmallVector<SDValue, 4> Chains(NumValues);
2028     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2029     for (unsigned i = 0; i != NumValues; ++i) {
2030       // An aggregate return value cannot wrap around the address space, so
2031       // offsets to its parts don't wrap either.
2032       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2033                                            TypeSize::Fixed(Offsets[i]));
2034 
2035       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2036       if (MemVTs[i] != ValueVTs[i])
2037         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2038       Chains[i] = DAG.getStore(
2039           Chain, getCurSDLoc(), Val,
2040           // FIXME: better loc info would be nice.
2041           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2042           commonAlignment(BaseAlign, Offsets[i]));
2043     }
2044 
2045     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2046                         MVT::Other, Chains);
2047   } else if (I.getNumOperands() != 0) {
2048     SmallVector<EVT, 4> ValueVTs;
2049     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2050     unsigned NumValues = ValueVTs.size();
2051     if (NumValues) {
2052       SDValue RetOp = getValue(I.getOperand(0));
2053 
2054       const Function *F = I.getParent()->getParent();
2055 
2056       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2057           I.getOperand(0)->getType(), F->getCallingConv(),
2058           /*IsVarArg*/ false, DL);
2059 
2060       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2061       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2062         ExtendKind = ISD::SIGN_EXTEND;
2063       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2064         ExtendKind = ISD::ZERO_EXTEND;
2065 
2066       LLVMContext &Context = F->getContext();
2067       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2068 
2069       for (unsigned j = 0; j != NumValues; ++j) {
2070         EVT VT = ValueVTs[j];
2071 
2072         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2073           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2074 
2075         CallingConv::ID CC = F->getCallingConv();
2076 
2077         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2078         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2079         SmallVector<SDValue, 4> Parts(NumParts);
2080         getCopyToParts(DAG, getCurSDLoc(),
2081                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2082                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2083 
2084         // 'inreg' on function refers to return value
2085         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2086         if (RetInReg)
2087           Flags.setInReg();
2088 
2089         if (I.getOperand(0)->getType()->isPointerTy()) {
2090           Flags.setPointer();
2091           Flags.setPointerAddrSpace(
2092               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2093         }
2094 
2095         if (NeedsRegBlock) {
2096           Flags.setInConsecutiveRegs();
2097           if (j == NumValues - 1)
2098             Flags.setInConsecutiveRegsLast();
2099         }
2100 
2101         // Propagate extension type if any
2102         if (ExtendKind == ISD::SIGN_EXTEND)
2103           Flags.setSExt();
2104         else if (ExtendKind == ISD::ZERO_EXTEND)
2105           Flags.setZExt();
2106 
2107         for (unsigned i = 0; i < NumParts; ++i) {
2108           Outs.push_back(ISD::OutputArg(Flags,
2109                                         Parts[i].getValueType().getSimpleVT(),
2110                                         VT, /*isfixed=*/true, 0, 0));
2111           OutVals.push_back(Parts[i]);
2112         }
2113       }
2114     }
2115   }
2116 
2117   // Push in swifterror virtual register as the last element of Outs. This makes
2118   // sure swifterror virtual register will be returned in the swifterror
2119   // physical register.
2120   const Function *F = I.getParent()->getParent();
2121   if (TLI.supportSwiftError() &&
2122       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2123     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2124     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2125     Flags.setSwiftError();
2126     Outs.push_back(ISD::OutputArg(
2127         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2128         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2129     // Create SDNode for the swifterror virtual register.
2130     OutVals.push_back(
2131         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2132                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2133                         EVT(TLI.getPointerTy(DL))));
2134   }
2135 
2136   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2137   CallingConv::ID CallConv =
2138     DAG.getMachineFunction().getFunction().getCallingConv();
2139   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2140       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2141 
2142   // Verify that the target's LowerReturn behaved as expected.
2143   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2144          "LowerReturn didn't return a valid chain!");
2145 
2146   // Update the DAG with the new chain value resulting from return lowering.
2147   DAG.setRoot(Chain);
2148 }
2149 
2150 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2151 /// created for it, emit nodes to copy the value into the virtual
2152 /// registers.
2153 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2154   // Skip empty types
2155   if (V->getType()->isEmptyTy())
2156     return;
2157 
2158   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2159   if (VMI != FuncInfo.ValueMap.end()) {
2160     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2161            "Unused value assigned virtual registers!");
2162     CopyValueToVirtualRegister(V, VMI->second);
2163   }
2164 }
2165 
2166 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2167 /// the current basic block, add it to ValueMap now so that we'll get a
2168 /// CopyTo/FromReg.
2169 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2170   // No need to export constants.
2171   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2172 
2173   // Already exported?
2174   if (FuncInfo.isExportedInst(V)) return;
2175 
2176   Register Reg = FuncInfo.InitializeRegForValue(V);
2177   CopyValueToVirtualRegister(V, Reg);
2178 }
2179 
2180 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2181                                                      const BasicBlock *FromBB) {
2182   // The operands of the setcc have to be in this block.  We don't know
2183   // how to export them from some other block.
2184   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2185     // Can export from current BB.
2186     if (VI->getParent() == FromBB)
2187       return true;
2188 
2189     // Is already exported, noop.
2190     return FuncInfo.isExportedInst(V);
2191   }
2192 
2193   // If this is an argument, we can export it if the BB is the entry block or
2194   // if it is already exported.
2195   if (isa<Argument>(V)) {
2196     if (FromBB->isEntryBlock())
2197       return true;
2198 
2199     // Otherwise, can only export this if it is already exported.
2200     return FuncInfo.isExportedInst(V);
2201   }
2202 
2203   // Otherwise, constants can always be exported.
2204   return true;
2205 }
2206 
2207 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2208 BranchProbability
2209 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2210                                         const MachineBasicBlock *Dst) const {
2211   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2212   const BasicBlock *SrcBB = Src->getBasicBlock();
2213   const BasicBlock *DstBB = Dst->getBasicBlock();
2214   if (!BPI) {
2215     // If BPI is not available, set the default probability as 1 / N, where N is
2216     // the number of successors.
2217     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2218     return BranchProbability(1, SuccSize);
2219   }
2220   return BPI->getEdgeProbability(SrcBB, DstBB);
2221 }
2222 
2223 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2224                                                MachineBasicBlock *Dst,
2225                                                BranchProbability Prob) {
2226   if (!FuncInfo.BPI)
2227     Src->addSuccessorWithoutProb(Dst);
2228   else {
2229     if (Prob.isUnknown())
2230       Prob = getEdgeProbability(Src, Dst);
2231     Src->addSuccessor(Dst, Prob);
2232   }
2233 }
2234 
2235 static bool InBlock(const Value *V, const BasicBlock *BB) {
2236   if (const Instruction *I = dyn_cast<Instruction>(V))
2237     return I->getParent() == BB;
2238   return true;
2239 }
2240 
2241 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2242 /// This function emits a branch and is used at the leaves of an OR or an
2243 /// AND operator tree.
2244 void
2245 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2246                                                   MachineBasicBlock *TBB,
2247                                                   MachineBasicBlock *FBB,
2248                                                   MachineBasicBlock *CurBB,
2249                                                   MachineBasicBlock *SwitchBB,
2250                                                   BranchProbability TProb,
2251                                                   BranchProbability FProb,
2252                                                   bool InvertCond) {
2253   const BasicBlock *BB = CurBB->getBasicBlock();
2254 
2255   // If the leaf of the tree is a comparison, merge the condition into
2256   // the caseblock.
2257   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2258     // The operands of the cmp have to be in this block.  We don't know
2259     // how to export them from some other block.  If this is the first block
2260     // of the sequence, no exporting is needed.
2261     if (CurBB == SwitchBB ||
2262         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2263          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2264       ISD::CondCode Condition;
2265       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2266         ICmpInst::Predicate Pred =
2267             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2268         Condition = getICmpCondCode(Pred);
2269       } else {
2270         const FCmpInst *FC = cast<FCmpInst>(Cond);
2271         FCmpInst::Predicate Pred =
2272             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2273         Condition = getFCmpCondCode(Pred);
2274         if (TM.Options.NoNaNsFPMath)
2275           Condition = getFCmpCodeWithoutNaN(Condition);
2276       }
2277 
2278       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2279                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2280       SL->SwitchCases.push_back(CB);
2281       return;
2282     }
2283   }
2284 
2285   // Create a CaseBlock record representing this branch.
2286   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2287   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2288                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2289   SL->SwitchCases.push_back(CB);
2290 }
2291 
2292 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2293                                                MachineBasicBlock *TBB,
2294                                                MachineBasicBlock *FBB,
2295                                                MachineBasicBlock *CurBB,
2296                                                MachineBasicBlock *SwitchBB,
2297                                                Instruction::BinaryOps Opc,
2298                                                BranchProbability TProb,
2299                                                BranchProbability FProb,
2300                                                bool InvertCond) {
2301   // Skip over not part of the tree and remember to invert op and operands at
2302   // next level.
2303   Value *NotCond;
2304   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2305       InBlock(NotCond, CurBB->getBasicBlock())) {
2306     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2307                          !InvertCond);
2308     return;
2309   }
2310 
2311   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2312   const Value *BOpOp0, *BOpOp1;
2313   // Compute the effective opcode for Cond, taking into account whether it needs
2314   // to be inverted, e.g.
2315   //   and (not (or A, B)), C
2316   // gets lowered as
2317   //   and (and (not A, not B), C)
2318   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2319   if (BOp) {
2320     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2321                ? Instruction::And
2322                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2323                       ? Instruction::Or
2324                       : (Instruction::BinaryOps)0);
2325     if (InvertCond) {
2326       if (BOpc == Instruction::And)
2327         BOpc = Instruction::Or;
2328       else if (BOpc == Instruction::Or)
2329         BOpc = Instruction::And;
2330     }
2331   }
2332 
2333   // If this node is not part of the or/and tree, emit it as a branch.
2334   // Note that all nodes in the tree should have same opcode.
2335   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2336   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2337       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2338       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2339     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2340                                  TProb, FProb, InvertCond);
2341     return;
2342   }
2343 
2344   //  Create TmpBB after CurBB.
2345   MachineFunction::iterator BBI(CurBB);
2346   MachineFunction &MF = DAG.getMachineFunction();
2347   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2348   CurBB->getParent()->insert(++BBI, TmpBB);
2349 
2350   if (Opc == Instruction::Or) {
2351     // Codegen X | Y as:
2352     // BB1:
2353     //   jmp_if_X TBB
2354     //   jmp TmpBB
2355     // TmpBB:
2356     //   jmp_if_Y TBB
2357     //   jmp FBB
2358     //
2359 
2360     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2361     // The requirement is that
2362     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2363     //     = TrueProb for original BB.
2364     // Assuming the original probabilities are A and B, one choice is to set
2365     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2366     // A/(1+B) and 2B/(1+B). This choice assumes that
2367     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2368     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2369     // TmpBB, but the math is more complicated.
2370 
2371     auto NewTrueProb = TProb / 2;
2372     auto NewFalseProb = TProb / 2 + FProb;
2373     // Emit the LHS condition.
2374     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2375                          NewFalseProb, InvertCond);
2376 
2377     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2378     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2379     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2380     // Emit the RHS condition into TmpBB.
2381     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2382                          Probs[1], InvertCond);
2383   } else {
2384     assert(Opc == Instruction::And && "Unknown merge op!");
2385     // Codegen X & Y as:
2386     // BB1:
2387     //   jmp_if_X TmpBB
2388     //   jmp FBB
2389     // TmpBB:
2390     //   jmp_if_Y TBB
2391     //   jmp FBB
2392     //
2393     //  This requires creation of TmpBB after CurBB.
2394 
2395     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2396     // The requirement is that
2397     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2398     //     = FalseProb for original BB.
2399     // Assuming the original probabilities are A and B, one choice is to set
2400     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2401     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2402     // TrueProb for BB1 * FalseProb for TmpBB.
2403 
2404     auto NewTrueProb = TProb + FProb / 2;
2405     auto NewFalseProb = FProb / 2;
2406     // Emit the LHS condition.
2407     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2408                          NewFalseProb, InvertCond);
2409 
2410     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2411     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2412     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2413     // Emit the RHS condition into TmpBB.
2414     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2415                          Probs[1], InvertCond);
2416   }
2417 }
2418 
2419 /// If the set of cases should be emitted as a series of branches, return true.
2420 /// If we should emit this as a bunch of and/or'd together conditions, return
2421 /// false.
2422 bool
2423 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2424   if (Cases.size() != 2) return true;
2425 
2426   // If this is two comparisons of the same values or'd or and'd together, they
2427   // will get folded into a single comparison, so don't emit two blocks.
2428   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2429        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2430       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2431        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2432     return false;
2433   }
2434 
2435   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2436   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2437   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2438       Cases[0].CC == Cases[1].CC &&
2439       isa<Constant>(Cases[0].CmpRHS) &&
2440       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2441     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2442       return false;
2443     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2444       return false;
2445   }
2446 
2447   return true;
2448 }
2449 
2450 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2451   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2452 
2453   // Update machine-CFG edges.
2454   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2455 
2456   if (I.isUnconditional()) {
2457     // Update machine-CFG edges.
2458     BrMBB->addSuccessor(Succ0MBB);
2459 
2460     // If this is not a fall-through branch or optimizations are switched off,
2461     // emit the branch.
2462     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2463       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2464                               MVT::Other, getControlRoot(),
2465                               DAG.getBasicBlock(Succ0MBB)));
2466 
2467     return;
2468   }
2469 
2470   // If this condition is one of the special cases we handle, do special stuff
2471   // now.
2472   const Value *CondVal = I.getCondition();
2473   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2474 
2475   // If this is a series of conditions that are or'd or and'd together, emit
2476   // this as a sequence of branches instead of setcc's with and/or operations.
2477   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2478   // unpredictable branches, and vector extracts because those jumps are likely
2479   // expensive for any target), this should improve performance.
2480   // For example, instead of something like:
2481   //     cmp A, B
2482   //     C = seteq
2483   //     cmp D, E
2484   //     F = setle
2485   //     or C, F
2486   //     jnz foo
2487   // Emit:
2488   //     cmp A, B
2489   //     je foo
2490   //     cmp D, E
2491   //     jle foo
2492   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2493   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2494       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2495     Value *Vec;
2496     const Value *BOp0, *BOp1;
2497     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2498     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2499       Opcode = Instruction::And;
2500     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2501       Opcode = Instruction::Or;
2502 
2503     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2504                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2505       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2506                            getEdgeProbability(BrMBB, Succ0MBB),
2507                            getEdgeProbability(BrMBB, Succ1MBB),
2508                            /*InvertCond=*/false);
2509       // If the compares in later blocks need to use values not currently
2510       // exported from this block, export them now.  This block should always
2511       // be the first entry.
2512       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2513 
2514       // Allow some cases to be rejected.
2515       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2516         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2517           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2518           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2519         }
2520 
2521         // Emit the branch for this block.
2522         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2523         SL->SwitchCases.erase(SL->SwitchCases.begin());
2524         return;
2525       }
2526 
2527       // Okay, we decided not to do this, remove any inserted MBB's and clear
2528       // SwitchCases.
2529       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2530         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2531 
2532       SL->SwitchCases.clear();
2533     }
2534   }
2535 
2536   // Create a CaseBlock record representing this branch.
2537   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2538                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2539 
2540   // Use visitSwitchCase to actually insert the fast branch sequence for this
2541   // cond branch.
2542   visitSwitchCase(CB, BrMBB);
2543 }
2544 
2545 /// visitSwitchCase - Emits the necessary code to represent a single node in
2546 /// the binary search tree resulting from lowering a switch instruction.
2547 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2548                                           MachineBasicBlock *SwitchBB) {
2549   SDValue Cond;
2550   SDValue CondLHS = getValue(CB.CmpLHS);
2551   SDLoc dl = CB.DL;
2552 
2553   if (CB.CC == ISD::SETTRUE) {
2554     // Branch or fall through to TrueBB.
2555     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2556     SwitchBB->normalizeSuccProbs();
2557     if (CB.TrueBB != NextBlock(SwitchBB)) {
2558       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2559                               DAG.getBasicBlock(CB.TrueBB)));
2560     }
2561     return;
2562   }
2563 
2564   auto &TLI = DAG.getTargetLoweringInfo();
2565   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2566 
2567   // Build the setcc now.
2568   if (!CB.CmpMHS) {
2569     // Fold "(X == true)" to X and "(X == false)" to !X to
2570     // handle common cases produced by branch lowering.
2571     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2572         CB.CC == ISD::SETEQ)
2573       Cond = CondLHS;
2574     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2575              CB.CC == ISD::SETEQ) {
2576       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2577       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2578     } else {
2579       SDValue CondRHS = getValue(CB.CmpRHS);
2580 
2581       // If a pointer's DAG type is larger than its memory type then the DAG
2582       // values are zero-extended. This breaks signed comparisons so truncate
2583       // back to the underlying type before doing the compare.
2584       if (CondLHS.getValueType() != MemVT) {
2585         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2586         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2587       }
2588       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2589     }
2590   } else {
2591     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2592 
2593     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2594     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2595 
2596     SDValue CmpOp = getValue(CB.CmpMHS);
2597     EVT VT = CmpOp.getValueType();
2598 
2599     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2600       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2601                           ISD::SETLE);
2602     } else {
2603       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2604                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2605       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2606                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2607     }
2608   }
2609 
2610   // Update successor info
2611   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2612   // TrueBB and FalseBB are always different unless the incoming IR is
2613   // degenerate. This only happens when running llc on weird IR.
2614   if (CB.TrueBB != CB.FalseBB)
2615     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2616   SwitchBB->normalizeSuccProbs();
2617 
2618   // If the lhs block is the next block, invert the condition so that we can
2619   // fall through to the lhs instead of the rhs block.
2620   if (CB.TrueBB == NextBlock(SwitchBB)) {
2621     std::swap(CB.TrueBB, CB.FalseBB);
2622     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2623     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2624   }
2625 
2626   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2627                                MVT::Other, getControlRoot(), Cond,
2628                                DAG.getBasicBlock(CB.TrueBB));
2629 
2630   setValue(CurInst, BrCond);
2631 
2632   // Insert the false branch. Do this even if it's a fall through branch,
2633   // this makes it easier to do DAG optimizations which require inverting
2634   // the branch condition.
2635   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2636                        DAG.getBasicBlock(CB.FalseBB));
2637 
2638   DAG.setRoot(BrCond);
2639 }
2640 
2641 /// visitJumpTable - Emit JumpTable node in the current MBB
2642 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2643   // Emit the code for the jump table
2644   assert(JT.Reg != -1U && "Should lower JT Header first!");
2645   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2646   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2647                                      JT.Reg, PTy);
2648   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2649   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2650                                     MVT::Other, Index.getValue(1),
2651                                     Table, Index);
2652   DAG.setRoot(BrJumpTable);
2653 }
2654 
2655 /// visitJumpTableHeader - This function emits necessary code to produce index
2656 /// in the JumpTable from switch case.
2657 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2658                                                JumpTableHeader &JTH,
2659                                                MachineBasicBlock *SwitchBB) {
2660   SDLoc dl = getCurSDLoc();
2661 
2662   // Subtract the lowest switch case value from the value being switched on.
2663   SDValue SwitchOp = getValue(JTH.SValue);
2664   EVT VT = SwitchOp.getValueType();
2665   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2666                             DAG.getConstant(JTH.First, dl, VT));
2667 
2668   // The SDNode we just created, which holds the value being switched on minus
2669   // the smallest case value, needs to be copied to a virtual register so it
2670   // can be used as an index into the jump table in a subsequent basic block.
2671   // This value may be smaller or larger than the target's pointer type, and
2672   // therefore require extension or truncating.
2673   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2674   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2675 
2676   unsigned JumpTableReg =
2677       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2678   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2679                                     JumpTableReg, SwitchOp);
2680   JT.Reg = JumpTableReg;
2681 
2682   if (!JTH.FallthroughUnreachable) {
2683     // Emit the range check for the jump table, and branch to the default block
2684     // for the switch statement if the value being switched on exceeds the
2685     // largest case in the switch.
2686     SDValue CMP = DAG.getSetCC(
2687         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2688                                    Sub.getValueType()),
2689         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2690 
2691     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2692                                  MVT::Other, CopyTo, CMP,
2693                                  DAG.getBasicBlock(JT.Default));
2694 
2695     // Avoid emitting unnecessary branches to the next block.
2696     if (JT.MBB != NextBlock(SwitchBB))
2697       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2698                            DAG.getBasicBlock(JT.MBB));
2699 
2700     DAG.setRoot(BrCond);
2701   } else {
2702     // Avoid emitting unnecessary branches to the next block.
2703     if (JT.MBB != NextBlock(SwitchBB))
2704       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2705                               DAG.getBasicBlock(JT.MBB)));
2706     else
2707       DAG.setRoot(CopyTo);
2708   }
2709 }
2710 
2711 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2712 /// variable if there exists one.
2713 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2714                                  SDValue &Chain) {
2715   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2716   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2717   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2718   MachineFunction &MF = DAG.getMachineFunction();
2719   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2720   MachineSDNode *Node =
2721       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2722   if (Global) {
2723     MachinePointerInfo MPInfo(Global);
2724     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2725                  MachineMemOperand::MODereferenceable;
2726     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2727         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2728     DAG.setNodeMemRefs(Node, {MemRef});
2729   }
2730   if (PtrTy != PtrMemTy)
2731     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2732   return SDValue(Node, 0);
2733 }
2734 
2735 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2736 /// tail spliced into a stack protector check success bb.
2737 ///
2738 /// For a high level explanation of how this fits into the stack protector
2739 /// generation see the comment on the declaration of class
2740 /// StackProtectorDescriptor.
2741 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2742                                                   MachineBasicBlock *ParentBB) {
2743 
2744   // First create the loads to the guard/stack slot for the comparison.
2745   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2746   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2747   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2748 
2749   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2750   int FI = MFI.getStackProtectorIndex();
2751 
2752   SDValue Guard;
2753   SDLoc dl = getCurSDLoc();
2754   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2755   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2756   Align Align =
2757       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2758 
2759   // Generate code to load the content of the guard slot.
2760   SDValue GuardVal = DAG.getLoad(
2761       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2762       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2763       MachineMemOperand::MOVolatile);
2764 
2765   if (TLI.useStackGuardXorFP())
2766     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2767 
2768   // Retrieve guard check function, nullptr if instrumentation is inlined.
2769   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2770     // The target provides a guard check function to validate the guard value.
2771     // Generate a call to that function with the content of the guard slot as
2772     // argument.
2773     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2774     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2775 
2776     TargetLowering::ArgListTy Args;
2777     TargetLowering::ArgListEntry Entry;
2778     Entry.Node = GuardVal;
2779     Entry.Ty = FnTy->getParamType(0);
2780     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2781       Entry.IsInReg = true;
2782     Args.push_back(Entry);
2783 
2784     TargetLowering::CallLoweringInfo CLI(DAG);
2785     CLI.setDebugLoc(getCurSDLoc())
2786         .setChain(DAG.getEntryNode())
2787         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2788                    getValue(GuardCheckFn), std::move(Args));
2789 
2790     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2791     DAG.setRoot(Result.second);
2792     return;
2793   }
2794 
2795   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2796   // Otherwise, emit a volatile load to retrieve the stack guard value.
2797   SDValue Chain = DAG.getEntryNode();
2798   if (TLI.useLoadStackGuardNode()) {
2799     Guard = getLoadStackGuard(DAG, dl, Chain);
2800   } else {
2801     const Value *IRGuard = TLI.getSDagStackGuard(M);
2802     SDValue GuardPtr = getValue(IRGuard);
2803 
2804     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2805                         MachinePointerInfo(IRGuard, 0), Align,
2806                         MachineMemOperand::MOVolatile);
2807   }
2808 
2809   // Perform the comparison via a getsetcc.
2810   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2811                                                         *DAG.getContext(),
2812                                                         Guard.getValueType()),
2813                              Guard, GuardVal, ISD::SETNE);
2814 
2815   // If the guard/stackslot do not equal, branch to failure MBB.
2816   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2817                                MVT::Other, GuardVal.getOperand(0),
2818                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2819   // Otherwise branch to success MBB.
2820   SDValue Br = DAG.getNode(ISD::BR, dl,
2821                            MVT::Other, BrCond,
2822                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2823 
2824   DAG.setRoot(Br);
2825 }
2826 
2827 /// Codegen the failure basic block for a stack protector check.
2828 ///
2829 /// A failure stack protector machine basic block consists simply of a call to
2830 /// __stack_chk_fail().
2831 ///
2832 /// For a high level explanation of how this fits into the stack protector
2833 /// generation see the comment on the declaration of class
2834 /// StackProtectorDescriptor.
2835 void
2836 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2837   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2838   TargetLowering::MakeLibCallOptions CallOptions;
2839   CallOptions.setDiscardResult(true);
2840   SDValue Chain =
2841       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2842                       std::nullopt, CallOptions, getCurSDLoc())
2843           .second;
2844   // On PS4/PS5, the "return address" must still be within the calling
2845   // function, even if it's at the very end, so emit an explicit TRAP here.
2846   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2847   if (TM.getTargetTriple().isPS())
2848     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2849   // WebAssembly needs an unreachable instruction after a non-returning call,
2850   // because the function return type can be different from __stack_chk_fail's
2851   // return type (void).
2852   if (TM.getTargetTriple().isWasm())
2853     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2854 
2855   DAG.setRoot(Chain);
2856 }
2857 
2858 /// visitBitTestHeader - This function emits necessary code to produce value
2859 /// suitable for "bit tests"
2860 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2861                                              MachineBasicBlock *SwitchBB) {
2862   SDLoc dl = getCurSDLoc();
2863 
2864   // Subtract the minimum value.
2865   SDValue SwitchOp = getValue(B.SValue);
2866   EVT VT = SwitchOp.getValueType();
2867   SDValue RangeSub =
2868       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2869 
2870   // Determine the type of the test operands.
2871   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2872   bool UsePtrType = false;
2873   if (!TLI.isTypeLegal(VT)) {
2874     UsePtrType = true;
2875   } else {
2876     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2877       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2878         // Switch table case range are encoded into series of masks.
2879         // Just use pointer type, it's guaranteed to fit.
2880         UsePtrType = true;
2881         break;
2882       }
2883   }
2884   SDValue Sub = RangeSub;
2885   if (UsePtrType) {
2886     VT = TLI.getPointerTy(DAG.getDataLayout());
2887     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2888   }
2889 
2890   B.RegVT = VT.getSimpleVT();
2891   B.Reg = FuncInfo.CreateReg(B.RegVT);
2892   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2893 
2894   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2895 
2896   if (!B.FallthroughUnreachable)
2897     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2898   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2899   SwitchBB->normalizeSuccProbs();
2900 
2901   SDValue Root = CopyTo;
2902   if (!B.FallthroughUnreachable) {
2903     // Conditional branch to the default block.
2904     SDValue RangeCmp = DAG.getSetCC(dl,
2905         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2906                                RangeSub.getValueType()),
2907         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2908         ISD::SETUGT);
2909 
2910     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2911                        DAG.getBasicBlock(B.Default));
2912   }
2913 
2914   // Avoid emitting unnecessary branches to the next block.
2915   if (MBB != NextBlock(SwitchBB))
2916     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2917 
2918   DAG.setRoot(Root);
2919 }
2920 
2921 /// visitBitTestCase - this function produces one "bit test"
2922 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2923                                            MachineBasicBlock* NextMBB,
2924                                            BranchProbability BranchProbToNext,
2925                                            unsigned Reg,
2926                                            BitTestCase &B,
2927                                            MachineBasicBlock *SwitchBB) {
2928   SDLoc dl = getCurSDLoc();
2929   MVT VT = BB.RegVT;
2930   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2931   SDValue Cmp;
2932   unsigned PopCount = llvm::popcount(B.Mask);
2933   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2934   if (PopCount == 1) {
2935     // Testing for a single bit; just compare the shift count with what it
2936     // would need to be to shift a 1 bit in that position.
2937     Cmp = DAG.getSetCC(
2938         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2939         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
2940         ISD::SETEQ);
2941   } else if (PopCount == BB.Range) {
2942     // There is only one zero bit in the range, test for it directly.
2943     Cmp = DAG.getSetCC(
2944         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2945         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
2946   } else {
2947     // Make desired shift
2948     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2949                                     DAG.getConstant(1, dl, VT), ShiftOp);
2950 
2951     // Emit bit tests and jumps
2952     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2953                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2954     Cmp = DAG.getSetCC(
2955         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2956         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2957   }
2958 
2959   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2960   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2961   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2962   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2963   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2964   // one as they are relative probabilities (and thus work more like weights),
2965   // and hence we need to normalize them to let the sum of them become one.
2966   SwitchBB->normalizeSuccProbs();
2967 
2968   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2969                               MVT::Other, getControlRoot(),
2970                               Cmp, DAG.getBasicBlock(B.TargetBB));
2971 
2972   // Avoid emitting unnecessary branches to the next block.
2973   if (NextMBB != NextBlock(SwitchBB))
2974     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2975                         DAG.getBasicBlock(NextMBB));
2976 
2977   DAG.setRoot(BrAnd);
2978 }
2979 
2980 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2981   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2982 
2983   // Retrieve successors. Look through artificial IR level blocks like
2984   // catchswitch for successors.
2985   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2986   const BasicBlock *EHPadBB = I.getSuccessor(1);
2987   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
2988 
2989   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2990   // have to do anything here to lower funclet bundles.
2991   assert(!I.hasOperandBundlesOtherThan(
2992              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2993               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2994               LLVMContext::OB_cfguardtarget,
2995               LLVMContext::OB_clang_arc_attachedcall}) &&
2996          "Cannot lower invokes with arbitrary operand bundles yet!");
2997 
2998   const Value *Callee(I.getCalledOperand());
2999   const Function *Fn = dyn_cast<Function>(Callee);
3000   if (isa<InlineAsm>(Callee))
3001     visitInlineAsm(I, EHPadBB);
3002   else if (Fn && Fn->isIntrinsic()) {
3003     switch (Fn->getIntrinsicID()) {
3004     default:
3005       llvm_unreachable("Cannot invoke this intrinsic");
3006     case Intrinsic::donothing:
3007       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3008     case Intrinsic::seh_try_begin:
3009     case Intrinsic::seh_scope_begin:
3010     case Intrinsic::seh_try_end:
3011     case Intrinsic::seh_scope_end:
3012       if (EHPadMBB)
3013           // a block referenced by EH table
3014           // so dtor-funclet not removed by opts
3015           EHPadMBB->setMachineBlockAddressTaken();
3016       break;
3017     case Intrinsic::experimental_patchpoint_void:
3018     case Intrinsic::experimental_patchpoint_i64:
3019       visitPatchpoint(I, EHPadBB);
3020       break;
3021     case Intrinsic::experimental_gc_statepoint:
3022       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3023       break;
3024     case Intrinsic::wasm_rethrow: {
3025       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3026       // special because it can be invoked, so we manually lower it to a DAG
3027       // node here.
3028       SmallVector<SDValue, 8> Ops;
3029       Ops.push_back(getRoot()); // inchain
3030       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3031       Ops.push_back(
3032           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3033                                 TLI.getPointerTy(DAG.getDataLayout())));
3034       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3035       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3036       break;
3037     }
3038     }
3039   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3040     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3041     // Eventually we will support lowering the @llvm.experimental.deoptimize
3042     // intrinsic, and right now there are no plans to support other intrinsics
3043     // with deopt state.
3044     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3045   } else {
3046     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3047   }
3048 
3049   // If the value of the invoke is used outside of its defining block, make it
3050   // available as a virtual register.
3051   // We already took care of the exported value for the statepoint instruction
3052   // during call to the LowerStatepoint.
3053   if (!isa<GCStatepointInst>(I)) {
3054     CopyToExportRegsIfNeeded(&I);
3055   }
3056 
3057   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3058   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3059   BranchProbability EHPadBBProb =
3060       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3061           : BranchProbability::getZero();
3062   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3063 
3064   // Update successor info.
3065   addSuccessorWithProb(InvokeMBB, Return);
3066   for (auto &UnwindDest : UnwindDests) {
3067     UnwindDest.first->setIsEHPad();
3068     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3069   }
3070   InvokeMBB->normalizeSuccProbs();
3071 
3072   // Drop into normal successor.
3073   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3074                           DAG.getBasicBlock(Return)));
3075 }
3076 
3077 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3078   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3079 
3080   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3081   // have to do anything here to lower funclet bundles.
3082   assert(!I.hasOperandBundlesOtherThan(
3083              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3084          "Cannot lower callbrs with arbitrary operand bundles yet!");
3085 
3086   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3087   visitInlineAsm(I);
3088   CopyToExportRegsIfNeeded(&I);
3089 
3090   // Retrieve successors.
3091   SmallPtrSet<BasicBlock *, 8> Dests;
3092   Dests.insert(I.getDefaultDest());
3093   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3094 
3095   // Update successor info.
3096   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3097   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3098     BasicBlock *Dest = I.getIndirectDest(i);
3099     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3100     Target->setIsInlineAsmBrIndirectTarget();
3101     Target->setMachineBlockAddressTaken();
3102     Target->setLabelMustBeEmitted();
3103     // Don't add duplicate machine successors.
3104     if (Dests.insert(Dest).second)
3105       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3106   }
3107   CallBrMBB->normalizeSuccProbs();
3108 
3109   // Drop into default successor.
3110   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3111                           MVT::Other, getControlRoot(),
3112                           DAG.getBasicBlock(Return)));
3113 }
3114 
3115 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3116   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3117 }
3118 
3119 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3120   assert(FuncInfo.MBB->isEHPad() &&
3121          "Call to landingpad not in landing pad!");
3122 
3123   // If there aren't registers to copy the values into (e.g., during SjLj
3124   // exceptions), then don't bother to create these DAG nodes.
3125   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3126   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3127   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3128       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3129     return;
3130 
3131   // If landingpad's return type is token type, we don't create DAG nodes
3132   // for its exception pointer and selector value. The extraction of exception
3133   // pointer or selector value from token type landingpads is not currently
3134   // supported.
3135   if (LP.getType()->isTokenTy())
3136     return;
3137 
3138   SmallVector<EVT, 2> ValueVTs;
3139   SDLoc dl = getCurSDLoc();
3140   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3141   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3142 
3143   // Get the two live-in registers as SDValues. The physregs have already been
3144   // copied into virtual registers.
3145   SDValue Ops[2];
3146   if (FuncInfo.ExceptionPointerVirtReg) {
3147     Ops[0] = DAG.getZExtOrTrunc(
3148         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3149                            FuncInfo.ExceptionPointerVirtReg,
3150                            TLI.getPointerTy(DAG.getDataLayout())),
3151         dl, ValueVTs[0]);
3152   } else {
3153     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3154   }
3155   Ops[1] = DAG.getZExtOrTrunc(
3156       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3157                          FuncInfo.ExceptionSelectorVirtReg,
3158                          TLI.getPointerTy(DAG.getDataLayout())),
3159       dl, ValueVTs[1]);
3160 
3161   // Merge into one.
3162   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3163                             DAG.getVTList(ValueVTs), Ops);
3164   setValue(&LP, Res);
3165 }
3166 
3167 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3168                                            MachineBasicBlock *Last) {
3169   // Update JTCases.
3170   for (JumpTableBlock &JTB : SL->JTCases)
3171     if (JTB.first.HeaderBB == First)
3172       JTB.first.HeaderBB = Last;
3173 
3174   // Update BitTestCases.
3175   for (BitTestBlock &BTB : SL->BitTestCases)
3176     if (BTB.Parent == First)
3177       BTB.Parent = Last;
3178 }
3179 
3180 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3181   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3182 
3183   // Update machine-CFG edges with unique successors.
3184   SmallSet<BasicBlock*, 32> Done;
3185   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3186     BasicBlock *BB = I.getSuccessor(i);
3187     bool Inserted = Done.insert(BB).second;
3188     if (!Inserted)
3189         continue;
3190 
3191     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3192     addSuccessorWithProb(IndirectBrMBB, Succ);
3193   }
3194   IndirectBrMBB->normalizeSuccProbs();
3195 
3196   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3197                           MVT::Other, getControlRoot(),
3198                           getValue(I.getAddress())));
3199 }
3200 
3201 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3202   if (!DAG.getTarget().Options.TrapUnreachable)
3203     return;
3204 
3205   // We may be able to ignore unreachable behind a noreturn call.
3206   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3207     const BasicBlock &BB = *I.getParent();
3208     if (&I != &BB.front()) {
3209       BasicBlock::const_iterator PredI =
3210         std::prev(BasicBlock::const_iterator(&I));
3211       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3212         if (Call->doesNotReturn())
3213           return;
3214       }
3215     }
3216   }
3217 
3218   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3219 }
3220 
3221 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3222   SDNodeFlags Flags;
3223   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3224     Flags.copyFMF(*FPOp);
3225 
3226   SDValue Op = getValue(I.getOperand(0));
3227   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3228                                     Op, Flags);
3229   setValue(&I, UnNodeValue);
3230 }
3231 
3232 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3233   SDNodeFlags Flags;
3234   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3235     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3236     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3237   }
3238   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3239     Flags.setExact(ExactOp->isExact());
3240   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3241     Flags.copyFMF(*FPOp);
3242 
3243   SDValue Op1 = getValue(I.getOperand(0));
3244   SDValue Op2 = getValue(I.getOperand(1));
3245   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3246                                      Op1, Op2, Flags);
3247   setValue(&I, BinNodeValue);
3248 }
3249 
3250 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3251   SDValue Op1 = getValue(I.getOperand(0));
3252   SDValue Op2 = getValue(I.getOperand(1));
3253 
3254   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3255       Op1.getValueType(), DAG.getDataLayout());
3256 
3257   // Coerce the shift amount to the right type if we can. This exposes the
3258   // truncate or zext to optimization early.
