1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 33 #include "llvm/CodeGen/CodeGenCommonISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfo.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/EHPersonalities.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/IntrinsicsAArch64.h" 79 #include "llvm/IR/IntrinsicsWebAssembly.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Metadata.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PatternMatch.h" 85 #include "llvm/IR/Statepoint.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/User.h" 88 #include "llvm/IR/Value.h" 89 #include "llvm/MC/MCContext.h" 90 #include "llvm/Support/AtomicOrdering.h" 91 #include "llvm/Support/Casting.h" 92 #include "llvm/Support/CommandLine.h" 93 #include "llvm/Support/Compiler.h" 94 #include "llvm/Support/Debug.h" 95 #include "llvm/Support/MathExtras.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Target/TargetIntrinsicInfo.h" 98 #include "llvm/Target/TargetMachine.h" 99 #include "llvm/Target/TargetOptions.h" 100 #include "llvm/TargetParser/Triple.h" 101 #include "llvm/Transforms/Utils/Local.h" 102 #include <cstddef> 103 #include <iterator> 104 #include <limits> 105 #include <optional> 106 #include <tuple> 107 108 using namespace llvm; 109 using namespace PatternMatch; 110 using namespace SwitchCG; 111 112 #define DEBUG_TYPE "isel" 113 114 /// LimitFloatPrecision - Generate low-precision inline sequences for 115 /// some float libcalls (6, 8 or 12 bits). 116 static unsigned LimitFloatPrecision; 117 118 static cl::opt<bool> 119 InsertAssertAlign("insert-assert-align", cl::init(true), 120 cl::desc("Insert the experimental `assertalign` node."), 121 cl::ReallyHidden); 122 123 static cl::opt<unsigned, true> 124 LimitFPPrecision("limit-float-precision", 125 cl::desc("Generate low-precision inline sequences " 126 "for some float libcalls"), 127 cl::location(LimitFloatPrecision), cl::Hidden, 128 cl::init(0)); 129 130 static cl::opt<unsigned> SwitchPeelThreshold( 131 "switch-peel-threshold", cl::Hidden, cl::init(66), 132 cl::desc("Set the case probability threshold for peeling the case from a " 133 "switch statement. A value greater than 100 will void this " 134 "optimization")); 135 136 // Limit the width of DAG chains. This is important in general to prevent 137 // DAG-based analysis from blowing up. For example, alias analysis and 138 // load clustering may not complete in reasonable time. It is difficult to 139 // recognize and avoid this situation within each individual analysis, and 140 // future analyses are likely to have the same behavior. Limiting DAG width is 141 // the safe approach and will be especially important with global DAGs. 142 // 143 // MaxParallelChains default is arbitrarily high to avoid affecting 144 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 145 // sequence over this should have been converted to llvm.memcpy by the 146 // frontend. It is easy to induce this behavior with .ll code such as: 147 // %buffer = alloca [4096 x i8] 148 // %data = load [4096 x i8]* %argPtr 149 // store [4096 x i8] %data, [4096 x i8]* %buffer 150 static const unsigned MaxParallelChains = 64; 151 152 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 153 const SDValue *Parts, unsigned NumParts, 154 MVT PartVT, EVT ValueVT, const Value *V, 155 std::optional<CallingConv::ID> CC); 156 157 /// getCopyFromParts - Create a value that contains the specified legal parts 158 /// combined into the value they represent. If the parts combine to a type 159 /// larger than ValueVT then AssertOp can be used to specify whether the extra 160 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 161 /// (ISD::AssertSext). 162 static SDValue 163 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 164 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 165 std::optional<CallingConv::ID> CC = std::nullopt, 166 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 167 // Let the target assemble the parts if it wants to 168 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 169 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 170 PartVT, ValueVT, CC)) 171 return Val; 172 173 if (ValueVT.isVector()) 174 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 175 CC); 176 177 assert(NumParts > 0 && "No parts to assemble!"); 178 SDValue Val = Parts[0]; 179 180 if (NumParts > 1) { 181 // Assemble the value from multiple parts. 182 if (ValueVT.isInteger()) { 183 unsigned PartBits = PartVT.getSizeInBits(); 184 unsigned ValueBits = ValueVT.getSizeInBits(); 185 186 // Assemble the power of 2 part. 187 unsigned RoundParts = llvm::bit_floor(NumParts); 188 unsigned RoundBits = PartBits * RoundParts; 189 EVT RoundVT = RoundBits == ValueBits ? 190 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 191 SDValue Lo, Hi; 192 193 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 194 195 if (RoundParts > 2) { 196 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 197 PartVT, HalfVT, V); 198 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 199 RoundParts / 2, PartVT, HalfVT, V); 200 } else { 201 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 202 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 203 } 204 205 if (DAG.getDataLayout().isBigEndian()) 206 std::swap(Lo, Hi); 207 208 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 209 210 if (RoundParts < NumParts) { 211 // Assemble the trailing non-power-of-2 part. 212 unsigned OddParts = NumParts - RoundParts; 213 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 214 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 215 OddVT, V, CC); 216 217 // Combine the round and odd parts. 218 Lo = Val; 219 if (DAG.getDataLayout().isBigEndian()) 220 std::swap(Lo, Hi); 221 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 222 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 223 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 224 DAG.getConstant(Lo.getValueSizeInBits(), DL, 225 TLI.getShiftAmountTy( 226 TotalVT, DAG.getDataLayout()))); 227 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 228 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 229 } 230 } else if (PartVT.isFloatingPoint()) { 231 // FP split into multiple FP parts (for ppcf128) 232 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 233 "Unexpected split"); 234 SDValue Lo, Hi; 235 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 236 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 237 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 238 std::swap(Lo, Hi); 239 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 240 } else { 241 // FP split into integer parts (soft fp) 242 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 243 !PartVT.isVector() && "Unexpected split"); 244 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 245 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 246 } 247 } 248 249 // There is now one part, held in Val. Correct it to match ValueVT. 250 // PartEVT is the type of the register class that holds the value. 251 // ValueVT is the type of the inline asm operation. 252 EVT PartEVT = Val.getValueType(); 253 254 if (PartEVT == ValueVT) 255 return Val; 256 257 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 258 ValueVT.bitsLT(PartEVT)) { 259 // For an FP value in an integer part, we need to truncate to the right 260 // width first. 261 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 262 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 263 } 264 265 // Handle types that have the same size. 266 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 267 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 268 269 // Handle types with different sizes. 270 if (PartEVT.isInteger() && ValueVT.isInteger()) { 271 if (ValueVT.bitsLT(PartEVT)) { 272 // For a truncate, see if we have any information to 273 // indicate whether the truncated bits will always be 274 // zero or sign-extension. 275 if (AssertOp) 276 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 277 DAG.getValueType(ValueVT)); 278 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 279 } 280 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 281 } 282 283 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 284 // FP_ROUND's are always exact here. 285 if (ValueVT.bitsLT(Val.getValueType())) 286 return DAG.getNode( 287 ISD::FP_ROUND, DL, ValueVT, Val, 288 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 289 290 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 291 } 292 293 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 294 // then truncating. 295 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 296 ValueVT.bitsLT(PartEVT)) { 297 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 298 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 299 } 300 301 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 302 } 303 304 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 305 const Twine &ErrMsg) { 306 const Instruction *I = dyn_cast_or_null<Instruction>(V); 307 if (!V) 308 return Ctx.emitError(ErrMsg); 309 310 const char *AsmError = ", possible invalid constraint for vector type"; 311 if (const CallInst *CI = dyn_cast<CallInst>(I)) 312 if (CI->isInlineAsm()) 313 return Ctx.emitError(I, ErrMsg + AsmError); 314 315 return Ctx.emitError(I, ErrMsg); 316 } 317 318 /// getCopyFromPartsVector - Create a value that contains the specified legal 319 /// parts combined into the value they represent. If the parts combine to a 320 /// type larger than ValueVT then AssertOp can be used to specify whether the 321 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 322 /// ValueVT (ISD::AssertSext). 323 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 324 const SDValue *Parts, unsigned NumParts, 325 MVT PartVT, EVT ValueVT, const Value *V, 326 std::optional<CallingConv::ID> CallConv) { 327 assert(ValueVT.isVector() && "Not a vector value"); 328 assert(NumParts > 0 && "No parts to assemble!"); 329 const bool IsABIRegCopy = CallConv.has_value(); 330 331 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 332 SDValue Val = Parts[0]; 333 334 // Handle a multi-element vector. 335 if (NumParts > 1) { 336 EVT IntermediateVT; 337 MVT RegisterVT; 338 unsigned NumIntermediates; 339 unsigned NumRegs; 340 341 if (IsABIRegCopy) { 342 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 343 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 344 NumIntermediates, RegisterVT); 345 } else { 346 NumRegs = 347 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 348 NumIntermediates, RegisterVT); 349 } 350 351 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 352 NumParts = NumRegs; // Silence a compiler warning. 353 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 354 assert(RegisterVT.getSizeInBits() == 355 Parts[0].getSimpleValueType().getSizeInBits() && 356 "Part type sizes don't match!"); 357 358 // Assemble the parts into intermediate operands. 359 SmallVector<SDValue, 8> Ops(NumIntermediates); 360 if (NumIntermediates == NumParts) { 361 // If the register was not expanded, truncate or copy the value, 362 // as appropriate. 363 for (unsigned i = 0; i != NumParts; ++i) 364 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 365 PartVT, IntermediateVT, V, CallConv); 366 } else if (NumParts > 0) { 367 // If the intermediate type was expanded, build the intermediate 368 // operands from the parts. 369 assert(NumParts % NumIntermediates == 0 && 370 "Must expand into a divisible number of parts!"); 371 unsigned Factor = NumParts / NumIntermediates; 372 for (unsigned i = 0; i != NumIntermediates; ++i) 373 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 374 PartVT, IntermediateVT, V, CallConv); 375 } 376 377 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 378 // intermediate operands. 379 EVT BuiltVectorTy = 380 IntermediateVT.isVector() 381 ? EVT::getVectorVT( 382 *DAG.getContext(), IntermediateVT.getScalarType(), 383 IntermediateVT.getVectorElementCount() * NumParts) 384 : EVT::getVectorVT(*DAG.getContext(), 385 IntermediateVT.getScalarType(), 386 NumIntermediates); 387 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 388 : ISD::BUILD_VECTOR, 389 DL, BuiltVectorTy, Ops); 390 } 391 392 // There is now one part, held in Val. Correct it to match ValueVT. 393 EVT PartEVT = Val.getValueType(); 394 395 if (PartEVT == ValueVT) 396 return Val; 397 398 if (PartEVT.isVector()) { 399 // Vector/Vector bitcast. 400 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 401 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 402 403 // If the parts vector has more elements than the value vector, then we 404 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 405 // Extract the elements we want. 406 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 407 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 408 ValueVT.getVectorElementCount().getKnownMinValue()) && 409 (PartEVT.getVectorElementCount().isScalable() == 410 ValueVT.getVectorElementCount().isScalable()) && 411 "Cannot narrow, it would be a lossy transformation"); 412 PartEVT = 413 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 414 ValueVT.getVectorElementCount()); 415 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 416 DAG.getVectorIdxConstant(0, DL)); 417 if (PartEVT == ValueVT) 418 return Val; 419 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 420 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 421 422 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 423 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 424 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 425 } 426 427 // Promoted vector extract 428 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 429 } 430 431 // Trivial bitcast if the types are the same size and the destination 432 // vector type is legal. 433 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 434 TLI.isTypeLegal(ValueVT)) 435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 436 437 if (ValueVT.getVectorNumElements() != 1) { 438 // Certain ABIs require that vectors are passed as integers. For vectors 439 // are the same size, this is an obvious bitcast. 440 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 441 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 442 } else if (ValueVT.bitsLT(PartEVT)) { 443 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 444 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 445 // Drop the extra bits. 446 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 447 return DAG.getBitcast(ValueVT, Val); 448 } 449 450 diagnosePossiblyInvalidConstraint( 451 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 452 return DAG.getUNDEF(ValueVT); 453 } 454 455 // Handle cases such as i8 -> <1 x i1> 456 EVT ValueSVT = ValueVT.getVectorElementType(); 457 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 458 unsigned ValueSize = ValueSVT.getSizeInBits(); 459 if (ValueSize == PartEVT.getSizeInBits()) { 460 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 461 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 462 // It's possible a scalar floating point type gets softened to integer and 463 // then promoted to a larger integer. If PartEVT is the larger integer 464 // we need to truncate it and then bitcast to the FP type. 465 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 466 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 467 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 468 Val = DAG.getBitcast(ValueSVT, Val); 469 } else { 470 Val = ValueVT.isFloatingPoint() 471 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 472 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 473 } 474 } 475 476 return DAG.getBuildVector(ValueVT, DL, Val); 477 } 478 479 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 480 SDValue Val, SDValue *Parts, unsigned NumParts, 481 MVT PartVT, const Value *V, 482 std::optional<CallingConv::ID> CallConv); 483 484 /// getCopyToParts - Create a series of nodes that contain the specified value 485 /// split into legal parts. If the parts contain more bits than Val, then, for 486 /// integers, ExtendKind can be used to specify how to generate the extra bits. 487 static void 488 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 489 unsigned NumParts, MVT PartVT, const Value *V, 490 std::optional<CallingConv::ID> CallConv = std::nullopt, 491 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 492 // Let the target split the parts if it wants to 493 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 494 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 495 CallConv)) 496 return; 497 EVT ValueVT = Val.getValueType(); 498 499 // Handle the vector case separately. 500 if (ValueVT.isVector()) 501 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 502 CallConv); 503 504 unsigned OrigNumParts = NumParts; 505 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 506 "Copying to an illegal type!"); 507 508 if (NumParts == 0) 509 return; 510 511 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 512 EVT PartEVT = PartVT; 513 if (PartEVT == ValueVT) { 514 assert(NumParts == 1 && "No-op copy with multiple parts!"); 515 Parts[0] = Val; 516 return; 517 } 518 519 unsigned PartBits = PartVT.getSizeInBits(); 520 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 521 // If the parts cover more bits than the value has, promote the value. 522 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 523 assert(NumParts == 1 && "Do not know what to promote to!"); 524 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 525 } else { 526 if (ValueVT.isFloatingPoint()) { 527 // FP values need to be bitcast, then extended if they are being put 528 // into a larger container. 529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 530 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 531 } 532 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 533 ValueVT.isInteger() && 534 "Unknown mismatch!"); 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 536 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 537 if (PartVT == MVT::x86mmx) 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } 540 } else if (PartBits == ValueVT.getSizeInBits()) { 541 // Different types of the same size. 542 assert(NumParts == 1 && PartEVT != ValueVT); 543 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 544 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 545 // If the parts cover less bits than value has, truncate the value. 546 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 547 ValueVT.isInteger() && 548 "Unknown mismatch!"); 549 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 550 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 551 if (PartVT == MVT::x86mmx) 552 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 553 } 554 555 // The value may have changed - recompute ValueVT. 556 ValueVT = Val.getValueType(); 557 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 558 "Failed to tile the value with PartVT!"); 559 560 if (NumParts == 1) { 561 if (PartEVT != ValueVT) { 562 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 563 "scalar-to-vector conversion failed"); 564 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 565 } 566 567 Parts[0] = Val; 568 return; 569 } 570 571 // Expand the value into multiple parts. 572 if (NumParts & (NumParts - 1)) { 573 // The number of parts is not a power of 2. Split off and copy the tail. 574 assert(PartVT.isInteger() && ValueVT.isInteger() && 575 "Do not know what to expand to!"); 576 unsigned RoundParts = llvm::bit_floor(NumParts); 577 unsigned RoundBits = RoundParts * PartBits; 578 unsigned OddParts = NumParts - RoundParts; 579 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 580 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 581 582 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 583 CallConv); 584 585 if (DAG.getDataLayout().isBigEndian()) 586 // The odd parts were reversed by getCopyToParts - unreverse them. 587 std::reverse(Parts + RoundParts, Parts + NumParts); 588 589 NumParts = RoundParts; 590 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 591 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 592 } 593 594 // The number of parts is a power of 2. Repeatedly bisect the value using 595 // EXTRACT_ELEMENT. 596 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 597 EVT::getIntegerVT(*DAG.getContext(), 598 ValueVT.getSizeInBits()), 599 Val); 600 601 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 602 for (unsigned i = 0; i < NumParts; i += StepSize) { 603 unsigned ThisBits = StepSize * PartBits / 2; 604 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 605 SDValue &Part0 = Parts[i]; 606 SDValue &Part1 = Parts[i+StepSize/2]; 607 608 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 609 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 610 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 611 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 612 613 if (ThisBits == PartBits && ThisVT != PartVT) { 614 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 615 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 616 } 617 } 618 } 619 620 if (DAG.getDataLayout().isBigEndian()) 621 std::reverse(Parts, Parts + OrigNumParts); 622 } 623 624 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 625 const SDLoc &DL, EVT PartVT) { 626 if (!PartVT.isVector()) 627 return SDValue(); 628 629 EVT ValueVT = Val.getValueType(); 630 EVT PartEVT = PartVT.getVectorElementType(); 631 EVT ValueEVT = ValueVT.getVectorElementType(); 632 ElementCount PartNumElts = PartVT.getVectorElementCount(); 633 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 634 635 // We only support widening vectors with equivalent element types and 636 // fixed/scalable properties. If a target needs to widen a fixed-length type 637 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 638 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 639 PartNumElts.isScalable() != ValueNumElts.isScalable()) 640 return SDValue(); 641 642 // Have a try for bf16 because some targets share its ABI with fp16. 643 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 644 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 645 "Cannot widen to illegal type"); 646 Val = DAG.getNode(ISD::BITCAST, DL, 647 ValueVT.changeVectorElementType(MVT::f16), Val); 648 } else if (PartEVT != ValueEVT) { 649 return SDValue(); 650 } 651 652 // Widening a scalable vector to another scalable vector is done by inserting 653 // the vector into a larger undef one. 654 if (PartNumElts.isScalable()) 655 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 656 Val, DAG.getVectorIdxConstant(0, DL)); 657 658 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 659 // undef elements. 660 SmallVector<SDValue, 16> Ops; 661 DAG.ExtractVectorElements(Val, Ops); 662 SDValue EltUndef = DAG.getUNDEF(PartEVT); 663 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 664 665 // FIXME: Use CONCAT for 2x -> 4x. 666 return DAG.getBuildVector(PartVT, DL, Ops); 667 } 668 669 /// getCopyToPartsVector - Create a series of nodes that contain the specified 670 /// value split into legal parts. 671 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 672 SDValue Val, SDValue *Parts, unsigned NumParts, 673 MVT PartVT, const Value *V, 674 std::optional<CallingConv::ID> CallConv) { 675 EVT ValueVT = Val.getValueType(); 676 assert(ValueVT.isVector() && "Not a vector"); 677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 678 const bool IsABIRegCopy = CallConv.has_value(); 679 680 if (NumParts == 1) { 681 EVT PartEVT = PartVT; 682 if (PartEVT == ValueVT) { 683 // Nothing to do. 684 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 685 // Bitconvert vector->vector case. 686 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 687 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 688 Val = Widened; 689 } else if (PartVT.isVector() && 690 PartEVT.getVectorElementType().bitsGE( 691 ValueVT.getVectorElementType()) && 692 PartEVT.getVectorElementCount() == 693 ValueVT.getVectorElementCount()) { 694 695 // Promoted vector extract 696 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 697 } else if (PartEVT.isVector() && 698 PartEVT.getVectorElementType() != 699 ValueVT.getVectorElementType() && 700 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 701 TargetLowering::TypeWidenVector) { 702 // Combination of widening and promotion. 703 EVT WidenVT = 704 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 705 PartVT.getVectorElementCount()); 706 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 707 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 708 } else { 709 // Don't extract an integer from a float vector. This can happen if the 710 // FP type gets softened to integer and then promoted. The promotion 711 // prevents it from being picked up by the earlier bitcast case. 712 if (ValueVT.getVectorElementCount().isScalar() && 713 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 714 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 715 DAG.getVectorIdxConstant(0, DL)); 716 } else { 717 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 718 assert(PartVT.getFixedSizeInBits() > ValueSize && 719 "lossy conversion of vector to scalar type"); 720 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 721 Val = DAG.getBitcast(IntermediateType, Val); 722 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 723 } 724 } 725 726 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 727 Parts[0] = Val; 728 return; 729 } 730 731 // Handle a multi-element vector. 732 EVT IntermediateVT; 733 MVT RegisterVT; 734 unsigned NumIntermediates; 735 unsigned NumRegs; 736 if (IsABIRegCopy) { 737 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 738 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 739 RegisterVT); 740 } else { 741 NumRegs = 742 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 743 NumIntermediates, RegisterVT); 744 } 745 746 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 747 NumParts = NumRegs; // Silence a compiler warning. 748 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 749 750 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 751 "Mixing scalable and fixed vectors when copying in parts"); 752 753 std::optional<ElementCount> DestEltCnt; 754 755 if (IntermediateVT.isVector()) 756 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 757 else 758 DestEltCnt = ElementCount::getFixed(NumIntermediates); 759 760 EVT BuiltVectorTy = EVT::getVectorVT( 761 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 762 763 if (ValueVT == BuiltVectorTy) { 764 // Nothing to do. 765 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 766 // Bitconvert vector->vector case. 767 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 768 } else { 769 if (BuiltVectorTy.getVectorElementType().bitsGT( 770 ValueVT.getVectorElementType())) { 771 // Integer promotion. 772 ValueVT = EVT::getVectorVT(*DAG.getContext(), 773 BuiltVectorTy.getVectorElementType(), 774 ValueVT.getVectorElementCount()); 775 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 776 } 777 778 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 779 Val = Widened; 780 } 781 } 782 783 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 784 785 // Split the vector into intermediate operands. 786 SmallVector<SDValue, 8> Ops(NumIntermediates); 787 for (unsigned i = 0; i != NumIntermediates; ++i) { 788 if (IntermediateVT.isVector()) { 789 // This does something sensible for scalable vectors - see the 790 // definition of EXTRACT_SUBVECTOR for further details. 791 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 792 Ops[i] = 793 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 794 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 795 } else { 796 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 797 DAG.getVectorIdxConstant(i, DL)); 798 } 799 } 800 801 // Split the intermediate operands into legal parts. 802 if (NumParts == NumIntermediates) { 803 // If the register was not expanded, promote or copy the value, 804 // as appropriate. 805 for (unsigned i = 0; i != NumParts; ++i) 806 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 807 } else if (NumParts > 0) { 808 // If the intermediate type was expanded, split each the value into 809 // legal parts. 810 assert(NumIntermediates != 0 && "division by zero"); 811 assert(NumParts % NumIntermediates == 0 && 812 "Must expand into a divisible number of parts!"); 813 unsigned Factor = NumParts / NumIntermediates; 814 for (unsigned i = 0; i != NumIntermediates; ++i) 815 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 816 CallConv); 817 } 818 } 819 820 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 821 EVT valuevt, std::optional<CallingConv::ID> CC) 822 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 823 RegCount(1, regs.size()), CallConv(CC) {} 824 825 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 826 const DataLayout &DL, unsigned Reg, Type *Ty, 827 std::optional<CallingConv::ID> CC) { 828 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 829 830 CallConv = CC; 831 832 for (EVT ValueVT : ValueVTs) { 833 unsigned NumRegs = 834 isABIMangled() 835 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 836 : TLI.getNumRegisters(Context, ValueVT); 837 MVT RegisterVT = 838 isABIMangled() 839 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 840 : TLI.getRegisterType(Context, ValueVT); 841 for (unsigned i = 0; i != NumRegs; ++i) 842 Regs.push_back(Reg + i); 843 RegVTs.push_back(RegisterVT); 844 RegCount.push_back(NumRegs); 845 Reg += NumRegs; 846 } 847 } 848 849 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 850 FunctionLoweringInfo &FuncInfo, 851 const SDLoc &dl, SDValue &Chain, 852 SDValue *Glue, const Value *V) const { 853 // A Value with type {} or [0 x %t] needs no registers. 854 if (ValueVTs.empty()) 855 return SDValue(); 856 857 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 858 859 // Assemble the legal parts into the final values. 860 SmallVector<SDValue, 4> Values(ValueVTs.size()); 861 SmallVector<SDValue, 8> Parts; 862 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 863 // Copy the legal parts from the registers. 864 EVT ValueVT = ValueVTs[Value]; 865 unsigned NumRegs = RegCount[Value]; 866 MVT RegisterVT = isABIMangled() 867 ? TLI.getRegisterTypeForCallingConv( 868 *DAG.getContext(), *CallConv, RegVTs[Value]) 869 : RegVTs[Value]; 870 871 Parts.resize(NumRegs); 872 for (unsigned i = 0; i != NumRegs; ++i) { 873 SDValue P; 874 if (!Glue) { 875 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 876 } else { 877 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 878 *Glue = P.getValue(2); 879 } 880 881 Chain = P.getValue(1); 882 Parts[i] = P; 883 884 // If the source register was virtual and if we know something about it, 885 // add an assert node. 886 if (!Register::isVirtualRegister(Regs[Part + i]) || 887 !RegisterVT.isInteger()) 888 continue; 889 890 const FunctionLoweringInfo::LiveOutInfo *LOI = 891 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 892 if (!LOI) 893 continue; 894 895 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 896 unsigned NumSignBits = LOI->NumSignBits; 897 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 898 899 if (NumZeroBits == RegSize) { 900 // The current value is a zero. 901 // Explicitly express that as it would be easier for 902 // optimizations to kick in. 903 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 904 continue; 905 } 906 907 // FIXME: We capture more information than the dag can represent. For 908 // now, just use the tightest assertzext/assertsext possible. 909 bool isSExt; 910 EVT FromVT(MVT::Other); 911 if (NumZeroBits) { 912 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 913 isSExt = false; 914 } else if (NumSignBits > 1) { 915 FromVT = 916 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 917 isSExt = true; 918 } else { 919 continue; 920 } 921 // Add an assertion node. 922 assert(FromVT != MVT::Other); 923 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 924 RegisterVT, P, DAG.getValueType(FromVT)); 925 } 926 927 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 928 RegisterVT, ValueVT, V, CallConv); 929 Part += NumRegs; 930 Parts.clear(); 931 } 932 933 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 934 } 935 936 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 937 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 938 const Value *V, 939 ISD::NodeType PreferredExtendType) const { 940 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 941 ISD::NodeType ExtendKind = PreferredExtendType; 942 943 // Get the list of the values's legal parts. 944 unsigned NumRegs = Regs.size(); 945 SmallVector<SDValue, 8> Parts(NumRegs); 946 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 947 unsigned NumParts = RegCount[Value]; 948 949 MVT RegisterVT = isABIMangled() 950 ? TLI.getRegisterTypeForCallingConv( 951 *DAG.getContext(), *CallConv, RegVTs[Value]) 952 : RegVTs[Value]; 953 954 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 955 ExtendKind = ISD::ZERO_EXTEND; 956 957 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 958 NumParts, RegisterVT, V, CallConv, ExtendKind); 959 Part += NumParts; 960 } 961 962 // Copy the parts into the registers. 963 SmallVector<SDValue, 8> Chains(NumRegs); 964 for (unsigned i = 0; i != NumRegs; ++i) { 965 SDValue Part; 966 if (!Glue) { 967 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 968 } else { 969 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 970 *Glue = Part.getValue(1); 971 } 972 973 Chains[i] = Part.getValue(0); 974 } 975 976 if (NumRegs == 1 || Glue) 977 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 978 // flagged to it. That is the CopyToReg nodes and the user are considered 979 // a single scheduling unit. If we create a TokenFactor and return it as 980 // chain, then the TokenFactor is both a predecessor (operand) of the 981 // user as well as a successor (the TF operands are flagged to the user). 982 // c1, f1 = CopyToReg 983 // c2, f2 = CopyToReg 984 // c3 = TokenFactor c1, c2 985 // ... 986 // = op c3, ..., f2 987 Chain = Chains[NumRegs-1]; 988 else 989 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 990 } 991 992 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 993 unsigned MatchingIdx, const SDLoc &dl, 994 SelectionDAG &DAG, 995 std::vector<SDValue> &Ops) const { 996 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 997 998 InlineAsm::Flag Flag(Code, Regs.size()); 999 if (HasMatching) 1000 Flag.setMatchingOp(MatchingIdx); 1001 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1002 // Put the register class of the virtual registers in the flag word. That 1003 // way, later passes can recompute register class constraints for inline 1004 // assembly as well as normal instructions. 1005 // Don't do this for tied operands that can use the regclass information 1006 // from the def. 1007 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1008 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1009 Flag.setRegClass(RC->getID()); 1010 } 1011 1012 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1013 Ops.push_back(Res); 1014 1015 if (Code == InlineAsm::Kind::Clobber) { 1016 // Clobbers should always have a 1:1 mapping with registers, and may 1017 // reference registers that have illegal (e.g. vector) types. Hence, we 1018 // shouldn't try to apply any sort of splitting logic to them. 1019 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1020 "No 1:1 mapping from clobbers to regs?"); 1021 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1022 (void)SP; 1023 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1024 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1025 assert( 1026 (Regs[I] != SP || 1027 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1028 "If we clobbered the stack pointer, MFI should know about it."); 1029 } 1030 return; 1031 } 1032 1033 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1034 MVT RegisterVT = RegVTs[Value]; 1035 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1036 RegisterVT); 1037 for (unsigned i = 0; i != NumRegs; ++i) { 1038 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1039 unsigned TheReg = Regs[Reg++]; 1040 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1041 } 1042 } 1043 } 1044 1045 SmallVector<std::pair<unsigned, TypeSize>, 4> 1046 RegsForValue::getRegsAndSizes() const { 1047 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1048 unsigned I = 0; 1049 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1050 unsigned RegCount = std::get<0>(CountAndVT); 1051 MVT RegisterVT = std::get<1>(CountAndVT); 1052 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1053 for (unsigned E = I + RegCount; I != E; ++I) 1054 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1055 } 1056 return OutVec; 1057 } 1058 1059 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1060 AssumptionCache *ac, 1061 const TargetLibraryInfo *li) { 1062 AA = aa; 1063 AC = ac; 1064 GFI = gfi; 1065 LibInfo = li; 1066 Context = DAG.getContext(); 1067 LPadToCallSiteMap.clear(); 1068 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1069 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1070 *DAG.getMachineFunction().getFunction().getParent()); 1071 } 1072 1073 void SelectionDAGBuilder::clear() { 1074 NodeMap.clear(); 1075 UnusedArgNodeMap.clear(); 1076 PendingLoads.clear(); 1077 PendingExports.clear(); 1078 PendingConstrainedFP.clear(); 1079 PendingConstrainedFPStrict.clear(); 1080 CurInst = nullptr; 1081 HasTailCall = false; 1082 SDNodeOrder = LowestSDNodeOrder; 1083 StatepointLowering.clear(); 1084 } 1085 1086 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1087 DanglingDebugInfoMap.clear(); 1088 } 1089 1090 // Update DAG root to include dependencies on Pending chains. 1091 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1092 SDValue Root = DAG.getRoot(); 1093 1094 if (Pending.empty()) 1095 return Root; 1096 1097 // Add current root to PendingChains, unless we already indirectly 1098 // depend on it. 1099 if (Root.getOpcode() != ISD::EntryToken) { 1100 unsigned i = 0, e = Pending.size(); 1101 for (; i != e; ++i) { 1102 assert(Pending[i].getNode()->getNumOperands() > 1); 1103 if (Pending[i].getNode()->getOperand(0) == Root) 1104 break; // Don't add the root if we already indirectly depend on it. 1105 } 1106 1107 if (i == e) 1108 Pending.push_back(Root); 1109 } 1110 1111 if (Pending.size() == 1) 1112 Root = Pending[0]; 1113 else 1114 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1115 1116 DAG.setRoot(Root); 1117 Pending.clear(); 1118 return Root; 1119 } 1120 1121 SDValue SelectionDAGBuilder::getMemoryRoot() { 1122 return updateRoot(PendingLoads); 1123 } 1124 1125 SDValue SelectionDAGBuilder::getRoot() { 1126 // Chain up all pending constrained intrinsics together with all 1127 // pending loads, by simply appending them to PendingLoads and 1128 // then calling getMemoryRoot(). 1129 PendingLoads.reserve(PendingLoads.size() + 1130 PendingConstrainedFP.size() + 1131 PendingConstrainedFPStrict.size()); 1132 PendingLoads.append(PendingConstrainedFP.begin(), 1133 PendingConstrainedFP.end()); 1134 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1135 PendingConstrainedFPStrict.end()); 1136 PendingConstrainedFP.clear(); 1137 PendingConstrainedFPStrict.clear(); 1138 return getMemoryRoot(); 1139 } 1140 1141 SDValue SelectionDAGBuilder::getControlRoot() { 1142 // We need to emit pending fpexcept.strict constrained intrinsics, 1143 // so append them to the PendingExports list. 1144 PendingExports.append(PendingConstrainedFPStrict.begin(), 1145 PendingConstrainedFPStrict.end()); 1146 PendingConstrainedFPStrict.clear(); 1147 return updateRoot(PendingExports); 1148 } 1149 1150 void SelectionDAGBuilder::visit(const Instruction &I) { 1151 // Set up outgoing PHI node register values before emitting the terminator. 1152 if (I.isTerminator()) { 1153 HandlePHINodesInSuccessorBlocks(I.getParent()); 1154 } 1155 1156 // Add SDDbgValue nodes for any var locs here. Do so before updating 1157 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1158 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1159 // Add SDDbgValue nodes for any var locs here. Do so before updating 1160 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1161 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1162 It != End; ++It) { 1163 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1164 dropDanglingDebugInfo(Var, It->Expr); 1165 if (It->Values.isKillLocation(It->Expr)) { 1166 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1167 continue; 1168 } 1169 SmallVector<Value *> Values(It->Values.location_ops()); 1170 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1171 It->Values.hasArgList())) 1172 addDanglingDebugInfo(It, SDNodeOrder); 1173 } 1174 } 1175 1176 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1177 if (!isa<DbgInfoIntrinsic>(I)) 1178 ++SDNodeOrder; 1179 1180 CurInst = &I; 1181 1182 // Set inserted listener only if required. 1183 bool NodeInserted = false; 1184 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1185 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1186 if (PCSectionsMD) { 1187 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1188 DAG, [&](SDNode *) { NodeInserted = true; }); 1189 } 1190 1191 visit(I.getOpcode(), I); 1192 1193 if (!I.isTerminator() && !HasTailCall && 1194 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1195 CopyToExportRegsIfNeeded(&I); 1196 1197 // Handle metadata. 1198 if (PCSectionsMD) { 1199 auto It = NodeMap.find(&I); 1200 if (It != NodeMap.end()) { 1201 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1202 } else if (NodeInserted) { 1203 // This should not happen; if it does, don't let it go unnoticed so we can 1204 // fix it. Relevant visit*() function is probably missing a setValue(). 1205 errs() << "warning: loosing !pcsections metadata [" 1206 << I.getModule()->getName() << "]\n"; 1207 LLVM_DEBUG(I.dump()); 1208 assert(false); 1209 } 1210 } 1211 1212 CurInst = nullptr; 1213 } 1214 1215 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1216 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1217 } 1218 1219 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1220 // Note: this doesn't use InstVisitor, because it has to work with 1221 // ConstantExpr's in addition to instructions. 1222 switch (Opcode) { 1223 default: llvm_unreachable("Unknown instruction type encountered!"); 1224 // Build the switch statement using the Instruction.def file. 1225 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1226 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1227 #include "llvm/IR/Instruction.def" 1228 } 1229 } 1230 1231 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1232 DILocalVariable *Variable, 1233 DebugLoc DL, unsigned Order, 1234 RawLocationWrapper Values, 1235 DIExpression *Expression) { 1236 if (!Values.hasArgList()) 1237 return false; 1238 // For variadic dbg_values we will now insert an undef. 1239 // FIXME: We can potentially recover these! 1240 SmallVector<SDDbgOperand, 2> Locs; 1241 for (const Value *V : Values.location_ops()) { 1242 auto *Undef = UndefValue::get(V->getType()); 1243 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1244 } 1245 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1246 /*IsIndirect=*/false, DL, Order, 1247 /*IsVariadic=*/true); 1248 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1249 return true; 1250 } 1251 1252 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc, 1253 unsigned Order) { 1254 if (!handleDanglingVariadicDebugInfo( 1255 DAG, 1256 const_cast<DILocalVariable *>(DAG.getFunctionVarLocs() 1257 ->getVariable(VarLoc->VariableID) 1258 .getVariable()), 1259 VarLoc->DL, Order, VarLoc->Values, VarLoc->Expr)) { 1260 DanglingDebugInfoMap[VarLoc->Values.getVariableLocationOp(0)].emplace_back( 1261 VarLoc, Order); 1262 } 1263 } 1264 1265 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1266 unsigned Order) { 1267 // We treat variadic dbg_values differently at this stage. 1268 if (!handleDanglingVariadicDebugInfo( 1269 DAG, DI->getVariable(), DI->getDebugLoc(), Order, 1270 DI->getWrappedLocation(), DI->getExpression())) { 1271 // TODO: Dangling debug info will eventually either be resolved or produce 1272 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1273 // between the original dbg.value location and its resolved DBG_VALUE, 1274 // which we should ideally fill with an extra Undef DBG_VALUE. 1275 assert(DI->getNumVariableLocationOps() == 1 && 1276 "DbgValueInst without an ArgList should have a single location " 1277 "operand."); 1278 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order); 1279 } 1280 } 1281 1282 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1283 const DIExpression *Expr) { 1284 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1285 DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs()); 1286 DIExpression *DanglingExpr = DDI.getExpression(); 1287 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1288 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI) 1289 << "\n"); 1290 return true; 1291 } 1292 return false; 1293 }; 1294 1295 for (auto &DDIMI : DanglingDebugInfoMap) { 1296 DanglingDebugInfoVector &DDIV = DDIMI.second; 1297 1298 // If debug info is to be dropped, run it through final checks to see 1299 // whether it can be salvaged. 1300 for (auto &DDI : DDIV) 1301 if (isMatchingDbgValue(DDI)) 1302 salvageUnresolvedDbgValue(DDI); 1303 1304 erase_if(DDIV, isMatchingDbgValue); 1305 } 1306 } 1307 1308 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1309 // generate the debug data structures now that we've seen its definition. 1310 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1311 SDValue Val) { 1312 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1313 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1314 return; 1315 1316 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1317 for (auto &DDI : DDIV) { 1318 DebugLoc DL = DDI.getDebugLoc(); 1319 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1320 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1321 DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs()); 1322 DIExpression *Expr = DDI.getExpression(); 1323 assert(Variable->isValidLocationForIntrinsic(DL) && 1324 "Expected inlined-at fields to agree"); 1325 SDDbgValue *SDV; 1326 if (Val.getNode()) { 1327 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1328 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1329 // we couldn't resolve it directly when examining the DbgValue intrinsic 1330 // in the first place we should not be more successful here). Unless we 1331 // have some test case that prove this to be correct we should avoid 1332 // calling EmitFuncArgumentDbgValue here. 1333 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1334 FuncArgumentDbgValueKind::Value, Val)) { 1335 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI) 1336 << "\n"); 1337 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1338 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1339 // inserted after the definition of Val when emitting the instructions 1340 // after ISel. An alternative could be to teach 1341 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1342 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1343 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1344 << ValSDNodeOrder << "\n"); 1345 SDV = getDbgValue(Val, Variable, Expr, DL, 1346 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1347 DAG.AddDbgValue(SDV, false); 1348 } else 1349 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1350 << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n"); 1351 } else { 1352 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n"); 1353 auto Undef = UndefValue::get(V->getType()); 1354 auto SDV = 1355 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1356 DAG.AddDbgValue(SDV, false); 1357 } 1358 } 1359 DDIV.clear(); 1360 } 1361 1362 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1363 // TODO: For the variadic implementation, instead of only checking the fail 1364 // state of `handleDebugValue`, we need know specifically which values were 1365 // invalid, so that we attempt to salvage only those values when processing 1366 // a DIArgList. 1367 Value *V = DDI.getVariableLocationOp(0); 1368 Value *OrigV = V; 1369 DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs()); 1370 DIExpression *Expr = DDI.getExpression(); 1371 DebugLoc DL = DDI.getDebugLoc(); 1372 unsigned SDOrder = DDI.getSDNodeOrder(); 1373 1374 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1375 // that DW_OP_stack_value is desired. 1376 bool StackValue = true; 1377 1378 // Can this Value can be encoded without any further work? 1379 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1380 return; 1381 1382 // Attempt to salvage back through as many instructions as possible. Bail if 1383 // a non-instruction is seen, such as a constant expression or global 1384 // variable. FIXME: Further work could recover those too. 1385 while (isa<Instruction>(V)) { 1386 Instruction &VAsInst = *cast<Instruction>(V); 1387 // Temporary "0", awaiting real implementation. 1388 SmallVector<uint64_t, 16> Ops; 1389 SmallVector<Value *, 4> AdditionalValues; 1390 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1391 AdditionalValues); 1392 // If we cannot salvage any further, and haven't yet found a suitable debug 1393 // expression, bail out. 1394 if (!V) 1395 break; 1396 1397 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1398 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1399 // here for variadic dbg_values, remove that condition. 1400 if (!AdditionalValues.empty()) 1401 break; 1402 1403 // New value and expr now represent this debuginfo. 1404 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1405 1406 // Some kind of simplification occurred: check whether the operand of the 1407 // salvaged debug expression can be encoded in this DAG. 1408 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1409 LLVM_DEBUG( 1410 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1411 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1412 return; 1413 } 1414 } 1415 1416 // This was the final opportunity to salvage this debug information, and it 1417 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1418 // any earlier variable location. 1419 assert(OrigV && "V shouldn't be null"); 1420 auto *Undef = UndefValue::get(OrigV->getType()); 1421 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1422 DAG.AddDbgValue(SDV, false); 1423 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << printDDI(DDI) 1424 << "\n"); 1425 } 1426 1427 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1428 DIExpression *Expr, 1429 DebugLoc DbgLoc, 1430 unsigned Order) { 1431 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1432 DIExpression *NewExpr = 1433 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1434 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1435 /*IsVariadic*/ false); 1436 } 1437 1438 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1439 DILocalVariable *Var, 1440 DIExpression *Expr, DebugLoc DbgLoc, 1441 unsigned Order, bool IsVariadic) { 1442 if (Values.empty()) 1443 return true; 1444 SmallVector<SDDbgOperand> LocationOps; 1445 SmallVector<SDNode *> Dependencies; 1446 for (const Value *V : Values) { 1447 // Constant value. 1448 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1449 isa<ConstantPointerNull>(V)) { 1450 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1451 continue; 1452 } 1453 1454 // Look through IntToPtr constants. 1455 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1456 if (CE->getOpcode() == Instruction::IntToPtr) { 1457 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1458 continue; 1459 } 1460 1461 // If the Value is a frame index, we can create a FrameIndex debug value 1462 // without relying on the DAG at all. 1463 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1464 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1465 if (SI != FuncInfo.StaticAllocaMap.end()) { 1466 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1467 continue; 1468 } 1469 } 1470 1471 // Do not use getValue() in here; we don't want to generate code at 1472 // this point if it hasn't been done yet. 1473 SDValue N = NodeMap[V]; 1474 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1475 N = UnusedArgNodeMap[V]; 1476 if (N.getNode()) { 1477 // Only emit func arg dbg value for non-variadic dbg.values for now. 1478 if (!IsVariadic && 1479 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1480 FuncArgumentDbgValueKind::Value, N)) 1481 return true; 1482 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1483 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1484 // describe stack slot locations. 1485 // 1486 // Consider "int x = 0; int *px = &x;". There are two kinds of 1487 // interesting debug values here after optimization: 1488 // 1489 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1490 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1491 // 1492 // Both describe the direct values of their associated variables. 1493 Dependencies.push_back(N.getNode()); 1494 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1495 continue; 1496 } 1497 LocationOps.emplace_back( 1498 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1499 continue; 1500 } 1501 1502 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1503 // Special rules apply for the first dbg.values of parameter variables in a 1504 // function. Identify them by the fact they reference Argument Values, that 1505 // they're parameters, and they are parameters of the current function. We 1506 // need to let them dangle until they get an SDNode. 1507 bool IsParamOfFunc = 1508 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1509 if (IsParamOfFunc) 1510 return false; 1511 1512 // The value is not used in this block yet (or it would have an SDNode). 1513 // We still want the value to appear for the user if possible -- if it has 1514 // an associated VReg, we can refer to that instead. 1515 auto VMI = FuncInfo.ValueMap.find(V); 1516 if (VMI != FuncInfo.ValueMap.end()) { 1517 unsigned Reg = VMI->second; 1518 // If this is a PHI node, it may be split up into several MI PHI nodes 1519 // (in FunctionLoweringInfo::set). 1520 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1521 V->getType(), std::nullopt); 1522 if (RFV.occupiesMultipleRegs()) { 1523 // FIXME: We could potentially support variadic dbg_values here. 1524 if (IsVariadic) 1525 return false; 1526 unsigned Offset = 0; 1527 unsigned BitsToDescribe = 0; 1528 if (auto VarSize = Var->getSizeInBits()) 1529 BitsToDescribe = *VarSize; 1530 if (auto Fragment = Expr->getFragmentInfo()) 1531 BitsToDescribe = Fragment->SizeInBits; 1532 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1533 // Bail out if all bits are described already. 1534 if (Offset >= BitsToDescribe) 1535 break; 1536 // TODO: handle scalable vectors. 1537 unsigned RegisterSize = RegAndSize.second; 1538 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1539 ? BitsToDescribe - Offset 1540 : RegisterSize; 1541 auto FragmentExpr = DIExpression::createFragmentExpression( 1542 Expr, Offset, FragmentSize); 1543 if (!FragmentExpr) 1544 continue; 1545 SDDbgValue *SDV = DAG.getVRegDbgValue( 1546 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1547 DAG.AddDbgValue(SDV, false); 1548 Offset += RegisterSize; 1549 } 1550 return true; 1551 } 1552 // We can use simple vreg locations for variadic dbg_values as well. 1553 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1554 continue; 1555 } 1556 // We failed to create a SDDbgOperand for V. 1557 return false; 1558 } 1559 1560 // We have created a SDDbgOperand for each Value in Values. 1561 // Should use Order instead of SDNodeOrder? 