1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Constants.h" 22 #include "llvm/CallingConv.h" 23 #include "llvm/DerivedTypes.h" 24 #include "llvm/Function.h" 25 #include "llvm/GlobalVariable.h" 26 #include "llvm/InlineAsm.h" 27 #include "llvm/Instructions.h" 28 #include "llvm/Intrinsics.h" 29 #include "llvm/IntrinsicInst.h" 30 #include "llvm/LLVMContext.h" 31 #include "llvm/Module.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/FastISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCStrategy.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineJumpTableInfo.h" 41 #include "llvm/CodeGen/MachineModuleInfo.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/PseudoSourceValue.h" 44 #include "llvm/CodeGen/SelectionDAG.h" 45 #include "llvm/Analysis/DebugInfo.h" 46 #include "llvm/Target/TargetRegisterInfo.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameInfo.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 using namespace llvm; 61 62 /// LimitFloatPrecision - Generate low-precision inline sequences for 63 /// some float libcalls (6, 8 or 12 bits). 64 static unsigned LimitFloatPrecision; 65 66 static cl::opt<unsigned, true> 67 LimitFPPrecision("limit-float-precision", 68 cl::desc("Generate low-precision inline sequences " 69 "for some float libcalls"), 70 cl::location(LimitFloatPrecision), 71 cl::init(0)); 72 73 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 74 const SDValue *Parts, unsigned NumParts, 75 EVT PartVT, EVT ValueVT); 76 77 /// getCopyFromParts - Create a value that contains the specified legal parts 78 /// combined into the value they represent. If the parts combine to a type 79 /// larger then ValueVT then AssertOp can be used to specify whether the extra 80 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 81 /// (ISD::AssertSext). 82 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 83 const SDValue *Parts, 84 unsigned NumParts, EVT PartVT, EVT ValueVT, 85 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 86 if (ValueVT.isVector()) 87 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 88 89 assert(NumParts > 0 && "No parts to assemble!"); 90 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 91 SDValue Val = Parts[0]; 92 93 if (NumParts > 1) { 94 // Assemble the value from multiple parts. 95 if (ValueVT.isInteger()) { 96 unsigned PartBits = PartVT.getSizeInBits(); 97 unsigned ValueBits = ValueVT.getSizeInBits(); 98 99 // Assemble the power of 2 part. 100 unsigned RoundParts = NumParts & (NumParts - 1) ? 101 1 << Log2_32(NumParts) : NumParts; 102 unsigned RoundBits = PartBits * RoundParts; 103 EVT RoundVT = RoundBits == ValueBits ? 104 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 105 SDValue Lo, Hi; 106 107 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 108 109 if (RoundParts > 2) { 110 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 111 PartVT, HalfVT); 112 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 113 RoundParts / 2, PartVT, HalfVT); 114 } else { 115 Lo = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[0]); 116 Hi = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[1]); 117 } 118 119 if (TLI.isBigEndian()) 120 std::swap(Lo, Hi); 121 122 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 123 124 if (RoundParts < NumParts) { 125 // Assemble the trailing non-power-of-2 part. 126 unsigned OddParts = NumParts - RoundParts; 127 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 128 Hi = getCopyFromParts(DAG, DL, 129 Parts + RoundParts, OddParts, PartVT, OddVT); 130 131 // Combine the round and odd parts. 132 Lo = Val; 133 if (TLI.isBigEndian()) 134 std::swap(Lo, Hi); 135 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 136 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 137 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 138 DAG.getConstant(Lo.getValueType().getSizeInBits(), 139 TLI.getPointerTy())); 140 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 141 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 142 } 143 } else if (PartVT.isFloatingPoint()) { 144 // FP split into multiple FP parts (for ppcf128) 145 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 146 "Unexpected split"); 147 SDValue Lo, Hi; 148 Lo = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[0]); 149 Hi = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[1]); 150 if (TLI.isBigEndian()) 151 std::swap(Lo, Hi); 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 153 } else { 154 // FP split into integer parts (soft fp) 155 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 156 !PartVT.isVector() && "Unexpected split"); 157 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 158 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 159 } 160 } 161 162 // There is now one part, held in Val. Correct it to match ValueVT. 163 PartVT = Val.getValueType(); 164 165 if (PartVT == ValueVT) 166 return Val; 167 168 if (PartVT.isInteger() && ValueVT.isInteger()) { 169 if (ValueVT.bitsLT(PartVT)) { 170 // For a truncate, see if we have any information to 171 // indicate whether the truncated bits will always be 172 // zero or sign-extension. 173 if (AssertOp != ISD::DELETED_NODE) 174 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 175 DAG.getValueType(ValueVT)); 176 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 177 } 178 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 179 } 180 181 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 182 // FP_ROUND's are always exact here. 183 if (ValueVT.bitsLT(Val.getValueType())) 184 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 185 DAG.getIntPtrConstant(1)); 186 187 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 188 } 189 190 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 191 return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val); 192 193 llvm_unreachable("Unknown mismatch!"); 194 return SDValue(); 195 } 196 197 /// getCopyFromParts - Create a value that contains the specified legal parts 198 /// combined into the value they represent. If the parts combine to a type 199 /// larger then ValueVT then AssertOp can be used to specify whether the extra 200 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 201 /// (ISD::AssertSext). 202 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 203 const SDValue *Parts, unsigned NumParts, 204 EVT PartVT, EVT ValueVT) { 205 assert(ValueVT.isVector() && "Not a vector value"); 206 assert(NumParts > 0 && "No parts to assemble!"); 207 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 208 SDValue Val = Parts[0]; 209 210 // Handle a multi-element vector. 211 if (NumParts > 1) { 212 EVT IntermediateVT, RegisterVT; 213 unsigned NumIntermediates; 214 unsigned NumRegs = 215 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 216 NumIntermediates, RegisterVT); 217 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 218 NumParts = NumRegs; // Silence a compiler warning. 219 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 220 assert(RegisterVT == Parts[0].getValueType() && 221 "Part type doesn't match part!"); 222 223 // Assemble the parts into intermediate operands. 224 SmallVector<SDValue, 8> Ops(NumIntermediates); 225 if (NumIntermediates == NumParts) { 226 // If the register was not expanded, truncate or copy the value, 227 // as appropriate. 228 for (unsigned i = 0; i != NumParts; ++i) 229 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 230 PartVT, IntermediateVT); 231 } else if (NumParts > 0) { 232 // If the intermediate type was expanded, build the intermediate 233 // operands from the parts. 234 assert(NumParts % NumIntermediates == 0 && 235 "Must expand into a divisible number of parts!"); 236 unsigned Factor = NumParts / NumIntermediates; 237 for (unsigned i = 0; i != NumIntermediates; ++i) 238 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 239 PartVT, IntermediateVT); 240 } 241 242 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 243 // intermediate operands. 244 Val = DAG.getNode(IntermediateVT.isVector() ? 245 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 246 ValueVT, &Ops[0], NumIntermediates); 247 } 248 249 // There is now one part, held in Val. Correct it to match ValueVT. 250 PartVT = Val.getValueType(); 251 252 if (PartVT == ValueVT) 253 return Val; 254 255 if (PartVT.isVector()) { 256 // If the element type of the source/dest vectors are the same, but the 257 // parts vector has more elements than the value vector, then we have a 258 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 259 // elements we want. 260 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 261 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 262 "Cannot narrow, it would be a lossy transformation"); 263 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 264 DAG.getIntPtrConstant(0)); 265 } 266 267 // Vector/Vector bitcast. 268 return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val); 269 } 270 271 assert(ValueVT.getVectorElementType() == PartVT && 272 ValueVT.getVectorNumElements() == 1 && 273 "Only trivial scalar-to-vector conversions should get here!"); 274 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 275 } 276 277 278 279 280 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 281 SDValue Val, SDValue *Parts, unsigned NumParts, 282 EVT PartVT); 283 284 /// getCopyToParts - Create a series of nodes that contain the specified value 285 /// split into legal parts. If the parts contain more bits than Val, then, for 286 /// integers, ExtendKind can be used to specify how to generate the extra bits. 287 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 288 SDValue Val, SDValue *Parts, unsigned NumParts, 289 EVT PartVT, 290 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 291 EVT ValueVT = Val.getValueType(); 292 293 // Handle the vector case separately. 294 if (ValueVT.isVector()) 295 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 296 297 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 298 unsigned PartBits = PartVT.getSizeInBits(); 299 unsigned OrigNumParts = NumParts; 300 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 301 302 if (NumParts == 0) 303 return; 304 305 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 306 if (PartVT == ValueVT) { 307 assert(NumParts == 1 && "No-op copy with multiple parts!"); 308 Parts[0] = Val; 309 return; 310 } 311 312 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 313 // If the parts cover more bits than the value has, promote the value. 314 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 315 assert(NumParts == 1 && "Do not know what to promote to!"); 316 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 317 } else { 318 assert(PartVT.isInteger() && ValueVT.isInteger() && 319 "Unknown mismatch!"); 320 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 321 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 322 } 323 } else if (PartBits == ValueVT.getSizeInBits()) { 324 // Different types of the same size. 325 assert(NumParts == 1 && PartVT != ValueVT); 326 Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val); 327 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 328 // If the parts cover less bits than value has, truncate the value. 329 assert(PartVT.isInteger() && ValueVT.isInteger() && 330 "Unknown mismatch!"); 331 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 332 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 333 } 334 335 // The value may have changed - recompute ValueVT. 336 ValueVT = Val.getValueType(); 337 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 338 "Failed to tile the value with PartVT!"); 339 340 if (NumParts == 1) { 341 assert(PartVT == ValueVT && "Type conversion failed!"); 342 Parts[0] = Val; 343 return; 344 } 345 346 // Expand the value into multiple parts. 347 if (NumParts & (NumParts - 1)) { 348 // The number of parts is not a power of 2. Split off and copy the tail. 349 assert(PartVT.isInteger() && ValueVT.isInteger() && 350 "Do not know what to expand to!"); 351 unsigned RoundParts = 1 << Log2_32(NumParts); 352 unsigned RoundBits = RoundParts * PartBits; 353 unsigned OddParts = NumParts - RoundParts; 354 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 355 DAG.getIntPtrConstant(RoundBits)); 356 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 357 358 if (TLI.isBigEndian()) 359 // The odd parts were reversed by getCopyToParts - unreverse them. 360 std::reverse(Parts + RoundParts, Parts + NumParts); 361 362 NumParts = RoundParts; 363 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 364 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 365 } 366 367 // The number of parts is a power of 2. Repeatedly bisect the value using 368 // EXTRACT_ELEMENT. 369 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, DL, 370 EVT::getIntegerVT(*DAG.getContext(), 371 ValueVT.getSizeInBits()), 372 Val); 373 374 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 375 for (unsigned i = 0; i < NumParts; i += StepSize) { 376 unsigned ThisBits = StepSize * PartBits / 2; 377 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 378 SDValue &Part0 = Parts[i]; 379 SDValue &Part1 = Parts[i+StepSize/2]; 380 381 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 382 ThisVT, Part0, DAG.getIntPtrConstant(1)); 383 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 384 ThisVT, Part0, DAG.getIntPtrConstant(0)); 385 386 if (ThisBits == PartBits && ThisVT != PartVT) { 387 Part0 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part0); 388 Part1 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part1); 389 } 390 } 391 } 392 393 if (TLI.isBigEndian()) 394 std::reverse(Parts, Parts + OrigNumParts); 395 } 396 397 398 /// getCopyToPartsVector - Create a series of nodes that contain the specified 399 /// value split into legal parts. 400 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 401 SDValue Val, SDValue *Parts, unsigned NumParts, 402 EVT PartVT) { 403 EVT ValueVT = Val.getValueType(); 404 assert(ValueVT.isVector() && "Not a vector"); 405 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 406 407 if (NumParts == 1) { 408 if (PartVT == ValueVT) { 409 // Nothing to do. 410 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 411 // Bitconvert vector->vector case. 412 Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val); 413 } else if (PartVT.isVector() && 414 PartVT.getVectorElementType() == ValueVT.getVectorElementType()&& 415 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 416 EVT ElementVT = PartVT.getVectorElementType(); 417 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 418 // undef elements. 419 SmallVector<SDValue, 16> Ops; 420 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 421 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 422 ElementVT, Val, DAG.getIntPtrConstant(i))); 423 424 for (unsigned i = ValueVT.getVectorNumElements(), 425 e = PartVT.getVectorNumElements(); i != e; ++i) 426 Ops.push_back(DAG.getUNDEF(ElementVT)); 427 428 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 429 430 // FIXME: Use CONCAT for 2x -> 4x. 431 432 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 433 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 434 } else { 435 // Vector -> scalar conversion. 