3259   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3260     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3261            "Unexpected shift type");
3262     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3263   }
3264 
3265   bool nuw = false;
3266   bool nsw = false;
3267   bool exact = false;
3268 
3269   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3270 
3271     if (const OverflowingBinaryOperator *OFBinOp =
3272             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3273       nuw = OFBinOp->hasNoUnsignedWrap();
3274       nsw = OFBinOp->hasNoSignedWrap();
3275     }
3276     if (const PossiblyExactOperator *ExactOp =
3277             dyn_cast<const PossiblyExactOperator>(&I))
3278       exact = ExactOp->isExact();
3279   }
3280   SDNodeFlags Flags;
3281   Flags.setExact(exact);
3282   Flags.setNoSignedWrap(nsw);
3283   Flags.setNoUnsignedWrap(nuw);
3284   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3285                             Flags);
3286   setValue(&I, Res);
3287 }
3288 
3289 void SelectionDAGBuilder::visitSDiv(const User &I) {
3290   SDValue Op1 = getValue(I.getOperand(0));
3291   SDValue Op2 = getValue(I.getOperand(1));
3292 
3293   SDNodeFlags Flags;
3294   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3295                  cast<PossiblyExactOperator>(&I)->isExact());
3296   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3297                            Op2, Flags));
3298 }
3299 
3300 void SelectionDAGBuilder::visitICmp(const User &I) {
3301   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3302   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3303     predicate = IC->getPredicate();
3304   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3305     predicate = ICmpInst::Predicate(IC->getPredicate());
3306   SDValue Op1 = getValue(I.getOperand(0));
3307   SDValue Op2 = getValue(I.getOperand(1));
3308   ISD::CondCode Opcode = getICmpCondCode(predicate);
3309 
3310   auto &TLI = DAG.getTargetLoweringInfo();
3311   EVT MemVT =
3312       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3313 
3314   // If a pointer's DAG type is larger than its memory type then the DAG values
3315   // are zero-extended. This breaks signed comparisons so truncate back to the
3316   // underlying type before doing the compare.
3317   if (Op1.getValueType() != MemVT) {
3318     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3319     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3320   }
3321 
3322   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3323                                                         I.getType());
3324   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3325 }
3326 
3327 void SelectionDAGBuilder::visitFCmp(const User &I) {
3328   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3329   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3330     predicate = FC->getPredicate();
3331   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3332     predicate = FCmpInst::Predicate(FC->getPredicate());
3333   SDValue Op1 = getValue(I.getOperand(0));
3334   SDValue Op2 = getValue(I.getOperand(1));
3335 
3336   ISD::CondCode Condition = getFCmpCondCode(predicate);
3337   auto *FPMO = cast<FPMathOperator>(&I);
3338   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3339     Condition = getFCmpCodeWithoutNaN(Condition);
3340 
3341   SDNodeFlags Flags;
3342   Flags.copyFMF(*FPMO);
3343   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3344 
3345   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3346                                                         I.getType());
3347   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3348 }
3349 
3350 // Check if the condition of the select has one use or two users that are both
3351 // selects with the same condition.
3352 static bool hasOnlySelectUsers(const Value *Cond) {
3353   return llvm::all_of(Cond->users(), [](const Value *V) {
3354     return isa<SelectInst>(V);
3355   });
3356 }
3357 
3358 void SelectionDAGBuilder::visitSelect(const User &I) {
3359   SmallVector<EVT, 4> ValueVTs;
3360   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3361                   ValueVTs);
3362   unsigned NumValues = ValueVTs.size();
3363   if (NumValues == 0) return;
3364 
3365   SmallVector<SDValue, 4> Values(NumValues);
3366   SDValue Cond     = getValue(I.getOperand(0));
3367   SDValue LHSVal   = getValue(I.getOperand(1));
3368   SDValue RHSVal   = getValue(I.getOperand(2));
3369   SmallVector<SDValue, 1> BaseOps(1, Cond);
3370   ISD::NodeType OpCode =
3371       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3372 
3373   bool IsUnaryAbs = false;
3374   bool Negate = false;
3375 
3376   SDNodeFlags Flags;
3377   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3378     Flags.copyFMF(*FPOp);
3379 
3380   // Min/max matching is only viable if all output VTs are the same.
3381   if (all_equal(ValueVTs)) {
3382     EVT VT = ValueVTs[0];
3383     LLVMContext &Ctx = *DAG.getContext();
3384     auto &TLI = DAG.getTargetLoweringInfo();
3385 
3386     // We care about the legality of the operation after it has been type
3387     // legalized.
3388     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3389       VT = TLI.getTypeToTransformTo(Ctx, VT);
3390 
3391     // If the vselect is legal, assume we want to leave this as a vector setcc +
3392     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3393     // min/max is legal on the scalar type.
3394     bool UseScalarMinMax = VT.isVector() &&
3395       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3396 
3397     // ValueTracking's select pattern matching does not account for -0.0,
3398     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3399     // -0.0 is less than +0.0.
3400     Value *LHS, *RHS;
3401     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3402     ISD::NodeType Opc = ISD::DELETED_NODE;
3403     switch (SPR.Flavor) {
3404     case SPF_UMAX:    Opc = ISD::UMAX; break;
3405     case SPF_UMIN:    Opc = ISD::UMIN; break;
3406     case SPF_SMAX:    Opc = ISD::SMAX; break;
3407     case SPF_SMIN:    Opc = ISD::SMIN; break;
3408     case SPF_FMINNUM:
3409       switch (SPR.NaNBehavior) {
3410       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3411       case SPNB_RETURNS_NAN: break;
3412       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3413       case SPNB_RETURNS_ANY:
3414         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3415             (UseScalarMinMax &&
3416              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3417           Opc = ISD::FMINNUM;
3418         break;
3419       }
3420       break;
3421     case SPF_FMAXNUM:
3422       switch (SPR.NaNBehavior) {
3423       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3424       case SPNB_RETURNS_NAN: break;
3425       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3426       case SPNB_RETURNS_ANY:
3427         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3428             (UseScalarMinMax &&
3429              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3430           Opc = ISD::FMAXNUM;
3431         break;
3432       }
3433       break;
3434     case SPF_NABS:
3435       Negate = true;
3436       [[fallthrough]];
3437     case SPF_ABS:
3438       IsUnaryAbs = true;
3439       Opc = ISD::ABS;
3440       break;
3441     default: break;
3442     }
3443 
3444     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3445         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3446          (UseScalarMinMax &&
3447           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3448         // If the underlying comparison instruction is used by any other
3449         // instruction, the consumed instructions won't be destroyed, so it is
3450         // not profitable to convert to a min/max.
3451         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3452       OpCode = Opc;
3453       LHSVal = getValue(LHS);
3454       RHSVal = getValue(RHS);
3455       BaseOps.clear();
3456     }
3457 
3458     if (IsUnaryAbs) {
3459       OpCode = Opc;
3460       LHSVal = getValue(LHS);
3461       BaseOps.clear();
3462     }
3463   }
3464 
3465   if (IsUnaryAbs) {
3466     for (unsigned i = 0; i != NumValues; ++i) {
3467       SDLoc dl = getCurSDLoc();
3468       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3469       Values[i] =
3470           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3471       if (Negate)
3472         Values[i] = DAG.getNegative(Values[i], dl, VT);
3473     }
3474   } else {
3475     for (unsigned i = 0; i != NumValues; ++i) {
3476       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3477       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3478       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3479       Values[i] = DAG.getNode(
3480           OpCode, getCurSDLoc(),
3481           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3482     }
3483   }
3484 
3485   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3486                            DAG.getVTList(ValueVTs), Values));
3487 }
3488 
3489 void SelectionDAGBuilder::visitTrunc(const User &I) {
3490   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3491   SDValue N = getValue(I.getOperand(0));
3492   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3493                                                         I.getType());
3494   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3495 }
3496 
3497 void SelectionDAGBuilder::visitZExt(const User &I) {
3498   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3499   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3500   SDValue N = getValue(I.getOperand(0));
3501   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3502                                                         I.getType());
3503   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3504 }
3505 
3506 void SelectionDAGBuilder::visitSExt(const User &I) {
3507   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3508   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3509   SDValue N = getValue(I.getOperand(0));
3510   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3511                                                         I.getType());
3512   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3513 }
3514 
3515 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3516   // FPTrunc is never a no-op cast, no need to check
3517   SDValue N = getValue(I.getOperand(0));
3518   SDLoc dl = getCurSDLoc();
3519   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3520   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3521   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3522                            DAG.getTargetConstant(
3523                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3524 }
3525 
3526 void SelectionDAGBuilder::visitFPExt(const User &I) {
3527   // FPExt is never a no-op cast, no need to check
3528   SDValue N = getValue(I.getOperand(0));
3529   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3530                                                         I.getType());
3531   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3532 }
3533 
3534 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3535   // FPToUI is never a no-op cast, no need to check
3536   SDValue N = getValue(I.getOperand(0));
3537   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3538                                                         I.getType());
3539   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3540 }
3541 
3542 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3543   // FPToSI is never a no-op cast, no need to check
3544   SDValue N = getValue(I.getOperand(0));
3545   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3546                                                         I.getType());
3547   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3548 }
3549 
3550 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3551   // UIToFP is never a no-op cast, no need to check
3552   SDValue N = getValue(I.getOperand(0));
3553   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3554                                                         I.getType());
3555   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3556 }
3557 
3558 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3559   // SIToFP is never a no-op cast, no need to check
3560   SDValue N = getValue(I.getOperand(0));
3561   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3562                                                         I.getType());
3563   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3564 }
3565 
3566 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3567   // What to do depends on the size of the integer and the size of the pointer.
3568   // We can either truncate, zero extend, or no-op, accordingly.
3569   SDValue N = getValue(I.getOperand(0));
3570   auto &TLI = DAG.getTargetLoweringInfo();
3571   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3572                                                         I.getType());
3573   EVT PtrMemVT =
3574       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3575   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3576   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3577   setValue(&I, N);
3578 }
3579 
3580 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3581   // What to do depends on the size of the integer and the size of the pointer.
3582   // We can either truncate, zero extend, or no-op, accordingly.
3583   SDValue N = getValue(I.getOperand(0));
3584   auto &TLI = DAG.getTargetLoweringInfo();
3585   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3586   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3587   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3588   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3589   setValue(&I, N);
3590 }
3591 
3592 void SelectionDAGBuilder::visitBitCast(const User &I) {
3593   SDValue N = getValue(I.getOperand(0));
3594   SDLoc dl = getCurSDLoc();
3595   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3596                                                         I.getType());
3597 
3598   // BitCast assures us that source and destination are the same size so this is
3599   // either a BITCAST or a no-op.
3600   if (DestVT != N.getValueType())
3601     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3602                              DestVT, N)); // convert types.
3603   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3604   // might fold any kind of constant expression to an integer constant and that
3605   // is not what we are looking for. Only recognize a bitcast of a genuine
3606   // constant integer as an opaque constant.
3607   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3608     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3609                                  /*isOpaque*/true));
3610   else
3611     setValue(&I, N);            // noop cast.
3612 }
3613 
3614 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3615   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3616   const Value *SV = I.getOperand(0);
3617   SDValue N = getValue(SV);
3618   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3619 
3620   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3621   unsigned DestAS = I.getType()->getPointerAddressSpace();
3622 
3623   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3624     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3625 
3626   setValue(&I, N);
3627 }
3628 
3629 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3630   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3631   SDValue InVec = getValue(I.getOperand(0));
3632   SDValue InVal = getValue(I.getOperand(1));
3633   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3634                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3635   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3636                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3637                            InVec, InVal, InIdx));
3638 }
3639 
3640 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3641   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3642   SDValue InVec = getValue(I.getOperand(0));
3643   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3644                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3645   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3646                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3647                            InVec, InIdx));
3648 }
3649 
3650 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3651   SDValue Src1 = getValue(I.getOperand(0));
3652   SDValue Src2 = getValue(I.getOperand(1));
3653   ArrayRef<int> Mask;
3654   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3655     Mask = SVI->getShuffleMask();
3656   else
3657     Mask = cast<ConstantExpr>(I).getShuffleMask();
3658   SDLoc DL = getCurSDLoc();
3659   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3660   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3661   EVT SrcVT = Src1.getValueType();
3662 
3663   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3664       VT.isScalableVector()) {
3665     // Canonical splat form of first element of first input vector.
3666     SDValue FirstElt =
3667         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3668                     DAG.getVectorIdxConstant(0, DL));
3669     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3670     return;
3671   }
3672 
3673   // For now, we only handle splats for scalable vectors.
3674   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3675   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3676   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3677 
3678   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3679   unsigned MaskNumElts = Mask.size();
3680 
3681   if (SrcNumElts == MaskNumElts) {
3682     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3683     return;
3684   }
3685 
3686   // Normalize the shuffle vector since mask and vector length don't match.
3687   if (SrcNumElts < MaskNumElts) {
3688     // Mask is longer than the source vectors. We can use concatenate vector to
3689     // make the mask and vectors lengths match.
3690 
3691     if (MaskNumElts % SrcNumElts == 0) {
3692       // Mask length is a multiple of the source vector length.
3693       // Check if the shuffle is some kind of concatenation of the input
3694       // vectors.
3695       unsigned NumConcat = MaskNumElts / SrcNumElts;
3696       bool IsConcat = true;
3697       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3698       for (unsigned i = 0; i != MaskNumElts; ++i) {
3699         int Idx = Mask[i];
3700         if (Idx < 0)
3701           continue;
3702         // Ensure the indices in each SrcVT sized piece are sequential and that
3703         // the same source is used for the whole piece.
3704         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3705             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3706              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3707           IsConcat = false;
3708           break;
3709         }
3710         // Remember which source this index came from.
3711         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3712       }
3713 
3714       // The shuffle is concatenating multiple vectors together. Just emit
3715       // a CONCAT_VECTORS operation.
3716       if (IsConcat) {
3717         SmallVector<SDValue, 8> ConcatOps;
3718         for (auto Src : ConcatSrcs) {
3719           if (Src < 0)
3720             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3721           else if (Src == 0)
3722             ConcatOps.push_back(Src1);
3723           else
3724             ConcatOps.push_back(Src2);
3725         }
3726         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3727         return;
3728       }
3729     }
3730 
3731     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3732     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3733     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3734                                     PaddedMaskNumElts);
3735 
3736     // Pad both vectors with undefs to make them the same length as the mask.
3737     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3738 
3739     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3740     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3741     MOps1[0] = Src1;
3742     MOps2[0] = Src2;
3743 
3744     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3745     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3746 
3747     // Readjust mask for new input vector length.
3748     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3749     for (unsigned i = 0; i != MaskNumElts; ++i) {
3750       int Idx = Mask[i];
3751       if (Idx >= (int)SrcNumElts)
3752         Idx -= SrcNumElts - PaddedMaskNumElts;
3753       MappedOps[i] = Idx;
3754     }
3755 
3756     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3757 
3758     // If the concatenated vector was padded, extract a subvector with the
3759     // correct number of elements.
3760     if (MaskNumElts != PaddedMaskNumElts)
3761       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3762                            DAG.getVectorIdxConstant(0, DL));
3763 
3764     setValue(&I, Result);
3765     return;
3766   }
3767 
3768   if (SrcNumElts > MaskNumElts) {
3769     // Analyze the access pattern of the vector to see if we can extract
3770     // two subvectors and do the shuffle.
3771     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3772     bool CanExtract = true;
3773     for (int Idx : Mask) {
3774       unsigned Input = 0;
3775       if (Idx < 0)
3776         continue;
3777 
3778       if (Idx >= (int)SrcNumElts) {
3779         Input = 1;
3780         Idx -= SrcNumElts;
3781       }
3782 
3783       // If all the indices come from the same MaskNumElts sized portion of
3784       // the sources we can use extract. Also make sure the extract wouldn't
3785       // extract past the end of the source.
3786       int NewStartIdx = alignDown(Idx, MaskNumElts);
3787       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3788           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3789         CanExtract = false;
3790       // Make sure we always update StartIdx as we use it to track if all
3791       // elements are undef.
3792       StartIdx[Input] = NewStartIdx;
3793     }
3794 
3795     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3796       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3797       return;
3798     }
3799     if (CanExtract) {
3800       // Extract appropriate subvector and generate a vector shuffle
3801       for (unsigned Input = 0; Input < 2; ++Input) {
3802         SDValue &Src = Input == 0 ? Src1 : Src2;
3803         if (StartIdx[Input] < 0)
3804           Src = DAG.getUNDEF(VT);
3805         else {
3806           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3807                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3808         }
3809       }
3810 
3811       // Calculate new mask.
3812       SmallVector<int, 8> MappedOps(Mask);
3813       for (int &Idx : MappedOps) {
3814         if (Idx >= (int)SrcNumElts)
3815           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3816         else if (Idx >= 0)
3817           Idx -= StartIdx[0];
3818       }
3819 
3820       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3821       return;
3822     }
3823   }
3824 
3825   // We can't use either concat vectors or extract subvectors so fall back to
3826   // replacing the shuffle with extract and build vector.
3827   // to insert and build vector.
3828   EVT EltVT = VT.getVectorElementType();
3829   SmallVector<SDValue,8> Ops;
3830   for (int Idx : Mask) {
3831     SDValue Res;
3832 
3833     if (Idx < 0) {
3834       Res = DAG.getUNDEF(EltVT);
3835     } else {
3836       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3837       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3838 
3839       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3840                         DAG.getVectorIdxConstant(Idx, DL));
3841     }
3842 
3843     Ops.push_back(Res);
3844   }
3845 
3846   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3847 }
3848 
3849 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3850   ArrayRef<unsigned> Indices = I.getIndices();
3851   const Value *Op0 = I.getOperand(0);
3852   const Value *Op1 = I.getOperand(1);
3853   Type *AggTy = I.getType();
3854   Type *ValTy = Op1->getType();
3855   bool IntoUndef = isa<UndefValue>(Op0);
3856   bool FromUndef = isa<UndefValue>(Op1);
3857 
3858   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3859 
3860   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3861   SmallVector<EVT, 4> AggValueVTs;
3862   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3863   SmallVector<EVT, 4> ValValueVTs;
3864   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3865 
3866   unsigned NumAggValues = AggValueVTs.size();
3867   unsigned NumValValues = ValValueVTs.size();
3868   SmallVector<SDValue, 4> Values(NumAggValues);
3869 
3870   // Ignore an insertvalue that produces an empty object
3871   if (!NumAggValues) {
3872     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3873     return;
3874   }
3875 
3876   SDValue Agg = getValue(Op0);
3877   unsigned i = 0;
3878   // Copy the beginning value(s) from the original aggregate.
3879   for (; i != LinearIndex; ++i)
3880     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3881                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3882   // Copy values from the inserted value(s).
3883   if (NumValValues) {
3884     SDValue Val = getValue(Op1);
3885     for (; i != LinearIndex + NumValValues; ++i)
3886       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3887                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3888   }
3889   // Copy remaining value(s) from the original aggregate.
3890   for (; i != NumAggValues; ++i)
3891     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3892                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3893 
3894   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3895                            DAG.getVTList(AggValueVTs), Values));
3896 }
3897 
3898 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3899   ArrayRef<unsigned> Indices = I.getIndices();
3900   const Value *Op0 = I.getOperand(0);
3901   Type *AggTy = Op0->getType();
3902   Type *ValTy = I.getType();
3903   bool OutOfUndef = isa<UndefValue>(Op0);
3904 
3905   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3906 
3907   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3908   SmallVector<EVT, 4> ValValueVTs;
3909   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3910 
3911   unsigned NumValValues = ValValueVTs.size();
3912 
3913   // Ignore a extractvalue that produces an empty object
3914   if (!NumValValues) {
3915     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3916     return;
3917   }
3918 
3919   SmallVector<SDValue, 4> Values(NumValValues);
3920 
3921   SDValue Agg = getValue(Op0);
3922   // Copy out the selected value(s).
3923   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3924     Values[i - LinearIndex] =
3925       OutOfUndef ?
3926         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3927         SDValue(Agg.getNode(), Agg.getResNo() + i);
3928 
3929   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3930                            DAG.getVTList(ValValueVTs), Values));
3931 }
3932 
3933 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3934   Value *Op0 = I.getOperand(0);
3935   // Note that the pointer operand may be a vector of pointers. Take the scalar
3936   // element which holds a pointer.
3937   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3938   SDValue N = getValue(Op0);
3939   SDLoc dl = getCurSDLoc();
3940   auto &TLI = DAG.getTargetLoweringInfo();
3941 
3942   // Normalize Vector GEP - all scalar operands should be converted to the
3943   // splat vector.
3944   bool IsVectorGEP = I.getType()->isVectorTy();
3945   ElementCount VectorElementCount =
3946       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3947                   : ElementCount::getFixed(0);
3948 
3949   if (IsVectorGEP && !N.getValueType().isVector()) {
3950     LLVMContext &Context = *DAG.getContext();
3951     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3952     N = DAG.getSplat(VT, dl, N);
3953   }
3954 
3955   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3956        GTI != E; ++GTI) {
3957     const Value *Idx = GTI.getOperand();
3958     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3959       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3960       if (Field) {
3961         // N = N + Offset
3962         uint64_t Offset =
3963             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3964 
3965         // In an inbounds GEP with an offset that is nonnegative even when
3966         // interpreted as signed, assume there is no unsigned overflow.
3967         SDNodeFlags Flags;
3968         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3969           Flags.setNoUnsignedWrap(true);
3970 
3971         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3972                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3973       }
3974     } else {
3975       // IdxSize is the width of the arithmetic according to IR semantics.
3976       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3977       // (and fix up the result later).
3978       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3979       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3980       TypeSize ElementSize =
3981           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3982       // We intentionally mask away the high bits here; ElementSize may not
3983       // fit in IdxTy.
3984       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
3985       bool ElementScalable = ElementSize.isScalable();
3986 
3987       // If this is a scalar constant or a splat vector of constants,
3988       // handle it quickly.
3989       const auto *C = dyn_cast<Constant>(Idx);
3990       if (C && isa<VectorType>(C->getType()))
3991         C = C->getSplatValue();
3992 
3993       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3994       if (CI && CI->isZero())
3995         continue;
3996       if (CI && !ElementScalable) {
3997         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3998         LLVMContext &Context = *DAG.getContext();
3999         SDValue OffsVal;
4000         if (IsVectorGEP)
4001           OffsVal = DAG.getConstant(
4002               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4003         else
4004           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4005 
4006         // In an inbounds GEP with an offset that is nonnegative even when
4007         // interpreted as signed, assume there is no unsigned overflow.
4008         SDNodeFlags Flags;
4009         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4010           Flags.setNoUnsignedWrap(true);
4011 
4012         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4013 
4014         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4015         continue;
4016       }
4017 
4018       // N = N + Idx * ElementMul;
4019       SDValue IdxN = getValue(Idx);
4020 
4021       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4022         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4023                                   VectorElementCount);
4024         IdxN = DAG.getSplat(VT, dl, IdxN);
4025       }
4026 
4027       // If the index is smaller or larger than intptr_t, truncate or extend
4028       // it.
4029       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4030 
4031       if (ElementScalable) {
4032         EVT VScaleTy = N.getValueType().getScalarType();
4033         SDValue VScale = DAG.getNode(
4034             ISD::VSCALE, dl, VScaleTy,
4035             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4036         if (IsVectorGEP)
4037           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4038         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4039       } else {
4040         // If this is a multiply by a power of two, turn it into a shl
4041         // immediately.  This is a very common case.
4042         if (ElementMul != 1) {
4043           if (ElementMul.isPowerOf2()) {
4044             unsigned Amt = ElementMul.logBase2();
4045             IdxN = DAG.getNode(ISD::SHL, dl,
4046                                N.getValueType(), IdxN,
4047                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4048           } else {
4049             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4050                                             IdxN.getValueType());
4051             IdxN = DAG.getNode(ISD::MUL, dl,
4052                                N.getValueType(), IdxN, Scale);
4053           }
4054         }
4055       }
4056 
4057       N = DAG.getNode(ISD::ADD, dl,
4058                       N.getValueType(), N, IdxN);
4059     }
4060   }
4061 
4062   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4063   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4064   if (IsVectorGEP) {
4065     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4066     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4067   }
4068 
4069   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4070     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4071 
4072   setValue(&I, N);
4073 }
4074 
4075 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4076   // If this is a fixed sized alloca in the entry block of the function,
4077   // allocate it statically on the stack.
4078   if (FuncInfo.StaticAllocaMap.count(&I))
4079     return;   // getValue will auto-populate this.
4080 
4081   SDLoc dl = getCurSDLoc();
4082   Type *Ty = I.getAllocatedType();
4083   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4084   auto &DL = DAG.getDataLayout();
4085   TypeSize TySize = DL.getTypeAllocSize(Ty);
4086   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4087 
4088   SDValue AllocSize = getValue(I.getArraySize());
4089 
4090   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace());
4091   if (AllocSize.getValueType() != IntPtr)
4092     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4093 
4094   if (TySize.isScalable())
4095     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4096                             DAG.getVScale(dl, IntPtr,
4097                                           APInt(IntPtr.getScalarSizeInBits(),
4098                                                 TySize.getKnownMinValue())));
4099   else
4100     AllocSize =
4101         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4102                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4103 
4104   // Handle alignment.  If the requested alignment is less than or equal to
4105   // the stack alignment, ignore it.  If the size is greater than or equal to
4106   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4107   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4108   if (*Alignment <= StackAlign)
4109     Alignment = std::nullopt;
4110 
4111   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4112   // Round the size of the allocation up to the stack alignment size
4113   // by add SA-1 to the size. This doesn't overflow because we're computing
4114   // an address inside an alloca.
4115   SDNodeFlags Flags;
4116   Flags.setNoUnsignedWrap(true);
4117   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4118                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4119 
4120   // Mask out the low bits for alignment purposes.
4121   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4122                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4123 
4124   SDValue Ops[] = {
4125       getRoot(), AllocSize,
4126       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4127   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4128   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4129   setValue(&I, DSA);
4130   DAG.setRoot(DSA.getValue(1));
4131 
4132   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4133 }
4134 
4135 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4136   if (I.isAtomic())
4137     return visitAtomicLoad(I);
4138 
4139   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4140   const Value *SV = I.getOperand(0);
4141   if (TLI.supportSwiftError()) {
4142     // Swifterror values can come from either a function parameter with
4143     // swifterror attribute or an alloca with swifterror attribute.
4144     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4145       if (Arg->hasSwiftErrorAttr())
4146         return visitLoadFromSwiftError(I);
4147     }
4148 
4149     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4150       if (Alloca->isSwiftError())
4151         return visitLoadFromSwiftError(I);
4152     }
4153   }
4154 
4155   SDValue Ptr = getValue(SV);
4156 
4157   Type *Ty = I.getType();
4158   SmallVector<EVT, 4> ValueVTs, MemVTs;
4159   SmallVector<uint64_t, 4> Offsets;
4160   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4161   unsigned NumValues = ValueVTs.size();
4162   if (NumValues == 0)
4163     return;
4164 
4165   Align Alignment = I.getAlign();
4166   AAMDNodes AAInfo = I.getAAMetadata();
4167   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4168   bool isVolatile = I.isVolatile();
4169   MachineMemOperand::Flags MMOFlags =
4170       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4171 
4172   SDValue Root;
4173   bool ConstantMemory = false;
4174   if (isVolatile)
4175     // Serialize volatile loads with other side effects.
4176     Root = getRoot();
4177   else if (NumValues > MaxParallelChains)
4178     Root = getMemoryRoot();
4179   else if (AA &&
4180            AA->pointsToConstantMemory(MemoryLocation(
4181                SV,
4182                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4183                AAInfo))) {
4184     // Do not serialize (non-volatile) loads of constant memory with anything.
4185     Root = DAG.getEntryNode();
4186     ConstantMemory = true;
4187     MMOFlags |= MachineMemOperand::MOInvariant;
4188   } else {
4189     // Do not serialize non-volatile loads against each other.
4190     Root = DAG.getRoot();
4191   }
4192 
4193   SDLoc dl = getCurSDLoc();
4194 
4195   if (isVolatile)
4196     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4197 
4198   // An aggregate load cannot wrap around the address space, so offsets to its
4199   // parts don't wrap either.
4200   SDNodeFlags Flags;
4201   Flags.setNoUnsignedWrap(true);
4202 
4203   SmallVector<SDValue, 4> Values(NumValues);
4204   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4205   EVT PtrVT = Ptr.getValueType();
4206 
4207   unsigned ChainI = 0;
4208   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4209     // Serializing loads here may result in excessive register pressure, and
4210     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4211     // could recover a bit by hoisting nodes upward in the chain by recognizing
4212     // they are side-effect free or do not alias. The optimizer should really
4213     // avoid this case by converting large object/array copies to llvm.memcpy
4214     // (MaxParallelChains should always remain as failsafe).
4215     if (ChainI == MaxParallelChains) {
4216       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4217       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4218                                   ArrayRef(Chains.data(), ChainI));
4219       Root = Chain;
4220       ChainI = 0;
4221     }
4222     SDValue A = DAG.getNode(ISD::ADD, dl,
4223                             PtrVT, Ptr,
4224                             DAG.getConstant(Offsets[i], dl, PtrVT),
4225                             Flags);
4226 
4227     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4228                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4229                             MMOFlags, AAInfo, Ranges);
4230     Chains[ChainI] = L.getValue(1);
4231 
4232     if (MemVTs[i] != ValueVTs[i])
4233       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4234 
4235     Values[i] = L;
4236   }
4237 
4238   if (!ConstantMemory) {
4239     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4240                                 ArrayRef(Chains.data(), ChainI));
4241     if (isVolatile)
4242       DAG.setRoot(Chain);
4243     else
4244       PendingLoads.push_back(Chain);
4245   }
4246 
4247   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4248                            DAG.getVTList(ValueVTs), Values));
4249 }
4250 
4251 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4252   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4253          "call visitStoreToSwiftError when backend supports swifterror");
4254 
4255   SmallVector<EVT, 4> ValueVTs;
4256   SmallVector<uint64_t, 4> Offsets;
4257   const Value *SrcV = I.getOperand(0);
4258   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4259                   SrcV->getType(), ValueVTs, &Offsets);
4260   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4261          "expect a single EVT for swifterror");
4262 
4263   SDValue Src = getValue(SrcV);
4264   // Create a virtual register, then update the virtual register.
4265   Register VReg =
4266       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4267   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4268   // Chain can be getRoot or getControlRoot.
4269   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4270                                       SDValue(Src.getNode(), Src.getResNo()));
4271   DAG.setRoot(CopyNode);
4272 }
4273 
4274 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4275   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4276          "call visitLoadFromSwiftError when backend supports swifterror");
4277 
4278   assert(!I.isVolatile() &&
4279          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4280          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4281          "Support volatile, non temporal, invariant for load_from_swift_error");
4282 
4283   const Value *SV = I.getOperand(0);
4284   Type *Ty = I.getType();
4285   assert(
4286       (!AA ||
4287        !AA->pointsToConstantMemory(MemoryLocation(
4288            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4289            I.getAAMetadata()))) &&
4290       "load_from_swift_error should not be constant memory");
4291 
4292   SmallVector<EVT, 4> ValueVTs;
4293   SmallVector<uint64_t, 4> Offsets;
4294   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4295                   ValueVTs, &Offsets);
4296   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4297          "expect a single EVT for swifterror");
4298 
4299   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4300   SDValue L = DAG.getCopyFromReg(
4301       getRoot(), getCurSDLoc(),
4302       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4303 
4304   setValue(&I, L);
4305 }
4306 
4307 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4308   if (I.isAtomic())
4309     return visitAtomicStore(I);
4310 
4311   const Value *SrcV = I.getOperand(0);
4312   const Value *PtrV = I.getOperand(1);
4313 
4314   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4315   if (TLI.supportSwiftError()) {
4316     // Swifterror values can come from either a function parameter with
4317     // swifterror attribute or an alloca with swifterror attribute.
4318     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4319       if (Arg->hasSwiftErrorAttr())
4320         return visitStoreToSwiftError(I);
4321     }
4322 
4323     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4324       if (Alloca->isSwiftError())
4325         return visitStoreToSwiftError(I);
4326     }
4327   }
4328 
4329   SmallVector<EVT, 4> ValueVTs, MemVTs;
4330   SmallVector<uint64_t, 4> Offsets;
4331   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4332                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4333   unsigned NumValues = ValueVTs.size();
4334   if (NumValues == 0)
4335     return;
4336 
4337   // Get the lowered operands. Note that we do this after
4338   // checking if NumResults is zero, because with zero results
4339   // the operands won't have values in the map.
4340   SDValue Src = getValue(SrcV);
4341   SDValue Ptr = getValue(PtrV);
4342 
4343   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4344   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4345   SDLoc dl = getCurSDLoc();
4346   Align Alignment = I.getAlign();
4347   AAMDNodes AAInfo = I.getAAMetadata();
4348 
4349   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4350 
4351   // An aggregate load cannot wrap around the address space, so offsets to its
4352   // parts don't wrap either.
4353   SDNodeFlags Flags;
4354   Flags.setNoUnsignedWrap(true);
4355 
4356   unsigned ChainI = 0;
4357   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4358     // See visitLoad comments.
4359     if (ChainI == MaxParallelChains) {
4360       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4361                                   ArrayRef(Chains.data(), ChainI));
4362       Root = Chain;
4363       ChainI = 0;
4364     }
4365     SDValue Add =
4366         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4367     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4368     if (MemVTs[i] != ValueVTs[i])
4369       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4370     SDValue St =
4371         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4372                      Alignment, MMOFlags, AAInfo);
4373     Chains[ChainI] = St;
4374   }
4375 
4376   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4377                                   ArrayRef(Chains.data(), ChainI));
4378   setValue(&I, StoreNode);
4379   DAG.setRoot(StoreNode);
4380 }
4381 
4382 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4383                                            bool IsCompressing) {
4384   SDLoc sdl = getCurSDLoc();
4385 
4386   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4387                                MaybeAlign &Alignment) {
4388     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4389     Src0 = I.getArgOperand(0);
4390     Ptr = I.getArgOperand(1);
4391     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4392     Mask = I.getArgOperand(3);
4393   };
4394   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4395                                     MaybeAlign &Alignment) {
4396     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4397     Src0 = I.getArgOperand(0);
4398     Ptr = I.getArgOperand(1);
4399     Mask = I.getArgOperand(2);
4400     Alignment = std::nullopt;
4401   };
4402 
4403   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4404   MaybeAlign Alignment;
4405   if (IsCompressing)
4406     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4407   else
4408     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4409 
4410   SDValue Ptr = getValue(PtrOperand);
4411   SDValue Src0 = getValue(Src0Operand);
4412   SDValue Mask = getValue(MaskOperand);
4413   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4414 
4415   EVT VT = Src0.getValueType();
4416   if (!Alignment)
4417     Alignment = DAG.getEVTAlign(VT);
4418 
4419   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4420       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4421       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4422   SDValue StoreNode =
4423       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4424                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4425   DAG.setRoot(StoreNode);
4426   setValue(&I, StoreNode);
4427 }
4428 
4429 // Get a uniform base for the Gather/Scatter intrinsic.
4430 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4431 // We try to represent it as a base pointer + vector of indices.
4432 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4433 // The first operand of the GEP may be a single pointer or a vector of pointers
4434 // Example:
4435 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4436 //  or
4437 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4438 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4439 //
4440 // When the first GEP operand is a single pointer - it is the uniform base we
4441 // are looking for. If first operand of the GEP is a splat vector - we
4442 // extract the splat value and use it as a uniform base.
4443 // In all other cases the function returns 'false'.
4444 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4445                            ISD::MemIndexType &IndexType, SDValue &Scale,
4446                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4447                            uint64_t ElemSize) {
4448   SelectionDAG& DAG = SDB->DAG;
4449   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4450   const DataLayout &DL = DAG.getDataLayout();
4451 
4452   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4453 
4454   // Handle splat constant pointer.
4455   if (auto *C = dyn_cast<Constant>(Ptr)) {
4456     C = C->getSplatValue();
4457     if (!C)
4458       return false;
4459 
4460     Base = SDB->getValue(C);
4461 
4462     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4463     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4464     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4465     IndexType = ISD::SIGNED_SCALED;
4466     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4467     return true;
4468   }
4469 
4470   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4471   if (!GEP || GEP->getParent() != CurBB)
4472     return false;
4473 
4474   if (GEP->getNumOperands() != 2)
4475     return false;
4476 
4477   const Value *BasePtr = GEP->getPointerOperand();
4478   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4479 
4480   // Make sure the base is scalar and the index is a vector.
4481   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4482     return false;
4483 
4484   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4485 
4486   // Target may not support the required addressing mode.
4487   if (ScaleVal != 1 &&
4488       !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize))
4489     return false;
4490 
4491   Base = SDB->getValue(BasePtr);
4492   Index = SDB->getValue(IndexVal);
4493   IndexType = ISD::SIGNED_SCALED;
4494 
4495   Scale =
4496       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4497   return true;
4498 }
4499 
4500 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4501   SDLoc sdl = getCurSDLoc();
4502 
4503   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4504   const Value *Ptr = I.getArgOperand(1);
4505   SDValue Src0 = getValue(I.getArgOperand(0));
4506   SDValue Mask = getValue(I.getArgOperand(3));
4507   EVT VT = Src0.getValueType();
4508   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4509                         ->getMaybeAlignValue()
4510                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4511   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4512 
4513   SDValue Base;
4514   SDValue Index;
4515   ISD::MemIndexType IndexType;
4516   SDValue Scale;
4517   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4518                                     I.getParent(), VT.getScalarStoreSize());
4519 
4520   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4521   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4522       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4523       // TODO: Make MachineMemOperands aware of scalable
4524       // vectors.
4525       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4526   if (!UniformBase) {
4527     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4528     Index = getValue(Ptr);
4529     IndexType = ISD::SIGNED_SCALED;
4530     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4531   }
4532 
4533   EVT IdxVT = Index.getValueType();
4534   EVT EltTy = IdxVT.getVectorElementType();
4535   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4536     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4537     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4538   }
4539 
4540   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4541   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4542                                          Ops, MMO, IndexType, false);
4543   DAG.setRoot(Scatter);
4544   setValue(&I, Scatter);
4545 }
4546 
4547 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4548   SDLoc sdl = getCurSDLoc();
4549 
4550   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4551                               MaybeAlign &Alignment) {
4552     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4553     Ptr = I.getArgOperand(0);
4554     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4555     Mask = I.getArgOperand(2);
4556     Src0 = I.getArgOperand(3);
4557   };
4558   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4559                                  MaybeAlign &Alignment) {
4560     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4561     Ptr = I.getArgOperand(0);
4562     Alignment = std::nullopt;
4563     Mask = I.getArgOperand(1);
4564     Src0 = I.getArgOperand(2);
4565   };
4566 
4567   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4568   MaybeAlign Alignment;
4569   if (IsExpanding)
4570     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4571   else
4572     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4573 
4574   SDValue Ptr = getValue(PtrOperand);
4575   SDValue Src0 = getValue(Src0Operand);
4576   SDValue Mask = getValue(MaskOperand);
4577   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4578 
4579   EVT VT = Src0.getValueType();
4580   if (!Alignment)
4581     Alignment = DAG.getEVTAlign(VT);
4582 
4583   AAMDNodes AAInfo = I.getAAMetadata();
4584   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4585 
4586   // Do not serialize masked loads of constant memory with anything.