1562 assert(!LocationOps.empty()); 1563 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1564 /*IsIndirect=*/false, DbgLoc, 1565 SDNodeOrder, IsVariadic); 1566 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1567 return true; 1568 } 1569 1570 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1571 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1572 for (auto &Pair : DanglingDebugInfoMap) 1573 for (auto &DDI : Pair.second) 1574 salvageUnresolvedDbgValue(DDI); 1575 clearDanglingDebugInfo(); 1576 } 1577 1578 /// getCopyFromRegs - If there was virtual register allocated for the value V 1579 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1580 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1581 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1582 SDValue Result; 1583 1584 if (It != FuncInfo.ValueMap.end()) { 1585 Register InReg = It->second; 1586 1587 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1588 DAG.getDataLayout(), InReg, Ty, 1589 std::nullopt); // This is not an ABI copy. 1590 SDValue Chain = DAG.getEntryNode(); 1591 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1592 V); 1593 resolveDanglingDebugInfo(V, Result); 1594 } 1595 1596 return Result; 1597 } 1598 1599 /// getValue - Return an SDValue for the given Value. 1600 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1601 // If we already have an SDValue for this value, use it. It's important 1602 // to do this first, so that we don't create a CopyFromReg if we already 1603 // have a regular SDValue. 1604 SDValue &N = NodeMap[V]; 1605 if (N.getNode()) return N; 1606 1607 // If there's a virtual register allocated and initialized for this 1608 // value, use it. 1609 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1610 return copyFromReg; 1611 1612 // Otherwise create a new SDValue and remember it. 1613 SDValue Val = getValueImpl(V); 1614 NodeMap[V] = Val; 1615 resolveDanglingDebugInfo(V, Val); 1616 return Val; 1617 } 1618 1619 /// getNonRegisterValue - Return an SDValue for the given Value, but 1620 /// don't look in FuncInfo.ValueMap for a virtual register. 1621 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1622 // If we already have an SDValue for this value, use it. 1623 SDValue &N = NodeMap[V]; 1624 if (N.getNode()) { 1625 if (isIntOrFPConstant(N)) { 1626 // Remove the debug location from the node as the node is about to be used 1627 // in a location which may differ from the original debug location. This 1628 // is relevant to Constant and ConstantFP nodes because they can appear 1629 // as constant expressions inside PHI nodes. 1630 N->setDebugLoc(DebugLoc()); 1631 } 1632 return N; 1633 } 1634 1635 // Otherwise create a new SDValue and remember it. 1636 SDValue Val = getValueImpl(V); 1637 NodeMap[V] = Val; 1638 resolveDanglingDebugInfo(V, Val); 1639 return Val; 1640 } 1641 1642 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1643 /// Create an SDValue for the given value. 1644 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1645 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1646 1647 if (const Constant *C = dyn_cast<Constant>(V)) { 1648 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1649 1650 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1651 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1652 1653 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1654 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1655 1656 if (isa<ConstantPointerNull>(C)) { 1657 unsigned AS = V->getType()->getPointerAddressSpace(); 1658 return DAG.getConstant(0, getCurSDLoc(), 1659 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1660 } 1661 1662 if (match(C, m_VScale())) 1663 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1664 1665 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1666 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1667 1668 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1669 return DAG.getUNDEF(VT); 1670 1671 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1672 visit(CE->getOpcode(), *CE); 1673 SDValue N1 = NodeMap[V]; 1674 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1675 return N1; 1676 } 1677 1678 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1679 SmallVector<SDValue, 4> Constants; 1680 for (const Use &U : C->operands()) { 1681 SDNode *Val = getValue(U).getNode(); 1682 // If the operand is an empty aggregate, there are no values. 1683 if (!Val) continue; 1684 // Add each leaf value from the operand to the Constants list 1685 // to form a flattened list of all the values. 1686 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1687 Constants.push_back(SDValue(Val, i)); 1688 } 1689 1690 return DAG.getMergeValues(Constants, getCurSDLoc()); 1691 } 1692 1693 if (const ConstantDataSequential *CDS = 1694 dyn_cast<ConstantDataSequential>(C)) { 1695 SmallVector<SDValue, 4> Ops; 1696 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1697 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1698 // Add each leaf value from the operand to the Constants list 1699 // to form a flattened list of all the values. 1700 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1701 Ops.push_back(SDValue(Val, i)); 1702 } 1703 1704 if (isa<ArrayType>(CDS->getType())) 1705 return DAG.getMergeValues(Ops, getCurSDLoc()); 1706 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1707 } 1708 1709 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1710 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1711 "Unknown struct or array constant!"); 1712 1713 SmallVector<EVT, 4> ValueVTs; 1714 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1715 unsigned NumElts = ValueVTs.size(); 1716 if (NumElts == 0) 1717 return SDValue(); // empty struct 1718 SmallVector<SDValue, 4> Constants(NumElts); 1719 for (unsigned i = 0; i != NumElts; ++i) { 1720 EVT EltVT = ValueVTs[i]; 1721 if (isa<UndefValue>(C)) 1722 Constants[i] = DAG.getUNDEF(EltVT); 1723 else if (EltVT.isFloatingPoint()) 1724 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1725 else 1726 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1727 } 1728 1729 return DAG.getMergeValues(Constants, getCurSDLoc()); 1730 } 1731 1732 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1733 return DAG.getBlockAddress(BA, VT); 1734 1735 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1736 return getValue(Equiv->getGlobalValue()); 1737 1738 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1739 return getValue(NC->getGlobalValue()); 1740 1741 VectorType *VecTy = cast<VectorType>(V->getType()); 1742 1743 // Now that we know the number and type of the elements, get that number of 1744 // elements into the Ops array based on what kind of constant it is. 1745 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1746 SmallVector<SDValue, 16> Ops; 1747 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1748 for (unsigned i = 0; i != NumElements; ++i) 1749 Ops.push_back(getValue(CV->getOperand(i))); 1750 1751 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1752 } 1753 1754 if (isa<ConstantAggregateZero>(C)) { 1755 EVT EltVT = 1756 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1757 1758 SDValue Op; 1759 if (EltVT.isFloatingPoint()) 1760 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1761 else 1762 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1763 1764 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1765 } 1766 1767 llvm_unreachable("Unknown vector constant"); 1768 } 1769 1770 // If this is a static alloca, generate it as the frameindex instead of 1771 // computation. 1772 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1773 DenseMap<const AllocaInst*, int>::iterator SI = 1774 FuncInfo.StaticAllocaMap.find(AI); 1775 if (SI != FuncInfo.StaticAllocaMap.end()) 1776 return DAG.getFrameIndex( 1777 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1778 } 1779 1780 // If this is an instruction which fast-isel has deferred, select it now. 1781 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1782 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1783 1784 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1785 Inst->getType(), std::nullopt); 1786 SDValue Chain = DAG.getEntryNode(); 1787 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1788 } 1789 1790 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1791 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1792 1793 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1794 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1795 1796 llvm_unreachable("Can't get register for value!"); 1797 } 1798 1799 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1800 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1801 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1802 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1803 bool IsSEH = isAsynchronousEHPersonality(Pers); 1804 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1805 if (!IsSEH) 1806 CatchPadMBB->setIsEHScopeEntry(); 1807 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1808 if (IsMSVCCXX || IsCoreCLR) 1809 CatchPadMBB->setIsEHFuncletEntry(); 1810 } 1811 1812 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1813 // Update machine-CFG edge. 1814 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1815 FuncInfo.MBB->addSuccessor(TargetMBB); 1816 TargetMBB->setIsEHCatchretTarget(true); 1817 DAG.getMachineFunction().setHasEHCatchret(true); 1818 1819 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1820 bool IsSEH = isAsynchronousEHPersonality(Pers); 1821 if (IsSEH) { 1822 // If this is not a fall-through branch or optimizations are switched off, 1823 // emit the branch. 1824 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1825 TM.getOptLevel() == CodeGenOptLevel::None) 1826 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1827 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1828 return; 1829 } 1830 1831 // Figure out the funclet membership for the catchret's successor. 1832 // This will be used by the FuncletLayout pass to determine how to order the 1833 // BB's. 1834 // A 'catchret' returns to the outer scope's color. 1835 Value *ParentPad = I.getCatchSwitchParentPad(); 1836 const BasicBlock *SuccessorColor; 1837 if (isa<ConstantTokenNone>(ParentPad)) 1838 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1839 else 1840 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1841 assert(SuccessorColor && "No parent funclet for catchret!"); 1842 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1843 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1844 1845 // Create the terminator node. 1846 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1847 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1848 DAG.getBasicBlock(SuccessorColorMBB)); 1849 DAG.setRoot(Ret); 1850 } 1851 1852 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1853 // Don't emit any special code for the cleanuppad instruction. It just marks 1854 // the start of an EH scope/funclet. 1855 FuncInfo.MBB->setIsEHScopeEntry(); 1856 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1857 if (Pers != EHPersonality::Wasm_CXX) { 1858 FuncInfo.MBB->setIsEHFuncletEntry(); 1859 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1860 } 1861 } 1862 1863 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1864 // not match, it is OK to add only the first unwind destination catchpad to the 1865 // successors, because there will be at least one invoke instruction within the 1866 // catch scope that points to the next unwind destination, if one exists, so 1867 // CFGSort cannot mess up with BB sorting order. 1868 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1869 // call within them, and catchpads only consisting of 'catch (...)' have a 1870 // '__cxa_end_catch' call within them, both of which generate invokes in case 1871 // the next unwind destination exists, i.e., the next unwind destination is not 1872 // the caller.) 1873 // 1874 // Having at most one EH pad successor is also simpler and helps later 1875 // transformations. 1876 // 1877 // For example, 1878 // current: 1879 // invoke void @foo to ... unwind label %catch.dispatch 1880 // catch.dispatch: 1881 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1882 // catch.start: 1883 // ... 1884 // ... in this BB or some other child BB dominated by this BB there will be an 1885 // invoke that points to 'next' BB as an unwind destination 1886 // 1887 // next: ; We don't need to add this to 'current' BB's successor 1888 // ... 1889 static void findWasmUnwindDestinations( 1890 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1891 BranchProbability Prob, 1892 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1893 &UnwindDests) { 1894 while (EHPadBB) { 1895 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1896 if (isa<CleanupPadInst>(Pad)) { 1897 // Stop on cleanup pads. 1898 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1899 UnwindDests.back().first->setIsEHScopeEntry(); 1900 break; 1901 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1902 // Add the catchpad handlers to the possible destinations. We don't 1903 // continue to the unwind destination of the catchswitch for wasm. 1904 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1905 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1906 UnwindDests.back().first->setIsEHScopeEntry(); 1907 } 1908 break; 1909 } else { 1910 continue; 1911 } 1912 } 1913 } 1914 1915 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1916 /// many places it could ultimately go. In the IR, we have a single unwind 1917 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1918 /// This function skips over imaginary basic blocks that hold catchswitch 1919 /// instructions, and finds all the "real" machine 1920 /// basic block destinations. As those destinations may not be successors of 1921 /// EHPadBB, here we also calculate the edge probability to those destinations. 1922 /// The passed-in Prob is the edge probability to EHPadBB. 1923 static void findUnwindDestinations( 1924 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1925 BranchProbability Prob, 1926 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1927 &UnwindDests) { 1928 EHPersonality Personality = 1929 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1930 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1931 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1932 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1933 bool IsSEH = isAsynchronousEHPersonality(Personality); 1934 1935 if (IsWasmCXX) { 1936 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1937 assert(UnwindDests.size() <= 1 && 1938 "There should be at most one unwind destination for wasm"); 1939 return; 1940 } 1941 1942 while (EHPadBB) { 1943 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1944 BasicBlock *NewEHPadBB = nullptr; 1945 if (isa<LandingPadInst>(Pad)) { 1946 // Stop on landingpads. They are not funclets. 1947 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1948 break; 1949 } else if (isa<CleanupPadInst>(Pad)) { 1950 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1951 // personalities. 1952 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1953 UnwindDests.back().first->setIsEHScopeEntry(); 1954 UnwindDests.back().first->setIsEHFuncletEntry(); 1955 break; 1956 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1957 // Add the catchpad handlers to the possible destinations. 1958 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1959 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1960 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1961 if (IsMSVCCXX || IsCoreCLR) 1962 UnwindDests.back().first->setIsEHFuncletEntry(); 1963 if (!IsSEH) 1964 UnwindDests.back().first->setIsEHScopeEntry(); 1965 } 1966 NewEHPadBB = CatchSwitch->getUnwindDest(); 1967 } else { 1968 continue; 1969 } 1970 1971 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1972 if (BPI && NewEHPadBB) 1973 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1974 EHPadBB = NewEHPadBB; 1975 } 1976 } 1977 1978 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1979 // Update successor info. 1980 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1981 auto UnwindDest = I.getUnwindDest(); 1982 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1983 BranchProbability UnwindDestProb = 1984 (BPI && UnwindDest) 1985 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1986 : BranchProbability::getZero(); 1987 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1988 for (auto &UnwindDest : UnwindDests) { 1989 UnwindDest.first->setIsEHPad(); 1990 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1991 } 1992 FuncInfo.MBB->normalizeSuccProbs(); 1993 1994 // Create the terminator node. 1995 SDValue Ret = 1996 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1997 DAG.setRoot(Ret); 1998 } 1999 2000 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2001 report_fatal_error("visitCatchSwitch not yet implemented!"); 2002 } 2003 2004 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2005 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2006 auto &DL = DAG.getDataLayout(); 2007 SDValue Chain = getControlRoot(); 2008 SmallVector<ISD::OutputArg, 8> Outs; 2009 SmallVector<SDValue, 8> OutVals; 2010 2011 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2012 // lower 2013 // 2014 // %val = call <ty> @llvm.experimental.deoptimize() 2015 // ret <ty> %val 2016 // 2017 // differently. 2018 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2019 LowerDeoptimizingReturn(); 2020 return; 2021 } 2022 2023 if (!FuncInfo.CanLowerReturn) { 2024 unsigned DemoteReg = FuncInfo.DemoteRegister; 2025 const Function *F = I.getParent()->getParent(); 2026 2027 // Emit a store of the return value through the virtual register. 2028 // Leave Outs empty so that LowerReturn won't try to load return 2029 // registers the usual way. 2030 SmallVector<EVT, 1> PtrValueVTs; 2031 ComputeValueVTs(TLI, DL, 2032 PointerType::get(F->getContext(), 2033 DAG.getDataLayout().getAllocaAddrSpace()), 2034 PtrValueVTs); 2035 2036 SDValue RetPtr = 2037 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2038 SDValue RetOp = getValue(I.getOperand(0)); 2039 2040 SmallVector<EVT, 4> ValueVTs, MemVTs; 2041 SmallVector<uint64_t, 4> Offsets; 2042 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2043 &Offsets, 0); 2044 unsigned NumValues = ValueVTs.size(); 2045 2046 SmallVector<SDValue, 4> Chains(NumValues); 2047 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2048 for (unsigned i = 0; i != NumValues; ++i) { 2049 // An aggregate return value cannot wrap around the address space, so 2050 // offsets to its parts don't wrap either. 2051 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2052 TypeSize::Fixed(Offsets[i])); 2053 2054 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2055 if (MemVTs[i] != ValueVTs[i]) 2056 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2057 Chains[i] = DAG.getStore( 2058 Chain, getCurSDLoc(), Val, 2059 // FIXME: better loc info would be nice. 2060 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2061 commonAlignment(BaseAlign, Offsets[i])); 2062 } 2063 2064 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2065 MVT::Other, Chains); 2066 } else if (I.getNumOperands() != 0) { 2067 SmallVector<EVT, 4> ValueVTs; 2068 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2069 unsigned NumValues = ValueVTs.size(); 2070 if (NumValues) { 2071 SDValue RetOp = getValue(I.getOperand(0)); 2072 2073 const Function *F = I.getParent()->getParent(); 2074 2075 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2076 I.getOperand(0)->getType(), F->getCallingConv(), 2077 /*IsVarArg*/ false, DL); 2078 2079 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2080 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2081 ExtendKind = ISD::SIGN_EXTEND; 2082 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2083 ExtendKind = ISD::ZERO_EXTEND; 2084 2085 LLVMContext &Context = F->getContext(); 2086 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2087 2088 for (unsigned j = 0; j != NumValues; ++j) { 2089 EVT VT = ValueVTs[j]; 2090 2091 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2092 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2093 2094 CallingConv::ID CC = F->getCallingConv(); 2095 2096 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2097 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2098 SmallVector<SDValue, 4> Parts(NumParts); 2099 getCopyToParts(DAG, getCurSDLoc(), 2100 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2101 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2102 2103 // 'inreg' on function refers to return value 2104 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2105 if (RetInReg) 2106 Flags.setInReg(); 2107 2108 if (I.getOperand(0)->getType()->isPointerTy()) { 2109 Flags.setPointer(); 2110 Flags.setPointerAddrSpace( 2111 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2112 } 2113 2114 if (NeedsRegBlock) { 2115 Flags.setInConsecutiveRegs(); 2116 if (j == NumValues - 1) 2117 Flags.setInConsecutiveRegsLast(); 2118 } 2119 2120 // Propagate extension type if any 2121 if (ExtendKind == ISD::SIGN_EXTEND) 2122 Flags.setSExt(); 2123 else if (ExtendKind == ISD::ZERO_EXTEND) 2124 Flags.setZExt(); 2125 2126 for (unsigned i = 0; i < NumParts; ++i) { 2127 Outs.push_back(ISD::OutputArg(Flags, 2128 Parts[i].getValueType().getSimpleVT(), 2129 VT, /*isfixed=*/true, 0, 0)); 2130 OutVals.push_back(Parts[i]); 2131 } 2132 } 2133 } 2134 } 2135 2136 // Push in swifterror virtual register as the last element of Outs. This makes 2137 // sure swifterror virtual register will be returned in the swifterror 2138 // physical register. 2139 const Function *F = I.getParent()->getParent(); 2140 if (TLI.supportSwiftError() && 2141 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2142 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2143 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2144 Flags.setSwiftError(); 2145 Outs.push_back(ISD::OutputArg( 2146 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2147 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2148 // Create SDNode for the swifterror virtual register. 2149 OutVals.push_back( 2150 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2151 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2152 EVT(TLI.getPointerTy(DL)))); 2153 } 2154 2155 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2156 CallingConv::ID CallConv = 2157 DAG.getMachineFunction().getFunction().getCallingConv(); 2158 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2159 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2160 2161 // Verify that the target's LowerReturn behaved as expected. 2162 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2163 "LowerReturn didn't return a valid chain!"); 2164 2165 // Update the DAG with the new chain value resulting from return lowering. 2166 DAG.setRoot(Chain); 2167 } 2168 2169 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2170 /// created for it, emit nodes to copy the value into the virtual 2171 /// registers. 2172 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2173 // Skip empty types 2174 if (V->getType()->isEmptyTy()) 2175 return; 2176 2177 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2178 if (VMI != FuncInfo.ValueMap.end()) { 2179 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2180 "Unused value assigned virtual registers!"); 2181 CopyValueToVirtualRegister(V, VMI->second); 2182 } 2183 } 2184 2185 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2186 /// the current basic block, add it to ValueMap now so that we'll get a 2187 /// CopyTo/FromReg. 2188 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2189 // No need to export constants. 2190 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2191 2192 // Already exported? 2193 if (FuncInfo.isExportedInst(V)) return; 2194 2195 Register Reg = FuncInfo.InitializeRegForValue(V); 2196 CopyValueToVirtualRegister(V, Reg); 2197 } 2198 2199 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2200 const BasicBlock *FromBB) { 2201 // The operands of the setcc have to be in this block. We don't know 2202 // how to export them from some other block. 2203 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2204 // Can export from current BB. 2205 if (VI->getParent() == FromBB) 2206 return true; 2207 2208 // Is already exported, noop. 2209 return FuncInfo.isExportedInst(V); 2210 } 2211 2212 // If this is an argument, we can export it if the BB is the entry block or 2213 // if it is already exported. 2214 if (isa<Argument>(V)) { 2215 if (FromBB->isEntryBlock()) 2216 return true; 2217 2218 // Otherwise, can only export this if it is already exported. 2219 return FuncInfo.isExportedInst(V); 2220 } 2221 2222 // Otherwise, constants can always be exported. 2223 return true; 2224 } 2225 2226 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2227 BranchProbability 2228 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2229 const MachineBasicBlock *Dst) const { 2230 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2231 const BasicBlock *SrcBB = Src->getBasicBlock(); 2232 const BasicBlock *DstBB = Dst->getBasicBlock(); 2233 if (!BPI) { 2234 // If BPI is not available, set the default probability as 1 / N, where N is 2235 // the number of successors. 2236 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2237 return BranchProbability(1, SuccSize); 2238 } 2239 return BPI->getEdgeProbability(SrcBB, DstBB); 2240 } 2241 2242 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2243 MachineBasicBlock *Dst, 2244 BranchProbability Prob) { 2245 if (!FuncInfo.BPI) 2246 Src->addSuccessorWithoutProb(Dst); 2247 else { 2248 if (Prob.isUnknown()) 2249 Prob = getEdgeProbability(Src, Dst); 2250 Src->addSuccessor(Dst, Prob); 2251 } 2252 } 2253 2254 static bool InBlock(const Value *V, const BasicBlock *BB) { 2255 if (const Instruction *I = dyn_cast<Instruction>(V)) 2256 return I->getParent() == BB; 2257 return true; 2258 } 2259 2260 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2261 /// This function emits a branch and is used at the leaves of an OR or an 2262 /// AND operator tree. 2263 void 2264 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2265 MachineBasicBlock *TBB, 2266 MachineBasicBlock *FBB, 2267 MachineBasicBlock *CurBB, 2268 MachineBasicBlock *SwitchBB, 2269 BranchProbability TProb, 2270 BranchProbability FProb, 2271 bool InvertCond) { 2272 const BasicBlock *BB = CurBB->getBasicBlock(); 2273 2274 // If the leaf of the tree is a comparison, merge the condition into 2275 // the caseblock. 2276 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2277 // The operands of the cmp have to be in this block. We don't know 2278 // how to export them from some other block. If this is the first block 2279 // of the sequence, no exporting is needed. 2280 if (CurBB == SwitchBB || 2281 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2282 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2283 ISD::CondCode Condition; 2284 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2285 ICmpInst::Predicate Pred = 2286 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2287 Condition = getICmpCondCode(Pred); 2288 } else { 2289 const FCmpInst *FC = cast<FCmpInst>(Cond); 2290 FCmpInst::Predicate Pred = 2291 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2292 Condition = getFCmpCondCode(Pred); 2293 if (TM.Options.NoNaNsFPMath) 2294 Condition = getFCmpCodeWithoutNaN(Condition); 2295 } 2296 2297 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2298 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2299 SL->SwitchCases.push_back(CB); 2300 return; 2301 } 2302 } 2303 2304 // Create a CaseBlock record representing this branch. 2305 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2306 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2307 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2308 SL->SwitchCases.push_back(CB); 2309 } 2310 2311 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2312 MachineBasicBlock *TBB, 2313 MachineBasicBlock *FBB, 2314 MachineBasicBlock *CurBB, 2315 MachineBasicBlock *SwitchBB, 2316 Instruction::BinaryOps Opc, 2317 BranchProbability TProb, 2318 BranchProbability FProb, 2319 bool InvertCond) { 2320 // Skip over not part of the tree and remember to invert op and operands at 2321 // next level. 2322 Value *NotCond; 2323 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2324 InBlock(NotCond, CurBB->getBasicBlock())) { 2325 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2326 !InvertCond); 2327 return; 2328 } 2329 2330 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2331 const Value *BOpOp0, *BOpOp1; 2332 // Compute the effective opcode for Cond, taking into account whether it needs 2333 // to be inverted, e.g. 2334 // and (not (or A, B)), C 2335 // gets lowered as 2336 // and (and (not A, not B), C) 2337 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2338 if (BOp) { 2339 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2340 ? Instruction::And 2341 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2342 ? Instruction::Or 2343 : (Instruction::BinaryOps)0); 2344 if (InvertCond) { 2345 if (BOpc == Instruction::And) 2346 BOpc = Instruction::Or; 2347 else if (BOpc == Instruction::Or) 2348 BOpc = Instruction::And; 2349 } 2350 } 2351 2352 // If this node is not part of the or/and tree, emit it as a branch. 2353 // Note that all nodes in the tree should have same opcode. 2354 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2355 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2356 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2357 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2358 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2359 TProb, FProb, InvertCond); 2360 return; 2361 } 2362 2363 // Create TmpBB after CurBB. 2364 MachineFunction::iterator BBI(CurBB); 2365 MachineFunction &MF = DAG.getMachineFunction(); 2366 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2367 CurBB->getParent()->insert(++BBI, TmpBB); 2368 2369 if (Opc == Instruction::Or) { 2370 // Codegen X | Y as: 2371 // BB1: 2372 // jmp_if_X TBB 2373 // jmp TmpBB 2374 // TmpBB: 2375 // jmp_if_Y TBB 2376 // jmp FBB 2377 // 2378 2379 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2380 // The requirement is that 2381 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2382 // = TrueProb for original BB. 2383 // Assuming the original probabilities are A and B, one choice is to set 2384 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2385 // A/(1+B) and 2B/(1+B). This choice assumes that 2386 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2387 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2388 // TmpBB, but the math is more complicated. 2389 2390 auto NewTrueProb = TProb / 2; 2391 auto NewFalseProb = TProb / 2 + FProb; 2392 // Emit the LHS condition. 2393 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2394 NewFalseProb, InvertCond); 2395 2396 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2397 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2398 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2399 // Emit the RHS condition into TmpBB. 2400 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2401 Probs[1], InvertCond); 2402 } else { 2403 assert(Opc == Instruction::And && "Unknown merge op!"); 2404 // Codegen X & Y as: 2405 // BB1: 2406 // jmp_if_X TmpBB 2407 // jmp FBB 2408 // TmpBB: 2409 // jmp_if_Y TBB 2410 // jmp FBB 2411 // 2412 // This requires creation of TmpBB after CurBB. 2413 2414 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2415 // The requirement is that 2416 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2417 // = FalseProb for original BB. 2418 // Assuming the original probabilities are A and B, one choice is to set 2419 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2420 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2421 // TrueProb for BB1 * FalseProb for TmpBB. 2422 2423 auto NewTrueProb = TProb + FProb / 2; 2424 auto NewFalseProb = FProb / 2; 2425 // Emit the LHS condition. 2426 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2427 NewFalseProb, InvertCond); 2428 2429 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2430 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2431 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2432 // Emit the RHS condition into TmpBB. 2433 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2434 Probs[1], InvertCond); 2435 } 2436 } 2437 2438 /// If the set of cases should be emitted as a series of branches, return true. 2439 /// If we should emit this as a bunch of and/or'd together conditions, return 2440 /// false. 2441 bool 2442 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2443 if (Cases.size() != 2) return true; 2444 2445 // If this is two comparisons of the same values or'd or and'd together, they 2446 // will get folded into a single comparison, so don't emit two blocks. 2447 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2448 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2449 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2450 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2451 return false; 2452 } 2453 2454 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2455 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2456 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2457 Cases[0].CC == Cases[1].CC && 2458 isa<Constant>(Cases[0].CmpRHS) && 2459 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2460 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2461 return false; 2462 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2463 return false; 2464 } 2465 2466 return true; 2467 } 2468 2469 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2470 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2471 2472 // Update machine-CFG edges. 2473 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2474 2475 if (I.isUnconditional()) { 2476 // Update machine-CFG edges. 2477 BrMBB->addSuccessor(Succ0MBB); 2478 2479 // If this is not a fall-through branch or optimizations are switched off, 2480 // emit the branch. 2481 if (Succ0MBB != NextBlock(BrMBB) || 2482 TM.getOptLevel() == CodeGenOptLevel::None) { 2483 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2484 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2485 setValue(&I, Br); 2486 DAG.setRoot(Br); 2487 } 2488 2489 return; 2490 } 2491 2492 // If this condition is one of the special cases we handle, do special stuff 2493 // now. 2494 const Value *CondVal = I.getCondition(); 2495 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2496 2497 // If this is a series of conditions that are or'd or and'd together, emit 2498 // this as a sequence of branches instead of setcc's with and/or operations. 2499 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2500 // unpredictable branches, and vector extracts because those jumps are likely 2501 // expensive for any target), this should improve performance. 2502 // For example, instead of something like: 2503 // cmp A, B 2504 // C = seteq 2505 // cmp D, E 2506 // F = setle 2507 // or C, F 2508 // jnz foo 2509 // Emit: 2510 // cmp A, B 2511 // je foo 2512 // cmp D, E 2513 // jle foo 2514 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2515 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2516 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2517 Value *Vec; 2518 const Value *BOp0, *BOp1; 2519 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2520 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2521 Opcode = Instruction::And; 2522 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2523 Opcode = Instruction::Or; 2524 2525 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2526 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2527 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2528 getEdgeProbability(BrMBB, Succ0MBB), 2529 getEdgeProbability(BrMBB, Succ1MBB), 2530 /*InvertCond=*/false); 2531 // If the compares in later blocks need to use values not currently 2532 // exported from this block, export them now. This block should always 2533 // be the first entry. 2534 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2535 2536 // Allow some cases to be rejected. 2537 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2538 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2539 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2540 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2541 } 2542 2543 // Emit the branch for this block. 2544 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2545 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2546 return; 2547 } 2548 2549 // Okay, we decided not to do this, remove any inserted MBB's and clear 2550 // SwitchCases. 2551 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2552 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2553 2554 SL->SwitchCases.clear(); 2555 } 2556 } 2557 2558 // Create a CaseBlock record representing this branch. 2559 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2560 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2561 2562 // Use visitSwitchCase to actually insert the fast branch sequence for this 2563 // cond branch. 2564 visitSwitchCase(CB, BrMBB); 2565 } 2566 2567 /// visitSwitchCase - Emits the necessary code to represent a single node in 2568 /// the binary search tree resulting from lowering a switch instruction. 2569 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2570 MachineBasicBlock *SwitchBB) { 2571 SDValue Cond; 2572 SDValue CondLHS = getValue(CB.CmpLHS); 2573 SDLoc dl = CB.DL; 2574 2575 if (CB.CC == ISD::SETTRUE) { 2576 // Branch or fall through to TrueBB. 2577 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2578 SwitchBB->normalizeSuccProbs(); 2579 if (CB.TrueBB != NextBlock(SwitchBB)) { 2580 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2581 DAG.getBasicBlock(CB.TrueBB))); 2582 } 2583 return; 2584 } 2585 2586 auto &TLI = DAG.getTargetLoweringInfo(); 2587 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2588 2589 // Build the setcc now. 2590 if (!CB.CmpMHS) { 2591 // Fold "(X == true)" to X and "(X == false)" to !X to 2592 // handle common cases produced by branch lowering. 2593 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2594 CB.CC == ISD::SETEQ) 2595 Cond = CondLHS; 2596 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2597 CB.CC == ISD::SETEQ) { 2598 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2599 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2600 } else { 2601 SDValue CondRHS = getValue(CB.CmpRHS); 2602 2603 // If a pointer's DAG type is larger than its memory type then the DAG 2604 // values are zero-extended. This breaks signed comparisons so truncate 2605 // back to the underlying type before doing the compare. 2606 if (CondLHS.getValueType() != MemVT) { 2607 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2608 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2609 } 2610 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2611 } 2612 } else { 2613 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2614 2615 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2616 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2617 2618 SDValue CmpOp = getValue(CB.CmpMHS); 2619 EVT VT = CmpOp.getValueType(); 2620 2621 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2622 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2623 ISD::SETLE); 2624 } else { 2625 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2626 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2627 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2628 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2629 } 2630 } 2631 2632 // Update successor info 2633 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2634 // TrueBB and FalseBB are always different unless the incoming IR is 2635 // degenerate. This only happens when running llc on weird IR. 2636 if (CB.TrueBB != CB.FalseBB) 2637 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2638 SwitchBB->normalizeSuccProbs(); 2639 2640 // If the lhs block is the next block, invert the condition so that we can 2641 // fall through to the lhs instead of the rhs block. 2642 if (CB.TrueBB == NextBlock(SwitchBB)) { 2643 std::swap(CB.TrueBB, CB.FalseBB); 2644 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2645 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2646 } 2647 2648 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2649 MVT::Other, getControlRoot(), Cond, 2650 DAG.getBasicBlock(CB.TrueBB)); 2651 2652 setValue(CurInst, BrCond); 2653 2654 // Insert the false branch. Do this even if it's a fall through branch, 2655 // this makes it easier to do DAG optimizations which require inverting 2656 // the branch condition. 2657 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2658 DAG.getBasicBlock(CB.FalseBB)); 2659 2660 DAG.setRoot(BrCond); 2661 } 2662 2663 /// visitJumpTable - Emit JumpTable node in the current MBB 2664 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2665 // Emit the code for the jump table 2666 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2667 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2668 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2669 JT.Reg, PTy); 2670 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2671 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2672 MVT::Other, Index.getValue(1), 2673 Table, Index); 2674 DAG.setRoot(BrJumpTable); 2675 } 2676 2677 /// visitJumpTableHeader - This function emits necessary code to produce index 2678 /// in the JumpTable from switch case. 2679 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2680 JumpTableHeader &JTH, 2681 MachineBasicBlock *SwitchBB) { 2682 SDLoc dl = getCurSDLoc(); 2683 2684 // Subtract the lowest switch case value from the value being switched on. 2685 SDValue SwitchOp = getValue(JTH.SValue); 2686 EVT VT = SwitchOp.getValueType(); 2687 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2688 DAG.getConstant(JTH.First, dl, VT)); 2689 2690 // The SDNode we just created, which holds the value being switched on minus 2691 // the smallest case value, needs to be copied to a virtual register so it 2692 // can be used as an index into the jump table in a subsequent basic block. 2693 // This value may be smaller or larger than the target's pointer type, and 2694 // therefore require extension or truncating. 2695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2696 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2697 2698 unsigned JumpTableReg = 2699 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2700 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2701 JumpTableReg, SwitchOp); 2702 JT.Reg = JumpTableReg; 2703 2704 if (!JTH.FallthroughUnreachable) { 2705 // Emit the range check for the jump table, and branch to the default block 2706 // for the switch statement if the value being switched on exceeds the 2707 // largest case in the switch. 2708 SDValue CMP = DAG.getSetCC( 2709 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2710 Sub.getValueType()), 2711 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2712 2713 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2714 MVT::Other, CopyTo, CMP, 2715 DAG.getBasicBlock(JT.Default)); 2716 2717 // Avoid emitting unnecessary branches to the next block. 2718 if (JT.MBB != NextBlock(SwitchBB)) 2719 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2720 DAG.getBasicBlock(JT.MBB)); 2721 2722 DAG.setRoot(BrCond); 2723 } else { 2724 // Avoid emitting unnecessary branches to the next block. 2725 if (JT.MBB != NextBlock(SwitchBB)) 2726 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2727 DAG.getBasicBlock(JT.MBB))); 2728 else 2729 DAG.setRoot(CopyTo); 2730 } 2731 } 2732 2733 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2734 /// variable if there exists one. 2735 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2736 SDValue &Chain) { 2737 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2738 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2739 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2740 MachineFunction &MF = DAG.getMachineFunction(); 2741 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2742 MachineSDNode *Node = 2743 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2744 if (Global) { 2745 MachinePointerInfo MPInfo(Global); 2746 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2747 MachineMemOperand::MODereferenceable; 2748 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2749 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2750 DAG.setNodeMemRefs(Node, {MemRef}); 2751 } 2752 if (PtrTy != PtrMemTy) 2753 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2754 return SDValue(Node, 0); 2755 } 2756 2757 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2758 /// tail spliced into a stack protector check success bb. 2759 /// 2760 /// For a high level explanation of how this fits into the stack protector 2761 /// generation see the comment on the declaration of class 2762 /// StackProtectorDescriptor. 2763 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2764 MachineBasicBlock *ParentBB) { 2765 2766 // First create the loads to the guard/stack slot for the comparison. 2767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2768 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2769 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2770 2771 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2772 int FI = MFI.getStackProtectorIndex(); 2773 2774 SDValue Guard; 2775 SDLoc dl = getCurSDLoc(); 2776 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2777 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2778 Align Align = 2779 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 2780 2781 // Generate code to load the content of the guard slot. 2782 SDValue GuardVal = DAG.getLoad( 2783 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2784 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2785 MachineMemOperand::MOVolatile); 2786 2787 if (TLI.useStackGuardXorFP()) 2788 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2789 2790 // Retrieve guard check function, nullptr if instrumentation is inlined. 2791 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2792 // The target provides a guard check function to validate the guard value. 2793 // Generate a call to that function with the content of the guard slot as 2794 // argument. 2795 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2796 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2797 2798 TargetLowering::ArgListTy Args; 2799 TargetLowering::ArgListEntry Entry; 2800 Entry.Node = GuardVal; 2801 Entry.Ty = FnTy->getParamType(0); 2802 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2803 Entry.IsInReg = true; 2804 Args.push_back(Entry); 2805 2806 TargetLowering::CallLoweringInfo CLI(DAG); 2807 CLI.setDebugLoc(getCurSDLoc()) 2808 .setChain(DAG.getEntryNode()) 2809 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2810 getValue(GuardCheckFn), std::move(Args)); 2811 2812 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2813 DAG.setRoot(Result.second); 2814 return; 2815 } 2816 2817 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2818 // Otherwise, emit a volatile load to retrieve the stack guard value. 2819 SDValue Chain = DAG.getEntryNode(); 2820 if (TLI.useLoadStackGuardNode()) { 2821 Guard = getLoadStackGuard(DAG, dl, Chain); 2822 } else { 2823 const Value *IRGuard = TLI.getSDagStackGuard(M); 2824 SDValue GuardPtr = getValue(IRGuard); 2825 2826 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2827 MachinePointerInfo(IRGuard, 0), Align, 2828 MachineMemOperand::MOVolatile); 2829 } 2830 2831 // Perform the comparison via a getsetcc. 2832 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2833 *DAG.getContext(), 2834 Guard.getValueType()), 2835 Guard, GuardVal, ISD::SETNE); 2836 2837 // If the guard/stackslot do not equal, branch to failure MBB. 2838 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2839 MVT::Other, GuardVal.getOperand(0), 2840 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2841 // Otherwise branch to success MBB. 2842 SDValue Br = DAG.getNode(ISD::BR, dl, 2843 MVT::Other, BrCond, 2844 DAG.getBasicBlock(SPD.getSuccessMBB())); 2845 2846 DAG.setRoot(Br); 2847 } 2848 2849 /// Codegen the failure basic block for a stack protector check. 2850 /// 2851 /// A failure stack protector machine basic block consists simply of a call to 2852 /// __stack_chk_fail(). 2853 /// 2854 /// For a high level explanation of how this fits into the stack protector 2855 /// generation see the comment on the declaration of class 2856 /// StackProtectorDescriptor. 2857 void 2858 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2859 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2860 TargetLowering::MakeLibCallOptions CallOptions; 2861 CallOptions.setDiscardResult(true); 2862 SDValue Chain = 2863 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2864 std::nullopt, CallOptions, getCurSDLoc()) 2865 .second; 2866 // On PS4/PS5, the "return address" must still be within the calling 2867 // function, even if it's at the very end, so emit an explicit TRAP here. 2868 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2869 if (TM.getTargetTriple().isPS()) 2870 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2871 // WebAssembly needs an unreachable instruction after a non-returning call, 2872 // because the function return type can be different from __stack_chk_fail's 2873 // return type (void). 2874 if (TM.getTargetTriple().isWasm()) 2875 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2876 2877 DAG.setRoot(Chain); 2878 } 2879 2880 /// visitBitTestHeader - This function emits necessary code to produce value 2881 /// suitable for "bit tests" 2882 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2883 MachineBasicBlock *SwitchBB) { 2884 SDLoc dl = getCurSDLoc(); 2885 2886 // Subtract the minimum value. 2887 SDValue SwitchOp = getValue(B.SValue); 2888 EVT VT = SwitchOp.getValueType(); 2889 SDValue RangeSub = 2890 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2891 2892 // Determine the type of the test operands. 2893 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2894 bool UsePtrType = false; 2895 if (!TLI.isTypeLegal(VT)) { 2896 UsePtrType = true; 2897 } else { 2898 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2899 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2900 // Switch table case range are encoded into series of masks. 2901 // Just use pointer type, it's guaranteed to fit. 2902 UsePtrType = true; 2903 break; 2904 } 2905 } 2906 SDValue Sub = RangeSub; 2907 if (UsePtrType) { 2908 VT = TLI.getPointerTy(DAG.getDataLayout()); 2909 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2910 } 2911 2912 B.RegVT = VT.getSimpleVT(); 2913 B.Reg = FuncInfo.CreateReg(B.RegVT); 2914 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2915 2916 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2917 2918 if (!B.FallthroughUnreachable) 2919 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2920 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2921 SwitchBB->normalizeSuccProbs(); 2922 2923 SDValue Root = CopyTo; 2924 if (!B.FallthroughUnreachable) { 2925 // Conditional branch to the default block. 2926 SDValue RangeCmp = DAG.getSetCC(dl, 2927 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2928 RangeSub.getValueType()), 2929 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2930 ISD::SETUGT); 2931 2932 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2933 DAG.getBasicBlock(B.Default)); 2934 } 2935 2936 // Avoid emitting unnecessary branches to the next block. 2937 if (MBB != NextBlock(SwitchBB)) 2938 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2939 2940 DAG.setRoot(Root); 2941 } 2942 2943 /// visitBitTestCase - this function produces one "bit test" 2944 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2945 MachineBasicBlock* NextMBB, 2946 BranchProbability BranchProbToNext, 2947 unsigned Reg, 2948 BitTestCase &B, 2949 MachineBasicBlock *SwitchBB) { 2950 SDLoc dl = getCurSDLoc(); 2951 MVT VT = BB.RegVT; 2952 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2953 SDValue Cmp; 2954 unsigned PopCount = llvm::popcount(B.Mask); 2955 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2956 if (PopCount == 1) { 2957 // Testing for a single bit; just compare the shift count with what it 2958 // would need to be to shift a 1 bit in that position. 2959 Cmp = DAG.getSetCC( 2960 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2961 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 2962 ISD::SETEQ); 2963 } else if (PopCount == BB.Range) { 2964 // There is only one zero bit in the range, test for it directly. 2965 Cmp = DAG.getSetCC( 2966 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2967 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 2968 } else { 2969 // Make desired shift 2970 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2971 DAG.getConstant(1, dl, VT), ShiftOp); 2972 2973 // Emit bit tests and jumps 2974 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2975 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2976 Cmp = DAG.getSetCC( 2977 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2978 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2979 } 2980 2981 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2982 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2983 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2984 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2985 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2986 // one as they are relative probabilities (and thus work more like weights), 2987 // and hence we need to normalize them to let the sum of them become one. 2988 SwitchBB->normalizeSuccProbs(); 2989 2990 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2991 MVT::Other, getControlRoot(), 2992 Cmp, DAG.getBasicBlock(B.TargetBB)); 2993 2994 // Avoid emitting unnecessary branches to the next block. 2995 if (NextMBB != NextBlock(SwitchBB)) 2996 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2997 DAG.getBasicBlock(NextMBB)); 2998 2999 DAG.setRoot(BrAnd); 3000 } 3001 3002 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3003 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3004 3005 // Retrieve successors. Look through artificial IR level blocks like 3006 // catchswitch for successors. 3007 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3008 const BasicBlock *EHPadBB = I.getSuccessor(1); 3009 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3010 3011 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3012 // have to do anything here to lower funclet bundles. 3013 assert(!I.hasOperandBundlesOtherThan( 3014 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3015 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3016 LLVMContext::OB_cfguardtarget, 3017 LLVMContext::OB_clang_arc_attachedcall}) && 3018 "Cannot lower invokes with arbitrary operand bundles yet!"); 3019 3020 const Value *Callee(I.getCalledOperand()); 3021 const Function *Fn = dyn_cast<Function>(Callee); 3022 if (isa<InlineAsm>(Callee)) 3023 visitInlineAsm(I, EHPadBB); 3024 else if (Fn && Fn->isIntrinsic()) { 3025 switch (Fn->getIntrinsicID()) { 3026 default: 3027 llvm_unreachable("Cannot invoke this intrinsic"); 3028 case Intrinsic::donothing: 3029 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3030 case Intrinsic::seh_try_begin: 3031 case Intrinsic::seh_scope_begin: 3032 case Intrinsic::seh_try_end: 3033 case Intrinsic::seh_scope_end: 3034 if (EHPadMBB) 3035 // a block referenced by EH table 3036 // so dtor-funclet not removed by opts 3037 EHPadMBB->setMachineBlockAddressTaken(); 3038 break; 3039 case Intrinsic::experimental_patchpoint_void: 3040 case Intrinsic::experimental_patchpoint_i64: 3041 visitPatchpoint(I, EHPadBB); 3042 break; 3043 case Intrinsic::experimental_gc_statepoint: 3044 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3045 break; 3046 case Intrinsic::wasm_rethrow: { 3047 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3048 // special because it can be invoked, so we manually lower it to a DAG 3049 // node here. 3050 SmallVector<SDValue, 8> Ops; 3051 Ops.push_back(getRoot()); // inchain 3052 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3053 Ops.push_back( 3054 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3055 TLI.getPointerTy(DAG.getDataLayout()))); 3056 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3057 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3058 break; 3059 } 3060 } 3061 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 3062 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3063 // Eventually we will support lowering the @llvm.experimental.deoptimize 3064 // intrinsic, and right now there are no plans to support other intrinsics 3065 // with deopt state. 