436 assert(ValueVT.getVectorElementType() == PartVT && 437 ValueVT.getVectorNumElements() == 1 && 438 "Only trivial vector-to-scalar conversions should get here!"); 439 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 440 PartVT, Val, DAG.getIntPtrConstant(0)); 441 } 442 443 Parts[0] = Val; 444 return; 445 } 446 447 // Handle a multi-element vector. 448 EVT IntermediateVT, RegisterVT; 449 unsigned NumIntermediates; 450 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 451 IntermediateVT, 452 NumIntermediates, RegisterVT); 453 unsigned NumElements = ValueVT.getVectorNumElements(); 454 455 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 456 NumParts = NumRegs; // Silence a compiler warning. 457 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 458 459 // Split the vector into intermediate operands. 460 SmallVector<SDValue, 8> Ops(NumIntermediates); 461 for (unsigned i = 0; i != NumIntermediates; ++i) { 462 if (IntermediateVT.isVector()) 463 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 464 IntermediateVT, Val, 465 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 466 else 467 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 468 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 469 } 470 471 // Split the intermediate operands into legal parts. 472 if (NumParts == NumIntermediates) { 473 // If the register was not expanded, promote or copy the value, 474 // as appropriate. 475 for (unsigned i = 0; i != NumParts; ++i) 476 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 477 } else if (NumParts > 0) { 478 // If the intermediate type was expanded, split each the value into 479 // legal parts. 480 assert(NumParts % NumIntermediates == 0 && 481 "Must expand into a divisible number of parts!"); 482 unsigned Factor = NumParts / NumIntermediates; 483 for (unsigned i = 0; i != NumIntermediates; ++i) 484 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 485 } 486 } 487 488 489 490 491 namespace { 492 /// RegsForValue - This struct represents the registers (physical or virtual) 493 /// that a particular set of values is assigned, and the type information 494 /// about the value. The most common situation is to represent one value at a 495 /// time, but struct or array values are handled element-wise as multiple 496 /// values. The splitting of aggregates is performed recursively, so that we 497 /// never have aggregate-typed registers. The values at this point do not 498 /// necessarily have legal types, so each value may require one or more 499 /// registers of some legal type. 500 /// 501 struct RegsForValue { 502 /// ValueVTs - The value types of the values, which may not be legal, and 503 /// may need be promoted or synthesized from one or more registers. 504 /// 505 SmallVector<EVT, 4> ValueVTs; 506 507 /// RegVTs - The value types of the registers. This is the same size as 508 /// ValueVTs and it records, for each value, what the type of the assigned 509 /// register or registers are. (Individual values are never synthesized 510 /// from more than one type of register.) 511 /// 512 /// With virtual registers, the contents of RegVTs is redundant with TLI's 513 /// getRegisterType member function, however when with physical registers 514 /// it is necessary to have a separate record of the types. 515 /// 516 SmallVector<EVT, 4> RegVTs; 517 518 /// Regs - This list holds the registers assigned to the values. 519 /// Each legal or promoted value requires one register, and each 520 /// expanded value requires multiple registers. 521 /// 522 SmallVector<unsigned, 4> Regs; 523 524 RegsForValue() {} 525 526 RegsForValue(const SmallVector<unsigned, 4> ®s, 527 EVT regvt, EVT valuevt) 528 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 529 530 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 531 unsigned Reg, const Type *Ty) { 532 ComputeValueVTs(tli, Ty, ValueVTs); 533 534 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 535 EVT ValueVT = ValueVTs[Value]; 536 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 537 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 538 for (unsigned i = 0; i != NumRegs; ++i) 539 Regs.push_back(Reg + i); 540 RegVTs.push_back(RegisterVT); 541 Reg += NumRegs; 542 } 543 } 544 545 /// areValueTypesLegal - Return true if types of all the values are legal. 546 bool areValueTypesLegal(const TargetLowering &TLI) { 547 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 548 EVT RegisterVT = RegVTs[Value]; 549 if (!TLI.isTypeLegal(RegisterVT)) 550 return false; 551 } 552 return true; 553 } 554 555 /// append - Add the specified values to this one. 556 void append(const RegsForValue &RHS) { 557 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 558 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 559 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 560 } 561 562 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 563 /// this value and returns the result as a ValueVTs value. This uses 564 /// Chain/Flag as the input and updates them for the output Chain/Flag. 565 /// If the Flag pointer is NULL, no flag is used. 566 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 567 DebugLoc dl, 568 SDValue &Chain, SDValue *Flag) const; 569 570 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 571 /// specified value into the registers specified by this object. This uses 572 /// Chain/Flag as the input and updates them for the output Chain/Flag. 573 /// If the Flag pointer is NULL, no flag is used. 574 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 575 SDValue &Chain, SDValue *Flag) const; 576 577 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 578 /// operand list. This adds the code marker, matching input operand index 579 /// (if applicable), and includes the number of values added into it. 580 void AddInlineAsmOperands(unsigned Kind, 581 bool HasMatching, unsigned MatchingIdx, 582 SelectionDAG &DAG, 583 std::vector<SDValue> &Ops) const; 584 }; 585 } 586 587 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 588 /// this value and returns the result as a ValueVT value. This uses 589 /// Chain/Flag as the input and updates them for the output Chain/Flag. 590 /// If the Flag pointer is NULL, no flag is used. 591 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 592 FunctionLoweringInfo &FuncInfo, 593 DebugLoc dl, 594 SDValue &Chain, SDValue *Flag) const { 595 // A Value with type {} or [0 x %t] needs no registers. 596 if (ValueVTs.empty()) 597 return SDValue(); 598 599 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 600 601 // Assemble the legal parts into the final values. 602 SmallVector<SDValue, 4> Values(ValueVTs.size()); 603 SmallVector<SDValue, 8> Parts; 604 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 605 // Copy the legal parts from the registers. 606 EVT ValueVT = ValueVTs[Value]; 607 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 608 EVT RegisterVT = RegVTs[Value]; 609 610 Parts.resize(NumRegs); 611 for (unsigned i = 0; i != NumRegs; ++i) { 612 SDValue P; 613 if (Flag == 0) { 614 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 615 } else { 616 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 617 *Flag = P.getValue(2); 618 } 619 620 Chain = P.getValue(1); 621 622 // If the source register was virtual and if we know something about it, 623 // add an assert node. 624 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 625 RegisterVT.isInteger() && !RegisterVT.isVector()) { 626 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 627 if (FuncInfo.LiveOutRegInfo.size() > SlotNo) { 628 const FunctionLoweringInfo::LiveOutInfo &LOI = 629 FuncInfo.LiveOutRegInfo[SlotNo]; 630 631 unsigned RegSize = RegisterVT.getSizeInBits(); 632 unsigned NumSignBits = LOI.NumSignBits; 633 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 634 635 // FIXME: We capture more information than the dag can represent. For 636 // now, just use the tightest assertzext/assertsext possible. 637 bool isSExt = true; 638 EVT FromVT(MVT::Other); 639 if (NumSignBits == RegSize) 640 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 641 else if (NumZeroBits >= RegSize-1) 642 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 643 else if (NumSignBits > RegSize-8) 644 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 645 else if (NumZeroBits >= RegSize-8) 646 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 647 else if (NumSignBits > RegSize-16) 648 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 649 else if (NumZeroBits >= RegSize-16) 650 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 651 else if (NumSignBits > RegSize-32) 652 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 653 else if (NumZeroBits >= RegSize-32) 654 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 655 656 if (FromVT != MVT::Other) 657 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 658 RegisterVT, P, DAG.getValueType(FromVT)); 659 } 660 } 661 662 Parts[i] = P; 663 } 664 665 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 666 NumRegs, RegisterVT, ValueVT); 667 Part += NumRegs; 668 Parts.clear(); 669 } 670 671 return DAG.getNode(ISD::MERGE_VALUES, dl, 672 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 673 &Values[0], ValueVTs.size()); 674 } 675 676 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 677 /// specified value into the registers specified by this object. This uses 678 /// Chain/Flag as the input and updates them for the output Chain/Flag. 679 /// If the Flag pointer is NULL, no flag is used. 680 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 681 SDValue &Chain, SDValue *Flag) const { 682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 683 684 // Get the list of the values's legal parts. 685 unsigned NumRegs = Regs.size(); 686 SmallVector<SDValue, 8> Parts(NumRegs); 687 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 688 EVT ValueVT = ValueVTs[Value]; 689 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 690 EVT RegisterVT = RegVTs[Value]; 691 692 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 693 &Parts[Part], NumParts, RegisterVT); 694 Part += NumParts; 695 } 696 697 // Copy the parts into the registers. 698 SmallVector<SDValue, 8> Chains(NumRegs); 699 for (unsigned i = 0; i != NumRegs; ++i) { 700 SDValue Part; 701 if (Flag == 0) { 702 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 703 } else { 704 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 705 *Flag = Part.getValue(1); 706 } 707 708 Chains[i] = Part.getValue(0); 709 } 710 711 if (NumRegs == 1 || Flag) 712 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 713 // flagged to it. That is the CopyToReg nodes and the user are considered 714 // a single scheduling unit. If we create a TokenFactor and return it as 715 // chain, then the TokenFactor is both a predecessor (operand) of the 716 // user as well as a successor (the TF operands are flagged to the user). 717 // c1, f1 = CopyToReg 718 // c2, f2 = CopyToReg 719 // c3 = TokenFactor c1, c2 720 // ... 721 // = op c3, ..., f2 722 Chain = Chains[NumRegs-1]; 723 else 724 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 725 } 726 727 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 728 /// operand list. This adds the code marker and includes the number of 729 /// values added into it. 730 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 731 unsigned MatchingIdx, 732 SelectionDAG &DAG, 733 std::vector<SDValue> &Ops) const { 734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 735 736 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 737 if (HasMatching) 738 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 739 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 740 Ops.push_back(Res); 741 742 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 743 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 744 EVT RegisterVT = RegVTs[Value]; 745 for (unsigned i = 0; i != NumRegs; ++i) { 746 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 747 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 748 } 749 } 750 } 751 752 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 753 AA = &aa; 754 GFI = gfi; 755 TD = DAG.getTarget().getTargetData(); 756 } 757 758 /// clear - Clear out the current SelectionDAG and the associated 759 /// state and prepare this SelectionDAGBuilder object to be used 760 /// for a new block. This doesn't clear out information about 761 /// additional blocks that are needed to complete switch lowering 762 /// or PHI node updating; that information is cleared out as it is 763 /// consumed. 764 void SelectionDAGBuilder::clear() { 765 NodeMap.clear(); 766 UnusedArgNodeMap.clear(); 767 PendingLoads.clear(); 768 PendingExports.clear(); 769 DanglingDebugInfoMap.clear(); 770 CurDebugLoc = DebugLoc(); 771 HasTailCall = false; 772 } 773 774 /// getRoot - Return the current virtual root of the Selection DAG, 775 /// flushing any PendingLoad items. This must be done before emitting 776 /// a store or any other node that may need to be ordered after any 777 /// prior load instructions. 778 /// 779 SDValue SelectionDAGBuilder::getRoot() { 780 if (PendingLoads.empty()) 781 return DAG.getRoot(); 782 783 if (PendingLoads.size() == 1) { 784 SDValue Root = PendingLoads[0]; 785 DAG.setRoot(Root); 786 PendingLoads.clear(); 787 return Root; 788 } 789 790 // Otherwise, we have to make a token factor node. 791 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 792 &PendingLoads[0], PendingLoads.size()); 793 PendingLoads.clear(); 794 DAG.setRoot(Root); 795 return Root; 796 } 797 798 /// getControlRoot - Similar to getRoot, but instead of flushing all the 799 /// PendingLoad items, flush all the PendingExports items. It is necessary 800 /// to do this before emitting a terminator instruction. 801 /// 802 SDValue SelectionDAGBuilder::getControlRoot() { 803 SDValue Root = DAG.getRoot(); 804 805 if (PendingExports.empty()) 806 return Root; 807 808 // Turn all of the CopyToReg chains into one factored node. 809 if (Root.getOpcode() != ISD::EntryToken) { 810 unsigned i = 0, e = PendingExports.size(); 811 for (; i != e; ++i) { 812 assert(PendingExports[i].getNode()->getNumOperands() > 1); 813 if (PendingExports[i].getNode()->getOperand(0) == Root) 814 break; // Don't add the root if we already indirectly depend on it. 815 } 816 817 if (i == e) 818 PendingExports.push_back(Root); 819 } 820 821 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 822 &PendingExports[0], 823 PendingExports.size()); 824 PendingExports.clear(); 825 DAG.setRoot(Root); 826 return Root; 827 } 828 829 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 830 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 831 DAG.AssignOrdering(Node, SDNodeOrder); 832 833 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 834 AssignOrderingToNode(Node->getOperand(I).getNode()); 835 } 836 837 void SelectionDAGBuilder::visit(const Instruction &I) { 838 // Set up outgoing PHI node register values before emitting the terminator. 