4587   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4588   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4589 
4590   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4591 
4592   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4593       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4594       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4595 
4596   SDValue Load =
4597       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4598                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4599   if (AddToChain)
4600     PendingLoads.push_back(Load.getValue(1));
4601   setValue(&I, Load);
4602 }
4603 
4604 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4605   SDLoc sdl = getCurSDLoc();
4606 
4607   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4608   const Value *Ptr = I.getArgOperand(0);
4609   SDValue Src0 = getValue(I.getArgOperand(3));
4610   SDValue Mask = getValue(I.getArgOperand(2));
4611 
4612   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4613   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4614   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4615                         ->getMaybeAlignValue()
4616                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4617 
4618   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4619 
4620   SDValue Root = DAG.getRoot();
4621   SDValue Base;
4622   SDValue Index;
4623   ISD::MemIndexType IndexType;
4624   SDValue Scale;
4625   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4626                                     I.getParent(), VT.getScalarStoreSize());
4627   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4628   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4629       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4630       // TODO: Make MachineMemOperands aware of scalable
4631       // vectors.
4632       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4633 
4634   if (!UniformBase) {
4635     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4636     Index = getValue(Ptr);
4637     IndexType = ISD::SIGNED_SCALED;
4638     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4639   }
4640 
4641   EVT IdxVT = Index.getValueType();
4642   EVT EltTy = IdxVT.getVectorElementType();
4643   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4644     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4645     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4646   }
4647 
4648   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4649   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4650                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4651 
4652   PendingLoads.push_back(Gather.getValue(1));
4653   setValue(&I, Gather);
4654 }
4655 
4656 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4657   SDLoc dl = getCurSDLoc();
4658   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4659   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4660   SyncScope::ID SSID = I.getSyncScopeID();
4661 
4662   SDValue InChain = getRoot();
4663 
4664   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4665   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4666 
4667   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4668   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4669 
4670   MachineFunction &MF = DAG.getMachineFunction();
4671   MachineMemOperand *MMO = MF.getMachineMemOperand(
4672       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4673       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4674       FailureOrdering);
4675 
4676   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4677                                    dl, MemVT, VTs, InChain,
4678                                    getValue(I.getPointerOperand()),
4679                                    getValue(I.getCompareOperand()),
4680                                    getValue(I.getNewValOperand()), MMO);
4681 
4682   SDValue OutChain = L.getValue(2);
4683 
4684   setValue(&I, L);
4685   DAG.setRoot(OutChain);
4686 }
4687 
4688 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4689   SDLoc dl = getCurSDLoc();
4690   ISD::NodeType NT;
4691   switch (I.getOperation()) {
4692   default: llvm_unreachable("Unknown atomicrmw operation");
4693   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4694   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4695   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4696   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4697   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4698   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4699   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4700   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4701   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4702   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4703   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4704   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4705   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4706   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4707   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4708   case AtomicRMWInst::UIncWrap:
4709     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
4710     break;
4711   case AtomicRMWInst::UDecWrap:
4712     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
4713     break;
4714   }
4715   AtomicOrdering Ordering = I.getOrdering();
4716   SyncScope::ID SSID = I.getSyncScopeID();
4717 
4718   SDValue InChain = getRoot();
4719 
4720   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4721   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4722   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4723 
4724   MachineFunction &MF = DAG.getMachineFunction();
4725   MachineMemOperand *MMO = MF.getMachineMemOperand(
4726       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4727       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4728 
4729   SDValue L =
4730     DAG.getAtomic(NT, dl, MemVT, InChain,
4731                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4732                   MMO);
4733 
4734   SDValue OutChain = L.getValue(1);
4735 
4736   setValue(&I, L);
4737   DAG.setRoot(OutChain);
4738 }
4739 
4740 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4741   SDLoc dl = getCurSDLoc();
4742   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4743   SDValue Ops[3];
4744   Ops[0] = getRoot();
4745   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4746                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4747   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4748                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4749   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4750   setValue(&I, N);
4751   DAG.setRoot(N);
4752 }
4753 
4754 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4755   SDLoc dl = getCurSDLoc();
4756   AtomicOrdering Order = I.getOrdering();
4757   SyncScope::ID SSID = I.getSyncScopeID();
4758 
4759   SDValue InChain = getRoot();
4760 
4761   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4762   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4763   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4764 
4765   if (!TLI.supportsUnalignedAtomics() &&
4766       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4767     report_fatal_error("Cannot generate unaligned atomic load");
4768 
4769   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4770 
4771   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4772       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4773       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4774 
4775   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4776 
4777   SDValue Ptr = getValue(I.getPointerOperand());
4778 
4779   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4780     // TODO: Once this is better exercised by tests, it should be merged with
4781     // the normal path for loads to prevent future divergence.
4782     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4783     if (MemVT != VT)
4784       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4785 
4786     setValue(&I, L);
4787     SDValue OutChain = L.getValue(1);
4788     if (!I.isUnordered())
4789       DAG.setRoot(OutChain);
4790     else
4791       PendingLoads.push_back(OutChain);
4792     return;
4793   }
4794 
4795   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4796                             Ptr, MMO);
4797 
4798   SDValue OutChain = L.getValue(1);
4799   if (MemVT != VT)
4800     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4801 
4802   setValue(&I, L);
4803   DAG.setRoot(OutChain);
4804 }
4805 
4806 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4807   SDLoc dl = getCurSDLoc();
4808 
4809   AtomicOrdering Ordering = I.getOrdering();
4810   SyncScope::ID SSID = I.getSyncScopeID();
4811 
4812   SDValue InChain = getRoot();
4813 
4814   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4815   EVT MemVT =
4816       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4817 
4818   if (!TLI.supportsUnalignedAtomics() &&
4819       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4820     report_fatal_error("Cannot generate unaligned atomic store");
4821 
4822   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4823 
4824   MachineFunction &MF = DAG.getMachineFunction();
4825   MachineMemOperand *MMO = MF.getMachineMemOperand(
4826       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4827       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4828 
4829   SDValue Val = getValue(I.getValueOperand());
4830   if (Val.getValueType() != MemVT)
4831     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4832   SDValue Ptr = getValue(I.getPointerOperand());
4833 
4834   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4835     // TODO: Once this is better exercised by tests, it should be merged with
4836     // the normal path for stores to prevent future divergence.
4837     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4838     setValue(&I, S);
4839     DAG.setRoot(S);
4840     return;
4841   }
4842   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4843                                    Ptr, Val, MMO);
4844 
4845   setValue(&I, OutChain);
4846   DAG.setRoot(OutChain);
4847 }
4848 
4849 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4850 /// node.
4851 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4852                                                unsigned Intrinsic) {
4853   // Ignore the callsite's attributes. A specific call site may be marked with
4854   // readnone, but the lowering code will expect the chain based on the
4855   // definition.
4856   const Function *F = I.getCalledFunction();
4857   bool HasChain = !F->doesNotAccessMemory();
4858   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4859 
4860   // Build the operand list.
4861   SmallVector<SDValue, 8> Ops;
4862   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4863     if (OnlyLoad) {
4864       // We don't need to serialize loads against other loads.
4865       Ops.push_back(DAG.getRoot());
4866     } else {
4867       Ops.push_back(getRoot());
4868     }
4869   }
4870 
4871   // Info is set by getTgtMemIntrinsic
4872   TargetLowering::IntrinsicInfo Info;
4873   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4874   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4875                                                DAG.getMachineFunction(),
4876                                                Intrinsic);
4877 
4878   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4879   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4880       Info.opc == ISD::INTRINSIC_W_CHAIN)
4881     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4882                                         TLI.getPointerTy(DAG.getDataLayout())));
4883 
4884   // Add all operands of the call to the operand list.
4885   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4886     const Value *Arg = I.getArgOperand(i);
4887     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4888       Ops.push_back(getValue(Arg));
4889       continue;
4890     }
4891 
4892     // Use TargetConstant instead of a regular constant for immarg.
4893     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4894     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4895       assert(CI->getBitWidth() <= 64 &&
4896              "large intrinsic immediates not handled");
4897       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4898     } else {
4899       Ops.push_back(
4900           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4901     }
4902   }
4903 
4904   SmallVector<EVT, 4> ValueVTs;
4905   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4906 
4907   if (HasChain)
4908     ValueVTs.push_back(MVT::Other);
4909 
4910   SDVTList VTs = DAG.getVTList(ValueVTs);
4911 
4912   // Propagate fast-math-flags from IR to node(s).
4913   SDNodeFlags Flags;
4914   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4915     Flags.copyFMF(*FPMO);
4916   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4917 
4918   // Create the node.
4919   SDValue Result;
4920   // In some cases, custom collection of operands from CallInst I may be needed.
4921   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
4922   if (IsTgtIntrinsic) {
4923     // This is target intrinsic that touches memory
4924     //
4925     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
4926     //       didn't yield anything useful.
4927     MachinePointerInfo MPI;
4928     if (Info.ptrVal)
4929       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
4930     else if (Info.fallbackAddressSpace)
4931       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
4932     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
4933                                      Info.memVT, MPI, Info.align, Info.flags,
4934                                      Info.size, I.getAAMetadata());
4935   } else if (!HasChain) {
4936     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4937   } else if (!I.getType()->isVoidTy()) {
4938     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4939   } else {
4940     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4941   }
4942 
4943   if (HasChain) {
4944     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4945     if (OnlyLoad)
4946       PendingLoads.push_back(Chain);
4947     else
4948       DAG.setRoot(Chain);
4949   }
4950 
4951   if (!I.getType()->isVoidTy()) {
4952     if (!isa<VectorType>(I.getType()))
4953       Result = lowerRangeToAssertZExt(DAG, I, Result);
4954 
4955     MaybeAlign Alignment = I.getRetAlign();
4956 
4957     // Insert `assertalign` node if there's an alignment.
4958     if (InsertAssertAlign && Alignment) {
4959       Result =
4960           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4961     }
4962 
4963     setValue(&I, Result);
4964   }
4965 }
4966 
4967 /// GetSignificand - Get the significand and build it into a floating-point
4968 /// number with exponent of 1:
4969 ///
4970 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4971 ///
4972 /// where Op is the hexadecimal representation of floating point value.
4973 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4974   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4975                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4976   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4977                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4978   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4979 }
4980 
4981 /// GetExponent - Get the exponent:
4982 ///
4983 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4984 ///
4985 /// where Op is the hexadecimal representation of floating point value.
4986 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4987                            const TargetLowering &TLI, const SDLoc &dl) {
4988   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4989                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4990   SDValue t1 = DAG.getNode(
4991       ISD::SRL, dl, MVT::i32, t0,
4992       DAG.getConstant(23, dl,
4993                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4994   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4995                            DAG.getConstant(127, dl, MVT::i32));
4996   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4997 }
4998 
4999 /// getF32Constant - Get 32-bit floating point constant.
5000 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5001                               const SDLoc &dl) {
5002   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5003                            MVT::f32);
5004 }
5005 
5006 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5007                                        SelectionDAG &DAG) {
5008   // TODO: What fast-math-flags should be set on the floating-point nodes?
5009 
5010   //   IntegerPartOfX = ((int32_t)(t0);
5011   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5012 
5013   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5014   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5015   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5016 
5017   //   IntegerPartOfX <<= 23;
5018   IntegerPartOfX =
5019       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5020                   DAG.getConstant(23, dl,
5021                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5022                                       MVT::i32, DAG.getDataLayout())));
5023 
5024   SDValue TwoToFractionalPartOfX;
5025   if (LimitFloatPrecision <= 6) {
5026     // For floating-point precision of 6:
5027     //
5028     //   TwoToFractionalPartOfX =
5029     //     0.997535578f +
5030     //       (0.735607626f + 0.252464424f * x) * x;
5031     //
5032     // error 0.0144103317, which is 6 bits
5033     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5034                              getF32Constant(DAG, 0x3e814304, dl));
5035     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5036                              getF32Constant(DAG, 0x3f3c50c8, dl));
5037     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5038     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5039                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5040   } else if (LimitFloatPrecision <= 12) {
5041     // For floating-point precision of 12:
5042     //
5043     //   TwoToFractionalPartOfX =
5044     //     0.999892986f +
5045     //       (0.696457318f +
5046     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5047     //
5048     // error 0.000107046256, which is 13 to 14 bits
5049     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5050                              getF32Constant(DAG, 0x3da235e3, dl));
5051     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5052                              getF32Constant(DAG, 0x3e65b8f3, dl));
5053     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5054     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5055                              getF32Constant(DAG, 0x3f324b07, dl));
5056     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5057     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5058                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5059   } else { // LimitFloatPrecision <= 18
5060     // For floating-point precision of 18:
5061     //
5062     //   TwoToFractionalPartOfX =
5063     //     0.999999982f +
5064     //       (0.693148872f +
5065     //         (0.240227044f +
5066     //           (0.554906021e-1f +
5067     //             (0.961591928e-2f +
5068     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5069     // error 2.47208000*10^(-7), which is better than 18 bits
5070     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5071                              getF32Constant(DAG, 0x3924b03e, dl));
5072     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5073                              getF32Constant(DAG, 0x3ab24b87, dl));
5074     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5075     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5076                              getF32Constant(DAG, 0x3c1d8c17, dl));
5077     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5078     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5079                              getF32Constant(DAG, 0x3d634a1d, dl));
5080     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5081     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5082                              getF32Constant(DAG, 0x3e75fe14, dl));
5083     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5084     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5085                               getF32Constant(DAG, 0x3f317234, dl));
5086     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5087     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5088                                          getF32Constant(DAG, 0x3f800000, dl));
5089   }
5090 
5091   // Add the exponent into the result in integer domain.
5092   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5093   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5094                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5095 }
5096 
5097 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5098 /// limited-precision mode.
5099 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5100                          const TargetLowering &TLI, SDNodeFlags Flags) {
5101   if (Op.getValueType() == MVT::f32 &&
5102       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5103 
5104     // Put the exponent in the right bit position for later addition to the
5105     // final result:
5106     //
5107     // t0 = Op * log2(e)
5108 
5109     // TODO: What fast-math-flags should be set here?
5110     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5111                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5112     return getLimitedPrecisionExp2(t0, dl, DAG);
5113   }
5114 
5115   // No special expansion.
5116   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5117 }
5118 
5119 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5120 /// limited-precision mode.
5121 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5122                          const TargetLowering &TLI, SDNodeFlags Flags) {
5123   // TODO: What fast-math-flags should be set on the floating-point nodes?
5124 
5125   if (Op.getValueType() == MVT::f32 &&
5126       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5127     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5128 
5129     // Scale the exponent by log(2).
5130     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5131     SDValue LogOfExponent =
5132         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5133                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5134 
5135     // Get the significand and build it into a floating-point number with
5136     // exponent of 1.
5137     SDValue X = GetSignificand(DAG, Op1, dl);
5138 
5139     SDValue LogOfMantissa;
5140     if (LimitFloatPrecision <= 6) {
5141       // For floating-point precision of 6:
5142       //
5143       //   LogofMantissa =
5144       //     -1.1609546f +
5145       //       (1.4034025f - 0.23903021f * x) * x;
5146       //
5147       // error 0.0034276066, which is better than 8 bits
5148       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5149                                getF32Constant(DAG, 0xbe74c456, dl));
5150       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5151                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5152       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5153       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5154                                   getF32Constant(DAG, 0x3f949a29, dl));
5155     } else if (LimitFloatPrecision <= 12) {
5156       // For floating-point precision of 12:
5157       //
5158       //   LogOfMantissa =
5159       //     -1.7417939f +
5160       //       (2.8212026f +
5161       //         (-1.4699568f +
5162       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5163       //
5164       // error 0.000061011436, which is 14 bits
5165       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5166                                getF32Constant(DAG, 0xbd67b6d6, dl));
5167       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5168                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5169       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5170       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5171                                getF32Constant(DAG, 0x3fbc278b, dl));
5172       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5173       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5174                                getF32Constant(DAG, 0x40348e95, dl));
5175       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5176       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5177                                   getF32Constant(DAG, 0x3fdef31a, dl));
5178     } else { // LimitFloatPrecision <= 18
5179       // For floating-point precision of 18:
5180       //
5181       //   LogOfMantissa =
5182       //     -2.1072184f +
5183       //       (4.2372794f +
5184       //         (-3.7029485f +
5185       //           (2.2781945f +
5186       //             (-0.87823314f +
5187       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5188       //
5189       // error 0.0000023660568, which is better than 18 bits
5190       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5191                                getF32Constant(DAG, 0xbc91e5ac, dl));
5192       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5193                                getF32Constant(DAG, 0x3e4350aa, dl));
5194       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5195       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5196                                getF32Constant(DAG, 0x3f60d3e3, dl));
5197       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5198       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5199                                getF32Constant(DAG, 0x4011cdf0, dl));
5200       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5201       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5202                                getF32Constant(DAG, 0x406cfd1c, dl));
5203       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5204       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5205                                getF32Constant(DAG, 0x408797cb, dl));
5206       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5207       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5208                                   getF32Constant(DAG, 0x4006dcab, dl));
5209     }
5210 
5211     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5212   }
5213 
5214   // No special expansion.
5215   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5216 }
5217 
5218 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5219 /// limited-precision mode.
5220 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5221                           const TargetLowering &TLI, SDNodeFlags Flags) {
5222   // TODO: What fast-math-flags should be set on the floating-point nodes?
5223 
5224   if (Op.getValueType() == MVT::f32 &&
5225       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5226     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5227 
5228     // Get the exponent.
5229     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5230 
5231     // Get the significand and build it into a floating-point number with
5232     // exponent of 1.
5233     SDValue X = GetSignificand(DAG, Op1, dl);
5234 
5235     // Different possible minimax approximations of significand in
5236     // floating-point for various degrees of accuracy over [1,2].
5237     SDValue Log2ofMantissa;
5238     if (LimitFloatPrecision <= 6) {
5239       // For floating-point precision of 6:
5240       //
5241       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5242       //
5243       // error 0.0049451742, which is more than 7 bits
5244       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5245                                getF32Constant(DAG, 0xbeb08fe0, dl));
5246       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5247                                getF32Constant(DAG, 0x40019463, dl));
5248       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5249       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5250                                    getF32Constant(DAG, 0x3fd6633d, dl));
5251     } else if (LimitFloatPrecision <= 12) {
5252       // For floating-point precision of 12:
5253       //
5254       //   Log2ofMantissa =
5255       //     -2.51285454f +
5256       //       (4.07009056f +
5257       //         (-2.12067489f +
5258       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5259       //
5260       // error 0.0000876136000, which is better than 13 bits
5261       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5262                                getF32Constant(DAG, 0xbda7262e, dl));
5263       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5264                                getF32Constant(DAG, 0x3f25280b, dl));
5265       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5266       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5267                                getF32Constant(DAG, 0x4007b923, dl));
5268       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5269       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5270                                getF32Constant(DAG, 0x40823e2f, dl));
5271       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5272       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5273                                    getF32Constant(DAG, 0x4020d29c, dl));
5274     } else { // LimitFloatPrecision <= 18
5275       // For floating-point precision of 18:
5276       //
5277       //   Log2ofMantissa =
5278       //     -3.0400495f +
5279       //       (6.1129976f +
5280       //         (-5.3420409f +
5281       //           (3.2865683f +
5282       //             (-1.2669343f +
5283       //               (0.27515199f -
5284       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5285       //
5286       // error 0.0000018516, which is better than 18 bits
5287       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5288                                getF32Constant(DAG, 0xbcd2769e, dl));
5289       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5290                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5291       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5292       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5293                                getF32Constant(DAG, 0x3fa22ae7, dl));
5294       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5295       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5296                                getF32Constant(DAG, 0x40525723, dl));
5297       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5298       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5299                                getF32Constant(DAG, 0x40aaf200, dl));
5300       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5301       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5302                                getF32Constant(DAG, 0x40c39dad, dl));
5303       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5304       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5305                                    getF32Constant(DAG, 0x4042902c, dl));
5306     }
5307 
5308     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5309   }
5310 
5311   // No special expansion.
5312   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5313 }
5314 
5315 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5316 /// limited-precision mode.
5317 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5318                            const TargetLowering &TLI, SDNodeFlags Flags) {
5319   // TODO: What fast-math-flags should be set on the floating-point nodes?
5320 
5321   if (Op.getValueType() == MVT::f32 &&
5322       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5323     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5324 
5325     // Scale the exponent by log10(2) [0.30102999f].
5326     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5327     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5328                                         getF32Constant(DAG, 0x3e9a209a, dl));
5329 
5330     // Get the significand and build it into a floating-point number with
5331     // exponent of 1.
5332     SDValue X = GetSignificand(DAG, Op1, dl);
5333 
5334     SDValue Log10ofMantissa;
5335     if (LimitFloatPrecision <= 6) {
5336       // For floating-point precision of 6:
5337       //
5338       //   Log10ofMantissa =
5339       //     -0.50419619f +
5340       //       (0.60948995f - 0.10380950f * x) * x;
5341       //
5342       // error 0.0014886165, which is 6 bits
5343       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5344                                getF32Constant(DAG, 0xbdd49a13, dl));
5345       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5346                                getF32Constant(DAG, 0x3f1c0789, dl));
5347       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5348       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5349                                     getF32Constant(DAG, 0x3f011300, dl));
5350     } else if (LimitFloatPrecision <= 12) {
5351       // For floating-point precision of 12:
5352       //
5353       //   Log10ofMantissa =
5354       //     -0.64831180f +
5355       //       (0.91751397f +
5356       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5357       //
5358       // error 0.00019228036, which is better than 12 bits
5359       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5360                                getF32Constant(DAG, 0x3d431f31, dl));
5361       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5362                                getF32Constant(DAG, 0x3ea21fb2, dl));
5363       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5364       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5365                                getF32Constant(DAG, 0x3f6ae232, dl));
5366       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5367       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5368                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5369     } else { // LimitFloatPrecision <= 18
5370       // For floating-point precision of 18:
5371       //
5372       //   Log10ofMantissa =
5373       //     -0.84299375f +
5374       //       (1.5327582f +
5375       //         (-1.0688956f +
5376       //           (0.49102474f +
5377       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5378       //
5379       // error 0.0000037995730, which is better than 18 bits
5380       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5381                                getF32Constant(DAG, 0x3c5d51ce, dl));
5382       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5383                                getF32Constant(DAG, 0x3e00685a, dl));
5384       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5385       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5386                                getF32Constant(DAG, 0x3efb6798, dl));
5387       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5388       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5389                                getF32Constant(DAG, 0x3f88d192, dl));
5390       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5391       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5392                                getF32Constant(DAG, 0x3fc4316c, dl));
5393       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5394       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5395                                     getF32Constant(DAG, 0x3f57ce70, dl));
5396     }
5397 
5398     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5399   }
5400 
5401   // No special expansion.
5402   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5403 }
5404 
5405 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5406 /// limited-precision mode.
5407 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5408                           const TargetLowering &TLI, SDNodeFlags Flags) {
5409   if (Op.getValueType() == MVT::f32 &&
5410       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5411     return getLimitedPrecisionExp2(Op, dl, DAG);
5412 
5413   // No special expansion.
5414   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5415 }
5416 
5417 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5418 /// limited-precision mode with x == 10.0f.
5419 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5420                          SelectionDAG &DAG, const TargetLowering &TLI,
5421                          SDNodeFlags Flags) {
5422   bool IsExp10 = false;
5423   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5424       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5425     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5426       APFloat Ten(10.0f);
5427       IsExp10 = LHSC->isExactlyValue(Ten);
5428     }
5429   }
5430 
5431   // TODO: What fast-math-flags should be set on the FMUL node?
5432   if (IsExp10) {
5433     // Put the exponent in the right bit position for later addition to the
5434     // final result:
5435     //
5436     //   #define LOG2OF10 3.3219281f
5437     //   t0 = Op * LOG2OF10;
5438     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5439                              getF32Constant(DAG, 0x40549a78, dl));
5440     return getLimitedPrecisionExp2(t0, dl, DAG);
5441   }
5442 
5443   // No special expansion.
5444   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5445 }
5446 
5447 /// ExpandPowI - Expand a llvm.powi intrinsic.
5448 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5449                           SelectionDAG &DAG) {
5450   // If RHS is a constant, we can expand this out to a multiplication tree if
5451   // it's beneficial on the target, otherwise we end up lowering to a call to
5452   // __powidf2 (for example).
5453   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5454     unsigned Val = RHSC->getSExtValue();
5455 
5456     // powi(x, 0) -> 1.0
5457     if (Val == 0)
5458       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5459 
5460     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5461             Val, DAG.shouldOptForSize())) {
5462       // Get the exponent as a positive value.
5463       if ((int)Val < 0)
5464         Val = -Val;
5465       // We use the simple binary decomposition method to generate the multiply
5466       // sequence.  There are more optimal ways to do this (for example,
5467       // powi(x,15) generates one more multiply than it should), but this has
5468       // the benefit of being both really simple and much better than a libcall.
5469       SDValue Res; // Logically starts equal to 1.0
5470       SDValue CurSquare = LHS;
5471       // TODO: Intrinsics should have fast-math-flags that propagate to these
5472       // nodes.
5473       while (Val) {
5474         if (Val & 1) {
5475           if (Res.getNode())
5476             Res =
5477                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5478           else
5479             Res = CurSquare; // 1.0*CurSquare.
5480         }
5481 
5482         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5483                                 CurSquare, CurSquare);
5484         Val >>= 1;
5485       }
5486 
5487       // If the original was negative, invert the result, producing 1/(x*x*x).
5488       if (RHSC->getSExtValue() < 0)
5489         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5490                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5491       return Res;
5492     }
5493   }
5494 
5495   // Otherwise, expand to a libcall.
5496   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5497 }
5498 
5499 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5500                             SDValue LHS, SDValue RHS, SDValue Scale,
5501                             SelectionDAG &DAG, const TargetLowering &TLI) {
5502   EVT VT = LHS.getValueType();
5503   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5504   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5505   LLVMContext &Ctx = *DAG.getContext();
5506 
5507   // If the type is legal but the operation isn't, this node might survive all
5508   // the way to operation legalization. If we end up there and we do not have
5509   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5510   // node.
5511 
5512   // Coax the legalizer into expanding the node during type legalization instead
5513   // by bumping the size by one bit. This will force it to Promote, enabling the
5514   // early expansion and avoiding the need to expand later.
5515 
5516   // We don't have to do this if Scale is 0; that can always be expanded, unless
5517   // it's a saturating signed operation. Those can experience true integer
5518   // division overflow, a case which we must avoid.
5519 
5520   // FIXME: We wouldn't have to do this (or any of the early
5521   // expansion/promotion) if it was possible to expand a libcall of an
5522   // illegal type during operation legalization. But it's not, so things
5523   // get a bit hacky.
5524   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5525   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5526       (TLI.isTypeLegal(VT) ||
5527        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5528     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5529         Opcode, VT, ScaleInt);
5530     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5531       EVT PromVT;
5532       if (VT.isScalarInteger())
5533         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5534       else if (VT.isVector()) {
5535         PromVT = VT.getVectorElementType();
5536         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5537         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5538       } else
5539         llvm_unreachable("Wrong VT for DIVFIX?");
5540       if (Signed) {
5541         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5542         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5543       } else {
5544         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5545         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5546       }
5547       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5548       // For saturating operations, we need to shift up the LHS to get the
5549       // proper saturation width, and then shift down again afterwards.
5550       if (Saturating)
5551         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5552                           DAG.getConstant(1, DL, ShiftTy));
5553       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5554       if (Saturating)
5555         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5556                           DAG.getConstant(1, DL, ShiftTy));
5557       return DAG.getZExtOrTrunc(Res, DL, VT);
5558     }
5559   }
5560 
5561   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5562 }
5563 
5564 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5565 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5566 static void
5567 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5568                      const SDValue &N) {
5569   switch (N.getOpcode()) {
5570   case ISD::CopyFromReg: {
5571     SDValue Op = N.getOperand(1);
5572     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5573                       Op.getValueType().getSizeInBits());
5574     return;
5575   }
5576   case ISD::BITCAST:
5577   case ISD::AssertZext:
5578   case ISD::AssertSext:
5579   case ISD::TRUNCATE:
5580     getUnderlyingArgRegs(Regs, N.getOperand(0));
5581     return;
5582   case ISD::BUILD_PAIR:
5583   case ISD::BUILD_VECTOR:
5584   case ISD::CONCAT_VECTORS:
5585     for (SDValue Op : N->op_values())
5586       getUnderlyingArgRegs(Regs, Op);
5587     return;
5588   default:
5589     return;
5590   }
5591 }
5592 
5593 /// If the DbgValueInst is a dbg_value of a function argument, create the
5594 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5595 /// instruction selection, they will be inserted to the entry BB.
5596 /// We don't currently support this for variadic dbg_values, as they shouldn't
5597 /// appear for function arguments or in the prologue.
5598 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5599     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5600     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5601   const Argument *Arg = dyn_cast<Argument>(V);
5602   if (!Arg)
5603     return false;
5604 
5605   MachineFunction &MF = DAG.getMachineFunction();
5606   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5607 
5608   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5609   // we've been asked to pursue.
5610   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5611                               bool Indirect) {
5612     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5613       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5614       // pointing at the VReg, which will be patched up later.
5615       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5616       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5617           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5618           /* isKill */ false, /* isDead */ false,
5619           /* isUndef */ false, /* isEarlyClobber */ false,
5620           /* SubReg */ 0, /* isDebug */ true)});
5621 
5622       auto *NewDIExpr = FragExpr;
5623       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5624       // the DIExpression.
5625       if (Indirect)
5626         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5627       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5628       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5629       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5630     } else {
5631       // Create a completely standard DBG_VALUE.
5632       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5633       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5634     }
5635   };
5636 
5637   if (Kind == FuncArgumentDbgValueKind::Value) {
5638     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5639     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5640     // the entry block.
5641     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5642     if (!IsInEntryBlock)
5643       return false;
5644 
5645     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5646     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5647     // variable that also is a param.
5648     //
5649     // Although, if we are at the top of the entry block already, we can still
5650     // emit using ArgDbgValue. This might catch some situations when the
5651     // dbg.value refers to an argument that isn't used in the entry block, so
5652     // any CopyToReg node would be optimized out and the only way to express
5653     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5654     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5655     // we should only emit as ArgDbgValue if the Variable is an argument to the
5656     // current function, and the dbg.value intrinsic is found in the entry
5657     // block.
5658     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5659         !DL->getInlinedAt();
5660     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5661     if (!IsInPrologue && !VariableIsFunctionInputArg)
5662       return false;
5663 
5664     // Here we assume that a function argument on IR level only can be used to
5665     // describe one input parameter on source level. If we for example have
5666     // source code like this
5667     //
5668     //    struct A { long x, y; };
5669     //    void foo(struct A a, long b) {
5670     //      ...
5671     //      b = a.x;
5672     //      ...
5673     //    }
5674     //
5675     // and IR like this
5676     //
5677     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5678     //  entry:
5679     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5680     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5681     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5682     //    ...
5683     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5684     //    ...
5685     //
5686     // then the last dbg.value is describing a parameter "b" using a value that
5687     // is an argument. But since we already has used %a1 to describe a parameter
5688     // we should not handle that last dbg.value here (that would result in an
5689     // incorrect hoisting of the DBG_VALUE to the function entry).
5690     // Notice that we allow one dbg.value per IR level argument, to accommodate
5691     // for the situation with fragments above.
5692     if (VariableIsFunctionInputArg) {
5693       unsigned ArgNo = Arg->getArgNo();
5694       if (ArgNo >= FuncInfo.DescribedArgs.size())
5695         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5696       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5697         return false;
5698       FuncInfo.DescribedArgs.set(ArgNo);
5699     }
5700   }
5701 
5702   bool IsIndirect = false;
5703   std::optional<MachineOperand> Op;
5704   // Some arguments' frame index is recorded during argument lowering.
5705   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5706   if (FI != std::numeric_limits<int>::max())
5707     Op = MachineOperand::CreateFI(FI);
5708 
5709   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5710   if (!Op && N.getNode()) {
5711     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5712     Register Reg;
5713     if (ArgRegsAndSizes.size() == 1)
5714       Reg = ArgRegsAndSizes.front().first;
5715 
5716     if (Reg && Reg.isVirtual()) {
5717       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5718       Register PR = RegInfo.getLiveInPhysReg(Reg);
5719       if (PR)
5720         Reg = PR;
5721     }
5722     if (Reg) {
5723       Op = MachineOperand::CreateReg(Reg, false);
5724       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5725     }
5726   }
5727 
5728   if (!Op && N.getNode()) {
5729     // Check if frame index is available.
5730     SDValue LCandidate = peekThroughBitcasts(N);
5731     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5732       if (FrameIndexSDNode *FINode =
5733           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5734         Op = MachineOperand::CreateFI(FINode->getIndex());
5735   }
5736 
5737   if (!Op) {
5738     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5739     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5740                                          SplitRegs) {
5741       unsigned Offset = 0;
5742       for (const auto &RegAndSize : SplitRegs) {
5743         // If the expression is already a fragment, the current register
5744         // offset+size might extend beyond the fragment. In this case, only
5745         // the register bits that are inside the fragment are relevant.
5746         int RegFragmentSizeInBits = RegAndSize.second;
5747         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5748           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5749           // The register is entirely outside the expression fragment,
5750           // so is irrelevant for debug info.
5751           if (Offset >= ExprFragmentSizeInBits)
5752             break;
5753           // The register is partially outside the expression fragment, only
5754           // the low bits within the fragment are relevant for debug info.
5755           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5756             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5757           }
5758         }
5759 
5760         auto FragmentExpr = DIExpression::createFragmentExpression(
5761             Expr, Offset, RegFragmentSizeInBits);
5762         Offset += RegAndSize.second;
5763         // If a valid fragment expression cannot be created, the variable's
5764         // correct value cannot be determined and so it is set as Undef.
5765         if (!FragmentExpr) {
5766           SDDbgValue *SDV = DAG.getConstantDbgValue(
5767               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5768           DAG.AddDbgValue(SDV, false);
5769           continue;
5770         }
5771         MachineInstr *NewMI =
5772             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5773                              Kind != FuncArgumentDbgValueKind::Value);
5774         FuncInfo.ArgDbgValues.push_back(NewMI);
5775       }
5776     };
5777 
5778     // Check if ValueMap has reg number.
5779     DenseMap<const Value *, Register>::const_iterator
5780       VMI = FuncInfo.ValueMap.find(V);
5781     if (VMI != FuncInfo.ValueMap.end()) {
5782       const auto &TLI = DAG.getTargetLoweringInfo();
5783       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5784                        V->getType(), std::nullopt);
5785       if (RFV.occupiesMultipleRegs()) {
5786         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5787         return true;
5788       }
5789 
5790       Op = MachineOperand::CreateReg(VMI->second, false);
5791       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5792     } else if (ArgRegsAndSizes.size() > 1) {
5793       // This was split due to the calling convention, and no virtual register
5794       // mapping exists for the value.
5795       splitMultiRegDbgValue(ArgRegsAndSizes);
5796       return true;
5797     }
5798   }
5799 
5800   if (!Op)
5801     return false;
5802 
5803   assert(Variable->isValidLocationForIntrinsic(DL) &&
5804          "Expected inlined-at fields to agree");
5805   MachineInstr *NewMI = nullptr;
5806 
5807   if (Op->isReg())
5808     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5809   else
5810     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5811                     Variable, Expr);
5812 
5813   // Otherwise, use ArgDbgValues.
5814   FuncInfo.ArgDbgValues.push_back(NewMI);
5815   return true;
5816 }
5817 
5818 /// Return the appropriate SDDbgValue based on N.
5819 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5820                                              DILocalVariable *Variable,
5821                                              DIExpression *Expr,
5822                                              const DebugLoc &dl,
5823                                              unsigned DbgSDNodeOrder) {
5824   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5825     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5826     // stack slot locations.
5827     //
5828     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5829     // debug values here after optimization:
5830     //
5831     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5832     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5833     //
5834     // Both describe the direct values of their associated variables.
5835     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5836                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5837   }
5838   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5839                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5840 }
5841 
5842 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5843   switch (Intrinsic) {
5844   case Intrinsic::smul_fix:
5845     return ISD::SMULFIX;
5846   case Intrinsic::umul_fix:
5847     return ISD::UMULFIX;
5848   case Intrinsic::smul_fix_sat:
5849     return ISD::SMULFIXSAT;
5850   case Intrinsic::umul_fix_sat:
5851     return ISD::UMULFIXSAT;
5852   case Intrinsic::sdiv_fix:
5853     return ISD::SDIVFIX;
5854   case Intrinsic::udiv_fix:
5855     return ISD::UDIVFIX;
5856   case Intrinsic::sdiv_fix_sat:
5857     return ISD::SDIVFIXSAT;
5858   case Intrinsic::udiv_fix_sat:
5859     return ISD::UDIVFIXSAT;
5860   default:
5861     llvm_unreachable("Unhandled fixed point intrinsic");
5862   }
5863 }
5864 
5865 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5866                                            const char *FunctionName) {
5867   assert(FunctionName && "FunctionName must not be nullptr");
5868   SDValue Callee = DAG.getExternalSymbol(
5869       FunctionName,
5870       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5871   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5872 }
5873 
5874 /// Given a @llvm.call.preallocated.setup, return the corresponding
5875 /// preallocated call.
5876 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5877   assert(cast<CallBase>(PreallocatedSetup)
5878                  ->getCalledFunction()
5879                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5880          "expected call_preallocated_setup Value");
5881   for (const auto *U : PreallocatedSetup->users()) {
5882     auto *UseCall = cast<CallBase>(U);
5883     const Function *Fn = UseCall->getCalledFunction();
5884     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5885       return UseCall;
5886     }
5887   }
5888   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5889 }
5890 
5891 /// Lower the call to the specified intrinsic function.
5892 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5893                                              unsigned Intrinsic) {
5894   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5895   SDLoc sdl = getCurSDLoc();
5896   DebugLoc dl = getCurDebugLoc();
5897   SDValue Res;
5898 
5899   SDNodeFlags Flags;
5900   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5901     Flags.copyFMF(*FPOp);
5902 
5903   switch (Intrinsic) {
5904   default:
5905     // By default, turn this into a target intrinsic node.