3066 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3067 } else { 3068 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3069 } 3070 3071 // If the value of the invoke is used outside of its defining block, make it 3072 // available as a virtual register. 3073 // We already took care of the exported value for the statepoint instruction 3074 // during call to the LowerStatepoint. 3075 if (!isa<GCStatepointInst>(I)) { 3076 CopyToExportRegsIfNeeded(&I); 3077 } 3078 3079 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3080 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3081 BranchProbability EHPadBBProb = 3082 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3083 : BranchProbability::getZero(); 3084 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3085 3086 // Update successor info. 3087 addSuccessorWithProb(InvokeMBB, Return); 3088 for (auto &UnwindDest : UnwindDests) { 3089 UnwindDest.first->setIsEHPad(); 3090 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3091 } 3092 InvokeMBB->normalizeSuccProbs(); 3093 3094 // Drop into normal successor. 3095 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3096 DAG.getBasicBlock(Return))); 3097 } 3098 3099 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3100 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3101 3102 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3103 // have to do anything here to lower funclet bundles. 3104 assert(!I.hasOperandBundlesOtherThan( 3105 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3106 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3107 3108 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3109 visitInlineAsm(I); 3110 CopyToExportRegsIfNeeded(&I); 3111 3112 // Retrieve successors. 3113 SmallPtrSet<BasicBlock *, 8> Dests; 3114 Dests.insert(I.getDefaultDest()); 3115 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3116 3117 // Update successor info. 3118 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3119 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3120 BasicBlock *Dest = I.getIndirectDest(i); 3121 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3122 Target->setIsInlineAsmBrIndirectTarget(); 3123 Target->setMachineBlockAddressTaken(); 3124 Target->setLabelMustBeEmitted(); 3125 // Don't add duplicate machine successors. 3126 if (Dests.insert(Dest).second) 3127 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3128 } 3129 CallBrMBB->normalizeSuccProbs(); 3130 3131 // Drop into default successor. 3132 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3133 MVT::Other, getControlRoot(), 3134 DAG.getBasicBlock(Return))); 3135 } 3136 3137 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3138 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3139 } 3140 3141 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3142 assert(FuncInfo.MBB->isEHPad() && 3143 "Call to landingpad not in landing pad!"); 3144 3145 // If there aren't registers to copy the values into (e.g., during SjLj 3146 // exceptions), then don't bother to create these DAG nodes. 3147 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3148 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3149 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3150 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3151 return; 3152 3153 // If landingpad's return type is token type, we don't create DAG nodes 3154 // for its exception pointer and selector value. The extraction of exception 3155 // pointer or selector value from token type landingpads is not currently 3156 // supported. 3157 if (LP.getType()->isTokenTy()) 3158 return; 3159 3160 SmallVector<EVT, 2> ValueVTs; 3161 SDLoc dl = getCurSDLoc(); 3162 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3163 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3164 3165 // Get the two live-in registers as SDValues. The physregs have already been 3166 // copied into virtual registers. 3167 SDValue Ops[2]; 3168 if (FuncInfo.ExceptionPointerVirtReg) { 3169 Ops[0] = DAG.getZExtOrTrunc( 3170 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3171 FuncInfo.ExceptionPointerVirtReg, 3172 TLI.getPointerTy(DAG.getDataLayout())), 3173 dl, ValueVTs[0]); 3174 } else { 3175 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3176 } 3177 Ops[1] = DAG.getZExtOrTrunc( 3178 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3179 FuncInfo.ExceptionSelectorVirtReg, 3180 TLI.getPointerTy(DAG.getDataLayout())), 3181 dl, ValueVTs[1]); 3182 3183 // Merge into one. 3184 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3185 DAG.getVTList(ValueVTs), Ops); 3186 setValue(&LP, Res); 3187 } 3188 3189 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3190 MachineBasicBlock *Last) { 3191 // Update JTCases. 3192 for (JumpTableBlock &JTB : SL->JTCases) 3193 if (JTB.first.HeaderBB == First) 3194 JTB.first.HeaderBB = Last; 3195 3196 // Update BitTestCases. 3197 for (BitTestBlock &BTB : SL->BitTestCases) 3198 if (BTB.Parent == First) 3199 BTB.Parent = Last; 3200 } 3201 3202 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3203 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3204 3205 // Update machine-CFG edges with unique successors. 3206 SmallSet<BasicBlock*, 32> Done; 3207 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3208 BasicBlock *BB = I.getSuccessor(i); 3209 bool Inserted = Done.insert(BB).second; 3210 if (!Inserted) 3211 continue; 3212 3213 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3214 addSuccessorWithProb(IndirectBrMBB, Succ); 3215 } 3216 IndirectBrMBB->normalizeSuccProbs(); 3217 3218 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3219 MVT::Other, getControlRoot(), 3220 getValue(I.getAddress()))); 3221 } 3222 3223 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3224 if (!DAG.getTarget().Options.TrapUnreachable) 3225 return; 3226 3227 // We may be able to ignore unreachable behind a noreturn call. 3228 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3229 const BasicBlock &BB = *I.getParent(); 3230 if (&I != &BB.front()) { 3231 BasicBlock::const_iterator PredI = 3232 std::prev(BasicBlock::const_iterator(&I)); 3233 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3234 if (Call->doesNotReturn()) 3235 return; 3236 } 3237 } 3238 } 3239 3240 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3241 } 3242 3243 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3244 SDNodeFlags Flags; 3245 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3246 Flags.copyFMF(*FPOp); 3247 3248 SDValue Op = getValue(I.getOperand(0)); 3249 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3250 Op, Flags); 3251 setValue(&I, UnNodeValue); 3252 } 3253 3254 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3255 SDNodeFlags Flags; 3256 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3257 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3258 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3259 } 3260 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3261 Flags.setExact(ExactOp->isExact()); 3262 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3263 Flags.copyFMF(*FPOp); 3264 3265 SDValue Op1 = getValue(I.getOperand(0)); 3266 SDValue Op2 = getValue(I.getOperand(1)); 3267 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3268 Op1, Op2, Flags); 3269 setValue(&I, BinNodeValue); 3270 } 3271 3272 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3273 SDValue Op1 = getValue(I.getOperand(0)); 3274 SDValue Op2 = getValue(I.getOperand(1)); 3275 3276 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3277 Op1.getValueType(), DAG.getDataLayout()); 3278 3279 // Coerce the shift amount to the right type if we can. This exposes the 3280 // truncate or zext to optimization early. 3281 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3282 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3283 "Unexpected shift type"); 3284 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3285 } 3286 3287 bool nuw = false; 3288 bool nsw = false; 3289 bool exact = false; 3290 3291 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3292 3293 if (const OverflowingBinaryOperator *OFBinOp = 3294 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3295 nuw = OFBinOp->hasNoUnsignedWrap(); 3296 nsw = OFBinOp->hasNoSignedWrap(); 3297 } 3298 if (const PossiblyExactOperator *ExactOp = 3299 dyn_cast<const PossiblyExactOperator>(&I)) 3300 exact = ExactOp->isExact(); 3301 } 3302 SDNodeFlags Flags; 3303 Flags.setExact(exact); 3304 Flags.setNoSignedWrap(nsw); 3305 Flags.setNoUnsignedWrap(nuw); 3306 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3307 Flags); 3308 setValue(&I, Res); 3309 } 3310 3311 void SelectionDAGBuilder::visitSDiv(const User &I) { 3312 SDValue Op1 = getValue(I.getOperand(0)); 3313 SDValue Op2 = getValue(I.getOperand(1)); 3314 3315 SDNodeFlags Flags; 3316 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3317 cast<PossiblyExactOperator>(&I)->isExact()); 3318 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3319 Op2, Flags)); 3320 } 3321 3322 void SelectionDAGBuilder::visitICmp(const User &I) { 3323 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3324 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3325 predicate = IC->getPredicate(); 3326 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3327 predicate = ICmpInst::Predicate(IC->getPredicate()); 3328 SDValue Op1 = getValue(I.getOperand(0)); 3329 SDValue Op2 = getValue(I.getOperand(1)); 3330 ISD::CondCode Opcode = getICmpCondCode(predicate); 3331 3332 auto &TLI = DAG.getTargetLoweringInfo(); 3333 EVT MemVT = 3334 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3335 3336 // If a pointer's DAG type is larger than its memory type then the DAG values 3337 // are zero-extended. This breaks signed comparisons so truncate back to the 3338 // underlying type before doing the compare. 3339 if (Op1.getValueType() != MemVT) { 3340 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3341 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3342 } 3343 3344 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3345 I.getType()); 3346 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3347 } 3348 3349 void SelectionDAGBuilder::visitFCmp(const User &I) { 3350 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3351 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3352 predicate = FC->getPredicate(); 3353 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3354 predicate = FCmpInst::Predicate(FC->getPredicate()); 3355 SDValue Op1 = getValue(I.getOperand(0)); 3356 SDValue Op2 = getValue(I.getOperand(1)); 3357 3358 ISD::CondCode Condition = getFCmpCondCode(predicate); 3359 auto *FPMO = cast<FPMathOperator>(&I); 3360 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3361 Condition = getFCmpCodeWithoutNaN(Condition); 3362 3363 SDNodeFlags Flags; 3364 Flags.copyFMF(*FPMO); 3365 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3366 3367 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3368 I.getType()); 3369 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3370 } 3371 3372 // Check if the condition of the select has one use or two users that are both 3373 // selects with the same condition. 3374 static bool hasOnlySelectUsers(const Value *Cond) { 3375 return llvm::all_of(Cond->users(), [](const Value *V) { 3376 return isa<SelectInst>(V); 3377 }); 3378 } 3379 3380 void SelectionDAGBuilder::visitSelect(const User &I) { 3381 SmallVector<EVT, 4> ValueVTs; 3382 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3383 ValueVTs); 3384 unsigned NumValues = ValueVTs.size(); 3385 if (NumValues == 0) return; 3386 3387 SmallVector<SDValue, 4> Values(NumValues); 3388 SDValue Cond = getValue(I.getOperand(0)); 3389 SDValue LHSVal = getValue(I.getOperand(1)); 3390 SDValue RHSVal = getValue(I.getOperand(2)); 3391 SmallVector<SDValue, 1> BaseOps(1, Cond); 3392 ISD::NodeType OpCode = 3393 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3394 3395 bool IsUnaryAbs = false; 3396 bool Negate = false; 3397 3398 SDNodeFlags Flags; 3399 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3400 Flags.copyFMF(*FPOp); 3401 3402 Flags.setUnpredictable( 3403 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3404 3405 // Min/max matching is only viable if all output VTs are the same. 3406 if (all_equal(ValueVTs)) { 3407 EVT VT = ValueVTs[0]; 3408 LLVMContext &Ctx = *DAG.getContext(); 3409 auto &TLI = DAG.getTargetLoweringInfo(); 3410 3411 // We care about the legality of the operation after it has been type 3412 // legalized. 3413 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3414 VT = TLI.getTypeToTransformTo(Ctx, VT); 3415 3416 // If the vselect is legal, assume we want to leave this as a vector setcc + 3417 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3418 // min/max is legal on the scalar type. 3419 bool UseScalarMinMax = VT.isVector() && 3420 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3421 3422 // ValueTracking's select pattern matching does not account for -0.0, 3423 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3424 // -0.0 is less than +0.0. 3425 Value *LHS, *RHS; 3426 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3427 ISD::NodeType Opc = ISD::DELETED_NODE; 3428 switch (SPR.Flavor) { 3429 case SPF_UMAX: Opc = ISD::UMAX; break; 3430 case SPF_UMIN: Opc = ISD::UMIN; break; 3431 case SPF_SMAX: Opc = ISD::SMAX; break; 3432 case SPF_SMIN: Opc = ISD::SMIN; break; 3433 case SPF_FMINNUM: 3434 switch (SPR.NaNBehavior) { 3435 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3436 case SPNB_RETURNS_NAN: break; 3437 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3438 case SPNB_RETURNS_ANY: 3439 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3440 (UseScalarMinMax && 3441 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3442 Opc = ISD::FMINNUM; 3443 break; 3444 } 3445 break; 3446 case SPF_FMAXNUM: 3447 switch (SPR.NaNBehavior) { 3448 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3449 case SPNB_RETURNS_NAN: break; 3450 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3451 case SPNB_RETURNS_ANY: 3452 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3453 (UseScalarMinMax && 3454 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3455 Opc = ISD::FMAXNUM; 3456 break; 3457 } 3458 break; 3459 case SPF_NABS: 3460 Negate = true; 3461 [[fallthrough]]; 3462 case SPF_ABS: 3463 IsUnaryAbs = true; 3464 Opc = ISD::ABS; 3465 break; 3466 default: break; 3467 } 3468 3469 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3470 (TLI.isOperationLegalOrCustom(Opc, VT) || 3471 (UseScalarMinMax && 3472 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3473 // If the underlying comparison instruction is used by any other 3474 // instruction, the consumed instructions won't be destroyed, so it is 3475 // not profitable to convert to a min/max. 3476 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3477 OpCode = Opc; 3478 LHSVal = getValue(LHS); 3479 RHSVal = getValue(RHS); 3480 BaseOps.clear(); 3481 } 3482 3483 if (IsUnaryAbs) { 3484 OpCode = Opc; 3485 LHSVal = getValue(LHS); 3486 BaseOps.clear(); 3487 } 3488 } 3489 3490 if (IsUnaryAbs) { 3491 for (unsigned i = 0; i != NumValues; ++i) { 3492 SDLoc dl = getCurSDLoc(); 3493 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3494 Values[i] = 3495 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3496 if (Negate) 3497 Values[i] = DAG.getNegative(Values[i], dl, VT); 3498 } 3499 } else { 3500 for (unsigned i = 0; i != NumValues; ++i) { 3501 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3502 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3503 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3504 Values[i] = DAG.getNode( 3505 OpCode, getCurSDLoc(), 3506 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3507 } 3508 } 3509 3510 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3511 DAG.getVTList(ValueVTs), Values)); 3512 } 3513 3514 void SelectionDAGBuilder::visitTrunc(const User &I) { 3515 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3516 SDValue N = getValue(I.getOperand(0)); 3517 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3518 I.getType()); 3519 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3520 } 3521 3522 void SelectionDAGBuilder::visitZExt(const User &I) { 3523 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3524 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3525 SDValue N = getValue(I.getOperand(0)); 3526 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3527 I.getType()); 3528 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3529 } 3530 3531 void SelectionDAGBuilder::visitSExt(const User &I) { 3532 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3533 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3534 SDValue N = getValue(I.getOperand(0)); 3535 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3536 I.getType()); 3537 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3538 } 3539 3540 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3541 // FPTrunc is never a no-op cast, no need to check 3542 SDValue N = getValue(I.getOperand(0)); 3543 SDLoc dl = getCurSDLoc(); 3544 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3545 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3546 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3547 DAG.getTargetConstant( 3548 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3549 } 3550 3551 void SelectionDAGBuilder::visitFPExt(const User &I) { 3552 // FPExt is never a no-op cast, no need to check 3553 SDValue N = getValue(I.getOperand(0)); 3554 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3555 I.getType()); 3556 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3557 } 3558 3559 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3560 // FPToUI is never a no-op cast, no need to check 3561 SDValue N = getValue(I.getOperand(0)); 3562 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3563 I.getType()); 3564 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3565 } 3566 3567 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3568 // FPToSI is never a no-op cast, no need to check 3569 SDValue N = getValue(I.getOperand(0)); 3570 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3571 I.getType()); 3572 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3573 } 3574 3575 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3576 // UIToFP is never a no-op cast, no need to check 3577 SDValue N = getValue(I.getOperand(0)); 3578 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3579 I.getType()); 3580 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3581 } 3582 3583 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3584 // SIToFP is never a no-op cast, no need to check 3585 SDValue N = getValue(I.getOperand(0)); 3586 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3587 I.getType()); 3588 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3589 } 3590 3591 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3592 // What to do depends on the size of the integer and the size of the pointer. 3593 // We can either truncate, zero extend, or no-op, accordingly. 3594 SDValue N = getValue(I.getOperand(0)); 3595 auto &TLI = DAG.getTargetLoweringInfo(); 3596 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3597 I.getType()); 3598 EVT PtrMemVT = 3599 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3600 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3601 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3602 setValue(&I, N); 3603 } 3604 3605 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3606 // What to do depends on the size of the integer and the size of the pointer. 3607 // We can either truncate, zero extend, or no-op, accordingly. 3608 SDValue N = getValue(I.getOperand(0)); 3609 auto &TLI = DAG.getTargetLoweringInfo(); 3610 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3611 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3612 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3613 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3614 setValue(&I, N); 3615 } 3616 3617 void SelectionDAGBuilder::visitBitCast(const User &I) { 3618 SDValue N = getValue(I.getOperand(0)); 3619 SDLoc dl = getCurSDLoc(); 3620 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3621 I.getType()); 3622 3623 // BitCast assures us that source and destination are the same size so this is 3624 // either a BITCAST or a no-op. 3625 if (DestVT != N.getValueType()) 3626 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3627 DestVT, N)); // convert types. 3628 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3629 // might fold any kind of constant expression to an integer constant and that 3630 // is not what we are looking for. Only recognize a bitcast of a genuine 3631 // constant integer as an opaque constant. 3632 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3633 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3634 /*isOpaque*/true)); 3635 else 3636 setValue(&I, N); // noop cast. 3637 } 3638 3639 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3640 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3641 const Value *SV = I.getOperand(0); 3642 SDValue N = getValue(SV); 3643 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3644 3645 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3646 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3647 3648 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3649 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3650 3651 setValue(&I, N); 3652 } 3653 3654 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3656 SDValue InVec = getValue(I.getOperand(0)); 3657 SDValue InVal = getValue(I.getOperand(1)); 3658 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3659 TLI.getVectorIdxTy(DAG.getDataLayout())); 3660 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3661 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3662 InVec, InVal, InIdx)); 3663 } 3664 3665 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3666 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3667 SDValue InVec = getValue(I.getOperand(0)); 3668 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3669 TLI.getVectorIdxTy(DAG.getDataLayout())); 3670 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3671 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3672 InVec, InIdx)); 3673 } 3674 3675 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3676 SDValue Src1 = getValue(I.getOperand(0)); 3677 SDValue Src2 = getValue(I.getOperand(1)); 3678 ArrayRef<int> Mask; 3679 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3680 Mask = SVI->getShuffleMask(); 3681 else 3682 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3683 SDLoc DL = getCurSDLoc(); 3684 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3685 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3686 EVT SrcVT = Src1.getValueType(); 3687 3688 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3689 VT.isScalableVector()) { 3690 // Canonical splat form of first element of first input vector. 3691 SDValue FirstElt = 3692 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3693 DAG.getVectorIdxConstant(0, DL)); 3694 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3695 return; 3696 } 3697 3698 // For now, we only handle splats for scalable vectors. 3699 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3700 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3701 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3702 3703 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3704 unsigned MaskNumElts = Mask.size(); 3705 3706 if (SrcNumElts == MaskNumElts) { 3707 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3708 return; 3709 } 3710 3711 // Normalize the shuffle vector since mask and vector length don't match. 3712 if (SrcNumElts < MaskNumElts) { 3713 // Mask is longer than the source vectors. We can use concatenate vector to 3714 // make the mask and vectors lengths match. 3715 3716 if (MaskNumElts % SrcNumElts == 0) { 3717 // Mask length is a multiple of the source vector length. 3718 // Check if the shuffle is some kind of concatenation of the input 3719 // vectors. 3720 unsigned NumConcat = MaskNumElts / SrcNumElts; 3721 bool IsConcat = true; 3722 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3723 for (unsigned i = 0; i != MaskNumElts; ++i) { 3724 int Idx = Mask[i]; 3725 if (Idx < 0) 3726 continue; 3727 // Ensure the indices in each SrcVT sized piece are sequential and that 3728 // the same source is used for the whole piece. 3729 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3730 (ConcatSrcs[i / SrcNumElts] >= 0 && 3731 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3732 IsConcat = false; 3733 break; 3734 } 3735 // Remember which source this index came from. 3736 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3737 } 3738 3739 // The shuffle is concatenating multiple vectors together. Just emit 3740 // a CONCAT_VECTORS operation. 3741 if (IsConcat) { 3742 SmallVector<SDValue, 8> ConcatOps; 3743 for (auto Src : ConcatSrcs) { 3744 if (Src < 0) 3745 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3746 else if (Src == 0) 3747 ConcatOps.push_back(Src1); 3748 else 3749 ConcatOps.push_back(Src2); 3750 } 3751 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3752 return; 3753 } 3754 } 3755 3756 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3757 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3758 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3759 PaddedMaskNumElts); 3760 3761 // Pad both vectors with undefs to make them the same length as the mask. 3762 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3763 3764 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3765 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3766 MOps1[0] = Src1; 3767 MOps2[0] = Src2; 3768 3769 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3770 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3771 3772 // Readjust mask for new input vector length. 3773 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3774 for (unsigned i = 0; i != MaskNumElts; ++i) { 3775 int Idx = Mask[i]; 3776 if (Idx >= (int)SrcNumElts) 3777 Idx -= SrcNumElts - PaddedMaskNumElts; 3778 MappedOps[i] = Idx; 3779 } 3780 3781 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3782 3783 // If the concatenated vector was padded, extract a subvector with the 3784 // correct number of elements. 3785 if (MaskNumElts != PaddedMaskNumElts) 3786 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3787 DAG.getVectorIdxConstant(0, DL)); 3788 3789 setValue(&I, Result); 3790 return; 3791 } 3792 3793 if (SrcNumElts > MaskNumElts) { 3794 // Analyze the access pattern of the vector to see if we can extract 3795 // two subvectors and do the shuffle. 3796 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3797 bool CanExtract = true; 3798 for (int Idx : Mask) { 3799 unsigned Input = 0; 3800 if (Idx < 0) 3801 continue; 3802 3803 if (Idx >= (int)SrcNumElts) { 3804 Input = 1; 3805 Idx -= SrcNumElts; 3806 } 3807 3808 // If all the indices come from the same MaskNumElts sized portion of 3809 // the sources we can use extract. Also make sure the extract wouldn't 3810 // extract past the end of the source. 3811 int NewStartIdx = alignDown(Idx, MaskNumElts); 3812 if (NewStartIdx + MaskNumElts > SrcNumElts || 3813 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3814 CanExtract = false; 3815 // Make sure we always update StartIdx as we use it to track if all 3816 // elements are undef. 3817 StartIdx[Input] = NewStartIdx; 3818 } 3819 3820 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3821 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3822 return; 3823 } 3824 if (CanExtract) { 3825 // Extract appropriate subvector and generate a vector shuffle 3826 for (unsigned Input = 0; Input < 2; ++Input) { 3827 SDValue &Src = Input == 0 ? Src1 : Src2; 3828 if (StartIdx[Input] < 0) 3829 Src = DAG.getUNDEF(VT); 3830 else { 3831 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3832 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3833 } 3834 } 3835 3836 // Calculate new mask. 3837 SmallVector<int, 8> MappedOps(Mask); 3838 for (int &Idx : MappedOps) { 3839 if (Idx >= (int)SrcNumElts) 3840 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3841 else if (Idx >= 0) 3842 Idx -= StartIdx[0]; 3843 } 3844 3845 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3846 return; 3847 } 3848 } 3849 3850 // We can't use either concat vectors or extract subvectors so fall back to 3851 // replacing the shuffle with extract and build vector. 3852 // to insert and build vector. 3853 EVT EltVT = VT.getVectorElementType(); 3854 SmallVector<SDValue,8> Ops; 3855 for (int Idx : Mask) { 3856 SDValue Res; 3857 3858 if (Idx < 0) { 3859 Res = DAG.getUNDEF(EltVT); 3860 } else { 3861 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3862 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3863 3864 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3865 DAG.getVectorIdxConstant(Idx, DL)); 3866 } 3867 3868 Ops.push_back(Res); 3869 } 3870 3871 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3872 } 3873 3874 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3875 ArrayRef<unsigned> Indices = I.getIndices(); 3876 const Value *Op0 = I.getOperand(0); 3877 const Value *Op1 = I.getOperand(1); 3878 Type *AggTy = I.getType(); 3879 Type *ValTy = Op1->getType(); 3880 bool IntoUndef = isa<UndefValue>(Op0); 3881 bool FromUndef = isa<UndefValue>(Op1); 3882 3883 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3884 3885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3886 SmallVector<EVT, 4> AggValueVTs; 3887 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3888 SmallVector<EVT, 4> ValValueVTs; 3889 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3890 3891 unsigned NumAggValues = AggValueVTs.size(); 3892 unsigned NumValValues = ValValueVTs.size(); 3893 SmallVector<SDValue, 4> Values(NumAggValues); 3894 3895 // Ignore an insertvalue that produces an empty object 3896 if (!NumAggValues) { 3897 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3898 return; 3899 } 3900 3901 SDValue Agg = getValue(Op0); 3902 unsigned i = 0; 3903 // Copy the beginning value(s) from the original aggregate. 3904 for (; i != LinearIndex; ++i) 3905 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3906 SDValue(Agg.getNode(), Agg.getResNo() + i); 3907 // Copy values from the inserted value(s). 3908 if (NumValValues) { 3909 SDValue Val = getValue(Op1); 3910 for (; i != LinearIndex + NumValValues; ++i) 3911 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3912 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3913 } 3914 // Copy remaining value(s) from the original aggregate. 3915 for (; i != NumAggValues; ++i) 3916 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3917 SDValue(Agg.getNode(), Agg.getResNo() + i); 3918 3919 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3920 DAG.getVTList(AggValueVTs), Values)); 3921 } 3922 3923 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3924 ArrayRef<unsigned> Indices = I.getIndices(); 3925 const Value *Op0 = I.getOperand(0); 3926 Type *AggTy = Op0->getType(); 3927 Type *ValTy = I.getType(); 3928 bool OutOfUndef = isa<UndefValue>(Op0); 3929 3930 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3931 3932 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3933 SmallVector<EVT, 4> ValValueVTs; 3934 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3935 3936 unsigned NumValValues = ValValueVTs.size(); 3937 3938 // Ignore a extractvalue that produces an empty object 3939 if (!NumValValues) { 3940 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3941 return; 3942 } 3943 3944 SmallVector<SDValue, 4> Values(NumValValues); 3945 3946 SDValue Agg = getValue(Op0); 3947 // Copy out the selected value(s). 3948 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3949 Values[i - LinearIndex] = 3950 OutOfUndef ? 3951 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3952 SDValue(Agg.getNode(), Agg.getResNo() + i); 3953 3954 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3955 DAG.getVTList(ValValueVTs), Values)); 3956 } 3957 3958 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3959 Value *Op0 = I.getOperand(0); 3960 // Note that the pointer operand may be a vector of pointers. Take the scalar 3961 // element which holds a pointer. 3962 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3963 SDValue N = getValue(Op0); 3964 SDLoc dl = getCurSDLoc(); 3965 auto &TLI = DAG.getTargetLoweringInfo(); 3966 3967 // Normalize Vector GEP - all scalar operands should be converted to the 3968 // splat vector. 3969 bool IsVectorGEP = I.getType()->isVectorTy(); 3970 ElementCount VectorElementCount = 3971 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3972 : ElementCount::getFixed(0); 3973 3974 if (IsVectorGEP && !N.getValueType().isVector()) { 3975 LLVMContext &Context = *DAG.getContext(); 3976 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3977 N = DAG.getSplat(VT, dl, N); 3978 } 3979 3980 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3981 GTI != E; ++GTI) { 3982 const Value *Idx = GTI.getOperand(); 3983 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3984 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3985 if (Field) { 3986 // N = N + Offset 3987 uint64_t Offset = 3988 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3989 3990 // In an inbounds GEP with an offset that is nonnegative even when 3991 // interpreted as signed, assume there is no unsigned overflow. 3992 SDNodeFlags Flags; 3993 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3994 Flags.setNoUnsignedWrap(true); 3995 3996 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3997 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3998 } 3999 } else { 4000 // IdxSize is the width of the arithmetic according to IR semantics. 4001 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4002 // (and fix up the result later). 4003 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4004 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4005 TypeSize ElementSize = 4006 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 4007 // We intentionally mask away the high bits here; ElementSize may not 4008 // fit in IdxTy. 4009 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4010 bool ElementScalable = ElementSize.isScalable(); 4011 4012 // If this is a scalar constant or a splat vector of constants, 4013 // handle it quickly. 4014 const auto *C = dyn_cast<Constant>(Idx); 4015 if (C && isa<VectorType>(C->getType())) 4016 C = C->getSplatValue(); 4017 4018 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4019 if (CI && CI->isZero()) 4020 continue; 4021 if (CI && !ElementScalable) { 4022 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4023 LLVMContext &Context = *DAG.getContext(); 4024 SDValue OffsVal; 4025 if (IsVectorGEP) 4026 OffsVal = DAG.getConstant( 4027 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4028 else 4029 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4030 4031 // In an inbounds GEP with an offset that is nonnegative even when 4032 // interpreted as signed, assume there is no unsigned overflow. 4033 SDNodeFlags Flags; 4034 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4035 Flags.setNoUnsignedWrap(true); 4036 4037 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4038 4039 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4040 continue; 4041 } 4042 4043 // N = N + Idx * ElementMul; 4044 SDValue IdxN = getValue(Idx); 4045 4046 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4047 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4048 VectorElementCount); 4049 IdxN = DAG.getSplat(VT, dl, IdxN); 4050 } 4051 4052 // If the index is smaller or larger than intptr_t, truncate or extend 4053 // it. 4054 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4055 4056 if (ElementScalable) { 4057 EVT VScaleTy = N.getValueType().getScalarType(); 4058 SDValue VScale = DAG.getNode( 4059 ISD::VSCALE, dl, VScaleTy, 4060 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4061 if (IsVectorGEP) 4062 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4063 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4064 } else { 4065 // If this is a multiply by a power of two, turn it into a shl 4066 // immediately. This is a very common case. 4067 if (ElementMul != 1) { 4068 if (ElementMul.isPowerOf2()) { 4069 unsigned Amt = ElementMul.logBase2(); 4070 IdxN = DAG.getNode(ISD::SHL, dl, 4071 N.getValueType(), IdxN, 4072 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4073 } else { 4074 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4075 IdxN.getValueType()); 4076 IdxN = DAG.getNode(ISD::MUL, dl, 4077 N.getValueType(), IdxN, Scale); 4078 } 4079 } 4080 } 4081 4082 N = DAG.getNode(ISD::ADD, dl, 4083 N.getValueType(), N, IdxN); 4084 } 4085 } 4086 4087 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4088 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4089 if (IsVectorGEP) { 4090 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4091 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4092 } 4093 4094 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4095 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4096 4097 setValue(&I, N); 4098 } 4099 4100 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4101 // If this is a fixed sized alloca in the entry block of the function, 4102 // allocate it statically on the stack. 4103 if (FuncInfo.StaticAllocaMap.count(&I)) 4104 return; // getValue will auto-populate this. 4105 4106 SDLoc dl = getCurSDLoc(); 4107 Type *Ty = I.getAllocatedType(); 4108 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4109 auto &DL = DAG.getDataLayout(); 4110 TypeSize TySize = DL.getTypeAllocSize(Ty); 4111 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4112 4113 SDValue AllocSize = getValue(I.getArraySize()); 4114 4115 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace()); 4116 if (AllocSize.getValueType() != IntPtr) 4117 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4118 4119 if (TySize.isScalable()) 4120 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4121 DAG.getVScale(dl, IntPtr, 4122 APInt(IntPtr.getScalarSizeInBits(), 4123 TySize.getKnownMinValue()))); 4124 else 4125 AllocSize = 4126 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4127 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4128 4129 // Handle alignment. If the requested alignment is less than or equal to 4130 // the stack alignment, ignore it. If the size is greater than or equal to 4131 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4132 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4133 if (*Alignment <= StackAlign) 4134 Alignment = std::nullopt; 4135 4136 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4137 // Round the size of the allocation up to the stack alignment size 4138 // by add SA-1 to the size. This doesn't overflow because we're computing 4139 // an address inside an alloca. 4140 SDNodeFlags Flags; 4141 Flags.setNoUnsignedWrap(true); 4142 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4143 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4144 4145 // Mask out the low bits for alignment purposes. 4146 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4147 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4148 4149 SDValue Ops[] = { 4150 getRoot(), AllocSize, 4151 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4152 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4153 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4154 setValue(&I, DSA); 4155 DAG.setRoot(DSA.getValue(1)); 4156 4157 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4158 } 4159 4160 static const MDNode *getRangeMetadata(const Instruction &I) { 4161 // If !noundef is not present, then !range violation results in a poison 4162 // value rather than immediate undefined behavior. In theory, transferring 4163 // these annotations to SDAG is fine, but in practice there are key SDAG 4164 // transforms that are known not to be poison-safe, such as folding logical 4165 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4166 // also present. 4167 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4168 return nullptr; 4169 return I.getMetadata(LLVMContext::MD_range); 4170 } 4171 4172 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4173 if (I.isAtomic()) 4174 return visitAtomicLoad(I); 4175 4176 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4177 const Value *SV = I.getOperand(0); 4178 if (TLI.supportSwiftError()) { 4179 // Swifterror values can come from either a function parameter with 4180 // swifterror attribute or an alloca with swifterror attribute. 4181 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4182 if (Arg->hasSwiftErrorAttr()) 4183 return visitLoadFromSwiftError(I); 4184 } 4185 4186 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4187 if (Alloca->isSwiftError()) 4188 return visitLoadFromSwiftError(I); 4189 } 4190 } 4191 4192 SDValue Ptr = getValue(SV); 4193 4194 Type *Ty = I.getType(); 4195 SmallVector<EVT, 4> ValueVTs, MemVTs; 4196 SmallVector<TypeSize, 4> Offsets; 4197 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0); 4198 unsigned NumValues = ValueVTs.size(); 4199 if (NumValues == 0) 4200 return; 4201 4202 Align Alignment = I.getAlign(); 4203 AAMDNodes AAInfo = I.getAAMetadata(); 4204 const MDNode *Ranges = getRangeMetadata(I); 4205 bool isVolatile = I.isVolatile(); 4206 MachineMemOperand::Flags MMOFlags = 4207 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4208 4209 SDValue Root; 4210 bool ConstantMemory = false; 4211 if (isVolatile) 4212 // Serialize volatile loads with other side effects. 4213 Root = getRoot(); 4214 else if (NumValues > MaxParallelChains) 4215 Root = getMemoryRoot(); 4216 else if (AA && 4217 AA->pointsToConstantMemory(MemoryLocation( 4218 SV, 4219 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4220 AAInfo))) { 4221 // Do not serialize (non-volatile) loads of constant memory with anything. 4222 Root = DAG.getEntryNode(); 4223 ConstantMemory = true; 4224 MMOFlags |= MachineMemOperand::MOInvariant; 4225 } else { 4226 // Do not serialize non-volatile loads against each other. 4227 Root = DAG.getRoot(); 4228 } 4229 4230 SDLoc dl = getCurSDLoc(); 4231 4232 if (isVolatile) 4233 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4234 4235 SmallVector<SDValue, 4> Values(NumValues); 4236 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4237 4238 unsigned ChainI = 0; 4239 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4240 // Serializing loads here may result in excessive register pressure, and 4241 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4242 // could recover a bit by hoisting nodes upward in the chain by recognizing 4243 // they are side-effect free or do not alias. The optimizer should really 4244 // avoid this case by converting large object/array copies to llvm.memcpy 4245 // (MaxParallelChains should always remain as failsafe). 4246 if (ChainI == MaxParallelChains) { 4247 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4248 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4249 ArrayRef(Chains.data(), ChainI)); 4250 Root = Chain; 4251 ChainI = 0; 4252 } 4253 4254 // TODO: MachinePointerInfo only supports a fixed length offset. 4255 MachinePointerInfo PtrInfo = 4256 !Offsets[i].isScalable() || Offsets[i].isZero() 4257 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4258 : MachinePointerInfo(); 4259 4260 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4261 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4262 MMOFlags, AAInfo, Ranges); 4263 Chains[ChainI] = L.getValue(1); 4264 4265 if (MemVTs[i] != ValueVTs[i]) 4266 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4267 4268 Values[i] = L; 4269 } 4270 4271 if (!ConstantMemory) { 4272 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4273 ArrayRef(Chains.data(), ChainI)); 4274 if (isVolatile) 4275 DAG.setRoot(Chain); 4276 else 4277 PendingLoads.push_back(Chain); 4278 } 4279 4280 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4281 DAG.getVTList(ValueVTs), Values)); 4282 } 4283 4284 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4285 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4286 "call visitStoreToSwiftError when backend supports swifterror"); 4287 4288 SmallVector<EVT, 4> ValueVTs; 4289 SmallVector<uint64_t, 4> Offsets; 4290 const Value *SrcV = I.getOperand(0); 4291 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4292 SrcV->getType(), ValueVTs, &Offsets, 0); 4293 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4294 "expect a single EVT for swifterror"); 4295 4296 SDValue Src = getValue(SrcV); 4297 // Create a virtual register, then update the virtual register. 4298 Register VReg = 4299 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4300 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4301 // Chain can be getRoot or getControlRoot. 4302 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4303 SDValue(Src.getNode(), Src.getResNo())); 4304 DAG.setRoot(CopyNode); 4305 } 4306 4307 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4308 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4309 "call visitLoadFromSwiftError when backend supports swifterror"); 4310 4311 assert(!I.isVolatile() && 4312 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4313 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4314 "Support volatile, non temporal, invariant for load_from_swift_error"); 4315 4316 const Value *SV = I.getOperand(0); 4317 Type *Ty = I.getType(); 4318 assert( 4319 (!AA || 4320 !AA->pointsToConstantMemory(MemoryLocation( 4321 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4322 I.getAAMetadata()))) && 4323 "load_from_swift_error should not be constant memory"); 4324 4325 SmallVector<EVT, 4> ValueVTs; 4326 SmallVector<uint64_t, 4> Offsets; 4327 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4328 ValueVTs, &Offsets, 0); 4329 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4330 "expect a single EVT for swifterror"); 4331 4332 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4333 SDValue L = DAG.getCopyFromReg( 4334 getRoot(), getCurSDLoc(), 4335 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4336 4337 setValue(&I, L); 4338 } 4339 4340 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4341 if (I.isAtomic()) 4342 return visitAtomicStore(I); 4343 4344 const Value *SrcV = I.getOperand(0); 4345 const Value *PtrV = I.getOperand(1); 4346 4347 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4348 if (TLI.supportSwiftError()) { 4349 // Swifterror values can come from either a function parameter with 4350 // swifterror attribute or an alloca with swifterror attribute. 4351 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4352 if (Arg->hasSwiftErrorAttr()) 4353 return visitStoreToSwiftError(I); 4354 } 4355 4356 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4357 if (Alloca->isSwiftError()) 4358 return visitStoreToSwiftError(I); 4359 } 4360 } 4361 4362 SmallVector<EVT, 4> ValueVTs, MemVTs; 4363 SmallVector<TypeSize, 4> Offsets; 4364 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4365 SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0); 4366 unsigned NumValues = ValueVTs.size(); 4367 if (NumValues == 0) 4368 return; 4369 4370 // Get the lowered operands. Note that we do this after 4371 // checking if NumResults is zero, because with zero results 4372 // the operands won't have values in the map. 4373 SDValue Src = getValue(SrcV); 4374 SDValue Ptr = getValue(PtrV); 4375 4376 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4377 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4378 SDLoc dl = getCurSDLoc(); 4379 Align Alignment = I.getAlign(); 4380 AAMDNodes AAInfo = I.getAAMetadata(); 4381 4382 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4383 4384 unsigned ChainI = 0; 4385 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4386 // See visitLoad comments. 4387 if (ChainI == MaxParallelChains) { 4388 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4389 ArrayRef(Chains.data(), ChainI)); 4390 Root = Chain; 4391 ChainI = 0; 4392 } 4393 4394 // TODO: MachinePointerInfo only supports a fixed length offset. 4395 MachinePointerInfo PtrInfo = 4396 !Offsets[i].isScalable() || Offsets[i].isZero() 4397 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4398 : MachinePointerInfo(); 4399 4400 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4401 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4402 if (MemVTs[i] != ValueVTs[i]) 4403 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4404 SDValue St = 4405 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4406 Chains[ChainI] = St; 4407 } 4408 4409 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4410 ArrayRef(Chains.data(), ChainI)); 4411 setValue(&I, StoreNode); 4412 DAG.setRoot(StoreNode); 4413 } 4414 4415 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4416 bool IsCompressing) { 4417 SDLoc sdl = getCurSDLoc(); 4418 4419 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4420 MaybeAlign &Alignment) { 4421 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4422 Src0 = I.getArgOperand(0); 4423 Ptr = I.getArgOperand(1); 4424 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4425 Mask = I.getArgOperand(3); 4426 }; 4427 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4428 MaybeAlign &Alignment) { 4429 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4430 Src0 = I.getArgOperand(0); 4431 Ptr = I.getArgOperand(1); 4432 Mask = I.getArgOperand(2); 4433 Alignment = std::nullopt; 4434 }; 4435 4436 Value *PtrOperand, *MaskOperand, *Src0Operand; 4437 MaybeAlign Alignment; 4438 if (IsCompressing) 4439 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4440 else 4441 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4442 4443 SDValue Ptr = getValue(PtrOperand); 4444 SDValue Src0 = getValue(Src0Operand); 4445 SDValue Mask = getValue(MaskOperand); 4446 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4447 4448 EVT VT = Src0.getValueType(); 4449 if (!Alignment) 4450 Alignment = DAG.getEVTAlign(VT); 4451 4452 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4453 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4454 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4455 SDValue StoreNode = 4456 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4457 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4458 DAG.setRoot(StoreNode); 4459 setValue(&I, StoreNode); 4460 } 4461 4462 // Get a uniform base for the Gather/Scatter intrinsic. 4463 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4464 // We try to represent it as a base pointer + vector of indices. 4465 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4466 // The first operand of the GEP may be a single pointer or a vector of pointers 4467 // Example: 4468 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4469 // or 4470 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4471 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4472 // 4473 // When the first GEP operand is a single pointer - it is the uniform base we 4474 // are looking for. If first operand of the GEP is a splat vector - we 4475 // extract the splat value and use it as a uniform base. 4476 // In all other cases the function returns 'false'. 4477 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4478 ISD::MemIndexType &IndexType, SDValue &Scale, 4479 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4480 uint64_t ElemSize) { 4481 SelectionDAG& DAG = SDB->DAG; 4482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4483 const DataLayout &DL = DAG.getDataLayout(); 4484 4485 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4486 4487 // Handle splat constant pointer. 4488 if (auto *C = dyn_cast<Constant>(Ptr)) { 4489 C = C->getSplatValue(); 4490 if (!C) 4491 return false; 4492 4493 Base = SDB->getValue(C); 4494 4495 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4496 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4497 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4498 IndexType = ISD::SIGNED_SCALED; 4499 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4500 return true; 4501 } 4502 4503 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4504 if (!GEP || GEP->getParent() != CurBB) 4505 return false; 4506 4507 if (GEP->getNumOperands() != 2) 4508 return false; 4509 4510 const Value *BasePtr = GEP->getPointerOperand(); 4511 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4512 4513 // Make sure the base is scalar and the index is a vector. 4514 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4515 return false; 4516 4517 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4518 if (ScaleVal.isScalable()) 4519 return false; 4520 4521 // Target may not support the required addressing mode. 4522 if (ScaleVal != 1 && 4523 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4524 return false; 4525 4526 Base = SDB->getValue(BasePtr); 4527 Index = SDB->getValue(IndexVal); 4528 IndexType = ISD::SIGNED_SCALED; 4529 4530 Scale = 4531 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4532 return true; 4533 } 4534 4535 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4536 SDLoc sdl = getCurSDLoc(); 4537 4538 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4539 const Value *Ptr = I.getArgOperand(1); 4540 SDValue Src0 = getValue(I.getArgOperand(0)); 4541 SDValue Mask = getValue(I.getArgOperand(3)); 4542 EVT VT = Src0.getValueType(); 4543 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4544 ->getMaybeAlignValue() 4545 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4547 4548 SDValue Base; 4549 SDValue Index; 4550 ISD::MemIndexType IndexType; 4551 SDValue Scale; 4552 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4553 I.getParent(), VT.getScalarStoreSize()); 4554 4555 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4556 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4557 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4558 // TODO: Make MachineMemOperands aware of scalable 4559 // vectors. 