839 if (isa<TerminatorInst>(&I)) 840 HandlePHINodesInSuccessorBlocks(I.getParent()); 841 842 CurDebugLoc = I.getDebugLoc(); 843 844 visit(I.getOpcode(), I); 845 846 if (!isa<TerminatorInst>(&I) && !HasTailCall) 847 CopyToExportRegsIfNeeded(&I); 848 849 CurDebugLoc = DebugLoc(); 850 } 851 852 void SelectionDAGBuilder::visitPHI(const PHINode &) { 853 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 854 } 855 856 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 857 // Note: this doesn't use InstVisitor, because it has to work with 858 // ConstantExpr's in addition to instructions. 859 switch (Opcode) { 860 default: llvm_unreachable("Unknown instruction type encountered!"); 861 // Build the switch statement using the Instruction.def file. 862 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 863 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 864 #include "llvm/Instruction.def" 865 } 866 867 // Assign the ordering to the freshly created DAG nodes. 868 if (NodeMap.count(&I)) { 869 ++SDNodeOrder; 870 AssignOrderingToNode(getValue(&I).getNode()); 871 } 872 } 873 874 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 875 // generate the debug data structures now that we've seen its definition. 876 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 877 SDValue Val) { 878 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 879 if (DDI.getDI()) { 880 const DbgValueInst *DI = DDI.getDI(); 881 DebugLoc dl = DDI.getdl(); 882 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 883 MDNode *Variable = DI->getVariable(); 884 uint64_t Offset = DI->getOffset(); 885 SDDbgValue *SDV; 886 if (Val.getNode()) { 887 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 888 SDV = DAG.getDbgValue(Variable, Val.getNode(), 889 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 890 DAG.AddDbgValue(SDV, Val.getNode(), false); 891 } 892 } else { 893 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 894 Offset, dl, SDNodeOrder); 895 DAG.AddDbgValue(SDV, 0, false); 896 } 897 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 898 } 899 } 900 901 // getValue - Return an SDValue for the given Value. 902 SDValue SelectionDAGBuilder::getValue(const Value *V) { 903 // If we already have an SDValue for this value, use it. It's important 904 // to do this first, so that we don't create a CopyFromReg if we already 905 // have a regular SDValue. 906 SDValue &N = NodeMap[V]; 907 if (N.getNode()) return N; 908 909 // If there's a virtual register allocated and initialized for this 910 // value, use it. 911 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 912 if (It != FuncInfo.ValueMap.end()) { 913 unsigned InReg = It->second; 914 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 915 SDValue Chain = DAG.getEntryNode(); 916 return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL); 917 } 918 919 // Otherwise create a new SDValue and remember it. 920 SDValue Val = getValueImpl(V); 921 NodeMap[V] = Val; 922 resolveDanglingDebugInfo(V, Val); 923 return Val; 924 } 925 926 /// getNonRegisterValue - Return an SDValue for the given Value, but 927 /// don't look in FuncInfo.ValueMap for a virtual register. 928 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 929 // If we already have an SDValue for this value, use it. 930 SDValue &N = NodeMap[V]; 931 if (N.getNode()) return N; 932 933 // Otherwise create a new SDValue and remember it. 934 SDValue Val = getValueImpl(V); 935 NodeMap[V] = Val; 936 resolveDanglingDebugInfo(V, Val); 937 return Val; 938 } 939 940 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 941 /// Create an SDValue for the given value. 942 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 943 if (const Constant *C = dyn_cast<Constant>(V)) { 944 EVT VT = TLI.getValueType(V->getType(), true); 945 946 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 947 return DAG.getConstant(*CI, VT); 948 949 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 950 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 951 952 if (isa<ConstantPointerNull>(C)) 953 return DAG.getConstant(0, TLI.getPointerTy()); 954 955 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 956 return DAG.getConstantFP(*CFP, VT); 957 958 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 959 return DAG.getUNDEF(VT); 960 961 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 962 visit(CE->getOpcode(), *CE); 963 SDValue N1 = NodeMap[V]; 964 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 965 return N1; 966 } 967 968 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 969 SmallVector<SDValue, 4> Constants; 970 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 971 OI != OE; ++OI) { 972 SDNode *Val = getValue(*OI).getNode(); 973 // If the operand is an empty aggregate, there are no values. 974 if (!Val) continue; 975 // Add each leaf value from the operand to the Constants list 976 // to form a flattened list of all the values. 977 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 978 Constants.push_back(SDValue(Val, i)); 979 } 980 981 return DAG.getMergeValues(&Constants[0], Constants.size(), 982 getCurDebugLoc()); 983 } 984 985 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 986 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 987 "Unknown struct or array constant!"); 988 989 SmallVector<EVT, 4> ValueVTs; 990 ComputeValueVTs(TLI, C->getType(), ValueVTs); 991 unsigned NumElts = ValueVTs.size(); 992 if (NumElts == 0) 993 return SDValue(); // empty struct 994 SmallVector<SDValue, 4> Constants(NumElts); 995 for (unsigned i = 0; i != NumElts; ++i) { 996 EVT EltVT = ValueVTs[i]; 997 if (isa<UndefValue>(C)) 998 Constants[i] = DAG.getUNDEF(EltVT); 999 else if (EltVT.isFloatingPoint()) 1000 Constants[i] = DAG.getConstantFP(0, EltVT); 1001 else 1002 Constants[i] = DAG.getConstant(0, EltVT); 1003 } 1004 1005 return DAG.getMergeValues(&Constants[0], NumElts, 1006 getCurDebugLoc()); 1007 } 1008 1009 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1010 return DAG.getBlockAddress(BA, VT); 1011 1012 const VectorType *VecTy = cast<VectorType>(V->getType()); 1013 unsigned NumElements = VecTy->getNumElements(); 1014 1015 // Now that we know the number and type of the elements, get that number of 1016 // elements into the Ops array based on what kind of constant it is. 1017 SmallVector<SDValue, 16> Ops; 1018 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1019 for (unsigned i = 0; i != NumElements; ++i) 1020 Ops.push_back(getValue(CP->getOperand(i))); 1021 } else { 1022 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1023 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1024 1025 SDValue Op; 1026 if (EltVT.isFloatingPoint()) 1027 Op = DAG.getConstantFP(0, EltVT); 1028 else 1029 Op = DAG.getConstant(0, EltVT); 1030 Ops.assign(NumElements, Op); 1031 } 1032 1033 // Create a BUILD_VECTOR node. 1034 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1035 VT, &Ops[0], Ops.size()); 1036 } 1037 1038 // If this is a static alloca, generate it as the frameindex instead of 1039 // computation. 1040 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1041 DenseMap<const AllocaInst*, int>::iterator SI = 1042 FuncInfo.StaticAllocaMap.find(AI); 1043 if (SI != FuncInfo.StaticAllocaMap.end()) 1044 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1045 } 1046 1047 // If this is an instruction which fast-isel has deferred, select it now. 1048 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1049 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1050 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1051 SDValue Chain = DAG.getEntryNode(); 1052 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1053 } 1054 1055 llvm_unreachable("Can't get register for value!"); 1056 return SDValue(); 1057 } 1058 1059 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1060 SDValue Chain = getControlRoot(); 1061 SmallVector<ISD::OutputArg, 8> Outs; 1062 SmallVector<SDValue, 8> OutVals; 1063 1064 if (!FuncInfo.CanLowerReturn) { 1065 unsigned DemoteReg = FuncInfo.DemoteRegister; 1066 const Function *F = I.getParent()->getParent(); 1067 1068 // Emit a store of the return value through the virtual register. 1069 // Leave Outs empty so that LowerReturn won't try to load return 1070 // registers the usual way. 1071 SmallVector<EVT, 1> PtrValueVTs; 1072 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1073 PtrValueVTs); 1074 1075 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1076 SDValue RetOp = getValue(I.getOperand(0)); 1077 1078 SmallVector<EVT, 4> ValueVTs; 1079 SmallVector<uint64_t, 4> Offsets; 1080 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1081 unsigned NumValues = ValueVTs.size(); 1082 1083 SmallVector<SDValue, 4> Chains(NumValues); 1084 for (unsigned i = 0; i != NumValues; ++i) { 1085 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1086 RetPtr.getValueType(), RetPtr, 1087 DAG.getIntPtrConstant(Offsets[i])); 1088 Chains[i] = 1089 DAG.getStore(Chain, getCurDebugLoc(), 1090 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1091 // FIXME: better loc info would be nice. 1092 Add, MachinePointerInfo(), false, false, 0); 1093 } 1094 1095 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1096 MVT::Other, &Chains[0], NumValues); 1097 } else if (I.getNumOperands() != 0) { 1098 SmallVector<EVT, 4> ValueVTs; 1099 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1100 unsigned NumValues = ValueVTs.size(); 1101 if (NumValues) { 1102 SDValue RetOp = getValue(I.getOperand(0)); 1103 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1104 EVT VT = ValueVTs[j]; 1105 1106 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1107 1108 const Function *F = I.getParent()->getParent(); 1109 if (F->paramHasAttr(0, Attribute::SExt)) 1110 ExtendKind = ISD::SIGN_EXTEND; 1111 else if (F->paramHasAttr(0, Attribute::ZExt)) 1112 ExtendKind = ISD::ZERO_EXTEND; 1113 1114 // FIXME: C calling convention requires the return type to be promoted 1115 // to at least 32-bit. But this is not necessary for non-C calling 1116 // conventions. The frontend should mark functions whose return values 1117 // require promoting with signext or zeroext attributes. 1118 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1119 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 1120 if (VT.bitsLT(MinVT)) 1121 VT = MinVT; 1122 } 1123 1124 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1125 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1126 SmallVector<SDValue, 4> Parts(NumParts); 1127 getCopyToParts(DAG, getCurDebugLoc(), 1128 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1129 &Parts[0], NumParts, PartVT, ExtendKind); 1130 1131 // 'inreg' on function refers to return value 1132 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1133 if (F->paramHasAttr(0, Attribute::InReg)) 1134 Flags.setInReg(); 1135 1136 // Propagate extension type if any 1137 if (F->paramHasAttr(0, Attribute::SExt)) 1138 Flags.setSExt(); 1139 else if (F->paramHasAttr(0, Attribute::ZExt)) 1140 Flags.setZExt(); 1141 1142 for (unsigned i = 0; i < NumParts; ++i) { 1143 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1144 /*isfixed=*/true)); 1145 OutVals.push_back(Parts[i]); 1146 } 1147 } 1148 } 1149 } 1150 1151 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1152 CallingConv::ID CallConv = 1153 DAG.getMachineFunction().getFunction()->getCallingConv(); 1154 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1155 Outs, OutVals, getCurDebugLoc(), DAG); 1156 1157 // Verify that the target's LowerReturn behaved as expected. 1158 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1159 "LowerReturn didn't return a valid chain!"); 1160 1161 // Update the DAG with the new chain value resulting from return lowering. 1162 DAG.setRoot(Chain); 1163 } 1164 1165 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1166 /// created for it, emit nodes to copy the value into the virtual 1167 /// registers. 1168 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1169 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1170 if (VMI != FuncInfo.ValueMap.end()) { 1171 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1172 CopyValueToVirtualRegister(V, VMI->second); 1173 } 1174 } 1175 1176 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1177 /// the current basic block, add it to ValueMap now so that we'll get a 1178 /// CopyTo/FromReg. 1179 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1180 // No need to export constants. 1181 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1182 1183 // Already exported? 1184 if (FuncInfo.isExportedInst(V)) return; 1185 1186 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1187 CopyValueToVirtualRegister(V, Reg); 1188 } 1189 1190 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1191 const BasicBlock *FromBB) { 1192 // The operands of the setcc have to be in this block. We don't know 1193 // how to export them from some other block. 1194 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1195 // Can export from current BB. 1196 if (VI->getParent() == FromBB) 1197 return true; 1198 1199 // Is already exported, noop. 1200 return FuncInfo.isExportedInst(V); 1201 } 1202 1203 // If this is an argument, we can export it if the BB is the entry block or 1204 // if it is already exported. 1205 if (isa<Argument>(V)) { 1206 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1207 return true; 1208 1209 // Otherwise, can only export this if it is already exported. 1210 return FuncInfo.isExportedInst(V); 1211 } 1212 1213 // Otherwise, constants can always be exported. 1214 return true; 1215 } 1216 1217 static bool InBlock(const Value *V, const BasicBlock *BB) { 1218 if (const Instruction *I = dyn_cast<Instruction>(V)) 1219 return I->getParent() == BB; 1220 return true; 1221 } 1222 1223 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1224 /// This function emits a branch and is used at the leaves of an OR or an 1225 /// AND operator tree. 1226 /// 1227 void 1228 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1229 MachineBasicBlock *TBB, 1230 MachineBasicBlock *FBB, 1231 MachineBasicBlock *CurBB, 1232 MachineBasicBlock *SwitchBB) { 1233 const BasicBlock *BB = CurBB->getBasicBlock(); 1234 1235 // If the leaf of the tree is a comparison, merge the condition into 1236 // the caseblock. 1237 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1238 // The operands of the cmp have to be in this block. We don't know 1239 // how to export them from some other block. If this is the first block 1240 // of the sequence, no exporting is needed. 1241 if (CurBB == SwitchBB || 1242 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1243 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1244 ISD::CondCode Condition; 1245 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1246 Condition = getICmpCondCode(IC->getPredicate()); 1247 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1248 Condition = getFCmpCondCode(FC->getPredicate()); 1249 } else { 1250 Condition = ISD::SETEQ; // silence warning. 