5906     visitTargetIntrinsic(I, Intrinsic);
5907     return;
5908   case Intrinsic::vscale: {
5909     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5910     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5911     return;
5912   }
5913   case Intrinsic::vastart:  visitVAStart(I); return;
5914   case Intrinsic::vaend:    visitVAEnd(I); return;
5915   case Intrinsic::vacopy:   visitVACopy(I); return;
5916   case Intrinsic::returnaddress:
5917     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5918                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5919                              getValue(I.getArgOperand(0))));
5920     return;
5921   case Intrinsic::addressofreturnaddress:
5922     setValue(&I,
5923              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5924                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5925     return;
5926   case Intrinsic::sponentry:
5927     setValue(&I,
5928              DAG.getNode(ISD::SPONENTRY, sdl,
5929                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5930     return;
5931   case Intrinsic::frameaddress:
5932     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5933                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5934                              getValue(I.getArgOperand(0))));
5935     return;
5936   case Intrinsic::read_volatile_register:
5937   case Intrinsic::read_register: {
5938     Value *Reg = I.getArgOperand(0);
5939     SDValue Chain = getRoot();
5940     SDValue RegName =
5941         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5942     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5943     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5944       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5945     setValue(&I, Res);
5946     DAG.setRoot(Res.getValue(1));
5947     return;
5948   }
5949   case Intrinsic::write_register: {
5950     Value *Reg = I.getArgOperand(0);
5951     Value *RegValue = I.getArgOperand(1);
5952     SDValue Chain = getRoot();
5953     SDValue RegName =
5954         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5955     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5956                             RegName, getValue(RegValue)));
5957     return;
5958   }
5959   case Intrinsic::memcpy: {
5960     const auto &MCI = cast<MemCpyInst>(I);
5961     SDValue Op1 = getValue(I.getArgOperand(0));
5962     SDValue Op2 = getValue(I.getArgOperand(1));
5963     SDValue Op3 = getValue(I.getArgOperand(2));
5964     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5965     Align DstAlign = MCI.getDestAlign().valueOrOne();
5966     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5967     Align Alignment = std::min(DstAlign, SrcAlign);
5968     bool isVol = MCI.isVolatile();
5969     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5970     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5971     // node.
5972     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5973     SDValue MC = DAG.getMemcpy(
5974         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5975         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
5976         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5977     updateDAGForMaybeTailCall(MC);
5978     return;
5979   }
5980   case Intrinsic::memcpy_inline: {
5981     const auto &MCI = cast<MemCpyInlineInst>(I);
5982     SDValue Dst = getValue(I.getArgOperand(0));
5983     SDValue Src = getValue(I.getArgOperand(1));
5984     SDValue Size = getValue(I.getArgOperand(2));
5985     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5986     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5987     Align DstAlign = MCI.getDestAlign().valueOrOne();
5988     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5989     Align Alignment = std::min(DstAlign, SrcAlign);
5990     bool isVol = MCI.isVolatile();
5991     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5992     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5993     // node.
5994     SDValue MC = DAG.getMemcpy(
5995         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5996         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
5997         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5998     updateDAGForMaybeTailCall(MC);
5999     return;
6000   }
6001   case Intrinsic::memset: {
6002     const auto &MSI = cast<MemSetInst>(I);
6003     SDValue Op1 = getValue(I.getArgOperand(0));
6004     SDValue Op2 = getValue(I.getArgOperand(1));
6005     SDValue Op3 = getValue(I.getArgOperand(2));
6006     // @llvm.memset defines 0 and 1 to both mean no alignment.
6007     Align Alignment = MSI.getDestAlign().valueOrOne();
6008     bool isVol = MSI.isVolatile();
6009     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6010     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6011     SDValue MS = DAG.getMemset(
6012         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6013         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6014     updateDAGForMaybeTailCall(MS);
6015     return;
6016   }
6017   case Intrinsic::memset_inline: {
6018     const auto &MSII = cast<MemSetInlineInst>(I);
6019     SDValue Dst = getValue(I.getArgOperand(0));
6020     SDValue Value = getValue(I.getArgOperand(1));
6021     SDValue Size = getValue(I.getArgOperand(2));
6022     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6023     // @llvm.memset defines 0 and 1 to both mean no alignment.
6024     Align DstAlign = MSII.getDestAlign().valueOrOne();
6025     bool isVol = MSII.isVolatile();
6026     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6027     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6028     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6029                                /* AlwaysInline */ true, isTC,
6030                                MachinePointerInfo(I.getArgOperand(0)),
6031                                I.getAAMetadata());
6032     updateDAGForMaybeTailCall(MC);
6033     return;
6034   }
6035   case Intrinsic::memmove: {
6036     const auto &MMI = cast<MemMoveInst>(I);
6037     SDValue Op1 = getValue(I.getArgOperand(0));
6038     SDValue Op2 = getValue(I.getArgOperand(1));
6039     SDValue Op3 = getValue(I.getArgOperand(2));
6040     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6041     Align DstAlign = MMI.getDestAlign().valueOrOne();
6042     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6043     Align Alignment = std::min(DstAlign, SrcAlign);
6044     bool isVol = MMI.isVolatile();
6045     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6046     // FIXME: Support passing different dest/src alignments to the memmove DAG
6047     // node.
6048     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6049     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6050                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6051                                 MachinePointerInfo(I.getArgOperand(1)),
6052                                 I.getAAMetadata(), AA);
6053     updateDAGForMaybeTailCall(MM);
6054     return;
6055   }
6056   case Intrinsic::memcpy_element_unordered_atomic: {
6057     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6058     SDValue Dst = getValue(MI.getRawDest());
6059     SDValue Src = getValue(MI.getRawSource());
6060     SDValue Length = getValue(MI.getLength());
6061 
6062     Type *LengthTy = MI.getLength()->getType();
6063     unsigned ElemSz = MI.getElementSizeInBytes();
6064     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6065     SDValue MC =
6066         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6067                             isTC, MachinePointerInfo(MI.getRawDest()),
6068                             MachinePointerInfo(MI.getRawSource()));
6069     updateDAGForMaybeTailCall(MC);
6070     return;
6071   }
6072   case Intrinsic::memmove_element_unordered_atomic: {
6073     auto &MI = cast<AtomicMemMoveInst>(I);
6074     SDValue Dst = getValue(MI.getRawDest());
6075     SDValue Src = getValue(MI.getRawSource());
6076     SDValue Length = getValue(MI.getLength());
6077 
6078     Type *LengthTy = MI.getLength()->getType();
6079     unsigned ElemSz = MI.getElementSizeInBytes();
6080     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6081     SDValue MC =
6082         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6083                              isTC, MachinePointerInfo(MI.getRawDest()),
6084                              MachinePointerInfo(MI.getRawSource()));
6085     updateDAGForMaybeTailCall(MC);
6086     return;
6087   }
6088   case Intrinsic::memset_element_unordered_atomic: {
6089     auto &MI = cast<AtomicMemSetInst>(I);
6090     SDValue Dst = getValue(MI.getRawDest());
6091     SDValue Val = getValue(MI.getValue());
6092     SDValue Length = getValue(MI.getLength());
6093 
6094     Type *LengthTy = MI.getLength()->getType();
6095     unsigned ElemSz = MI.getElementSizeInBytes();
6096     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6097     SDValue MC =
6098         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6099                             isTC, MachinePointerInfo(MI.getRawDest()));
6100     updateDAGForMaybeTailCall(MC);
6101     return;
6102   }
6103   case Intrinsic::call_preallocated_setup: {
6104     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6105     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6106     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6107                               getRoot(), SrcValue);
6108     setValue(&I, Res);
6109     DAG.setRoot(Res);
6110     return;
6111   }
6112   case Intrinsic::call_preallocated_arg: {
6113     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6114     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6115     SDValue Ops[3];
6116     Ops[0] = getRoot();
6117     Ops[1] = SrcValue;
6118     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6119                                    MVT::i32); // arg index
6120     SDValue Res = DAG.getNode(
6121         ISD::PREALLOCATED_ARG, sdl,
6122         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6123     setValue(&I, Res);
6124     DAG.setRoot(Res.getValue(1));
6125     return;
6126   }
6127   case Intrinsic::dbg_declare: {
6128     const auto &DI = cast<DbgDeclareInst>(I);
6129     // Debug intrinsics are handled separately in assignment tracking mode.
6130     // Some intrinsics are handled right after Argument lowering.
6131     if (AssignmentTrackingEnabled ||
6132         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6133       return;
6134     // Assume dbg.declare can not currently use DIArgList, i.e.
6135     // it is non-variadic.
6136     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6137     DILocalVariable *Variable = DI.getVariable();
6138     DIExpression *Expression = DI.getExpression();
6139     dropDanglingDebugInfo(Variable, Expression);
6140     assert(Variable && "Missing variable");
6141     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6142                       << "\n");
6143     // Check if address has undef value.
6144     const Value *Address = DI.getVariableLocationOp(0);
6145     if (!Address || isa<UndefValue>(Address) ||
6146         (Address->use_empty() && !isa<Argument>(Address))) {
6147       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6148                         << " (bad/undef/unused-arg address)\n");
6149       return;
6150     }
6151 
6152     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6153 
6154     SDValue &N = NodeMap[Address];
6155     if (!N.getNode() && isa<Argument>(Address))
6156       // Check unused arguments map.
6157       N = UnusedArgNodeMap[Address];
6158     SDDbgValue *SDV;
6159     if (N.getNode()) {
6160       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6161         Address = BCI->getOperand(0);
6162       // Parameters are handled specially.
6163       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6164       if (isParameter && FINode) {
6165         // Byval parameter. We have a frame index at this point.
6166         SDV =
6167             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6168                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6169       } else if (isa<Argument>(Address)) {
6170         // Address is an argument, so try to emit its dbg value using
6171         // virtual register info from the FuncInfo.ValueMap.
6172         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6173                                  FuncArgumentDbgValueKind::Declare, N);
6174         return;
6175       } else {
6176         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6177                               true, dl, SDNodeOrder);
6178       }
6179       DAG.AddDbgValue(SDV, isParameter);
6180     } else {
6181       // If Address is an argument then try to emit its dbg value using
6182       // virtual register info from the FuncInfo.ValueMap.
6183       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6184                                     FuncArgumentDbgValueKind::Declare, N)) {
6185         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6186                           << " (could not emit func-arg dbg_value)\n");
6187       }
6188     }
6189     return;
6190   }
6191   case Intrinsic::dbg_label: {
6192     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6193     DILabel *Label = DI.getLabel();
6194     assert(Label && "Missing label");
6195 
6196     SDDbgLabel *SDV;
6197     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6198     DAG.AddDbgLabel(SDV);
6199     return;
6200   }
6201   case Intrinsic::dbg_assign: {
6202     // Debug intrinsics are handled seperately in assignment tracking mode.
6203     if (AssignmentTrackingEnabled)
6204       return;
6205     // If assignment tracking hasn't been enabled then fall through and treat
6206     // the dbg.assign as a dbg.value.
6207     [[fallthrough]];
6208   }
6209   case Intrinsic::dbg_value: {
6210     // Debug intrinsics are handled seperately in assignment tracking mode.
6211     if (AssignmentTrackingEnabled)
6212       return;
6213     const DbgValueInst &DI = cast<DbgValueInst>(I);
6214     assert(DI.getVariable() && "Missing variable");
6215 
6216     DILocalVariable *Variable = DI.getVariable();
6217     DIExpression *Expression = DI.getExpression();
6218     dropDanglingDebugInfo(Variable, Expression);
6219 
6220     if (DI.isKillLocation()) {
6221       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6222       return;
6223     }
6224 
6225     SmallVector<Value *, 4> Values(DI.getValues());
6226     if (Values.empty())
6227       return;
6228 
6229     bool IsVariadic = DI.hasArgList();
6230     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6231                           SDNodeOrder, IsVariadic))
6232       addDanglingDebugInfo(&DI, SDNodeOrder);
6233     return;
6234   }
6235 
6236   case Intrinsic::eh_typeid_for: {
6237     // Find the type id for the given typeinfo.
6238     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6239     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6240     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6241     setValue(&I, Res);
6242     return;
6243   }
6244 
6245   case Intrinsic::eh_return_i32:
6246   case Intrinsic::eh_return_i64:
6247     DAG.getMachineFunction().setCallsEHReturn(true);
6248     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6249                             MVT::Other,
6250                             getControlRoot(),
6251                             getValue(I.getArgOperand(0)),
6252                             getValue(I.getArgOperand(1))));
6253     return;
6254   case Intrinsic::eh_unwind_init:
6255     DAG.getMachineFunction().setCallsUnwindInit(true);
6256     return;
6257   case Intrinsic::eh_dwarf_cfa:
6258     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6259                              TLI.getPointerTy(DAG.getDataLayout()),
6260                              getValue(I.getArgOperand(0))));
6261     return;
6262   case Intrinsic::eh_sjlj_callsite: {
6263     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6264     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6265     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6266 
6267     MMI.setCurrentCallSite(CI->getZExtValue());
6268     return;
6269   }
6270   case Intrinsic::eh_sjlj_functioncontext: {
6271     // Get and store the index of the function context.
6272     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6273     AllocaInst *FnCtx =
6274       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6275     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6276     MFI.setFunctionContextIndex(FI);
6277     return;
6278   }
6279   case Intrinsic::eh_sjlj_setjmp: {
6280     SDValue Ops[2];
6281     Ops[0] = getRoot();
6282     Ops[1] = getValue(I.getArgOperand(0));
6283     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6284                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6285     setValue(&I, Op.getValue(0));
6286     DAG.setRoot(Op.getValue(1));
6287     return;
6288   }
6289   case Intrinsic::eh_sjlj_longjmp:
6290     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6291                             getRoot(), getValue(I.getArgOperand(0))));
6292     return;
6293   case Intrinsic::eh_sjlj_setup_dispatch:
6294     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6295                             getRoot()));
6296     return;
6297   case Intrinsic::masked_gather:
6298     visitMaskedGather(I);
6299     return;
6300   case Intrinsic::masked_load:
6301     visitMaskedLoad(I);
6302     return;
6303   case Intrinsic::masked_scatter:
6304     visitMaskedScatter(I);
6305     return;
6306   case Intrinsic::masked_store:
6307     visitMaskedStore(I);
6308     return;
6309   case Intrinsic::masked_expandload:
6310     visitMaskedLoad(I, true /* IsExpanding */);
6311     return;
6312   case Intrinsic::masked_compressstore:
6313     visitMaskedStore(I, true /* IsCompressing */);
6314     return;
6315   case Intrinsic::powi:
6316     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6317                             getValue(I.getArgOperand(1)), DAG));
6318     return;
6319   case Intrinsic::log:
6320     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6321     return;
6322   case Intrinsic::log2:
6323     setValue(&I,
6324              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6325     return;
6326   case Intrinsic::log10:
6327     setValue(&I,
6328              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6329     return;
6330   case Intrinsic::exp:
6331     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6332     return;
6333   case Intrinsic::exp2:
6334     setValue(&I,
6335              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6336     return;
6337   case Intrinsic::pow:
6338     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6339                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6340     return;
6341   case Intrinsic::sqrt:
6342   case Intrinsic::fabs:
6343   case Intrinsic::sin:
6344   case Intrinsic::cos:
6345   case Intrinsic::floor:
6346   case Intrinsic::ceil:
6347   case Intrinsic::trunc:
6348   case Intrinsic::rint:
6349   case Intrinsic::nearbyint:
6350   case Intrinsic::round:
6351   case Intrinsic::roundeven:
6352   case Intrinsic::canonicalize: {
6353     unsigned Opcode;
6354     switch (Intrinsic) {
6355     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6356     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6357     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6358     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6359     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6360     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6361     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6362     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6363     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6364     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6365     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6366     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6367     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6368     }
6369 
6370     setValue(&I, DAG.getNode(Opcode, sdl,
6371                              getValue(I.getArgOperand(0)).getValueType(),
6372                              getValue(I.getArgOperand(0)), Flags));
6373     return;
6374   }
6375   case Intrinsic::lround:
6376   case Intrinsic::llround:
6377   case Intrinsic::lrint:
6378   case Intrinsic::llrint: {
6379     unsigned Opcode;
6380     switch (Intrinsic) {
6381     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6382     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6383     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6384     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6385     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6386     }
6387 
6388     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6389     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6390                              getValue(I.getArgOperand(0))));
6391     return;
6392   }
6393   case Intrinsic::minnum:
6394     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6395                              getValue(I.getArgOperand(0)).getValueType(),
6396                              getValue(I.getArgOperand(0)),
6397                              getValue(I.getArgOperand(1)), Flags));
6398     return;
6399   case Intrinsic::maxnum:
6400     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6401                              getValue(I.getArgOperand(0)).getValueType(),
6402                              getValue(I.getArgOperand(0)),
6403                              getValue(I.getArgOperand(1)), Flags));
6404     return;
6405   case Intrinsic::minimum:
6406     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6407                              getValue(I.getArgOperand(0)).getValueType(),
6408                              getValue(I.getArgOperand(0)),
6409                              getValue(I.getArgOperand(1)), Flags));
6410     return;
6411   case Intrinsic::maximum:
6412     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6413                              getValue(I.getArgOperand(0)).getValueType(),
6414                              getValue(I.getArgOperand(0)),
6415                              getValue(I.getArgOperand(1)), Flags));
6416     return;
6417   case Intrinsic::copysign:
6418     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6419                              getValue(I.getArgOperand(0)).getValueType(),
6420                              getValue(I.getArgOperand(0)),
6421                              getValue(I.getArgOperand(1)), Flags));
6422     return;
6423   case Intrinsic::arithmetic_fence: {
6424     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6425                              getValue(I.getArgOperand(0)).getValueType(),
6426                              getValue(I.getArgOperand(0)), Flags));
6427     return;
6428   }
6429   case Intrinsic::fma:
6430     setValue(&I, DAG.getNode(
6431                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6432                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6433                      getValue(I.getArgOperand(2)), Flags));
6434     return;
6435 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6436   case Intrinsic::INTRINSIC:
6437 #include "llvm/IR/ConstrainedOps.def"
6438     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6439     return;
6440 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6441 #include "llvm/IR/VPIntrinsics.def"
6442     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6443     return;
6444   case Intrinsic::fptrunc_round: {
6445     // Get the last argument, the metadata and convert it to an integer in the
6446     // call
6447     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6448     std::optional<RoundingMode> RoundMode =
6449         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6450 
6451     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6452 
6453     // Propagate fast-math-flags from IR to node(s).
6454     SDNodeFlags Flags;
6455     Flags.copyFMF(*cast<FPMathOperator>(&I));
6456     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6457 
6458     SDValue Result;
6459     Result = DAG.getNode(
6460         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6461         DAG.getTargetConstant((int)*RoundMode, sdl,
6462                               TLI.getPointerTy(DAG.getDataLayout())));
6463     setValue(&I, Result);
6464 
6465     return;
6466   }
6467   case Intrinsic::fmuladd: {
6468     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6469     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6470         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6471       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6472                                getValue(I.getArgOperand(0)).getValueType(),
6473                                getValue(I.getArgOperand(0)),
6474                                getValue(I.getArgOperand(1)),
6475                                getValue(I.getArgOperand(2)), Flags));
6476     } else {
6477       // TODO: Intrinsic calls should have fast-math-flags.
6478       SDValue Mul = DAG.getNode(
6479           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6480           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6481       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6482                                 getValue(I.getArgOperand(0)).getValueType(),
6483                                 Mul, getValue(I.getArgOperand(2)), Flags);
6484       setValue(&I, Add);
6485     }
6486     return;
6487   }
6488   case Intrinsic::convert_to_fp16:
6489     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6490                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6491                                          getValue(I.getArgOperand(0)),
6492                                          DAG.getTargetConstant(0, sdl,
6493                                                                MVT::i32))));
6494     return;
6495   case Intrinsic::convert_from_fp16:
6496     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6497                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6498                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6499                                          getValue(I.getArgOperand(0)))));
6500     return;
6501   case Intrinsic::fptosi_sat: {
6502     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6503     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6504                              getValue(I.getArgOperand(0)),
6505                              DAG.getValueType(VT.getScalarType())));
6506     return;
6507   }
6508   case Intrinsic::fptoui_sat: {
6509     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6510     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6511                              getValue(I.getArgOperand(0)),
6512                              DAG.getValueType(VT.getScalarType())));
6513     return;
6514   }
6515   case Intrinsic::set_rounding:
6516     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6517                       {getRoot(), getValue(I.getArgOperand(0))});
6518     setValue(&I, Res);
6519     DAG.setRoot(Res.getValue(0));
6520     return;
6521   case Intrinsic::is_fpclass: {
6522     const DataLayout DLayout = DAG.getDataLayout();
6523     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6524     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6525     FPClassTest Test = static_cast<FPClassTest>(
6526         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6527     MachineFunction &MF = DAG.getMachineFunction();
6528     const Function &F = MF.getFunction();
6529     SDValue Op = getValue(I.getArgOperand(0));
6530     SDNodeFlags Flags;
6531     Flags.setNoFPExcept(
6532         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6533     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6534     // expansion can use illegal types. Making expansion early allows
6535     // legalizing these types prior to selection.
6536     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6537       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6538       setValue(&I, Result);
6539       return;
6540     }
6541 
6542     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6543     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6544     setValue(&I, V);
6545     return;
6546   }
6547   case Intrinsic::pcmarker: {
6548     SDValue Tmp = getValue(I.getArgOperand(0));
6549     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6550     return;
6551   }
6552   case Intrinsic::readcyclecounter: {
6553     SDValue Op = getRoot();
6554     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6555                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6556     setValue(&I, Res);
6557     DAG.setRoot(Res.getValue(1));
6558     return;
6559   }
6560   case Intrinsic::bitreverse:
6561     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6562                              getValue(I.getArgOperand(0)).getValueType(),
6563                              getValue(I.getArgOperand(0))));
6564     return;
6565   case Intrinsic::bswap:
6566     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6567                              getValue(I.getArgOperand(0)).getValueType(),
6568                              getValue(I.getArgOperand(0))));
6569     return;
6570   case Intrinsic::cttz: {
6571     SDValue Arg = getValue(I.getArgOperand(0));
6572     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6573     EVT Ty = Arg.getValueType();
6574     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6575                              sdl, Ty, Arg));
6576     return;
6577   }
6578   case Intrinsic::ctlz: {
6579     SDValue Arg = getValue(I.getArgOperand(0));
6580     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6581     EVT Ty = Arg.getValueType();
6582     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6583                              sdl, Ty, Arg));
6584     return;
6585   }
6586   case Intrinsic::ctpop: {
6587     SDValue Arg = getValue(I.getArgOperand(0));
6588     EVT Ty = Arg.getValueType();
6589     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6590     return;
6591   }
6592   case Intrinsic::fshl:
6593   case Intrinsic::fshr: {
6594     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6595     SDValue X = getValue(I.getArgOperand(0));
6596     SDValue Y = getValue(I.getArgOperand(1));
6597     SDValue Z = getValue(I.getArgOperand(2));
6598     EVT VT = X.getValueType();
6599 
6600     if (X == Y) {
6601       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6602       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6603     } else {
6604       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6605       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6606     }
6607     return;
6608   }
6609   case Intrinsic::sadd_sat: {
6610     SDValue Op1 = getValue(I.getArgOperand(0));
6611     SDValue Op2 = getValue(I.getArgOperand(1));
6612     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6613     return;
6614   }
6615   case Intrinsic::uadd_sat: {
6616     SDValue Op1 = getValue(I.getArgOperand(0));
6617     SDValue Op2 = getValue(I.getArgOperand(1));
6618     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6619     return;
6620   }
6621   case Intrinsic::ssub_sat: {
6622     SDValue Op1 = getValue(I.getArgOperand(0));
6623     SDValue Op2 = getValue(I.getArgOperand(1));
6624     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6625     return;
6626   }
6627   case Intrinsic::usub_sat: {
6628     SDValue Op1 = getValue(I.getArgOperand(0));
6629     SDValue Op2 = getValue(I.getArgOperand(1));
6630     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6631     return;
6632   }
6633   case Intrinsic::sshl_sat: {
6634     SDValue Op1 = getValue(I.getArgOperand(0));
6635     SDValue Op2 = getValue(I.getArgOperand(1));
6636     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6637     return;
6638   }
6639   case Intrinsic::ushl_sat: {
6640     SDValue Op1 = getValue(I.getArgOperand(0));
6641     SDValue Op2 = getValue(I.getArgOperand(1));
6642     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6643     return;
6644   }
6645   case Intrinsic::smul_fix:
6646   case Intrinsic::umul_fix:
6647   case Intrinsic::smul_fix_sat:
6648   case Intrinsic::umul_fix_sat: {
6649     SDValue Op1 = getValue(I.getArgOperand(0));
6650     SDValue Op2 = getValue(I.getArgOperand(1));
6651     SDValue Op3 = getValue(I.getArgOperand(2));
6652     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6653                              Op1.getValueType(), Op1, Op2, Op3));
6654     return;
6655   }
6656   case Intrinsic::sdiv_fix:
6657   case Intrinsic::udiv_fix:
6658   case Intrinsic::sdiv_fix_sat:
6659   case Intrinsic::udiv_fix_sat: {
6660     SDValue Op1 = getValue(I.getArgOperand(0));
6661     SDValue Op2 = getValue(I.getArgOperand(1));
6662     SDValue Op3 = getValue(I.getArgOperand(2));
6663     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6664                               Op1, Op2, Op3, DAG, TLI));
6665     return;
6666   }
6667   case Intrinsic::smax: {
6668     SDValue Op1 = getValue(I.getArgOperand(0));
6669     SDValue Op2 = getValue(I.getArgOperand(1));
6670     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6671     return;
6672   }
6673   case Intrinsic::smin: {
6674     SDValue Op1 = getValue(I.getArgOperand(0));
6675     SDValue Op2 = getValue(I.getArgOperand(1));
6676     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6677     return;
6678   }
6679   case Intrinsic::umax: {
6680     SDValue Op1 = getValue(I.getArgOperand(0));
6681     SDValue Op2 = getValue(I.getArgOperand(1));
6682     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6683     return;
6684   }
6685   case Intrinsic::umin: {
6686     SDValue Op1 = getValue(I.getArgOperand(0));
6687     SDValue Op2 = getValue(I.getArgOperand(1));
6688     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6689     return;
6690   }
6691   case Intrinsic::abs: {
6692     // TODO: Preserve "int min is poison" arg in SDAG?
6693     SDValue Op1 = getValue(I.getArgOperand(0));
6694     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6695     return;
6696   }
6697   case Intrinsic::stacksave: {
6698     SDValue Op = getRoot();
6699     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6700     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6701     setValue(&I, Res);
6702     DAG.setRoot(Res.getValue(1));
6703     return;
6704   }
6705   case Intrinsic::stackrestore:
6706     Res = getValue(I.getArgOperand(0));
6707     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6708     return;
6709   case Intrinsic::get_dynamic_area_offset: {
6710     SDValue Op = getRoot();
6711     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6712     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6713     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6714     // target.
6715     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6716       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6717                          " intrinsic!");
6718     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6719                       Op);
6720     DAG.setRoot(Op);
6721     setValue(&I, Res);
6722     return;
6723   }
6724   case Intrinsic::stackguard: {
6725     MachineFunction &MF = DAG.getMachineFunction();
6726     const Module &M = *MF.getFunction().getParent();
6727     SDValue Chain = getRoot();
6728     if (TLI.useLoadStackGuardNode()) {
6729       Res = getLoadStackGuard(DAG, sdl, Chain);
6730     } else {
6731       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6732       const Value *Global = TLI.getSDagStackGuard(M);
6733       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6734       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6735                         MachinePointerInfo(Global, 0), Align,
6736                         MachineMemOperand::MOVolatile);
6737     }
6738     if (TLI.useStackGuardXorFP())
6739       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6740     DAG.setRoot(Chain);
6741     setValue(&I, Res);
6742     return;
6743   }
6744   case Intrinsic::stackprotector: {
6745     // Emit code into the DAG to store the stack guard onto the stack.
6746     MachineFunction &MF = DAG.getMachineFunction();
6747     MachineFrameInfo &MFI = MF.getFrameInfo();
6748     SDValue Src, Chain = getRoot();
6749 
6750     if (TLI.useLoadStackGuardNode())
6751       Src = getLoadStackGuard(DAG, sdl, Chain);
6752     else
6753       Src = getValue(I.getArgOperand(0));   // The guard's value.
6754 
6755     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6756 
6757     int FI = FuncInfo.StaticAllocaMap[Slot];
6758     MFI.setStackProtectorIndex(FI);
6759     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6760 
6761     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6762 
6763     // Store the stack protector onto the stack.
6764     Res = DAG.getStore(
6765         Chain, sdl, Src, FIN,
6766         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6767         MaybeAlign(), MachineMemOperand::MOVolatile);
6768     setValue(&I, Res);
6769     DAG.setRoot(Res);
6770     return;
6771   }
6772   case Intrinsic::objectsize:
6773     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6774 
6775   case Intrinsic::is_constant:
6776     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6777 
6778   case Intrinsic::annotation:
6779   case Intrinsic::ptr_annotation:
6780   case Intrinsic::launder_invariant_group:
6781   case Intrinsic::strip_invariant_group:
6782     // Drop the intrinsic, but forward the value
6783     setValue(&I, getValue(I.getOperand(0)));
6784     return;
6785 
6786   case Intrinsic::assume:
6787   case Intrinsic::experimental_noalias_scope_decl:
6788   case Intrinsic::var_annotation:
6789   case Intrinsic::sideeffect:
6790     // Discard annotate attributes, noalias scope declarations, assumptions, and
6791     // artificial side-effects.
6792     return;
6793 
6794   case Intrinsic::codeview_annotation: {
6795     // Emit a label associated with this metadata.
6796     MachineFunction &MF = DAG.getMachineFunction();
6797     MCSymbol *Label =
6798         MF.getMMI().getContext().createTempSymbol("annotation", true);
6799     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6800     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6801     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6802     DAG.setRoot(Res);
6803     return;
6804   }
6805 
6806   case Intrinsic::init_trampoline: {
6807     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6808 
6809     SDValue Ops[6];
6810     Ops[0] = getRoot();
6811     Ops[1] = getValue(I.getArgOperand(0));
6812     Ops[2] = getValue(I.getArgOperand(1));
6813     Ops[3] = getValue(I.getArgOperand(2));
6814     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6815     Ops[5] = DAG.getSrcValue(F);
6816 
6817     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6818 
6819     DAG.setRoot(Res);
6820     return;
6821   }
6822   case Intrinsic::adjust_trampoline:
6823     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6824                              TLI.getPointerTy(DAG.getDataLayout()),
6825                              getValue(I.getArgOperand(0))));
6826     return;
6827   case Intrinsic::gcroot: {
6828     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6829            "only valid in functions with gc specified, enforced by Verifier");
6830     assert(GFI && "implied by previous");
6831     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6832     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6833 
6834     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6835     GFI->addStackRoot(FI->getIndex(), TypeMap);
6836     return;
6837   }
6838   case Intrinsic::gcread:
6839   case Intrinsic::gcwrite:
6840     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6841   case Intrinsic::get_rounding:
6842     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
6843     setValue(&I, Res);
6844     DAG.setRoot(Res.getValue(1));
6845     return;
6846 
6847   case Intrinsic::expect:
6848     // Just replace __builtin_expect(exp, c) with EXP.
6849     setValue(&I, getValue(I.getArgOperand(0)));
6850     return;
6851 
6852   case Intrinsic::ubsantrap:
6853   case Intrinsic::debugtrap:
6854   case Intrinsic::trap: {
6855     StringRef TrapFuncName =
6856         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6857     if (TrapFuncName.empty()) {
6858       switch (Intrinsic) {
6859       case Intrinsic::trap:
6860         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6861         break;
6862       case Intrinsic::debugtrap:
6863         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6864         break;
6865       case Intrinsic::ubsantrap:
6866         DAG.setRoot(DAG.getNode(
6867             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6868             DAG.getTargetConstant(
6869                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6870                 MVT::i32)));
6871         break;
6872       default: llvm_unreachable("unknown trap intrinsic");
6873       }
6874       return;
6875     }
6876     TargetLowering::ArgListTy Args;
6877     if (Intrinsic == Intrinsic::ubsantrap) {
6878       Args.push_back(TargetLoweringBase::ArgListEntry());
6879       Args[0].Val = I.getArgOperand(0);
6880       Args[0].Node = getValue(Args[0].Val);
6881       Args[0].Ty = Args[0].Val->getType();
6882     }
6883 
6884     TargetLowering::CallLoweringInfo CLI(DAG);
6885     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6886         CallingConv::C, I.getType(),
6887         DAG.getExternalSymbol(TrapFuncName.data(),
6888                               TLI.getPointerTy(DAG.getDataLayout())),
6889         std::move(Args));
6890 
6891     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6892     DAG.setRoot(Result.second);
6893     return;
6894   }
6895 
6896   case Intrinsic::uadd_with_overflow:
6897   case Intrinsic::sadd_with_overflow:
6898   case Intrinsic::usub_with_overflow:
6899   case Intrinsic::ssub_with_overflow:
6900   case Intrinsic::umul_with_overflow:
6901   case Intrinsic::smul_with_overflow: {
6902     ISD::NodeType Op;
6903     switch (Intrinsic) {
6904     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6905     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6906     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6907     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6908     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6909     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6910     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6911     }
6912     SDValue Op1 = getValue(I.getArgOperand(0));
6913     SDValue Op2 = getValue(I.getArgOperand(1));
6914 
6915     EVT ResultVT = Op1.getValueType();
6916     EVT OverflowVT = MVT::i1;
6917     if (ResultVT.isVector())
6918       OverflowVT = EVT::getVectorVT(
6919           *Context, OverflowVT, ResultVT.getVectorElementCount());
6920 
6921     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6922     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6923     return;
6924   }
6925   case Intrinsic::prefetch: {
6926     SDValue Ops[5];
6927     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6928     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6929     Ops[0] = DAG.getRoot();
6930     Ops[1] = getValue(I.getArgOperand(0));
6931     Ops[2] = getValue(I.getArgOperand(1));
6932     Ops[3] = getValue(I.getArgOperand(2));
6933     Ops[4] = getValue(I.getArgOperand(3));
6934     SDValue Result = DAG.getMemIntrinsicNode(
6935         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6936         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6937         /* align */ std::nullopt, Flags);
6938 
6939     // Chain the prefetch in parallell with any pending loads, to stay out of
6940     // the way of later optimizations.
6941     PendingLoads.push_back(Result);
6942     Result = getRoot();
6943     DAG.setRoot(Result);
6944     return;
6945   }
6946   case Intrinsic::lifetime_start:
6947   case Intrinsic::lifetime_end: {
6948     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6949     // Stack coloring is not enabled in O0, discard region information.
6950     if (TM.getOptLevel() == CodeGenOpt::None)
6951       return;
6952 
6953     const int64_t ObjectSize =
6954         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6955     Value *const ObjectPtr = I.getArgOperand(1);
6956     SmallVector<const Value *, 4> Allocas;
6957     getUnderlyingObjects(ObjectPtr, Allocas);
6958 
6959     for (const Value *Alloca : Allocas) {
6960       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6961 
6962       // Could not find an Alloca.
6963       if (!LifetimeObject)
6964         continue;
6965 
6966       // First check that the Alloca is static, otherwise it won't have a
6967       // valid frame index.
6968       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6969       if (SI == FuncInfo.StaticAllocaMap.end())
6970         return;
6971 
6972       const int FrameIndex = SI->second;
6973       int64_t Offset;
6974       if (GetPointerBaseWithConstantOffset(
6975               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6976         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6977       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6978                                 Offset);
6979       DAG.setRoot(Res);
6980     }
6981     return;
6982   }
6983   case Intrinsic::pseudoprobe: {
6984     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6985     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6986     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6987     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6988     DAG.setRoot(Res);
6989     return;
6990   }
6991   case Intrinsic::invariant_start:
6992     // Discard region information.
6993     setValue(&I,
6994              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6995     return;
6996   case Intrinsic::invariant_end:
6997     // Discard region information.
6998     return;
6999   case Intrinsic::clear_cache:
7000     /// FunctionName may be null.
7001     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
7002       lowerCallToExternalSymbol(I, FunctionName);
7003     return;
7004   case Intrinsic::donothing:
7005   case Intrinsic::seh_try_begin:
7006   case Intrinsic::seh_scope_begin:
7007   case Intrinsic::seh_try_end:
7008   case Intrinsic::seh_scope_end:
7009     // ignore
7010     return;
7011   case Intrinsic::experimental_stackmap:
7012     visitStackmap(I);
7013     return;
7014   case Intrinsic::experimental_patchpoint_void:
7015   case Intrinsic::experimental_patchpoint_i64:
7016     visitPatchpoint(I);
7017     return;
7018   case Intrinsic::experimental_gc_statepoint:
7019     LowerStatepoint(cast<GCStatepointInst>(I));
7020     return;
7021   case Intrinsic::experimental_gc_result:
7022     visitGCResult(cast<GCResultInst>(I));
7023     return;
7024   case Intrinsic::experimental_gc_relocate:
7025     visitGCRelocate(cast<GCRelocateInst>(I));
7026     return;
7027   case Intrinsic::instrprof_cover:
7028     llvm_unreachable("instrprof failed to lower a cover");
7029   case Intrinsic::instrprof_increment:
7030     llvm_unreachable("instrprof failed to lower an increment");
7031   case Intrinsic::instrprof_timestamp:
7032     llvm_unreachable("instrprof failed to lower a timestamp");
7033   case Intrinsic::instrprof_value_profile:
7034     llvm_unreachable("instrprof failed to lower a value profiling call");
7035   case Intrinsic::localescape: {
7036     MachineFunction &MF = DAG.getMachineFunction();
7037     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7038 
7039     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7040     // is the same on all targets.
7041     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7042       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7043       if (isa<ConstantPointerNull>(Arg))
7044         continue; // Skip null pointers. They represent a hole in index space.
7045       AllocaInst *Slot = cast<AllocaInst>(Arg);
7046       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7047              "can only escape static allocas");
7048       int FI = FuncInfo.StaticAllocaMap[Slot];
7049       MCSymbol *FrameAllocSym =
7050           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7051               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7052       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7053               TII->get(TargetOpcode::LOCAL_ESCAPE))
7054           .addSym(FrameAllocSym)
7055           .addFrameIndex(FI);
7056     }
7057 
7058     return;
7059   }
7060 
7061   case Intrinsic::localrecover: {
7062     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7063     MachineFunction &MF = DAG.getMachineFunction();
7064 
7065     // Get the symbol that defines the frame offset.