4560 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4561 if (!UniformBase) { 4562 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4563 Index = getValue(Ptr); 4564 IndexType = ISD::SIGNED_SCALED; 4565 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4566 } 4567 4568 EVT IdxVT = Index.getValueType(); 4569 EVT EltTy = IdxVT.getVectorElementType(); 4570 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4571 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4572 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4573 } 4574 4575 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4576 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4577 Ops, MMO, IndexType, false); 4578 DAG.setRoot(Scatter); 4579 setValue(&I, Scatter); 4580 } 4581 4582 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4583 SDLoc sdl = getCurSDLoc(); 4584 4585 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4586 MaybeAlign &Alignment) { 4587 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4588 Ptr = I.getArgOperand(0); 4589 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4590 Mask = I.getArgOperand(2); 4591 Src0 = I.getArgOperand(3); 4592 }; 4593 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4594 MaybeAlign &Alignment) { 4595 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4596 Ptr = I.getArgOperand(0); 4597 Alignment = std::nullopt; 4598 Mask = I.getArgOperand(1); 4599 Src0 = I.getArgOperand(2); 4600 }; 4601 4602 Value *PtrOperand, *MaskOperand, *Src0Operand; 4603 MaybeAlign Alignment; 4604 if (IsExpanding) 4605 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4606 else 4607 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4608 4609 SDValue Ptr = getValue(PtrOperand); 4610 SDValue Src0 = getValue(Src0Operand); 4611 SDValue Mask = getValue(MaskOperand); 4612 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4613 4614 EVT VT = Src0.getValueType(); 4615 if (!Alignment) 4616 Alignment = DAG.getEVTAlign(VT); 4617 4618 AAMDNodes AAInfo = I.getAAMetadata(); 4619 const MDNode *Ranges = getRangeMetadata(I); 4620 4621 // Do not serialize masked loads of constant memory with anything. 4622 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4623 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4624 4625 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4626 4627 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4628 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4629 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4630 4631 SDValue Load = 4632 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4633 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4634 if (AddToChain) 4635 PendingLoads.push_back(Load.getValue(1)); 4636 setValue(&I, Load); 4637 } 4638 4639 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4640 SDLoc sdl = getCurSDLoc(); 4641 4642 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4643 const Value *Ptr = I.getArgOperand(0); 4644 SDValue Src0 = getValue(I.getArgOperand(3)); 4645 SDValue Mask = getValue(I.getArgOperand(2)); 4646 4647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4648 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4649 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4650 ->getMaybeAlignValue() 4651 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4652 4653 const MDNode *Ranges = getRangeMetadata(I); 4654 4655 SDValue Root = DAG.getRoot(); 4656 SDValue Base; 4657 SDValue Index; 4658 ISD::MemIndexType IndexType; 4659 SDValue Scale; 4660 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4661 I.getParent(), VT.getScalarStoreSize()); 4662 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4663 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4664 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4665 // TODO: Make MachineMemOperands aware of scalable 4666 // vectors. 4667 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4668 4669 if (!UniformBase) { 4670 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4671 Index = getValue(Ptr); 4672 IndexType = ISD::SIGNED_SCALED; 4673 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4674 } 4675 4676 EVT IdxVT = Index.getValueType(); 4677 EVT EltTy = IdxVT.getVectorElementType(); 4678 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4679 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4680 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4681 } 4682 4683 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4684 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4685 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4686 4687 PendingLoads.push_back(Gather.getValue(1)); 4688 setValue(&I, Gather); 4689 } 4690 4691 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4692 SDLoc dl = getCurSDLoc(); 4693 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4694 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4695 SyncScope::ID SSID = I.getSyncScopeID(); 4696 4697 SDValue InChain = getRoot(); 4698 4699 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4700 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4701 4702 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4703 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4704 4705 MachineFunction &MF = DAG.getMachineFunction(); 4706 MachineMemOperand *MMO = MF.getMachineMemOperand( 4707 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4708 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4709 FailureOrdering); 4710 4711 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4712 dl, MemVT, VTs, InChain, 4713 getValue(I.getPointerOperand()), 4714 getValue(I.getCompareOperand()), 4715 getValue(I.getNewValOperand()), MMO); 4716 4717 SDValue OutChain = L.getValue(2); 4718 4719 setValue(&I, L); 4720 DAG.setRoot(OutChain); 4721 } 4722 4723 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4724 SDLoc dl = getCurSDLoc(); 4725 ISD::NodeType NT; 4726 switch (I.getOperation()) { 4727 default: llvm_unreachable("Unknown atomicrmw operation"); 4728 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4729 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4730 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4731 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4732 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4733 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4734 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4735 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4736 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4737 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4738 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4739 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4740 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4741 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4742 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4743 case AtomicRMWInst::UIncWrap: 4744 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 4745 break; 4746 case AtomicRMWInst::UDecWrap: 4747 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 4748 break; 4749 } 4750 AtomicOrdering Ordering = I.getOrdering(); 4751 SyncScope::ID SSID = I.getSyncScopeID(); 4752 4753 SDValue InChain = getRoot(); 4754 4755 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4756 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4757 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4758 4759 MachineFunction &MF = DAG.getMachineFunction(); 4760 MachineMemOperand *MMO = MF.getMachineMemOperand( 4761 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4762 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4763 4764 SDValue L = 4765 DAG.getAtomic(NT, dl, MemVT, InChain, 4766 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4767 MMO); 4768 4769 SDValue OutChain = L.getValue(1); 4770 4771 setValue(&I, L); 4772 DAG.setRoot(OutChain); 4773 } 4774 4775 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4776 SDLoc dl = getCurSDLoc(); 4777 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4778 SDValue Ops[3]; 4779 Ops[0] = getRoot(); 4780 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4781 TLI.getFenceOperandTy(DAG.getDataLayout())); 4782 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4783 TLI.getFenceOperandTy(DAG.getDataLayout())); 4784 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4785 setValue(&I, N); 4786 DAG.setRoot(N); 4787 } 4788 4789 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4790 SDLoc dl = getCurSDLoc(); 4791 AtomicOrdering Order = I.getOrdering(); 4792 SyncScope::ID SSID = I.getSyncScopeID(); 4793 4794 SDValue InChain = getRoot(); 4795 4796 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4797 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4798 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4799 4800 if (!TLI.supportsUnalignedAtomics() && 4801 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4802 report_fatal_error("Cannot generate unaligned atomic load"); 4803 4804 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4805 4806 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4807 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4808 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4809 4810 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4811 4812 SDValue Ptr = getValue(I.getPointerOperand()); 4813 4814 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4815 // TODO: Once this is better exercised by tests, it should be merged with 4816 // the normal path for loads to prevent future divergence. 4817 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4818 if (MemVT != VT) 4819 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4820 4821 setValue(&I, L); 4822 SDValue OutChain = L.getValue(1); 4823 if (!I.isUnordered()) 4824 DAG.setRoot(OutChain); 4825 else 4826 PendingLoads.push_back(OutChain); 4827 return; 4828 } 4829 4830 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4831 Ptr, MMO); 4832 4833 SDValue OutChain = L.getValue(1); 4834 if (MemVT != VT) 4835 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4836 4837 setValue(&I, L); 4838 DAG.setRoot(OutChain); 4839 } 4840 4841 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4842 SDLoc dl = getCurSDLoc(); 4843 4844 AtomicOrdering Ordering = I.getOrdering(); 4845 SyncScope::ID SSID = I.getSyncScopeID(); 4846 4847 SDValue InChain = getRoot(); 4848 4849 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4850 EVT MemVT = 4851 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4852 4853 if (!TLI.supportsUnalignedAtomics() && 4854 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4855 report_fatal_error("Cannot generate unaligned atomic store"); 4856 4857 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4858 4859 MachineFunction &MF = DAG.getMachineFunction(); 4860 MachineMemOperand *MMO = MF.getMachineMemOperand( 4861 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4862 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4863 4864 SDValue Val = getValue(I.getValueOperand()); 4865 if (Val.getValueType() != MemVT) 4866 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4867 SDValue Ptr = getValue(I.getPointerOperand()); 4868 4869 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4870 // TODO: Once this is better exercised by tests, it should be merged with 4871 // the normal path for stores to prevent future divergence. 4872 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4873 setValue(&I, S); 4874 DAG.setRoot(S); 4875 return; 4876 } 4877 SDValue OutChain = 4878 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 4879 4880 setValue(&I, OutChain); 4881 DAG.setRoot(OutChain); 4882 } 4883 4884 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4885 /// node. 4886 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4887 unsigned Intrinsic) { 4888 // Ignore the callsite's attributes. A specific call site may be marked with 4889 // readnone, but the lowering code will expect the chain based on the 4890 // definition. 4891 const Function *F = I.getCalledFunction(); 4892 bool HasChain = !F->doesNotAccessMemory(); 4893 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4894 4895 // Build the operand list. 4896 SmallVector<SDValue, 8> Ops; 4897 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4898 if (OnlyLoad) { 4899 // We don't need to serialize loads against other loads. 4900 Ops.push_back(DAG.getRoot()); 4901 } else { 4902 Ops.push_back(getRoot()); 4903 } 4904 } 4905 4906 // Info is set by getTgtMemIntrinsic 4907 TargetLowering::IntrinsicInfo Info; 4908 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4909 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4910 DAG.getMachineFunction(), 4911 Intrinsic); 4912 4913 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4914 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4915 Info.opc == ISD::INTRINSIC_W_CHAIN) 4916 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4917 TLI.getPointerTy(DAG.getDataLayout()))); 4918 4919 // Add all operands of the call to the operand list. 4920 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4921 const Value *Arg = I.getArgOperand(i); 4922 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4923 Ops.push_back(getValue(Arg)); 4924 continue; 4925 } 4926 4927 // Use TargetConstant instead of a regular constant for immarg. 4928 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4929 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4930 assert(CI->getBitWidth() <= 64 && 4931 "large intrinsic immediates not handled"); 4932 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4933 } else { 4934 Ops.push_back( 4935 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4936 } 4937 } 4938 4939 SmallVector<EVT, 4> ValueVTs; 4940 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4941 4942 if (HasChain) 4943 ValueVTs.push_back(MVT::Other); 4944 4945 SDVTList VTs = DAG.getVTList(ValueVTs); 4946 4947 // Propagate fast-math-flags from IR to node(s). 4948 SDNodeFlags Flags; 4949 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4950 Flags.copyFMF(*FPMO); 4951 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4952 4953 // Create the node. 4954 SDValue Result; 4955 // In some cases, custom collection of operands from CallInst I may be needed. 4956 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4957 if (IsTgtIntrinsic) { 4958 // This is target intrinsic that touches memory 4959 // 4960 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 4961 // didn't yield anything useful. 4962 MachinePointerInfo MPI; 4963 if (Info.ptrVal) 4964 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 4965 else if (Info.fallbackAddressSpace) 4966 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 4967 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 4968 Info.memVT, MPI, Info.align, Info.flags, 4969 Info.size, I.getAAMetadata()); 4970 } else if (!HasChain) { 4971 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4972 } else if (!I.getType()->isVoidTy()) { 4973 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4974 } else { 4975 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4976 } 4977 4978 if (HasChain) { 4979 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4980 if (OnlyLoad) 4981 PendingLoads.push_back(Chain); 4982 else 4983 DAG.setRoot(Chain); 4984 } 4985 4986 if (!I.getType()->isVoidTy()) { 4987 if (!isa<VectorType>(I.getType())) 4988 Result = lowerRangeToAssertZExt(DAG, I, Result); 4989 4990 MaybeAlign Alignment = I.getRetAlign(); 4991 4992 // Insert `assertalign` node if there's an alignment. 4993 if (InsertAssertAlign && Alignment) { 4994 Result = 4995 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4996 } 4997 4998 setValue(&I, Result); 4999 } 5000 } 5001 5002 /// GetSignificand - Get the significand and build it into a floating-point 5003 /// number with exponent of 1: 5004 /// 5005 /// Op = (Op & 0x007fffff) | 0x3f800000; 5006 /// 5007 /// where Op is the hexadecimal representation of floating point value. 5008 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5009 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5010 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5011 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5012 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5013 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5014 } 5015 5016 /// GetExponent - Get the exponent: 5017 /// 5018 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5019 /// 5020 /// where Op is the hexadecimal representation of floating point value. 5021 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5022 const TargetLowering &TLI, const SDLoc &dl) { 5023 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5024 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5025 SDValue t1 = DAG.getNode( 5026 ISD::SRL, dl, MVT::i32, t0, 5027 DAG.getConstant(23, dl, 5028 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5029 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5030 DAG.getConstant(127, dl, MVT::i32)); 5031 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5032 } 5033 5034 /// getF32Constant - Get 32-bit floating point constant. 5035 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5036 const SDLoc &dl) { 5037 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5038 MVT::f32); 5039 } 5040 5041 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5042 SelectionDAG &DAG) { 5043 // TODO: What fast-math-flags should be set on the floating-point nodes? 5044 5045 // IntegerPartOfX = ((int32_t)(t0); 5046 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5047 5048 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5049 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5050 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5051 5052 // IntegerPartOfX <<= 23; 5053 IntegerPartOfX = 5054 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5055 DAG.getConstant(23, dl, 5056 DAG.getTargetLoweringInfo().getShiftAmountTy( 5057 MVT::i32, DAG.getDataLayout()))); 5058 5059 SDValue TwoToFractionalPartOfX; 5060 if (LimitFloatPrecision <= 6) { 5061 // For floating-point precision of 6: 5062 // 5063 // TwoToFractionalPartOfX = 5064 // 0.997535578f + 5065 // (0.735607626f + 0.252464424f * x) * x; 5066 // 5067 // error 0.0144103317, which is 6 bits 5068 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5069 getF32Constant(DAG, 0x3e814304, dl)); 5070 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5071 getF32Constant(DAG, 0x3f3c50c8, dl)); 5072 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5073 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5074 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5075 } else if (LimitFloatPrecision <= 12) { 5076 // For floating-point precision of 12: 5077 // 5078 // TwoToFractionalPartOfX = 5079 // 0.999892986f + 5080 // (0.696457318f + 5081 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5082 // 5083 // error 0.000107046256, which is 13 to 14 bits 5084 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5085 getF32Constant(DAG, 0x3da235e3, dl)); 5086 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5087 getF32Constant(DAG, 0x3e65b8f3, dl)); 5088 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5089 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5090 getF32Constant(DAG, 0x3f324b07, dl)); 5091 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5092 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5093 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5094 } else { // LimitFloatPrecision <= 18 5095 // For floating-point precision of 18: 5096 // 5097 // TwoToFractionalPartOfX = 5098 // 0.999999982f + 5099 // (0.693148872f + 5100 // (0.240227044f + 5101 // (0.554906021e-1f + 5102 // (0.961591928e-2f + 5103 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5104 // error 2.47208000*10^(-7), which is better than 18 bits 5105 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5106 getF32Constant(DAG, 0x3924b03e, dl)); 5107 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5108 getF32Constant(DAG, 0x3ab24b87, dl)); 5109 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5110 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5111 getF32Constant(DAG, 0x3c1d8c17, dl)); 5112 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5113 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5114 getF32Constant(DAG, 0x3d634a1d, dl)); 5115 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5116 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5117 getF32Constant(DAG, 0x3e75fe14, dl)); 5118 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5119 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5120 getF32Constant(DAG, 0x3f317234, dl)); 5121 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5122 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5123 getF32Constant(DAG, 0x3f800000, dl)); 5124 } 5125 5126 // Add the exponent into the result in integer domain. 5127 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5128 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5129 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5130 } 5131 5132 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5133 /// limited-precision mode. 5134 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5135 const TargetLowering &TLI, SDNodeFlags Flags) { 5136 if (Op.getValueType() == MVT::f32 && 5137 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5138 5139 // Put the exponent in the right bit position for later addition to the 5140 // final result: 5141 // 5142 // t0 = Op * log2(e) 5143 5144 // TODO: What fast-math-flags should be set here? 5145 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5146 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5147 return getLimitedPrecisionExp2(t0, dl, DAG); 5148 } 5149 5150 // No special expansion. 5151 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5152 } 5153 5154 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5155 /// limited-precision mode. 5156 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5157 const TargetLowering &TLI, SDNodeFlags Flags) { 5158 // TODO: What fast-math-flags should be set on the floating-point nodes? 5159 5160 if (Op.getValueType() == MVT::f32 && 5161 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5162 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5163 5164 // Scale the exponent by log(2). 5165 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5166 SDValue LogOfExponent = 5167 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5168 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5169 5170 // Get the significand and build it into a floating-point number with 5171 // exponent of 1. 5172 SDValue X = GetSignificand(DAG, Op1, dl); 5173 5174 SDValue LogOfMantissa; 5175 if (LimitFloatPrecision <= 6) { 5176 // For floating-point precision of 6: 5177 // 5178 // LogofMantissa = 5179 // -1.1609546f + 5180 // (1.4034025f - 0.23903021f * x) * x; 5181 // 5182 // error 0.0034276066, which is better than 8 bits 5183 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5184 getF32Constant(DAG, 0xbe74c456, dl)); 5185 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5186 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5187 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5188 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5189 getF32Constant(DAG, 0x3f949a29, dl)); 5190 } else if (LimitFloatPrecision <= 12) { 5191 // For floating-point precision of 12: 5192 // 5193 // LogOfMantissa = 5194 // -1.7417939f + 5195 // (2.8212026f + 5196 // (-1.4699568f + 5197 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5198 // 5199 // error 0.000061011436, which is 14 bits 5200 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5201 getF32Constant(DAG, 0xbd67b6d6, dl)); 5202 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5203 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5204 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5205 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5206 getF32Constant(DAG, 0x3fbc278b, dl)); 5207 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5208 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5209 getF32Constant(DAG, 0x40348e95, dl)); 5210 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5211 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5212 getF32Constant(DAG, 0x3fdef31a, dl)); 5213 } else { // LimitFloatPrecision <= 18 5214 // For floating-point precision of 18: 5215 // 5216 // LogOfMantissa = 5217 // -2.1072184f + 5218 // (4.2372794f + 5219 // (-3.7029485f + 5220 // (2.2781945f + 5221 // (-0.87823314f + 5222 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5223 // 5224 // error 0.0000023660568, which is better than 18 bits 5225 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5226 getF32Constant(DAG, 0xbc91e5ac, dl)); 5227 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5228 getF32Constant(DAG, 0x3e4350aa, dl)); 5229 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5230 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5231 getF32Constant(DAG, 0x3f60d3e3, dl)); 5232 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5233 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5234 getF32Constant(DAG, 0x4011cdf0, dl)); 5235 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5236 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5237 getF32Constant(DAG, 0x406cfd1c, dl)); 5238 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5239 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5240 getF32Constant(DAG, 0x408797cb, dl)); 5241 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5242 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5243 getF32Constant(DAG, 0x4006dcab, dl)); 5244 } 5245 5246 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5247 } 5248 5249 // No special expansion. 5250 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5251 } 5252 5253 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5254 /// limited-precision mode. 5255 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5256 const TargetLowering &TLI, SDNodeFlags Flags) { 5257 // TODO: What fast-math-flags should be set on the floating-point nodes? 5258 5259 if (Op.getValueType() == MVT::f32 && 5260 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5261 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5262 5263 // Get the exponent. 5264 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5265 5266 // Get the significand and build it into a floating-point number with 5267 // exponent of 1. 5268 SDValue X = GetSignificand(DAG, Op1, dl); 5269 5270 // Different possible minimax approximations of significand in 5271 // floating-point for various degrees of accuracy over [1,2]. 5272 SDValue Log2ofMantissa; 5273 if (LimitFloatPrecision <= 6) { 5274 // For floating-point precision of 6: 5275 // 5276 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5277 // 5278 // error 0.0049451742, which is more than 7 bits 5279 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5280 getF32Constant(DAG, 0xbeb08fe0, dl)); 5281 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5282 getF32Constant(DAG, 0x40019463, dl)); 5283 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5284 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5285 getF32Constant(DAG, 0x3fd6633d, dl)); 5286 } else if (LimitFloatPrecision <= 12) { 5287 // For floating-point precision of 12: 5288 // 5289 // Log2ofMantissa = 5290 // -2.51285454f + 5291 // (4.07009056f + 5292 // (-2.12067489f + 5293 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5294 // 5295 // error 0.0000876136000, which is better than 13 bits 5296 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5297 getF32Constant(DAG, 0xbda7262e, dl)); 5298 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5299 getF32Constant(DAG, 0x3f25280b, dl)); 5300 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5301 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5302 getF32Constant(DAG, 0x4007b923, dl)); 5303 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5304 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5305 getF32Constant(DAG, 0x40823e2f, dl)); 5306 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5307 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5308 getF32Constant(DAG, 0x4020d29c, dl)); 5309 } else { // LimitFloatPrecision <= 18 5310 // For floating-point precision of 18: 5311 // 5312 // Log2ofMantissa = 5313 // -3.0400495f + 5314 // (6.1129976f + 5315 // (-5.3420409f + 5316 // (3.2865683f + 5317 // (-1.2669343f + 5318 // (0.27515199f - 5319 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5320 // 5321 // error 0.0000018516, which is better than 18 bits 5322 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5323 getF32Constant(DAG, 0xbcd2769e, dl)); 5324 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5325 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5326 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5327 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5328 getF32Constant(DAG, 0x3fa22ae7, dl)); 5329 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5330 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5331 getF32Constant(DAG, 0x40525723, dl)); 5332 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5333 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5334 getF32Constant(DAG, 0x40aaf200, dl)); 5335 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5336 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5337 getF32Constant(DAG, 0x40c39dad, dl)); 5338 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5339 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5340 getF32Constant(DAG, 0x4042902c, dl)); 5341 } 5342 5343 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5344 } 5345 5346 // No special expansion. 5347 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5348 } 5349 5350 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5351 /// limited-precision mode. 5352 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5353 const TargetLowering &TLI, SDNodeFlags Flags) { 5354 // TODO: What fast-math-flags should be set on the floating-point nodes? 5355 5356 if (Op.getValueType() == MVT::f32 && 5357 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5358 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5359 5360 // Scale the exponent by log10(2) [0.30102999f]. 5361 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5362 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5363 getF32Constant(DAG, 0x3e9a209a, dl)); 5364 5365 // Get the significand and build it into a floating-point number with 5366 // exponent of 1. 5367 SDValue X = GetSignificand(DAG, Op1, dl); 5368 5369 SDValue Log10ofMantissa; 5370 if (LimitFloatPrecision <= 6) { 5371 // For floating-point precision of 6: 5372 // 5373 // Log10ofMantissa = 5374 // -0.50419619f + 5375 // (0.60948995f - 0.10380950f * x) * x; 5376 // 5377 // error 0.0014886165, which is 6 bits 5378 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5379 getF32Constant(DAG, 0xbdd49a13, dl)); 5380 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5381 getF32Constant(DAG, 0x3f1c0789, dl)); 5382 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5383 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5384 getF32Constant(DAG, 0x3f011300, dl)); 5385 } else if (LimitFloatPrecision <= 12) { 5386 // For floating-point precision of 12: 5387 // 5388 // Log10ofMantissa = 5389 // -0.64831180f + 5390 // (0.91751397f + 5391 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5392 // 5393 // error 0.00019228036, which is better than 12 bits 5394 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5395 getF32Constant(DAG, 0x3d431f31, dl)); 5396 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5397 getF32Constant(DAG, 0x3ea21fb2, dl)); 5398 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5399 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5400 getF32Constant(DAG, 0x3f6ae232, dl)); 5401 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5402 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5403 getF32Constant(DAG, 0x3f25f7c3, dl)); 5404 } else { // LimitFloatPrecision <= 18 5405 // For floating-point precision of 18: 5406 // 5407 // Log10ofMantissa = 5408 // -0.84299375f + 5409 // (1.5327582f + 5410 // (-1.0688956f + 5411 // (0.49102474f + 5412 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5413 // 5414 // error 0.0000037995730, which is better than 18 bits 5415 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5416 getF32Constant(DAG, 0x3c5d51ce, dl)); 5417 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5418 getF32Constant(DAG, 0x3e00685a, dl)); 5419 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5420 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5421 getF32Constant(DAG, 0x3efb6798, dl)); 5422 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5423 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5424 getF32Constant(DAG, 0x3f88d192, dl)); 5425 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5426 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5427 getF32Constant(DAG, 0x3fc4316c, dl)); 5428 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5429 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5430 getF32Constant(DAG, 0x3f57ce70, dl)); 5431 } 5432 5433 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5434 } 5435 5436 // No special expansion. 5437 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5438 } 5439 5440 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5441 /// limited-precision mode. 5442 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5443 const TargetLowering &TLI, SDNodeFlags Flags) { 5444 if (Op.getValueType() == MVT::f32 && 5445 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5446 return getLimitedPrecisionExp2(Op, dl, DAG); 5447 5448 // No special expansion. 5449 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5450 } 5451 5452 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5453 /// limited-precision mode with x == 10.0f. 5454 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5455 SelectionDAG &DAG, const TargetLowering &TLI, 5456 SDNodeFlags Flags) { 5457 bool IsExp10 = false; 5458 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5459 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5460 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5461 APFloat Ten(10.0f); 5462 IsExp10 = LHSC->isExactlyValue(Ten); 5463 } 5464 } 5465 5466 // TODO: What fast-math-flags should be set on the FMUL node? 5467 if (IsExp10) { 5468 // Put the exponent in the right bit position for later addition to the 5469 // final result: 5470 // 5471 // #define LOG2OF10 3.3219281f 5472 // t0 = Op * LOG2OF10; 5473 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5474 getF32Constant(DAG, 0x40549a78, dl)); 5475 return getLimitedPrecisionExp2(t0, dl, DAG); 5476 } 5477 5478 // No special expansion. 5479 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5480 } 5481 5482 /// ExpandPowI - Expand a llvm.powi intrinsic. 5483 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5484 SelectionDAG &DAG) { 5485 // If RHS is a constant, we can expand this out to a multiplication tree if 5486 // it's beneficial on the target, otherwise we end up lowering to a call to 5487 // __powidf2 (for example). 5488 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5489 unsigned Val = RHSC->getSExtValue(); 5490 5491 // powi(x, 0) -> 1.0 5492 if (Val == 0) 5493 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5494 5495 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5496 Val, DAG.shouldOptForSize())) { 5497 // Get the exponent as a positive value. 5498 if ((int)Val < 0) 5499 Val = -Val; 5500 // We use the simple binary decomposition method to generate the multiply 5501 // sequence. There are more optimal ways to do this (for example, 5502 // powi(x,15) generates one more multiply than it should), but this has 5503 // the benefit of being both really simple and much better than a libcall. 5504 SDValue Res; // Logically starts equal to 1.0 5505 SDValue CurSquare = LHS; 5506 // TODO: Intrinsics should have fast-math-flags that propagate to these 5507 // nodes. 5508 while (Val) { 5509 if (Val & 1) { 5510 if (Res.getNode()) 5511 Res = 5512 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5513 else 5514 Res = CurSquare; // 1.0*CurSquare. 5515 } 5516 5517 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5518 CurSquare, CurSquare); 5519 Val >>= 1; 5520 } 5521 5522 // If the original was negative, invert the result, producing 1/(x*x*x). 5523 if (RHSC->getSExtValue() < 0) 5524 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5525 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5526 return Res; 5527 } 5528 } 5529 5530 // Otherwise, expand to a libcall. 5531 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5532 } 5533 5534 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5535 SDValue LHS, SDValue RHS, SDValue Scale, 5536 SelectionDAG &DAG, const TargetLowering &TLI) { 5537 EVT VT = LHS.getValueType(); 5538 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5539 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5540 LLVMContext &Ctx = *DAG.getContext(); 5541 5542 // If the type is legal but the operation isn't, this node might survive all 5543 // the way to operation legalization. If we end up there and we do not have 5544 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5545 // node. 5546 5547 // Coax the legalizer into expanding the node during type legalization instead 5548 // by bumping the size by one bit. This will force it to Promote, enabling the 5549 // early expansion and avoiding the need to expand later. 5550 5551 // We don't have to do this if Scale is 0; that can always be expanded, unless 5552 // it's a saturating signed operation. Those can experience true integer 5553 // division overflow, a case which we must avoid. 5554 5555 // FIXME: We wouldn't have to do this (or any of the early 5556 // expansion/promotion) if it was possible to expand a libcall of an 5557 // illegal type during operation legalization. But it's not, so things 5558 // get a bit hacky. 5559 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5560 if ((ScaleInt > 0 || (Saturating && Signed)) && 5561 (TLI.isTypeLegal(VT) || 5562 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5563 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5564 Opcode, VT, ScaleInt); 5565 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5566 EVT PromVT; 5567 if (VT.isScalarInteger()) 5568 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5569 else if (VT.isVector()) { 5570 PromVT = VT.getVectorElementType(); 5571 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5572 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5573 } else 5574 llvm_unreachable("Wrong VT for DIVFIX?"); 5575 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5576 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5577 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5578 // For saturating operations, we need to shift up the LHS to get the 5579 // proper saturation width, and then shift down again afterwards. 5580 if (Saturating) 5581 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5582 DAG.getConstant(1, DL, ShiftTy)); 5583 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5584 if (Saturating) 5585 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5586 DAG.getConstant(1, DL, ShiftTy)); 5587 return DAG.getZExtOrTrunc(Res, DL, VT); 5588 } 5589 } 5590 5591 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5592 } 5593 5594 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5595 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5596 static void 5597 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5598 const SDValue &N) { 5599 switch (N.getOpcode()) { 5600 case ISD::CopyFromReg: { 5601 SDValue Op = N.getOperand(1); 5602 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5603 Op.getValueType().getSizeInBits()); 5604 return; 5605 } 5606 case ISD::BITCAST: 5607 case ISD::AssertZext: 5608 case ISD::AssertSext: 5609 case ISD::TRUNCATE: 5610 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5611 return; 5612 case ISD::BUILD_PAIR: 5613 case ISD::BUILD_VECTOR: 5614 case ISD::CONCAT_VECTORS: 5615 for (SDValue Op : N->op_values()) 5616 getUnderlyingArgRegs(Regs, Op); 5617 return; 5618 default: 5619 return; 5620 } 5621 } 5622 5623 /// If the DbgValueInst is a dbg_value of a function argument, create the 5624 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5625 /// instruction selection, they will be inserted to the entry BB. 5626 /// We don't currently support this for variadic dbg_values, as they shouldn't 5627 /// appear for function arguments or in the prologue. 5628 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5629 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5630 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5631 const Argument *Arg = dyn_cast<Argument>(V); 5632 if (!Arg) 5633 return false; 5634 5635 MachineFunction &MF = DAG.getMachineFunction(); 5636 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5637 5638 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5639 // we've been asked to pursue. 5640 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5641 bool Indirect) { 5642 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5643 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5644 // pointing at the VReg, which will be patched up later. 5645 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5646 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5647 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5648 /* isKill */ false, /* isDead */ false, 5649 /* isUndef */ false, /* isEarlyClobber */ false, 5650 /* SubReg */ 0, /* isDebug */ true)}); 5651 5652 auto *NewDIExpr = FragExpr; 5653 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5654 // the DIExpression. 5655 if (Indirect) 5656 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5657 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5658 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5659 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5660 } else { 5661 // Create a completely standard DBG_VALUE. 5662 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5663 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5664 } 5665 }; 5666 5667 if (Kind == FuncArgumentDbgValueKind::Value) { 5668 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5669 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5670 // the entry block. 5671 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5672 if (!IsInEntryBlock) 5673 return false; 5674 5675 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5676 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5677 // variable that also is a param. 5678 // 5679 // Although, if we are at the top of the entry block already, we can still 5680 // emit using ArgDbgValue. This might catch some situations when the 5681 // dbg.value refers to an argument that isn't used in the entry block, so 5682 // any CopyToReg node would be optimized out and the only way to express 5683 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5684 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5685 // we should only emit as ArgDbgValue if the Variable is an argument to the 5686 // current function, and the dbg.value intrinsic is found in the entry 5687 // block. 5688 bool VariableIsFunctionInputArg = Variable->isParameter() && 5689 !DL->getInlinedAt(); 5690 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5691 if (!IsInPrologue && !VariableIsFunctionInputArg) 5692 return false; 5693 5694 // Here we assume that a function argument on IR level only can be used to 5695 // describe one input parameter on source level. If we for example have 5696 // source code like this 5697 // 5698 // struct A { long x, y; }; 5699 // void foo(struct A a, long b) { 5700 // ... 5701 // b = a.x; 5702 // ... 5703 // } 5704 // 5705 // and IR like this 5706 // 5707 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5708 // entry: 5709 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5710 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5711 // call void @llvm.dbg.value(metadata i32 %b, "b", 5712 // ... 5713 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5714 // ... 5715 // 5716 // then the last dbg.value is describing a parameter "b" using a value that 5717 // is an argument. But since we already has used %a1 to describe a parameter 5718 // we should not handle that last dbg.value here (that would result in an 5719 // incorrect hoisting of the DBG_VALUE to the function entry). 5720 // Notice that we allow one dbg.value per IR level argument, to accommodate 5721 // for the situation with fragments above. 5722 if (VariableIsFunctionInputArg) { 5723 unsigned ArgNo = Arg->getArgNo(); 5724 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5725 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5726 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5727 return false; 5728 FuncInfo.DescribedArgs.set(ArgNo); 5729 } 5730 } 5731 5732 bool IsIndirect = false; 5733 std::optional<MachineOperand> Op; 5734 // Some arguments' frame index is recorded during argument lowering. 5735 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5736 if (FI != std::numeric_limits<int>::max()) 5737 Op = MachineOperand::CreateFI(FI); 5738 5739 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5740 if (!Op && N.getNode()) { 5741 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5742 Register Reg; 5743 if (ArgRegsAndSizes.size() == 1) 5744 Reg = ArgRegsAndSizes.front().first; 5745 5746 if (Reg && Reg.isVirtual()) { 5747 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5748 Register PR = RegInfo.getLiveInPhysReg(Reg); 5749 if (PR) 5750 Reg = PR; 5751 } 5752 if (Reg) { 5753 Op = MachineOperand::CreateReg(Reg, false); 5754 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5755 } 5756 } 5757 5758 if (!Op && N.getNode()) { 5759 // Check if frame index is available. 5760 SDValue LCandidate = peekThroughBitcasts(N); 5761 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5762 if (FrameIndexSDNode *FINode = 5763 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5764 Op = MachineOperand::CreateFI(FINode->getIndex()); 5765 } 5766 5767 if (!Op) { 5768 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5769 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5770 SplitRegs) { 5771 unsigned Offset = 0; 5772 for (const auto &RegAndSize : SplitRegs) { 5773 // If the expression is already a fragment, the current register 5774 // offset+size might extend beyond the fragment. In this case, only 5775 // the register bits that are inside the fragment are relevant. 5776 int RegFragmentSizeInBits = RegAndSize.second; 5777 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5778 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5779 // The register is entirely outside the expression fragment, 5780 // so is irrelevant for debug info. 5781 if (Offset >= ExprFragmentSizeInBits) 5782 break; 5783 // The register is partially outside the expression fragment, only 5784 // the low bits within the fragment are relevant for debug info. 5785 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5786 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5787 } 5788 } 5789 5790 auto FragmentExpr = DIExpression::createFragmentExpression( 5791 Expr, Offset, RegFragmentSizeInBits); 5792 Offset += RegAndSize.second; 5793 // If a valid fragment expression cannot be created, the variable's 5794 // correct value cannot be determined and so it is set as Undef. 5795 if (!FragmentExpr) { 5796 SDDbgValue *SDV = DAG.getConstantDbgValue( 5797 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5798 DAG.AddDbgValue(SDV, false); 5799 continue; 5800 } 5801 MachineInstr *NewMI = 5802 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5803 Kind != FuncArgumentDbgValueKind::Value); 5804 FuncInfo.ArgDbgValues.push_back(NewMI); 5805 } 5806 }; 5807 5808 // Check if ValueMap has reg number. 5809 DenseMap<const Value *, Register>::const_iterator 5810 VMI = FuncInfo.ValueMap.find(V); 5811 if (VMI != FuncInfo.ValueMap.end()) { 5812 const auto &TLI = DAG.getTargetLoweringInfo(); 5813 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5814 V->getType(), std::nullopt); 5815 if (RFV.occupiesMultipleRegs()) { 5816 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5817 return true; 5818 } 5819 5820 Op = MachineOperand::CreateReg(VMI->second, false); 5821 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5822 } else if (ArgRegsAndSizes.size() > 1) { 5823 // This was split due to the calling convention, and no virtual register 5824 // mapping exists for the value. 5825 splitMultiRegDbgValue(ArgRegsAndSizes); 5826 return true; 5827 } 5828 } 5829 5830 if (!Op) 5831 return false; 5832 5833 assert(Variable->isValidLocationForIntrinsic(DL) && 5834 "Expected inlined-at fields to agree"); 5835 MachineInstr *NewMI = nullptr; 5836 5837 if (Op->isReg()) 5838 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5839 else 5840 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5841 Variable, Expr); 5842 5843 // Otherwise, use ArgDbgValues. 5844 FuncInfo.ArgDbgValues.push_back(NewMI); 5845 return true; 5846 } 5847 5848 /// Return the appropriate SDDbgValue based on N. 5849 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5850 DILocalVariable *Variable, 5851 DIExpression *Expr, 5852 const DebugLoc &dl, 5853 unsigned DbgSDNodeOrder) { 5854 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5855 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5856 // stack slot locations. 5857 // 5858 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5859 // debug values here after optimization: 5860 // 5861 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5862 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5863 // 5864 // Both describe the direct values of their associated variables. 5865 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5866 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5867 } 5868 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5869 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5870 } 5871 5872 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5873 switch (Intrinsic) { 5874 case Intrinsic::smul_fix: 5875 return ISD::SMULFIX; 5876 case Intrinsic::umul_fix: 5877 return ISD::UMULFIX; 5878 case Intrinsic::smul_fix_sat: 5879 return ISD::SMULFIXSAT; 5880 case Intrinsic::umul_fix_sat: 5881 return ISD::UMULFIXSAT; 5882 case Intrinsic::sdiv_fix: 5883 return ISD::SDIVFIX; 5884 case Intrinsic::udiv_fix: 5885 return ISD::UDIVFIX; 5886 case Intrinsic::sdiv_fix_sat: 5887 return ISD::SDIVFIXSAT; 5888 case Intrinsic::udiv_fix_sat: 5889 return ISD::UDIVFIXSAT; 5890 default: 5891 llvm_unreachable("Unhandled fixed point intrinsic"); 5892 } 5893 } 5894 5895 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5896 const char *FunctionName) { 5897 assert(FunctionName && "FunctionName must not be nullptr"); 5898 SDValue Callee = DAG.getExternalSymbol( 5899 FunctionName, 5900 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5901 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5902 } 5903 5904 /// Given a @llvm.call.preallocated.setup, return the corresponding 5905 /// preallocated call. 5906 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5907 assert(cast<CallBase>(PreallocatedSetup) 5908 ->getCalledFunction() 5909 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5910 "expected call_preallocated_setup Value"); 5911 for (const auto *U : PreallocatedSetup->users()) { 5912 auto *UseCall = cast<CallBase>(U); 5913 const Function *Fn = UseCall->getCalledFunction(); 5914 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5915 return UseCall; 5916 } 5917 } 5918 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5919 } 5920 5921 /// If DI is a debug value with an EntryValue expression, lower it using the 5922 /// corresponding physical register of the associated Argument value 5923 /// (guaranteed to exist by the verifier). 5924 bool SelectionDAGBuilder::visitEntryValueDbgValue(const DbgValueInst &DI) { 5925 DILocalVariable *Variable = DI.getVariable(); 5926 DIExpression *Expr = DI.getExpression(); 5927 if (!Expr->isEntryValue() || !hasSingleElement(DI.getValues())) 5928 return false; 5929 5930 // These properties are guaranteed by the verifier. 5931 Argument *Arg = cast<Argument>(DI.getValue(0)); 5932 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 5933 5934 auto ArgIt = FuncInfo.ValueMap.find(Arg); 5935 if (ArgIt == FuncInfo.ValueMap.end()) { 5936 LLVM_DEBUG( 5937 dbgs() << "Dropping dbg.value: expression is entry_value but " 5938 "couldn't find an associated register for the Argument\n"); 5939 return true; 5940 } 5941 Register ArgVReg = ArgIt->getSecond(); 5942 5943 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 5944 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 5945 SDDbgValue *SDV = 5946 DAG.getVRegDbgValue(Variable, Expr, PhysReg, false /*IsIndidrect*/, 5947 DI.getDebugLoc(), SDNodeOrder); 5948 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 5949 return true; 5950 } 5951 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 5952 "couldn't find a physical register\n"); 5953 return true; 5954 } 5955 5956 /// Lower the call to the specified intrinsic function. 5957 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5958 unsigned Intrinsic) { 5959 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5960 SDLoc sdl = getCurSDLoc(); 5961 DebugLoc dl = getCurDebugLoc(); 5962 SDValue Res; 5963 5964 SDNodeFlags Flags; 5965 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5966 Flags.copyFMF(*FPOp); 5967 5968 switch (Intrinsic) { 5969 default: 5970 // By default, turn this into a target intrinsic node. 5971 visitTargetIntrinsic(I, Intrinsic); 5972 return; 5973 case Intrinsic::vscale: { 5974 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5975 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5976 return; 5977 } 5978 case Intrinsic::vastart: visitVAStart(I); return; 5979 case Intrinsic::vaend: visitVAEnd(I); return; 5980 case Intrinsic::vacopy: visitVACopy(I); return; 5981 case Intrinsic::returnaddress: 5982 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5983 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5984 getValue(I.getArgOperand(0)))); 5985 return; 5986 case Intrinsic::addressofreturnaddress: 5987 setValue(&I, 5988 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5989 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5990 return; 5991 case Intrinsic::sponentry: 5992 setValue(&I, 5993 DAG.getNode(ISD::SPONENTRY, sdl, 5994 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5995 return; 5996 case Intrinsic::frameaddress: 5997 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5998 TLI.getFrameIndexTy(DAG.getDataLayout()), 5999 getValue(I.getArgOperand(0)))); 6000 return; 6001 case Intrinsic::read_volatile_register: 6002 case Intrinsic::read_register: { 6003 Value *Reg = I.getArgOperand(0); 6004 SDValue Chain = getRoot(); 6005 SDValue RegName = 6006 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6007 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6008 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6009 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6010 setValue(&I, Res); 6011 DAG.setRoot(Res.getValue(1)); 6012 return; 6013 } 6014 case Intrinsic::write_register: { 6015 Value *Reg = I.getArgOperand(0); 6016 Value *RegValue = I.getArgOperand(1); 6017 SDValue Chain = getRoot(); 6018 SDValue RegName = 6019 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6020 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6021 RegName, getValue(RegValue))); 6022 return; 6023 } 6024 case Intrinsic::memcpy: { 6025 const auto &MCI = cast<MemCpyInst>(I); 6026 SDValue Op1 = getValue(I.getArgOperand(0)); 6027 SDValue Op2 = getValue(I.getArgOperand(1)); 6028 SDValue Op3 = getValue(I.getArgOperand(2)); 6029 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6030 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6031 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6032 Align Alignment = std::min(DstAlign, SrcAlign); 6033 bool isVol = MCI.isVolatile(); 6034 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6035 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6036 // node. 6037 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6038 SDValue MC = DAG.getMemcpy( 6039 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6040 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6041 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6042 updateDAGForMaybeTailCall(MC); 6043 return; 6044 } 6045 case Intrinsic::memcpy_inline: { 6046 const auto &MCI = cast<MemCpyInlineInst>(I); 6047 SDValue Dst = getValue(I.getArgOperand(0)); 6048 SDValue Src = getValue(I.getArgOperand(1)); 6049 SDValue Size = getValue(I.getArgOperand(2)); 6050 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6051 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6052 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6053 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6054 Align Alignment = std::min(DstAlign, SrcAlign); 6055 bool isVol = MCI.isVolatile(); 6056 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6057 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6058 // node. 6059 SDValue MC = DAG.getMemcpy( 6060 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6061 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6062 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6063 updateDAGForMaybeTailCall(MC); 6064 return; 6065 } 6066 case Intrinsic::memset: { 6067 const auto &MSI = cast<MemSetInst>(I); 6068 SDValue Op1 = getValue(I.getArgOperand(0)); 6069 SDValue Op2 = getValue(I.getArgOperand(1)); 6070 SDValue Op3 = getValue(I.getArgOperand(2)); 6071 // @llvm.memset defines 0 and 1 to both mean no alignment. 