1251 llvm_unreachable("Unknown compare instruction"); 1252 } 1253 1254 CaseBlock CB(Condition, BOp->getOperand(0), 1255 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1256 SwitchCases.push_back(CB); 1257 return; 1258 } 1259 } 1260 1261 // Create a CaseBlock record representing this branch. 1262 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1263 NULL, TBB, FBB, CurBB); 1264 SwitchCases.push_back(CB); 1265 } 1266 1267 /// FindMergedConditions - If Cond is an expression like 1268 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1269 MachineBasicBlock *TBB, 1270 MachineBasicBlock *FBB, 1271 MachineBasicBlock *CurBB, 1272 MachineBasicBlock *SwitchBB, 1273 unsigned Opc) { 1274 // If this node is not part of the or/and tree, emit it as a branch. 1275 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1276 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1277 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1278 BOp->getParent() != CurBB->getBasicBlock() || 1279 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1280 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1281 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1282 return; 1283 } 1284 1285 // Create TmpBB after CurBB. 1286 MachineFunction::iterator BBI = CurBB; 1287 MachineFunction &MF = DAG.getMachineFunction(); 1288 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1289 CurBB->getParent()->insert(++BBI, TmpBB); 1290 1291 if (Opc == Instruction::Or) { 1292 // Codegen X | Y as: 1293 // jmp_if_X TBB 1294 // jmp TmpBB 1295 // TmpBB: 1296 // jmp_if_Y TBB 1297 // jmp FBB 1298 // 1299 1300 // Emit the LHS condition. 1301 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1302 1303 // Emit the RHS condition into TmpBB. 1304 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1305 } else { 1306 assert(Opc == Instruction::And && "Unknown merge op!"); 1307 // Codegen X & Y as: 1308 // jmp_if_X TmpBB 1309 // jmp FBB 1310 // TmpBB: 1311 // jmp_if_Y TBB 1312 // jmp FBB 1313 // 1314 // This requires creation of TmpBB after CurBB. 1315 1316 // Emit the LHS condition. 1317 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1318 1319 // Emit the RHS condition into TmpBB. 1320 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1321 } 1322 } 1323 1324 /// If the set of cases should be emitted as a series of branches, return true. 1325 /// If we should emit this as a bunch of and/or'd together conditions, return 1326 /// false. 1327 bool 1328 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1329 if (Cases.size() != 2) return true; 1330 1331 // If this is two comparisons of the same values or'd or and'd together, they 1332 // will get folded into a single comparison, so don't emit two blocks. 1333 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1334 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1335 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1336 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1337 return false; 1338 } 1339 1340 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1341 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1342 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1343 Cases[0].CC == Cases[1].CC && 1344 isa<Constant>(Cases[0].CmpRHS) && 1345 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1346 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1347 return false; 1348 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1349 return false; 1350 } 1351 1352 return true; 1353 } 1354 1355 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1356 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1357 1358 // Update machine-CFG edges. 1359 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1360 1361 // Figure out which block is immediately after the current one. 1362 MachineBasicBlock *NextBlock = 0; 1363 MachineFunction::iterator BBI = BrMBB; 1364 if (++BBI != FuncInfo.MF->end()) 1365 NextBlock = BBI; 1366 1367 if (I.isUnconditional()) { 1368 // Update machine-CFG edges. 1369 BrMBB->addSuccessor(Succ0MBB); 1370 1371 // If this is not a fall-through branch, emit the branch. 1372 if (Succ0MBB != NextBlock) 1373 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1374 MVT::Other, getControlRoot(), 1375 DAG.getBasicBlock(Succ0MBB))); 1376 1377 return; 1378 } 1379 1380 // If this condition is one of the special cases we handle, do special stuff 1381 // now. 1382 const Value *CondVal = I.getCondition(); 1383 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1384 1385 // If this is a series of conditions that are or'd or and'd together, emit 1386 // this as a sequence of branches instead of setcc's with and/or operations. 1387 // For example, instead of something like: 1388 // cmp A, B 1389 // C = seteq 1390 // cmp D, E 1391 // F = setle 1392 // or C, F 1393 // jnz foo 1394 // Emit: 1395 // cmp A, B 1396 // je foo 1397 // cmp D, E 1398 // jle foo 1399 // 1400 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1401 if (BOp->hasOneUse() && 1402 (BOp->getOpcode() == Instruction::And || 1403 BOp->getOpcode() == Instruction::Or)) { 1404 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1405 BOp->getOpcode()); 1406 // If the compares in later blocks need to use values not currently 1407 // exported from this block, export them now. This block should always 1408 // be the first entry. 1409 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1410 1411 // Allow some cases to be rejected. 1412 if (ShouldEmitAsBranches(SwitchCases)) { 1413 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1414 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1415 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1416 } 1417 1418 // Emit the branch for this block. 1419 visitSwitchCase(SwitchCases[0], BrMBB); 1420 SwitchCases.erase(SwitchCases.begin()); 1421 return; 1422 } 1423 1424 // Okay, we decided not to do this, remove any inserted MBB's and clear 1425 // SwitchCases. 1426 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1427 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1428 1429 SwitchCases.clear(); 1430 } 1431 } 1432 1433 // Create a CaseBlock record representing this branch. 1434 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1435 NULL, Succ0MBB, Succ1MBB, BrMBB); 1436 1437 // Use visitSwitchCase to actually insert the fast branch sequence for this 1438 // cond branch. 1439 visitSwitchCase(CB, BrMBB); 1440 } 1441 1442 /// visitSwitchCase - Emits the necessary code to represent a single node in 1443 /// the binary search tree resulting from lowering a switch instruction. 1444 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1445 MachineBasicBlock *SwitchBB) { 1446 SDValue Cond; 1447 SDValue CondLHS = getValue(CB.CmpLHS); 1448 DebugLoc dl = getCurDebugLoc(); 1449 1450 // Build the setcc now. 1451 if (CB.CmpMHS == NULL) { 1452 // Fold "(X == true)" to X and "(X == false)" to !X to 1453 // handle common cases produced by branch lowering. 1454 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1455 CB.CC == ISD::SETEQ) 1456 Cond = CondLHS; 1457 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1458 CB.CC == ISD::SETEQ) { 1459 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1460 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1461 } else 1462 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1463 } else { 1464 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1465 1466 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1467 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1468 1469 SDValue CmpOp = getValue(CB.CmpMHS); 1470 EVT VT = CmpOp.getValueType(); 1471 1472 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1473 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1474 ISD::SETLE); 1475 } else { 1476 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1477 VT, CmpOp, DAG.getConstant(Low, VT)); 1478 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1479 DAG.getConstant(High-Low, VT), ISD::SETULE); 1480 } 1481 } 1482 1483 // Update successor info 1484 SwitchBB->addSuccessor(CB.TrueBB); 1485 SwitchBB->addSuccessor(CB.FalseBB); 1486 1487 // Set NextBlock to be the MBB immediately after the current one, if any. 1488 // This is used to avoid emitting unnecessary branches to the next block. 1489 MachineBasicBlock *NextBlock = 0; 1490 MachineFunction::iterator BBI = SwitchBB; 1491 if (++BBI != FuncInfo.MF->end()) 1492 NextBlock = BBI; 1493 1494 // If the lhs block is the next block, invert the condition so that we can 1495 // fall through to the lhs instead of the rhs block. 1496 if (CB.TrueBB == NextBlock) { 1497 std::swap(CB.TrueBB, CB.FalseBB); 1498 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1499 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1500 } 1501 1502 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1503 MVT::Other, getControlRoot(), Cond, 1504 DAG.getBasicBlock(CB.TrueBB)); 1505 1506 // Insert the false branch. 1507 if (CB.FalseBB != NextBlock) 1508 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1509 DAG.getBasicBlock(CB.FalseBB)); 1510 1511 DAG.setRoot(BrCond); 1512 } 1513 1514 /// visitJumpTable - Emit JumpTable node in the current MBB 1515 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1516 // Emit the code for the jump table 1517 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1518 EVT PTy = TLI.getPointerTy(); 1519 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1520 JT.Reg, PTy); 1521 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1522 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1523 MVT::Other, Index.getValue(1), 1524 Table, Index); 1525 DAG.setRoot(BrJumpTable); 1526 } 1527 1528 /// visitJumpTableHeader - This function emits necessary code to produce index 1529 /// in the JumpTable from switch case. 1530 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1531 JumpTableHeader &JTH, 1532 MachineBasicBlock *SwitchBB) { 1533 // Subtract the lowest switch case value from the value being switched on and 1534 // conditional branch to default mbb if the result is greater than the 1535 // difference between smallest and largest cases. 1536 SDValue SwitchOp = getValue(JTH.SValue); 1537 EVT VT = SwitchOp.getValueType(); 1538 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1539 DAG.getConstant(JTH.First, VT)); 1540 1541 // The SDNode we just created, which holds the value being switched on minus 1542 // the smallest case value, needs to be copied to a virtual register so it 1543 // can be used as an index into the jump table in a subsequent basic block. 1544 // This value may be smaller or larger than the target's pointer type, and 1545 // therefore require extension or truncating. 1546 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1547 1548 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1549 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1550 JumpTableReg, SwitchOp); 1551 JT.Reg = JumpTableReg; 1552 1553 // Emit the range check for the jump table, and branch to the default block 1554 // for the switch statement if the value being switched on exceeds the largest 1555 // case in the switch. 1556 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1557 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1558 DAG.getConstant(JTH.Last-JTH.First,VT), 1559 ISD::SETUGT); 1560 1561 // Set NextBlock to be the MBB immediately after the current one, if any. 1562 // This is used to avoid emitting unnecessary branches to the next block. 1563 MachineBasicBlock *NextBlock = 0; 1564 MachineFunction::iterator BBI = SwitchBB; 1565 1566 if (++BBI != FuncInfo.MF->end()) 1567 NextBlock = BBI; 1568 1569 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1570 MVT::Other, CopyTo, CMP, 1571 DAG.getBasicBlock(JT.Default)); 1572 1573 if (JT.MBB != NextBlock) 1574 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1575 DAG.getBasicBlock(JT.MBB)); 1576 1577 DAG.setRoot(BrCond); 1578 } 1579 1580 /// visitBitTestHeader - This function emits necessary code to produce value 1581 /// suitable for "bit tests" 1582 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1583 MachineBasicBlock *SwitchBB) { 1584 // Subtract the minimum value 1585 SDValue SwitchOp = getValue(B.SValue); 1586 EVT VT = SwitchOp.getValueType(); 1587 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1588 DAG.getConstant(B.First, VT)); 1589 1590 // Check range 1591 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1592 TLI.getSetCCResultType(Sub.getValueType()), 1593 Sub, DAG.getConstant(B.Range, VT), 1594 ISD::SETUGT); 1595 1596 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1597 TLI.getPointerTy()); 1598 1599 B.Reg = FuncInfo.CreateReg(TLI.getPointerTy()); 1600 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1601 B.Reg, ShiftOp); 1602 1603 // Set NextBlock to be the MBB immediately after the current one, if any. 1604 // This is used to avoid emitting unnecessary branches to the next block. 1605 MachineBasicBlock *NextBlock = 0; 1606 MachineFunction::iterator BBI = SwitchBB; 1607 if (++BBI != FuncInfo.MF->end()) 1608 NextBlock = BBI; 1609 1610 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1611 1612 SwitchBB->addSuccessor(B.Default); 1613 SwitchBB->addSuccessor(MBB); 1614 1615 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1616 MVT::Other, CopyTo, RangeCmp, 1617 DAG.getBasicBlock(B.Default)); 1618 1619 if (MBB != NextBlock) 1620 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1621 DAG.getBasicBlock(MBB)); 1622 1623 DAG.setRoot(BrRange); 1624 } 1625 1626 /// visitBitTestCase - this function produces one "bit test" 1627 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1628 unsigned Reg, 1629 BitTestCase &B, 1630 MachineBasicBlock *SwitchBB) { 1631 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1632 TLI.getPointerTy()); 1633 SDValue Cmp; 1634 if (CountPopulation_64(B.Mask) == 1) { 1635 // Testing for a single bit; just compare the shift count with what it 1636 // would need to be to shift a 1 bit in that position. 1637 Cmp = DAG.getSetCC(getCurDebugLoc(), 1638 TLI.getSetCCResultType(ShiftOp.getValueType()), 1639 ShiftOp, 1640 DAG.getConstant(CountTrailingZeros_64(B.Mask), 1641 TLI.getPointerTy()), 1642 ISD::SETEQ); 1643 } else { 1644 // Make desired shift 1645 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1646 TLI.getPointerTy(), 1647 DAG.getConstant(1, TLI.getPointerTy()), 1648 ShiftOp); 1649 1650 // Emit bit tests and jumps 1651 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1652 TLI.getPointerTy(), SwitchVal, 1653 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1654 Cmp = DAG.getSetCC(getCurDebugLoc(), 1655 TLI.getSetCCResultType(AndOp.getValueType()), 1656 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1657 ISD::SETNE); 1658 } 1659 1660 SwitchBB->addSuccessor(B.TargetBB); 1661 SwitchBB->addSuccessor(NextMBB); 1662 1663 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1664 MVT::Other, getControlRoot(), 1665 Cmp, DAG.getBasicBlock(B.TargetBB)); 1666 1667 // Set NextBlock to be the MBB immediately after the current one, if any. 1668 // This is used to avoid emitting unnecessary branches to the next block. 