7066     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7067     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7068     unsigned IdxVal =
7069         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7070     MCSymbol *FrameAllocSym =
7071         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7072             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7073 
7074     Value *FP = I.getArgOperand(1);
7075     SDValue FPVal = getValue(FP);
7076     EVT PtrVT = FPVal.getValueType();
7077 
7078     // Create a MCSymbol for the label to avoid any target lowering
7079     // that would make this PC relative.
7080     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7081     SDValue OffsetVal =
7082         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7083 
7084     // Add the offset to the FP.
7085     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7086     setValue(&I, Add);
7087 
7088     return;
7089   }
7090 
7091   case Intrinsic::eh_exceptionpointer:
7092   case Intrinsic::eh_exceptioncode: {
7093     // Get the exception pointer vreg, copy from it, and resize it to fit.
7094     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7095     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7096     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7097     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7098     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7099     if (Intrinsic == Intrinsic::eh_exceptioncode)
7100       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7101     setValue(&I, N);
7102     return;
7103   }
7104   case Intrinsic::xray_customevent: {
7105     // Here we want to make sure that the intrinsic behaves as if it has a
7106     // specific calling convention, and only for x86_64.
7107     // FIXME: Support other platforms later.
7108     const auto &Triple = DAG.getTarget().getTargetTriple();
7109     if (Triple.getArch() != Triple::x86_64)
7110       return;
7111 
7112     SmallVector<SDValue, 8> Ops;
7113 
7114     // We want to say that we always want the arguments in registers.
7115     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7116     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7117     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7118     SDValue Chain = getRoot();
7119     Ops.push_back(LogEntryVal);
7120     Ops.push_back(StrSizeVal);
7121     Ops.push_back(Chain);
7122 
7123     // We need to enforce the calling convention for the callsite, so that
7124     // argument ordering is enforced correctly, and that register allocation can
7125     // see that some registers may be assumed clobbered and have to preserve
7126     // them across calls to the intrinsic.
7127     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7128                                            sdl, NodeTys, Ops);
7129     SDValue patchableNode = SDValue(MN, 0);
7130     DAG.setRoot(patchableNode);
7131     setValue(&I, patchableNode);
7132     return;
7133   }
7134   case Intrinsic::xray_typedevent: {
7135     // Here we want to make sure that the intrinsic behaves as if it has a
7136     // specific calling convention, and only for x86_64.
7137     // FIXME: Support other platforms later.
7138     const auto &Triple = DAG.getTarget().getTargetTriple();
7139     if (Triple.getArch() != Triple::x86_64)
7140       return;
7141 
7142     SmallVector<SDValue, 8> Ops;
7143 
7144     // We want to say that we always want the arguments in registers.
7145     // It's unclear to me how manipulating the selection DAG here forces callers
7146     // to provide arguments in registers instead of on the stack.
7147     SDValue LogTypeId = getValue(I.getArgOperand(0));
7148     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7149     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7150     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7151     SDValue Chain = getRoot();
7152     Ops.push_back(LogTypeId);
7153     Ops.push_back(LogEntryVal);
7154     Ops.push_back(StrSizeVal);
7155     Ops.push_back(Chain);
7156 
7157     // We need to enforce the calling convention for the callsite, so that
7158     // argument ordering is enforced correctly, and that register allocation can
7159     // see that some registers may be assumed clobbered and have to preserve
7160     // them across calls to the intrinsic.
7161     MachineSDNode *MN = DAG.getMachineNode(
7162         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7163     SDValue patchableNode = SDValue(MN, 0);
7164     DAG.setRoot(patchableNode);
7165     setValue(&I, patchableNode);
7166     return;
7167   }
7168   case Intrinsic::experimental_deoptimize:
7169     LowerDeoptimizeCall(&I);
7170     return;
7171   case Intrinsic::experimental_stepvector:
7172     visitStepVector(I);
7173     return;
7174   case Intrinsic::vector_reduce_fadd:
7175   case Intrinsic::vector_reduce_fmul:
7176   case Intrinsic::vector_reduce_add:
7177   case Intrinsic::vector_reduce_mul:
7178   case Intrinsic::vector_reduce_and:
7179   case Intrinsic::vector_reduce_or:
7180   case Intrinsic::vector_reduce_xor:
7181   case Intrinsic::vector_reduce_smax:
7182   case Intrinsic::vector_reduce_smin:
7183   case Intrinsic::vector_reduce_umax:
7184   case Intrinsic::vector_reduce_umin:
7185   case Intrinsic::vector_reduce_fmax:
7186   case Intrinsic::vector_reduce_fmin:
7187     visitVectorReduce(I, Intrinsic);
7188     return;
7189 
7190   case Intrinsic::icall_branch_funnel: {
7191     SmallVector<SDValue, 16> Ops;
7192     Ops.push_back(getValue(I.getArgOperand(0)));
7193 
7194     int64_t Offset;
7195     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7196         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7197     if (!Base)
7198       report_fatal_error(
7199           "llvm.icall.branch.funnel operand must be a GlobalValue");
7200     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7201 
7202     struct BranchFunnelTarget {
7203       int64_t Offset;
7204       SDValue Target;
7205     };
7206     SmallVector<BranchFunnelTarget, 8> Targets;
7207 
7208     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7209       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7210           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7211       if (ElemBase != Base)
7212         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7213                            "to the same GlobalValue");
7214 
7215       SDValue Val = getValue(I.getArgOperand(Op + 1));
7216       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7217       if (!GA)
7218         report_fatal_error(
7219             "llvm.icall.branch.funnel operand must be a GlobalValue");
7220       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7221                                      GA->getGlobal(), sdl, Val.getValueType(),
7222                                      GA->getOffset())});
7223     }
7224     llvm::sort(Targets,
7225                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7226                  return T1.Offset < T2.Offset;
7227                });
7228 
7229     for (auto &T : Targets) {
7230       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7231       Ops.push_back(T.Target);
7232     }
7233 
7234     Ops.push_back(DAG.getRoot()); // Chain
7235     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7236                                  MVT::Other, Ops),
7237               0);
7238     DAG.setRoot(N);
7239     setValue(&I, N);
7240     HasTailCall = true;
7241     return;
7242   }
7243 
7244   case Intrinsic::wasm_landingpad_index:
7245     // Information this intrinsic contained has been transferred to
7246     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7247     // delete it now.
7248     return;
7249 
7250   case Intrinsic::aarch64_settag:
7251   case Intrinsic::aarch64_settag_zero: {
7252     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7253     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7254     SDValue Val = TSI.EmitTargetCodeForSetTag(
7255         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7256         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7257         ZeroMemory);
7258     DAG.setRoot(Val);
7259     setValue(&I, Val);
7260     return;
7261   }
7262   case Intrinsic::ptrmask: {
7263     SDValue Ptr = getValue(I.getOperand(0));
7264     SDValue Const = getValue(I.getOperand(1));
7265 
7266     EVT PtrVT = Ptr.getValueType();
7267     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7268                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7269     return;
7270   }
7271   case Intrinsic::threadlocal_address: {
7272     setValue(&I, getValue(I.getOperand(0)));
7273     return;
7274   }
7275   case Intrinsic::get_active_lane_mask: {
7276     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7277     SDValue Index = getValue(I.getOperand(0));
7278     EVT ElementVT = Index.getValueType();
7279 
7280     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7281       visitTargetIntrinsic(I, Intrinsic);
7282       return;
7283     }
7284 
7285     SDValue TripCount = getValue(I.getOperand(1));
7286     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7287 
7288     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7289     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7290     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7291     SDValue VectorInduction = DAG.getNode(
7292         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7293     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7294                                  VectorTripCount, ISD::CondCode::SETULT);
7295     setValue(&I, SetCC);
7296     return;
7297   }
7298   case Intrinsic::vector_insert: {
7299     SDValue Vec = getValue(I.getOperand(0));
7300     SDValue SubVec = getValue(I.getOperand(1));
7301     SDValue Index = getValue(I.getOperand(2));
7302 
7303     // The intrinsic's index type is i64, but the SDNode requires an index type
7304     // suitable for the target. Convert the index as required.
7305     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7306     if (Index.getValueType() != VectorIdxTy)
7307       Index = DAG.getVectorIdxConstant(
7308           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7309 
7310     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7311     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7312                              Index));
7313     return;
7314   }
7315   case Intrinsic::vector_extract: {
7316     SDValue Vec = getValue(I.getOperand(0));
7317     SDValue Index = getValue(I.getOperand(1));
7318     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7319 
7320     // The intrinsic's index type is i64, but the SDNode requires an index type
7321     // suitable for the target. Convert the index as required.
7322     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7323     if (Index.getValueType() != VectorIdxTy)
7324       Index = DAG.getVectorIdxConstant(
7325           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7326 
7327     setValue(&I,
7328              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7329     return;
7330   }
7331   case Intrinsic::experimental_vector_reverse:
7332     visitVectorReverse(I);
7333     return;
7334   case Intrinsic::experimental_vector_splice:
7335     visitVectorSplice(I);
7336     return;
7337   case Intrinsic::callbr_landingpad:
7338     visitCallBrLandingPad(I);
7339     return;
7340   case Intrinsic::experimental_vector_interleave2:
7341     visitVectorInterleave(I);
7342     return;
7343   case Intrinsic::experimental_vector_deinterleave2:
7344     visitVectorDeinterleave(I);
7345     return;
7346   }
7347 }
7348 
7349 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7350     const ConstrainedFPIntrinsic &FPI) {
7351   SDLoc sdl = getCurSDLoc();
7352 
7353   // We do not need to serialize constrained FP intrinsics against
7354   // each other or against (nonvolatile) loads, so they can be
7355   // chained like loads.
7356   SDValue Chain = DAG.getRoot();
7357   SmallVector<SDValue, 4> Opers;
7358   Opers.push_back(Chain);
7359   if (FPI.isUnaryOp()) {
7360     Opers.push_back(getValue(FPI.getArgOperand(0)));
7361   } else if (FPI.isTernaryOp()) {
7362     Opers.push_back(getValue(FPI.getArgOperand(0)));
7363     Opers.push_back(getValue(FPI.getArgOperand(1)));
7364     Opers.push_back(getValue(FPI.getArgOperand(2)));
7365   } else {
7366     Opers.push_back(getValue(FPI.getArgOperand(0)));
7367     Opers.push_back(getValue(FPI.getArgOperand(1)));
7368   }
7369 
7370   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7371     assert(Result.getNode()->getNumValues() == 2);
7372 
7373     // Push node to the appropriate list so that future instructions can be
7374     // chained up correctly.
7375     SDValue OutChain = Result.getValue(1);
7376     switch (EB) {
7377     case fp::ExceptionBehavior::ebIgnore:
7378       // The only reason why ebIgnore nodes still need to be chained is that
7379       // they might depend on the current rounding mode, and therefore must
7380       // not be moved across instruction that may change that mode.
7381       [[fallthrough]];
7382     case fp::ExceptionBehavior::ebMayTrap:
7383       // These must not be moved across calls or instructions that may change
7384       // floating-point exception masks.
7385       PendingConstrainedFP.push_back(OutChain);
7386       break;
7387     case fp::ExceptionBehavior::ebStrict:
7388       // These must not be moved across calls or instructions that may change
7389       // floating-point exception masks or read floating-point exception flags.
7390       // In addition, they cannot be optimized out even if unused.
7391       PendingConstrainedFPStrict.push_back(OutChain);
7392       break;
7393     }
7394   };
7395 
7396   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7397   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7398   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7399   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7400 
7401   SDNodeFlags Flags;
7402   if (EB == fp::ExceptionBehavior::ebIgnore)
7403     Flags.setNoFPExcept(true);
7404 
7405   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7406     Flags.copyFMF(*FPOp);
7407 
7408   unsigned Opcode;
7409   switch (FPI.getIntrinsicID()) {
7410   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7411 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7412   case Intrinsic::INTRINSIC:                                                   \
7413     Opcode = ISD::STRICT_##DAGN;                                               \
7414     break;
7415 #include "llvm/IR/ConstrainedOps.def"
7416   case Intrinsic::experimental_constrained_fmuladd: {
7417     Opcode = ISD::STRICT_FMA;
7418     // Break fmuladd into fmul and fadd.
7419     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7420         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7421       Opers.pop_back();
7422       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7423       pushOutChain(Mul, EB);
7424       Opcode = ISD::STRICT_FADD;
7425       Opers.clear();
7426       Opers.push_back(Mul.getValue(1));
7427       Opers.push_back(Mul.getValue(0));
7428       Opers.push_back(getValue(FPI.getArgOperand(2)));
7429     }
7430     break;
7431   }
7432   }
7433 
7434   // A few strict DAG nodes carry additional operands that are not
7435   // set up by the default code above.
7436   switch (Opcode) {
7437   default: break;
7438   case ISD::STRICT_FP_ROUND:
7439     Opers.push_back(
7440         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7441     break;
7442   case ISD::STRICT_FSETCC:
7443   case ISD::STRICT_FSETCCS: {
7444     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7445     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7446     if (TM.Options.NoNaNsFPMath)
7447       Condition = getFCmpCodeWithoutNaN(Condition);
7448     Opers.push_back(DAG.getCondCode(Condition));
7449     break;
7450   }
7451   }
7452 
7453   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7454   pushOutChain(Result, EB);
7455 
7456   SDValue FPResult = Result.getValue(0);
7457   setValue(&FPI, FPResult);
7458 }
7459 
7460 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7461   std::optional<unsigned> ResOPC;
7462   switch (VPIntrin.getIntrinsicID()) {
7463   case Intrinsic::vp_ctlz: {
7464     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7465     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7466     break;
7467   }
7468   case Intrinsic::vp_cttz: {
7469     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7470     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7471     break;
7472   }
7473 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7474   case Intrinsic::VPID:                                                        \
7475     ResOPC = ISD::VPSD;                                                        \
7476     break;
7477 #include "llvm/IR/VPIntrinsics.def"
7478   }
7479 
7480   if (!ResOPC)
7481     llvm_unreachable(
7482         "Inconsistency: no SDNode available for this VPIntrinsic!");
7483 
7484   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7485       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7486     if (VPIntrin.getFastMathFlags().allowReassoc())
7487       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7488                                                 : ISD::VP_REDUCE_FMUL;
7489   }
7490 
7491   return *ResOPC;
7492 }
7493 
7494 void SelectionDAGBuilder::visitVPLoad(
7495     const VPIntrinsic &VPIntrin, EVT VT,
7496     const SmallVectorImpl<SDValue> &OpValues) {
7497   SDLoc DL = getCurSDLoc();
7498   Value *PtrOperand = VPIntrin.getArgOperand(0);
7499   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7500   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7501   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7502   SDValue LD;
7503   // Do not serialize variable-length loads of constant memory with
7504   // anything.
7505   if (!Alignment)
7506     Alignment = DAG.getEVTAlign(VT);
7507   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7508   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7509   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7510   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7511       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7512       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7513   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7514                      MMO, false /*IsExpanding */);
7515   if (AddToChain)
7516     PendingLoads.push_back(LD.getValue(1));
7517   setValue(&VPIntrin, LD);
7518 }
7519 
7520 void SelectionDAGBuilder::visitVPGather(
7521     const VPIntrinsic &VPIntrin, EVT VT,
7522     const SmallVectorImpl<SDValue> &OpValues) {
7523   SDLoc DL = getCurSDLoc();
7524   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7525   Value *PtrOperand = VPIntrin.getArgOperand(0);
7526   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7527   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7528   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7529   SDValue LD;
7530   if (!Alignment)
7531     Alignment = DAG.getEVTAlign(VT.getScalarType());
7532   unsigned AS =
7533     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7534   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7535      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7536      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7537   SDValue Base, Index, Scale;
7538   ISD::MemIndexType IndexType;
7539   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7540                                     this, VPIntrin.getParent(),
7541                                     VT.getScalarStoreSize());
7542   if (!UniformBase) {
7543     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7544     Index = getValue(PtrOperand);
7545     IndexType = ISD::SIGNED_SCALED;
7546     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7547   }
7548   EVT IdxVT = Index.getValueType();
7549   EVT EltTy = IdxVT.getVectorElementType();
7550   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7551     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7552     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7553   }
7554   LD = DAG.getGatherVP(
7555       DAG.getVTList(VT, MVT::Other), VT, DL,
7556       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7557       IndexType);
7558   PendingLoads.push_back(LD.getValue(1));
7559   setValue(&VPIntrin, LD);
7560 }
7561 
7562 void SelectionDAGBuilder::visitVPStore(
7563     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7564   SDLoc DL = getCurSDLoc();
7565   Value *PtrOperand = VPIntrin.getArgOperand(1);
7566   EVT VT = OpValues[0].getValueType();
7567   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7568   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7569   SDValue ST;
7570   if (!Alignment)
7571     Alignment = DAG.getEVTAlign(VT);
7572   SDValue Ptr = OpValues[1];
7573   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7574   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7575       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7576       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7577   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7578                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7579                       /* IsTruncating */ false, /*IsCompressing*/ false);
7580   DAG.setRoot(ST);
7581   setValue(&VPIntrin, ST);
7582 }
7583 
7584 void SelectionDAGBuilder::visitVPScatter(
7585     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7586   SDLoc DL = getCurSDLoc();
7587   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7588   Value *PtrOperand = VPIntrin.getArgOperand(1);
7589   EVT VT = OpValues[0].getValueType();
7590   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7591   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7592   SDValue ST;
7593   if (!Alignment)
7594     Alignment = DAG.getEVTAlign(VT.getScalarType());
7595   unsigned AS =
7596       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7597   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7598       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7599       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7600   SDValue Base, Index, Scale;
7601   ISD::MemIndexType IndexType;
7602   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7603                                     this, VPIntrin.getParent(),
7604                                     VT.getScalarStoreSize());
7605   if (!UniformBase) {
7606     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7607     Index = getValue(PtrOperand);
7608     IndexType = ISD::SIGNED_SCALED;
7609     Scale =
7610       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7611   }
7612   EVT IdxVT = Index.getValueType();
7613   EVT EltTy = IdxVT.getVectorElementType();
7614   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7615     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7616     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7617   }
7618   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7619                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7620                          OpValues[2], OpValues[3]},
7621                         MMO, IndexType);
7622   DAG.setRoot(ST);
7623   setValue(&VPIntrin, ST);
7624 }
7625 
7626 void SelectionDAGBuilder::visitVPStridedLoad(
7627     const VPIntrinsic &VPIntrin, EVT VT,
7628     const SmallVectorImpl<SDValue> &OpValues) {
7629   SDLoc DL = getCurSDLoc();
7630   Value *PtrOperand = VPIntrin.getArgOperand(0);
7631   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7632   if (!Alignment)
7633     Alignment = DAG.getEVTAlign(VT.getScalarType());
7634   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7635   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7636   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7637   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7638   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7639   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7640       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7641       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7642 
7643   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7644                                     OpValues[2], OpValues[3], MMO,
7645                                     false /*IsExpanding*/);
7646 
7647   if (AddToChain)
7648     PendingLoads.push_back(LD.getValue(1));
7649   setValue(&VPIntrin, LD);
7650 }
7651 
7652 void SelectionDAGBuilder::visitVPStridedStore(
7653     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7654   SDLoc DL = getCurSDLoc();
7655   Value *PtrOperand = VPIntrin.getArgOperand(1);
7656   EVT VT = OpValues[0].getValueType();
7657   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7658   if (!Alignment)
7659     Alignment = DAG.getEVTAlign(VT.getScalarType());
7660   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7661   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7662       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7663       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7664 
7665   SDValue ST = DAG.getStridedStoreVP(
7666       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7667       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7668       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7669       /*IsCompressing*/ false);
7670 
7671   DAG.setRoot(ST);
7672   setValue(&VPIntrin, ST);
7673 }
7674 
7675 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7676   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7677   SDLoc DL = getCurSDLoc();
7678 
7679   ISD::CondCode Condition;
7680   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7681   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7682   if (IsFP) {
7683     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7684     // flags, but calls that don't return floating-point types can't be
7685     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7686     Condition = getFCmpCondCode(CondCode);
7687     if (TM.Options.NoNaNsFPMath)
7688       Condition = getFCmpCodeWithoutNaN(Condition);
7689   } else {
7690     Condition = getICmpCondCode(CondCode);
7691   }
7692 
7693   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7694   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7695   // #2 is the condition code
7696   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7697   SDValue EVL = getValue(VPIntrin.getOperand(4));
7698   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7699   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7700          "Unexpected target EVL type");
7701   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7702 
7703   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7704                                                         VPIntrin.getType());
7705   setValue(&VPIntrin,
7706            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7707 }
7708 
7709 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7710     const VPIntrinsic &VPIntrin) {
7711   SDLoc DL = getCurSDLoc();
7712   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7713 
7714   auto IID = VPIntrin.getIntrinsicID();
7715 
7716   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7717     return visitVPCmp(*CmpI);
7718 
7719   SmallVector<EVT, 4> ValueVTs;
7720   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7721   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7722   SDVTList VTs = DAG.getVTList(ValueVTs);
7723 
7724   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7725 
7726   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7727   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7728          "Unexpected target EVL type");
7729 
7730   // Request operands.
7731   SmallVector<SDValue, 7> OpValues;
7732   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7733     auto Op = getValue(VPIntrin.getArgOperand(I));
7734     if (I == EVLParamPos)
7735       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7736     OpValues.push_back(Op);
7737   }
7738 
7739   switch (Opcode) {
7740   default: {
7741     SDNodeFlags SDFlags;
7742     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7743       SDFlags.copyFMF(*FPMO);
7744     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7745     setValue(&VPIntrin, Result);
7746     break;
7747   }
7748   case ISD::VP_LOAD:
7749     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
7750     break;
7751   case ISD::VP_GATHER:
7752     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
7753     break;
7754   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7755     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7756     break;
7757   case ISD::VP_STORE:
7758     visitVPStore(VPIntrin, OpValues);
7759     break;
7760   case ISD::VP_SCATTER:
7761     visitVPScatter(VPIntrin, OpValues);
7762     break;
7763   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7764     visitVPStridedStore(VPIntrin, OpValues);
7765     break;
7766   case ISD::VP_FMULADD: {
7767     assert(OpValues.size() == 5 && "Unexpected number of operands");
7768     SDNodeFlags SDFlags;
7769     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7770       SDFlags.copyFMF(*FPMO);
7771     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7772         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
7773       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
7774     } else {
7775       SDValue Mul = DAG.getNode(
7776           ISD::VP_FMUL, DL, VTs,
7777           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
7778       SDValue Add =
7779           DAG.getNode(ISD::VP_FADD, DL, VTs,
7780                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
7781       setValue(&VPIntrin, Add);
7782     }
7783     break;
7784   }
7785   case ISD::VP_INTTOPTR: {
7786     SDValue N = OpValues[0];
7787     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
7788     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
7789     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7790                                OpValues[2]);
7791     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7792                              OpValues[2]);
7793     setValue(&VPIntrin, N);
7794     break;
7795   }
7796   case ISD::VP_PTRTOINT: {
7797     SDValue N = OpValues[0];
7798     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7799                                                           VPIntrin.getType());
7800     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
7801                                        VPIntrin.getOperand(0)->getType());
7802     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7803                                OpValues[2]);
7804     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7805                              OpValues[2]);
7806     setValue(&VPIntrin, N);
7807     break;
7808   }
7809   case ISD::VP_ABS:
7810   case ISD::VP_CTLZ:
7811   case ISD::VP_CTLZ_ZERO_UNDEF:
7812   case ISD::VP_CTTZ:
7813   case ISD::VP_CTTZ_ZERO_UNDEF: {
7814     SDValue Result =
7815         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
7816     setValue(&VPIntrin, Result);
7817     break;
7818   }
7819   }
7820 }
7821 
7822 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7823                                           const BasicBlock *EHPadBB,
7824                                           MCSymbol *&BeginLabel) {
7825   MachineFunction &MF = DAG.getMachineFunction();
7826   MachineModuleInfo &MMI = MF.getMMI();
7827 
7828   // Insert a label before the invoke call to mark the try range.  This can be
7829   // used to detect deletion of the invoke via the MachineModuleInfo.
7830   BeginLabel = MMI.getContext().createTempSymbol();
7831 
7832   // For SjLj, keep track of which landing pads go with which invokes
7833   // so as to maintain the ordering of pads in the LSDA.
7834   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7835   if (CallSiteIndex) {
7836     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7837     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7838 
7839     // Now that the call site is handled, stop tracking it.
7840     MMI.setCurrentCallSite(0);
7841   }
7842 
7843   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7844 }
7845 
7846 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7847                                         const BasicBlock *EHPadBB,
7848                                         MCSymbol *BeginLabel) {
7849   assert(BeginLabel && "BeginLabel should've been set");
7850 
7851   MachineFunction &MF = DAG.getMachineFunction();
7852   MachineModuleInfo &MMI = MF.getMMI();
7853 
7854   // Insert a label at the end of the invoke call to mark the try range.  This
7855   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7856   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7857   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7858 
7859   // Inform MachineModuleInfo of range.
7860   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7861   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7862   // actually use outlined funclets and their LSDA info style.
7863   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7864     assert(II && "II should've been set");
7865     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7866     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7867   } else if (!isScopedEHPersonality(Pers)) {
7868     assert(EHPadBB);
7869     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7870   }
7871 
7872   return Chain;
7873 }
7874 
7875 std::pair<SDValue, SDValue>
7876 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7877                                     const BasicBlock *EHPadBB) {
7878   MCSymbol *BeginLabel = nullptr;
7879 
7880   if (EHPadBB) {
7881     // Both PendingLoads and PendingExports must be flushed here;
7882     // this call might not return.
7883     (void)getRoot();
7884     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7885     CLI.setChain(getRoot());
7886   }
7887 
7888   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7889   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7890 
7891   assert((CLI.IsTailCall || Result.second.getNode()) &&
7892          "Non-null chain expected with non-tail call!");
7893   assert((Result.second.getNode() || !Result.first.getNode()) &&
7894          "Null value expected with tail call!");
7895 
7896   if (!Result.second.getNode()) {
7897     // As a special case, a null chain means that a tail call has been emitted
7898     // and the DAG root is already updated.
7899     HasTailCall = true;
7900 
7901     // Since there's no actual continuation from this block, nothing can be
7902     // relying on us setting vregs for them.
7903     PendingExports.clear();
7904   } else {
7905     DAG.setRoot(Result.second);
7906   }
7907 
7908   if (EHPadBB) {
7909     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7910                            BeginLabel));
7911   }
7912 
7913   return Result;
7914 }
7915 
7916 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7917                                       bool isTailCall,
7918                                       bool isMustTailCall,
7919                                       const BasicBlock *EHPadBB) {
7920   auto &DL = DAG.getDataLayout();
7921   FunctionType *FTy = CB.getFunctionType();
7922   Type *RetTy = CB.getType();
7923 
7924   TargetLowering::ArgListTy Args;
7925   Args.reserve(CB.arg_size());
7926 
7927   const Value *SwiftErrorVal = nullptr;
7928   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7929 
7930   if (isTailCall) {
7931     // Avoid emitting tail calls in functions with the disable-tail-calls
7932     // attribute.
7933     auto *Caller = CB.getParent()->getParent();
7934     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7935         "true" && !isMustTailCall)
7936       isTailCall = false;
7937 
7938     // We can't tail call inside a function with a swifterror argument. Lowering
7939     // does not support this yet. It would have to move into the swifterror
7940     // register before the call.
7941     if (TLI.supportSwiftError() &&
7942         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7943       isTailCall = false;
7944   }
7945 
7946   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7947     TargetLowering::ArgListEntry Entry;
7948     const Value *V = *I;
7949 
7950     // Skip empty types
7951     if (V->getType()->isEmptyTy())
7952       continue;
7953 
7954     SDValue ArgNode = getValue(V);
7955     Entry.Node = ArgNode; Entry.Ty = V->getType();
7956 
7957     Entry.setAttributes(&CB, I - CB.arg_begin());
7958 
7959     // Use swifterror virtual register as input to the call.
7960     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7961       SwiftErrorVal = V;
7962       // We find the virtual register for the actual swifterror argument.
7963       // Instead of using the Value, we use the virtual register instead.
7964       Entry.Node =
7965           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7966                           EVT(TLI.getPointerTy(DL)));
7967     }
7968 
7969     Args.push_back(Entry);
7970 
7971     // If we have an explicit sret argument that is an Instruction, (i.e., it
7972     // might point to function-local memory), we can't meaningfully tail-call.
7973     if (Entry.IsSRet && isa<Instruction>(V))
7974       isTailCall = false;
7975   }
7976 
7977   // If call site has a cfguardtarget operand bundle, create and add an
7978   // additional ArgListEntry.
7979   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7980     TargetLowering::ArgListEntry Entry;
7981     Value *V = Bundle->Inputs[0];
7982     SDValue ArgNode = getValue(V);
7983     Entry.Node = ArgNode;
7984     Entry.Ty = V->getType();
7985     Entry.IsCFGuardTarget = true;
7986     Args.push_back(Entry);
7987   }
7988 
7989   // Check if target-independent constraints permit a tail call here.
7990   // Target-dependent constraints are checked within TLI->LowerCallTo.
7991   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7992     isTailCall = false;
7993 
7994   // Disable tail calls if there is an swifterror argument. Targets have not
7995   // been updated to support tail calls.
7996   if (TLI.supportSwiftError() && SwiftErrorVal)
7997     isTailCall = false;
7998 
7999   ConstantInt *CFIType = nullptr;
8000   if (CB.isIndirectCall()) {
8001     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8002       if (!TLI.supportKCFIBundles())
8003         report_fatal_error(
8004             "Target doesn't support calls with kcfi operand bundles.");
8005       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8006       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8007     }
8008   }
8009 
8010   TargetLowering::CallLoweringInfo CLI(DAG);
8011   CLI.setDebugLoc(getCurSDLoc())
8012       .setChain(getRoot())
8013       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8014       .setTailCall(isTailCall)
8015       .setConvergent(CB.isConvergent())
8016       .setIsPreallocated(
8017           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8018       .setCFIType(CFIType);
8019   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8020 
8021   if (Result.first.getNode()) {
8022     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8023     setValue(&CB, Result.first);
8024   }
8025 
8026   // The last element of CLI.InVals has the SDValue for swifterror return.
8027   // Here we copy it to a virtual register and update SwiftErrorMap for
8028   // book-keeping.
8029   if (SwiftErrorVal && TLI.supportSwiftError()) {
8030     // Get the last element of InVals.
8031     SDValue Src = CLI.InVals.back();
8032     Register VReg =
8033         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8034     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8035     DAG.setRoot(CopyNode);
8036   }
8037 }
8038 
8039 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8040                              SelectionDAGBuilder &Builder) {
8041   // Check to see if this load can be trivially constant folded, e.g. if the
8042   // input is from a string literal.
8043   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8044     // Cast pointer to the type we really want to load.
8045     Type *LoadTy =
8046         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8047     if (LoadVT.isVector())
8048       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8049 
8050     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8051                                          PointerType::getUnqual(LoadTy));
8052 
8053     if (const Constant *LoadCst =
8054             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8055                                          LoadTy, Builder.DAG.getDataLayout()))
8056       return Builder.getValue(LoadCst);
8057   }
8058 
8059   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8060   // still constant memory, the input chain can be the entry node.
8061   SDValue Root;
8062   bool ConstantMemory = false;
8063 
8064   // Do not serialize (non-volatile) loads of constant memory with anything.
8065   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8066     Root = Builder.DAG.getEntryNode();
8067     ConstantMemory = true;
8068   } else {
8069     // Do not serialize non-volatile loads against each other.
8070     Root = Builder.DAG.getRoot();
8071   }
8072 
8073   SDValue Ptr = Builder.getValue(PtrVal);
8074   SDValue LoadVal =
8075       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8076                           MachinePointerInfo(PtrVal), Align(1));
8077 
8078   if (!ConstantMemory)
8079     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8080   return LoadVal;
8081 }
8082 
8083 /// Record the value for an instruction that produces an integer result,
8084 /// converting the type where necessary.
8085 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8086                                                   SDValue Value,
8087                                                   bool IsSigned) {
8088   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8089                                                     I.getType(), true);
8090   if (IsSigned)
8091     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
8092   else
8093     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
8094   setValue(&I, Value);
8095 }
8096 
8097 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8098 /// true and lower it. Otherwise return false, and it will be lowered like a
8099 /// normal call.
8100 /// The caller already checked that \p I calls the appropriate LibFunc with a
8101 /// correct prototype.
8102 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8103   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8104   const Value *Size = I.getArgOperand(2);
8105   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8106   if (CSize && CSize->getZExtValue() == 0) {
8107     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8108                                                           I.getType(), true);
8109     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8110     return true;
8111   }
8112 
8113   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8114   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8115       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8116       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8117   if (Res.first.getNode()) {
8118     processIntegerCallValue(I, Res.first, true);
8119     PendingLoads.push_back(Res.second);
8120     return true;
8121   }
8122 
8123   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8124   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8125   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8126     return false;
8127 
8128   // If the target has a fast compare for the given size, it will return a
8129   // preferred load type for that size. Require that the load VT is legal and
8130   // that the target supports unaligned loads of that type. Otherwise, return
8131   // INVALID.
8132   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8133     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8134     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8135     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8136       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8137       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8138       // TODO: Check alignment of src and dest ptrs.
8139       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8140       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8141       if (!TLI.isTypeLegal(LVT) ||
8142           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8143           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8144         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8145     }
8146 
8147     return LVT;
8148   };
8149 
8150   // This turns into unaligned loads. We only do this if the target natively
8151   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8152   // we'll only produce a small number of byte loads.
8153   MVT LoadVT;
8154   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8155   switch (NumBitsToCompare) {
8156   default:
8157     return false;
8158   case 16:
8159     LoadVT = MVT::i16;
8160     break;
8161   case 32:
8162     LoadVT = MVT::i32;
8163     break;
8164   case 64:
8165   case 128:
8166   case 256:
8167     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8168     break;
8169   }
8170 
8171   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8172     return false;
8173 
8174   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8175   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8176 
8177   // Bitcast to a wide integer type if the loads are vectors.
8178   if (LoadVT.isVector()) {
8179     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8180     LoadL = DAG.getBitcast(CmpVT, LoadL);
8181     LoadR = DAG.getBitcast(CmpVT, LoadR);
8182   }
8183 
8184   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8185   processIntegerCallValue(I, Cmp, false);
8186   return true;
8187 }
8188 
8189 /// See if we can lower a memchr call into an optimized form. If so, return
8190 /// true and lower it. Otherwise return false, and it will be lowered like a
8191 /// normal call.
8192 /// The caller already checked that \p I calls the appropriate LibFunc with a
8193 /// correct prototype.
8194 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8195   const Value *Src = I.getArgOperand(0);
8196   const Value *Char = I.getArgOperand(1);
8197   const Value *Length = I.getArgOperand(2);
8198 
8199   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8200   std::pair<SDValue, SDValue> Res =
8201     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8202                                 getValue(Src), getValue(Char), getValue(Length),
8203                                 MachinePointerInfo(Src));
8204   if (Res.first.getNode()) {
8205     setValue(&I, Res.first);
8206     PendingLoads.push_back(Res.second);
8207     return true;
8208   }
8209 
8210   return false;
8211 }
8212 
8213 /// See if we can lower a mempcpy call into an optimized form. If so, return
8214 /// true and lower it. Otherwise return false, and it will be lowered like a
8215 /// normal call.
8216 /// The caller already checked that \p I calls the appropriate LibFunc with a
8217 /// correct prototype.
8218 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8219   SDValue Dst = getValue(I.getArgOperand(0));
8220   SDValue Src = getValue(I.getArgOperand(1));
8221   SDValue Size = getValue(I.getArgOperand(2));
8222 
8223   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8224   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8225   // DAG::getMemcpy needs Alignment to be defined.
8226   Align Alignment = std::min(DstAlign, SrcAlign);
8227 
8228   bool isVol = false;
8229   SDLoc sdl = getCurSDLoc();
8230 
8231   // In the mempcpy context we need to pass in a false value for isTailCall
8232   // because the return pointer needs to be adjusted by the size of
8233   // the copied memory.
8234   SDValue Root = isVol ? getRoot() : getMemoryRoot();
8235   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
8236                              /*isTailCall=*/false,
8237                              MachinePointerInfo(I.getArgOperand(0)),
8238                              MachinePointerInfo(I.getArgOperand(1)),
8239                              I.getAAMetadata());
8240   assert(MC.getNode() != nullptr &&
8241          "** memcpy should not be lowered as TailCall in mempcpy context **");
8242   DAG.setRoot(MC);
8243 
8244   // Check if Size needs to be truncated or extended.
8245   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8246 
8247   // Adjust return pointer to point just past the last dst byte.
8248   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8249                                     Dst, Size);
8250   setValue(&I, DstPlusSize);
8251   return true;
8252 }
8253 
8254 /// See if we can lower a strcpy call into an optimized form.  If so, return
8255 /// true and lower it, otherwise return false and it will be lowered like a
8256 /// normal call.
8257 /// The caller already checked that \p I calls the appropriate LibFunc with a
8258 /// correct prototype.
8259 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8260   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8261 
8262   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8263   std::pair<SDValue, SDValue> Res =
8264     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8265                                 getValue(Arg0), getValue(Arg1),
8266                                 MachinePointerInfo(Arg0),
8267                                 MachinePointerInfo(Arg1), isStpcpy);
8268   if (Res.first.getNode()) {
8269     setValue(&I, Res.first);
8270     DAG.setRoot(Res.second);
8271     return true;
8272   }
8273 
8274   return false;
8275 }
8276 
8277 /// See if we can lower a strcmp call into an optimized form.  If so, return
8278 /// true and lower it, otherwise return false and it will be lowered like a
8279 /// normal call.
8280 /// The caller already checked that \p I calls the appropriate LibFunc with a
8281 /// correct prototype.
8282 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8283   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8284 
8285   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8286   std::pair<SDValue, SDValue> Res =
8287     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8288                                 getValue(Arg0), getValue(Arg1),
8289                                 MachinePointerInfo(Arg0),
8290                                 MachinePointerInfo(Arg1));
8291   if (Res.first.getNode()) {
8292     processIntegerCallValue(I, Res.first, true);
8293     PendingLoads.push_back(Res.second);
8294     return true;
8295   }
8296 
8297   return false;
8298 }
8299 
8300 /// See if we can lower a strlen call into an optimized form.  If so, return
8301 /// true and lower it, otherwise return false and it will be lowered like a
8302 /// normal call.