6072 Align Alignment = MSI.getDestAlign().valueOrOne(); 6073 bool isVol = MSI.isVolatile(); 6074 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6075 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6076 SDValue MS = DAG.getMemset( 6077 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6078 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6079 updateDAGForMaybeTailCall(MS); 6080 return; 6081 } 6082 case Intrinsic::memset_inline: { 6083 const auto &MSII = cast<MemSetInlineInst>(I); 6084 SDValue Dst = getValue(I.getArgOperand(0)); 6085 SDValue Value = getValue(I.getArgOperand(1)); 6086 SDValue Size = getValue(I.getArgOperand(2)); 6087 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6088 // @llvm.memset defines 0 and 1 to both mean no alignment. 6089 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6090 bool isVol = MSII.isVolatile(); 6091 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6092 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6093 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6094 /* AlwaysInline */ true, isTC, 6095 MachinePointerInfo(I.getArgOperand(0)), 6096 I.getAAMetadata()); 6097 updateDAGForMaybeTailCall(MC); 6098 return; 6099 } 6100 case Intrinsic::memmove: { 6101 const auto &MMI = cast<MemMoveInst>(I); 6102 SDValue Op1 = getValue(I.getArgOperand(0)); 6103 SDValue Op2 = getValue(I.getArgOperand(1)); 6104 SDValue Op3 = getValue(I.getArgOperand(2)); 6105 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6106 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6107 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6108 Align Alignment = std::min(DstAlign, SrcAlign); 6109 bool isVol = MMI.isVolatile(); 6110 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6111 // FIXME: Support passing different dest/src alignments to the memmove DAG 6112 // node. 6113 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6114 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6115 isTC, MachinePointerInfo(I.getArgOperand(0)), 6116 MachinePointerInfo(I.getArgOperand(1)), 6117 I.getAAMetadata(), AA); 6118 updateDAGForMaybeTailCall(MM); 6119 return; 6120 } 6121 case Intrinsic::memcpy_element_unordered_atomic: { 6122 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6123 SDValue Dst = getValue(MI.getRawDest()); 6124 SDValue Src = getValue(MI.getRawSource()); 6125 SDValue Length = getValue(MI.getLength()); 6126 6127 Type *LengthTy = MI.getLength()->getType(); 6128 unsigned ElemSz = MI.getElementSizeInBytes(); 6129 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6130 SDValue MC = 6131 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6132 isTC, MachinePointerInfo(MI.getRawDest()), 6133 MachinePointerInfo(MI.getRawSource())); 6134 updateDAGForMaybeTailCall(MC); 6135 return; 6136 } 6137 case Intrinsic::memmove_element_unordered_atomic: { 6138 auto &MI = cast<AtomicMemMoveInst>(I); 6139 SDValue Dst = getValue(MI.getRawDest()); 6140 SDValue Src = getValue(MI.getRawSource()); 6141 SDValue Length = getValue(MI.getLength()); 6142 6143 Type *LengthTy = MI.getLength()->getType(); 6144 unsigned ElemSz = MI.getElementSizeInBytes(); 6145 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6146 SDValue MC = 6147 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6148 isTC, MachinePointerInfo(MI.getRawDest()), 6149 MachinePointerInfo(MI.getRawSource())); 6150 updateDAGForMaybeTailCall(MC); 6151 return; 6152 } 6153 case Intrinsic::memset_element_unordered_atomic: { 6154 auto &MI = cast<AtomicMemSetInst>(I); 6155 SDValue Dst = getValue(MI.getRawDest()); 6156 SDValue Val = getValue(MI.getValue()); 6157 SDValue Length = getValue(MI.getLength()); 6158 6159 Type *LengthTy = MI.getLength()->getType(); 6160 unsigned ElemSz = MI.getElementSizeInBytes(); 6161 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6162 SDValue MC = 6163 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6164 isTC, MachinePointerInfo(MI.getRawDest())); 6165 updateDAGForMaybeTailCall(MC); 6166 return; 6167 } 6168 case Intrinsic::call_preallocated_setup: { 6169 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6170 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6171 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6172 getRoot(), SrcValue); 6173 setValue(&I, Res); 6174 DAG.setRoot(Res); 6175 return; 6176 } 6177 case Intrinsic::call_preallocated_arg: { 6178 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6179 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6180 SDValue Ops[3]; 6181 Ops[0] = getRoot(); 6182 Ops[1] = SrcValue; 6183 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6184 MVT::i32); // arg index 6185 SDValue Res = DAG.getNode( 6186 ISD::PREALLOCATED_ARG, sdl, 6187 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6188 setValue(&I, Res); 6189 DAG.setRoot(Res.getValue(1)); 6190 return; 6191 } 6192 case Intrinsic::dbg_declare: { 6193 const auto &DI = cast<DbgDeclareInst>(I); 6194 // Debug intrinsics are handled separately in assignment tracking mode. 6195 // Some intrinsics are handled right after Argument lowering. 6196 if (AssignmentTrackingEnabled || 6197 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6198 return; 6199 // Assume dbg.declare can not currently use DIArgList, i.e. 6200 // it is non-variadic. 6201 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6202 DILocalVariable *Variable = DI.getVariable(); 6203 DIExpression *Expression = DI.getExpression(); 6204 dropDanglingDebugInfo(Variable, Expression); 6205 assert(Variable && "Missing variable"); 6206 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6207 << "\n"); 6208 // Check if address has undef value. 6209 const Value *Address = DI.getVariableLocationOp(0); 6210 if (!Address || isa<UndefValue>(Address) || 6211 (Address->use_empty() && !isa<Argument>(Address))) { 6212 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6213 << " (bad/undef/unused-arg address)\n"); 6214 return; 6215 } 6216 6217 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6218 6219 SDValue &N = NodeMap[Address]; 6220 if (!N.getNode() && isa<Argument>(Address)) 6221 // Check unused arguments map. 6222 N = UnusedArgNodeMap[Address]; 6223 SDDbgValue *SDV; 6224 if (N.getNode()) { 6225 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6226 Address = BCI->getOperand(0); 6227 // Parameters are handled specially. 6228 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6229 if (isParameter && FINode) { 6230 // Byval parameter. We have a frame index at this point. 6231 SDV = 6232 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6233 /*IsIndirect*/ true, dl, SDNodeOrder); 6234 } else if (isa<Argument>(Address)) { 6235 // Address is an argument, so try to emit its dbg value using 6236 // virtual register info from the FuncInfo.ValueMap. 6237 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6238 FuncArgumentDbgValueKind::Declare, N); 6239 return; 6240 } else { 6241 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6242 true, dl, SDNodeOrder); 6243 } 6244 DAG.AddDbgValue(SDV, isParameter); 6245 } else { 6246 // If Address is an argument then try to emit its dbg value using 6247 // virtual register info from the FuncInfo.ValueMap. 6248 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6249 FuncArgumentDbgValueKind::Declare, N)) { 6250 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6251 << " (could not emit func-arg dbg_value)\n"); 6252 } 6253 } 6254 return; 6255 } 6256 case Intrinsic::dbg_label: { 6257 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6258 DILabel *Label = DI.getLabel(); 6259 assert(Label && "Missing label"); 6260 6261 SDDbgLabel *SDV; 6262 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6263 DAG.AddDbgLabel(SDV); 6264 return; 6265 } 6266 case Intrinsic::dbg_assign: { 6267 // Debug intrinsics are handled seperately in assignment tracking mode. 6268 if (AssignmentTrackingEnabled) 6269 return; 6270 // If assignment tracking hasn't been enabled then fall through and treat 6271 // the dbg.assign as a dbg.value. 6272 [[fallthrough]]; 6273 } 6274 case Intrinsic::dbg_value: { 6275 // Debug intrinsics are handled seperately in assignment tracking mode. 6276 if (AssignmentTrackingEnabled) 6277 return; 6278 const DbgValueInst &DI = cast<DbgValueInst>(I); 6279 assert(DI.getVariable() && "Missing variable"); 6280 6281 DILocalVariable *Variable = DI.getVariable(); 6282 DIExpression *Expression = DI.getExpression(); 6283 dropDanglingDebugInfo(Variable, Expression); 6284 6285 if (visitEntryValueDbgValue(DI)) 6286 return; 6287 6288 if (DI.isKillLocation()) { 6289 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6290 return; 6291 } 6292 6293 SmallVector<Value *, 4> Values(DI.getValues()); 6294 if (Values.empty()) 6295 return; 6296 6297 bool IsVariadic = DI.hasArgList(); 6298 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6299 SDNodeOrder, IsVariadic)) 6300 addDanglingDebugInfo(&DI, SDNodeOrder); 6301 return; 6302 } 6303 6304 case Intrinsic::eh_typeid_for: { 6305 // Find the type id for the given typeinfo. 6306 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6307 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6308 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6309 setValue(&I, Res); 6310 return; 6311 } 6312 6313 case Intrinsic::eh_return_i32: 6314 case Intrinsic::eh_return_i64: 6315 DAG.getMachineFunction().setCallsEHReturn(true); 6316 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6317 MVT::Other, 6318 getControlRoot(), 6319 getValue(I.getArgOperand(0)), 6320 getValue(I.getArgOperand(1)))); 6321 return; 6322 case Intrinsic::eh_unwind_init: 6323 DAG.getMachineFunction().setCallsUnwindInit(true); 6324 return; 6325 case Intrinsic::eh_dwarf_cfa: 6326 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6327 TLI.getPointerTy(DAG.getDataLayout()), 6328 getValue(I.getArgOperand(0)))); 6329 return; 6330 case Intrinsic::eh_sjlj_callsite: { 6331 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6332 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6333 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6334 6335 MMI.setCurrentCallSite(CI->getZExtValue()); 6336 return; 6337 } 6338 case Intrinsic::eh_sjlj_functioncontext: { 6339 // Get and store the index of the function context. 6340 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6341 AllocaInst *FnCtx = 6342 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6343 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6344 MFI.setFunctionContextIndex(FI); 6345 return; 6346 } 6347 case Intrinsic::eh_sjlj_setjmp: { 6348 SDValue Ops[2]; 6349 Ops[0] = getRoot(); 6350 Ops[1] = getValue(I.getArgOperand(0)); 6351 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6352 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6353 setValue(&I, Op.getValue(0)); 6354 DAG.setRoot(Op.getValue(1)); 6355 return; 6356 } 6357 case Intrinsic::eh_sjlj_longjmp: 6358 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6359 getRoot(), getValue(I.getArgOperand(0)))); 6360 return; 6361 case Intrinsic::eh_sjlj_setup_dispatch: 6362 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6363 getRoot())); 6364 return; 6365 case Intrinsic::masked_gather: 6366 visitMaskedGather(I); 6367 return; 6368 case Intrinsic::masked_load: 6369 visitMaskedLoad(I); 6370 return; 6371 case Intrinsic::masked_scatter: 6372 visitMaskedScatter(I); 6373 return; 6374 case Intrinsic::masked_store: 6375 visitMaskedStore(I); 6376 return; 6377 case Intrinsic::masked_expandload: 6378 visitMaskedLoad(I, true /* IsExpanding */); 6379 return; 6380 case Intrinsic::masked_compressstore: 6381 visitMaskedStore(I, true /* IsCompressing */); 6382 return; 6383 case Intrinsic::powi: 6384 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6385 getValue(I.getArgOperand(1)), DAG)); 6386 return; 6387 case Intrinsic::log: 6388 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6389 return; 6390 case Intrinsic::log2: 6391 setValue(&I, 6392 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6393 return; 6394 case Intrinsic::log10: 6395 setValue(&I, 6396 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6397 return; 6398 case Intrinsic::exp: 6399 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6400 return; 6401 case Intrinsic::exp2: 6402 setValue(&I, 6403 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6404 return; 6405 case Intrinsic::pow: 6406 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6407 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6408 return; 6409 case Intrinsic::sqrt: 6410 case Intrinsic::fabs: 6411 case Intrinsic::sin: 6412 case Intrinsic::cos: 6413 case Intrinsic::exp10: 6414 case Intrinsic::floor: 6415 case Intrinsic::ceil: 6416 case Intrinsic::trunc: 6417 case Intrinsic::rint: 6418 case Intrinsic::nearbyint: 6419 case Intrinsic::round: 6420 case Intrinsic::roundeven: 6421 case Intrinsic::canonicalize: { 6422 unsigned Opcode; 6423 switch (Intrinsic) { 6424 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6425 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6426 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6427 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6428 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6429 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6430 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6431 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6432 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6433 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6434 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6435 case Intrinsic::round: Opcode = ISD::FROUND; break; 6436 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6437 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6438 } 6439 6440 setValue(&I, DAG.getNode(Opcode, sdl, 6441 getValue(I.getArgOperand(0)).getValueType(), 6442 getValue(I.getArgOperand(0)), Flags)); 6443 return; 6444 } 6445 case Intrinsic::lround: 6446 case Intrinsic::llround: 6447 case Intrinsic::lrint: 6448 case Intrinsic::llrint: { 6449 unsigned Opcode; 6450 switch (Intrinsic) { 6451 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6452 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6453 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6454 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6455 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6456 } 6457 6458 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6459 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6460 getValue(I.getArgOperand(0)))); 6461 return; 6462 } 6463 case Intrinsic::minnum: 6464 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6465 getValue(I.getArgOperand(0)).getValueType(), 6466 getValue(I.getArgOperand(0)), 6467 getValue(I.getArgOperand(1)), Flags)); 6468 return; 6469 case Intrinsic::maxnum: 6470 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6471 getValue(I.getArgOperand(0)).getValueType(), 6472 getValue(I.getArgOperand(0)), 6473 getValue(I.getArgOperand(1)), Flags)); 6474 return; 6475 case Intrinsic::minimum: 6476 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6477 getValue(I.getArgOperand(0)).getValueType(), 6478 getValue(I.getArgOperand(0)), 6479 getValue(I.getArgOperand(1)), Flags)); 6480 return; 6481 case Intrinsic::maximum: 6482 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6483 getValue(I.getArgOperand(0)).getValueType(), 6484 getValue(I.getArgOperand(0)), 6485 getValue(I.getArgOperand(1)), Flags)); 6486 return; 6487 case Intrinsic::copysign: 6488 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6489 getValue(I.getArgOperand(0)).getValueType(), 6490 getValue(I.getArgOperand(0)), 6491 getValue(I.getArgOperand(1)), Flags)); 6492 return; 6493 case Intrinsic::ldexp: 6494 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6495 getValue(I.getArgOperand(0)).getValueType(), 6496 getValue(I.getArgOperand(0)), 6497 getValue(I.getArgOperand(1)), Flags)); 6498 return; 6499 case Intrinsic::frexp: { 6500 SmallVector<EVT, 2> ValueVTs; 6501 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6502 SDVTList VTs = DAG.getVTList(ValueVTs); 6503 setValue(&I, 6504 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6505 return; 6506 } 6507 case Intrinsic::arithmetic_fence: { 6508 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6509 getValue(I.getArgOperand(0)).getValueType(), 6510 getValue(I.getArgOperand(0)), Flags)); 6511 return; 6512 } 6513 case Intrinsic::fma: 6514 setValue(&I, DAG.getNode( 6515 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6516 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6517 getValue(I.getArgOperand(2)), Flags)); 6518 return; 6519 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6520 case Intrinsic::INTRINSIC: 6521 #include "llvm/IR/ConstrainedOps.def" 6522 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6523 return; 6524 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6525 #include "llvm/IR/VPIntrinsics.def" 6526 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6527 return; 6528 case Intrinsic::fptrunc_round: { 6529 // Get the last argument, the metadata and convert it to an integer in the 6530 // call 6531 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6532 std::optional<RoundingMode> RoundMode = 6533 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6534 6535 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6536 6537 // Propagate fast-math-flags from IR to node(s). 6538 SDNodeFlags Flags; 6539 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6540 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6541 6542 SDValue Result; 6543 Result = DAG.getNode( 6544 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6545 DAG.getTargetConstant((int)*RoundMode, sdl, 6546 TLI.getPointerTy(DAG.getDataLayout()))); 6547 setValue(&I, Result); 6548 6549 return; 6550 } 6551 case Intrinsic::fmuladd: { 6552 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6553 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6554 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6555 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6556 getValue(I.getArgOperand(0)).getValueType(), 6557 getValue(I.getArgOperand(0)), 6558 getValue(I.getArgOperand(1)), 6559 getValue(I.getArgOperand(2)), Flags)); 6560 } else { 6561 // TODO: Intrinsic calls should have fast-math-flags. 6562 SDValue Mul = DAG.getNode( 6563 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6564 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6565 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6566 getValue(I.getArgOperand(0)).getValueType(), 6567 Mul, getValue(I.getArgOperand(2)), Flags); 6568 setValue(&I, Add); 6569 } 6570 return; 6571 } 6572 case Intrinsic::convert_to_fp16: 6573 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6574 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6575 getValue(I.getArgOperand(0)), 6576 DAG.getTargetConstant(0, sdl, 6577 MVT::i32)))); 6578 return; 6579 case Intrinsic::convert_from_fp16: 6580 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6581 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6582 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6583 getValue(I.getArgOperand(0))))); 6584 return; 6585 case Intrinsic::fptosi_sat: { 6586 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6587 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6588 getValue(I.getArgOperand(0)), 6589 DAG.getValueType(VT.getScalarType()))); 6590 return; 6591 } 6592 case Intrinsic::fptoui_sat: { 6593 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6594 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6595 getValue(I.getArgOperand(0)), 6596 DAG.getValueType(VT.getScalarType()))); 6597 return; 6598 } 6599 case Intrinsic::set_rounding: 6600 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6601 {getRoot(), getValue(I.getArgOperand(0))}); 6602 setValue(&I, Res); 6603 DAG.setRoot(Res.getValue(0)); 6604 return; 6605 case Intrinsic::is_fpclass: { 6606 const DataLayout DLayout = DAG.getDataLayout(); 6607 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6608 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6609 FPClassTest Test = static_cast<FPClassTest>( 6610 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6611 MachineFunction &MF = DAG.getMachineFunction(); 6612 const Function &F = MF.getFunction(); 6613 SDValue Op = getValue(I.getArgOperand(0)); 6614 SDNodeFlags Flags; 6615 Flags.setNoFPExcept( 6616 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6617 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6618 // expansion can use illegal types. Making expansion early allows 6619 // legalizing these types prior to selection. 6620 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6621 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6622 setValue(&I, Result); 6623 return; 6624 } 6625 6626 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6627 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6628 setValue(&I, V); 6629 return; 6630 } 6631 case Intrinsic::get_fpenv: { 6632 const DataLayout DLayout = DAG.getDataLayout(); 6633 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 6634 Align TempAlign = DAG.getEVTAlign(EnvVT); 6635 SDValue Chain = getRoot(); 6636 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 6637 // and temporary storage in stack. 6638 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 6639 Res = DAG.getNode( 6640 ISD::GET_FPENV, sdl, 6641 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6642 MVT::Other), 6643 Chain); 6644 } else { 6645 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6646 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6647 auto MPI = 6648 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6649 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6650 MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize, 6651 TempAlign); 6652 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6653 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 6654 } 6655 setValue(&I, Res); 6656 DAG.setRoot(Res.getValue(1)); 6657 return; 6658 } 6659 case Intrinsic::set_fpenv: { 6660 const DataLayout DLayout = DAG.getDataLayout(); 6661 SDValue Env = getValue(I.getArgOperand(0)); 6662 EVT EnvVT = Env.getValueType(); 6663 Align TempAlign = DAG.getEVTAlign(EnvVT); 6664 SDValue Chain = getRoot(); 6665 // If SET_FPENV is custom or legal, use it. Otherwise use loading 6666 // environment from memory. 6667 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 6668 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 6669 } else { 6670 // Allocate space in stack, copy environment bits into it and use this 6671 // memory in SET_FPENV_MEM. 6672 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6673 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6674 auto MPI = 6675 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6676 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 6677 MachineMemOperand::MOStore); 6678 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6679 MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize, 6680 TempAlign); 6681 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6682 } 6683 DAG.setRoot(Chain); 6684 return; 6685 } 6686 case Intrinsic::reset_fpenv: 6687 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 6688 return; 6689 case Intrinsic::get_fpmode: 6690 Res = DAG.getNode( 6691 ISD::GET_FPMODE, sdl, 6692 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6693 MVT::Other), 6694 DAG.getRoot()); 6695 setValue(&I, Res); 6696 DAG.setRoot(Res.getValue(1)); 6697 return; 6698 case Intrinsic::set_fpmode: 6699 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 6700 getValue(I.getArgOperand(0))); 6701 DAG.setRoot(Res); 6702 return; 6703 case Intrinsic::reset_fpmode: { 6704 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 6705 DAG.setRoot(Res); 6706 return; 6707 } 6708 case Intrinsic::pcmarker: { 6709 SDValue Tmp = getValue(I.getArgOperand(0)); 6710 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6711 return; 6712 } 6713 case Intrinsic::readcyclecounter: { 6714 SDValue Op = getRoot(); 6715 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6716 DAG.getVTList(MVT::i64, MVT::Other), Op); 6717 setValue(&I, Res); 6718 DAG.setRoot(Res.getValue(1)); 6719 return; 6720 } 6721 case Intrinsic::bitreverse: 6722 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6723 getValue(I.getArgOperand(0)).getValueType(), 6724 getValue(I.getArgOperand(0)))); 6725 return; 6726 case Intrinsic::bswap: 6727 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6728 getValue(I.getArgOperand(0)).getValueType(), 6729 getValue(I.getArgOperand(0)))); 6730 return; 6731 case Intrinsic::cttz: { 6732 SDValue Arg = getValue(I.getArgOperand(0)); 6733 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6734 EVT Ty = Arg.getValueType(); 6735 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6736 sdl, Ty, Arg)); 6737 return; 6738 } 6739 case Intrinsic::ctlz: { 6740 SDValue Arg = getValue(I.getArgOperand(0)); 6741 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6742 EVT Ty = Arg.getValueType(); 6743 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6744 sdl, Ty, Arg)); 6745 return; 6746 } 6747 case Intrinsic::ctpop: { 6748 SDValue Arg = getValue(I.getArgOperand(0)); 6749 EVT Ty = Arg.getValueType(); 6750 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6751 return; 6752 } 6753 case Intrinsic::fshl: 6754 case Intrinsic::fshr: { 6755 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6756 SDValue X = getValue(I.getArgOperand(0)); 6757 SDValue Y = getValue(I.getArgOperand(1)); 6758 SDValue Z = getValue(I.getArgOperand(2)); 6759 EVT VT = X.getValueType(); 6760 6761 if (X == Y) { 6762 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6763 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6764 } else { 6765 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6766 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6767 } 6768 return; 6769 } 6770 case Intrinsic::sadd_sat: { 6771 SDValue Op1 = getValue(I.getArgOperand(0)); 6772 SDValue Op2 = getValue(I.getArgOperand(1)); 6773 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6774 return; 6775 } 6776 case Intrinsic::uadd_sat: { 6777 SDValue Op1 = getValue(I.getArgOperand(0)); 6778 SDValue Op2 = getValue(I.getArgOperand(1)); 6779 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6780 return; 6781 } 6782 case Intrinsic::ssub_sat: { 6783 SDValue Op1 = getValue(I.getArgOperand(0)); 6784 SDValue Op2 = getValue(I.getArgOperand(1)); 6785 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6786 return; 6787 } 6788 case Intrinsic::usub_sat: { 6789 SDValue Op1 = getValue(I.getArgOperand(0)); 6790 SDValue Op2 = getValue(I.getArgOperand(1)); 6791 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6792 return; 6793 } 6794 case Intrinsic::sshl_sat: { 6795 SDValue Op1 = getValue(I.getArgOperand(0)); 6796 SDValue Op2 = getValue(I.getArgOperand(1)); 6797 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6798 return; 6799 } 6800 case Intrinsic::ushl_sat: { 6801 SDValue Op1 = getValue(I.getArgOperand(0)); 6802 SDValue Op2 = getValue(I.getArgOperand(1)); 6803 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6804 return; 6805 } 6806 case Intrinsic::smul_fix: 6807 case Intrinsic::umul_fix: 6808 case Intrinsic::smul_fix_sat: 6809 case Intrinsic::umul_fix_sat: { 6810 SDValue Op1 = getValue(I.getArgOperand(0)); 6811 SDValue Op2 = getValue(I.getArgOperand(1)); 6812 SDValue Op3 = getValue(I.getArgOperand(2)); 6813 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6814 Op1.getValueType(), Op1, Op2, Op3)); 6815 return; 6816 } 6817 case Intrinsic::sdiv_fix: 6818 case Intrinsic::udiv_fix: 6819 case Intrinsic::sdiv_fix_sat: 6820 case Intrinsic::udiv_fix_sat: { 6821 SDValue Op1 = getValue(I.getArgOperand(0)); 6822 SDValue Op2 = getValue(I.getArgOperand(1)); 6823 SDValue Op3 = getValue(I.getArgOperand(2)); 6824 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6825 Op1, Op2, Op3, DAG, TLI)); 6826 return; 6827 } 6828 case Intrinsic::smax: { 6829 SDValue Op1 = getValue(I.getArgOperand(0)); 6830 SDValue Op2 = getValue(I.getArgOperand(1)); 6831 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6832 return; 6833 } 6834 case Intrinsic::smin: { 6835 SDValue Op1 = getValue(I.getArgOperand(0)); 6836 SDValue Op2 = getValue(I.getArgOperand(1)); 6837 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6838 return; 6839 } 6840 case Intrinsic::umax: { 6841 SDValue Op1 = getValue(I.getArgOperand(0)); 6842 SDValue Op2 = getValue(I.getArgOperand(1)); 6843 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6844 return; 6845 } 6846 case Intrinsic::umin: { 6847 SDValue Op1 = getValue(I.getArgOperand(0)); 6848 SDValue Op2 = getValue(I.getArgOperand(1)); 6849 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6850 return; 6851 } 6852 case Intrinsic::abs: { 6853 // TODO: Preserve "int min is poison" arg in SDAG? 6854 SDValue Op1 = getValue(I.getArgOperand(0)); 6855 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6856 return; 6857 } 6858 case Intrinsic::stacksave: { 6859 SDValue Op = getRoot(); 6860 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6861 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6862 setValue(&I, Res); 6863 DAG.setRoot(Res.getValue(1)); 6864 return; 6865 } 6866 case Intrinsic::stackrestore: 6867 Res = getValue(I.getArgOperand(0)); 6868 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6869 return; 6870 case Intrinsic::get_dynamic_area_offset: { 6871 SDValue Op = getRoot(); 6872 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6873 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6874 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6875 // target. 6876 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6877 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6878 " intrinsic!"); 6879 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6880 Op); 6881 DAG.setRoot(Op); 6882 setValue(&I, Res); 6883 return; 6884 } 6885 case Intrinsic::stackguard: { 6886 MachineFunction &MF = DAG.getMachineFunction(); 6887 const Module &M = *MF.getFunction().getParent(); 6888 SDValue Chain = getRoot(); 6889 if (TLI.useLoadStackGuardNode()) { 6890 Res = getLoadStackGuard(DAG, sdl, Chain); 6891 } else { 6892 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6893 const Value *Global = TLI.getSDagStackGuard(M); 6894 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6895 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6896 MachinePointerInfo(Global, 0), Align, 6897 MachineMemOperand::MOVolatile); 6898 } 6899 if (TLI.useStackGuardXorFP()) 6900 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6901 DAG.setRoot(Chain); 6902 setValue(&I, Res); 6903 return; 6904 } 6905 case Intrinsic::stackprotector: { 6906 // Emit code into the DAG to store the stack guard onto the stack. 6907 MachineFunction &MF = DAG.getMachineFunction(); 6908 MachineFrameInfo &MFI = MF.getFrameInfo(); 6909 SDValue Src, Chain = getRoot(); 6910 6911 if (TLI.useLoadStackGuardNode()) 6912 Src = getLoadStackGuard(DAG, sdl, Chain); 6913 else 6914 Src = getValue(I.getArgOperand(0)); // The guard's value. 6915 6916 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6917 6918 int FI = FuncInfo.StaticAllocaMap[Slot]; 6919 MFI.setStackProtectorIndex(FI); 6920 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6921 6922 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6923 6924 // Store the stack protector onto the stack. 6925 Res = DAG.getStore( 6926 Chain, sdl, Src, FIN, 6927 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6928 MaybeAlign(), MachineMemOperand::MOVolatile); 6929 setValue(&I, Res); 6930 DAG.setRoot(Res); 6931 return; 6932 } 6933 case Intrinsic::objectsize: 6934 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6935 6936 case Intrinsic::is_constant: 6937 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6938 6939 case Intrinsic::annotation: 6940 case Intrinsic::ptr_annotation: 6941 case Intrinsic::launder_invariant_group: 6942 case Intrinsic::strip_invariant_group: 6943 // Drop the intrinsic, but forward the value 6944 setValue(&I, getValue(I.getOperand(0))); 6945 return; 6946 6947 case Intrinsic::assume: 6948 case Intrinsic::experimental_noalias_scope_decl: 6949 case Intrinsic::var_annotation: 6950 case Intrinsic::sideeffect: 6951 // Discard annotate attributes, noalias scope declarations, assumptions, and 6952 // artificial side-effects. 6953 return; 6954 6955 case Intrinsic::codeview_annotation: { 6956 // Emit a label associated with this metadata. 6957 MachineFunction &MF = DAG.getMachineFunction(); 6958 MCSymbol *Label = 6959 MF.getMMI().getContext().createTempSymbol("annotation", true); 6960 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6961 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6962 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6963 DAG.setRoot(Res); 6964 return; 6965 } 6966 6967 case Intrinsic::init_trampoline: { 6968 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6969 6970 SDValue Ops[6]; 6971 Ops[0] = getRoot(); 6972 Ops[1] = getValue(I.getArgOperand(0)); 6973 Ops[2] = getValue(I.getArgOperand(1)); 6974 Ops[3] = getValue(I.getArgOperand(2)); 6975 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6976 Ops[5] = DAG.getSrcValue(F); 6977 6978 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6979 6980 DAG.setRoot(Res); 6981 return; 6982 } 6983 case Intrinsic::adjust_trampoline: 6984 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6985 TLI.getPointerTy(DAG.getDataLayout()), 6986 getValue(I.getArgOperand(0)))); 6987 return; 6988 case Intrinsic::gcroot: { 6989 assert(DAG.getMachineFunction().getFunction().hasGC() && 6990 "only valid in functions with gc specified, enforced by Verifier"); 6991 assert(GFI && "implied by previous"); 6992 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6993 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6994 6995 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6996 GFI->addStackRoot(FI->getIndex(), TypeMap); 6997 return; 6998 } 6999 case Intrinsic::gcread: 7000 case Intrinsic::gcwrite: 7001 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7002 case Intrinsic::get_rounding: 7003 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7004 setValue(&I, Res); 7005 DAG.setRoot(Res.getValue(1)); 7006 return; 7007 7008 case Intrinsic::expect: 7009 // Just replace __builtin_expect(exp, c) with EXP. 7010 setValue(&I, getValue(I.getArgOperand(0))); 7011 return; 7012 7013 case Intrinsic::ubsantrap: 7014 case Intrinsic::debugtrap: 7015 case Intrinsic::trap: { 7016 StringRef TrapFuncName = 7017 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7018 if (TrapFuncName.empty()) { 7019 switch (Intrinsic) { 7020 case Intrinsic::trap: 7021 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7022 break; 7023 case Intrinsic::debugtrap: 7024 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7025 break; 7026 case Intrinsic::ubsantrap: 7027 DAG.setRoot(DAG.getNode( 7028 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7029 DAG.getTargetConstant( 7030 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7031 MVT::i32))); 7032 break; 7033 default: llvm_unreachable("unknown trap intrinsic"); 7034 } 7035 return; 7036 } 7037 TargetLowering::ArgListTy Args; 7038 if (Intrinsic == Intrinsic::ubsantrap) { 7039 Args.push_back(TargetLoweringBase::ArgListEntry()); 7040 Args[0].Val = I.getArgOperand(0); 7041 Args[0].Node = getValue(Args[0].Val); 7042 Args[0].Ty = Args[0].Val->getType(); 7043 } 7044 7045 TargetLowering::CallLoweringInfo CLI(DAG); 7046 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7047 CallingConv::C, I.getType(), 7048 DAG.getExternalSymbol(TrapFuncName.data(), 7049 TLI.getPointerTy(DAG.getDataLayout())), 7050 std::move(Args)); 7051 7052 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7053 DAG.setRoot(Result.second); 7054 return; 7055 } 7056 7057 case Intrinsic::uadd_with_overflow: 7058 case Intrinsic::sadd_with_overflow: 7059 case Intrinsic::usub_with_overflow: 7060 case Intrinsic::ssub_with_overflow: 7061 case Intrinsic::umul_with_overflow: 7062 case Intrinsic::smul_with_overflow: { 7063 ISD::NodeType Op; 7064 switch (Intrinsic) { 7065 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7066 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7067 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7068 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7069 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7070 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7071 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7072 } 7073 SDValue Op1 = getValue(I.getArgOperand(0)); 7074 SDValue Op2 = getValue(I.getArgOperand(1)); 7075 7076 EVT ResultVT = Op1.getValueType(); 7077 EVT OverflowVT = MVT::i1; 7078 if (ResultVT.isVector()) 7079 OverflowVT = EVT::getVectorVT( 7080 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7081 7082 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7083 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7084 return; 7085 } 7086 case Intrinsic::prefetch: { 7087 SDValue Ops[5]; 7088 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7089 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7090 Ops[0] = DAG.getRoot(); 7091 Ops[1] = getValue(I.getArgOperand(0)); 7092 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7093 MVT::i32); 7094 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7095 MVT::i32); 7096 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7097 MVT::i32); 7098 SDValue Result = DAG.getMemIntrinsicNode( 7099 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7100 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7101 /* align */ std::nullopt, Flags); 7102 7103 // Chain the prefetch in parallell with any pending loads, to stay out of 7104 // the way of later optimizations. 7105 PendingLoads.push_back(Result); 7106 Result = getRoot(); 7107 DAG.setRoot(Result); 7108 return; 7109 } 7110 case Intrinsic::lifetime_start: 7111 case Intrinsic::lifetime_end: { 7112 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7113 // Stack coloring is not enabled in O0, discard region information. 7114 if (TM.getOptLevel() == CodeGenOptLevel::None) 7115 return; 7116 7117 const int64_t ObjectSize = 7118 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7119 Value *const ObjectPtr = I.getArgOperand(1); 7120 SmallVector<const Value *, 4> Allocas; 7121 getUnderlyingObjects(ObjectPtr, Allocas); 7122 7123 for (const Value *Alloca : Allocas) { 7124 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7125 7126 // Could not find an Alloca. 7127 if (!LifetimeObject) 7128 continue; 7129 7130 // First check that the Alloca is static, otherwise it won't have a 7131 // valid frame index. 7132 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7133 if (SI == FuncInfo.StaticAllocaMap.end()) 7134 return; 7135 7136 const int FrameIndex = SI->second; 7137 int64_t Offset; 7138 if (GetPointerBaseWithConstantOffset( 7139 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7140 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7141 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7142 Offset); 7143 DAG.setRoot(Res); 7144 } 7145 return; 7146 } 7147 case Intrinsic::pseudoprobe: { 7148 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7149 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7150 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7151 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7152 DAG.setRoot(Res); 7153 return; 7154 } 7155 case Intrinsic::invariant_start: 7156 // Discard region information. 7157 setValue(&I, 7158 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7159 return; 7160 case Intrinsic::invariant_end: 7161 // Discard region information. 7162 return; 7163 case Intrinsic::clear_cache: 7164 /// FunctionName may be null. 7165 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 7166 lowerCallToExternalSymbol(I, FunctionName); 7167 return; 7168 case Intrinsic::donothing: 7169 case Intrinsic::seh_try_begin: 7170 case Intrinsic::seh_scope_begin: 7171 case Intrinsic::seh_try_end: 7172 case Intrinsic::seh_scope_end: 7173 // ignore 7174 return; 7175 case Intrinsic::experimental_stackmap: 7176 visitStackmap(I); 7177 return; 7178 case Intrinsic::experimental_patchpoint_void: 7179 case Intrinsic::experimental_patchpoint_i64: 7180 visitPatchpoint(I); 7181 return; 7182 case Intrinsic::experimental_gc_statepoint: 7183 LowerStatepoint(cast<GCStatepointInst>(I)); 7184 return; 7185 case Intrinsic::experimental_gc_result: 7186 visitGCResult(cast<GCResultInst>(I)); 7187 return; 7188 case Intrinsic::experimental_gc_relocate: 7189 visitGCRelocate(cast<GCRelocateInst>(I)); 7190 return; 7191 case Intrinsic::instrprof_cover: 7192 llvm_unreachable("instrprof failed to lower a cover"); 7193 case Intrinsic::instrprof_increment: 7194 llvm_unreachable("instrprof failed to lower an increment"); 7195 case Intrinsic::instrprof_timestamp: 7196 llvm_unreachable("instrprof failed to lower a timestamp"); 7197 case Intrinsic::instrprof_value_profile: 7198 llvm_unreachable("instrprof failed to lower a value profiling call"); 7199 case Intrinsic::instrprof_mcdc_parameters: 7200 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7201 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7202 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7203 case Intrinsic::instrprof_mcdc_condbitmap_update: 7204 llvm_unreachable("instrprof failed to lower an mcdc condbitmap update"); 7205 case Intrinsic::localescape: { 7206 MachineFunction &MF = DAG.getMachineFunction(); 7207 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7208 7209 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7210 // is the same on all targets. 7211 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7212 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7213 if (isa<ConstantPointerNull>(Arg)) 7214 continue; // Skip null pointers. They represent a hole in index space. 7215 AllocaInst *Slot = cast<AllocaInst>(Arg); 7216 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7217 "can only escape static allocas"); 7218 int FI = FuncInfo.StaticAllocaMap[Slot]; 7219 MCSymbol *FrameAllocSym = 7220 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7221 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7222 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7223 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7224 .addSym(FrameAllocSym) 7225 .addFrameIndex(FI); 7226 } 7227 7228 return; 7229 } 7230 7231 case Intrinsic::localrecover: { 7232 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7233 MachineFunction &MF = DAG.getMachineFunction(); 7234 7235 // Get the symbol that defines the frame offset. 7236 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7237 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7238 unsigned IdxVal = 7239 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7240 MCSymbol *FrameAllocSym = 7241 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7242 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7243 7244 Value *FP = I.getArgOperand(1); 7245 SDValue FPVal = getValue(FP); 7246 EVT PtrVT = FPVal.getValueType(); 7247 7248 // Create a MCSymbol for the label to avoid any target lowering 7249 // that would make this PC relative. 7250 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7251 SDValue OffsetVal = 7252 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7253 7254 // Add the offset to the FP. 7255 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7256 setValue(&I, Add); 7257 7258 return; 7259 } 7260 7261 case Intrinsic::eh_exceptionpointer: 7262 case Intrinsic::eh_exceptioncode: { 7263 // Get the exception pointer vreg, copy from it, and resize it to fit. 7264 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7265 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7266 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7267 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7268 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7269 if (Intrinsic == Intrinsic::eh_exceptioncode) 7270 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7271 setValue(&I, N); 7272 return; 7273 } 7274 case Intrinsic::xray_customevent: { 7275 // Here we want to make sure that the intrinsic behaves as if it has a 7276 // specific calling convention. 7277 const auto &Triple = DAG.getTarget().getTargetTriple(); 7278 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7279 return; 7280 7281 SmallVector<SDValue, 8> Ops; 7282 7283 // We want to say that we always want the arguments in registers. 7284 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7285 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7286 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7287 SDValue Chain = getRoot(); 7288 Ops.push_back(LogEntryVal); 7289 Ops.push_back(StrSizeVal); 7290 Ops.push_back(Chain); 7291 7292 // We need to enforce the calling convention for the callsite, so that 7293 // argument ordering is enforced correctly, and that register allocation can 7294 // see that some registers may be assumed clobbered and have to preserve 7295 // them across calls to the intrinsic. 7296 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7297 sdl, NodeTys, Ops); 7298 SDValue patchableNode = SDValue(MN, 0); 7299 DAG.setRoot(patchableNode); 7300 setValue(&I, patchableNode); 7301 return; 7302 } 7303 case Intrinsic::xray_typedevent: { 7304 // Here we want to make sure that the intrinsic behaves as if it has a 7305 // specific calling convention. 7306 const auto &Triple = DAG.getTarget().getTargetTriple(); 7307 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7308 return; 7309 7310 SmallVector<SDValue, 8> Ops; 7311 7312 // We want to say that we always want the arguments in registers. 7313 // It's unclear to me how manipulating the selection DAG here forces callers 7314 // to provide arguments in registers instead of on the stack. 7315 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7316 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7317 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7318 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7319 SDValue Chain = getRoot(); 7320 Ops.push_back(LogTypeId); 7321 Ops.push_back(LogEntryVal); 7322 Ops.push_back(StrSizeVal); 7323 Ops.push_back(Chain); 7324 7325 // We need to enforce the calling convention for the callsite, so that 7326 // argument ordering is enforced correctly, and that register allocation can 7327 // see that some registers may be assumed clobbered and have to preserve 7328 // them across calls to the intrinsic. 7329 MachineSDNode *MN = DAG.getMachineNode( 7330 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7331 SDValue patchableNode = SDValue(MN, 0); 7332 DAG.setRoot(patchableNode); 7333 setValue(&I, patchableNode); 7334 return; 7335 } 7336 case Intrinsic::experimental_deoptimize: 7337 LowerDeoptimizeCall(&I); 7338 return; 7339 case Intrinsic::experimental_stepvector: 7340 visitStepVector(I); 7341 return; 7342 case Intrinsic::vector_reduce_fadd: 7343 case Intrinsic::vector_reduce_fmul: 7344 case Intrinsic::vector_reduce_add: 7345 case Intrinsic::vector_reduce_mul: 7346 case Intrinsic::vector_reduce_and: 7347 case Intrinsic::vector_reduce_or: 7348 case Intrinsic::vector_reduce_xor: 7349 case Intrinsic::vector_reduce_smax: 7350 case Intrinsic::vector_reduce_smin: 7351 case Intrinsic::vector_reduce_umax: 7352 case Intrinsic::vector_reduce_umin: 7353 case Intrinsic::vector_reduce_fmax: 7354 case Intrinsic::vector_reduce_fmin: 7355 case Intrinsic::vector_reduce_fmaximum: 7356 case Intrinsic::vector_reduce_fminimum: 7357 visitVectorReduce(I, Intrinsic); 7358 return; 7359 7360 case Intrinsic::icall_branch_funnel: { 7361 SmallVector<SDValue, 16> Ops; 7362 Ops.push_back(getValue(I.getArgOperand(0))); 7363 7364 int64_t Offset; 7365 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7366 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7367 if (!Base) 7368 report_fatal_error( 7369 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7370 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7371 7372 struct BranchFunnelTarget { 7373 int64_t Offset; 7374 SDValue Target; 7375 }; 7376 SmallVector<BranchFunnelTarget, 8> Targets; 7377 7378 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7379 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7380 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7381 if (ElemBase != Base) 7382 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7383 "to the same GlobalValue"); 7384 7385 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7386 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7387 if (!GA) 7388 report_fatal_error( 7389 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7390 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7391 GA->getGlobal(), sdl, Val.getValueType(), 7392 GA->getOffset())}); 7393 } 7394 llvm::sort(Targets, 7395 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7396 return T1.Offset < T2.Offset; 7397 }); 7398 7399 for (auto &T : Targets) { 7400 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7401 Ops.push_back(T.Target); 7402 } 7403 7404 Ops.push_back(DAG.getRoot()); // Chain 7405 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7406 MVT::Other, Ops), 7407 0); 7408 DAG.setRoot(N); 7409 setValue(&I, N); 7410 HasTailCall = true; 7411 return; 7412 } 7413 7414 case Intrinsic::wasm_landingpad_index: 7415 // Information this intrinsic contained has been transferred to 7416 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7417 // delete it now. 7418 return; 7419 7420 case Intrinsic::aarch64_settag: 7421 case Intrinsic::aarch64_settag_zero: { 7422 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7423 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7424 SDValue Val = TSI.EmitTargetCodeForSetTag( 7425 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7426 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7427 ZeroMemory); 7428 DAG.setRoot(Val); 7429 setValue(&I, Val); 7430 return; 7431 } 7432 case Intrinsic::ptrmask: { 7433 SDValue Ptr = getValue(I.getOperand(0)); 7434 SDValue Const = getValue(I.getOperand(1)); 7435 7436 EVT PtrVT = Ptr.getValueType(); 7437 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7438 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7439 return; 7440 } 7441 case Intrinsic::threadlocal_address: { 7442 setValue(&I, getValue(I.getOperand(0))); 7443 return; 7444 } 7445 case Intrinsic::get_active_lane_mask: { 7446 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7447 SDValue Index = getValue(I.getOperand(0)); 7448 EVT ElementVT = Index.getValueType(); 7449 7450 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7451 visitTargetIntrinsic(I, Intrinsic); 7452 return; 7453 } 7454 7455 SDValue TripCount = getValue(I.getOperand(1)); 7456 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7457 CCVT.getVectorElementCount()); 7458 7459 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7460 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7461 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7462 SDValue VectorInduction = DAG.getNode( 7463 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7464 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7465 VectorTripCount, ISD::CondCode::SETULT); 7466 setValue(&I, SetCC); 7467 return; 7468 } 7469 case Intrinsic::experimental_get_vector_length: { 7470 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7471 "Expected positive VF"); 7472 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7473 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7474 7475 SDValue Count = getValue(I.getOperand(0)); 7476 EVT CountVT = Count.getValueType(); 7477 7478 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7479 visitTargetIntrinsic(I, Intrinsic); 7480 return; 7481 } 7482 7483 // Expand to a umin between the trip count and the maximum elements the type 7484 // can hold. 7485 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7486 7487 // Extend the trip count to at least the result VT. 7488 if (CountVT.bitsLT(VT)) { 7489 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7490 CountVT = VT; 7491 } 7492 7493 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7494 ElementCount::get(VF, IsScalable)); 7495 7496 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7497 // Clip to the result type if needed. 7498 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7499 7500 setValue(&I, Trunc); 7501 return; 7502 } 7503 case Intrinsic::vector_insert: { 7504 SDValue Vec = getValue(I.getOperand(0)); 7505 SDValue SubVec = getValue(I.getOperand(1)); 7506 SDValue Index = getValue(I.getOperand(2)); 7507 7508 // The intrinsic's index type is i64, but the SDNode requires an index type 7509 // suitable for the target. Convert the index as required. 7510 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7511 if (Index.getValueType() != VectorIdxTy) 7512 Index = DAG.getVectorIdxConstant( 7513 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7514 7515 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7516 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7517 Index)); 7518 return; 7519 } 7520 case Intrinsic::vector_extract: { 7521 SDValue Vec = getValue(I.getOperand(0)); 7522 SDValue Index = getValue(I.getOperand(1)); 7523 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7524 7525 // The intrinsic's index type is i64, but the SDNode requires an index type 7526 // suitable for the target. Convert the index as required. 7527 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7528 if (Index.getValueType() != VectorIdxTy) 7529 Index = DAG.getVectorIdxConstant( 7530 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7531 7532 setValue(&I, 7533 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7534 return; 7535 } 7536 case Intrinsic::experimental_vector_reverse: 7537 visitVectorReverse(I); 7538 return; 7539 case Intrinsic::experimental_vector_splice: 7540 visitVectorSplice(I); 7541 return; 7542 case Intrinsic::callbr_landingpad: 7543 visitCallBrLandingPad(I); 7544 return; 7545 case Intrinsic::experimental_vector_interleave2: 7546 visitVectorInterleave(I); 7547 return; 7548 case Intrinsic::experimental_vector_deinterleave2: 7549 visitVectorDeinterleave(I); 7550 return; 7551 } 7552 } 7553 7554 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7555 const ConstrainedFPIntrinsic &FPI) { 7556 SDLoc sdl = getCurSDLoc(); 7557 7558 // We do not need to serialize constrained FP intrinsics against 7559 // each other or against (nonvolatile) loads, so they can be 7560 // chained like loads. 7561 SDValue Chain = DAG.getRoot(); 7562 SmallVector<SDValue, 4> Opers; 7563 Opers.push_back(Chain); 7564 if (FPI.isUnaryOp()) { 7565 Opers.push_back(getValue(FPI.getArgOperand(0))); 7566 } else if (FPI.isTernaryOp()) { 7567 Opers.push_back(getValue(FPI.getArgOperand(0))); 7568 Opers.push_back(getValue(FPI.getArgOperand(1))); 7569 Opers.push_back(getValue(FPI.getArgOperand(2))); 7570 } else { 7571 Opers.push_back(getValue(FPI.getArgOperand(0))); 7572 Opers.push_back(getValue(FPI.getArgOperand(1))); 7573 } 7574 7575 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7576 assert(Result.getNode()->getNumValues() == 2); 7577 7578 // Push node to the appropriate list so that future instructions can be 7579 // chained up correctly. 