1669 MachineBasicBlock *NextBlock = 0; 1670 MachineFunction::iterator BBI = SwitchBB; 1671 if (++BBI != FuncInfo.MF->end()) 1672 NextBlock = BBI; 1673 1674 if (NextMBB != NextBlock) 1675 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1676 DAG.getBasicBlock(NextMBB)); 1677 1678 DAG.setRoot(BrAnd); 1679 } 1680 1681 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1682 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1683 1684 // Retrieve successors. 1685 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1686 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1687 1688 const Value *Callee(I.getCalledValue()); 1689 if (isa<InlineAsm>(Callee)) 1690 visitInlineAsm(&I); 1691 else 1692 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1693 1694 // If the value of the invoke is used outside of its defining block, make it 1695 // available as a virtual register. 1696 CopyToExportRegsIfNeeded(&I); 1697 1698 // Update successor info 1699 InvokeMBB->addSuccessor(Return); 1700 InvokeMBB->addSuccessor(LandingPad); 1701 1702 // Drop into normal successor. 1703 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1704 MVT::Other, getControlRoot(), 1705 DAG.getBasicBlock(Return))); 1706 } 1707 1708 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1709 } 1710 1711 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1712 /// small case ranges). 1713 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1714 CaseRecVector& WorkList, 1715 const Value* SV, 1716 MachineBasicBlock *Default, 1717 MachineBasicBlock *SwitchBB) { 1718 Case& BackCase = *(CR.Range.second-1); 1719 1720 // Size is the number of Cases represented by this range. 1721 size_t Size = CR.Range.second - CR.Range.first; 1722 if (Size > 3) 1723 return false; 1724 1725 // Get the MachineFunction which holds the current MBB. This is used when 1726 // inserting any additional MBBs necessary to represent the switch. 1727 MachineFunction *CurMF = FuncInfo.MF; 1728 1729 // Figure out which block is immediately after the current one. 1730 MachineBasicBlock *NextBlock = 0; 1731 MachineFunction::iterator BBI = CR.CaseBB; 1732 1733 if (++BBI != FuncInfo.MF->end()) 1734 NextBlock = BBI; 1735 1736 // TODO: If any two of the cases has the same destination, and if one value 1737 // is the same as the other, but has one bit unset that the other has set, 1738 // use bit manipulation to do two compares at once. For example: 1739 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1740 1741 // Rearrange the case blocks so that the last one falls through if possible. 1742 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1743 // The last case block won't fall through into 'NextBlock' if we emit the 1744 // branches in this order. See if rearranging a case value would help. 1745 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1746 if (I->BB == NextBlock) { 1747 std::swap(*I, BackCase); 1748 break; 1749 } 1750 } 1751 } 1752 1753 // Create a CaseBlock record representing a conditional branch to 1754 // the Case's target mbb if the value being switched on SV is equal 1755 // to C. 1756 MachineBasicBlock *CurBlock = CR.CaseBB; 1757 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1758 MachineBasicBlock *FallThrough; 1759 if (I != E-1) { 1760 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1761 CurMF->insert(BBI, FallThrough); 1762 1763 // Put SV in a virtual register to make it available from the new blocks. 1764 ExportFromCurrentBlock(SV); 1765 } else { 1766 // If the last case doesn't match, go to the default block. 1767 FallThrough = Default; 1768 } 1769 1770 const Value *RHS, *LHS, *MHS; 1771 ISD::CondCode CC; 1772 if (I->High == I->Low) { 1773 // This is just small small case range :) containing exactly 1 case 1774 CC = ISD::SETEQ; 1775 LHS = SV; RHS = I->High; MHS = NULL; 1776 } else { 1777 CC = ISD::SETLE; 1778 LHS = I->Low; MHS = SV; RHS = I->High; 1779 } 1780 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1781 1782 // If emitting the first comparison, just call visitSwitchCase to emit the 1783 // code into the current block. Otherwise, push the CaseBlock onto the 1784 // vector to be later processed by SDISel, and insert the node's MBB 1785 // before the next MBB. 1786 if (CurBlock == SwitchBB) 1787 visitSwitchCase(CB, SwitchBB); 1788 else 1789 SwitchCases.push_back(CB); 1790 1791 CurBlock = FallThrough; 1792 } 1793 1794 return true; 1795 } 1796 1797 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1798 return !DisableJumpTables && 1799 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1800 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1801 } 1802 1803 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1804 APInt LastExt(Last), FirstExt(First); 1805 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1806 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1807 return (LastExt - FirstExt + 1ULL); 1808 } 1809 1810 /// handleJTSwitchCase - Emit jumptable for current switch case range 1811 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1812 CaseRecVector& WorkList, 1813 const Value* SV, 1814 MachineBasicBlock* Default, 1815 MachineBasicBlock *SwitchBB) { 1816 Case& FrontCase = *CR.Range.first; 1817 Case& BackCase = *(CR.Range.second-1); 1818 1819 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1820 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1821 1822 APInt TSize(First.getBitWidth(), 0); 1823 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1824 I!=E; ++I) 1825 TSize += I->size(); 1826 1827 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1828 return false; 1829 1830 APInt Range = ComputeRange(First, Last); 1831 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1832 if (Density < 0.4) 1833 return false; 1834 1835 DEBUG(dbgs() << "Lowering jump table\n" 1836 << "First entry: " << First << ". Last entry: " << Last << '\n' 1837 << "Range: " << Range 1838 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1839 1840 // Get the MachineFunction which holds the current MBB. This is used when 1841 // inserting any additional MBBs necessary to represent the switch. 1842 MachineFunction *CurMF = FuncInfo.MF; 1843 1844 // Figure out which block is immediately after the current one. 1845 MachineFunction::iterator BBI = CR.CaseBB; 1846 ++BBI; 1847 1848 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1849 1850 // Create a new basic block to hold the code for loading the address 1851 // of the jump table, and jumping to it. Update successor information; 1852 // we will either branch to the default case for the switch, or the jump 1853 // table. 1854 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1855 CurMF->insert(BBI, JumpTableBB); 1856 CR.CaseBB->addSuccessor(Default); 1857 CR.CaseBB->addSuccessor(JumpTableBB); 1858 1859 // Build a vector of destination BBs, corresponding to each target 1860 // of the jump table. If the value of the jump table slot corresponds to 1861 // a case statement, push the case's BB onto the vector, otherwise, push 1862 // the default BB. 1863 std::vector<MachineBasicBlock*> DestBBs; 1864 APInt TEI = First; 1865 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1866 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1867 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1868 1869 if (Low.sle(TEI) && TEI.sle(High)) { 1870 DestBBs.push_back(I->BB); 1871 if (TEI==High) 1872 ++I; 1873 } else { 1874 DestBBs.push_back(Default); 1875 } 1876 } 1877 1878 // Update successor info. Add one edge to each unique successor. 1879 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1880 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1881 E = DestBBs.end(); I != E; ++I) { 1882 if (!SuccsHandled[(*I)->getNumber()]) { 1883 SuccsHandled[(*I)->getNumber()] = true; 1884 JumpTableBB->addSuccessor(*I); 1885 } 1886 } 1887 1888 // Create a jump table index for this jump table. 1889 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1890 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1891 ->createJumpTableIndex(DestBBs); 1892 1893 // Set the jump table information so that we can codegen it as a second 1894 // MachineBasicBlock 1895 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1896 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 1897 if (CR.CaseBB == SwitchBB) 1898 visitJumpTableHeader(JT, JTH, SwitchBB); 1899 1900 JTCases.push_back(JumpTableBlock(JTH, JT)); 1901 1902 return true; 1903 } 1904 1905 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1906 /// 2 subtrees. 1907 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1908 CaseRecVector& WorkList, 1909 const Value* SV, 1910 MachineBasicBlock *Default, 1911 MachineBasicBlock *SwitchBB) { 1912 // Get the MachineFunction which holds the current MBB. This is used when 1913 // inserting any additional MBBs necessary to represent the switch. 1914 MachineFunction *CurMF = FuncInfo.MF; 1915 1916 // Figure out which block is immediately after the current one. 1917 MachineFunction::iterator BBI = CR.CaseBB; 1918 ++BBI; 1919 1920 Case& FrontCase = *CR.Range.first; 1921 Case& BackCase = *(CR.Range.second-1); 1922 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1923 1924 // Size is the number of Cases represented by this range. 1925 unsigned Size = CR.Range.second - CR.Range.first; 1926 1927 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1928 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1929 double FMetric = 0; 1930 CaseItr Pivot = CR.Range.first + Size/2; 1931 1932 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1933 // (heuristically) allow us to emit JumpTable's later. 1934 APInt TSize(First.getBitWidth(), 0); 1935 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1936 I!=E; ++I) 1937 TSize += I->size(); 1938 1939 APInt LSize = FrontCase.size(); 1940 APInt RSize = TSize-LSize; 1941 DEBUG(dbgs() << "Selecting best pivot: \n" 1942 << "First: " << First << ", Last: " << Last <<'\n' 1943 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1944 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1945 J!=E; ++I, ++J) { 1946 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1947 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1948 APInt Range = ComputeRange(LEnd, RBegin); 1949 assert((Range - 2ULL).isNonNegative() && 1950 "Invalid case distance"); 1951 double LDensity = (double)LSize.roundToDouble() / 1952 (LEnd - First + 1ULL).roundToDouble(); 1953 double RDensity = (double)RSize.roundToDouble() / 1954 (Last - RBegin + 1ULL).roundToDouble(); 1955 double Metric = Range.logBase2()*(LDensity+RDensity); 1956 // Should always split in some non-trivial place 1957 DEBUG(dbgs() <<"=>Step\n" 1958 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1959 << "LDensity: " << LDensity 1960 << ", RDensity: " << RDensity << '\n' 1961 << "Metric: " << Metric << '\n'); 1962 if (FMetric < Metric) { 1963 Pivot = J; 1964 FMetric = Metric; 1965 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 1966 } 1967 1968 LSize += J->size(); 1969 RSize -= J->size(); 1970 } 1971 if (areJTsAllowed(TLI)) { 1972 // If our case is dense we *really* should handle it earlier! 1973 assert((FMetric > 0) && "Should handle dense range earlier!"); 1974 } else { 1975 Pivot = CR.Range.first + Size/2; 1976 } 1977 1978 CaseRange LHSR(CR.Range.first, Pivot); 1979 CaseRange RHSR(Pivot, CR.Range.second); 1980 Constant *C = Pivot->Low; 1981 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1982 1983 // We know that we branch to the LHS if the Value being switched on is 1984 // less than the Pivot value, C. We use this to optimize our binary 1985 // tree a bit, by recognizing that if SV is greater than or equal to the 1986 // LHS's Case Value, and that Case Value is exactly one less than the 1987 // Pivot's Value, then we can branch directly to the LHS's Target, 1988 // rather than creating a leaf node for it. 1989 if ((LHSR.second - LHSR.first) == 1 && 1990 LHSR.first->High == CR.GE && 1991 cast<ConstantInt>(C)->getValue() == 1992 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 1993 TrueBB = LHSR.first->BB; 1994 } else { 1995 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1996 CurMF->insert(BBI, TrueBB); 1997 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 1998 1999 // Put SV in a virtual register to make it available from the new blocks. 2000 ExportFromCurrentBlock(SV); 2001 } 2002 2003 // Similar to the optimization above, if the Value being switched on is 2004 // known to be less than the Constant CR.LT, and the current Case Value 2005 // is CR.LT - 1, then we can branch directly to the target block for 2006 // the current Case Value, rather than emitting a RHS leaf node for it. 2007 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2008 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2009 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2010 FalseBB = RHSR.first->BB; 2011 } else { 2012 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2013 CurMF->insert(BBI, FalseBB); 2014 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2015 2016 // Put SV in a virtual register to make it available from the new blocks. 2017 ExportFromCurrentBlock(SV); 2018 } 2019 2020 // Create a CaseBlock record representing a conditional branch to 2021 // the LHS node if the value being switched on SV is less than C. 2022 // Otherwise, branch to LHS. 2023 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2024 2025 if (CR.CaseBB == SwitchBB) 2026 visitSwitchCase(CB, SwitchBB); 2027 else 2028 SwitchCases.push_back(CB); 2029 2030 return true; 2031 } 2032 2033 /// handleBitTestsSwitchCase - if current case range has few destination and 2034 /// range span less, than machine word bitwidth, encode case range into series 2035 /// of masks and emit bit tests with these masks. 2036 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2037 CaseRecVector& WorkList, 2038 const Value* SV, 2039 MachineBasicBlock* Default, 2040 MachineBasicBlock *SwitchBB){ 2041 EVT PTy = TLI.getPointerTy(); 2042 unsigned IntPtrBits = PTy.getSizeInBits(); 2043 2044 Case& FrontCase = *CR.Range.first; 2045 Case& BackCase = *(CR.Range.second-1); 2046 2047 // Get the MachineFunction which holds the current MBB. This is used when 2048 // inserting any additional MBBs necessary to represent the switch. 2049 MachineFunction *CurMF = FuncInfo.MF; 2050 2051 // If target does not have legal shift left, do not emit bit tests at all. 2052 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2053 return false; 2054 2055 size_t numCmps = 0; 2056 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2057 I!=E; ++I) { 2058 // Single case counts one, case range - two. 2059 numCmps += (I->Low == I->High ? 