8303 /// The caller already checked that \p I calls the appropriate LibFunc with a
8304 /// correct prototype.
8305 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8306   const Value *Arg0 = I.getArgOperand(0);
8307 
8308   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8309   std::pair<SDValue, SDValue> Res =
8310     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8311                                 getValue(Arg0), MachinePointerInfo(Arg0));
8312   if (Res.first.getNode()) {
8313     processIntegerCallValue(I, Res.first, false);
8314     PendingLoads.push_back(Res.second);
8315     return true;
8316   }
8317 
8318   return false;
8319 }
8320 
8321 /// See if we can lower a strnlen call into an optimized form.  If so, return
8322 /// true and lower it, otherwise return false and it will be lowered like a
8323 /// normal call.
8324 /// The caller already checked that \p I calls the appropriate LibFunc with a
8325 /// correct prototype.
8326 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8327   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8328 
8329   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8330   std::pair<SDValue, SDValue> Res =
8331     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8332                                  getValue(Arg0), getValue(Arg1),
8333                                  MachinePointerInfo(Arg0));
8334   if (Res.first.getNode()) {
8335     processIntegerCallValue(I, Res.first, false);
8336     PendingLoads.push_back(Res.second);
8337     return true;
8338   }
8339 
8340   return false;
8341 }
8342 
8343 /// See if we can lower a unary floating-point operation into an SDNode with
8344 /// the specified Opcode.  If so, return true and lower it, otherwise return
8345 /// false and it will be lowered like a normal call.
8346 /// The caller already checked that \p I calls the appropriate LibFunc with a
8347 /// correct prototype.
8348 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8349                                               unsigned Opcode) {
8350   // We already checked this call's prototype; verify it doesn't modify errno.
8351   if (!I.onlyReadsMemory())
8352     return false;
8353 
8354   SDNodeFlags Flags;
8355   Flags.copyFMF(cast<FPMathOperator>(I));
8356 
8357   SDValue Tmp = getValue(I.getArgOperand(0));
8358   setValue(&I,
8359            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8360   return true;
8361 }
8362 
8363 /// See if we can lower a binary floating-point operation into an SDNode with
8364 /// the specified Opcode. If so, return true and lower it. Otherwise return
8365 /// false, and it will be lowered like a normal call.
8366 /// The caller already checked that \p I calls the appropriate LibFunc with a
8367 /// correct prototype.
8368 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8369                                                unsigned Opcode) {
8370   // We already checked this call's prototype; verify it doesn't modify errno.
8371   if (!I.onlyReadsMemory())
8372     return false;
8373 
8374   SDNodeFlags Flags;
8375   Flags.copyFMF(cast<FPMathOperator>(I));
8376 
8377   SDValue Tmp0 = getValue(I.getArgOperand(0));
8378   SDValue Tmp1 = getValue(I.getArgOperand(1));
8379   EVT VT = Tmp0.getValueType();
8380   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8381   return true;
8382 }
8383 
8384 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8385   // Handle inline assembly differently.
8386   if (I.isInlineAsm()) {
8387     visitInlineAsm(I);
8388     return;
8389   }
8390 
8391   diagnoseDontCall(I);
8392 
8393   if (Function *F = I.getCalledFunction()) {
8394     if (F->isDeclaration()) {
8395       // Is this an LLVM intrinsic or a target-specific intrinsic?
8396       unsigned IID = F->getIntrinsicID();
8397       if (!IID)
8398         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8399           IID = II->getIntrinsicID(F);
8400 
8401       if (IID) {
8402         visitIntrinsicCall(I, IID);
8403         return;
8404       }
8405     }
8406 
8407     // Check for well-known libc/libm calls.  If the function is internal, it
8408     // can't be a library call.  Don't do the check if marked as nobuiltin for
8409     // some reason or the call site requires strict floating point semantics.
8410     LibFunc Func;
8411     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8412         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8413         LibInfo->hasOptimizedCodeGen(Func)) {
8414       switch (Func) {
8415       default: break;
8416       case LibFunc_bcmp:
8417         if (visitMemCmpBCmpCall(I))
8418           return;
8419         break;
8420       case LibFunc_copysign:
8421       case LibFunc_copysignf:
8422       case LibFunc_copysignl:
8423         // We already checked this call's prototype; verify it doesn't modify
8424         // errno.
8425         if (I.onlyReadsMemory()) {
8426           SDValue LHS = getValue(I.getArgOperand(0));
8427           SDValue RHS = getValue(I.getArgOperand(1));
8428           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8429                                    LHS.getValueType(), LHS, RHS));
8430           return;
8431         }
8432         break;
8433       case LibFunc_fabs:
8434       case LibFunc_fabsf:
8435       case LibFunc_fabsl:
8436         if (visitUnaryFloatCall(I, ISD::FABS))
8437           return;
8438         break;
8439       case LibFunc_fmin:
8440       case LibFunc_fminf:
8441       case LibFunc_fminl:
8442         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8443           return;
8444         break;
8445       case LibFunc_fmax:
8446       case LibFunc_fmaxf:
8447       case LibFunc_fmaxl:
8448         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8449           return;
8450         break;
8451       case LibFunc_sin:
8452       case LibFunc_sinf:
8453       case LibFunc_sinl:
8454         if (visitUnaryFloatCall(I, ISD::FSIN))
8455           return;
8456         break;
8457       case LibFunc_cos:
8458       case LibFunc_cosf:
8459       case LibFunc_cosl:
8460         if (visitUnaryFloatCall(I, ISD::FCOS))
8461           return;
8462         break;
8463       case LibFunc_sqrt:
8464       case LibFunc_sqrtf:
8465       case LibFunc_sqrtl:
8466       case LibFunc_sqrt_finite:
8467       case LibFunc_sqrtf_finite:
8468       case LibFunc_sqrtl_finite:
8469         if (visitUnaryFloatCall(I, ISD::FSQRT))
8470           return;
8471         break;
8472       case LibFunc_floor:
8473       case LibFunc_floorf:
8474       case LibFunc_floorl:
8475         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8476           return;
8477         break;
8478       case LibFunc_nearbyint:
8479       case LibFunc_nearbyintf:
8480       case LibFunc_nearbyintl:
8481         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8482           return;
8483         break;
8484       case LibFunc_ceil:
8485       case LibFunc_ceilf:
8486       case LibFunc_ceill:
8487         if (visitUnaryFloatCall(I, ISD::FCEIL))
8488           return;
8489         break;
8490       case LibFunc_rint:
8491       case LibFunc_rintf:
8492       case LibFunc_rintl:
8493         if (visitUnaryFloatCall(I, ISD::FRINT))
8494           return;
8495         break;
8496       case LibFunc_round:
8497       case LibFunc_roundf:
8498       case LibFunc_roundl:
8499         if (visitUnaryFloatCall(I, ISD::FROUND))
8500           return;
8501         break;
8502       case LibFunc_trunc:
8503       case LibFunc_truncf:
8504       case LibFunc_truncl:
8505         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8506           return;
8507         break;
8508       case LibFunc_log2:
8509       case LibFunc_log2f:
8510       case LibFunc_log2l:
8511         if (visitUnaryFloatCall(I, ISD::FLOG2))
8512           return;
8513         break;
8514       case LibFunc_exp2:
8515       case LibFunc_exp2f:
8516       case LibFunc_exp2l:
8517         if (visitUnaryFloatCall(I, ISD::FEXP2))
8518           return;
8519         break;
8520       case LibFunc_memcmp:
8521         if (visitMemCmpBCmpCall(I))
8522           return;
8523         break;
8524       case LibFunc_mempcpy:
8525         if (visitMemPCpyCall(I))
8526           return;
8527         break;
8528       case LibFunc_memchr:
8529         if (visitMemChrCall(I))
8530           return;
8531         break;
8532       case LibFunc_strcpy:
8533         if (visitStrCpyCall(I, false))
8534           return;
8535         break;
8536       case LibFunc_stpcpy:
8537         if (visitStrCpyCall(I, true))
8538           return;
8539         break;
8540       case LibFunc_strcmp:
8541         if (visitStrCmpCall(I))
8542           return;
8543         break;
8544       case LibFunc_strlen:
8545         if (visitStrLenCall(I))
8546           return;
8547         break;
8548       case LibFunc_strnlen:
8549         if (visitStrNLenCall(I))
8550           return;
8551         break;
8552       }
8553     }
8554   }
8555 
8556   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8557   // have to do anything here to lower funclet bundles.
8558   // CFGuardTarget bundles are lowered in LowerCallTo.
8559   assert(!I.hasOperandBundlesOtherThan(
8560              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8561               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8562               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8563          "Cannot lower calls with arbitrary operand bundles!");
8564 
8565   SDValue Callee = getValue(I.getCalledOperand());
8566 
8567   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8568     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8569   else
8570     // Check if we can potentially perform a tail call. More detailed checking
8571     // is be done within LowerCallTo, after more information about the call is
8572     // known.
8573     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8574 }
8575 
8576 namespace {
8577 
8578 /// AsmOperandInfo - This contains information for each constraint that we are
8579 /// lowering.
8580 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8581 public:
8582   /// CallOperand - If this is the result output operand or a clobber
8583   /// this is null, otherwise it is the incoming operand to the CallInst.
8584   /// This gets modified as the asm is processed.
8585   SDValue CallOperand;
8586 
8587   /// AssignedRegs - If this is a register or register class operand, this
8588   /// contains the set of register corresponding to the operand.
8589   RegsForValue AssignedRegs;
8590 
8591   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8592     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8593   }
8594 
8595   /// Whether or not this operand accesses memory
8596   bool hasMemory(const TargetLowering &TLI) const {
8597     // Indirect operand accesses access memory.
8598     if (isIndirect)
8599       return true;
8600 
8601     for (const auto &Code : Codes)
8602       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8603         return true;
8604 
8605     return false;
8606   }
8607 };
8608 
8609 
8610 } // end anonymous namespace
8611 
8612 /// Make sure that the output operand \p OpInfo and its corresponding input
8613 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8614 /// out).
8615 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8616                                SDISelAsmOperandInfo &MatchingOpInfo,
8617                                SelectionDAG &DAG) {
8618   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8619     return;
8620 
8621   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8622   const auto &TLI = DAG.getTargetLoweringInfo();
8623 
8624   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8625       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8626                                        OpInfo.ConstraintVT);
8627   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8628       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8629                                        MatchingOpInfo.ConstraintVT);
8630   if ((OpInfo.ConstraintVT.isInteger() !=
8631        MatchingOpInfo.ConstraintVT.isInteger()) ||
8632       (MatchRC.second != InputRC.second)) {
8633     // FIXME: error out in a more elegant fashion
8634     report_fatal_error("Unsupported asm: input constraint"
8635                        " with a matching output constraint of"
8636                        " incompatible type!");
8637   }
8638   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8639 }
8640 
8641 /// Get a direct memory input to behave well as an indirect operand.
8642 /// This may introduce stores, hence the need for a \p Chain.
8643 /// \return The (possibly updated) chain.
8644 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8645                                         SDISelAsmOperandInfo &OpInfo,
8646                                         SelectionDAG &DAG) {
8647   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8648 
8649   // If we don't have an indirect input, put it in the constpool if we can,
8650   // otherwise spill it to a stack slot.
8651   // TODO: This isn't quite right. We need to handle these according to
8652   // the addressing mode that the constraint wants. Also, this may take
8653   // an additional register for the computation and we don't want that
8654   // either.
8655 
8656   // If the operand is a float, integer, or vector constant, spill to a
8657   // constant pool entry to get its address.
8658   const Value *OpVal = OpInfo.CallOperandVal;
8659   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8660       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8661     OpInfo.CallOperand = DAG.getConstantPool(
8662         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8663     return Chain;
8664   }
8665 
8666   // Otherwise, create a stack slot and emit a store to it before the asm.
8667   Type *Ty = OpVal->getType();
8668   auto &DL = DAG.getDataLayout();
8669   uint64_t TySize = DL.getTypeAllocSize(Ty);
8670   MachineFunction &MF = DAG.getMachineFunction();
8671   int SSFI = MF.getFrameInfo().CreateStackObject(
8672       TySize, DL.getPrefTypeAlign(Ty), false);
8673   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8674   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8675                             MachinePointerInfo::getFixedStack(MF, SSFI),
8676                             TLI.getMemValueType(DL, Ty));
8677   OpInfo.CallOperand = StackSlot;
8678 
8679   return Chain;
8680 }
8681 
8682 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8683 /// specified operand.  We prefer to assign virtual registers, to allow the
8684 /// register allocator to handle the assignment process.  However, if the asm
8685 /// uses features that we can't model on machineinstrs, we have SDISel do the
8686 /// allocation.  This produces generally horrible, but correct, code.
8687 ///
8688 ///   OpInfo describes the operand
8689 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8690 static std::optional<unsigned>
8691 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8692                      SDISelAsmOperandInfo &OpInfo,
8693                      SDISelAsmOperandInfo &RefOpInfo) {
8694   LLVMContext &Context = *DAG.getContext();
8695   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8696 
8697   MachineFunction &MF = DAG.getMachineFunction();
8698   SmallVector<unsigned, 4> Regs;
8699   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8700 
8701   // No work to do for memory/address operands.
8702   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8703       OpInfo.ConstraintType == TargetLowering::C_Address)
8704     return std::nullopt;
8705 
8706   // If this is a constraint for a single physreg, or a constraint for a
8707   // register class, find it.
8708   unsigned AssignedReg;
8709   const TargetRegisterClass *RC;
8710   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8711       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8712   // RC is unset only on failure. Return immediately.
8713   if (!RC)
8714     return std::nullopt;
8715 
8716   // Get the actual register value type.  This is important, because the user
8717   // may have asked for (e.g.) the AX register in i32 type.  We need to
8718   // remember that AX is actually i16 to get the right extension.
8719   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8720 
8721   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8722     // If this is an FP operand in an integer register (or visa versa), or more
8723     // generally if the operand value disagrees with the register class we plan
8724     // to stick it in, fix the operand type.
8725     //
8726     // If this is an input value, the bitcast to the new type is done now.
8727     // Bitcast for output value is done at the end of visitInlineAsm().
8728     if ((OpInfo.Type == InlineAsm::isOutput ||
8729          OpInfo.Type == InlineAsm::isInput) &&
8730         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8731       // Try to convert to the first EVT that the reg class contains.  If the
8732       // types are identical size, use a bitcast to convert (e.g. two differing
8733       // vector types).  Note: output bitcast is done at the end of
8734       // visitInlineAsm().
8735       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8736         // Exclude indirect inputs while they are unsupported because the code
8737         // to perform the load is missing and thus OpInfo.CallOperand still
8738         // refers to the input address rather than the pointed-to value.
8739         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8740           OpInfo.CallOperand =
8741               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8742         OpInfo.ConstraintVT = RegVT;
8743         // If the operand is an FP value and we want it in integer registers,
8744         // use the corresponding integer type. This turns an f64 value into
8745         // i64, which can be passed with two i32 values on a 32-bit machine.
8746       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8747         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8748         if (OpInfo.Type == InlineAsm::isInput)
8749           OpInfo.CallOperand =
8750               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8751         OpInfo.ConstraintVT = VT;
8752       }
8753     }
8754   }
8755 
8756   // No need to allocate a matching input constraint since the constraint it's
8757   // matching to has already been allocated.
8758   if (OpInfo.isMatchingInputConstraint())
8759     return std::nullopt;
8760 
8761   EVT ValueVT = OpInfo.ConstraintVT;
8762   if (OpInfo.ConstraintVT == MVT::Other)
8763     ValueVT = RegVT;
8764 
8765   // Initialize NumRegs.
8766   unsigned NumRegs = 1;
8767   if (OpInfo.ConstraintVT != MVT::Other)
8768     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8769 
8770   // If this is a constraint for a specific physical register, like {r17},
8771   // assign it now.
8772 
8773   // If this associated to a specific register, initialize iterator to correct
8774   // place. If virtual, make sure we have enough registers
8775 
8776   // Initialize iterator if necessary
8777   TargetRegisterClass::iterator I = RC->begin();
8778   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8779 
8780   // Do not check for single registers.
8781   if (AssignedReg) {
8782     I = std::find(I, RC->end(), AssignedReg);
8783     if (I == RC->end()) {
8784       // RC does not contain the selected register, which indicates a
8785       // mismatch between the register and the required type/bitwidth.
8786       return {AssignedReg};
8787     }
8788   }
8789 
8790   for (; NumRegs; --NumRegs, ++I) {
8791     assert(I != RC->end() && "Ran out of registers to allocate!");
8792     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8793     Regs.push_back(R);
8794   }
8795 
8796   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8797   return std::nullopt;
8798 }
8799 
8800 static unsigned
8801 findMatchingInlineAsmOperand(unsigned OperandNo,
8802                              const std::vector<SDValue> &AsmNodeOperands) {
8803   // Scan until we find the definition we already emitted of this operand.
8804   unsigned CurOp = InlineAsm::Op_FirstOperand;
8805   for (; OperandNo; --OperandNo) {
8806     // Advance to the next operand.
8807     unsigned OpFlag =
8808         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8809     assert((InlineAsm::isRegDefKind(OpFlag) ||
8810             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8811             InlineAsm::isMemKind(OpFlag)) &&
8812            "Skipped past definitions?");
8813     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8814   }
8815   return CurOp;
8816 }
8817 
8818 namespace {
8819 
8820 class ExtraFlags {
8821   unsigned Flags = 0;
8822 
8823 public:
8824   explicit ExtraFlags(const CallBase &Call) {
8825     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8826     if (IA->hasSideEffects())
8827       Flags |= InlineAsm::Extra_HasSideEffects;
8828     if (IA->isAlignStack())
8829       Flags |= InlineAsm::Extra_IsAlignStack;
8830     if (Call.isConvergent())
8831       Flags |= InlineAsm::Extra_IsConvergent;
8832     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8833   }
8834 
8835   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8836     // Ideally, we would only check against memory constraints.  However, the
8837     // meaning of an Other constraint can be target-specific and we can't easily
8838     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8839     // for Other constraints as well.
8840     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8841         OpInfo.ConstraintType == TargetLowering::C_Other) {
8842       if (OpInfo.Type == InlineAsm::isInput)
8843         Flags |= InlineAsm::Extra_MayLoad;
8844       else if (OpInfo.Type == InlineAsm::isOutput)
8845         Flags |= InlineAsm::Extra_MayStore;
8846       else if (OpInfo.Type == InlineAsm::isClobber)
8847         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8848     }
8849   }
8850 
8851   unsigned get() const { return Flags; }
8852 };
8853 
8854 } // end anonymous namespace
8855 
8856 static bool isFunction(SDValue Op) {
8857   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
8858     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
8859       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
8860 
8861       // In normal "call dllimport func" instruction (non-inlineasm) it force
8862       // indirect access by specifing call opcode. And usually specially print
8863       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
8864       // not do in this way now. (In fact, this is similar with "Data Access"
8865       // action). So here we ignore dllimport function.
8866       if (Fn && !Fn->hasDLLImportStorageClass())
8867         return true;
8868     }
8869   }
8870   return false;
8871 }
8872 
8873 /// visitInlineAsm - Handle a call to an InlineAsm object.
8874 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8875                                          const BasicBlock *EHPadBB) {
8876   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8877 
8878   /// ConstraintOperands - Information about all of the constraints.
8879   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8880 
8881   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8882   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8883       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8884 
8885   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8886   // AsmDialect, MayLoad, MayStore).
8887   bool HasSideEffect = IA->hasSideEffects();
8888   ExtraFlags ExtraInfo(Call);
8889 
8890   for (auto &T : TargetConstraints) {
8891     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8892     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8893 
8894     if (OpInfo.CallOperandVal)
8895       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8896 
8897     if (!HasSideEffect)
8898       HasSideEffect = OpInfo.hasMemory(TLI);
8899 
8900     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8901     // FIXME: Could we compute this on OpInfo rather than T?
8902 
8903     // Compute the constraint code and ConstraintType to use.
8904     TLI.ComputeConstraintToUse(T, SDValue());
8905 
8906     if (T.ConstraintType == TargetLowering::C_Immediate &&
8907         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8908       // We've delayed emitting a diagnostic like the "n" constraint because
8909       // inlining could cause an integer showing up.
8910       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8911                                           "' expects an integer constant "
8912                                           "expression");
8913 
8914     ExtraInfo.update(T);
8915   }
8916 
8917   // We won't need to flush pending loads if this asm doesn't touch
8918   // memory and is nonvolatile.
8919   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8920 
8921   bool EmitEHLabels = isa<InvokeInst>(Call);
8922   if (EmitEHLabels) {
8923     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8924   }
8925   bool IsCallBr = isa<CallBrInst>(Call);
8926 
8927   if (IsCallBr || EmitEHLabels) {
8928     // If this is a callbr or invoke we need to flush pending exports since
8929     // inlineasm_br and invoke are terminators.
8930     // We need to do this before nodes are glued to the inlineasm_br node.
8931     Chain = getControlRoot();
8932   }
8933 
8934   MCSymbol *BeginLabel = nullptr;
8935   if (EmitEHLabels) {
8936     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8937   }
8938 
8939   int OpNo = -1;
8940   SmallVector<StringRef> AsmStrs;
8941   IA->collectAsmStrs(AsmStrs);
8942 
8943   // Second pass over the constraints: compute which constraint option to use.
8944   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8945     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
8946       OpNo++;
8947 
8948     // If this is an output operand with a matching input operand, look up the
8949     // matching input. If their types mismatch, e.g. one is an integer, the
8950     // other is floating point, or their sizes are different, flag it as an
8951     // error.
8952     if (OpInfo.hasMatchingInput()) {
8953       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8954       patchMatchingInput(OpInfo, Input, DAG);
8955     }
8956 
8957     // Compute the constraint code and ConstraintType to use.
8958     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8959 
8960     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
8961          OpInfo.Type == InlineAsm::isClobber) ||
8962         OpInfo.ConstraintType == TargetLowering::C_Address)
8963       continue;
8964 
8965     // In Linux PIC model, there are 4 cases about value/label addressing:
8966     //
8967     // 1: Function call or Label jmp inside the module.
8968     // 2: Data access (such as global variable, static variable) inside module.
8969     // 3: Function call or Label jmp outside the module.
8970     // 4: Data access (such as global variable) outside the module.
8971     //
8972     // Due to current llvm inline asm architecture designed to not "recognize"
8973     // the asm code, there are quite troubles for us to treat mem addressing
8974     // differently for same value/adress used in different instuctions.
8975     // For example, in pic model, call a func may in plt way or direclty
8976     // pc-related, but lea/mov a function adress may use got.
8977     //
8978     // Here we try to "recognize" function call for the case 1 and case 3 in
8979     // inline asm. And try to adjust the constraint for them.
8980     //
8981     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
8982     // label, so here we don't handle jmp function label now, but we need to
8983     // enhance it (especilly in PIC model) if we meet meaningful requirements.
8984     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
8985         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
8986         TM.getCodeModel() != CodeModel::Large) {
8987       OpInfo.isIndirect = false;
8988       OpInfo.ConstraintType = TargetLowering::C_Address;
8989     }
8990 
8991     // If this is a memory input, and if the operand is not indirect, do what we
8992     // need to provide an address for the memory input.
8993     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8994         !OpInfo.isIndirect) {
8995       assert((OpInfo.isMultipleAlternative ||
8996               (OpInfo.Type == InlineAsm::isInput)) &&
8997              "Can only indirectify direct input operands!");
8998 
8999       // Memory operands really want the address of the value.
9000       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9001 
9002       // There is no longer a Value* corresponding to this operand.
9003       OpInfo.CallOperandVal = nullptr;
9004 
9005       // It is now an indirect operand.
9006       OpInfo.isIndirect = true;
9007     }
9008 
9009   }
9010 
9011   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9012   std::vector<SDValue> AsmNodeOperands;
9013   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9014   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9015       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9016 
9017   // If we have a !srcloc metadata node associated with it, we want to attach
9018   // this to the ultimately generated inline asm machineinstr.  To do this, we
9019   // pass in the third operand as this (potentially null) inline asm MDNode.
9020   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9021   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9022 
9023   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9024   // bits as operand 3.
9025   AsmNodeOperands.push_back(DAG.getTargetConstant(
9026       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9027 
9028   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9029   // this, assign virtual and physical registers for inputs and otput.
9030   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9031     // Assign Registers.
9032     SDISelAsmOperandInfo &RefOpInfo =
9033         OpInfo.isMatchingInputConstraint()
9034             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9035             : OpInfo;
9036     const auto RegError =
9037         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9038     if (RegError) {
9039       const MachineFunction &MF = DAG.getMachineFunction();
9040       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9041       const char *RegName = TRI.getName(*RegError);
9042       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9043                                    "' allocated for constraint '" +
9044                                    Twine(OpInfo.ConstraintCode) +
9045                                    "' does not match required type");
9046       return;
9047     }
9048 
9049     auto DetectWriteToReservedRegister = [&]() {
9050       const MachineFunction &MF = DAG.getMachineFunction();
9051       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9052       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9053         if (Register::isPhysicalRegister(Reg) &&
9054             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9055           const char *RegName = TRI.getName(Reg);
9056           emitInlineAsmError(Call, "write to reserved register '" +
9057                                        Twine(RegName) + "'");
9058           return true;
9059         }
9060       }
9061       return false;
9062     };
9063     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9064             (OpInfo.Type == InlineAsm::isInput &&
9065              !OpInfo.isMatchingInputConstraint())) &&
9066            "Only address as input operand is allowed.");
9067 
9068     switch (OpInfo.Type) {
9069     case InlineAsm::isOutput:
9070       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9071         unsigned ConstraintID =
9072             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9073         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9074                "Failed to convert memory constraint code to constraint id.");
9075 
9076         // Add information to the INLINEASM node to know about this output.
9077         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9078         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
9079         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9080                                                         MVT::i32));
9081         AsmNodeOperands.push_back(OpInfo.CallOperand);
9082       } else {
9083         // Otherwise, this outputs to a register (directly for C_Register /
9084         // C_RegisterClass, and a target-defined fashion for
9085         // C_Immediate/C_Other). Find a register that we can use.
9086         if (OpInfo.AssignedRegs.Regs.empty()) {
9087           emitInlineAsmError(
9088               Call, "couldn't allocate output register for constraint '" +
9089                         Twine(OpInfo.ConstraintCode) + "'");
9090           return;
9091         }
9092 
9093         if (DetectWriteToReservedRegister())
9094           return;
9095 
9096         // Add information to the INLINEASM node to know that this register is
9097         // set.
9098         OpInfo.AssignedRegs.AddInlineAsmOperands(
9099             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
9100                                   : InlineAsm::Kind_RegDef,
9101             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9102       }
9103       break;
9104 
9105     case InlineAsm::isInput:
9106     case InlineAsm::isLabel: {
9107       SDValue InOperandVal = OpInfo.CallOperand;
9108 
9109       if (OpInfo.isMatchingInputConstraint()) {
9110         // If this is required to match an output register we have already set,
9111         // just use its register.
9112         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9113                                                   AsmNodeOperands);
9114         unsigned OpFlag =
9115           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
9116         if (InlineAsm::isRegDefKind(OpFlag) ||
9117             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
9118           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
9119           if (OpInfo.isIndirect) {
9120             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9121             emitInlineAsmError(Call, "inline asm not supported yet: "
9122                                      "don't know how to handle tied "
9123                                      "indirect register inputs");
9124             return;
9125           }
9126 
9127           SmallVector<unsigned, 4> Regs;
9128           MachineFunction &MF = DAG.getMachineFunction();
9129           MachineRegisterInfo &MRI = MF.getRegInfo();
9130           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9131           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9132           Register TiedReg = R->getReg();
9133           MVT RegVT = R->getSimpleValueType(0);
9134           const TargetRegisterClass *RC =
9135               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9136               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9137                                       : TRI.getMinimalPhysRegClass(TiedReg);
9138           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
9139           for (unsigned i = 0; i != NumRegs; ++i)
9140             Regs.push_back(MRI.createVirtualRegister(RC));
9141 
9142           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9143 
9144           SDLoc dl = getCurSDLoc();
9145           // Use the produced MatchedRegs object to
9146           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9147           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
9148                                            true, OpInfo.getMatchedOperand(), dl,
9149                                            DAG, AsmNodeOperands);
9150           break;
9151         }
9152 
9153         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
9154         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
9155                "Unexpected number of operands");
9156         // Add information to the INLINEASM node to know about this input.
9157         // See InlineAsm.h isUseOperandTiedToDef.
9158         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
9159         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
9160                                                     OpInfo.getMatchedOperand());
9161         AsmNodeOperands.push_back(DAG.getTargetConstant(
9162             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9163         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9164         break;
9165       }
9166 
9167       // Treat indirect 'X' constraint as memory.
9168       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9169           OpInfo.isIndirect)
9170         OpInfo.ConstraintType = TargetLowering::C_Memory;
9171 
9172       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9173           OpInfo.ConstraintType == TargetLowering::C_Other) {
9174         std::vector<SDValue> Ops;
9175         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9176                                           Ops, DAG);
9177         if (Ops.empty()) {
9178           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9179             if (isa<ConstantSDNode>(InOperandVal)) {
9180               emitInlineAsmError(Call, "value out of range for constraint '" +
9181                                            Twine(OpInfo.ConstraintCode) + "'");
9182               return;
9183             }
9184 
9185           emitInlineAsmError(Call,
9186                              "invalid operand for inline asm constraint '" +
9187                                  Twine(OpInfo.ConstraintCode) + "'");
9188           return;
9189         }
9190 
9191         // Add information to the INLINEASM node to know about this input.
9192         unsigned ResOpType =
9193           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9194         AsmNodeOperands.push_back(DAG.getTargetConstant(
9195             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9196         llvm::append_range(AsmNodeOperands, Ops);
9197         break;
9198       }
9199 
9200       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9201         assert((OpInfo.isIndirect ||
9202                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9203                "Operand must be indirect to be a mem!");
9204         assert(InOperandVal.getValueType() ==
9205                    TLI.getPointerTy(DAG.getDataLayout()) &&
9206                "Memory operands expect pointer values");
9207 
9208         unsigned ConstraintID =
9209             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9210         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9211                "Failed to convert memory constraint code to constraint id.");
9212 
9213         // Add information to the INLINEASM node to know about this input.
9214         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9215         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9216         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9217                                                         getCurSDLoc(),
9218                                                         MVT::i32));
9219         AsmNodeOperands.push_back(InOperandVal);
9220         break;
9221       }
9222 
9223       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9224         assert(InOperandVal.getValueType() ==
9225                    TLI.getPointerTy(DAG.getDataLayout()) &&
9226                "Address operands expect pointer values");
9227 
9228         unsigned ConstraintID =
9229             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9230         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9231                "Failed to convert memory constraint code to constraint id.");
9232 
9233         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9234 
9235         SDValue AsmOp = InOperandVal;
9236         if (isFunction(InOperandVal)) {
9237           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9238           ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1);
9239           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9240                                              InOperandVal.getValueType(),
9241                                              GA->getOffset());
9242         }
9243 
9244         // Add information to the INLINEASM node to know about this input.
9245         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9246 
9247         AsmNodeOperands.push_back(
9248             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9249 
9250         AsmNodeOperands.push_back(AsmOp);
9251         break;
9252       }
9253 
9254       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9255               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9256              "Unknown constraint type!");
9257 
9258       // TODO: Support this.
9259       if (OpInfo.isIndirect) {
9260         emitInlineAsmError(
9261             Call, "Don't know how to handle indirect register inputs yet "
9262                   "for constraint '" +
9263                       Twine(OpInfo.ConstraintCode) + "'");
9264         return;
9265       }
9266 
9267       // Copy the input into the appropriate registers.
9268       if (OpInfo.AssignedRegs.Regs.empty()) {
9269         emitInlineAsmError(Call,
9270                            "couldn't allocate input reg for constraint '" +
9271                                Twine(OpInfo.ConstraintCode) + "'");
9272         return;
9273       }
9274 
9275       if (DetectWriteToReservedRegister())
9276         return;
9277 
9278       SDLoc dl = getCurSDLoc();
9279 
9280       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
9281                                         &Call);
9282 
9283       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9284                                                dl, DAG, AsmNodeOperands);
9285       break;
9286     }
9287     case InlineAsm::isClobber:
9288       // Add the clobbered value to the operand list, so that the register
9289       // allocator is aware that the physreg got clobbered.
9290       if (!OpInfo.AssignedRegs.Regs.empty())
9291         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9292                                                  false, 0, getCurSDLoc(), DAG,
9293                                                  AsmNodeOperands);
9294       break;
9295     }
9296   }
9297 
9298   // Finish up input operands.  Set the input chain and add the flag last.
9299   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9300   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
9301 
9302   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9303   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9304                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9305   Glue = Chain.getValue(1);
9306 
9307   // Do additional work to generate outputs.
9308 
9309   SmallVector<EVT, 1> ResultVTs;
9310   SmallVector<SDValue, 1> ResultValues;
9311   SmallVector<SDValue, 8> OutChains;
9312 
9313   llvm::Type *CallResultType = Call.getType();
9314   ArrayRef<Type *> ResultTypes;
9315   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9316     ResultTypes = StructResult->elements();
9317   else if (!CallResultType->isVoidTy())
9318     ResultTypes = ArrayRef(CallResultType);
9319 
9320   auto CurResultType = ResultTypes.begin();
9321   auto handleRegAssign = [&](SDValue V) {
9322     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9323     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9324     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9325     ++CurResultType;
9326     // If the type of the inline asm call site return value is different but has
9327     // same size as the type of the asm output bitcast it.  One example of this
9328     // is for vectors with different width / number of elements.  This can
9329     // happen for register classes that can contain multiple different value
9330     // types.  The preg or vreg allocated may not have the same VT as was
9331     // expected.
9332     //
9333     // This can also happen for a return value that disagrees with the register
9334     // class it is put in, eg. a double in a general-purpose register on a
9335     // 32-bit machine.
9336     if (ResultVT != V.getValueType() &&
9337         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9338       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9339     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9340              V.getValueType().isInteger()) {
9341       // If a result value was tied to an input value, the computed result
9342       // may have a wider width than the expected result.  Extract the
9343       // relevant portion.
9344       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9345     }
9346     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9347     ResultVTs.push_back(ResultVT);
9348     ResultValues.push_back(V);
9349   };
9350 
9351   // Deal with output operands.
9352   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9353     if (OpInfo.Type == InlineAsm::isOutput) {
9354       SDValue Val;
9355       // Skip trivial output operands.
9356       if (OpInfo.AssignedRegs.Regs.empty())
9357         continue;
9358 
9359       switch (OpInfo.ConstraintType) {
9360       case TargetLowering::C_Register:
9361       case TargetLowering::C_RegisterClass:
9362         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9363                                                   Chain, &Glue, &Call);
9364         break;
9365       case TargetLowering::C_Immediate:
9366       case TargetLowering::C_Other:
9367         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
9368                                               OpInfo, DAG);
9369         break;
9370       case TargetLowering::C_Memory:
9371         break; // Already handled.
9372       case TargetLowering::C_Address:
9373         break; // Silence warning.
9374       case TargetLowering::C_Unknown:
9375         assert(false && "Unexpected unknown constraint");
9376       }
9377 
9378       // Indirect output manifest as stores. Record output chains.
9379       if (OpInfo.isIndirect) {
9380         const Value *Ptr = OpInfo.CallOperandVal;
9381         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9382         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9383                                      MachinePointerInfo(Ptr));
9384         OutChains.push_back(Store);
9385       } else {
9386         // generate CopyFromRegs to associated registers.
9387         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9388         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9389           for (const SDValue &V : Val->op_values())
9390             handleRegAssign(V);
9391         } else
9392           handleRegAssign(Val);
9393       }
9394     }
9395   }
9396 
9397   // Set results.
9398   if (!ResultValues.empty()) {
9399     assert(CurResultType == ResultTypes.end() &&
9400            "Mismatch in number of ResultTypes");
9401     assert(ResultValues.size() == ResultTypes.size() &&
9402            "Mismatch in number of output operands in asm result");
9403 
9404     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9405                             DAG.getVTList(ResultVTs), ResultValues);
9406     setValue(&Call, V);
9407   }
9408 
9409   // Collect store chains.
9410   if (!OutChains.empty())
9411     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9412 
9413   if (EmitEHLabels) {
9414     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9415   }
9416 
9417   // Only Update Root if inline assembly has a memory effect.
9418   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9419       EmitEHLabels)
9420     DAG.setRoot(Chain);
9421 }
9422 
9423 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9424                                              const Twine &Message) {
9425   LLVMContext &Ctx = *DAG.getContext();
9426   Ctx.emitError(&Call, Message);
9427 
9428   // Make sure we leave the DAG in a valid state
9429   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9430   SmallVector<EVT, 1> ValueVTs;
9431   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9432 
9433   if (ValueVTs.empty())
9434     return;
9435 
9436   SmallVector<SDValue, 1> Ops;
9437   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9438     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9439 
9440   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9441 }
9442 
9443 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9444   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9445                           MVT::Other, getRoot(),
9446                           getValue(I.getArgOperand(0)),
9447                           DAG.getSrcValue(I.getArgOperand(0))));
9448 }
9449 
9450 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9451   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9452   const DataLayout &DL = DAG.getDataLayout();
9453   SDValue V = DAG.getVAArg(
9454       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9455       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9456       DL.getABITypeAlign(I.getType()).value());
9457   DAG.setRoot(V.getValue(1));
9458 
9459   if (I.getType()->isPointerTy())
9460     V = DAG.getPtrExtOrTrunc(
9461         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9462   setValue(&I, V);
9463 }
9464 
9465 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9466   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9467                           MVT::Other, getRoot(),
9468                           getValue(I.getArgOperand(0)),
9469                           DAG.getSrcValue(I.getArgOperand(0))));
9470 }
9471 
9472 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9473   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9474                           MVT::Other, getRoot(),
9475                           getValue(I.getArgOperand(0)),
9476                           getValue(I.getArgOperand(1)),
9477                           DAG.getSrcValue(I.getArgOperand(0)),
9478                           DAG.getSrcValue(I.getArgOperand(1))));
9479 }
9480 
9481 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9482                                                     const Instruction &I,
9483                                                     SDValue Op) {
9484   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9485   if (!Range)
9486     return Op;
9487 
9488   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9489   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9490     return Op;
9491 
9492   APInt Lo = CR.getUnsignedMin();
9493   if (!Lo.isMinValue())
9494     return Op;
9495 
9496   APInt Hi = CR.getUnsignedMax();
9497   unsigned Bits = std::max(Hi.getActiveBits(),
9498                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9499 
9500   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9501 
9502   SDLoc SL = getCurSDLoc();
9503 
9504   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9505                              DAG.getValueType(SmallVT));
9506   unsigned NumVals = Op.getNode()->getNumValues();
9507   if (NumVals == 1)
9508     return ZExt;
9509 
9510   SmallVector<SDValue, 4> Ops;
9511 
9512   Ops.push_back(ZExt);
9513   for (unsigned I = 1; I != NumVals; ++I)
9514     Ops.push_back(Op.getValue(I));
9515 
9516   return DAG.getMergeValues(Ops, SL);
9517 }
9518 
9519 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9520 /// the call being lowered.