7580 SDValue OutChain = Result.getValue(1); 7581 switch (EB) { 7582 case fp::ExceptionBehavior::ebIgnore: 7583 // The only reason why ebIgnore nodes still need to be chained is that 7584 // they might depend on the current rounding mode, and therefore must 7585 // not be moved across instruction that may change that mode. 7586 [[fallthrough]]; 7587 case fp::ExceptionBehavior::ebMayTrap: 7588 // These must not be moved across calls or instructions that may change 7589 // floating-point exception masks. 7590 PendingConstrainedFP.push_back(OutChain); 7591 break; 7592 case fp::ExceptionBehavior::ebStrict: 7593 // These must not be moved across calls or instructions that may change 7594 // floating-point exception masks or read floating-point exception flags. 7595 // In addition, they cannot be optimized out even if unused. 7596 PendingConstrainedFPStrict.push_back(OutChain); 7597 break; 7598 } 7599 }; 7600 7601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7602 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7603 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7604 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7605 7606 SDNodeFlags Flags; 7607 if (EB == fp::ExceptionBehavior::ebIgnore) 7608 Flags.setNoFPExcept(true); 7609 7610 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7611 Flags.copyFMF(*FPOp); 7612 7613 unsigned Opcode; 7614 switch (FPI.getIntrinsicID()) { 7615 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7616 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7617 case Intrinsic::INTRINSIC: \ 7618 Opcode = ISD::STRICT_##DAGN; \ 7619 break; 7620 #include "llvm/IR/ConstrainedOps.def" 7621 case Intrinsic::experimental_constrained_fmuladd: { 7622 Opcode = ISD::STRICT_FMA; 7623 // Break fmuladd into fmul and fadd. 7624 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7625 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7626 Opers.pop_back(); 7627 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7628 pushOutChain(Mul, EB); 7629 Opcode = ISD::STRICT_FADD; 7630 Opers.clear(); 7631 Opers.push_back(Mul.getValue(1)); 7632 Opers.push_back(Mul.getValue(0)); 7633 Opers.push_back(getValue(FPI.getArgOperand(2))); 7634 } 7635 break; 7636 } 7637 } 7638 7639 // A few strict DAG nodes carry additional operands that are not 7640 // set up by the default code above. 7641 switch (Opcode) { 7642 default: break; 7643 case ISD::STRICT_FP_ROUND: 7644 Opers.push_back( 7645 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7646 break; 7647 case ISD::STRICT_FSETCC: 7648 case ISD::STRICT_FSETCCS: { 7649 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7650 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7651 if (TM.Options.NoNaNsFPMath) 7652 Condition = getFCmpCodeWithoutNaN(Condition); 7653 Opers.push_back(DAG.getCondCode(Condition)); 7654 break; 7655 } 7656 } 7657 7658 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7659 pushOutChain(Result, EB); 7660 7661 SDValue FPResult = Result.getValue(0); 7662 setValue(&FPI, FPResult); 7663 } 7664 7665 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7666 std::optional<unsigned> ResOPC; 7667 switch (VPIntrin.getIntrinsicID()) { 7668 case Intrinsic::vp_ctlz: { 7669 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7670 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 7671 break; 7672 } 7673 case Intrinsic::vp_cttz: { 7674 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7675 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 7676 break; 7677 } 7678 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7679 case Intrinsic::VPID: \ 7680 ResOPC = ISD::VPSD; \ 7681 break; 7682 #include "llvm/IR/VPIntrinsics.def" 7683 } 7684 7685 if (!ResOPC) 7686 llvm_unreachable( 7687 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7688 7689 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7690 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7691 if (VPIntrin.getFastMathFlags().allowReassoc()) 7692 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7693 : ISD::VP_REDUCE_FMUL; 7694 } 7695 7696 return *ResOPC; 7697 } 7698 7699 void SelectionDAGBuilder::visitVPLoad( 7700 const VPIntrinsic &VPIntrin, EVT VT, 7701 const SmallVectorImpl<SDValue> &OpValues) { 7702 SDLoc DL = getCurSDLoc(); 7703 Value *PtrOperand = VPIntrin.getArgOperand(0); 7704 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7705 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7706 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7707 SDValue LD; 7708 // Do not serialize variable-length loads of constant memory with 7709 // anything. 7710 if (!Alignment) 7711 Alignment = DAG.getEVTAlign(VT); 7712 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7713 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7714 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7715 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7716 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7717 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7718 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7719 MMO, false /*IsExpanding */); 7720 if (AddToChain) 7721 PendingLoads.push_back(LD.getValue(1)); 7722 setValue(&VPIntrin, LD); 7723 } 7724 7725 void SelectionDAGBuilder::visitVPGather( 7726 const VPIntrinsic &VPIntrin, EVT VT, 7727 const SmallVectorImpl<SDValue> &OpValues) { 7728 SDLoc DL = getCurSDLoc(); 7729 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7730 Value *PtrOperand = VPIntrin.getArgOperand(0); 7731 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7732 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7733 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7734 SDValue LD; 7735 if (!Alignment) 7736 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7737 unsigned AS = 7738 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7739 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7740 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7741 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7742 SDValue Base, Index, Scale; 7743 ISD::MemIndexType IndexType; 7744 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7745 this, VPIntrin.getParent(), 7746 VT.getScalarStoreSize()); 7747 if (!UniformBase) { 7748 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7749 Index = getValue(PtrOperand); 7750 IndexType = ISD::SIGNED_SCALED; 7751 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7752 } 7753 EVT IdxVT = Index.getValueType(); 7754 EVT EltTy = IdxVT.getVectorElementType(); 7755 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7756 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7757 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7758 } 7759 LD = DAG.getGatherVP( 7760 DAG.getVTList(VT, MVT::Other), VT, DL, 7761 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7762 IndexType); 7763 PendingLoads.push_back(LD.getValue(1)); 7764 setValue(&VPIntrin, LD); 7765 } 7766 7767 void SelectionDAGBuilder::visitVPStore( 7768 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7769 SDLoc DL = getCurSDLoc(); 7770 Value *PtrOperand = VPIntrin.getArgOperand(1); 7771 EVT VT = OpValues[0].getValueType(); 7772 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7773 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7774 SDValue ST; 7775 if (!Alignment) 7776 Alignment = DAG.getEVTAlign(VT); 7777 SDValue Ptr = OpValues[1]; 7778 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7779 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7780 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7781 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7782 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7783 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7784 /* IsTruncating */ false, /*IsCompressing*/ false); 7785 DAG.setRoot(ST); 7786 setValue(&VPIntrin, ST); 7787 } 7788 7789 void SelectionDAGBuilder::visitVPScatter( 7790 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7791 SDLoc DL = getCurSDLoc(); 7792 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7793 Value *PtrOperand = VPIntrin.getArgOperand(1); 7794 EVT VT = OpValues[0].getValueType(); 7795 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7796 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7797 SDValue ST; 7798 if (!Alignment) 7799 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7800 unsigned AS = 7801 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7802 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7803 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7804 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7805 SDValue Base, Index, Scale; 7806 ISD::MemIndexType IndexType; 7807 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7808 this, VPIntrin.getParent(), 7809 VT.getScalarStoreSize()); 7810 if (!UniformBase) { 7811 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7812 Index = getValue(PtrOperand); 7813 IndexType = ISD::SIGNED_SCALED; 7814 Scale = 7815 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7816 } 7817 EVT IdxVT = Index.getValueType(); 7818 EVT EltTy = IdxVT.getVectorElementType(); 7819 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7820 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7821 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7822 } 7823 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7824 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7825 OpValues[2], OpValues[3]}, 7826 MMO, IndexType); 7827 DAG.setRoot(ST); 7828 setValue(&VPIntrin, ST); 7829 } 7830 7831 void SelectionDAGBuilder::visitVPStridedLoad( 7832 const VPIntrinsic &VPIntrin, EVT VT, 7833 const SmallVectorImpl<SDValue> &OpValues) { 7834 SDLoc DL = getCurSDLoc(); 7835 Value *PtrOperand = VPIntrin.getArgOperand(0); 7836 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7837 if (!Alignment) 7838 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7839 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7840 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7841 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7842 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7843 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7844 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7845 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7846 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7847 7848 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7849 OpValues[2], OpValues[3], MMO, 7850 false /*IsExpanding*/); 7851 7852 if (AddToChain) 7853 PendingLoads.push_back(LD.getValue(1)); 7854 setValue(&VPIntrin, LD); 7855 } 7856 7857 void SelectionDAGBuilder::visitVPStridedStore( 7858 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7859 SDLoc DL = getCurSDLoc(); 7860 Value *PtrOperand = VPIntrin.getArgOperand(1); 7861 EVT VT = OpValues[0].getValueType(); 7862 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7863 if (!Alignment) 7864 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7865 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7866 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7867 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7868 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7869 7870 SDValue ST = DAG.getStridedStoreVP( 7871 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7872 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7873 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7874 /*IsCompressing*/ false); 7875 7876 DAG.setRoot(ST); 7877 setValue(&VPIntrin, ST); 7878 } 7879 7880 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7881 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7882 SDLoc DL = getCurSDLoc(); 7883 7884 ISD::CondCode Condition; 7885 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7886 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7887 if (IsFP) { 7888 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7889 // flags, but calls that don't return floating-point types can't be 7890 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7891 Condition = getFCmpCondCode(CondCode); 7892 if (TM.Options.NoNaNsFPMath) 7893 Condition = getFCmpCodeWithoutNaN(Condition); 7894 } else { 7895 Condition = getICmpCondCode(CondCode); 7896 } 7897 7898 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7899 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7900 // #2 is the condition code 7901 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7902 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7903 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7904 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7905 "Unexpected target EVL type"); 7906 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7907 7908 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7909 VPIntrin.getType()); 7910 setValue(&VPIntrin, 7911 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7912 } 7913 7914 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7915 const VPIntrinsic &VPIntrin) { 7916 SDLoc DL = getCurSDLoc(); 7917 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7918 7919 auto IID = VPIntrin.getIntrinsicID(); 7920 7921 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7922 return visitVPCmp(*CmpI); 7923 7924 SmallVector<EVT, 4> ValueVTs; 7925 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7926 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7927 SDVTList VTs = DAG.getVTList(ValueVTs); 7928 7929 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7930 7931 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7932 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7933 "Unexpected target EVL type"); 7934 7935 // Request operands. 7936 SmallVector<SDValue, 7> OpValues; 7937 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7938 auto Op = getValue(VPIntrin.getArgOperand(I)); 7939 if (I == EVLParamPos) 7940 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7941 OpValues.push_back(Op); 7942 } 7943 7944 switch (Opcode) { 7945 default: { 7946 SDNodeFlags SDFlags; 7947 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7948 SDFlags.copyFMF(*FPMO); 7949 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7950 setValue(&VPIntrin, Result); 7951 break; 7952 } 7953 case ISD::VP_LOAD: 7954 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 7955 break; 7956 case ISD::VP_GATHER: 7957 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 7958 break; 7959 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7960 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7961 break; 7962 case ISD::VP_STORE: 7963 visitVPStore(VPIntrin, OpValues); 7964 break; 7965 case ISD::VP_SCATTER: 7966 visitVPScatter(VPIntrin, OpValues); 7967 break; 7968 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7969 visitVPStridedStore(VPIntrin, OpValues); 7970 break; 7971 case ISD::VP_FMULADD: { 7972 assert(OpValues.size() == 5 && "Unexpected number of operands"); 7973 SDNodeFlags SDFlags; 7974 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7975 SDFlags.copyFMF(*FPMO); 7976 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 7977 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 7978 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 7979 } else { 7980 SDValue Mul = DAG.getNode( 7981 ISD::VP_FMUL, DL, VTs, 7982 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 7983 SDValue Add = 7984 DAG.getNode(ISD::VP_FADD, DL, VTs, 7985 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 7986 setValue(&VPIntrin, Add); 7987 } 7988 break; 7989 } 7990 case ISD::VP_IS_FPCLASS: { 7991 const DataLayout DLayout = DAG.getDataLayout(); 7992 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 7993 auto Constant = cast<ConstantSDNode>(OpValues[1])->getZExtValue(); 7994 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 7995 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 7996 {OpValues[0], Check, OpValues[2], OpValues[3]}); 7997 setValue(&VPIntrin, V); 7998 return; 7999 } 8000 case ISD::VP_INTTOPTR: { 8001 SDValue N = OpValues[0]; 8002 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8003 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8004 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8005 OpValues[2]); 8006 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8007 OpValues[2]); 8008 setValue(&VPIntrin, N); 8009 break; 8010 } 8011 case ISD::VP_PTRTOINT: { 8012 SDValue N = OpValues[0]; 8013 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8014 VPIntrin.getType()); 8015 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8016 VPIntrin.getOperand(0)->getType()); 8017 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8018 OpValues[2]); 8019 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8020 OpValues[2]); 8021 setValue(&VPIntrin, N); 8022 break; 8023 } 8024 case ISD::VP_ABS: 8025 case ISD::VP_CTLZ: 8026 case ISD::VP_CTLZ_ZERO_UNDEF: 8027 case ISD::VP_CTTZ: 8028 case ISD::VP_CTTZ_ZERO_UNDEF: { 8029 SDValue Result = 8030 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8031 setValue(&VPIntrin, Result); 8032 break; 8033 } 8034 } 8035 } 8036 8037 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8038 const BasicBlock *EHPadBB, 8039 MCSymbol *&BeginLabel) { 8040 MachineFunction &MF = DAG.getMachineFunction(); 8041 MachineModuleInfo &MMI = MF.getMMI(); 8042 8043 // Insert a label before the invoke call to mark the try range. This can be 8044 // used to detect deletion of the invoke via the MachineModuleInfo. 8045 BeginLabel = MMI.getContext().createTempSymbol(); 8046 8047 // For SjLj, keep track of which landing pads go with which invokes 8048 // so as to maintain the ordering of pads in the LSDA. 8049 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8050 if (CallSiteIndex) { 8051 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8052 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8053 8054 // Now that the call site is handled, stop tracking it. 8055 MMI.setCurrentCallSite(0); 8056 } 8057 8058 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8059 } 8060 8061 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8062 const BasicBlock *EHPadBB, 8063 MCSymbol *BeginLabel) { 8064 assert(BeginLabel && "BeginLabel should've been set"); 8065 8066 MachineFunction &MF = DAG.getMachineFunction(); 8067 MachineModuleInfo &MMI = MF.getMMI(); 8068 8069 // Insert a label at the end of the invoke call to mark the try range. This 8070 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8071 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8072 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8073 8074 // Inform MachineModuleInfo of range. 8075 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8076 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8077 // actually use outlined funclets and their LSDA info style. 8078 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8079 assert(II && "II should've been set"); 8080 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8081 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8082 } else if (!isScopedEHPersonality(Pers)) { 8083 assert(EHPadBB); 8084 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8085 } 8086 8087 return Chain; 8088 } 8089 8090 std::pair<SDValue, SDValue> 8091 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8092 const BasicBlock *EHPadBB) { 8093 MCSymbol *BeginLabel = nullptr; 8094 8095 if (EHPadBB) { 8096 // Both PendingLoads and PendingExports must be flushed here; 8097 // this call might not return. 8098 (void)getRoot(); 8099 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8100 CLI.setChain(getRoot()); 8101 } 8102 8103 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8104 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8105 8106 assert((CLI.IsTailCall || Result.second.getNode()) && 8107 "Non-null chain expected with non-tail call!"); 8108 assert((Result.second.getNode() || !Result.first.getNode()) && 8109 "Null value expected with tail call!"); 8110 8111 if (!Result.second.getNode()) { 8112 // As a special case, a null chain means that a tail call has been emitted 8113 // and the DAG root is already updated. 8114 HasTailCall = true; 8115 8116 // Since there's no actual continuation from this block, nothing can be 8117 // relying on us setting vregs for them. 8118 PendingExports.clear(); 8119 } else { 8120 DAG.setRoot(Result.second); 8121 } 8122 8123 if (EHPadBB) { 8124 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8125 BeginLabel)); 8126 } 8127 8128 return Result; 8129 } 8130 8131 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8132 bool isTailCall, 8133 bool isMustTailCall, 8134 const BasicBlock *EHPadBB) { 8135 auto &DL = DAG.getDataLayout(); 8136 FunctionType *FTy = CB.getFunctionType(); 8137 Type *RetTy = CB.getType(); 8138 8139 TargetLowering::ArgListTy Args; 8140 Args.reserve(CB.arg_size()); 8141 8142 const Value *SwiftErrorVal = nullptr; 8143 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8144 8145 if (isTailCall) { 8146 // Avoid emitting tail calls in functions with the disable-tail-calls 8147 // attribute. 8148 auto *Caller = CB.getParent()->getParent(); 8149 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8150 "true" && !isMustTailCall) 8151 isTailCall = false; 8152 8153 // We can't tail call inside a function with a swifterror argument. Lowering 8154 // does not support this yet. It would have to move into the swifterror 8155 // register before the call. 8156 if (TLI.supportSwiftError() && 8157 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8158 isTailCall = false; 8159 } 8160 8161 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8162 TargetLowering::ArgListEntry Entry; 8163 const Value *V = *I; 8164 8165 // Skip empty types 8166 if (V->getType()->isEmptyTy()) 8167 continue; 8168 8169 SDValue ArgNode = getValue(V); 8170 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8171 8172 Entry.setAttributes(&CB, I - CB.arg_begin()); 8173 8174 // Use swifterror virtual register as input to the call. 8175 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8176 SwiftErrorVal = V; 8177 // We find the virtual register for the actual swifterror argument. 8178 // Instead of using the Value, we use the virtual register instead. 8179 Entry.Node = 8180 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8181 EVT(TLI.getPointerTy(DL))); 8182 } 8183 8184 Args.push_back(Entry); 8185 8186 // If we have an explicit sret argument that is an Instruction, (i.e., it 8187 // might point to function-local memory), we can't meaningfully tail-call. 8188 if (Entry.IsSRet && isa<Instruction>(V)) 8189 isTailCall = false; 8190 } 8191 8192 // If call site has a cfguardtarget operand bundle, create and add an 8193 // additional ArgListEntry. 8194 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8195 TargetLowering::ArgListEntry Entry; 8196 Value *V = Bundle->Inputs[0]; 8197 SDValue ArgNode = getValue(V); 8198 Entry.Node = ArgNode; 8199 Entry.Ty = V->getType(); 8200 Entry.IsCFGuardTarget = true; 8201 Args.push_back(Entry); 8202 } 8203 8204 // Check if target-independent constraints permit a tail call here. 8205 // Target-dependent constraints are checked within TLI->LowerCallTo. 8206 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8207 isTailCall = false; 8208 8209 // Disable tail calls if there is an swifterror argument. Targets have not 8210 // been updated to support tail calls. 8211 if (TLI.supportSwiftError() && SwiftErrorVal) 8212 isTailCall = false; 8213 8214 ConstantInt *CFIType = nullptr; 8215 if (CB.isIndirectCall()) { 8216 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8217 if (!TLI.supportKCFIBundles()) 8218 report_fatal_error( 8219 "Target doesn't support calls with kcfi operand bundles."); 8220 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8221 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8222 } 8223 } 8224 8225 TargetLowering::CallLoweringInfo CLI(DAG); 8226 CLI.setDebugLoc(getCurSDLoc()) 8227 .setChain(getRoot()) 8228 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8229 .setTailCall(isTailCall) 8230 .setConvergent(CB.isConvergent()) 8231 .setIsPreallocated( 8232 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8233 .setCFIType(CFIType); 8234 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8235 8236 if (Result.first.getNode()) { 8237 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8238 setValue(&CB, Result.first); 8239 } 8240 8241 // The last element of CLI.InVals has the SDValue for swifterror return. 8242 // Here we copy it to a virtual register and update SwiftErrorMap for 8243 // book-keeping. 8244 if (SwiftErrorVal && TLI.supportSwiftError()) { 8245 // Get the last element of InVals. 8246 SDValue Src = CLI.InVals.back(); 8247 Register VReg = 8248 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8249 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8250 DAG.setRoot(CopyNode); 8251 } 8252 } 8253 8254 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8255 SelectionDAGBuilder &Builder) { 8256 // Check to see if this load can be trivially constant folded, e.g. if the 8257 // input is from a string literal. 8258 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8259 // Cast pointer to the type we really want to load. 8260 Type *LoadTy = 8261 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8262 if (LoadVT.isVector()) 8263 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8264 8265 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8266 PointerType::getUnqual(LoadTy)); 8267 8268 if (const Constant *LoadCst = 8269 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8270 LoadTy, Builder.DAG.getDataLayout())) 8271 return Builder.getValue(LoadCst); 8272 } 8273 8274 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8275 // still constant memory, the input chain can be the entry node. 8276 SDValue Root; 8277 bool ConstantMemory = false; 8278 8279 // Do not serialize (non-volatile) loads of constant memory with anything. 8280 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8281 Root = Builder.DAG.getEntryNode(); 8282 ConstantMemory = true; 8283 } else { 8284 // Do not serialize non-volatile loads against each other. 8285 Root = Builder.DAG.getRoot(); 8286 } 8287 8288 SDValue Ptr = Builder.getValue(PtrVal); 8289 SDValue LoadVal = 8290 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8291 MachinePointerInfo(PtrVal), Align(1)); 8292 8293 if (!ConstantMemory) 8294 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8295 return LoadVal; 8296 } 8297 8298 /// Record the value for an instruction that produces an integer result, 8299 /// converting the type where necessary. 8300 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8301 SDValue Value, 8302 bool IsSigned) { 8303 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8304 I.getType(), true); 8305 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8306 setValue(&I, Value); 8307 } 8308 8309 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8310 /// true and lower it. Otherwise return false, and it will be lowered like a 8311 /// normal call. 8312 /// The caller already checked that \p I calls the appropriate LibFunc with a 8313 /// correct prototype. 8314 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8315 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8316 const Value *Size = I.getArgOperand(2); 8317 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8318 if (CSize && CSize->getZExtValue() == 0) { 8319 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8320 I.getType(), true); 8321 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8322 return true; 8323 } 8324 8325 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8326 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8327 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8328 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8329 if (Res.first.getNode()) { 8330 processIntegerCallValue(I, Res.first, true); 8331 PendingLoads.push_back(Res.second); 8332 return true; 8333 } 8334 8335 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8336 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8337 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8338 return false; 8339 8340 // If the target has a fast compare for the given size, it will return a 8341 // preferred load type for that size. Require that the load VT is legal and 8342 // that the target supports unaligned loads of that type. Otherwise, return 8343 // INVALID. 8344 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8345 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8346 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8347 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8348 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8349 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8350 // TODO: Check alignment of src and dest ptrs. 8351 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8352 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8353 if (!TLI.isTypeLegal(LVT) || 8354 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8355 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8356 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8357 } 8358 8359 return LVT; 8360 }; 8361 8362 // This turns into unaligned loads. We only do this if the target natively 8363 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8364 // we'll only produce a small number of byte loads. 8365 MVT LoadVT; 8366 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8367 switch (NumBitsToCompare) { 8368 default: 8369 return false; 8370 case 16: 8371 LoadVT = MVT::i16; 8372 break; 8373 case 32: 8374 LoadVT = MVT::i32; 8375 break; 8376 case 64: 8377 case 128: 8378 case 256: 8379 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8380 break; 8381 } 8382 8383 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8384 return false; 8385 8386 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8387 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8388 8389 // Bitcast to a wide integer type if the loads are vectors. 8390 if (LoadVT.isVector()) { 8391 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8392 LoadL = DAG.getBitcast(CmpVT, LoadL); 8393 LoadR = DAG.getBitcast(CmpVT, LoadR); 8394 } 8395 8396 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8397 processIntegerCallValue(I, Cmp, false); 8398 return true; 8399 } 8400 8401 /// See if we can lower a memchr call into an optimized form. If so, return 8402 /// true and lower it. Otherwise return false, and it will be lowered like a 8403 /// normal call. 8404 /// The caller already checked that \p I calls the appropriate LibFunc with a 8405 /// correct prototype. 8406 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8407 const Value *Src = I.getArgOperand(0); 8408 const Value *Char = I.getArgOperand(1); 8409 const Value *Length = I.getArgOperand(2); 8410 8411 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8412 std::pair<SDValue, SDValue> Res = 8413 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8414 getValue(Src), getValue(Char), getValue(Length), 8415 MachinePointerInfo(Src)); 8416 if (Res.first.getNode()) { 8417 setValue(&I, Res.first); 8418 PendingLoads.push_back(Res.second); 8419 return true; 8420 } 8421 8422 return false; 8423 } 8424 8425 /// See if we can lower a mempcpy call into an optimized form. If so, return 8426 /// true and lower it. Otherwise return false, and it will be lowered like a 8427 /// normal call. 8428 /// The caller already checked that \p I calls the appropriate LibFunc with a 8429 /// correct prototype. 8430 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8431 SDValue Dst = getValue(I.getArgOperand(0)); 8432 SDValue Src = getValue(I.getArgOperand(1)); 8433 SDValue Size = getValue(I.getArgOperand(2)); 8434 8435 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8436 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8437 // DAG::getMemcpy needs Alignment to be defined. 8438 Align Alignment = std::min(DstAlign, SrcAlign); 8439 8440 SDLoc sdl = getCurSDLoc(); 8441 8442 // In the mempcpy context we need to pass in a false value for isTailCall 8443 // because the return pointer needs to be adjusted by the size of 8444 // the copied memory. 8445 SDValue Root = getMemoryRoot(); 8446 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8447 /*isTailCall=*/false, 8448 MachinePointerInfo(I.getArgOperand(0)), 8449 MachinePointerInfo(I.getArgOperand(1)), 8450 I.getAAMetadata()); 8451 assert(MC.getNode() != nullptr && 8452 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8453 DAG.setRoot(MC); 8454 8455 // Check if Size needs to be truncated or extended. 8456 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8457 8458 // Adjust return pointer to point just past the last dst byte. 8459 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8460 Dst, Size); 8461 setValue(&I, DstPlusSize); 8462 return true; 8463 } 8464 8465 /// See if we can lower a strcpy call into an optimized form. If so, return 8466 /// true and lower it, otherwise return false and it will be lowered like a 8467 /// normal call. 8468 /// The caller already checked that \p I calls the appropriate LibFunc with a 8469 /// correct prototype. 8470 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8471 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8472 8473 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8474 std::pair<SDValue, SDValue> Res = 8475 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8476 getValue(Arg0), getValue(Arg1), 8477 MachinePointerInfo(Arg0), 8478 MachinePointerInfo(Arg1), isStpcpy); 8479 if (Res.first.getNode()) { 8480 setValue(&I, Res.first); 8481 DAG.setRoot(Res.second); 8482 return true; 8483 } 8484 8485 return false; 8486 } 8487 8488 /// See if we can lower a strcmp call into an optimized form. If so, return 8489 /// true and lower it, otherwise return false and it will be lowered like a 8490 /// normal call. 8491 /// The caller already checked that \p I calls the appropriate LibFunc with a 8492 /// correct prototype. 8493 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8494 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8495 8496 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8497 std::pair<SDValue, SDValue> Res = 8498 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8499 getValue(Arg0), getValue(Arg1), 8500 MachinePointerInfo(Arg0), 8501 MachinePointerInfo(Arg1)); 8502 if (Res.first.getNode()) { 8503 processIntegerCallValue(I, Res.first, true); 8504 PendingLoads.push_back(Res.second); 8505 return true; 8506 } 8507 8508 return false; 8509 } 8510 8511 /// See if we can lower a strlen call into an optimized form. If so, return 8512 /// true and lower it, otherwise return false and it will be lowered like a 8513 /// normal call. 8514 /// The caller already checked that \p I calls the appropriate LibFunc with a 8515 /// correct prototype. 8516 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8517 const Value *Arg0 = I.getArgOperand(0); 8518 8519 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8520 std::pair<SDValue, SDValue> Res = 8521 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8522 getValue(Arg0), MachinePointerInfo(Arg0)); 8523 if (Res.first.getNode()) { 8524 processIntegerCallValue(I, Res.first, false); 8525 PendingLoads.push_back(Res.second); 8526 return true; 8527 } 8528 8529 return false; 8530 } 8531 8532 /// See if we can lower a strnlen call into an optimized form. If so, return 8533 /// true and lower it, otherwise return false and it will be lowered like a 8534 /// normal call. 8535 /// The caller already checked that \p I calls the appropriate LibFunc with a 8536 /// correct prototype. 8537 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8538 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8539 8540 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8541 std::pair<SDValue, SDValue> Res = 8542 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8543 getValue(Arg0), getValue(Arg1), 8544 MachinePointerInfo(Arg0)); 8545 if (Res.first.getNode()) { 8546 processIntegerCallValue(I, Res.first, false); 8547 PendingLoads.push_back(Res.second); 8548 return true; 8549 } 8550 8551 return false; 8552 } 8553 8554 /// See if we can lower a unary floating-point operation into an SDNode with 8555 /// the specified Opcode. If so, return true and lower it, otherwise return 8556 /// false and it will be lowered like a normal call. 8557 /// The caller already checked that \p I calls the appropriate LibFunc with a 8558 /// correct prototype. 8559 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8560 unsigned Opcode) { 8561 // We already checked this call's prototype; verify it doesn't modify errno. 8562 if (!I.onlyReadsMemory()) 8563 return false; 8564 8565 SDNodeFlags Flags; 8566 Flags.copyFMF(cast<FPMathOperator>(I)); 8567 8568 SDValue Tmp = getValue(I.getArgOperand(0)); 8569 setValue(&I, 8570 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8571 return true; 8572 } 8573 8574 /// See if we can lower a binary floating-point operation into an SDNode with 8575 /// the specified Opcode. If so, return true and lower it. Otherwise return 8576 /// false, and it will be lowered like a normal call. 8577 /// The caller already checked that \p I calls the appropriate LibFunc with a 8578 /// correct prototype. 8579 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8580 unsigned Opcode) { 8581 // We already checked this call's prototype; verify it doesn't modify errno. 8582 if (!I.onlyReadsMemory()) 8583 return false; 8584 8585 SDNodeFlags Flags; 8586 Flags.copyFMF(cast<FPMathOperator>(I)); 8587 8588 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8589 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8590 EVT VT = Tmp0.getValueType(); 8591 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8592 return true; 8593 } 8594 8595 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8596 // Handle inline assembly differently. 8597 if (I.isInlineAsm()) { 8598 visitInlineAsm(I); 8599 return; 8600 } 8601 8602 diagnoseDontCall(I); 8603 8604 if (Function *F = I.getCalledFunction()) { 8605 if (F->isDeclaration()) { 8606 // Is this an LLVM intrinsic or a target-specific intrinsic? 8607 unsigned IID = F->getIntrinsicID(); 8608 if (!IID) 8609 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8610 IID = II->getIntrinsicID(F); 8611 8612 if (IID) { 8613 visitIntrinsicCall(I, IID); 8614 return; 8615 } 8616 } 8617 8618 // Check for well-known libc/libm calls. If the function is internal, it 8619 // can't be a library call. Don't do the check if marked as nobuiltin for 8620 // some reason or the call site requires strict floating point semantics. 8621 LibFunc Func; 8622 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8623 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8624 LibInfo->hasOptimizedCodeGen(Func)) { 8625 switch (Func) { 8626 default: break; 8627 case LibFunc_bcmp: 8628 if (visitMemCmpBCmpCall(I)) 8629 return; 8630 break; 8631 case LibFunc_copysign: 8632 case LibFunc_copysignf: 8633 case LibFunc_copysignl: 8634 // We already checked this call's prototype; verify it doesn't modify 8635 // errno. 8636 if (I.onlyReadsMemory()) { 8637 SDValue LHS = getValue(I.getArgOperand(0)); 8638 SDValue RHS = getValue(I.getArgOperand(1)); 8639 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8640 LHS.getValueType(), LHS, RHS)); 8641 return; 8642 } 8643 break; 8644 case LibFunc_fabs: 8645 case LibFunc_fabsf: 8646 case LibFunc_fabsl: 8647 if (visitUnaryFloatCall(I, ISD::FABS)) 8648 return; 8649 break; 8650 case LibFunc_fmin: 8651 case LibFunc_fminf: 8652 case LibFunc_fminl: 8653 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8654 return; 8655 break; 8656 case LibFunc_fmax: 8657 case LibFunc_fmaxf: 8658 case LibFunc_fmaxl: 8659 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8660 return; 8661 break; 8662 case LibFunc_sin: 8663 case LibFunc_sinf: 8664 case LibFunc_sinl: 8665 if (visitUnaryFloatCall(I, ISD::FSIN)) 8666 return; 8667 break; 8668 case LibFunc_cos: 8669 case LibFunc_cosf: 8670 case LibFunc_cosl: 8671 if (visitUnaryFloatCall(I, ISD::FCOS)) 8672 return; 8673 break; 8674 case LibFunc_sqrt: 8675 case LibFunc_sqrtf: 8676 case LibFunc_sqrtl: 8677 case LibFunc_sqrt_finite: 8678 case LibFunc_sqrtf_finite: 8679 case LibFunc_sqrtl_finite: 8680 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8681 return; 8682 break; 8683 case LibFunc_floor: 8684 case LibFunc_floorf: 8685 case LibFunc_floorl: 8686 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8687 return; 8688 break; 8689 case LibFunc_nearbyint: 8690 case LibFunc_nearbyintf: 8691 case LibFunc_nearbyintl: 8692 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8693 return; 8694 break; 8695 case LibFunc_ceil: 8696 case LibFunc_ceilf: 8697 case LibFunc_ceill: 8698 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8699 return; 8700 break; 8701 case LibFunc_rint: 8702 case LibFunc_rintf: 8703 case LibFunc_rintl: 8704 if (visitUnaryFloatCall(I, ISD::FRINT)) 8705 return; 8706 break; 8707 case LibFunc_round: 8708 case LibFunc_roundf: 8709 case LibFunc_roundl: 8710 if (visitUnaryFloatCall(I, ISD::FROUND)) 8711 return; 8712 break; 8713 case LibFunc_trunc: 8714 case LibFunc_truncf: 8715 case LibFunc_truncl: 8716 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8717 return; 8718 break; 8719 case LibFunc_log2: 8720 case LibFunc_log2f: 8721 case LibFunc_log2l: 8722 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8723 return; 8724 break; 8725 case LibFunc_exp2: 8726 case LibFunc_exp2f: 8727 case LibFunc_exp2l: 8728 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8729 return; 8730 break; 8731 case LibFunc_exp10: 8732 case LibFunc_exp10f: 8733 case LibFunc_exp10l: 8734 if (visitUnaryFloatCall(I, ISD::FEXP10)) 8735 return; 8736 break; 8737 case LibFunc_ldexp: 8738 case LibFunc_ldexpf: 8739 case LibFunc_ldexpl: 8740 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 8741 return; 8742 break; 8743 case LibFunc_memcmp: 8744 if (visitMemCmpBCmpCall(I)) 8745 return; 8746 break; 8747 case LibFunc_mempcpy: 8748 if (visitMemPCpyCall(I)) 8749 return; 8750 break; 8751 case LibFunc_memchr: 8752 if (visitMemChrCall(I)) 8753 return; 8754 break; 8755 case LibFunc_strcpy: 8756 if (visitStrCpyCall(I, false)) 8757 return; 8758 break; 8759 case LibFunc_stpcpy: 8760 if (visitStrCpyCall(I, true)) 8761 return; 8762 break; 8763 case LibFunc_strcmp: 8764 if (visitStrCmpCall(I)) 8765 return; 8766 break; 8767 case LibFunc_strlen: 8768 if (visitStrLenCall(I)) 8769 return; 8770 break; 8771 case LibFunc_strnlen: 8772 if (visitStrNLenCall(I)) 8773 return; 8774 break; 8775 } 8776 } 8777 } 8778 8779 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8780 // have to do anything here to lower funclet bundles. 8781 // CFGuardTarget bundles are lowered in LowerCallTo. 8782 assert(!I.hasOperandBundlesOtherThan( 8783 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8784 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8785 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8786 "Cannot lower calls with arbitrary operand bundles!"); 8787 8788 SDValue Callee = getValue(I.getCalledOperand()); 8789 8790 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8791 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8792 else 8793 // Check if we can potentially perform a tail call. More detailed checking 8794 // is be done within LowerCallTo, after more information about the call is 8795 // known. 8796 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8797 } 8798 8799 namespace { 8800 8801 /// AsmOperandInfo - This contains information for each constraint that we are 8802 /// lowering. 8803 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8804 public: 8805 /// CallOperand - If this is the result output operand or a clobber 8806 /// this is null, otherwise it is the incoming operand to the CallInst. 8807 /// This gets modified as the asm is processed. 8808 SDValue CallOperand; 8809 8810 /// AssignedRegs - If this is a register or register class operand, this 8811 /// contains the set of register corresponding to the operand. 8812 RegsForValue AssignedRegs; 8813 8814 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8815 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8816 } 8817 8818 /// Whether or not this operand accesses memory 8819 bool hasMemory(const TargetLowering &TLI) const { 8820 // Indirect operand accesses access memory. 8821 if (isIndirect) 8822 return true; 8823 8824 for (const auto &Code : Codes) 8825 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8826 return true; 8827 8828 return false; 8829 } 8830 }; 8831 8832 8833 } // end anonymous namespace 8834 8835 /// Make sure that the output operand \p OpInfo and its corresponding input 8836 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8837 /// out). 8838 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8839 SDISelAsmOperandInfo &MatchingOpInfo, 8840 SelectionDAG &DAG) { 8841 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8842 return; 8843 8844 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8845 const auto &TLI = DAG.getTargetLoweringInfo(); 8846 8847 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8848 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8849 OpInfo.ConstraintVT); 8850 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8851 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8852 MatchingOpInfo.ConstraintVT); 8853 if ((OpInfo.ConstraintVT.isInteger() != 8854 MatchingOpInfo.ConstraintVT.isInteger()) || 8855 (MatchRC.second != InputRC.second)) { 8856 // FIXME: error out in a more elegant fashion 8857 report_fatal_error("Unsupported asm: input constraint" 8858 " with a matching output constraint of" 8859 " incompatible type!"); 8860 } 8861 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8862 } 8863 8864 /// Get a direct memory input to behave well as an indirect operand. 8865 /// This may introduce stores, hence the need for a \p Chain. 8866 /// \return The (possibly updated) chain. 8867 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8868 SDISelAsmOperandInfo &OpInfo, 8869 SelectionDAG &DAG) { 8870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8871 8872 // If we don't have an indirect input, put it in the constpool if we can, 8873 // otherwise spill it to a stack slot. 8874 // TODO: This isn't quite right. We need to handle these according to 8875 // the addressing mode that the constraint wants. Also, this may take 8876 // an additional register for the computation and we don't want that 8877 // either. 8878 8879 // If the operand is a float, integer, or vector constant, spill to a 8880 // constant pool entry to get its address. 8881 const Value *OpVal = OpInfo.CallOperandVal; 8882 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8883 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8884 OpInfo.CallOperand = DAG.getConstantPool( 8885 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8886 return Chain; 8887 } 8888 8889 // Otherwise, create a stack slot and emit a store to it before the asm. 8890 Type *Ty = OpVal->getType(); 8891 auto &DL = DAG.getDataLayout(); 8892 uint64_t TySize = DL.getTypeAllocSize(Ty); 8893 MachineFunction &MF = DAG.getMachineFunction(); 8894 int SSFI = MF.getFrameInfo().CreateStackObject( 8895 TySize, DL.getPrefTypeAlign(Ty), false); 8896 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8897 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8898 MachinePointerInfo::getFixedStack(MF, SSFI), 8899 TLI.getMemValueType(DL, Ty)); 8900 OpInfo.CallOperand = StackSlot; 8901 8902 return Chain; 8903 } 8904 8905 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8906 /// specified operand. We prefer to assign virtual registers, to allow the 8907 /// register allocator to handle the assignment process. However, if the asm 8908 /// uses features that we can't model on machineinstrs, we have SDISel do the 8909 /// allocation. This produces generally horrible, but correct, code. 8910 /// 8911 /// OpInfo describes the operand 8912 /// RefOpInfo describes the matching operand if any, the operand otherwise 8913 static std::optional<unsigned> 8914 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8915 SDISelAsmOperandInfo &OpInfo, 8916 SDISelAsmOperandInfo &RefOpInfo) { 8917 LLVMContext &Context = *DAG.getContext(); 8918 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8919 8920 MachineFunction &MF = DAG.getMachineFunction(); 8921 SmallVector<unsigned, 4> Regs; 8922 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8923 8924 // No work to do for memory/address operands. 8925 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8926 OpInfo.ConstraintType == TargetLowering::C_Address) 8927 return std::nullopt; 8928 8929 // If this is a constraint for a single physreg, or a constraint for a 8930 // register class, find it. 8931 unsigned AssignedReg; 8932 const TargetRegisterClass *RC; 8933 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8934 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8935 // RC is unset only on failure. Return immediately. 8936 if (!RC) 8937 return std::nullopt; 8938 8939 // Get the actual register value type. This is important, because the user 8940 // may have asked for (e.g.) the AX register in i32 type. We need to 8941 // remember that AX is actually i16 to get the right extension. 8942 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8943 8944 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8945 // If this is an FP operand in an integer register (or visa versa), or more 8946 // generally if the operand value disagrees with the register class we plan 8947 // to stick it in, fix the operand type. 8948 // 8949 // If this is an input value, the bitcast to the new type is done now. 8950 // Bitcast for output value is done at the end of visitInlineAsm(). 8951 if ((OpInfo.Type == InlineAsm::isOutput || 8952 OpInfo.Type == InlineAsm::isInput) && 8953 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8954 // Try to convert to the first EVT that the reg class contains. If the 8955 // types are identical size, use a bitcast to convert (e.g. two differing 8956 // vector types). Note: output bitcast is done at the end of 8957 // visitInlineAsm(). 8958 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8959 // Exclude indirect inputs while they are unsupported because the code 8960 // to perform the load is missing and thus OpInfo.CallOperand still 8961 // refers to the input address rather than the pointed-to value. 8962 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8963 OpInfo.CallOperand = 8964 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8965 OpInfo.ConstraintVT = RegVT; 8966 // If the operand is an FP value and we want it in integer registers, 8967 // use the corresponding integer type. This turns an f64 value into 8968 // i64, which can be passed with two i32 values on a 32-bit machine. 8969 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8970 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8971 if (OpInfo.Type == InlineAsm::isInput) 8972 OpInfo.CallOperand = 8973 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8974 OpInfo.ConstraintVT = VT; 8975 } 8976 } 8977 } 8978 8979 // No need to allocate a matching input constraint since the constraint it's 8980 // matching to has already been allocated. 8981 if (OpInfo.isMatchingInputConstraint()) 8982 return std::nullopt; 8983 8984 EVT ValueVT = OpInfo.ConstraintVT; 8985 if (OpInfo.ConstraintVT == MVT::Other) 8986 ValueVT = RegVT; 8987 8988 // Initialize NumRegs. 8989 unsigned NumRegs = 1; 8990 if (OpInfo.ConstraintVT != MVT::Other) 8991 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8992 8993 // If this is a constraint for a specific physical register, like {r17}, 8994 // assign it now. 8995 8996 // If this associated to a specific register, initialize iterator to correct 8997 // place. If virtual, make sure we have enough registers 8998 8999 // Initialize iterator if necessary 9000 TargetRegisterClass::iterator I = RC->begin(); 9001 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9002 9003 // Do not check for single registers. 9004 if (AssignedReg) { 9005 I = std::find(I, RC->end(), AssignedReg); 9006 if (I == RC->end()) { 9007 // RC does not contain the selected register, which indicates a 9008 // mismatch between the register and the required type/bitwidth. 9009 return {AssignedReg}; 9010 } 9011 } 9012 9013 for (; NumRegs; --NumRegs, ++I) { 9014 assert(I != RC->end() && "Ran out of registers to allocate!"); 9015 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9016 Regs.push_back(R); 9017 } 9018 9019 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9020 return std::nullopt; 9021 } 9022 9023 static unsigned 9024 findMatchingInlineAsmOperand(unsigned OperandNo, 9025 const std::vector<SDValue> &AsmNodeOperands) { 9026 // Scan until we find the definition we already emitted of this operand. 9027 unsigned CurOp = InlineAsm::Op_FirstOperand; 9028 for (; OperandNo; --OperandNo) { 9029 // Advance to the next operand. 9030 unsigned OpFlag = 9031 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 9032 const InlineAsm::Flag F(OpFlag); 9033 assert( 9034 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9035 "Skipped past definitions?"); 9036 CurOp += F.getNumOperandRegisters() + 1; 9037 } 9038 return CurOp; 9039 } 9040 9041 namespace { 9042 9043 class ExtraFlags { 9044 unsigned Flags = 0; 9045 9046 public: 9047 explicit ExtraFlags(const CallBase &Call) { 9048 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9049 if (IA->hasSideEffects()) 9050 Flags |= InlineAsm::Extra_HasSideEffects; 9051 if (IA->isAlignStack()) 9052 Flags |= InlineAsm::Extra_IsAlignStack; 9053 if (Call.isConvergent()) 9054 Flags |= InlineAsm::Extra_IsConvergent; 9055 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9056 } 9057 9058 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9059 // Ideally, we would only check against memory constraints. However, the 9060 // meaning of an Other constraint can be target-specific and we can't easily 9061 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9062 // for Other constraints as well. 9063 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9064 OpInfo.ConstraintType == TargetLowering::C_Other) { 9065 if (OpInfo.Type == InlineAsm::isInput) 9066 Flags |= InlineAsm::Extra_MayLoad; 9067 else if (OpInfo.Type == InlineAsm::isOutput) 9068 Flags |= InlineAsm::Extra_MayStore; 9069 else if (OpInfo.Type == InlineAsm::isClobber) 9070 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9071 } 9072 } 9073 9074 unsigned get() const { return Flags; } 9075 }; 9076 9077 } // end anonymous namespace 9078 9079 static bool isFunction(SDValue Op) { 9080 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9081 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9082 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9083 9084 // In normal "call dllimport func" instruction (non-inlineasm) it force 9085 // indirect access by specifing call opcode. And usually specially print 9086 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9087 // not do in this way now. (In fact, this is similar with "Data Access" 9088 // action). So here we ignore dllimport function. 9089 if (Fn && !Fn->hasDLLImportStorageClass()) 9090 return true; 9091 } 9092 } 9093 return false; 9094 } 9095 9096 /// visitInlineAsm - Handle a call to an InlineAsm object. 9097 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9098 const BasicBlock *EHPadBB) { 9099 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9100 9101 /// ConstraintOperands - Information about all of the constraints. 9102 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9103 9104 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9105 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9106 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9107 9108 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9109 // AsmDialect, MayLoad, MayStore). 