1 : 2); 2060 } 2061 2062 // Count unique destinations 2063 SmallSet<MachineBasicBlock*, 4> Dests; 2064 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2065 Dests.insert(I->BB); 2066 if (Dests.size() > 3) 2067 // Don't bother the code below, if there are too much unique destinations 2068 return false; 2069 } 2070 DEBUG(dbgs() << "Total number of unique destinations: " 2071 << Dests.size() << '\n' 2072 << "Total number of comparisons: " << numCmps << '\n'); 2073 2074 // Compute span of values. 2075 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2076 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2077 APInt cmpRange = maxValue - minValue; 2078 2079 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2080 << "Low bound: " << minValue << '\n' 2081 << "High bound: " << maxValue << '\n'); 2082 2083 if (cmpRange.uge(IntPtrBits) || 2084 (!(Dests.size() == 1 && numCmps >= 3) && 2085 !(Dests.size() == 2 && numCmps >= 5) && 2086 !(Dests.size() >= 3 && numCmps >= 6))) 2087 return false; 2088 2089 DEBUG(dbgs() << "Emitting bit tests\n"); 2090 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2091 2092 // Optimize the case where all the case values fit in a 2093 // word without having to subtract minValue. In this case, 2094 // we can optimize away the subtraction. 2095 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2096 cmpRange = maxValue; 2097 } else { 2098 lowBound = minValue; 2099 } 2100 2101 CaseBitsVector CasesBits; 2102 unsigned i, count = 0; 2103 2104 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2105 MachineBasicBlock* Dest = I->BB; 2106 for (i = 0; i < count; ++i) 2107 if (Dest == CasesBits[i].BB) 2108 break; 2109 2110 if (i == count) { 2111 assert((count < 3) && "Too much destinations to test!"); 2112 CasesBits.push_back(CaseBits(0, Dest, 0)); 2113 count++; 2114 } 2115 2116 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2117 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2118 2119 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2120 uint64_t hi = (highValue - lowBound).getZExtValue(); 2121 2122 for (uint64_t j = lo; j <= hi; j++) { 2123 CasesBits[i].Mask |= 1ULL << j; 2124 CasesBits[i].Bits++; 2125 } 2126 2127 } 2128 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2129 2130 BitTestInfo BTC; 2131 2132 // Figure out which block is immediately after the current one. 2133 MachineFunction::iterator BBI = CR.CaseBB; 2134 ++BBI; 2135 2136 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2137 2138 DEBUG(dbgs() << "Cases:\n"); 2139 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2140 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2141 << ", Bits: " << CasesBits[i].Bits 2142 << ", BB: " << CasesBits[i].BB << '\n'); 2143 2144 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2145 CurMF->insert(BBI, CaseBB); 2146 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2147 CaseBB, 2148 CasesBits[i].BB)); 2149 2150 // Put SV in a virtual register to make it available from the new blocks. 2151 ExportFromCurrentBlock(SV); 2152 } 2153 2154 BitTestBlock BTB(lowBound, cmpRange, SV, 2155 -1U, (CR.CaseBB == SwitchBB), 2156 CR.CaseBB, Default, BTC); 2157 2158 if (CR.CaseBB == SwitchBB) 2159 visitBitTestHeader(BTB, SwitchBB); 2160 2161 BitTestCases.push_back(BTB); 2162 2163 return true; 2164 } 2165 2166 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2167 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2168 const SwitchInst& SI) { 2169 size_t numCmps = 0; 2170 2171 // Start with "simple" cases 2172 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2173 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2174 Cases.push_back(Case(SI.getSuccessorValue(i), 2175 SI.getSuccessorValue(i), 2176 SMBB)); 2177 } 2178 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2179 2180 // Merge case into clusters 2181 if (Cases.size() >= 2) 2182 // Must recompute end() each iteration because it may be 2183 // invalidated by erase if we hold on to it 2184 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 2185 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2186 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2187 MachineBasicBlock* nextBB = J->BB; 2188 MachineBasicBlock* currentBB = I->BB; 2189 2190 // If the two neighboring cases go to the same destination, merge them 2191 // into a single case. 2192 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2193 I->High = J->High; 2194 J = Cases.erase(J); 2195 } else { 2196 I = J++; 2197 } 2198 } 2199 2200 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2201 if (I->Low != I->High) 2202 // A range counts double, since it requires two compares. 2203 ++numCmps; 2204 } 2205 2206 return numCmps; 2207 } 2208 2209 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2210 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2211 2212 // Figure out which block is immediately after the current one. 2213 MachineBasicBlock *NextBlock = 0; 2214 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2215 2216 // If there is only the default destination, branch to it if it is not the 2217 // next basic block. Otherwise, just fall through. 2218 if (SI.getNumOperands() == 2) { 2219 // Update machine-CFG edges. 2220 2221 // If this is not a fall-through branch, emit the branch. 2222 SwitchMBB->addSuccessor(Default); 2223 if (Default != NextBlock) 2224 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2225 MVT::Other, getControlRoot(), 2226 DAG.getBasicBlock(Default))); 2227 2228 return; 2229 } 2230 2231 // If there are any non-default case statements, create a vector of Cases 2232 // representing each one, and sort the vector so that we can efficiently 2233 // create a binary search tree from them. 2234 CaseVector Cases; 2235 size_t numCmps = Clusterify(Cases, SI); 2236 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2237 << ". Total compares: " << numCmps << '\n'); 2238 numCmps = 0; 2239 2240 // Get the Value to be switched on and default basic blocks, which will be 2241 // inserted into CaseBlock records, representing basic blocks in the binary 2242 // search tree. 2243 const Value *SV = SI.getOperand(0); 2244 2245 // Push the initial CaseRec onto the worklist 2246 CaseRecVector WorkList; 2247 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2248 CaseRange(Cases.begin(),Cases.end()))); 2249 2250 while (!WorkList.empty()) { 2251 // Grab a record representing a case range to process off the worklist 2252 CaseRec CR = WorkList.back(); 2253 WorkList.pop_back(); 2254 2255 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2256 continue; 2257 2258 // If the range has few cases (two or less) emit a series of specific 2259 // tests. 2260 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2261 continue; 2262 2263 // If the switch has more than 5 blocks, and at least 40% dense, and the 2264 // target supports indirect branches, then emit a jump table rather than 2265 // lowering the switch to a binary tree of conditional branches. 2266 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2267 continue; 2268 2269 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2270 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2271 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2272 } 2273 } 2274 2275 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2276 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2277 2278 // Update machine-CFG edges with unique successors. 2279 SmallVector<BasicBlock*, 32> succs; 2280 succs.reserve(I.getNumSuccessors()); 2281 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2282 succs.push_back(I.getSuccessor(i)); 2283 array_pod_sort(succs.begin(), succs.end()); 2284 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2285 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2286 IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2287 2288 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2289 MVT::Other, getControlRoot(), 2290 getValue(I.getAddress()))); 2291 } 2292 2293 void SelectionDAGBuilder::visitFSub(const User &I) { 2294 // -0.0 - X --> fneg 2295 const Type *Ty = I.getType(); 2296 if (Ty->isVectorTy()) { 2297 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2298 const VectorType *DestTy = cast<VectorType>(I.getType()); 2299 const Type *ElTy = DestTy->getElementType(); 2300 unsigned VL = DestTy->getNumElements(); 2301 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2302 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2303 if (CV == CNZ) { 2304 SDValue Op2 = getValue(I.getOperand(1)); 2305 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2306 Op2.getValueType(), Op2)); 2307 return; 2308 } 2309 } 2310 } 2311 2312 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2313 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2314 SDValue Op2 = getValue(I.getOperand(1)); 2315 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2316 Op2.getValueType(), Op2)); 2317 return; 2318 } 2319 2320 visitBinary(I, ISD::FSUB); 2321 } 2322 2323 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2324 SDValue Op1 = getValue(I.getOperand(0)); 2325 SDValue Op2 = getValue(I.getOperand(1)); 2326 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2327 Op1.getValueType(), Op1, Op2)); 2328 } 2329 2330 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2331 SDValue Op1 = getValue(I.getOperand(0)); 2332 SDValue Op2 = getValue(I.getOperand(1)); 2333 if (!I.getType()->isVectorTy() && 2334 Op2.getValueType() != TLI.getShiftAmountTy()) { 2335 // If the operand is smaller than the shift count type, promote it. 2336 EVT PTy = TLI.getPointerTy(); 2337 EVT STy = TLI.getShiftAmountTy(); 2338 if (STy.bitsGT(Op2.getValueType())) 2339 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2340 TLI.getShiftAmountTy(), Op2); 2341 // If the operand is larger than the shift count type but the shift 2342 // count type has enough bits to represent any shift value, truncate 2343 // it now. This is a common case and it exposes the truncate to 2344 // optimization early. 2345 else if (STy.getSizeInBits() >= 2346 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2347 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2348 TLI.getShiftAmountTy(), Op2); 2349 // Otherwise we'll need to temporarily settle for some other 2350 // convenient type; type legalization will make adjustments as 2351 // needed. 2352 else if (PTy.bitsLT(Op2.getValueType())) 2353 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2354 TLI.getPointerTy(), Op2); 2355 else if (PTy.bitsGT(Op2.getValueType())) 2356 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2357 TLI.getPointerTy(), Op2); 2358 } 2359 2360 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2361 Op1.getValueType(), Op1, Op2)); 2362 } 2363 2364 void SelectionDAGBuilder::visitICmp(const User &I) { 2365 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2366 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2367 predicate = IC->getPredicate(); 2368 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2369 predicate = ICmpInst::Predicate(IC->getPredicate()); 2370 SDValue Op1 = getValue(I.getOperand(0)); 2371 SDValue Op2 = getValue(I.getOperand(1)); 2372 ISD::CondCode Opcode = getICmpCondCode(predicate); 2373 2374 EVT DestVT = TLI.getValueType(I.getType()); 2375 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2376 } 2377 2378 void SelectionDAGBuilder::visitFCmp(const User &I) { 2379 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2380 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2381 predicate = FC->getPredicate(); 2382 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2383 predicate = FCmpInst::Predicate(FC->getPredicate()); 2384 SDValue Op1 = getValue(I.getOperand(0)); 2385 SDValue Op2 = getValue(I.getOperand(1)); 2386 ISD::CondCode Condition = getFCmpCondCode(predicate); 2387 EVT DestVT = TLI.getValueType(I.getType()); 2388 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2389 } 2390 2391 void SelectionDAGBuilder::visitSelect(const User &I) { 2392 SmallVector<EVT, 4> ValueVTs; 2393 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2394 unsigned NumValues = ValueVTs.size(); 2395 if (NumValues == 0) return; 2396 2397 SmallVector<SDValue, 4> Values(NumValues); 2398 SDValue Cond = getValue(I.getOperand(0)); 2399 SDValue TrueVal = getValue(I.getOperand(1)); 2400 SDValue FalseVal = getValue(I.getOperand(2)); 2401 2402 for (unsigned i = 0; i != NumValues; ++i) 2403 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2404 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2405 Cond, 2406 SDValue(TrueVal.getNode(), 2407 TrueVal.getResNo() + i), 2408 SDValue(FalseVal.getNode(), 2409 FalseVal.getResNo() + i)); 2410 2411 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2412 DAG.getVTList(&ValueVTs[0], NumValues), 2413 &Values[0], NumValues)); 2414 } 2415 2416 void SelectionDAGBuilder::visitTrunc(const User &I) { 2417 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2418 SDValue N = getValue(I.getOperand(0)); 2419 EVT DestVT = TLI.getValueType(I.getType()); 2420 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2421 } 2422 2423 void SelectionDAGBuilder::visitZExt(const User &I) { 2424 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2425 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2426 SDValue N = getValue(I.getOperand(0)); 2427 EVT DestVT = TLI.getValueType(I.getType()); 2428 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2429 } 2430 2431 void SelectionDAGBuilder::visitSExt(const User &I) { 2432 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2433 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2434 SDValue N = getValue(I.getOperand(0)); 2435 EVT DestVT = TLI.getValueType(I.getType()); 2436 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2437 } 2438 2439 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2440 // FPTrunc is never a no-op cast, no need to check 2441 SDValue N = getValue(I.getOperand(0)); 2442 EVT DestVT = TLI.getValueType(I.getType()); 2443 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2444 DestVT, N, DAG.getIntPtrConstant(0))); 2445 } 2446 2447 void SelectionDAGBuilder::visitFPExt(const User &I){ 2448 // FPTrunc is never a no-op cast, no need to check 2449 SDValue N = getValue(I.getOperand(0)); 2450 EVT DestVT = TLI.getValueType(I.getType()); 2451 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2452 } 2453 2454 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2455 // FPToUI is never a no-op cast, no need to check 2456 SDValue N = getValue(I.getOperand(0)); 2457 EVT DestVT = TLI.getValueType(I.getType()); 2458 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2459 } 2460 2461 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2462 // FPToSI is never a no-op cast, no need to check 2463 SDValue N = getValue(I.getOperand(0)); 2464 EVT DestVT = TLI.getValueType(I.getType()); 2465 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2466 } 2467 2468 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2469 // UIToFP is never a no-op cast, no need to check 2470 SDValue N = getValue(I.getOperand(0)); 2471 EVT DestVT = TLI.getValueType(I.getType()); 2472 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2473 } 2474 2475 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2476 // SIToFP is never a no-op cast, no need to check 2477 SDValue N = getValue(I.getOperand(0)); 2478 EVT DestVT = TLI.getValueType(I.getType()); 2479 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2480 } 2481 2482 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2483 // What to do depends on the size of the integer and the size of the pointer. 