9521 ///
9522 /// This is a helper for lowering intrinsics that follow a target calling
9523 /// convention or require stack pointer adjustment. Only a subset of the
9524 /// intrinsic's operands need to participate in the calling convention.
9525 void SelectionDAGBuilder::populateCallLoweringInfo(
9526     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9527     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9528     bool IsPatchPoint) {
9529   TargetLowering::ArgListTy Args;
9530   Args.reserve(NumArgs);
9531 
9532   // Populate the argument list.
9533   // Attributes for args start at offset 1, after the return attribute.
9534   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9535        ArgI != ArgE; ++ArgI) {
9536     const Value *V = Call->getOperand(ArgI);
9537 
9538     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9539 
9540     TargetLowering::ArgListEntry Entry;
9541     Entry.Node = getValue(V);
9542     Entry.Ty = V->getType();
9543     Entry.setAttributes(Call, ArgI);
9544     Args.push_back(Entry);
9545   }
9546 
9547   CLI.setDebugLoc(getCurSDLoc())
9548       .setChain(getRoot())
9549       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9550       .setDiscardResult(Call->use_empty())
9551       .setIsPatchPoint(IsPatchPoint)
9552       .setIsPreallocated(
9553           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9554 }
9555 
9556 /// Add a stack map intrinsic call's live variable operands to a stackmap
9557 /// or patchpoint target node's operand list.
9558 ///
9559 /// Constants are converted to TargetConstants purely as an optimization to
9560 /// avoid constant materialization and register allocation.
9561 ///
9562 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9563 /// generate addess computation nodes, and so FinalizeISel can convert the
9564 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9565 /// address materialization and register allocation, but may also be required
9566 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9567 /// alloca in the entry block, then the runtime may assume that the alloca's
9568 /// StackMap location can be read immediately after compilation and that the
9569 /// location is valid at any point during execution (this is similar to the
9570 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9571 /// only available in a register, then the runtime would need to trap when
9572 /// execution reaches the StackMap in order to read the alloca's location.
9573 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9574                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9575                                 SelectionDAGBuilder &Builder) {
9576   SelectionDAG &DAG = Builder.DAG;
9577   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9578     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9579 
9580     // Things on the stack are pointer-typed, meaning that they are already
9581     // legal and can be emitted directly to target nodes.
9582     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9583       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9584     } else {
9585       // Otherwise emit a target independent node to be legalised.
9586       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9587     }
9588   }
9589 }
9590 
9591 /// Lower llvm.experimental.stackmap.
9592 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9593   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9594   //                                  [live variables...])
9595 
9596   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9597 
9598   SDValue Chain, InGlue, Callee;
9599   SmallVector<SDValue, 32> Ops;
9600 
9601   SDLoc DL = getCurSDLoc();
9602   Callee = getValue(CI.getCalledOperand());
9603 
9604   // The stackmap intrinsic only records the live variables (the arguments
9605   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9606   // intrinsic, this won't be lowered to a function call. This means we don't
9607   // have to worry about calling conventions and target specific lowering code.
9608   // Instead we perform the call lowering right here.
9609   //
9610   // chain, flag = CALLSEQ_START(chain, 0, 0)
9611   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9612   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9613   //
9614   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9615   InGlue = Chain.getValue(1);
9616 
9617   // Add the STACKMAP operands, starting with DAG house-keeping.
9618   Ops.push_back(Chain);
9619   Ops.push_back(InGlue);
9620 
9621   // Add the <id>, <numShadowBytes> operands.
9622   //
9623   // These do not require legalisation, and can be emitted directly to target
9624   // constant nodes.
9625   SDValue ID = getValue(CI.getArgOperand(0));
9626   assert(ID.getValueType() == MVT::i64);
9627   SDValue IDConst = DAG.getTargetConstant(
9628       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9629   Ops.push_back(IDConst);
9630 
9631   SDValue Shad = getValue(CI.getArgOperand(1));
9632   assert(Shad.getValueType() == MVT::i32);
9633   SDValue ShadConst = DAG.getTargetConstant(
9634       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9635   Ops.push_back(ShadConst);
9636 
9637   // Add the live variables.
9638   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9639 
9640   // Create the STACKMAP node.
9641   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9642   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9643   InGlue = Chain.getValue(1);
9644 
9645   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
9646 
9647   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9648 
9649   // Set the root to the target-lowered call chain.
9650   DAG.setRoot(Chain);
9651 
9652   // Inform the Frame Information that we have a stackmap in this function.
9653   FuncInfo.MF->getFrameInfo().setHasStackMap();
9654 }
9655 
9656 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9657 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9658                                           const BasicBlock *EHPadBB) {
9659   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9660   //                                                 i32 <numBytes>,
9661   //                                                 i8* <target>,
9662   //                                                 i32 <numArgs>,
9663   //                                                 [Args...],
9664   //                                                 [live variables...])
9665 
9666   CallingConv::ID CC = CB.getCallingConv();
9667   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9668   bool HasDef = !CB.getType()->isVoidTy();
9669   SDLoc dl = getCurSDLoc();
9670   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9671 
9672   // Handle immediate and symbolic callees.
9673   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9674     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9675                                    /*isTarget=*/true);
9676   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9677     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9678                                          SDLoc(SymbolicCallee),
9679                                          SymbolicCallee->getValueType(0));
9680 
9681   // Get the real number of arguments participating in the call <numArgs>
9682   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9683   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9684 
9685   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9686   // Intrinsics include all meta-operands up to but not including CC.
9687   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9688   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9689          "Not enough arguments provided to the patchpoint intrinsic");
9690 
9691   // For AnyRegCC the arguments are lowered later on manually.
9692   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9693   Type *ReturnTy =
9694       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9695 
9696   TargetLowering::CallLoweringInfo CLI(DAG);
9697   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9698                            ReturnTy, true);
9699   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9700 
9701   SDNode *CallEnd = Result.second.getNode();
9702   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9703     CallEnd = CallEnd->getOperand(0).getNode();
9704 
9705   /// Get a call instruction from the call sequence chain.
9706   /// Tail calls are not allowed.
9707   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9708          "Expected a callseq node.");
9709   SDNode *Call = CallEnd->getOperand(0).getNode();
9710   bool HasGlue = Call->getGluedNode();
9711 
9712   // Replace the target specific call node with the patchable intrinsic.
9713   SmallVector<SDValue, 8> Ops;
9714 
9715   // Push the chain.
9716   Ops.push_back(*(Call->op_begin()));
9717 
9718   // Optionally, push the glue (if any).
9719   if (HasGlue)
9720     Ops.push_back(*(Call->op_end() - 1));
9721 
9722   // Push the register mask info.
9723   if (HasGlue)
9724     Ops.push_back(*(Call->op_end() - 2));
9725   else
9726     Ops.push_back(*(Call->op_end() - 1));
9727 
9728   // Add the <id> and <numBytes> constants.
9729   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9730   Ops.push_back(DAG.getTargetConstant(
9731                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9732   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9733   Ops.push_back(DAG.getTargetConstant(
9734                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9735                   MVT::i32));
9736 
9737   // Add the callee.
9738   Ops.push_back(Callee);
9739 
9740   // Adjust <numArgs> to account for any arguments that have been passed on the
9741   // stack instead.
9742   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9743   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9744   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9745   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9746 
9747   // Add the calling convention
9748   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9749 
9750   // Add the arguments we omitted previously. The register allocator should
9751   // place these in any free register.
9752   if (IsAnyRegCC)
9753     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9754       Ops.push_back(getValue(CB.getArgOperand(i)));
9755 
9756   // Push the arguments from the call instruction.
9757   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9758   Ops.append(Call->op_begin() + 2, e);
9759 
9760   // Push live variables for the stack map.
9761   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9762 
9763   SDVTList NodeTys;
9764   if (IsAnyRegCC && HasDef) {
9765     // Create the return types based on the intrinsic definition
9766     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9767     SmallVector<EVT, 3> ValueVTs;
9768     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9769     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9770 
9771     // There is always a chain and a glue type at the end
9772     ValueVTs.push_back(MVT::Other);
9773     ValueVTs.push_back(MVT::Glue);
9774     NodeTys = DAG.getVTList(ValueVTs);
9775   } else
9776     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9777 
9778   // Replace the target specific call node with a PATCHPOINT node.
9779   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9780 
9781   // Update the NodeMap.
9782   if (HasDef) {
9783     if (IsAnyRegCC)
9784       setValue(&CB, SDValue(PPV.getNode(), 0));
9785     else
9786       setValue(&CB, Result.first);
9787   }
9788 
9789   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9790   // call sequence. Furthermore the location of the chain and glue can change
9791   // when the AnyReg calling convention is used and the intrinsic returns a
9792   // value.
9793   if (IsAnyRegCC && HasDef) {
9794     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9795     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9796     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9797   } else
9798     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9799   DAG.DeleteNode(Call);
9800 
9801   // Inform the Frame Information that we have a patchpoint in this function.
9802   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9803 }
9804 
9805 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9806                                             unsigned Intrinsic) {
9807   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9808   SDValue Op1 = getValue(I.getArgOperand(0));
9809   SDValue Op2;
9810   if (I.arg_size() > 1)
9811     Op2 = getValue(I.getArgOperand(1));
9812   SDLoc dl = getCurSDLoc();
9813   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9814   SDValue Res;
9815   SDNodeFlags SDFlags;
9816   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9817     SDFlags.copyFMF(*FPMO);
9818 
9819   switch (Intrinsic) {
9820   case Intrinsic::vector_reduce_fadd:
9821     if (SDFlags.hasAllowReassociation())
9822       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9823                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9824                         SDFlags);
9825     else
9826       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9827     break;
9828   case Intrinsic::vector_reduce_fmul:
9829     if (SDFlags.hasAllowReassociation())
9830       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9831                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9832                         SDFlags);
9833     else
9834       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9835     break;
9836   case Intrinsic::vector_reduce_add:
9837     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9838     break;
9839   case Intrinsic::vector_reduce_mul:
9840     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9841     break;
9842   case Intrinsic::vector_reduce_and:
9843     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9844     break;
9845   case Intrinsic::vector_reduce_or:
9846     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9847     break;
9848   case Intrinsic::vector_reduce_xor:
9849     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9850     break;
9851   case Intrinsic::vector_reduce_smax:
9852     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9853     break;
9854   case Intrinsic::vector_reduce_smin:
9855     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9856     break;
9857   case Intrinsic::vector_reduce_umax:
9858     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9859     break;
9860   case Intrinsic::vector_reduce_umin:
9861     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9862     break;
9863   case Intrinsic::vector_reduce_fmax:
9864     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9865     break;
9866   case Intrinsic::vector_reduce_fmin:
9867     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9868     break;
9869   default:
9870     llvm_unreachable("Unhandled vector reduce intrinsic");
9871   }
9872   setValue(&I, Res);
9873 }
9874 
9875 /// Returns an AttributeList representing the attributes applied to the return
9876 /// value of the given call.
9877 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9878   SmallVector<Attribute::AttrKind, 2> Attrs;
9879   if (CLI.RetSExt)
9880     Attrs.push_back(Attribute::SExt);
9881   if (CLI.RetZExt)
9882     Attrs.push_back(Attribute::ZExt);
9883   if (CLI.IsInReg)
9884     Attrs.push_back(Attribute::InReg);
9885 
9886   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9887                             Attrs);
9888 }
9889 
9890 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9891 /// implementation, which just calls LowerCall.
9892 /// FIXME: When all targets are
9893 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9894 std::pair<SDValue, SDValue>
9895 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9896   // Handle the incoming return values from the call.
9897   CLI.Ins.clear();
9898   Type *OrigRetTy = CLI.RetTy;
9899   SmallVector<EVT, 4> RetTys;
9900   SmallVector<uint64_t, 4> Offsets;
9901   auto &DL = CLI.DAG.getDataLayout();
9902   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9903 
9904   if (CLI.IsPostTypeLegalization) {
9905     // If we are lowering a libcall after legalization, split the return type.
9906     SmallVector<EVT, 4> OldRetTys;
9907     SmallVector<uint64_t, 4> OldOffsets;
9908     RetTys.swap(OldRetTys);
9909     Offsets.swap(OldOffsets);
9910 
9911     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9912       EVT RetVT = OldRetTys[i];
9913       uint64_t Offset = OldOffsets[i];
9914       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9915       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9916       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9917       RetTys.append(NumRegs, RegisterVT);
9918       for (unsigned j = 0; j != NumRegs; ++j)
9919         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9920     }
9921   }
9922 
9923   SmallVector<ISD::OutputArg, 4> Outs;
9924   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9925 
9926   bool CanLowerReturn =
9927       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9928                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9929 
9930   SDValue DemoteStackSlot;
9931   int DemoteStackIdx = -100;
9932   if (!CanLowerReturn) {
9933     // FIXME: equivalent assert?
9934     // assert(!CS.hasInAllocaArgument() &&
9935     //        "sret demotion is incompatible with inalloca");
9936     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9937     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9938     MachineFunction &MF = CLI.DAG.getMachineFunction();
9939     DemoteStackIdx =
9940         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9941     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9942                                               DL.getAllocaAddrSpace());
9943 
9944     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9945     ArgListEntry Entry;
9946     Entry.Node = DemoteStackSlot;
9947     Entry.Ty = StackSlotPtrType;
9948     Entry.IsSExt = false;
9949     Entry.IsZExt = false;
9950     Entry.IsInReg = false;
9951     Entry.IsSRet = true;
9952     Entry.IsNest = false;
9953     Entry.IsByVal = false;
9954     Entry.IsByRef = false;
9955     Entry.IsReturned = false;
9956     Entry.IsSwiftSelf = false;
9957     Entry.IsSwiftAsync = false;
9958     Entry.IsSwiftError = false;
9959     Entry.IsCFGuardTarget = false;
9960     Entry.Alignment = Alignment;
9961     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9962     CLI.NumFixedArgs += 1;
9963     CLI.getArgs()[0].IndirectType = CLI.RetTy;
9964     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9965 
9966     // sret demotion isn't compatible with tail-calls, since the sret argument
9967     // points into the callers stack frame.
9968     CLI.IsTailCall = false;
9969   } else {
9970     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9971         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9972     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9973       ISD::ArgFlagsTy Flags;
9974       if (NeedsRegBlock) {
9975         Flags.setInConsecutiveRegs();
9976         if (I == RetTys.size() - 1)
9977           Flags.setInConsecutiveRegsLast();
9978       }
9979       EVT VT = RetTys[I];
9980       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9981                                                      CLI.CallConv, VT);
9982       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9983                                                        CLI.CallConv, VT);
9984       for (unsigned i = 0; i != NumRegs; ++i) {
9985         ISD::InputArg MyFlags;
9986         MyFlags.Flags = Flags;
9987         MyFlags.VT = RegisterVT;
9988         MyFlags.ArgVT = VT;
9989         MyFlags.Used = CLI.IsReturnValueUsed;
9990         if (CLI.RetTy->isPointerTy()) {
9991           MyFlags.Flags.setPointer();
9992           MyFlags.Flags.setPointerAddrSpace(
9993               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9994         }
9995         if (CLI.RetSExt)
9996           MyFlags.Flags.setSExt();
9997         if (CLI.RetZExt)
9998           MyFlags.Flags.setZExt();
9999         if (CLI.IsInReg)
10000           MyFlags.Flags.setInReg();
10001         CLI.Ins.push_back(MyFlags);
10002       }
10003     }
10004   }
10005 
10006   // We push in swifterror return as the last element of CLI.Ins.
10007   ArgListTy &Args = CLI.getArgs();
10008   if (supportSwiftError()) {
10009     for (const ArgListEntry &Arg : Args) {
10010       if (Arg.IsSwiftError) {
10011         ISD::InputArg MyFlags;
10012         MyFlags.VT = getPointerTy(DL);
10013         MyFlags.ArgVT = EVT(getPointerTy(DL));
10014         MyFlags.Flags.setSwiftError();
10015         CLI.Ins.push_back(MyFlags);
10016       }
10017     }
10018   }
10019 
10020   // Handle all of the outgoing arguments.
10021   CLI.Outs.clear();
10022   CLI.OutVals.clear();
10023   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10024     SmallVector<EVT, 4> ValueVTs;
10025     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10026     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10027     Type *FinalType = Args[i].Ty;
10028     if (Args[i].IsByVal)
10029       FinalType = Args[i].IndirectType;
10030     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10031         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10032     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10033          ++Value) {
10034       EVT VT = ValueVTs[Value];
10035       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10036       SDValue Op = SDValue(Args[i].Node.getNode(),
10037                            Args[i].Node.getResNo() + Value);
10038       ISD::ArgFlagsTy Flags;
10039 
10040       // Certain targets (such as MIPS), may have a different ABI alignment
10041       // for a type depending on the context. Give the target a chance to
10042       // specify the alignment it wants.
10043       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10044       Flags.setOrigAlign(OriginalAlignment);
10045 
10046       if (Args[i].Ty->isPointerTy()) {
10047         Flags.setPointer();
10048         Flags.setPointerAddrSpace(
10049             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10050       }
10051       if (Args[i].IsZExt)
10052         Flags.setZExt();
10053       if (Args[i].IsSExt)
10054         Flags.setSExt();
10055       if (Args[i].IsInReg) {
10056         // If we are using vectorcall calling convention, a structure that is
10057         // passed InReg - is surely an HVA
10058         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10059             isa<StructType>(FinalType)) {
10060           // The first value of a structure is marked
10061           if (0 == Value)
10062             Flags.setHvaStart();
10063           Flags.setHva();
10064         }
10065         // Set InReg Flag
10066         Flags.setInReg();
10067       }
10068       if (Args[i].IsSRet)
10069         Flags.setSRet();
10070       if (Args[i].IsSwiftSelf)
10071         Flags.setSwiftSelf();
10072       if (Args[i].IsSwiftAsync)
10073         Flags.setSwiftAsync();
10074       if (Args[i].IsSwiftError)
10075         Flags.setSwiftError();
10076       if (Args[i].IsCFGuardTarget)
10077         Flags.setCFGuardTarget();
10078       if (Args[i].IsByVal)
10079         Flags.setByVal();
10080       if (Args[i].IsByRef)
10081         Flags.setByRef();
10082       if (Args[i].IsPreallocated) {
10083         Flags.setPreallocated();
10084         // Set the byval flag for CCAssignFn callbacks that don't know about
10085         // preallocated.  This way we can know how many bytes we should've
10086         // allocated and how many bytes a callee cleanup function will pop.  If
10087         // we port preallocated to more targets, we'll have to add custom
10088         // preallocated handling in the various CC lowering callbacks.
10089         Flags.setByVal();
10090       }
10091       if (Args[i].IsInAlloca) {
10092         Flags.setInAlloca();
10093         // Set the byval flag for CCAssignFn callbacks that don't know about
10094         // inalloca.  This way we can know how many bytes we should've allocated
10095         // and how many bytes a callee cleanup function will pop.  If we port
10096         // inalloca to more targets, we'll have to add custom inalloca handling
10097         // in the various CC lowering callbacks.
10098         Flags.setByVal();
10099       }
10100       Align MemAlign;
10101       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10102         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10103         Flags.setByValSize(FrameSize);
10104 
10105         // info is not there but there are cases it cannot get right.
10106         if (auto MA = Args[i].Alignment)
10107           MemAlign = *MA;
10108         else
10109           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10110       } else if (auto MA = Args[i].Alignment) {
10111         MemAlign = *MA;
10112       } else {
10113         MemAlign = OriginalAlignment;
10114       }
10115       Flags.setMemAlign(MemAlign);
10116       if (Args[i].IsNest)
10117         Flags.setNest();
10118       if (NeedsRegBlock)
10119         Flags.setInConsecutiveRegs();
10120 
10121       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10122                                                  CLI.CallConv, VT);
10123       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10124                                                         CLI.CallConv, VT);
10125       SmallVector<SDValue, 4> Parts(NumParts);
10126       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10127 
10128       if (Args[i].IsSExt)
10129         ExtendKind = ISD::SIGN_EXTEND;
10130       else if (Args[i].IsZExt)
10131         ExtendKind = ISD::ZERO_EXTEND;
10132 
10133       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10134       // for now.
10135       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10136           CanLowerReturn) {
10137         assert((CLI.RetTy == Args[i].Ty ||
10138                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10139                  CLI.RetTy->getPointerAddressSpace() ==
10140                      Args[i].Ty->getPointerAddressSpace())) &&
10141                RetTys.size() == NumValues && "unexpected use of 'returned'");
10142         // Before passing 'returned' to the target lowering code, ensure that
10143         // either the register MVT and the actual EVT are the same size or that
10144         // the return value and argument are extended in the same way; in these
10145         // cases it's safe to pass the argument register value unchanged as the
10146         // return register value (although it's at the target's option whether
10147         // to do so)
10148         // TODO: allow code generation to take advantage of partially preserved
10149         // registers rather than clobbering the entire register when the
10150         // parameter extension method is not compatible with the return
10151         // extension method
10152         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10153             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10154              CLI.RetZExt == Args[i].IsZExt))
10155           Flags.setReturned();
10156       }
10157 
10158       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10159                      CLI.CallConv, ExtendKind);
10160 
10161       for (unsigned j = 0; j != NumParts; ++j) {
10162         // if it isn't first piece, alignment must be 1
10163         // For scalable vectors the scalable part is currently handled
10164         // by individual targets, so we just use the known minimum size here.
10165         ISD::OutputArg MyFlags(
10166             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10167             i < CLI.NumFixedArgs, i,
10168             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10169         if (NumParts > 1 && j == 0)
10170           MyFlags.Flags.setSplit();
10171         else if (j != 0) {
10172           MyFlags.Flags.setOrigAlign(Align(1));
10173           if (j == NumParts - 1)
10174             MyFlags.Flags.setSplitEnd();
10175         }
10176 
10177         CLI.Outs.push_back(MyFlags);
10178         CLI.OutVals.push_back(Parts[j]);
10179       }
10180 
10181       if (NeedsRegBlock && Value == NumValues - 1)
10182         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10183     }
10184   }
10185 
10186   SmallVector<SDValue, 4> InVals;
10187   CLI.Chain = LowerCall(CLI, InVals);
10188 
10189   // Update CLI.InVals to use outside of this function.
10190   CLI.InVals = InVals;
10191 
10192   // Verify that the target's LowerCall behaved as expected.
10193   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10194          "LowerCall didn't return a valid chain!");
10195   assert((!CLI.IsTailCall || InVals.empty()) &&
10196          "LowerCall emitted a return value for a tail call!");
10197   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10198          "LowerCall didn't emit the correct number of values!");
10199 
10200   // For a tail call, the return value is merely live-out and there aren't
10201   // any nodes in the DAG representing it. Return a special value to
10202   // indicate that a tail call has been emitted and no more Instructions
10203   // should be processed in the current block.
10204   if (CLI.IsTailCall) {
10205     CLI.DAG.setRoot(CLI.Chain);
10206     return std::make_pair(SDValue(), SDValue());
10207   }
10208 
10209 #ifndef NDEBUG
10210   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10211     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10212     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10213            "LowerCall emitted a value with the wrong type!");
10214   }
10215 #endif
10216 
10217   SmallVector<SDValue, 4> ReturnValues;
10218   if (!CanLowerReturn) {
10219     // The instruction result is the result of loading from the
10220     // hidden sret parameter.
10221     SmallVector<EVT, 1> PVTs;
10222     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
10223 
10224     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10225     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10226     EVT PtrVT = PVTs[0];
10227 
10228     unsigned NumValues = RetTys.size();
10229     ReturnValues.resize(NumValues);
10230     SmallVector<SDValue, 4> Chains(NumValues);
10231 
10232     // An aggregate return value cannot wrap around the address space, so
10233     // offsets to its parts don't wrap either.
10234     SDNodeFlags Flags;
10235     Flags.setNoUnsignedWrap(true);
10236 
10237     MachineFunction &MF = CLI.DAG.getMachineFunction();
10238     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10239     for (unsigned i = 0; i < NumValues; ++i) {
10240       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10241                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10242                                                         PtrVT), Flags);
10243       SDValue L = CLI.DAG.getLoad(
10244           RetTys[i], CLI.DL, CLI.Chain, Add,
10245           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10246                                             DemoteStackIdx, Offsets[i]),
10247           HiddenSRetAlign);
10248       ReturnValues[i] = L;
10249       Chains[i] = L.getValue(1);
10250     }
10251 
10252     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10253   } else {
10254     // Collect the legal value parts into potentially illegal values
10255     // that correspond to the original function's return values.
10256     std::optional<ISD::NodeType> AssertOp;
10257     if (CLI.RetSExt)
10258       AssertOp = ISD::AssertSext;
10259     else if (CLI.RetZExt)
10260       AssertOp = ISD::AssertZext;
10261     unsigned CurReg = 0;
10262     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10263       EVT VT = RetTys[I];
10264       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10265                                                      CLI.CallConv, VT);
10266       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10267                                                        CLI.CallConv, VT);
10268 
10269       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10270                                               NumRegs, RegisterVT, VT, nullptr,
10271                                               CLI.CallConv, AssertOp));
10272       CurReg += NumRegs;
10273     }
10274 
10275     // For a function returning void, there is no return value. We can't create
10276     // such a node, so we just return a null return value in that case. In
10277     // that case, nothing will actually look at the value.
10278     if (ReturnValues.empty())
10279       return std::make_pair(SDValue(), CLI.Chain);
10280   }
10281 
10282   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10283                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10284   return std::make_pair(Res, CLI.Chain);
10285 }
10286 
10287 /// Places new result values for the node in Results (their number
10288 /// and types must exactly match those of the original return values of
10289 /// the node), or leaves Results empty, which indicates that the node is not
10290 /// to be custom lowered after all.
10291 void TargetLowering::LowerOperationWrapper(SDNode *N,
10292                                            SmallVectorImpl<SDValue> &Results,
10293                                            SelectionDAG &DAG) const {
10294   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10295 
10296   if (!Res.getNode())
10297     return;
10298 
10299   // If the original node has one result, take the return value from
10300   // LowerOperation as is. It might not be result number 0.
10301   if (N->getNumValues() == 1) {
10302     Results.push_back(Res);
10303     return;
10304   }
10305 
10306   // If the original node has multiple results, then the return node should
10307   // have the same number of results.
10308   assert((N->getNumValues() == Res->getNumValues()) &&
10309       "Lowering returned the wrong number of results!");
10310 
10311   // Places new result values base on N result number.
10312   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10313     Results.push_back(Res.getValue(I));
10314 }
10315 
10316 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10317   llvm_unreachable("LowerOperation not implemented for this target!");
10318 }
10319 
10320 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10321                                                      unsigned Reg,
10322                                                      ISD::NodeType ExtendType) {
10323   SDValue Op = getNonRegisterValue(V);
10324   assert((Op.getOpcode() != ISD::CopyFromReg ||
10325           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10326          "Copy from a reg to the same reg!");
10327   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10328 
10329   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10330   // If this is an InlineAsm we have to match the registers required, not the
10331   // notional registers required by the type.
10332 
10333   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10334                    std::nullopt); // This is not an ABI copy.
10335   SDValue Chain = DAG.getEntryNode();
10336 
10337   if (ExtendType == ISD::ANY_EXTEND) {
10338     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10339     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10340       ExtendType = PreferredExtendIt->second;
10341   }
10342   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10343   PendingExports.push_back(Chain);
10344 }
10345 
10346 #include "llvm/CodeGen/SelectionDAGISel.h"
10347 
10348 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10349 /// entry block, return true.  This includes arguments used by switches, since
10350 /// the switch may expand into multiple basic blocks.
10351 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10352   // With FastISel active, we may be splitting blocks, so force creation
10353   // of virtual registers for all non-dead arguments.
10354   if (FastISel)
10355     return A->use_empty();
10356 
10357   const BasicBlock &Entry = A->getParent()->front();
10358   for (const User *U : A->users())
10359     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10360       return false;  // Use not in entry block.
10361 
10362   return true;
10363 }
10364 
10365 using ArgCopyElisionMapTy =
10366     DenseMap<const Argument *,
10367              std::pair<const AllocaInst *, const StoreInst *>>;
10368 
10369 /// Scan the entry block of the function in FuncInfo for arguments that look
10370 /// like copies into a local alloca. Record any copied arguments in
10371 /// ArgCopyElisionCandidates.
10372 static void
10373 findArgumentCopyElisionCandidates(const DataLayout &DL,
10374                                   FunctionLoweringInfo *FuncInfo,
10375                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10376   // Record the state of every static alloca used in the entry block. Argument
10377   // allocas are all used in the entry block, so we need approximately as many
10378   // entries as we have arguments.
10379   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10380   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10381   unsigned NumArgs = FuncInfo->Fn->arg_size();
10382   StaticAllocas.reserve(NumArgs * 2);
10383 
10384   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10385     if (!V)
10386       return nullptr;
10387     V = V->stripPointerCasts();
10388     const auto *AI = dyn_cast<AllocaInst>(V);
10389     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10390       return nullptr;
10391     auto Iter = StaticAllocas.insert({AI, Unknown});
10392     return &Iter.first->second;
10393   };
10394 
10395   // Look for stores of arguments to static allocas. Look through bitcasts and
10396   // GEPs to handle type coercions, as long as the alloca is fully initialized
10397   // by the store. Any non-store use of an alloca escapes it and any subsequent
10398   // unanalyzed store might write it.
10399   // FIXME: Handle structs initialized with multiple stores.
10400   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10401     // Look for stores, and handle non-store uses conservatively.
10402     const auto *SI = dyn_cast<StoreInst>(&I);
10403     if (!SI) {
10404       // We will look through cast uses, so ignore them completely.
10405       if (I.isCast())
10406         continue;
10407       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10408       // to allocas.
10409       if (I.isDebugOrPseudoInst())
10410         continue;
10411       // This is an unknown instruction. Assume it escapes or writes to all
10412       // static alloca operands.
10413       for (const Use &U : I.operands()) {
10414         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10415           *Info = StaticAllocaInfo::Clobbered;
10416       }
10417       continue;
10418     }
10419 
10420     // If the stored value is a static alloca, mark it as escaped.
10421     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10422       *Info = StaticAllocaInfo::Clobbered;
10423 
10424     // Check if the destination is a static alloca.
10425     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10426     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10427     if (!Info)
10428       continue;
10429     const AllocaInst *AI = cast<AllocaInst>(Dst);
10430 
10431     // Skip allocas that have been initialized or clobbered.
10432     if (*Info != StaticAllocaInfo::Unknown)
10433       continue;
10434 
10435     // Check if the stored value is an argument, and that this store fully
10436     // initializes the alloca.
10437     // If the argument type has padding bits we can't directly forward a pointer
10438     // as the upper bits may contain garbage.
10439     // Don't elide copies from the same argument twice.
10440     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10441     const auto *Arg = dyn_cast<Argument>(Val);
10442     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10443         Arg->getType()->isEmptyTy() ||
10444         DL.getTypeStoreSize(Arg->getType()) !=
10445             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10446         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10447         ArgCopyElisionCandidates.count(Arg)) {
10448       *Info = StaticAllocaInfo::Clobbered;
10449       continue;
10450     }
10451 
10452     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10453                       << '\n');
10454 
10455     // Mark this alloca and store for argument copy elision.
10456     *Info = StaticAllocaInfo::Elidable;
10457     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10458 
10459     // Stop scanning if we've seen all arguments. This will happen early in -O0
10460     // builds, which is useful, because -O0 builds have large entry blocks and
10461     // many allocas.
10462     if (ArgCopyElisionCandidates.size() == NumArgs)
10463       break;
10464   }
10465 }
10466 
10467 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10468 /// ArgVal is a load from a suitable fixed stack object.
10469 static void tryToElideArgumentCopy(
10470     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10471     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10472     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10473     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10474     SDValue ArgVal, bool &ArgHasUses) {
10475   // Check if this is a load from a fixed stack object.
10476   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10477   if (!LNode)
10478     return;
10479   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10480   if (!FINode)
10481     return;
10482 
10483   // Check that the fixed stack object is the right size and alignment.
10484   // Look at the alignment that the user wrote on the alloca instead of looking
10485   // at the stack object.
10486   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10487   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10488   const AllocaInst *AI = ArgCopyIter->second.first;
10489   int FixedIndex = FINode->getIndex();
10490   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10491   int OldIndex = AllocaIndex;
10492   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10493   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10494     LLVM_DEBUG(
10495         dbgs() << "  argument copy elision failed due to bad fixed stack "
10496                   "object size\n");
10497     return;
10498   }
10499   Align RequiredAlignment = AI->getAlign();
10500   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10501     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10502                          "greater than stack argument alignment ("
10503                       << DebugStr(RequiredAlignment) << " vs "
10504                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10505     return;
10506   }
10507 
10508   // Perform the elision. Delete the old stack object and replace its only use
10509   // in the variable info map. Mark the stack object as mutable.
10510   LLVM_DEBUG({
10511     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10512            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10513            << '\n';
10514   });
10515   MFI.RemoveStackObject(OldIndex);
10516   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10517   AllocaIndex = FixedIndex;
10518   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10519   Chains.push_back(ArgVal.getValue(1));
10520 
10521   // Avoid emitting code for the store implementing the copy.
10522   const StoreInst *SI = ArgCopyIter->second.second;
10523   ElidedArgCopyInstrs.insert(SI);
10524 
10525   // Check for uses of the argument again so that we can avoid exporting ArgVal
10526   // if it is't used by anything other than the store.
10527   for (const Value *U : Arg.users()) {
10528     if (U != SI) {
10529       ArgHasUses = true;
10530       break;
10531     }
10532   }
10533 }
10534 
10535 void SelectionDAGISel::LowerArguments(const Function &F) {
10536   SelectionDAG &DAG = SDB->DAG;
10537   SDLoc dl = SDB->getCurSDLoc();
10538   const DataLayout &DL = DAG.getDataLayout();
10539   SmallVector<ISD::InputArg, 16> Ins;
10540 
10541   // In Naked functions we aren't going to save any registers.
10542   if (F.hasFnAttribute(Attribute::Naked))
10543     return;
10544 
10545   if (!FuncInfo->CanLowerReturn) {
10546     // Put in an sret pointer parameter before all the other parameters.
10547     SmallVector<EVT, 1> ValueVTs;
10548     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10549                     F.getReturnType()->getPointerTo(
10550                         DAG.getDataLayout().getAllocaAddrSpace()),
10551                     ValueVTs);
10552 
10553     // NOTE: Assuming that a pointer will never break down to more than one VT
10554     // or one register.
10555     ISD::ArgFlagsTy Flags;
10556     Flags.setSRet();
10557     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10558     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10559                          ISD::InputArg::NoArgIndex, 0);
10560     Ins.push_back(RetArg);
10561   }
10562 
10563   // Look for stores of arguments to static allocas. Mark such arguments with a
10564   // flag to ask the target to give us the memory location of that argument if
10565   // available.
10566   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10567   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10568                                     ArgCopyElisionCandidates);
10569 
10570   // Set up the incoming argument description vector.
10571   for (const Argument &Arg : F.args()) {
10572     unsigned ArgNo = Arg.getArgNo();
10573     SmallVector<EVT, 4> ValueVTs;
10574     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10575     bool isArgValueUsed = !Arg.use_empty();
10576     unsigned PartBase = 0;
10577     Type *FinalType = Arg.getType();
10578     if (Arg.hasAttribute(Attribute::ByVal))
10579       FinalType = Arg.getParamByValType();
10580     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10581         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10582     for (unsigned Value = 0, NumValues = ValueVTs.size();
10583          Value != NumValues; ++Value) {
10584       EVT VT = ValueVTs[Value];
10585       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10586       ISD::ArgFlagsTy Flags;
10587 
10588 
10589       if (Arg.getType()->isPointerTy()) {
10590         Flags.setPointer();
10591         Flags.setPointerAddrSpace(
10592             cast<PointerType>(Arg.getType())->getAddressSpace());
10593       }
10594       if (Arg.hasAttribute(Attribute::ZExt))
10595         Flags.setZExt();
10596       if (Arg.hasAttribute(Attribute::SExt))
10597         Flags.setSExt();
10598       if (Arg.hasAttribute(Attribute::InReg)) {
10599         // If we are using vectorcall calling convention, a structure that is
10600         // passed InReg - is surely an HVA
10601         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10602             isa<StructType>(Arg.getType())) {
10603           // The first value of a structure is marked
10604           if (0 == Value)
10605             Flags.setHvaStart();
10606           Flags.setHva();
10607         }
10608         // Set InReg Flag
10609         Flags.setInReg();
10610       }
10611       if (Arg.hasAttribute(Attribute::StructRet))
10612         Flags.setSRet();
10613       if (Arg.hasAttribute(Attribute::SwiftSelf))
10614         Flags.setSwiftSelf();
10615       if (Arg.hasAttribute(Attribute::SwiftAsync))
10616         Flags.setSwiftAsync();
10617       if (Arg.hasAttribute(Attribute::SwiftError))
10618         Flags.setSwiftError();
10619       if (Arg.hasAttribute(Attribute::ByVal))
10620         Flags.setByVal();
10621       if (Arg.hasAttribute(Attribute::ByRef))
10622         Flags.setByRef();
10623       if (Arg.hasAttribute(Attribute::InAlloca)) {
10624         Flags.setInAlloca();
10625         // Set the byval flag for CCAssignFn callbacks that don't know about
10626         // inalloca.  This way we can know how many bytes we should've allocated
10627         // and how many bytes a callee cleanup function will pop.  If we port
10628         // inalloca to more targets, we'll have to add custom inalloca handling
10629         // in the various CC lowering callbacks.