9110 bool HasSideEffect = IA->hasSideEffects(); 9111 ExtraFlags ExtraInfo(Call); 9112 9113 for (auto &T : TargetConstraints) { 9114 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9115 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9116 9117 if (OpInfo.CallOperandVal) 9118 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9119 9120 if (!HasSideEffect) 9121 HasSideEffect = OpInfo.hasMemory(TLI); 9122 9123 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9124 // FIXME: Could we compute this on OpInfo rather than T? 9125 9126 // Compute the constraint code and ConstraintType to use. 9127 TLI.ComputeConstraintToUse(T, SDValue()); 9128 9129 if (T.ConstraintType == TargetLowering::C_Immediate && 9130 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9131 // We've delayed emitting a diagnostic like the "n" constraint because 9132 // inlining could cause an integer showing up. 9133 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9134 "' expects an integer constant " 9135 "expression"); 9136 9137 ExtraInfo.update(T); 9138 } 9139 9140 // We won't need to flush pending loads if this asm doesn't touch 9141 // memory and is nonvolatile. 9142 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9143 9144 bool EmitEHLabels = isa<InvokeInst>(Call); 9145 if (EmitEHLabels) { 9146 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9147 } 9148 bool IsCallBr = isa<CallBrInst>(Call); 9149 9150 if (IsCallBr || EmitEHLabels) { 9151 // If this is a callbr or invoke we need to flush pending exports since 9152 // inlineasm_br and invoke are terminators. 9153 // We need to do this before nodes are glued to the inlineasm_br node. 9154 Chain = getControlRoot(); 9155 } 9156 9157 MCSymbol *BeginLabel = nullptr; 9158 if (EmitEHLabels) { 9159 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9160 } 9161 9162 int OpNo = -1; 9163 SmallVector<StringRef> AsmStrs; 9164 IA->collectAsmStrs(AsmStrs); 9165 9166 // Second pass over the constraints: compute which constraint option to use. 9167 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9168 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9169 OpNo++; 9170 9171 // If this is an output operand with a matching input operand, look up the 9172 // matching input. If their types mismatch, e.g. one is an integer, the 9173 // other is floating point, or their sizes are different, flag it as an 9174 // error. 9175 if (OpInfo.hasMatchingInput()) { 9176 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9177 patchMatchingInput(OpInfo, Input, DAG); 9178 } 9179 9180 // Compute the constraint code and ConstraintType to use. 9181 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9182 9183 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9184 OpInfo.Type == InlineAsm::isClobber) || 9185 OpInfo.ConstraintType == TargetLowering::C_Address) 9186 continue; 9187 9188 // In Linux PIC model, there are 4 cases about value/label addressing: 9189 // 9190 // 1: Function call or Label jmp inside the module. 9191 // 2: Data access (such as global variable, static variable) inside module. 9192 // 3: Function call or Label jmp outside the module. 9193 // 4: Data access (such as global variable) outside the module. 9194 // 9195 // Due to current llvm inline asm architecture designed to not "recognize" 9196 // the asm code, there are quite troubles for us to treat mem addressing 9197 // differently for same value/adress used in different instuctions. 9198 // For example, in pic model, call a func may in plt way or direclty 9199 // pc-related, but lea/mov a function adress may use got. 9200 // 9201 // Here we try to "recognize" function call for the case 1 and case 3 in 9202 // inline asm. And try to adjust the constraint for them. 9203 // 9204 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9205 // label, so here we don't handle jmp function label now, but we need to 9206 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9207 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9208 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9209 TM.getCodeModel() != CodeModel::Large) { 9210 OpInfo.isIndirect = false; 9211 OpInfo.ConstraintType = TargetLowering::C_Address; 9212 } 9213 9214 // If this is a memory input, and if the operand is not indirect, do what we 9215 // need to provide an address for the memory input. 9216 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9217 !OpInfo.isIndirect) { 9218 assert((OpInfo.isMultipleAlternative || 9219 (OpInfo.Type == InlineAsm::isInput)) && 9220 "Can only indirectify direct input operands!"); 9221 9222 // Memory operands really want the address of the value. 9223 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9224 9225 // There is no longer a Value* corresponding to this operand. 9226 OpInfo.CallOperandVal = nullptr; 9227 9228 // It is now an indirect operand. 9229 OpInfo.isIndirect = true; 9230 } 9231 9232 } 9233 9234 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9235 std::vector<SDValue> AsmNodeOperands; 9236 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9237 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9238 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9239 9240 // If we have a !srcloc metadata node associated with it, we want to attach 9241 // this to the ultimately generated inline asm machineinstr. To do this, we 9242 // pass in the third operand as this (potentially null) inline asm MDNode. 9243 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9244 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9245 9246 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9247 // bits as operand 3. 9248 AsmNodeOperands.push_back(DAG.getTargetConstant( 9249 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9250 9251 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9252 // this, assign virtual and physical registers for inputs and otput. 9253 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9254 // Assign Registers. 9255 SDISelAsmOperandInfo &RefOpInfo = 9256 OpInfo.isMatchingInputConstraint() 9257 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9258 : OpInfo; 9259 const auto RegError = 9260 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9261 if (RegError) { 9262 const MachineFunction &MF = DAG.getMachineFunction(); 9263 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9264 const char *RegName = TRI.getName(*RegError); 9265 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9266 "' allocated for constraint '" + 9267 Twine(OpInfo.ConstraintCode) + 9268 "' does not match required type"); 9269 return; 9270 } 9271 9272 auto DetectWriteToReservedRegister = [&]() { 9273 const MachineFunction &MF = DAG.getMachineFunction(); 9274 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9275 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9276 if (Register::isPhysicalRegister(Reg) && 9277 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9278 const char *RegName = TRI.getName(Reg); 9279 emitInlineAsmError(Call, "write to reserved register '" + 9280 Twine(RegName) + "'"); 9281 return true; 9282 } 9283 } 9284 return false; 9285 }; 9286 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9287 (OpInfo.Type == InlineAsm::isInput && 9288 !OpInfo.isMatchingInputConstraint())) && 9289 "Only address as input operand is allowed."); 9290 9291 switch (OpInfo.Type) { 9292 case InlineAsm::isOutput: 9293 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9294 const InlineAsm::ConstraintCode ConstraintID = 9295 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9296 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9297 "Failed to convert memory constraint code to constraint id."); 9298 9299 // Add information to the INLINEASM node to know about this output. 9300 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9301 OpFlags.setMemConstraint(ConstraintID); 9302 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9303 MVT::i32)); 9304 AsmNodeOperands.push_back(OpInfo.CallOperand); 9305 } else { 9306 // Otherwise, this outputs to a register (directly for C_Register / 9307 // C_RegisterClass, and a target-defined fashion for 9308 // C_Immediate/C_Other). Find a register that we can use. 9309 if (OpInfo.AssignedRegs.Regs.empty()) { 9310 emitInlineAsmError( 9311 Call, "couldn't allocate output register for constraint '" + 9312 Twine(OpInfo.ConstraintCode) + "'"); 9313 return; 9314 } 9315 9316 if (DetectWriteToReservedRegister()) 9317 return; 9318 9319 // Add information to the INLINEASM node to know that this register is 9320 // set. 9321 OpInfo.AssignedRegs.AddInlineAsmOperands( 9322 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9323 : InlineAsm::Kind::RegDef, 9324 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9325 } 9326 break; 9327 9328 case InlineAsm::isInput: 9329 case InlineAsm::isLabel: { 9330 SDValue InOperandVal = OpInfo.CallOperand; 9331 9332 if (OpInfo.isMatchingInputConstraint()) { 9333 // If this is required to match an output register we have already set, 9334 // just use its register. 9335 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9336 AsmNodeOperands); 9337 InlineAsm::Flag Flag( 9338 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue()); 9339 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9340 if (OpInfo.isIndirect) { 9341 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9342 emitInlineAsmError(Call, "inline asm not supported yet: " 9343 "don't know how to handle tied " 9344 "indirect register inputs"); 9345 return; 9346 } 9347 9348 SmallVector<unsigned, 4> Regs; 9349 MachineFunction &MF = DAG.getMachineFunction(); 9350 MachineRegisterInfo &MRI = MF.getRegInfo(); 9351 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9352 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9353 Register TiedReg = R->getReg(); 9354 MVT RegVT = R->getSimpleValueType(0); 9355 const TargetRegisterClass *RC = 9356 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9357 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9358 : TRI.getMinimalPhysRegClass(TiedReg); 9359 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9360 Regs.push_back(MRI.createVirtualRegister(RC)); 9361 9362 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9363 9364 SDLoc dl = getCurSDLoc(); 9365 // Use the produced MatchedRegs object to 9366 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9367 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9368 OpInfo.getMatchedOperand(), dl, DAG, 9369 AsmNodeOperands); 9370 break; 9371 } 9372 9373 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9374 assert(Flag.getNumOperandRegisters() == 1 && 9375 "Unexpected number of operands"); 9376 // Add information to the INLINEASM node to know about this input. 9377 // See InlineAsm.h isUseOperandTiedToDef. 9378 Flag.clearMemConstraint(); 9379 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9380 AsmNodeOperands.push_back(DAG.getTargetConstant( 9381 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9382 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9383 break; 9384 } 9385 9386 // Treat indirect 'X' constraint as memory. 9387 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9388 OpInfo.isIndirect) 9389 OpInfo.ConstraintType = TargetLowering::C_Memory; 9390 9391 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9392 OpInfo.ConstraintType == TargetLowering::C_Other) { 9393 std::vector<SDValue> Ops; 9394 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9395 Ops, DAG); 9396 if (Ops.empty()) { 9397 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9398 if (isa<ConstantSDNode>(InOperandVal)) { 9399 emitInlineAsmError(Call, "value out of range for constraint '" + 9400 Twine(OpInfo.ConstraintCode) + "'"); 9401 return; 9402 } 9403 9404 emitInlineAsmError(Call, 9405 "invalid operand for inline asm constraint '" + 9406 Twine(OpInfo.ConstraintCode) + "'"); 9407 return; 9408 } 9409 9410 // Add information to the INLINEASM node to know about this input. 9411 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9412 AsmNodeOperands.push_back(DAG.getTargetConstant( 9413 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9414 llvm::append_range(AsmNodeOperands, Ops); 9415 break; 9416 } 9417 9418 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9419 assert((OpInfo.isIndirect || 9420 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9421 "Operand must be indirect to be a mem!"); 9422 assert(InOperandVal.getValueType() == 9423 TLI.getPointerTy(DAG.getDataLayout()) && 9424 "Memory operands expect pointer values"); 9425 9426 const InlineAsm::ConstraintCode ConstraintID = 9427 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9428 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9429 "Failed to convert memory constraint code to constraint id."); 9430 9431 // Add information to the INLINEASM node to know about this input. 9432 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9433 ResOpType.setMemConstraint(ConstraintID); 9434 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9435 getCurSDLoc(), 9436 MVT::i32)); 9437 AsmNodeOperands.push_back(InOperandVal); 9438 break; 9439 } 9440 9441 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9442 const InlineAsm::ConstraintCode ConstraintID = 9443 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9444 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9445 "Failed to convert memory constraint code to constraint id."); 9446 9447 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9448 9449 SDValue AsmOp = InOperandVal; 9450 if (isFunction(InOperandVal)) { 9451 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9452 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 9453 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9454 InOperandVal.getValueType(), 9455 GA->getOffset()); 9456 } 9457 9458 // Add information to the INLINEASM node to know about this input. 9459 ResOpType.setMemConstraint(ConstraintID); 9460 9461 AsmNodeOperands.push_back( 9462 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9463 9464 AsmNodeOperands.push_back(AsmOp); 9465 break; 9466 } 9467 9468 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9469 OpInfo.ConstraintType == TargetLowering::C_Register) && 9470 "Unknown constraint type!"); 9471 9472 // TODO: Support this. 9473 if (OpInfo.isIndirect) { 9474 emitInlineAsmError( 9475 Call, "Don't know how to handle indirect register inputs yet " 9476 "for constraint '" + 9477 Twine(OpInfo.ConstraintCode) + "'"); 9478 return; 9479 } 9480 9481 // Copy the input into the appropriate registers. 9482 if (OpInfo.AssignedRegs.Regs.empty()) { 9483 emitInlineAsmError(Call, 9484 "couldn't allocate input reg for constraint '" + 9485 Twine(OpInfo.ConstraintCode) + "'"); 9486 return; 9487 } 9488 9489 if (DetectWriteToReservedRegister()) 9490 return; 9491 9492 SDLoc dl = getCurSDLoc(); 9493 9494 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 9495 &Call); 9496 9497 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 9498 0, dl, DAG, AsmNodeOperands); 9499 break; 9500 } 9501 case InlineAsm::isClobber: 9502 // Add the clobbered value to the operand list, so that the register 9503 // allocator is aware that the physreg got clobbered. 9504 if (!OpInfo.AssignedRegs.Regs.empty()) 9505 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 9506 false, 0, getCurSDLoc(), DAG, 9507 AsmNodeOperands); 9508 break; 9509 } 9510 } 9511 9512 // Finish up input operands. Set the input chain and add the flag last. 9513 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9514 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 9515 9516 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9517 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9518 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9519 Glue = Chain.getValue(1); 9520 9521 // Do additional work to generate outputs. 9522 9523 SmallVector<EVT, 1> ResultVTs; 9524 SmallVector<SDValue, 1> ResultValues; 9525 SmallVector<SDValue, 8> OutChains; 9526 9527 llvm::Type *CallResultType = Call.getType(); 9528 ArrayRef<Type *> ResultTypes; 9529 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9530 ResultTypes = StructResult->elements(); 9531 else if (!CallResultType->isVoidTy()) 9532 ResultTypes = ArrayRef(CallResultType); 9533 9534 auto CurResultType = ResultTypes.begin(); 9535 auto handleRegAssign = [&](SDValue V) { 9536 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9537 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9538 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9539 ++CurResultType; 9540 // If the type of the inline asm call site return value is different but has 9541 // same size as the type of the asm output bitcast it. One example of this 9542 // is for vectors with different width / number of elements. This can 9543 // happen for register classes that can contain multiple different value 9544 // types. The preg or vreg allocated may not have the same VT as was 9545 // expected. 9546 // 9547 // This can also happen for a return value that disagrees with the register 9548 // class it is put in, eg. a double in a general-purpose register on a 9549 // 32-bit machine. 9550 if (ResultVT != V.getValueType() && 9551 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9552 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9553 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9554 V.getValueType().isInteger()) { 9555 // If a result value was tied to an input value, the computed result 9556 // may have a wider width than the expected result. Extract the 9557 // relevant portion. 9558 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9559 } 9560 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9561 ResultVTs.push_back(ResultVT); 9562 ResultValues.push_back(V); 9563 }; 9564 9565 // Deal with output operands. 9566 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9567 if (OpInfo.Type == InlineAsm::isOutput) { 9568 SDValue Val; 9569 // Skip trivial output operands. 9570 if (OpInfo.AssignedRegs.Regs.empty()) 9571 continue; 9572 9573 switch (OpInfo.ConstraintType) { 9574 case TargetLowering::C_Register: 9575 case TargetLowering::C_RegisterClass: 9576 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9577 Chain, &Glue, &Call); 9578 break; 9579 case TargetLowering::C_Immediate: 9580 case TargetLowering::C_Other: 9581 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 9582 OpInfo, DAG); 9583 break; 9584 case TargetLowering::C_Memory: 9585 break; // Already handled. 9586 case TargetLowering::C_Address: 9587 break; // Silence warning. 9588 case TargetLowering::C_Unknown: 9589 assert(false && "Unexpected unknown constraint"); 9590 } 9591 9592 // Indirect output manifest as stores. Record output chains. 9593 if (OpInfo.isIndirect) { 9594 const Value *Ptr = OpInfo.CallOperandVal; 9595 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9596 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9597 MachinePointerInfo(Ptr)); 9598 OutChains.push_back(Store); 9599 } else { 9600 // generate CopyFromRegs to associated registers. 9601 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9602 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9603 for (const SDValue &V : Val->op_values()) 9604 handleRegAssign(V); 9605 } else 9606 handleRegAssign(Val); 9607 } 9608 } 9609 } 9610 9611 // Set results. 9612 if (!ResultValues.empty()) { 9613 assert(CurResultType == ResultTypes.end() && 9614 "Mismatch in number of ResultTypes"); 9615 assert(ResultValues.size() == ResultTypes.size() && 9616 "Mismatch in number of output operands in asm result"); 9617 9618 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9619 DAG.getVTList(ResultVTs), ResultValues); 9620 setValue(&Call, V); 9621 } 9622 9623 // Collect store chains. 9624 if (!OutChains.empty()) 9625 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9626 9627 if (EmitEHLabels) { 9628 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9629 } 9630 9631 // Only Update Root if inline assembly has a memory effect. 9632 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9633 EmitEHLabels) 9634 DAG.setRoot(Chain); 9635 } 9636 9637 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9638 const Twine &Message) { 9639 LLVMContext &Ctx = *DAG.getContext(); 9640 Ctx.emitError(&Call, Message); 9641 9642 // Make sure we leave the DAG in a valid state 9643 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9644 SmallVector<EVT, 1> ValueVTs; 9645 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9646 9647 if (ValueVTs.empty()) 9648 return; 9649 9650 SmallVector<SDValue, 1> Ops; 9651 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9652 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9653 9654 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9655 } 9656 9657 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9658 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9659 MVT::Other, getRoot(), 9660 getValue(I.getArgOperand(0)), 9661 DAG.getSrcValue(I.getArgOperand(0)))); 9662 } 9663 9664 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9665 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9666 const DataLayout &DL = DAG.getDataLayout(); 9667 SDValue V = DAG.getVAArg( 9668 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9669 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9670 DL.getABITypeAlign(I.getType()).value()); 9671 DAG.setRoot(V.getValue(1)); 9672 9673 if (I.getType()->isPointerTy()) 9674 V = DAG.getPtrExtOrTrunc( 9675 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9676 setValue(&I, V); 9677 } 9678 9679 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9680 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9681 MVT::Other, getRoot(), 9682 getValue(I.getArgOperand(0)), 9683 DAG.getSrcValue(I.getArgOperand(0)))); 9684 } 9685 9686 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9687 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9688 MVT::Other, getRoot(), 9689 getValue(I.getArgOperand(0)), 9690 getValue(I.getArgOperand(1)), 9691 DAG.getSrcValue(I.getArgOperand(0)), 9692 DAG.getSrcValue(I.getArgOperand(1)))); 9693 } 9694 9695 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9696 const Instruction &I, 9697 SDValue Op) { 9698 const MDNode *Range = getRangeMetadata(I); 9699 if (!Range) 9700 return Op; 9701 9702 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9703 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9704 return Op; 9705 9706 APInt Lo = CR.getUnsignedMin(); 9707 if (!Lo.isMinValue()) 9708 return Op; 9709 9710 APInt Hi = CR.getUnsignedMax(); 9711 unsigned Bits = std::max(Hi.getActiveBits(), 9712 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9713 9714 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9715 9716 SDLoc SL = getCurSDLoc(); 9717 9718 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9719 DAG.getValueType(SmallVT)); 9720 unsigned NumVals = Op.getNode()->getNumValues(); 9721 if (NumVals == 1) 9722 return ZExt; 9723 9724 SmallVector<SDValue, 4> Ops; 9725 9726 Ops.push_back(ZExt); 9727 for (unsigned I = 1; I != NumVals; ++I) 9728 Ops.push_back(Op.getValue(I)); 9729 9730 return DAG.getMergeValues(Ops, SL); 9731 } 9732 9733 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9734 /// the call being lowered. 9735 /// 9736 /// This is a helper for lowering intrinsics that follow a target calling 9737 /// convention or require stack pointer adjustment. Only a subset of the 9738 /// intrinsic's operands need to participate in the calling convention. 9739 void SelectionDAGBuilder::populateCallLoweringInfo( 9740 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9741 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9742 bool IsPatchPoint) { 9743 TargetLowering::ArgListTy Args; 9744 Args.reserve(NumArgs); 9745 9746 // Populate the argument list. 9747 // Attributes for args start at offset 1, after the return attribute. 9748 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9749 ArgI != ArgE; ++ArgI) { 9750 const Value *V = Call->getOperand(ArgI); 9751 9752 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9753 9754 TargetLowering::ArgListEntry Entry; 9755 Entry.Node = getValue(V); 9756 Entry.Ty = V->getType(); 9757 Entry.setAttributes(Call, ArgI); 9758 Args.push_back(Entry); 9759 } 9760 9761 CLI.setDebugLoc(getCurSDLoc()) 9762 .setChain(getRoot()) 9763 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9764 .setDiscardResult(Call->use_empty()) 9765 .setIsPatchPoint(IsPatchPoint) 9766 .setIsPreallocated( 9767 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9768 } 9769 9770 /// Add a stack map intrinsic call's live variable operands to a stackmap 9771 /// or patchpoint target node's operand list. 9772 /// 9773 /// Constants are converted to TargetConstants purely as an optimization to 9774 /// avoid constant materialization and register allocation. 9775 /// 9776 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9777 /// generate addess computation nodes, and so FinalizeISel can convert the 9778 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9779 /// address materialization and register allocation, but may also be required 9780 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9781 /// alloca in the entry block, then the runtime may assume that the alloca's 9782 /// StackMap location can be read immediately after compilation and that the 9783 /// location is valid at any point during execution (this is similar to the 9784 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9785 /// only available in a register, then the runtime would need to trap when 9786 /// execution reaches the StackMap in order to read the alloca's location. 9787 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9788 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9789 SelectionDAGBuilder &Builder) { 9790 SelectionDAG &DAG = Builder.DAG; 9791 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9792 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9793 9794 // Things on the stack are pointer-typed, meaning that they are already 9795 // legal and can be emitted directly to target nodes. 9796 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9797 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9798 } else { 9799 // Otherwise emit a target independent node to be legalised. 9800 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9801 } 9802 } 9803 } 9804 9805 /// Lower llvm.experimental.stackmap. 9806 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9807 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9808 // [live variables...]) 9809 9810 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9811 9812 SDValue Chain, InGlue, Callee; 9813 SmallVector<SDValue, 32> Ops; 9814 9815 SDLoc DL = getCurSDLoc(); 9816 Callee = getValue(CI.getCalledOperand()); 9817 9818 // The stackmap intrinsic only records the live variables (the arguments 9819 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9820 // intrinsic, this won't be lowered to a function call. This means we don't 9821 // have to worry about calling conventions and target specific lowering code. 9822 // Instead we perform the call lowering right here. 9823 // 9824 // chain, flag = CALLSEQ_START(chain, 0, 0) 9825 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9826 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9827 // 9828 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9829 InGlue = Chain.getValue(1); 9830 9831 // Add the STACKMAP operands, starting with DAG house-keeping. 9832 Ops.push_back(Chain); 9833 Ops.push_back(InGlue); 9834 9835 // Add the <id>, <numShadowBytes> operands. 9836 // 9837 // These do not require legalisation, and can be emitted directly to target 9838 // constant nodes. 9839 SDValue ID = getValue(CI.getArgOperand(0)); 9840 assert(ID.getValueType() == MVT::i64); 9841 SDValue IDConst = DAG.getTargetConstant( 9842 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9843 Ops.push_back(IDConst); 9844 9845 SDValue Shad = getValue(CI.getArgOperand(1)); 9846 assert(Shad.getValueType() == MVT::i32); 9847 SDValue ShadConst = DAG.getTargetConstant( 9848 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9849 Ops.push_back(ShadConst); 9850 9851 // Add the live variables. 9852 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9853 9854 // Create the STACKMAP node. 9855 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9856 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9857 InGlue = Chain.getValue(1); 9858 9859 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 9860 9861 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9862 9863 // Set the root to the target-lowered call chain. 9864 DAG.setRoot(Chain); 9865 9866 // Inform the Frame Information that we have a stackmap in this function. 9867 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9868 } 9869 9870 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9871 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9872 const BasicBlock *EHPadBB) { 9873 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9874 // i32 <numBytes>, 9875 // i8* <target>, 9876 // i32 <numArgs>, 9877 // [Args...], 9878 // [live variables...]) 9879 9880 CallingConv::ID CC = CB.getCallingConv(); 9881 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9882 bool HasDef = !CB.getType()->isVoidTy(); 9883 SDLoc dl = getCurSDLoc(); 9884 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9885 9886 // Handle immediate and symbolic callees. 9887 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9888 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9889 /*isTarget=*/true); 9890 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9891 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9892 SDLoc(SymbolicCallee), 9893 SymbolicCallee->getValueType(0)); 9894 9895 // Get the real number of arguments participating in the call <numArgs> 9896 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9897 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9898 9899 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9900 // Intrinsics include all meta-operands up to but not including CC. 9901 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9902 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9903 "Not enough arguments provided to the patchpoint intrinsic"); 9904 9905 // For AnyRegCC the arguments are lowered later on manually. 9906 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9907 Type *ReturnTy = 9908 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9909 9910 TargetLowering::CallLoweringInfo CLI(DAG); 9911 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9912 ReturnTy, true); 9913 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9914 9915 SDNode *CallEnd = Result.second.getNode(); 9916 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9917 CallEnd = CallEnd->getOperand(0).getNode(); 9918 9919 /// Get a call instruction from the call sequence chain. 9920 /// Tail calls are not allowed. 9921 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9922 "Expected a callseq node."); 9923 SDNode *Call = CallEnd->getOperand(0).getNode(); 9924 bool HasGlue = Call->getGluedNode(); 9925 9926 // Replace the target specific call node with the patchable intrinsic. 9927 SmallVector<SDValue, 8> Ops; 9928 9929 // Push the chain. 9930 Ops.push_back(*(Call->op_begin())); 9931 9932 // Optionally, push the glue (if any). 9933 if (HasGlue) 9934 Ops.push_back(*(Call->op_end() - 1)); 9935 9936 // Push the register mask info. 9937 if (HasGlue) 9938 Ops.push_back(*(Call->op_end() - 2)); 9939 else 9940 Ops.push_back(*(Call->op_end() - 1)); 9941 9942 // Add the <id> and <numBytes> constants. 9943 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9944 Ops.push_back(DAG.getTargetConstant( 9945 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9946 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9947 Ops.push_back(DAG.getTargetConstant( 9948 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9949 MVT::i32)); 9950 9951 // Add the callee. 9952 Ops.push_back(Callee); 9953 9954 // Adjust <numArgs> to account for any arguments that have been passed on the 9955 // stack instead. 9956 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9957 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9958 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9959 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9960 9961 // Add the calling convention 9962 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9963 9964 // Add the arguments we omitted previously. The register allocator should 9965 // place these in any free register. 9966 if (IsAnyRegCC) 9967 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9968 Ops.push_back(getValue(CB.getArgOperand(i))); 9969 9970 // Push the arguments from the call instruction. 9971 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9972 Ops.append(Call->op_begin() + 2, e); 9973 9974 // Push live variables for the stack map. 9975 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9976 9977 SDVTList NodeTys; 9978 if (IsAnyRegCC && HasDef) { 9979 // Create the return types based on the intrinsic definition 9980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9981 SmallVector<EVT, 3> ValueVTs; 9982 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9983 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9984 9985 // There is always a chain and a glue type at the end 9986 ValueVTs.push_back(MVT::Other); 9987 ValueVTs.push_back(MVT::Glue); 9988 NodeTys = DAG.getVTList(ValueVTs); 9989 } else 9990 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9991 9992 // Replace the target specific call node with a PATCHPOINT node. 9993 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 9994 9995 // Update the NodeMap. 9996 if (HasDef) { 9997 if (IsAnyRegCC) 9998 setValue(&CB, SDValue(PPV.getNode(), 0)); 9999 else 10000 setValue(&CB, Result.first); 10001 } 10002 10003 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10004 // call sequence. Furthermore the location of the chain and glue can change 10005 // when the AnyReg calling convention is used and the intrinsic returns a 10006 // value. 10007 if (IsAnyRegCC && HasDef) { 10008 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10009 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10010 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10011 } else 10012 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10013 DAG.DeleteNode(Call); 10014 10015 // Inform the Frame Information that we have a patchpoint in this function. 10016 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10017 } 10018 10019 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10020 unsigned Intrinsic) { 10021 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10022 SDValue Op1 = getValue(I.getArgOperand(0)); 10023 SDValue Op2; 10024 if (I.arg_size() > 1) 10025 Op2 = getValue(I.getArgOperand(1)); 10026 SDLoc dl = getCurSDLoc(); 10027 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10028 SDValue Res; 10029 SDNodeFlags SDFlags; 10030 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10031 SDFlags.copyFMF(*FPMO); 10032 10033 switch (Intrinsic) { 10034 case Intrinsic::vector_reduce_fadd: 10035 if (SDFlags.hasAllowReassociation()) 10036 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10037 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10038 SDFlags); 10039 else 10040 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10041 break; 10042 case Intrinsic::vector_reduce_fmul: 10043 if (SDFlags.hasAllowReassociation()) 10044 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10045 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10046 SDFlags); 10047 else 10048 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10049 break; 10050 case Intrinsic::vector_reduce_add: 10051 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10052 break; 10053 case Intrinsic::vector_reduce_mul: 10054 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10055 break; 10056 case Intrinsic::vector_reduce_and: 10057 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10058 break; 10059 case Intrinsic::vector_reduce_or: 10060 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10061 break; 10062 case Intrinsic::vector_reduce_xor: 10063 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10064 break; 10065 case Intrinsic::vector_reduce_smax: 10066 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10067 break; 10068 case Intrinsic::vector_reduce_smin: 10069 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10070 break; 10071 case Intrinsic::vector_reduce_umax: 10072 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10073 break; 10074 case Intrinsic::vector_reduce_umin: 10075 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10076 break; 10077 case Intrinsic::vector_reduce_fmax: 10078 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10079 break; 10080 case Intrinsic::vector_reduce_fmin: 10081 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10082 break; 10083 case Intrinsic::vector_reduce_fmaximum: 10084 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10085 break; 10086 case Intrinsic::vector_reduce_fminimum: 10087 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10088 break; 10089 default: 10090 llvm_unreachable("Unhandled vector reduce intrinsic"); 10091 } 10092 setValue(&I, Res); 10093 } 10094 10095 /// Returns an AttributeList representing the attributes applied to the return 10096 /// value of the given call. 10097 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10098 SmallVector<Attribute::AttrKind, 2> Attrs; 10099 if (CLI.RetSExt) 10100 Attrs.push_back(Attribute::SExt); 10101 if (CLI.RetZExt) 10102 Attrs.push_back(Attribute::ZExt); 10103 if (CLI.IsInReg) 10104 Attrs.push_back(Attribute::InReg); 10105 10106 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10107 Attrs); 10108 } 10109 10110 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10111 /// implementation, which just calls LowerCall. 10112 /// FIXME: When all targets are 10113 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10114 std::pair<SDValue, SDValue> 10115 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10116 // Handle the incoming return values from the call. 10117 CLI.Ins.clear(); 10118 Type *OrigRetTy = CLI.RetTy; 10119 SmallVector<EVT, 4> RetTys; 10120 SmallVector<uint64_t, 4> Offsets; 10121 auto &DL = CLI.DAG.getDataLayout(); 10122 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0); 10123 10124 if (CLI.IsPostTypeLegalization) { 10125 // If we are lowering a libcall after legalization, split the return type. 10126 SmallVector<EVT, 4> OldRetTys; 10127 SmallVector<uint64_t, 4> OldOffsets; 10128 RetTys.swap(OldRetTys); 10129 Offsets.swap(OldOffsets); 10130 10131 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10132 EVT RetVT = OldRetTys[i]; 10133 uint64_t Offset = OldOffsets[i]; 10134 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10135 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10136 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10137 RetTys.append(NumRegs, RegisterVT); 10138 for (unsigned j = 0; j != NumRegs; ++j) 10139 Offsets.push_back(Offset + j * RegisterVTByteSZ); 10140 } 10141 } 10142 10143 SmallVector<ISD::OutputArg, 4> Outs; 10144 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10145 10146 bool CanLowerReturn = 10147 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10148 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10149 10150 SDValue DemoteStackSlot; 10151 int DemoteStackIdx = -100; 10152 if (!CanLowerReturn) { 10153 // FIXME: equivalent assert? 10154 // assert(!CS.hasInAllocaArgument() && 10155 // "sret demotion is incompatible with inalloca"); 10156 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10157 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10158 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10159 DemoteStackIdx = 10160 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10161 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10162 DL.getAllocaAddrSpace()); 10163 10164 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10165 ArgListEntry Entry; 10166 Entry.Node = DemoteStackSlot; 10167 Entry.Ty = StackSlotPtrType; 10168 Entry.IsSExt = false; 10169 Entry.IsZExt = false; 10170 Entry.IsInReg = false; 10171 Entry.IsSRet = true; 10172 Entry.IsNest = false; 10173 Entry.IsByVal = false; 10174 Entry.IsByRef = false; 10175 Entry.IsReturned = false; 10176 Entry.IsSwiftSelf = false; 10177 Entry.IsSwiftAsync = false; 10178 Entry.IsSwiftError = false; 10179 Entry.IsCFGuardTarget = false; 10180 Entry.Alignment = Alignment; 10181 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10182 CLI.NumFixedArgs += 1; 10183 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10184 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10185 10186 // sret demotion isn't compatible with tail-calls, since the sret argument 10187 // points into the callers stack frame. 10188 CLI.IsTailCall = false; 10189 } else { 10190 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10191 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10192 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10193 ISD::ArgFlagsTy Flags; 10194 if (NeedsRegBlock) { 10195 Flags.setInConsecutiveRegs(); 10196 if (I == RetTys.size() - 1) 10197 Flags.setInConsecutiveRegsLast(); 10198 } 10199 EVT VT = RetTys[I]; 10200 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10201 CLI.CallConv, VT); 10202 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10203 CLI.CallConv, VT); 10204 for (unsigned i = 0; i != NumRegs; ++i) { 10205 ISD::InputArg MyFlags; 10206 MyFlags.Flags = Flags; 10207 MyFlags.VT = RegisterVT; 10208 MyFlags.ArgVT = VT; 10209 MyFlags.Used = CLI.IsReturnValueUsed; 10210 if (CLI.RetTy->isPointerTy()) { 10211 MyFlags.Flags.setPointer(); 10212 MyFlags.Flags.setPointerAddrSpace( 10213 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10214 } 10215 if (CLI.RetSExt) 10216 MyFlags.Flags.setSExt(); 10217 if (CLI.RetZExt) 10218 MyFlags.Flags.setZExt(); 10219 if (CLI.IsInReg) 10220 MyFlags.Flags.setInReg(); 10221 CLI.Ins.push_back(MyFlags); 10222 } 10223 } 10224 } 10225 10226 // We push in swifterror return as the last element of CLI.Ins. 10227 ArgListTy &Args = CLI.getArgs(); 10228 if (supportSwiftError()) { 10229 for (const ArgListEntry &Arg : Args) { 10230 if (Arg.IsSwiftError) { 10231 ISD::InputArg MyFlags; 10232 MyFlags.VT = getPointerTy(DL); 10233 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10234 MyFlags.Flags.setSwiftError(); 10235 CLI.Ins.push_back(MyFlags); 10236 } 10237 } 10238 } 10239 10240 // Handle all of the outgoing arguments. 10241 CLI.Outs.clear(); 10242 CLI.OutVals.clear(); 10243 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10244 SmallVector<EVT, 4> ValueVTs; 10245 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10246 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10247 Type *FinalType = Args[i].Ty; 10248 if (Args[i].IsByVal) 10249 FinalType = Args[i].IndirectType; 10250 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10251 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10252 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10253 ++Value) { 10254 EVT VT = ValueVTs[Value]; 10255 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10256 SDValue Op = SDValue(Args[i].Node.getNode(), 10257 Args[i].Node.getResNo() + Value); 10258 ISD::ArgFlagsTy Flags; 10259 10260 // Certain targets (such as MIPS), may have a different ABI alignment 10261 // for a type depending on the context. Give the target a chance to 10262 // specify the alignment it wants. 10263 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10264 Flags.setOrigAlign(OriginalAlignment); 10265 10266 if (Args[i].Ty->isPointerTy()) { 10267 Flags.setPointer(); 10268 Flags.setPointerAddrSpace( 10269 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10270 } 10271 if (Args[i].IsZExt) 10272 Flags.setZExt(); 10273 if (Args[i].IsSExt) 10274 Flags.setSExt(); 10275 if (Args[i].IsInReg) { 10276 // If we are using vectorcall calling convention, a structure that is 10277 // passed InReg - is surely an HVA 10278 if (CLI.CallConv == CallingConv::X86_VectorCall && 10279 isa<StructType>(FinalType)) { 10280 // The first value of a structure is marked 10281 if (0 == Value) 10282 Flags.setHvaStart(); 10283 Flags.setHva(); 10284 } 10285 // Set InReg Flag 10286 Flags.setInReg(); 10287 } 10288 if (Args[i].IsSRet) 10289 Flags.setSRet(); 10290 if (Args[i].IsSwiftSelf) 10291 Flags.setSwiftSelf(); 10292 if (Args[i].IsSwiftAsync) 10293 Flags.setSwiftAsync(); 10294 if (Args[i].IsSwiftError) 10295 Flags.setSwiftError(); 10296 if (Args[i].IsCFGuardTarget) 10297 Flags.setCFGuardTarget(); 10298 if (Args[i].IsByVal) 10299 Flags.setByVal(); 10300 if (Args[i].IsByRef) 10301 Flags.setByRef(); 10302 if (Args[i].IsPreallocated) { 10303 Flags.setPreallocated(); 10304 // Set the byval flag for CCAssignFn callbacks that don't know about 10305 // preallocated. This way we can know how many bytes we should've 10306 // allocated and how many bytes a callee cleanup function will pop. If 10307 // we port preallocated to more targets, we'll have to add custom 10308 // preallocated handling in the various CC lowering callbacks. 10309 Flags.setByVal(); 10310 } 10311 if (Args[i].IsInAlloca) { 10312 Flags.setInAlloca(); 10313 // Set the byval flag for CCAssignFn callbacks that don't know about 10314 // inalloca. This way we can know how many bytes we should've allocated 10315 // and how many bytes a callee cleanup function will pop. If we port 10316 // inalloca to more targets, we'll have to add custom inalloca handling 10317 // in the various CC lowering callbacks. 10318 Flags.setByVal(); 10319 } 10320 Align MemAlign; 10321 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10322 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10323 Flags.setByValSize(FrameSize); 10324 10325 // info is not there but there are cases it cannot get right. 10326 if (auto MA = Args[i].Alignment) 10327 MemAlign = *MA; 10328 else 10329 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10330 } else if (auto MA = Args[i].Alignment) { 10331 MemAlign = *MA; 10332 } else { 10333 MemAlign = OriginalAlignment; 10334 } 10335 Flags.setMemAlign(MemAlign); 10336 if (Args[i].IsNest) 10337 Flags.setNest(); 10338 if (NeedsRegBlock) 10339 Flags.setInConsecutiveRegs(); 10340 10341 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10342 CLI.CallConv, VT); 10343 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10344 CLI.CallConv, VT); 10345 SmallVector<SDValue, 4> Parts(NumParts); 10346 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10347 10348 if (Args[i].IsSExt) 10349 ExtendKind = ISD::SIGN_EXTEND; 10350 else if (Args[i].IsZExt) 10351 ExtendKind = ISD::ZERO_EXTEND; 10352 10353 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10354 // for now. 10355 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10356 CanLowerReturn) { 10357 assert((CLI.RetTy == Args[i].Ty || 10358 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10359 CLI.RetTy->getPointerAddressSpace() == 10360 Args[i].Ty->getPointerAddressSpace())) && 10361 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10362 // Before passing 'returned' to the target lowering code, ensure that 10363 // either the register MVT and the actual EVT are the same size or that 10364 // the return value and argument are extended in the same way; in these 10365 // cases it's safe to pass the argument register value unchanged as the 10366 // return register value (although it's at the target's option whether 10367 // to do so) 10368 // TODO: allow code generation to take advantage of partially preserved 10369 // registers rather than clobbering the entire register when the 10370 // parameter extension method is not compatible with the return 10371 // extension method 10372 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10373 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10374 CLI.RetZExt == Args[i].IsZExt)) 10375 Flags.setReturned(); 10376 } 10377 10378 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10379 CLI.CallConv, ExtendKind); 10380 10381 for (unsigned j = 0; j != NumParts; ++j) { 10382 // if it isn't first piece, alignment must be 1 10383 // For scalable vectors the scalable part is currently handled 10384 // by individual targets, so we just use the known minimum size here. 10385 ISD::OutputArg MyFlags( 10386 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10387 i < CLI.NumFixedArgs, i, 10388 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10389 if (NumParts > 1 && j == 0) 10390 MyFlags.Flags.setSplit(); 10391 else if (j != 0) { 10392 MyFlags.Flags.setOrigAlign(Align(1)); 10393 if (j == NumParts - 1) 10394 MyFlags.Flags.setSplitEnd(); 10395 } 10396 10397 CLI.Outs.push_back(MyFlags); 10398 CLI.OutVals.push_back(Parts[j]); 10399 } 10400 10401 if (NeedsRegBlock && Value == NumValues - 1) 10402 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10403 } 10404 } 10405 10406 SmallVector<SDValue, 4> InVals; 10407 CLI.Chain = LowerCall(CLI, InVals); 10408 10409 // Update CLI.InVals to use outside of this function. 10410 CLI.InVals = InVals; 10411 10412 // Verify that the target's LowerCall behaved as expected. 10413 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10414 "LowerCall didn't return a valid chain!"); 10415 assert((!CLI.IsTailCall || InVals.empty()) && 10416 "LowerCall emitted a return value for a tail call!"); 10417 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10418 "LowerCall didn't emit the correct number of values!"); 10419 10420 // For a tail call, the return value is merely live-out and there aren't 10421 // any nodes in the DAG representing it. Return a special value to 10422 // indicate that a tail call has been emitted and no more Instructions 10423 // should be processed in the current block. 10424 if (CLI.IsTailCall) { 10425 CLI.DAG.setRoot(CLI.Chain); 10426 return std::make_pair(SDValue(), SDValue()); 10427 } 10428 10429 #ifndef NDEBUG 10430 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10431 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10432 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10433 "LowerCall emitted a value with the wrong type!"); 10434 } 10435 #endif 10436 10437 SmallVector<SDValue, 4> ReturnValues; 10438 if (!CanLowerReturn) { 10439 // The instruction result is the result of loading from the 10440 // hidden sret parameter. 10441 SmallVector<EVT, 1> PVTs; 10442 Type *PtrRetTy = 10443 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 10444 10445 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10446 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10447 EVT PtrVT = PVTs[0]; 10448 10449 unsigned NumValues = RetTys.size(); 10450 ReturnValues.resize(NumValues); 10451 SmallVector<SDValue, 4> Chains(NumValues); 10452 10453 // An aggregate return value cannot wrap around the address space, so 10454 // offsets to its parts don't wrap either. 10455 SDNodeFlags Flags; 10456 Flags.setNoUnsignedWrap(true); 10457 10458 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10459 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10460 for (unsigned i = 0; i < NumValues; ++i) { 10461 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10462 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10463 PtrVT), Flags); 10464 SDValue L = CLI.DAG.getLoad( 10465 RetTys[i], CLI.DL, CLI.Chain, Add, 10466 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10467 DemoteStackIdx, Offsets[i]), 10468 HiddenSRetAlign); 10469 ReturnValues[i] = L; 10470 Chains[i] = L.getValue(1); 10471 } 10472 10473 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10474 } else { 10475 // Collect the legal value parts into potentially illegal values 10476 // that correspond to the original function's return values. 10477 std::optional<ISD::NodeType> AssertOp; 10478 if (CLI.RetSExt) 10479 AssertOp = ISD::AssertSext; 10480 else if (CLI.RetZExt) 10481 AssertOp = ISD::AssertZext; 10482 unsigned CurReg = 0; 10483 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10484 EVT VT = RetTys[I]; 10485 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10486 CLI.CallConv, VT); 10487 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10488 CLI.CallConv, VT); 10489 10490 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10491 NumRegs, RegisterVT, VT, nullptr, 10492 CLI.CallConv, AssertOp)); 10493 CurReg += NumRegs; 10494 } 10495 10496 // For a function returning void, there is no return value. We can't create 10497 // such a node, so we just return a null return value in that case. In 10498 // that case, nothing will actually look at the value. 10499 if (ReturnValues.empty()) 10500 return std::make_pair(SDValue(), CLI.Chain); 10501 } 10502 10503 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10504 CLI.DAG.getVTList(RetTys), ReturnValues); 10505 return std::make_pair(Res, CLI.Chain); 10506 } 10507 10508 /// Places new result values for the node in Results (their number 10509 /// and types must exactly match those of the original return values of 10510 /// the node), or leaves Results empty, which indicates that the node is not 10511 /// to be custom lowered after all. 10512 void TargetLowering::LowerOperationWrapper(SDNode *N, 10513 SmallVectorImpl<SDValue> &Results, 10514 SelectionDAG &DAG) const { 10515 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10516 10517 if (!Res.getNode()) 10518 return; 10519 10520 // If the original node has one result, take the return value from 10521 // LowerOperation as is. It might not be result number 0. 10522 if (N->getNumValues() == 1) { 10523 Results.push_back(Res); 10524 return; 10525 } 10526 10527 // If the original node has multiple results, then the return node should 10528 // have the same number of results. 10529 assert((N->getNumValues() == Res->getNumValues()) && 10530 "Lowering returned the wrong number of results!"); 10531 10532 // Places new result values base on N result number. 10533 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10534 Results.push_back(Res.getValue(I)); 10535 } 10536 10537 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10538 llvm_unreachable("LowerOperation not implemented for this target!"); 10539 } 10540 10541 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10542 unsigned Reg, 10543 ISD::NodeType ExtendType) { 10544 SDValue Op = getNonRegisterValue(V); 10545 assert((Op.getOpcode() != ISD::CopyFromReg || 10546 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10547 "Copy from a reg to the same reg!"); 10548 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10549 10550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10551 // If this is an InlineAsm we have to match the registers required, not the 10552 // notional registers required by the type. 10553 10554 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10555 std::nullopt); // This is not an ABI copy. 10556 SDValue Chain = DAG.getEntryNode(); 10557 10558 if (ExtendType == ISD::ANY_EXTEND) { 10559 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10560 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10561 ExtendType = PreferredExtendIt->second; 10562 } 10563 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10564 PendingExports.push_back(Chain); 10565 } 10566 10567 #include "llvm/CodeGen/SelectionDAGISel.h" 10568 10569 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10570 /// entry block, return true. This includes arguments used by switches, since 10571 /// the switch may expand into multiple basic blocks. 10572 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10573 // With FastISel active, we may be splitting blocks, so force creation 10574 // of virtual registers for all non-dead arguments. 10575 if (FastISel) 10576 return A->use_empty(); 10577 10578 const BasicBlock &Entry = A->getParent()->front(); 10579 for (const User *U : A->users()) 10580 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10581 return false; // Use not in entry block. 10582 10583 return true; 10584 } 10585 10586 using ArgCopyElisionMapTy = 10587 DenseMap<const Argument *, 10588 std::pair<const AllocaInst *, const StoreInst *>>; 10589 10590 /// Scan the entry block of the function in FuncInfo for arguments that look 10591 /// like copies into a local alloca. Record any copied arguments in 10592 /// ArgCopyElisionCandidates. 