2484 // We can either truncate, zero extend, or no-op, accordingly. 2485 SDValue N = getValue(I.getOperand(0)); 2486 EVT DestVT = TLI.getValueType(I.getType()); 2487 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2488 } 2489 2490 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2491 // What to do depends on the size of the integer and the size of the pointer. 2492 // We can either truncate, zero extend, or no-op, accordingly. 2493 SDValue N = getValue(I.getOperand(0)); 2494 EVT DestVT = TLI.getValueType(I.getType()); 2495 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2496 } 2497 2498 void SelectionDAGBuilder::visitBitCast(const User &I) { 2499 SDValue N = getValue(I.getOperand(0)); 2500 EVT DestVT = TLI.getValueType(I.getType()); 2501 2502 // BitCast assures us that source and destination are the same size so this is 2503 // either a BIT_CONVERT or a no-op. 2504 if (DestVT != N.getValueType()) 2505 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2506 DestVT, N)); // convert types. 2507 else 2508 setValue(&I, N); // noop cast. 2509 } 2510 2511 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2512 SDValue InVec = getValue(I.getOperand(0)); 2513 SDValue InVal = getValue(I.getOperand(1)); 2514 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2515 TLI.getPointerTy(), 2516 getValue(I.getOperand(2))); 2517 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2518 TLI.getValueType(I.getType()), 2519 InVec, InVal, InIdx)); 2520 } 2521 2522 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2523 SDValue InVec = getValue(I.getOperand(0)); 2524 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2525 TLI.getPointerTy(), 2526 getValue(I.getOperand(1))); 2527 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2528 TLI.getValueType(I.getType()), InVec, InIdx)); 2529 } 2530 2531 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2532 // from SIndx and increasing to the element length (undefs are allowed). 2533 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2534 unsigned MaskNumElts = Mask.size(); 2535 for (unsigned i = 0; i != MaskNumElts; ++i) 2536 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2537 return false; 2538 return true; 2539 } 2540 2541 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2542 SmallVector<int, 8> Mask; 2543 SDValue Src1 = getValue(I.getOperand(0)); 2544 SDValue Src2 = getValue(I.getOperand(1)); 2545 2546 // Convert the ConstantVector mask operand into an array of ints, with -1 2547 // representing undef values. 2548 SmallVector<Constant*, 8> MaskElts; 2549 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2550 unsigned MaskNumElts = MaskElts.size(); 2551 for (unsigned i = 0; i != MaskNumElts; ++i) { 2552 if (isa<UndefValue>(MaskElts[i])) 2553 Mask.push_back(-1); 2554 else 2555 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2556 } 2557 2558 EVT VT = TLI.getValueType(I.getType()); 2559 EVT SrcVT = Src1.getValueType(); 2560 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2561 2562 if (SrcNumElts == MaskNumElts) { 2563 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2564 &Mask[0])); 2565 return; 2566 } 2567 2568 // Normalize the shuffle vector since mask and vector length don't match. 2569 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2570 // Mask is longer than the source vectors and is a multiple of the source 2571 // vectors. We can use concatenate vector to make the mask and vectors 2572 // lengths match. 2573 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2574 // The shuffle is concatenating two vectors together. 2575 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2576 VT, Src1, Src2)); 2577 return; 2578 } 2579 2580 // Pad both vectors with undefs to make them the same length as the mask. 2581 unsigned NumConcat = MaskNumElts / SrcNumElts; 2582 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2583 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2584 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2585 2586 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2587 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2588 MOps1[0] = Src1; 2589 MOps2[0] = Src2; 2590 2591 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2592 getCurDebugLoc(), VT, 2593 &MOps1[0], NumConcat); 2594 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2595 getCurDebugLoc(), VT, 2596 &MOps2[0], NumConcat); 2597 2598 // Readjust mask for new input vector length. 2599 SmallVector<int, 8> MappedOps; 2600 for (unsigned i = 0; i != MaskNumElts; ++i) { 2601 int Idx = Mask[i]; 2602 if (Idx < (int)SrcNumElts) 2603 MappedOps.push_back(Idx); 2604 else 2605 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2606 } 2607 2608 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2609 &MappedOps[0])); 2610 return; 2611 } 2612 2613 if (SrcNumElts > MaskNumElts) { 2614 // Analyze the access pattern of the vector to see if we can extract 2615 // two subvectors and do the shuffle. The analysis is done by calculating 2616 // the range of elements the mask access on both vectors. 2617 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2618 int MaxRange[2] = {-1, -1}; 2619 2620 for (unsigned i = 0; i != MaskNumElts; ++i) { 2621 int Idx = Mask[i]; 2622 int Input = 0; 2623 if (Idx < 0) 2624 continue; 2625 2626 if (Idx >= (int)SrcNumElts) { 2627 Input = 1; 2628 Idx -= SrcNumElts; 2629 } 2630 if (Idx > MaxRange[Input]) 2631 MaxRange[Input] = Idx; 2632 if (Idx < MinRange[Input]) 2633 MinRange[Input] = Idx; 2634 } 2635 2636 // Check if the access is smaller than the vector size and can we find 2637 // a reasonable extract index. 2638 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2639 // Extract. 2640 int StartIdx[2]; // StartIdx to extract from 2641 for (int Input=0; Input < 2; ++Input) { 2642 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2643 RangeUse[Input] = 0; // Unused 2644 StartIdx[Input] = 0; 2645 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2646 // Fits within range but we should see if we can find a good 2647 // start index that is a multiple of the mask length. 2648 if (MaxRange[Input] < (int)MaskNumElts) { 2649 RangeUse[Input] = 1; // Extract from beginning of the vector 2650 StartIdx[Input] = 0; 2651 } else { 2652 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2653 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2654 StartIdx[Input] + MaskNumElts < SrcNumElts) 2655 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2656 } 2657 } 2658 } 2659 2660 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2661 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2662 return; 2663 } 2664 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2665 // Extract appropriate subvector and generate a vector shuffle 2666 for (int Input=0; Input < 2; ++Input) { 2667 SDValue &Src = Input == 0 ? Src1 : Src2; 2668 if (RangeUse[Input] == 0) 2669 Src = DAG.getUNDEF(VT); 2670 else 2671 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2672 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2673 } 2674 2675 // Calculate new mask. 2676 SmallVector<int, 8> MappedOps; 2677 for (unsigned i = 0; i != MaskNumElts; ++i) { 2678 int Idx = Mask[i]; 2679 if (Idx < 0) 2680 MappedOps.push_back(Idx); 2681 else if (Idx < (int)SrcNumElts) 2682 MappedOps.push_back(Idx - StartIdx[0]); 2683 else 2684 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2685 } 2686 2687 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2688 &MappedOps[0])); 2689 return; 2690 } 2691 } 2692 2693 // We can't use either concat vectors or extract subvectors so fall back to 2694 // replacing the shuffle with extract and build vector. 2695 // to insert and build vector. 2696 EVT EltVT = VT.getVectorElementType(); 2697 EVT PtrVT = TLI.getPointerTy(); 2698 SmallVector<SDValue,8> Ops; 2699 for (unsigned i = 0; i != MaskNumElts; ++i) { 2700 if (Mask[i] < 0) { 2701 Ops.push_back(DAG.getUNDEF(EltVT)); 2702 } else { 2703 int Idx = Mask[i]; 2704 SDValue Res; 2705 2706 if (Idx < (int)SrcNumElts) 2707 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2708 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2709 else 2710 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2711 EltVT, Src2, 2712 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2713 2714 Ops.push_back(Res); 2715 } 2716 } 2717 2718 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2719 VT, &Ops[0], Ops.size())); 2720 } 2721 2722 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2723 const Value *Op0 = I.getOperand(0); 2724 const Value *Op1 = I.getOperand(1); 2725 const Type *AggTy = I.getType(); 2726 const Type *ValTy = Op1->getType(); 2727 bool IntoUndef = isa<UndefValue>(Op0); 2728 bool FromUndef = isa<UndefValue>(Op1); 2729 2730 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2731 I.idx_begin(), I.idx_end()); 2732 2733 SmallVector<EVT, 4> AggValueVTs; 2734 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2735 SmallVector<EVT, 4> ValValueVTs; 2736 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2737 2738 unsigned NumAggValues = AggValueVTs.size(); 2739 unsigned NumValValues = ValValueVTs.size(); 2740 SmallVector<SDValue, 4> Values(NumAggValues); 2741 2742 SDValue Agg = getValue(Op0); 2743 SDValue Val = getValue(Op1); 2744 unsigned i = 0; 2745 // Copy the beginning value(s) from the original aggregate. 2746 for (; i != LinearIndex; ++i) 2747 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2748 SDValue(Agg.getNode(), Agg.getResNo() + i); 2749 // Copy values from the inserted value(s). 2750 for (; i != LinearIndex + NumValValues; ++i) 2751 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2752 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2753 // Copy remaining value(s) from the original aggregate. 2754 for (; i != NumAggValues; ++i) 2755 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2756 SDValue(Agg.getNode(), Agg.getResNo() + i); 2757 2758 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2759 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2760 &Values[0], NumAggValues)); 2761 } 2762 2763 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2764 const Value *Op0 = I.getOperand(0); 2765 const Type *AggTy = Op0->getType(); 2766 const Type *ValTy = I.getType(); 2767 bool OutOfUndef = isa<UndefValue>(Op0); 2768 2769 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2770 I.idx_begin(), I.idx_end()); 2771 2772 SmallVector<EVT, 4> ValValueVTs; 2773 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2774 2775 unsigned NumValValues = ValValueVTs.size(); 2776 SmallVector<SDValue, 4> Values(NumValValues); 2777 2778 SDValue Agg = getValue(Op0); 2779 // Copy out the selected value(s). 2780 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2781 Values[i - LinearIndex] = 2782 OutOfUndef ? 2783 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2784 SDValue(Agg.getNode(), Agg.getResNo() + i); 2785 2786 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2787 DAG.getVTList(&ValValueVTs[0], NumValValues), 2788 &Values[0], NumValValues)); 2789 } 2790 2791 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2792 SDValue N = getValue(I.getOperand(0)); 2793 const Type *Ty = I.getOperand(0)->getType(); 2794 2795 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2796 OI != E; ++OI) { 2797 const Value *Idx = *OI; 2798 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2799 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2800 if (Field) { 2801 // N = N + Offset 2802 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2803 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2804 DAG.getIntPtrConstant(Offset)); 2805 } 2806 2807 Ty = StTy->getElementType(Field); 2808 } else { 2809 Ty = cast<SequentialType>(Ty)->getElementType(); 2810 2811 // If this is a constant subscript, handle it quickly. 2812 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2813 if (CI->isZero()) continue; 2814 uint64_t Offs = 2815 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2816 SDValue OffsVal; 2817 EVT PTy = TLI.getPointerTy(); 2818 unsigned PtrBits = PTy.getSizeInBits(); 2819 if (PtrBits < 64) 2820 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2821 TLI.getPointerTy(), 2822 DAG.getConstant(Offs, MVT::i64)); 2823 else 2824 OffsVal = DAG.getIntPtrConstant(Offs); 2825 2826 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2827 OffsVal); 2828 continue; 2829 } 2830 2831 // N = N + Idx * ElementSize; 2832 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2833 TD->getTypeAllocSize(Ty)); 2834 SDValue IdxN = getValue(Idx); 2835 2836 // If the index is smaller or larger than intptr_t, truncate or extend 2837 // it. 2838 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2839 2840 // If this is a multiply by a power of two, turn it into a shl 2841 // immediately. This is a very common case. 2842 if (ElementSize != 1) { 2843 if (ElementSize.isPowerOf2()) { 2844 unsigned Amt = ElementSize.logBase2(); 2845 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2846 N.getValueType(), IdxN, 2847 DAG.getConstant(Amt, TLI.getPointerTy())); 2848 } else { 2849 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2850 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2851 N.getValueType(), IdxN, Scale); 2852 } 2853 } 2854 2855 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2856 N.getValueType(), N, IdxN); 2857 } 2858 } 2859 2860 setValue(&I, N); 2861 } 2862 2863 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2864 // If this is a fixed sized alloca in the entry block of the function, 2865 // allocate it statically on the stack. 2866 if (FuncInfo.StaticAllocaMap.count(&I)) 2867 return; // getValue will auto-populate this. 2868 2869 const Type *Ty = I.getAllocatedType(); 2870 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2871 unsigned Align = 2872 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2873 I.getAlignment()); 2874 2875 SDValue AllocSize = getValue(I.getArraySize()); 2876 2877 EVT IntPtr = TLI.getPointerTy(); 2878 if (AllocSize.getValueType() != IntPtr) 2879 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2880 2881 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 2882 AllocSize, 2883 DAG.getConstant(TySize, IntPtr)); 2884 2885 // Handle alignment. If the requested alignment is less than or equal to 2886 // the stack alignment, ignore it. If the size is greater than or equal to 2887 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2888 unsigned StackAlign = TM.getFrameInfo()->getStackAlignment(); 2889 if (Align <= StackAlign) 2890 Align = 0; 2891 2892 // Round the size of the allocation up to the stack alignment size 2893 // by add SA-1 to the size. 2894 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2895 AllocSize.getValueType(), AllocSize, 2896 DAG.getIntPtrConstant(StackAlign-1)); 2897 2898 // Mask out the low bits for alignment purposes. 