10630         Flags.setByVal();
10631       }
10632       if (Arg.hasAttribute(Attribute::Preallocated)) {
10633         Flags.setPreallocated();
10634         // Set the byval flag for CCAssignFn callbacks that don't know about
10635         // preallocated.  This way we can know how many bytes we should've
10636         // allocated and how many bytes a callee cleanup function will pop.  If
10637         // we port preallocated to more targets, we'll have to add custom
10638         // preallocated handling in the various CC lowering callbacks.
10639         Flags.setByVal();
10640       }
10641 
10642       // Certain targets (such as MIPS), may have a different ABI alignment
10643       // for a type depending on the context. Give the target a chance to
10644       // specify the alignment it wants.
10645       const Align OriginalAlignment(
10646           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10647       Flags.setOrigAlign(OriginalAlignment);
10648 
10649       Align MemAlign;
10650       Type *ArgMemTy = nullptr;
10651       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10652           Flags.isByRef()) {
10653         if (!ArgMemTy)
10654           ArgMemTy = Arg.getPointeeInMemoryValueType();
10655 
10656         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10657 
10658         // For in-memory arguments, size and alignment should be passed from FE.
10659         // BE will guess if this info is not there but there are cases it cannot
10660         // get right.
10661         if (auto ParamAlign = Arg.getParamStackAlign())
10662           MemAlign = *ParamAlign;
10663         else if ((ParamAlign = Arg.getParamAlign()))
10664           MemAlign = *ParamAlign;
10665         else
10666           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10667         if (Flags.isByRef())
10668           Flags.setByRefSize(MemSize);
10669         else
10670           Flags.setByValSize(MemSize);
10671       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10672         MemAlign = *ParamAlign;
10673       } else {
10674         MemAlign = OriginalAlignment;
10675       }
10676       Flags.setMemAlign(MemAlign);
10677 
10678       if (Arg.hasAttribute(Attribute::Nest))
10679         Flags.setNest();
10680       if (NeedsRegBlock)
10681         Flags.setInConsecutiveRegs();
10682       if (ArgCopyElisionCandidates.count(&Arg))
10683         Flags.setCopyElisionCandidate();
10684       if (Arg.hasAttribute(Attribute::Returned))
10685         Flags.setReturned();
10686 
10687       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10688           *CurDAG->getContext(), F.getCallingConv(), VT);
10689       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10690           *CurDAG->getContext(), F.getCallingConv(), VT);
10691       for (unsigned i = 0; i != NumRegs; ++i) {
10692         // For scalable vectors, use the minimum size; individual targets
10693         // are responsible for handling scalable vector arguments and
10694         // return values.
10695         ISD::InputArg MyFlags(
10696             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
10697             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
10698         if (NumRegs > 1 && i == 0)
10699           MyFlags.Flags.setSplit();
10700         // if it isn't first piece, alignment must be 1
10701         else if (i > 0) {
10702           MyFlags.Flags.setOrigAlign(Align(1));
10703           if (i == NumRegs - 1)
10704             MyFlags.Flags.setSplitEnd();
10705         }
10706         Ins.push_back(MyFlags);
10707       }
10708       if (NeedsRegBlock && Value == NumValues - 1)
10709         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10710       PartBase += VT.getStoreSize().getKnownMinValue();
10711     }
10712   }
10713 
10714   // Call the target to set up the argument values.
10715   SmallVector<SDValue, 8> InVals;
10716   SDValue NewRoot = TLI->LowerFormalArguments(
10717       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10718 
10719   // Verify that the target's LowerFormalArguments behaved as expected.
10720   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10721          "LowerFormalArguments didn't return a valid chain!");
10722   assert(InVals.size() == Ins.size() &&
10723          "LowerFormalArguments didn't emit the correct number of values!");
10724   LLVM_DEBUG({
10725     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10726       assert(InVals[i].getNode() &&
10727              "LowerFormalArguments emitted a null value!");
10728       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10729              "LowerFormalArguments emitted a value with the wrong type!");
10730     }
10731   });
10732 
10733   // Update the DAG with the new chain value resulting from argument lowering.
10734   DAG.setRoot(NewRoot);
10735 
10736   // Set up the argument values.
10737   unsigned i = 0;
10738   if (!FuncInfo->CanLowerReturn) {
10739     // Create a virtual register for the sret pointer, and put in a copy
10740     // from the sret argument into it.
10741     SmallVector<EVT, 1> ValueVTs;
10742     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10743                     F.getReturnType()->getPointerTo(
10744                         DAG.getDataLayout().getAllocaAddrSpace()),
10745                     ValueVTs);
10746     MVT VT = ValueVTs[0].getSimpleVT();
10747     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10748     std::optional<ISD::NodeType> AssertOp;
10749     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10750                                         nullptr, F.getCallingConv(), AssertOp);
10751 
10752     MachineFunction& MF = SDB->DAG.getMachineFunction();
10753     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10754     Register SRetReg =
10755         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10756     FuncInfo->DemoteRegister = SRetReg;
10757     NewRoot =
10758         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10759     DAG.setRoot(NewRoot);
10760 
10761     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10762     ++i;
10763   }
10764 
10765   SmallVector<SDValue, 4> Chains;
10766   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10767   for (const Argument &Arg : F.args()) {
10768     SmallVector<SDValue, 4> ArgValues;
10769     SmallVector<EVT, 4> ValueVTs;
10770     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10771     unsigned NumValues = ValueVTs.size();
10772     if (NumValues == 0)
10773       continue;
10774 
10775     bool ArgHasUses = !Arg.use_empty();
10776 
10777     // Elide the copying store if the target loaded this argument from a
10778     // suitable fixed stack object.
10779     if (Ins[i].Flags.isCopyElisionCandidate()) {
10780       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10781                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10782                              InVals[i], ArgHasUses);
10783     }
10784 
10785     // If this argument is unused then remember its value. It is used to generate
10786     // debugging information.
10787     bool isSwiftErrorArg =
10788         TLI->supportSwiftError() &&
10789         Arg.hasAttribute(Attribute::SwiftError);
10790     if (!ArgHasUses && !isSwiftErrorArg) {
10791       SDB->setUnusedArgValue(&Arg, InVals[i]);
10792 
10793       // Also remember any frame index for use in FastISel.
10794       if (FrameIndexSDNode *FI =
10795           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10796         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10797     }
10798 
10799     for (unsigned Val = 0; Val != NumValues; ++Val) {
10800       EVT VT = ValueVTs[Val];
10801       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10802                                                       F.getCallingConv(), VT);
10803       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10804           *CurDAG->getContext(), F.getCallingConv(), VT);
10805 
10806       // Even an apparent 'unused' swifterror argument needs to be returned. So
10807       // we do generate a copy for it that can be used on return from the
10808       // function.
10809       if (ArgHasUses || isSwiftErrorArg) {
10810         std::optional<ISD::NodeType> AssertOp;
10811         if (Arg.hasAttribute(Attribute::SExt))
10812           AssertOp = ISD::AssertSext;
10813         else if (Arg.hasAttribute(Attribute::ZExt))
10814           AssertOp = ISD::AssertZext;
10815 
10816         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10817                                              PartVT, VT, nullptr,
10818                                              F.getCallingConv(), AssertOp));
10819       }
10820 
10821       i += NumParts;
10822     }
10823 
10824     // We don't need to do anything else for unused arguments.
10825     if (ArgValues.empty())
10826       continue;
10827 
10828     // Note down frame index.
10829     if (FrameIndexSDNode *FI =
10830         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10831       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10832 
10833     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
10834                                      SDB->getCurSDLoc());
10835 
10836     SDB->setValue(&Arg, Res);
10837     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10838       // We want to associate the argument with the frame index, among
10839       // involved operands, that correspond to the lowest address. The
10840       // getCopyFromParts function, called earlier, is swapping the order of
10841       // the operands to BUILD_PAIR depending on endianness. The result of
10842       // that swapping is that the least significant bits of the argument will
10843       // be in the first operand of the BUILD_PAIR node, and the most
10844       // significant bits will be in the second operand.
10845       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10846       if (LoadSDNode *LNode =
10847           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10848         if (FrameIndexSDNode *FI =
10849             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10850           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10851     }
10852 
10853     // Analyses past this point are naive and don't expect an assertion.
10854     if (Res.getOpcode() == ISD::AssertZext)
10855       Res = Res.getOperand(0);
10856 
10857     // Update the SwiftErrorVRegDefMap.
10858     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10859       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10860       if (Register::isVirtualRegister(Reg))
10861         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10862                                    Reg);
10863     }
10864 
10865     // If this argument is live outside of the entry block, insert a copy from
10866     // wherever we got it to the vreg that other BB's will reference it as.
10867     if (Res.getOpcode() == ISD::CopyFromReg) {
10868       // If we can, though, try to skip creating an unnecessary vreg.
10869       // FIXME: This isn't very clean... it would be nice to make this more
10870       // general.
10871       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10872       if (Register::isVirtualRegister(Reg)) {
10873         FuncInfo->ValueMap[&Arg] = Reg;
10874         continue;
10875       }
10876     }
10877     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10878       FuncInfo->InitializeRegForValue(&Arg);
10879       SDB->CopyToExportRegsIfNeeded(&Arg);
10880     }
10881   }
10882 
10883   if (!Chains.empty()) {
10884     Chains.push_back(NewRoot);
10885     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10886   }
10887 
10888   DAG.setRoot(NewRoot);
10889 
10890   assert(i == InVals.size() && "Argument register count mismatch!");
10891 
10892   // If any argument copy elisions occurred and we have debug info, update the
10893   // stale frame indices used in the dbg.declare variable info table.
10894   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10895   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10896     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10897       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10898       if (I != ArgCopyElisionFrameIndexMap.end())
10899         VI.Slot = I->second;
10900     }
10901   }
10902 
10903   // Finally, if the target has anything special to do, allow it to do so.
10904   emitFunctionEntryCode();
10905 }
10906 
10907 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10908 /// ensure constants are generated when needed.  Remember the virtual registers
10909 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10910 /// directly add them, because expansion might result in multiple MBB's for one
10911 /// BB.  As such, the start of the BB might correspond to a different MBB than
10912 /// the end.
10913 void
10914 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10915   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10916 
10917   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10918 
10919   // Check PHI nodes in successors that expect a value to be available from this
10920   // block.
10921   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
10922     if (!isa<PHINode>(SuccBB->begin())) continue;
10923     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10924 
10925     // If this terminator has multiple identical successors (common for
10926     // switches), only handle each succ once.
10927     if (!SuccsHandled.insert(SuccMBB).second)
10928       continue;
10929 
10930     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10931 
10932     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10933     // nodes and Machine PHI nodes, but the incoming operands have not been
10934     // emitted yet.
10935     for (const PHINode &PN : SuccBB->phis()) {
10936       // Ignore dead phi's.
10937       if (PN.use_empty())
10938         continue;
10939 
10940       // Skip empty types
10941       if (PN.getType()->isEmptyTy())
10942         continue;
10943 
10944       unsigned Reg;
10945       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10946 
10947       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
10948         unsigned &RegOut = ConstantsOut[C];
10949         if (RegOut == 0) {
10950           RegOut = FuncInfo.CreateRegs(C);
10951           // We need to zero/sign extend ConstantInt phi operands to match
10952           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10953           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10954           if (auto *CI = dyn_cast<ConstantInt>(C))
10955             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
10956                                                     : ISD::ZERO_EXTEND;
10957           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10958         }
10959         Reg = RegOut;
10960       } else {
10961         DenseMap<const Value *, Register>::iterator I =
10962           FuncInfo.ValueMap.find(PHIOp);
10963         if (I != FuncInfo.ValueMap.end())
10964           Reg = I->second;
10965         else {
10966           assert(isa<AllocaInst>(PHIOp) &&
10967                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10968                  "Didn't codegen value into a register!??");
10969           Reg = FuncInfo.CreateRegs(PHIOp);
10970           CopyValueToVirtualRegister(PHIOp, Reg);
10971         }
10972       }
10973 
10974       // Remember that this register needs to added to the machine PHI node as
10975       // the input for this MBB.
10976       SmallVector<EVT, 4> ValueVTs;
10977       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10978       for (EVT VT : ValueVTs) {
10979         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10980         for (unsigned i = 0; i != NumRegisters; ++i)
10981           FuncInfo.PHINodesToUpdate.push_back(
10982               std::make_pair(&*MBBI++, Reg + i));
10983         Reg += NumRegisters;
10984       }
10985     }
10986   }
10987 
10988   ConstantsOut.clear();
10989 }
10990 
10991 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10992   MachineFunction::iterator I(MBB);
10993   if (++I == FuncInfo.MF->end())
10994     return nullptr;
10995   return &*I;
10996 }
10997 
10998 /// During lowering new call nodes can be created (such as memset, etc.).
10999 /// Those will become new roots of the current DAG, but complications arise
11000 /// when they are tail calls. In such cases, the call lowering will update
11001 /// the root, but the builder still needs to know that a tail call has been
11002 /// lowered in order to avoid generating an additional return.
11003 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11004   // If the node is null, we do have a tail call.
11005   if (MaybeTC.getNode() != nullptr)
11006     DAG.setRoot(MaybeTC);
11007   else
11008     HasTailCall = true;
11009 }
11010 
11011 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11012                                         MachineBasicBlock *SwitchMBB,
11013                                         MachineBasicBlock *DefaultMBB) {
11014   MachineFunction *CurMF = FuncInfo.MF;
11015   MachineBasicBlock *NextMBB = nullptr;
11016   MachineFunction::iterator BBI(W.MBB);
11017   if (++BBI != FuncInfo.MF->end())
11018     NextMBB = &*BBI;
11019 
11020   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11021 
11022   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11023 
11024   if (Size == 2 && W.MBB == SwitchMBB) {
11025     // If any two of the cases has the same destination, and if one value
11026     // is the same as the other, but has one bit unset that the other has set,
11027     // use bit manipulation to do two compares at once.  For example:
11028     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11029     // TODO: This could be extended to merge any 2 cases in switches with 3
11030     // cases.
11031     // TODO: Handle cases where W.CaseBB != SwitchBB.
11032     CaseCluster &Small = *W.FirstCluster;
11033     CaseCluster &Big = *W.LastCluster;
11034 
11035     if (Small.Low == Small.High && Big.Low == Big.High &&
11036         Small.MBB == Big.MBB) {
11037       const APInt &SmallValue = Small.Low->getValue();
11038       const APInt &BigValue = Big.Low->getValue();
11039 
11040       // Check that there is only one bit different.
11041       APInt CommonBit = BigValue ^ SmallValue;
11042       if (CommonBit.isPowerOf2()) {
11043         SDValue CondLHS = getValue(Cond);
11044         EVT VT = CondLHS.getValueType();
11045         SDLoc DL = getCurSDLoc();
11046 
11047         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11048                                  DAG.getConstant(CommonBit, DL, VT));
11049         SDValue Cond = DAG.getSetCC(
11050             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11051             ISD::SETEQ);
11052 
11053         // Update successor info.
11054         // Both Small and Big will jump to Small.BB, so we sum up the
11055         // probabilities.
11056         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11057         if (BPI)
11058           addSuccessorWithProb(
11059               SwitchMBB, DefaultMBB,
11060               // The default destination is the first successor in IR.
11061               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11062         else
11063           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11064 
11065         // Insert the true branch.
11066         SDValue BrCond =
11067             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11068                         DAG.getBasicBlock(Small.MBB));
11069         // Insert the false branch.
11070         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11071                              DAG.getBasicBlock(DefaultMBB));
11072 
11073         DAG.setRoot(BrCond);
11074         return;
11075       }
11076     }
11077   }
11078 
11079   if (TM.getOptLevel() != CodeGenOpt::None) {
11080     // Here, we order cases by probability so the most likely case will be
11081     // checked first. However, two clusters can have the same probability in
11082     // which case their relative ordering is non-deterministic. So we use Low
11083     // as a tie-breaker as clusters are guaranteed to never overlap.
11084     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11085                [](const CaseCluster &a, const CaseCluster &b) {
11086       return a.Prob != b.Prob ?
11087              a.Prob > b.Prob :
11088              a.Low->getValue().slt(b.Low->getValue());
11089     });
11090 
11091     // Rearrange the case blocks so that the last one falls through if possible
11092     // without changing the order of probabilities.
11093     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11094       --I;
11095       if (I->Prob > W.LastCluster->Prob)
11096         break;
11097       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11098         std::swap(*I, *W.LastCluster);
11099         break;
11100       }
11101     }
11102   }
11103 
11104   // Compute total probability.
11105   BranchProbability DefaultProb = W.DefaultProb;
11106   BranchProbability UnhandledProbs = DefaultProb;
11107   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11108     UnhandledProbs += I->Prob;
11109 
11110   MachineBasicBlock *CurMBB = W.MBB;
11111   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11112     bool FallthroughUnreachable = false;
11113     MachineBasicBlock *Fallthrough;
11114     if (I == W.LastCluster) {
11115       // For the last cluster, fall through to the default destination.
11116       Fallthrough = DefaultMBB;
11117       FallthroughUnreachable = isa<UnreachableInst>(
11118           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11119     } else {
11120       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11121       CurMF->insert(BBI, Fallthrough);
11122       // Put Cond in a virtual register to make it available from the new blocks.
11123       ExportFromCurrentBlock(Cond);
11124     }
11125     UnhandledProbs -= I->Prob;
11126 
11127     switch (I->Kind) {
11128       case CC_JumpTable: {
11129         // FIXME: Optimize away range check based on pivot comparisons.
11130         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11131         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11132 
11133         // The jump block hasn't been inserted yet; insert it here.
11134         MachineBasicBlock *JumpMBB = JT->MBB;
11135         CurMF->insert(BBI, JumpMBB);
11136 
11137         auto JumpProb = I->Prob;
11138         auto FallthroughProb = UnhandledProbs;
11139 
11140         // If the default statement is a target of the jump table, we evenly
11141         // distribute the default probability to successors of CurMBB. Also
11142         // update the probability on the edge from JumpMBB to Fallthrough.
11143         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11144                                               SE = JumpMBB->succ_end();
11145              SI != SE; ++SI) {
11146           if (*SI == DefaultMBB) {
11147             JumpProb += DefaultProb / 2;
11148             FallthroughProb -= DefaultProb / 2;
11149             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11150             JumpMBB->normalizeSuccProbs();
11151             break;
11152           }
11153         }
11154 
11155         if (FallthroughUnreachable)
11156           JTH->FallthroughUnreachable = true;
11157 
11158         if (!JTH->FallthroughUnreachable)
11159           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11160         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11161         CurMBB->normalizeSuccProbs();
11162 
11163         // The jump table header will be inserted in our current block, do the
11164         // range check, and fall through to our fallthrough block.
11165         JTH->HeaderBB = CurMBB;
11166         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11167 
11168         // If we're in the right place, emit the jump table header right now.
11169         if (CurMBB == SwitchMBB) {
11170           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11171           JTH->Emitted = true;
11172         }
11173         break;
11174       }
11175       case CC_BitTests: {
11176         // FIXME: Optimize away range check based on pivot comparisons.
11177         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11178 
11179         // The bit test blocks haven't been inserted yet; insert them here.
11180         for (BitTestCase &BTC : BTB->Cases)
11181           CurMF->insert(BBI, BTC.ThisBB);
11182 
11183         // Fill in fields of the BitTestBlock.
11184         BTB->Parent = CurMBB;
11185         BTB->Default = Fallthrough;
11186 
11187         BTB->DefaultProb = UnhandledProbs;
11188         // If the cases in bit test don't form a contiguous range, we evenly
11189         // distribute the probability on the edge to Fallthrough to two
11190         // successors of CurMBB.
11191         if (!BTB->ContiguousRange) {
11192           BTB->Prob += DefaultProb / 2;
11193           BTB->DefaultProb -= DefaultProb / 2;
11194         }
11195 
11196         if (FallthroughUnreachable)
11197           BTB->FallthroughUnreachable = true;
11198 
11199         // If we're in the right place, emit the bit test header right now.
11200         if (CurMBB == SwitchMBB) {
11201           visitBitTestHeader(*BTB, SwitchMBB);
11202           BTB->Emitted = true;
11203         }
11204         break;
11205       }
11206       case CC_Range: {
11207         const Value *RHS, *LHS, *MHS;
11208         ISD::CondCode CC;
11209         if (I->Low == I->High) {
11210           // Check Cond == I->Low.
11211           CC = ISD::SETEQ;
11212           LHS = Cond;
11213           RHS=I->Low;
11214           MHS = nullptr;
11215         } else {
11216           // Check I->Low <= Cond <= I->High.
11217           CC = ISD::SETLE;
11218           LHS = I->Low;
11219           MHS = Cond;
11220           RHS = I->High;
11221         }
11222 
11223         // If Fallthrough is unreachable, fold away the comparison.
11224         if (FallthroughUnreachable)
11225           CC = ISD::SETTRUE;
11226 
11227         // The false probability is the sum of all unhandled cases.
11228         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11229                      getCurSDLoc(), I->Prob, UnhandledProbs);
11230 
11231         if (CurMBB == SwitchMBB)
11232           visitSwitchCase(CB, SwitchMBB);
11233         else
11234           SL->SwitchCases.push_back(CB);
11235 
11236         break;
11237       }
11238     }
11239     CurMBB = Fallthrough;
11240   }
11241 }
11242 
11243 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11244                                               CaseClusterIt First,
11245                                               CaseClusterIt Last) {
11246   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11247     if (X.Prob != CC.Prob)
11248       return X.Prob > CC.Prob;
11249 
11250     // Ties are broken by comparing the case value.
11251     return X.Low->getValue().slt(CC.Low->getValue());
11252   });
11253 }
11254 
11255 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11256                                         const SwitchWorkListItem &W,
11257                                         Value *Cond,
11258                                         MachineBasicBlock *SwitchMBB) {
11259   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11260          "Clusters not sorted?");
11261 
11262   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11263 
11264   // Balance the tree based on branch probabilities to create a near-optimal (in
11265   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11266   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11267   CaseClusterIt LastLeft = W.FirstCluster;
11268   CaseClusterIt FirstRight = W.LastCluster;
11269   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11270   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11271 
11272   // Move LastLeft and FirstRight towards each other from opposite directions to
11273   // find a partitioning of the clusters which balances the probability on both
11274   // sides. If LeftProb and RightProb are equal, alternate which side is
11275   // taken to ensure 0-probability nodes are distributed evenly.
11276   unsigned I = 0;
11277   while (LastLeft + 1 < FirstRight) {
11278     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11279       LeftProb += (++LastLeft)->Prob;
11280     else
11281       RightProb += (--FirstRight)->Prob;
11282     I++;
11283   }
11284 
11285   while (true) {
11286     // Our binary search tree differs from a typical BST in that ours can have up
11287     // to three values in each leaf. The pivot selection above doesn't take that
11288     // into account, which means the tree might require more nodes and be less
11289     // efficient. We compensate for this here.
11290 
11291     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11292     unsigned NumRight = W.LastCluster - FirstRight + 1;
11293 
11294     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11295       // If one side has less than 3 clusters, and the other has more than 3,
11296       // consider taking a cluster from the other side.
11297 
11298       if (NumLeft < NumRight) {
11299         // Consider moving the first cluster on the right to the left side.
11300         CaseCluster &CC = *FirstRight;
11301         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11302         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11303         if (LeftSideRank <= RightSideRank) {
11304           // Moving the cluster to the left does not demote it.
11305           ++LastLeft;
11306           ++FirstRight;
11307           continue;
11308         }
11309       } else {
11310         assert(NumRight < NumLeft);
11311         // Consider moving the last element on the left to the right side.
11312         CaseCluster &CC = *LastLeft;
11313         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11314         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11315         if (RightSideRank <= LeftSideRank) {
11316           // Moving the cluster to the right does not demot it.
11317           --LastLeft;
11318           --FirstRight;
11319           continue;
11320         }
11321       }
11322     }
11323     break;
11324   }
11325 
11326   assert(LastLeft + 1 == FirstRight);
11327   assert(LastLeft >= W.FirstCluster);
11328   assert(FirstRight <= W.LastCluster);
11329 
11330   // Use the first element on the right as pivot since we will make less-than
11331   // comparisons against it.
11332   CaseClusterIt PivotCluster = FirstRight;
11333   assert(PivotCluster > W.FirstCluster);
11334   assert(PivotCluster <= W.LastCluster);
11335 
11336   CaseClusterIt FirstLeft = W.FirstCluster;
11337   CaseClusterIt LastRight = W.LastCluster;
11338 
11339   const ConstantInt *Pivot = PivotCluster->Low;
11340 
11341   // New blocks will be inserted immediately after the current one.
11342   MachineFunction::iterator BBI(W.MBB);
11343   ++BBI;
11344 
11345   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11346   // we can branch to its destination directly if it's squeezed exactly in
11347   // between the known lower bound and Pivot - 1.
11348   MachineBasicBlock *LeftMBB;
11349   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11350       FirstLeft->Low == W.GE &&
11351       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11352     LeftMBB = FirstLeft->MBB;
11353   } else {
11354     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11355     FuncInfo.MF->insert(BBI, LeftMBB);
11356     WorkList.push_back(
11357         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11358     // Put Cond in a virtual register to make it available from the new blocks.
11359     ExportFromCurrentBlock(Cond);
11360   }
11361 
11362   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11363   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11364   // directly if RHS.High equals the current upper bound.
11365   MachineBasicBlock *RightMBB;
11366   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11367       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11368     RightMBB = FirstRight->MBB;
11369   } else {
11370     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11371     FuncInfo.MF->insert(BBI, RightMBB);
11372     WorkList.push_back(
11373         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11374     // Put Cond in a virtual register to make it available from the new blocks.
11375     ExportFromCurrentBlock(Cond);
11376   }
11377 
11378   // Create the CaseBlock record that will be used to lower the branch.
11379   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11380                getCurSDLoc(), LeftProb, RightProb);
11381 
11382   if (W.MBB == SwitchMBB)
11383     visitSwitchCase(CB, SwitchMBB);
11384   else
11385     SL->SwitchCases.push_back(CB);
11386 }
11387 
11388 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11389 // from the swith statement.
11390 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11391                                             BranchProbability PeeledCaseProb) {
11392   if (PeeledCaseProb == BranchProbability::getOne())
11393     return BranchProbability::getZero();
11394   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11395 
11396   uint32_t Numerator = CaseProb.getNumerator();
11397   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11398   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11399 }
11400 
11401 // Try to peel the top probability case if it exceeds the threshold.
11402 // Return current MachineBasicBlock for the switch statement if the peeling
11403 // does not occur.
11404 // If the peeling is performed, return the newly created MachineBasicBlock
11405 // for the peeled switch statement. Also update Clusters to remove the peeled
11406 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11407 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11408     const SwitchInst &SI, CaseClusterVector &Clusters,
11409     BranchProbability &PeeledCaseProb) {
11410   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11411   // Don't perform if there is only one cluster or optimizing for size.
11412   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11413       TM.getOptLevel() == CodeGenOpt::None ||
11414       SwitchMBB->getParent()->getFunction().hasMinSize())
11415     return SwitchMBB;
11416 
11417   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11418   unsigned PeeledCaseIndex = 0;
11419   bool SwitchPeeled = false;
11420   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11421     CaseCluster &CC = Clusters[Index];
11422     if (CC.Prob < TopCaseProb)
11423       continue;
11424     TopCaseProb = CC.Prob;
11425     PeeledCaseIndex = Index;
11426     SwitchPeeled = true;
11427   }
11428   if (!SwitchPeeled)
11429     return SwitchMBB;
11430 
11431   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11432                     << TopCaseProb << "\n");
11433 
11434   // Record the MBB for the peeled switch statement.
11435   MachineFunction::iterator BBI(SwitchMBB);
11436   ++BBI;
11437   MachineBasicBlock *PeeledSwitchMBB =
11438       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11439   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11440 
11441   ExportFromCurrentBlock(SI.getCondition());
11442   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11443   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11444                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11445   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11446 
11447   Clusters.erase(PeeledCaseIt);
11448   for (CaseCluster &CC : Clusters) {
11449     LLVM_DEBUG(
11450         dbgs() << "Scale the probablity for one cluster, before scaling: "
11451                << CC.Prob << "\n");
11452     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11453     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11454   }
11455   PeeledCaseProb = TopCaseProb;
11456   return PeeledSwitchMBB;
11457 }
11458 
11459 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11460   // Extract cases from the switch.
11461   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11462   CaseClusterVector Clusters;
11463   Clusters.reserve(SI.getNumCases());
11464   for (auto I : SI.cases()) {
11465     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11466     const ConstantInt *CaseVal = I.getCaseValue();
11467     BranchProbability Prob =
11468         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11469             : BranchProbability(1, SI.getNumCases() + 1);
11470     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11471   }
11472 
11473   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11474 
11475   // Cluster adjacent cases with the same destination. We do this at all
11476   // optimization levels because it's cheap to do and will make codegen faster
11477   // if there are many clusters.
11478   sortAndRangeify(Clusters);
11479 
11480   // The branch probablity of the peeled case.
11481   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11482   MachineBasicBlock *PeeledSwitchMBB =
11483       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11484 
11485   // If there is only the default destination, jump there directly.
11486   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11487   if (Clusters.empty()) {
11488     assert(PeeledSwitchMBB == SwitchMBB);
11489     SwitchMBB->addSuccessor(DefaultMBB);
11490     if (DefaultMBB != NextBlock(SwitchMBB)) {
11491       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11492                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11493     }
11494     return;
11495   }
11496 
11497   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11498   SL->findBitTestClusters(Clusters, &SI);
11499 
11500   LLVM_DEBUG({
11501     dbgs() << "Case clusters: ";
11502     for (const CaseCluster &C : Clusters) {
11503       if (C.Kind == CC_JumpTable)
11504         dbgs() << "JT:";
11505       if (C.Kind == CC_BitTests)
11506         dbgs() << "BT:";
11507 
11508       C.Low->getValue().print(dbgs(), true);
11509       if (C.Low != C.High) {
11510         dbgs() << '-';
11511         C.High->getValue().print(dbgs(), true);
11512       }
11513       dbgs() << ' ';
11514     }
11515     dbgs() << '\n';
11516   });
11517 
11518   assert(!Clusters.empty());
11519   SwitchWorkList WorkList;
11520   CaseClusterIt First = Clusters.begin();
11521   CaseClusterIt Last = Clusters.end() - 1;
11522   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11523   // Scale the branchprobability for DefaultMBB if the peel occurs and
11524   // DefaultMBB is not replaced.
11525   if (PeeledCaseProb != BranchProbability::getZero() &&
11526       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11527     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11528   WorkList.push_back(
11529       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11530 
11531   while (!WorkList.empty()) {
11532     SwitchWorkListItem W = WorkList.pop_back_val();
11533     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11534 
11535     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11536         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11537       // For optimized builds, lower large range as a balanced binary tree.
11538       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11539       continue;
11540     }
11541 
11542     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11543   }
11544 }
11545 
11546 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11547   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11548   auto DL = getCurSDLoc();
11549   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11550   setValue(&I, DAG.getStepVector(DL, ResultVT));
11551 }
11552 
11553 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11554   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11555   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11556 
11557   SDLoc DL = getCurSDLoc();
11558   SDValue V = getValue(I.getOperand(0));
11559   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11560 
11561   if (VT.isScalableVector()) {
11562     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11563     return;
11564   }
11565 
11566   // Use VECTOR_SHUFFLE for the fixed-length vector
11567   // to maintain existing behavior.
11568   SmallVector<int, 8> Mask;
11569   unsigned NumElts = VT.getVectorMinNumElements();
11570   for (unsigned i = 0; i != NumElts; ++i)
11571     Mask.push_back(NumElts - 1 - i);
11572 
11573   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11574 }
11575 
11576 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
11577   auto DL = getCurSDLoc();
11578   SDValue InVec = getValue(I.getOperand(0));
11579   EVT OutVT =
11580       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
11581 
11582   unsigned OutNumElts = OutVT.getVectorMinNumElements();
11583 
11584   // ISD Node needs the input vectors split into two equal parts
11585   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11586                            DAG.getVectorIdxConstant(0, DL));
11587   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11588                            DAG.getVectorIdxConstant(OutNumElts, DL));
11589 
11590   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11591   // legalisation and combines.
11592   if (OutVT.isFixedLengthVector()) {
11593     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11594                                         createStrideMask(0, 2, OutNumElts));
11595     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11596                                        createStrideMask(1, 2, OutNumElts));
11597     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
11598     setValue(&I, Res);
11599     return;
11600   }
11601 
11602   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
11603                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
11604   setValue(&I, Res);
11605 }
11606 
11607 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
11608   auto DL = getCurSDLoc();
11609   EVT InVT = getValue(I.getOperand(0)).getValueType();
11610   SDValue InVec0 = getValue(I.getOperand(0));
11611   SDValue InVec1 = getValue(I.getOperand(1));
11612   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11613   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11614 
11615   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11616   // legalisation and combines.
11617   if (OutVT.isFixedLengthVector()) {
11618     unsigned NumElts = InVT.getVectorMinNumElements();
11619     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
11620     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
11621                                       createInterleaveMask(NumElts, 2)));
11622     return;
11623   }
11624 
11625   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
11626                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
11627   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
11628                     Res.getValue(1));
11629   setValue(&I, Res);
11630 }
11631 
11632 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11633   SmallVector<EVT, 4> ValueVTs;
11634   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11635                   ValueVTs);
11636   unsigned NumValues = ValueVTs.size();
11637   if (NumValues == 0) return;
11638 
11639   SmallVector<SDValue, 4> Values(NumValues);
11640   SDValue Op = getValue(I.getOperand(0));
11641 
11642   for (unsigned i = 0; i != NumValues; ++i)
11643     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11644                             SDValue(Op.getNode(), Op.getResNo() + i));
11645 
11646   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11647                            DAG.getVTList(ValueVTs), Values));
11648 }
11649 
11650 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11651   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11652   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11653 
11654   SDLoc DL = getCurSDLoc();
11655   SDValue V1 = getValue(I.getOperand(0));
11656   SDValue V2 = getValue(I.getOperand(1));
11657   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11658 
11659   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11660   if (VT.isScalableVector()) {
11661     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11662     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11663                              DAG.getConstant(Imm, DL, IdxVT)));
11664     return;
11665   }
11666 
11667   unsigned NumElts = VT.getVectorNumElements();
11668 
11669   uint64_t Idx = (NumElts + Imm) % NumElts;
11670 
11671   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11672   SmallVector<int, 8> Mask;
11673   for (unsigned i = 0; i < NumElts; ++i)
11674     Mask.push_back(Idx + i);
11675   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11676 }
11677 
11678 // Consider the following MIR after SelectionDAG, which produces output in
11679 // phyregs in the first case or virtregs in the second case.
11680 //
11681 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
11682 // %5:gr32 = COPY $ebx
11683 // %6:gr32 = COPY $edx
11684 // %1:gr32 = COPY %6:gr32
11685 // %0:gr32 = COPY %5:gr32
11686 //
11687 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
11688 // %1:gr32 = COPY %6:gr32
11689 // %0:gr32 = COPY %5:gr32
11690 //
11691 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
11692 // Given %1, we'd like to return $edx in the first case and %6 in the second.
11693 //
11694 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
11695 // to a single virtreg (such as %0). The remaining outputs monotonically
11696 // increase in virtreg number from there. If a callbr has no outputs, then it
11697 // should not have a corresponding callbr landingpad; in fact, the callbr
11698 // landingpad would not even be able to refer to such a callbr.
11699 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
11700   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
11701   // There is definitely at least one copy.
11702   assert(MI->getOpcode() == TargetOpcode::COPY &&
11703          "start of copy chain MUST be COPY");
11704   Reg = MI->getOperand(1).getReg();
11705   MI = MRI.def_begin(Reg)->getParent();
11706   // There may be an optional second copy.
11707   if (MI->getOpcode() == TargetOpcode::COPY) {
11708     assert(Reg.isVirtual() && "expected COPY of virtual register");
11709     Reg = MI->getOperand(1).getReg();
11710     assert(Reg.isPhysical() && "expected COPY of physical register");
11711     MI = MRI.def_begin(Reg)->getParent();
11712   }
11713   // The start of the chain must be an INLINEASM_BR.
11714   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
11715          "end of copy chain MUST be INLINEASM_BR");
11716   return Reg;
11717 }
11718 
11719 // We must do this walk rather than the simpler
11720 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
11721 // otherwise we will end up with copies of virtregs only valid along direct
11722 // edges.
11723 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
11724   SmallVector<EVT, 8> ResultVTs;
11725   SmallVector<SDValue, 8> ResultValues;
11726   const auto *CBR =
11727       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
11728 
11729   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11730   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
11731   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11732 
11733   unsigned InitialDef = FuncInfo.ValueMap[CBR];
11734   SDValue Chain = DAG.getRoot();
11735 
11736   // Re-parse the asm constraints string.
11737   TargetLowering::AsmOperandInfoVector TargetConstraints =
11738       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
11739   for (auto &T : TargetConstraints) {
11740     SDISelAsmOperandInfo OpInfo(T);
11741     if (OpInfo.Type != InlineAsm::isOutput)
11742       continue;
11743 
11744     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
11745     // individual constraint.
11746     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
11747 
11748     switch (OpInfo.ConstraintType) {
11749     case TargetLowering::C_Register:
11750     case TargetLowering::C_RegisterClass: {
11751       // Fill in OpInfo.AssignedRegs.Regs.
11752       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
11753 
11754       // getRegistersForValue may produce 1 to many registers based on whether
11755       // the OpInfo.ConstraintVT is legal on the target or not.
11756       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
11757         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
11758         if (Register::isPhysicalRegister(OriginalDef))
11759           FuncInfo.MBB->addLiveIn(OriginalDef);
11760         // Update the assigned registers to use the original defs.
11761         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
11762       }
11763 
11764       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
11765           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
11766       ResultValues.push_back(V);
11767       ResultVTs.push_back(OpInfo.ConstraintVT);
11768       break;
11769     }
11770     case TargetLowering::C_Other: {
11771       SDValue Flag;
11772       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
11773                                                   OpInfo, DAG);
11774       ++InitialDef;
11775       ResultValues.push_back(V);
11776       ResultVTs.push_back(OpInfo.ConstraintVT);
11777       break;
11778     }
11779     default:
11780       break;
11781     }
11782   }
11783   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11784                           DAG.getVTList(ResultVTs), ResultValues);
11785   setValue(&I, V);
11786 }
11787