10593 static void 10594 findArgumentCopyElisionCandidates(const DataLayout &DL, 10595 FunctionLoweringInfo *FuncInfo, 10596 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10597 // Record the state of every static alloca used in the entry block. Argument 10598 // allocas are all used in the entry block, so we need approximately as many 10599 // entries as we have arguments. 10600 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10601 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10602 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10603 StaticAllocas.reserve(NumArgs * 2); 10604 10605 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10606 if (!V) 10607 return nullptr; 10608 V = V->stripPointerCasts(); 10609 const auto *AI = dyn_cast<AllocaInst>(V); 10610 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10611 return nullptr; 10612 auto Iter = StaticAllocas.insert({AI, Unknown}); 10613 return &Iter.first->second; 10614 }; 10615 10616 // Look for stores of arguments to static allocas. Look through bitcasts and 10617 // GEPs to handle type coercions, as long as the alloca is fully initialized 10618 // by the store. Any non-store use of an alloca escapes it and any subsequent 10619 // unanalyzed store might write it. 10620 // FIXME: Handle structs initialized with multiple stores. 10621 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10622 // Look for stores, and handle non-store uses conservatively. 10623 const auto *SI = dyn_cast<StoreInst>(&I); 10624 if (!SI) { 10625 // We will look through cast uses, so ignore them completely. 10626 if (I.isCast()) 10627 continue; 10628 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10629 // to allocas. 10630 if (I.isDebugOrPseudoInst()) 10631 continue; 10632 // This is an unknown instruction. Assume it escapes or writes to all 10633 // static alloca operands. 10634 for (const Use &U : I.operands()) { 10635 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10636 *Info = StaticAllocaInfo::Clobbered; 10637 } 10638 continue; 10639 } 10640 10641 // If the stored value is a static alloca, mark it as escaped. 10642 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10643 *Info = StaticAllocaInfo::Clobbered; 10644 10645 // Check if the destination is a static alloca. 10646 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10647 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10648 if (!Info) 10649 continue; 10650 const AllocaInst *AI = cast<AllocaInst>(Dst); 10651 10652 // Skip allocas that have been initialized or clobbered. 10653 if (*Info != StaticAllocaInfo::Unknown) 10654 continue; 10655 10656 // Check if the stored value is an argument, and that this store fully 10657 // initializes the alloca. 10658 // If the argument type has padding bits we can't directly forward a pointer 10659 // as the upper bits may contain garbage. 10660 // Don't elide copies from the same argument twice. 10661 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10662 const auto *Arg = dyn_cast<Argument>(Val); 10663 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10664 Arg->getType()->isEmptyTy() || 10665 DL.getTypeStoreSize(Arg->getType()) != 10666 DL.getTypeAllocSize(AI->getAllocatedType()) || 10667 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10668 ArgCopyElisionCandidates.count(Arg)) { 10669 *Info = StaticAllocaInfo::Clobbered; 10670 continue; 10671 } 10672 10673 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10674 << '\n'); 10675 10676 // Mark this alloca and store for argument copy elision. 10677 *Info = StaticAllocaInfo::Elidable; 10678 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10679 10680 // Stop scanning if we've seen all arguments. This will happen early in -O0 10681 // builds, which is useful, because -O0 builds have large entry blocks and 10682 // many allocas. 10683 if (ArgCopyElisionCandidates.size() == NumArgs) 10684 break; 10685 } 10686 } 10687 10688 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10689 /// ArgVal is a load from a suitable fixed stack object. 10690 static void tryToElideArgumentCopy( 10691 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10692 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10693 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10694 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10695 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 10696 // Check if this is a load from a fixed stack object. 10697 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 10698 if (!LNode) 10699 return; 10700 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10701 if (!FINode) 10702 return; 10703 10704 // Check that the fixed stack object is the right size and alignment. 10705 // Look at the alignment that the user wrote on the alloca instead of looking 10706 // at the stack object. 10707 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10708 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10709 const AllocaInst *AI = ArgCopyIter->second.first; 10710 int FixedIndex = FINode->getIndex(); 10711 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10712 int OldIndex = AllocaIndex; 10713 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10714 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10715 LLVM_DEBUG( 10716 dbgs() << " argument copy elision failed due to bad fixed stack " 10717 "object size\n"); 10718 return; 10719 } 10720 Align RequiredAlignment = AI->getAlign(); 10721 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10722 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10723 "greater than stack argument alignment (" 10724 << DebugStr(RequiredAlignment) << " vs " 10725 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10726 return; 10727 } 10728 10729 // Perform the elision. Delete the old stack object and replace its only use 10730 // in the variable info map. Mark the stack object as mutable. 10731 LLVM_DEBUG({ 10732 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10733 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10734 << '\n'; 10735 }); 10736 MFI.RemoveStackObject(OldIndex); 10737 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10738 AllocaIndex = FixedIndex; 10739 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10740 for (SDValue ArgVal : ArgVals) 10741 Chains.push_back(ArgVal.getValue(1)); 10742 10743 // Avoid emitting code for the store implementing the copy. 10744 const StoreInst *SI = ArgCopyIter->second.second; 10745 ElidedArgCopyInstrs.insert(SI); 10746 10747 // Check for uses of the argument again so that we can avoid exporting ArgVal 10748 // if it is't used by anything other than the store. 10749 for (const Value *U : Arg.users()) { 10750 if (U != SI) { 10751 ArgHasUses = true; 10752 break; 10753 } 10754 } 10755 } 10756 10757 void SelectionDAGISel::LowerArguments(const Function &F) { 10758 SelectionDAG &DAG = SDB->DAG; 10759 SDLoc dl = SDB->getCurSDLoc(); 10760 const DataLayout &DL = DAG.getDataLayout(); 10761 SmallVector<ISD::InputArg, 16> Ins; 10762 10763 // In Naked functions we aren't going to save any registers. 10764 if (F.hasFnAttribute(Attribute::Naked)) 10765 return; 10766 10767 if (!FuncInfo->CanLowerReturn) { 10768 // Put in an sret pointer parameter before all the other parameters. 10769 SmallVector<EVT, 1> ValueVTs; 10770 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10771 PointerType::get(F.getContext(), 10772 DAG.getDataLayout().getAllocaAddrSpace()), 10773 ValueVTs); 10774 10775 // NOTE: Assuming that a pointer will never break down to more than one VT 10776 // or one register. 10777 ISD::ArgFlagsTy Flags; 10778 Flags.setSRet(); 10779 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10780 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10781 ISD::InputArg::NoArgIndex, 0); 10782 Ins.push_back(RetArg); 10783 } 10784 10785 // Look for stores of arguments to static allocas. Mark such arguments with a 10786 // flag to ask the target to give us the memory location of that argument if 10787 // available. 10788 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10789 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10790 ArgCopyElisionCandidates); 10791 10792 // Set up the incoming argument description vector. 10793 for (const Argument &Arg : F.args()) { 10794 unsigned ArgNo = Arg.getArgNo(); 10795 SmallVector<EVT, 4> ValueVTs; 10796 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10797 bool isArgValueUsed = !Arg.use_empty(); 10798 unsigned PartBase = 0; 10799 Type *FinalType = Arg.getType(); 10800 if (Arg.hasAttribute(Attribute::ByVal)) 10801 FinalType = Arg.getParamByValType(); 10802 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10803 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10804 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10805 Value != NumValues; ++Value) { 10806 EVT VT = ValueVTs[Value]; 10807 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10808 ISD::ArgFlagsTy Flags; 10809 10810 10811 if (Arg.getType()->isPointerTy()) { 10812 Flags.setPointer(); 10813 Flags.setPointerAddrSpace( 10814 cast<PointerType>(Arg.getType())->getAddressSpace()); 10815 } 10816 if (Arg.hasAttribute(Attribute::ZExt)) 10817 Flags.setZExt(); 10818 if (Arg.hasAttribute(Attribute::SExt)) 10819 Flags.setSExt(); 10820 if (Arg.hasAttribute(Attribute::InReg)) { 10821 // If we are using vectorcall calling convention, a structure that is 10822 // passed InReg - is surely an HVA 10823 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10824 isa<StructType>(Arg.getType())) { 10825 // The first value of a structure is marked 10826 if (0 == Value) 10827 Flags.setHvaStart(); 10828 Flags.setHva(); 10829 } 10830 // Set InReg Flag 10831 Flags.setInReg(); 10832 } 10833 if (Arg.hasAttribute(Attribute::StructRet)) 10834 Flags.setSRet(); 10835 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10836 Flags.setSwiftSelf(); 10837 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10838 Flags.setSwiftAsync(); 10839 if (Arg.hasAttribute(Attribute::SwiftError)) 10840 Flags.setSwiftError(); 10841 if (Arg.hasAttribute(Attribute::ByVal)) 10842 Flags.setByVal(); 10843 if (Arg.hasAttribute(Attribute::ByRef)) 10844 Flags.setByRef(); 10845 if (Arg.hasAttribute(Attribute::InAlloca)) { 10846 Flags.setInAlloca(); 10847 // Set the byval flag for CCAssignFn callbacks that don't know about 10848 // inalloca. This way we can know how many bytes we should've allocated 10849 // and how many bytes a callee cleanup function will pop. If we port 10850 // inalloca to more targets, we'll have to add custom inalloca handling 10851 // in the various CC lowering callbacks. 10852 Flags.setByVal(); 10853 } 10854 if (Arg.hasAttribute(Attribute::Preallocated)) { 10855 Flags.setPreallocated(); 10856 // Set the byval flag for CCAssignFn callbacks that don't know about 10857 // preallocated. This way we can know how many bytes we should've 10858 // allocated and how many bytes a callee cleanup function will pop. If 10859 // we port preallocated to more targets, we'll have to add custom 10860 // preallocated handling in the various CC lowering callbacks. 10861 Flags.setByVal(); 10862 } 10863 10864 // Certain targets (such as MIPS), may have a different ABI alignment 10865 // for a type depending on the context. Give the target a chance to 10866 // specify the alignment it wants. 10867 const Align OriginalAlignment( 10868 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10869 Flags.setOrigAlign(OriginalAlignment); 10870 10871 Align MemAlign; 10872 Type *ArgMemTy = nullptr; 10873 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10874 Flags.isByRef()) { 10875 if (!ArgMemTy) 10876 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10877 10878 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10879 10880 // For in-memory arguments, size and alignment should be passed from FE. 10881 // BE will guess if this info is not there but there are cases it cannot 10882 // get right. 10883 if (auto ParamAlign = Arg.getParamStackAlign()) 10884 MemAlign = *ParamAlign; 10885 else if ((ParamAlign = Arg.getParamAlign())) 10886 MemAlign = *ParamAlign; 10887 else 10888 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10889 if (Flags.isByRef()) 10890 Flags.setByRefSize(MemSize); 10891 else 10892 Flags.setByValSize(MemSize); 10893 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10894 MemAlign = *ParamAlign; 10895 } else { 10896 MemAlign = OriginalAlignment; 10897 } 10898 Flags.setMemAlign(MemAlign); 10899 10900 if (Arg.hasAttribute(Attribute::Nest)) 10901 Flags.setNest(); 10902 if (NeedsRegBlock) 10903 Flags.setInConsecutiveRegs(); 10904 if (ArgCopyElisionCandidates.count(&Arg)) 10905 Flags.setCopyElisionCandidate(); 10906 if (Arg.hasAttribute(Attribute::Returned)) 10907 Flags.setReturned(); 10908 10909 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10910 *CurDAG->getContext(), F.getCallingConv(), VT); 10911 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10912 *CurDAG->getContext(), F.getCallingConv(), VT); 10913 for (unsigned i = 0; i != NumRegs; ++i) { 10914 // For scalable vectors, use the minimum size; individual targets 10915 // are responsible for handling scalable vector arguments and 10916 // return values. 10917 ISD::InputArg MyFlags( 10918 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 10919 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 10920 if (NumRegs > 1 && i == 0) 10921 MyFlags.Flags.setSplit(); 10922 // if it isn't first piece, alignment must be 1 10923 else if (i > 0) { 10924 MyFlags.Flags.setOrigAlign(Align(1)); 10925 if (i == NumRegs - 1) 10926 MyFlags.Flags.setSplitEnd(); 10927 } 10928 Ins.push_back(MyFlags); 10929 } 10930 if (NeedsRegBlock && Value == NumValues - 1) 10931 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10932 PartBase += VT.getStoreSize().getKnownMinValue(); 10933 } 10934 } 10935 10936 // Call the target to set up the argument values. 10937 SmallVector<SDValue, 8> InVals; 10938 SDValue NewRoot = TLI->LowerFormalArguments( 10939 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10940 10941 // Verify that the target's LowerFormalArguments behaved as expected. 10942 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10943 "LowerFormalArguments didn't return a valid chain!"); 10944 assert(InVals.size() == Ins.size() && 10945 "LowerFormalArguments didn't emit the correct number of values!"); 10946 LLVM_DEBUG({ 10947 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10948 assert(InVals[i].getNode() && 10949 "LowerFormalArguments emitted a null value!"); 10950 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10951 "LowerFormalArguments emitted a value with the wrong type!"); 10952 } 10953 }); 10954 10955 // Update the DAG with the new chain value resulting from argument lowering. 10956 DAG.setRoot(NewRoot); 10957 10958 // Set up the argument values. 10959 unsigned i = 0; 10960 if (!FuncInfo->CanLowerReturn) { 10961 // Create a virtual register for the sret pointer, and put in a copy 10962 // from the sret argument into it. 10963 SmallVector<EVT, 1> ValueVTs; 10964 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10965 PointerType::get(F.getContext(), 10966 DAG.getDataLayout().getAllocaAddrSpace()), 10967 ValueVTs); 10968 MVT VT = ValueVTs[0].getSimpleVT(); 10969 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10970 std::optional<ISD::NodeType> AssertOp; 10971 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10972 nullptr, F.getCallingConv(), AssertOp); 10973 10974 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10975 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10976 Register SRetReg = 10977 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10978 FuncInfo->DemoteRegister = SRetReg; 10979 NewRoot = 10980 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10981 DAG.setRoot(NewRoot); 10982 10983 // i indexes lowered arguments. Bump it past the hidden sret argument. 10984 ++i; 10985 } 10986 10987 SmallVector<SDValue, 4> Chains; 10988 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10989 for (const Argument &Arg : F.args()) { 10990 SmallVector<SDValue, 4> ArgValues; 10991 SmallVector<EVT, 4> ValueVTs; 10992 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10993 unsigned NumValues = ValueVTs.size(); 10994 if (NumValues == 0) 10995 continue; 10996 10997 bool ArgHasUses = !Arg.use_empty(); 10998 10999 // Elide the copying store if the target loaded this argument from a 11000 // suitable fixed stack object. 11001 if (Ins[i].Flags.isCopyElisionCandidate()) { 11002 unsigned NumParts = 0; 11003 for (EVT VT : ValueVTs) 11004 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11005 F.getCallingConv(), VT); 11006 11007 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11008 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11009 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11010 } 11011 11012 // If this argument is unused then remember its value. It is used to generate 11013 // debugging information. 11014 bool isSwiftErrorArg = 11015 TLI->supportSwiftError() && 11016 Arg.hasAttribute(Attribute::SwiftError); 11017 if (!ArgHasUses && !isSwiftErrorArg) { 11018 SDB->setUnusedArgValue(&Arg, InVals[i]); 11019 11020 // Also remember any frame index for use in FastISel. 11021 if (FrameIndexSDNode *FI = 11022 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11023 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11024 } 11025 11026 for (unsigned Val = 0; Val != NumValues; ++Val) { 11027 EVT VT = ValueVTs[Val]; 11028 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11029 F.getCallingConv(), VT); 11030 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11031 *CurDAG->getContext(), F.getCallingConv(), VT); 11032 11033 // Even an apparent 'unused' swifterror argument needs to be returned. So 11034 // we do generate a copy for it that can be used on return from the 11035 // function. 11036 if (ArgHasUses || isSwiftErrorArg) { 11037 std::optional<ISD::NodeType> AssertOp; 11038 if (Arg.hasAttribute(Attribute::SExt)) 11039 AssertOp = ISD::AssertSext; 11040 else if (Arg.hasAttribute(Attribute::ZExt)) 11041 AssertOp = ISD::AssertZext; 11042 11043 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11044 PartVT, VT, nullptr, 11045 F.getCallingConv(), AssertOp)); 11046 } 11047 11048 i += NumParts; 11049 } 11050 11051 // We don't need to do anything else for unused arguments. 11052 if (ArgValues.empty()) 11053 continue; 11054 11055 // Note down frame index. 11056 if (FrameIndexSDNode *FI = 11057 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11058 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11059 11060 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11061 SDB->getCurSDLoc()); 11062 11063 SDB->setValue(&Arg, Res); 11064 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11065 // We want to associate the argument with the frame index, among 11066 // involved operands, that correspond to the lowest address. The 11067 // getCopyFromParts function, called earlier, is swapping the order of 11068 // the operands to BUILD_PAIR depending on endianness. The result of 11069 // that swapping is that the least significant bits of the argument will 11070 // be in the first operand of the BUILD_PAIR node, and the most 11071 // significant bits will be in the second operand. 11072 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11073 if (LoadSDNode *LNode = 11074 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11075 if (FrameIndexSDNode *FI = 11076 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11077 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11078 } 11079 11080 // Analyses past this point are naive and don't expect an assertion. 11081 if (Res.getOpcode() == ISD::AssertZext) 11082 Res = Res.getOperand(0); 11083 11084 // Update the SwiftErrorVRegDefMap. 11085 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11086 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11087 if (Register::isVirtualRegister(Reg)) 11088 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11089 Reg); 11090 } 11091 11092 // If this argument is live outside of the entry block, insert a copy from 11093 // wherever we got it to the vreg that other BB's will reference it as. 11094 if (Res.getOpcode() == ISD::CopyFromReg) { 11095 // If we can, though, try to skip creating an unnecessary vreg. 11096 // FIXME: This isn't very clean... it would be nice to make this more 11097 // general. 11098 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11099 if (Register::isVirtualRegister(Reg)) { 11100 FuncInfo->ValueMap[&Arg] = Reg; 11101 continue; 11102 } 11103 } 11104 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11105 FuncInfo->InitializeRegForValue(&Arg); 11106 SDB->CopyToExportRegsIfNeeded(&Arg); 11107 } 11108 } 11109 11110 if (!Chains.empty()) { 11111 Chains.push_back(NewRoot); 11112 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11113 } 11114 11115 DAG.setRoot(NewRoot); 11116 11117 assert(i == InVals.size() && "Argument register count mismatch!"); 11118 11119 // If any argument copy elisions occurred and we have debug info, update the 11120 // stale frame indices used in the dbg.declare variable info table. 11121 if (!ArgCopyElisionFrameIndexMap.empty()) { 11122 for (MachineFunction::VariableDbgInfo &VI : 11123 MF->getInStackSlotVariableDbgInfo()) { 11124 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11125 if (I != ArgCopyElisionFrameIndexMap.end()) 11126 VI.updateStackSlot(I->second); 11127 } 11128 } 11129 11130 // Finally, if the target has anything special to do, allow it to do so. 11131 emitFunctionEntryCode(); 11132 } 11133 11134 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11135 /// ensure constants are generated when needed. Remember the virtual registers 11136 /// that need to be added to the Machine PHI nodes as input. We cannot just 11137 /// directly add them, because expansion might result in multiple MBB's for one 11138 /// BB. As such, the start of the BB might correspond to a different MBB than 11139 /// the end. 11140 void 11141 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11142 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11143 11144 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11145 11146 // Check PHI nodes in successors that expect a value to be available from this 11147 // block. 11148 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11149 if (!isa<PHINode>(SuccBB->begin())) continue; 11150 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11151 11152 // If this terminator has multiple identical successors (common for 11153 // switches), only handle each succ once. 11154 if (!SuccsHandled.insert(SuccMBB).second) 11155 continue; 11156 11157 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11158 11159 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11160 // nodes and Machine PHI nodes, but the incoming operands have not been 11161 // emitted yet. 11162 for (const PHINode &PN : SuccBB->phis()) { 11163 // Ignore dead phi's. 11164 if (PN.use_empty()) 11165 continue; 11166 11167 // Skip empty types 11168 if (PN.getType()->isEmptyTy()) 11169 continue; 11170 11171 unsigned Reg; 11172 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11173 11174 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11175 unsigned &RegOut = ConstantsOut[C]; 11176 if (RegOut == 0) { 11177 RegOut = FuncInfo.CreateRegs(C); 11178 // We need to zero/sign extend ConstantInt phi operands to match 11179 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11180 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11181 if (auto *CI = dyn_cast<ConstantInt>(C)) 11182 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11183 : ISD::ZERO_EXTEND; 11184 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11185 } 11186 Reg = RegOut; 11187 } else { 11188 DenseMap<const Value *, Register>::iterator I = 11189 FuncInfo.ValueMap.find(PHIOp); 11190 if (I != FuncInfo.ValueMap.end()) 11191 Reg = I->second; 11192 else { 11193 assert(isa<AllocaInst>(PHIOp) && 11194 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11195 "Didn't codegen value into a register!??"); 11196 Reg = FuncInfo.CreateRegs(PHIOp); 11197 CopyValueToVirtualRegister(PHIOp, Reg); 11198 } 11199 } 11200 11201 // Remember that this register needs to added to the machine PHI node as 11202 // the input for this MBB. 11203 SmallVector<EVT, 4> ValueVTs; 11204 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11205 for (EVT VT : ValueVTs) { 11206 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11207 for (unsigned i = 0; i != NumRegisters; ++i) 11208 FuncInfo.PHINodesToUpdate.push_back( 11209 std::make_pair(&*MBBI++, Reg + i)); 11210 Reg += NumRegisters; 11211 } 11212 } 11213 } 11214 11215 ConstantsOut.clear(); 11216 } 11217 11218 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11219 MachineFunction::iterator I(MBB); 11220 if (++I == FuncInfo.MF->end()) 11221 return nullptr; 11222 return &*I; 11223 } 11224 11225 /// During lowering new call nodes can be created (such as memset, etc.). 11226 /// Those will become new roots of the current DAG, but complications arise 11227 /// when they are tail calls. In such cases, the call lowering will update 11228 /// the root, but the builder still needs to know that a tail call has been 11229 /// lowered in order to avoid generating an additional return. 11230 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11231 // If the node is null, we do have a tail call. 11232 if (MaybeTC.getNode() != nullptr) 11233 DAG.setRoot(MaybeTC); 11234 else 11235 HasTailCall = true; 11236 } 11237 11238 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11239 MachineBasicBlock *SwitchMBB, 11240 MachineBasicBlock *DefaultMBB) { 11241 MachineFunction *CurMF = FuncInfo.MF; 11242 MachineBasicBlock *NextMBB = nullptr; 11243 MachineFunction::iterator BBI(W.MBB); 11244 if (++BBI != FuncInfo.MF->end()) 11245 NextMBB = &*BBI; 11246 11247 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11248 11249 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11250 11251 if (Size == 2 && W.MBB == SwitchMBB) { 11252 // If any two of the cases has the same destination, and if one value 11253 // is the same as the other, but has one bit unset that the other has set, 11254 // use bit manipulation to do two compares at once. For example: 11255 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11256 // TODO: This could be extended to merge any 2 cases in switches with 3 11257 // cases. 11258 // TODO: Handle cases where W.CaseBB != SwitchBB. 11259 CaseCluster &Small = *W.FirstCluster; 11260 CaseCluster &Big = *W.LastCluster; 11261 11262 if (Small.Low == Small.High && Big.Low == Big.High && 11263 Small.MBB == Big.MBB) { 11264 const APInt &SmallValue = Small.Low->getValue(); 11265 const APInt &BigValue = Big.Low->getValue(); 11266 11267 // Check that there is only one bit different. 11268 APInt CommonBit = BigValue ^ SmallValue; 11269 if (CommonBit.isPowerOf2()) { 11270 SDValue CondLHS = getValue(Cond); 11271 EVT VT = CondLHS.getValueType(); 11272 SDLoc DL = getCurSDLoc(); 11273 11274 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11275 DAG.getConstant(CommonBit, DL, VT)); 11276 SDValue Cond = DAG.getSetCC( 11277 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11278 ISD::SETEQ); 11279 11280 // Update successor info. 11281 // Both Small and Big will jump to Small.BB, so we sum up the 11282 // probabilities. 11283 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11284 if (BPI) 11285 addSuccessorWithProb( 11286 SwitchMBB, DefaultMBB, 11287 // The default destination is the first successor in IR. 11288 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11289 else 11290 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11291 11292 // Insert the true branch. 11293 SDValue BrCond = 11294 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11295 DAG.getBasicBlock(Small.MBB)); 11296 // Insert the false branch. 11297 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11298 DAG.getBasicBlock(DefaultMBB)); 11299 11300 DAG.setRoot(BrCond); 11301 return; 11302 } 11303 } 11304 } 11305 11306 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11307 // Here, we order cases by probability so the most likely case will be 11308 // checked first. However, two clusters can have the same probability in 11309 // which case their relative ordering is non-deterministic. So we use Low 11310 // as a tie-breaker as clusters are guaranteed to never overlap. 11311 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11312 [](const CaseCluster &a, const CaseCluster &b) { 11313 return a.Prob != b.Prob ? 11314 a.Prob > b.Prob : 11315 a.Low->getValue().slt(b.Low->getValue()); 11316 }); 11317 11318 // Rearrange the case blocks so that the last one falls through if possible 11319 // without changing the order of probabilities. 11320 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11321 --I; 11322 if (I->Prob > W.LastCluster->Prob) 11323 break; 11324 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11325 std::swap(*I, *W.LastCluster); 11326 break; 11327 } 11328 } 11329 } 11330 11331 // Compute total probability. 11332 BranchProbability DefaultProb = W.DefaultProb; 11333 BranchProbability UnhandledProbs = DefaultProb; 11334 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11335 UnhandledProbs += I->Prob; 11336 11337 MachineBasicBlock *CurMBB = W.MBB; 11338 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11339 bool FallthroughUnreachable = false; 11340 MachineBasicBlock *Fallthrough; 11341 if (I == W.LastCluster) { 11342 // For the last cluster, fall through to the default destination. 11343 Fallthrough = DefaultMBB; 11344 FallthroughUnreachable = isa<UnreachableInst>( 11345 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11346 } else { 11347 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11348 CurMF->insert(BBI, Fallthrough); 11349 // Put Cond in a virtual register to make it available from the new blocks. 11350 ExportFromCurrentBlock(Cond); 11351 } 11352 UnhandledProbs -= I->Prob; 11353 11354 switch (I->Kind) { 11355 case CC_JumpTable: { 11356 // FIXME: Optimize away range check based on pivot comparisons. 11357 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11358 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11359 11360 // The jump block hasn't been inserted yet; insert it here. 11361 MachineBasicBlock *JumpMBB = JT->MBB; 11362 CurMF->insert(BBI, JumpMBB); 11363 11364 auto JumpProb = I->Prob; 11365 auto FallthroughProb = UnhandledProbs; 11366 11367 // If the default statement is a target of the jump table, we evenly 11368 // distribute the default probability to successors of CurMBB. Also 11369 // update the probability on the edge from JumpMBB to Fallthrough. 11370 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11371 SE = JumpMBB->succ_end(); 11372 SI != SE; ++SI) { 11373 if (*SI == DefaultMBB) { 11374 JumpProb += DefaultProb / 2; 11375 FallthroughProb -= DefaultProb / 2; 11376 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11377 JumpMBB->normalizeSuccProbs(); 11378 break; 11379 } 11380 } 11381 11382 // If the default clause is unreachable, propagate that knowledge into 11383 // JTH->FallthroughUnreachable which will use it to suppress the range 11384 // check. 11385 // 11386 // However, don't do this if we're doing branch target enforcement, 11387 // because a table branch _without_ a range check can be a tempting JOP 11388 // gadget - out-of-bounds inputs that are impossible in correct 11389 // execution become possible again if an attacker can influence the 11390 // control flow. So if an attacker doesn't already have a BTI bypass 11391 // available, we don't want them to be able to get one out of this 11392 // table branch. 11393 if (FallthroughUnreachable) { 11394 Function &CurFunc = CurMF->getFunction(); 11395 bool HasBranchTargetEnforcement = false; 11396 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11397 HasBranchTargetEnforcement = 11398 CurFunc.getFnAttribute("branch-target-enforcement") 11399 .getValueAsBool(); 11400 } else { 11401 HasBranchTargetEnforcement = 11402 CurMF->getMMI().getModule()->getModuleFlag( 11403 "branch-target-enforcement"); 11404 } 11405 if (!HasBranchTargetEnforcement) 11406 JTH->FallthroughUnreachable = true; 11407 } 11408 11409 if (!JTH->FallthroughUnreachable) 11410 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11411 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11412 CurMBB->normalizeSuccProbs(); 11413 11414 // The jump table header will be inserted in our current block, do the 11415 // range check, and fall through to our fallthrough block. 11416 JTH->HeaderBB = CurMBB; 11417 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11418 11419 // If we're in the right place, emit the jump table header right now. 11420 if (CurMBB == SwitchMBB) { 11421 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11422 JTH->Emitted = true; 11423 } 11424 break; 11425 } 11426 case CC_BitTests: { 11427 // FIXME: Optimize away range check based on pivot comparisons. 11428 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11429 11430 // The bit test blocks haven't been inserted yet; insert them here. 11431 for (BitTestCase &BTC : BTB->Cases) 11432 CurMF->insert(BBI, BTC.ThisBB); 11433 11434 // Fill in fields of the BitTestBlock. 11435 BTB->Parent = CurMBB; 11436 BTB->Default = Fallthrough; 11437 11438 BTB->DefaultProb = UnhandledProbs; 11439 // If the cases in bit test don't form a contiguous range, we evenly 11440 // distribute the probability on the edge to Fallthrough to two 11441 // successors of CurMBB. 11442 if (!BTB->ContiguousRange) { 11443 BTB->Prob += DefaultProb / 2; 11444 BTB->DefaultProb -= DefaultProb / 2; 11445 } 11446 11447 if (FallthroughUnreachable) 11448 BTB->FallthroughUnreachable = true; 11449 11450 // If we're in the right place, emit the bit test header right now. 11451 if (CurMBB == SwitchMBB) { 11452 visitBitTestHeader(*BTB, SwitchMBB); 11453 BTB->Emitted = true; 11454 } 11455 break; 11456 } 11457 case CC_Range: { 11458 const Value *RHS, *LHS, *MHS; 11459 ISD::CondCode CC; 11460 if (I->Low == I->High) { 11461 // Check Cond == I->Low. 11462 CC = ISD::SETEQ; 11463 LHS = Cond; 11464 RHS=I->Low; 11465 MHS = nullptr; 11466 } else { 11467 // Check I->Low <= Cond <= I->High. 11468 CC = ISD::SETLE; 11469 LHS = I->Low; 11470 MHS = Cond; 11471 RHS = I->High; 11472 } 11473 11474 // If Fallthrough is unreachable, fold away the comparison. 11475 if (FallthroughUnreachable) 11476 CC = ISD::SETTRUE; 11477 11478 // The false probability is the sum of all unhandled cases. 11479 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11480 getCurSDLoc(), I->Prob, UnhandledProbs); 11481 11482 if (CurMBB == SwitchMBB) 11483 visitSwitchCase(CB, SwitchMBB); 11484 else 11485 SL->SwitchCases.push_back(CB); 11486 11487 break; 11488 } 11489 } 11490 CurMBB = Fallthrough; 11491 } 11492 } 11493 11494 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11495 CaseClusterIt First, 11496 CaseClusterIt Last) { 11497 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11498 if (X.Prob != CC.Prob) 11499 return X.Prob > CC.Prob; 11500 11501 // Ties are broken by comparing the case value. 11502 return X.Low->getValue().slt(CC.Low->getValue()); 11503 }); 11504 } 11505 11506 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11507 const SwitchWorkListItem &W, 11508 Value *Cond, 11509 MachineBasicBlock *SwitchMBB) { 11510 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11511 "Clusters not sorted?"); 11512 11513 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11514 11515 // Balance the tree based on branch probabilities to create a near-optimal (in 11516 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11517 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11518 CaseClusterIt LastLeft = W.FirstCluster; 11519 CaseClusterIt FirstRight = W.LastCluster; 11520 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11521 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11522 11523 // Move LastLeft and FirstRight towards each other from opposite directions to 11524 // find a partitioning of the clusters which balances the probability on both 11525 // sides. If LeftProb and RightProb are equal, alternate which side is 11526 // taken to ensure 0-probability nodes are distributed evenly. 11527 unsigned I = 0; 11528 while (LastLeft + 1 < FirstRight) { 11529 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11530 LeftProb += (++LastLeft)->Prob; 11531 else 11532 RightProb += (--FirstRight)->Prob; 11533 I++; 11534 } 11535 11536 while (true) { 11537 // Our binary search tree differs from a typical BST in that ours can have up 11538 // to three values in each leaf. The pivot selection above doesn't take that 11539 // into account, which means the tree might require more nodes and be less 11540 // efficient. We compensate for this here. 11541 11542 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11543 unsigned NumRight = W.LastCluster - FirstRight + 1; 11544 11545 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11546 // If one side has less than 3 clusters, and the other has more than 3, 11547 // consider taking a cluster from the other side. 11548 11549 if (NumLeft < NumRight) { 11550 // Consider moving the first cluster on the right to the left side. 11551 CaseCluster &CC = *FirstRight; 11552 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11553 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11554 if (LeftSideRank <= RightSideRank) { 11555 // Moving the cluster to the left does not demote it. 11556 ++LastLeft; 11557 ++FirstRight; 11558 continue; 11559 } 11560 } else { 11561 assert(NumRight < NumLeft); 11562 // Consider moving the last element on the left to the right side. 11563 CaseCluster &CC = *LastLeft; 11564 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11565 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11566 if (RightSideRank <= LeftSideRank) { 11567 // Moving the cluster to the right does not demot it. 11568 --LastLeft; 11569 --FirstRight; 11570 continue; 11571 } 11572 } 11573 } 11574 break; 11575 } 11576 11577 assert(LastLeft + 1 == FirstRight); 11578 assert(LastLeft >= W.FirstCluster); 11579 assert(FirstRight <= W.LastCluster); 11580 11581 // Use the first element on the right as pivot since we will make less-than 11582 // comparisons against it. 11583 CaseClusterIt PivotCluster = FirstRight; 11584 assert(PivotCluster > W.FirstCluster); 11585 assert(PivotCluster <= W.LastCluster); 11586 11587 CaseClusterIt FirstLeft = W.FirstCluster; 11588 CaseClusterIt LastRight = W.LastCluster; 11589 11590 const ConstantInt *Pivot = PivotCluster->Low; 11591 11592 // New blocks will be inserted immediately after the current one. 11593 MachineFunction::iterator BBI(W.MBB); 11594 ++BBI; 11595 11596 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11597 // we can branch to its destination directly if it's squeezed exactly in 11598 // between the known lower bound and Pivot - 1. 11599 MachineBasicBlock *LeftMBB; 11600 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11601 FirstLeft->Low == W.GE && 11602 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11603 LeftMBB = FirstLeft->MBB; 11604 } else { 11605 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11606 FuncInfo.MF->insert(BBI, LeftMBB); 11607 WorkList.push_back( 11608 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11609 // Put Cond in a virtual register to make it available from the new blocks. 11610 ExportFromCurrentBlock(Cond); 11611 } 11612 11613 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11614 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11615 // directly if RHS.High equals the current upper bound. 11616 MachineBasicBlock *RightMBB; 11617 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11618 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11619 RightMBB = FirstRight->MBB; 11620 } else { 11621 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11622 FuncInfo.MF->insert(BBI, RightMBB); 11623 WorkList.push_back( 11624 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11625 // Put Cond in a virtual register to make it available from the new blocks. 11626 ExportFromCurrentBlock(Cond); 11627 } 11628 11629 // Create the CaseBlock record that will be used to lower the branch. 11630 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11631 getCurSDLoc(), LeftProb, RightProb); 11632 11633 if (W.MBB == SwitchMBB) 11634 visitSwitchCase(CB, SwitchMBB); 11635 else 11636 SL->SwitchCases.push_back(CB); 11637 } 11638 11639 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11640 // from the swith statement. 11641 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11642 BranchProbability PeeledCaseProb) { 11643 if (PeeledCaseProb == BranchProbability::getOne()) 11644 return BranchProbability::getZero(); 11645 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11646 11647 uint32_t Numerator = CaseProb.getNumerator(); 11648 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11649 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11650 } 11651 11652 // Try to peel the top probability case if it exceeds the threshold. 11653 // Return current MachineBasicBlock for the switch statement if the peeling 11654 // does not occur. 11655 // If the peeling is performed, return the newly created MachineBasicBlock 11656 // for the peeled switch statement. Also update Clusters to remove the peeled 11657 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11658 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11659 const SwitchInst &SI, CaseClusterVector &Clusters, 11660 BranchProbability &PeeledCaseProb) { 11661 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11662 // Don't perform if there is only one cluster or optimizing for size. 11663 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11664 TM.getOptLevel() == CodeGenOptLevel::None || 11665 SwitchMBB->getParent()->getFunction().hasMinSize()) 11666 return SwitchMBB; 11667 11668 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11669 unsigned PeeledCaseIndex = 0; 11670 bool SwitchPeeled = false; 11671 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11672 CaseCluster &CC = Clusters[Index]; 11673 if (CC.Prob < TopCaseProb) 11674 continue; 11675 TopCaseProb = CC.Prob; 11676 PeeledCaseIndex = Index; 11677 SwitchPeeled = true; 11678 } 11679 if (!SwitchPeeled) 11680 return SwitchMBB; 11681 11682 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11683 << TopCaseProb << "\n"); 11684 11685 // Record the MBB for the peeled switch statement. 11686 MachineFunction::iterator BBI(SwitchMBB); 11687 ++BBI; 11688 MachineBasicBlock *PeeledSwitchMBB = 11689 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11690 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11691 11692 ExportFromCurrentBlock(SI.getCondition()); 11693 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11694 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11695 nullptr, nullptr, TopCaseProb.getCompl()}; 11696 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11697 11698 Clusters.erase(PeeledCaseIt); 11699 for (CaseCluster &CC : Clusters) { 11700 LLVM_DEBUG( 11701 dbgs() << "Scale the probablity for one cluster, before scaling: " 11702 << CC.Prob << "\n"); 11703 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11704 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11705 } 11706 PeeledCaseProb = TopCaseProb; 11707 return PeeledSwitchMBB; 11708 } 11709 11710 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11711 // Extract cases from the switch. 11712 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11713 CaseClusterVector Clusters; 11714 Clusters.reserve(SI.getNumCases()); 11715 for (auto I : SI.cases()) { 11716 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11717 const ConstantInt *CaseVal = I.getCaseValue(); 11718 BranchProbability Prob = 11719 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11720 : BranchProbability(1, SI.getNumCases() + 1); 11721 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11722 } 11723 11724 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11725 11726 // Cluster adjacent cases with the same destination. We do this at all 11727 // optimization levels because it's cheap to do and will make codegen faster 11728 // if there are many clusters. 11729 sortAndRangeify(Clusters); 11730 11731 // The branch probablity of the peeled case. 11732 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11733 MachineBasicBlock *PeeledSwitchMBB = 11734 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11735 11736 // If there is only the default destination, jump there directly. 11737 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11738 if (Clusters.empty()) { 11739 assert(PeeledSwitchMBB == SwitchMBB); 11740 SwitchMBB->addSuccessor(DefaultMBB); 11741 if (DefaultMBB != NextBlock(SwitchMBB)) { 11742 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11743 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11744 } 11745 return; 11746 } 11747 11748 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11749 SL->findBitTestClusters(Clusters, &SI); 11750 11751 LLVM_DEBUG({ 11752 dbgs() << "Case clusters: "; 11753 for (const CaseCluster &C : Clusters) { 11754 if (C.Kind == CC_JumpTable) 11755 dbgs() << "JT:"; 11756 if (C.Kind == CC_BitTests) 11757 dbgs() << "BT:"; 11758 11759 C.Low->getValue().print(dbgs(), true); 11760 if (C.Low != C.High) { 11761 dbgs() << '-'; 11762 C.High->getValue().print(dbgs(), true); 11763 } 11764 dbgs() << ' '; 11765 } 11766 dbgs() << '\n'; 11767 }); 11768 11769 assert(!Clusters.empty()); 11770 SwitchWorkList WorkList; 11771 CaseClusterIt First = Clusters.begin(); 11772 CaseClusterIt Last = Clusters.end() - 1; 11773 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11774 // Scale the branchprobability for DefaultMBB if the peel occurs and 11775 // DefaultMBB is not replaced. 11776 if (PeeledCaseProb != BranchProbability::getZero() && 11777 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11778 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11779 WorkList.push_back( 11780 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11781 11782 while (!WorkList.empty()) { 11783 SwitchWorkListItem W = WorkList.pop_back_val(); 11784 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11785 11786 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 11787 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11788 // For optimized builds, lower large range as a balanced binary tree. 11789 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11790 continue; 11791 } 11792 11793 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11794 } 11795 } 11796 11797 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11798 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11799 auto DL = getCurSDLoc(); 11800 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11801 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11802 } 11803 11804 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11805 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11806 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11807 11808 SDLoc DL = getCurSDLoc(); 11809 SDValue V = getValue(I.getOperand(0)); 11810 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11811 11812 if (VT.isScalableVector()) { 11813 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11814 return; 11815 } 11816 11817 // Use VECTOR_SHUFFLE for the fixed-length vector 11818 // to maintain existing behavior. 11819 SmallVector<int, 8> Mask; 11820 unsigned NumElts = VT.getVectorMinNumElements(); 11821 for (unsigned i = 0; i != NumElts; ++i) 11822 Mask.push_back(NumElts - 1 - i); 11823 11824 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11825 } 11826 11827 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 11828 auto DL = getCurSDLoc(); 11829 SDValue InVec = getValue(I.getOperand(0)); 11830 EVT OutVT = 11831 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 11832 11833 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 11834 11835 // ISD Node needs the input vectors split into two equal parts 11836 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11837 DAG.getVectorIdxConstant(0, DL)); 11838 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11839 DAG.getVectorIdxConstant(OutNumElts, DL)); 11840 11841 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11842 // legalisation and combines. 11843 if (OutVT.isFixedLengthVector()) { 11844 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11845 createStrideMask(0, 2, OutNumElts)); 11846 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11847 createStrideMask(1, 2, OutNumElts)); 11848 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 11849 setValue(&I, Res); 11850 return; 11851 } 11852 11853 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 11854 DAG.getVTList(OutVT, OutVT), Lo, Hi); 11855 setValue(&I, Res); 11856 } 11857 11858 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 11859 auto DL = getCurSDLoc(); 11860 EVT InVT = getValue(I.getOperand(0)).getValueType(); 11861 SDValue InVec0 = getValue(I.getOperand(0)); 11862 SDValue InVec1 = getValue(I.getOperand(1)); 11863 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11864 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11865 11866 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11867 // legalisation and combines. 11868 if (OutVT.isFixedLengthVector()) { 11869 unsigned NumElts = InVT.getVectorMinNumElements(); 11870 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 11871 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 11872 createInterleaveMask(NumElts, 2))); 11873 return; 11874 } 11875 11876 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 11877 DAG.getVTList(InVT, InVT), InVec0, InVec1); 11878 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 11879 Res.getValue(1)); 11880 setValue(&I, Res); 11881 } 11882 11883 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11884 SmallVector<EVT, 4> ValueVTs; 11885 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11886 ValueVTs); 11887 unsigned NumValues = ValueVTs.size(); 11888 if (NumValues == 0) return; 11889 11890 SmallVector<SDValue, 4> Values(NumValues); 11891 SDValue Op = getValue(I.getOperand(0)); 11892 11893 for (unsigned i = 0; i != NumValues; ++i) 11894 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11895 SDValue(Op.getNode(), Op.getResNo() + i)); 11896 11897 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11898 DAG.getVTList(ValueVTs), Values)); 11899 } 11900 11901 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11902 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11903 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11904 11905 SDLoc DL = getCurSDLoc(); 11906 SDValue V1 = getValue(I.getOperand(0)); 11907 SDValue V2 = getValue(I.getOperand(1)); 11908 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11909 11910 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11911 if (VT.isScalableVector()) { 11912 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11913 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11914 DAG.getConstant(Imm, DL, IdxVT))); 11915 return; 11916 } 11917 11918 unsigned NumElts = VT.getVectorNumElements(); 11919 11920 uint64_t Idx = (NumElts + Imm) % NumElts; 11921 11922 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11923 SmallVector<int, 8> Mask; 11924 for (unsigned i = 0; i < NumElts; ++i) 11925 Mask.push_back(Idx + i); 11926 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11927 } 11928 11929 // Consider the following MIR after SelectionDAG, which produces output in 11930 // phyregs in the first case or virtregs in the second case. 11931 // 11932 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 11933 // %5:gr32 = COPY $ebx 11934 // %6:gr32 = COPY $edx 11935 // %1:gr32 = COPY %6:gr32 11936 // %0:gr32 = COPY %5:gr32 11937 // 11938 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 11939 // %1:gr32 = COPY %6:gr32 11940 // %0:gr32 = COPY %5:gr32 11941 // 11942 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 11943 // Given %1, we'd like to return $edx in the first case and %6 in the second. 11944 // 11945 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 11946 // to a single virtreg (such as %0). The remaining outputs monotonically 11947 // increase in virtreg number from there. If a callbr has no outputs, then it 11948 // should not have a corresponding callbr landingpad; in fact, the callbr 11949 // landingpad would not even be able to refer to such a callbr. 11950 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 11951 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 11952 // There is definitely at least one copy. 11953 assert(MI->getOpcode() == TargetOpcode::COPY && 11954 "start of copy chain MUST be COPY"); 11955 Reg = MI->getOperand(1).getReg(); 11956 MI = MRI.def_begin(Reg)->getParent(); 11957 // There may be an optional second copy. 11958 if (MI->getOpcode() == TargetOpcode::COPY) { 11959 assert(Reg.isVirtual() && "expected COPY of virtual register"); 11960 Reg = MI->getOperand(1).getReg(); 11961 assert(Reg.isPhysical() && "expected COPY of physical register"); 11962 MI = MRI.def_begin(Reg)->getParent(); 11963 } 11964 // The start of the chain must be an INLINEASM_BR. 11965 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 11966 "end of copy chain MUST be INLINEASM_BR"); 11967 return Reg; 11968 } 11969 11970 // We must do this walk rather than the simpler 11971 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 11972 // otherwise we will end up with copies of virtregs only valid along direct 11973 // edges. 11974 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 11975 SmallVector<EVT, 8> ResultVTs; 11976 SmallVector<SDValue, 8> ResultValues; 11977 const auto *CBR = 11978 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 11979 11980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11981 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 11982 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 11983 11984 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 11985 SDValue Chain = DAG.getRoot(); 11986 11987 // Re-parse the asm constraints string. 11988 TargetLowering::AsmOperandInfoVector TargetConstraints = 11989 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 11990 for (auto &T : TargetConstraints) { 11991 SDISelAsmOperandInfo OpInfo(T); 11992 if (OpInfo.Type != InlineAsm::isOutput) 11993 continue; 11994 11995 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 11996 // individual constraint. 11997 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 11998 11999 switch (OpInfo.ConstraintType) { 12000 case TargetLowering::C_Register: 12001 case TargetLowering::C_RegisterClass: { 12002 // Fill in OpInfo.AssignedRegs.Regs. 12003 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12004 12005 // getRegistersForValue may produce 1 to many registers based on whether 12006 // the OpInfo.ConstraintVT is legal on the target or not. 12007 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 12008 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12009 if (Register::isPhysicalRegister(OriginalDef)) 12010 FuncInfo.MBB->addLiveIn(OriginalDef); 12011 // Update the assigned registers to use the original defs. 12012 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12013 } 12014 12015 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12016 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12017 ResultValues.push_back(V); 12018 ResultVTs.push_back(OpInfo.ConstraintVT); 12019 break; 12020 } 12021 case TargetLowering::C_Other: { 12022 SDValue Flag; 12023 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12024 OpInfo, DAG); 12025 ++InitialDef; 12026 ResultValues.push_back(V); 12027 ResultVTs.push_back(OpInfo.ConstraintVT); 12028 break; 12029 } 12030 default: 12031 break; 12032 } 12033 } 12034 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12035 DAG.getVTList(ResultVTs), ResultValues); 12036 setValue(&I, V); 12037 } 12038