2899 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2900 AllocSize.getValueType(), AllocSize, 2901 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2902 2903 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2904 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2905 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2906 VTs, Ops, 3); 2907 setValue(&I, DSA); 2908 DAG.setRoot(DSA.getValue(1)); 2909 2910 // Inform the Frame Information that we have just allocated a variable-sized 2911 // object. 2912 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 2913 } 2914 2915 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2916 const Value *SV = I.getOperand(0); 2917 SDValue Ptr = getValue(SV); 2918 2919 const Type *Ty = I.getType(); 2920 2921 bool isVolatile = I.isVolatile(); 2922 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2923 unsigned Alignment = I.getAlignment(); 2924 2925 SmallVector<EVT, 4> ValueVTs; 2926 SmallVector<uint64_t, 4> Offsets; 2927 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2928 unsigned NumValues = ValueVTs.size(); 2929 if (NumValues == 0) 2930 return; 2931 2932 SDValue Root; 2933 bool ConstantMemory = false; 2934 if (I.isVolatile()) 2935 // Serialize volatile loads with other side effects. 2936 Root = getRoot(); 2937 else if (AA->pointsToConstantMemory(SV)) { 2938 // Do not serialize (non-volatile) loads of constant memory with anything. 2939 Root = DAG.getEntryNode(); 2940 ConstantMemory = true; 2941 } else { 2942 // Do not serialize non-volatile loads against each other. 2943 Root = DAG.getRoot(); 2944 } 2945 2946 SmallVector<SDValue, 4> Values(NumValues); 2947 SmallVector<SDValue, 4> Chains(NumValues); 2948 EVT PtrVT = Ptr.getValueType(); 2949 for (unsigned i = 0; i != NumValues; ++i) { 2950 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2951 PtrVT, Ptr, 2952 DAG.getConstant(Offsets[i], PtrVT)); 2953 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 2954 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2955 isNonTemporal, Alignment); 2956 2957 Values[i] = L; 2958 Chains[i] = L.getValue(1); 2959 } 2960 2961 if (!ConstantMemory) { 2962 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2963 MVT::Other, &Chains[0], NumValues); 2964 if (isVolatile) 2965 DAG.setRoot(Chain); 2966 else 2967 PendingLoads.push_back(Chain); 2968 } 2969 2970 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2971 DAG.getVTList(&ValueVTs[0], NumValues), 2972 &Values[0], NumValues)); 2973 } 2974 2975 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2976 const Value *SrcV = I.getOperand(0); 2977 const Value *PtrV = I.getOperand(1); 2978 2979 SmallVector<EVT, 4> ValueVTs; 2980 SmallVector<uint64_t, 4> Offsets; 2981 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2982 unsigned NumValues = ValueVTs.size(); 2983 if (NumValues == 0) 2984 return; 2985 2986 // Get the lowered operands. Note that we do this after 2987 // checking if NumResults is zero, because with zero results 2988 // the operands won't have values in the map. 2989 SDValue Src = getValue(SrcV); 2990 SDValue Ptr = getValue(PtrV); 2991 2992 SDValue Root = getRoot(); 2993 SmallVector<SDValue, 4> Chains(NumValues); 2994 EVT PtrVT = Ptr.getValueType(); 2995 bool isVolatile = I.isVolatile(); 2996 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2997 unsigned Alignment = I.getAlignment(); 2998 2999 for (unsigned i = 0; i != NumValues; ++i) { 3000 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3001 DAG.getConstant(Offsets[i], PtrVT)); 3002 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 3003 SDValue(Src.getNode(), Src.getResNo() + i), 3004 Add, MachinePointerInfo(PtrV, Offsets[i]), 3005 isVolatile, isNonTemporal, Alignment); 3006 } 3007 3008 DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3009 MVT::Other, &Chains[0], NumValues)); 3010 } 3011 3012 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3013 /// node. 3014 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3015 unsigned Intrinsic) { 3016 bool HasChain = !I.doesNotAccessMemory(); 3017 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3018 3019 // Build the operand list. 3020 SmallVector<SDValue, 8> Ops; 3021 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3022 if (OnlyLoad) { 3023 // We don't need to serialize loads against other loads. 3024 Ops.push_back(DAG.getRoot()); 3025 } else { 3026 Ops.push_back(getRoot()); 3027 } 3028 } 3029 3030 // Info is set by getTgtMemInstrinsic 3031 TargetLowering::IntrinsicInfo Info; 3032 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3033 3034 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3035 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3036 Info.opc == ISD::INTRINSIC_W_CHAIN) 3037 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3038 3039 // Add all operands of the call to the operand list. 3040 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3041 SDValue Op = getValue(I.getArgOperand(i)); 3042 assert(TLI.isTypeLegal(Op.getValueType()) && 3043 "Intrinsic uses a non-legal type?"); 3044 Ops.push_back(Op); 3045 } 3046 3047 SmallVector<EVT, 4> ValueVTs; 3048 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3049 #ifndef NDEBUG 3050 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3051 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3052 "Intrinsic uses a non-legal type?"); 3053 } 3054 #endif // NDEBUG 3055 3056 if (HasChain) 3057 ValueVTs.push_back(MVT::Other); 3058 3059 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3060 3061 // Create the node. 3062 SDValue Result; 3063 if (IsTgtIntrinsic) { 3064 // This is target intrinsic that touches memory 3065 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3066 VTs, &Ops[0], Ops.size(), 3067 Info.memVT, 3068 MachinePointerInfo(Info.ptrVal, Info.offset), 3069 Info.align, Info.vol, 3070 Info.readMem, Info.writeMem); 3071 } else if (!HasChain) { 3072 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3073 VTs, &Ops[0], Ops.size()); 3074 } else if (!I.getType()->isVoidTy()) { 3075 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3076 VTs, &Ops[0], Ops.size()); 3077 } else { 3078 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3079 VTs, &Ops[0], Ops.size()); 3080 } 3081 3082 if (HasChain) { 3083 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3084 if (OnlyLoad) 3085 PendingLoads.push_back(Chain); 3086 else 3087 DAG.setRoot(Chain); 3088 } 3089 3090 if (!I.getType()->isVoidTy()) { 3091 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3092 EVT VT = TLI.getValueType(PTy); 3093 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 3094 } 3095 3096 setValue(&I, Result); 3097 } 3098 } 3099 3100 /// GetSignificand - Get the significand and build it into a floating-point 3101 /// number with exponent of 1: 3102 /// 3103 /// Op = (Op & 0x007fffff) | 0x3f800000; 3104 /// 3105 /// where Op is the hexidecimal representation of floating point value. 3106 static SDValue 3107 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3108 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3109 DAG.getConstant(0x007fffff, MVT::i32)); 3110 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3111 DAG.getConstant(0x3f800000, MVT::i32)); 3112 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 3113 } 3114 3115 /// GetExponent - Get the exponent: 3116 /// 3117 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3118 /// 3119 /// where Op is the hexidecimal representation of floating point value. 3120 static SDValue 3121 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3122 DebugLoc dl) { 3123 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3124 DAG.getConstant(0x7f800000, MVT::i32)); 3125 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3126 DAG.getConstant(23, TLI.getPointerTy())); 3127 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3128 DAG.getConstant(127, MVT::i32)); 3129 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3130 } 3131 3132 /// getF32Constant - Get 32-bit floating point constant. 3133 static SDValue 3134 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3135 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3136 } 3137 3138 /// Inlined utility function to implement binary input atomic intrinsics for 3139 /// visitIntrinsicCall: I is a call instruction 3140 /// Op is the associated NodeType for I 3141 const char * 3142 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 3143 ISD::NodeType Op) { 3144 SDValue Root = getRoot(); 3145 SDValue L = 3146 DAG.getAtomic(Op, getCurDebugLoc(), 3147 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 3148 Root, 3149 getValue(I.getArgOperand(0)), 3150 getValue(I.getArgOperand(1)), 3151 I.getArgOperand(0)); 3152 setValue(&I, L); 3153 DAG.setRoot(L.getValue(1)); 3154 return 0; 3155 } 3156 3157 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3158 const char * 3159 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3160 SDValue Op1 = getValue(I.getArgOperand(0)); 3161 SDValue Op2 = getValue(I.getArgOperand(1)); 3162 3163 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3164 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3165 return 0; 3166 } 3167 3168 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3169 /// limited-precision mode. 3170 void 3171 SelectionDAGBuilder::visitExp(const CallInst &I) { 3172 SDValue result; 3173 DebugLoc dl = getCurDebugLoc(); 3174 3175 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3176 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3177 SDValue Op = getValue(I.getArgOperand(0)); 3178 3179 // Put the exponent in the right bit position for later addition to the 3180 // final result: 3181 // 3182 // #define LOG2OFe 1.4426950f 3183 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3184 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3185 getF32Constant(DAG, 0x3fb8aa3b)); 3186 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3187 3188 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3189 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3190 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3191 3192 // IntegerPartOfX <<= 23; 3193 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3194 DAG.getConstant(23, TLI.getPointerTy())); 3195 3196 if (LimitFloatPrecision <= 6) { 3197 // For floating-point precision of 6: 3198 // 3199 // TwoToFractionalPartOfX = 3200 // 0.997535578f + 3201 // (0.735607626f + 0.252464424f * x) * x; 3202 // 3203 // error 0.0144103317, which is 6 bits 3204 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3205 getF32Constant(DAG, 0x3e814304)); 3206 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3207 getF32Constant(DAG, 0x3f3c50c8)); 3208 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3209 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3210 getF32Constant(DAG, 0x3f7f5e7e)); 3211 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 3212 3213 // Add the exponent into the result in integer domain. 3214 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3215 TwoToFracPartOfX, IntegerPartOfX); 3216 3217 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 3218 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3219 // For floating-point precision of 12: 3220 // 3221 // TwoToFractionalPartOfX = 3222 // 0.999892986f + 3223 // (0.696457318f + 3224 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3225 // 3226 // 0.000107046256 error, which is 13 to 14 bits 3227 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3228 getF32Constant(DAG, 0x3da235e3)); 3229 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3230 getF32Constant(DAG, 0x3e65b8f3)); 3231 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3232 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3233 getF32Constant(DAG, 0x3f324b07)); 3234 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3235 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3236 getF32Constant(DAG, 0x3f7ff8fd)); 3237 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 3238 3239 // Add the exponent into the result in integer domain. 3240 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3241 TwoToFracPartOfX, IntegerPartOfX); 3242 3243 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 3244 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3245 // For floating-point precision of 18: 3246 // 3247 // TwoToFractionalPartOfX = 3248 // 0.999999982f + 3249 // (0.693148872f + 3250 // (0.240227044f + 3251 // (0.554906021e-1f + 3252 // (0.961591928e-2f + 3253 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3254 // 3255 // error 2.47208000*10^(-7), which is better than 18 bits 3256 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3257 getF32Constant(DAG, 0x3924b03e)); 3258 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3259 getF32Constant(DAG, 0x3ab24b87)); 3260 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3261 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3262 getF32Constant(DAG, 0x3c1d8c17)); 3263 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3264 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3265 getF32Constant(DAG, 0x3d634a1d)); 3266 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3267 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3268 getF32Constant(DAG, 0x3e75fe14)); 3269 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3270 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3271 getF32Constant(DAG, 0x3f317234)); 3272 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3273 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3274 getF32Constant(DAG, 0x3f800000)); 3275 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 3276 MVT::i32, t13); 3277 3278 // Add the exponent into the result in integer domain. 3279 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3280 TwoToFracPartOfX, IntegerPartOfX); 3281 3282 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 3283 } 3284 } else { 3285 // No special expansion. 3286 result = DAG.getNode(ISD::FEXP, dl, 3287 getValue(I.getArgOperand(0)).getValueType(), 3288 getValue(I.getArgOperand(0))); 3289 } 3290 3291 setValue(&I, result); 3292 } 3293 3294 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3295 /// limited-precision mode. 3296 void 3297 SelectionDAGBuilder::visitLog(const CallInst &I) { 3298 SDValue result; 3299 DebugLoc dl = getCurDebugLoc(); 3300 3301 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3302 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3303 SDValue Op = getValue(I.getArgOperand(0)); 3304 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3305 3306 // Scale the exponent by log(2) [0.69314718f]. 3307 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3308 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3309 getF32Constant(DAG, 0x3f317218)); 3310 3311 // Get the significand and build it into a floating-point number with 3312 // exponent of 1. 3313 SDValue X = GetSignificand(DAG, Op1, dl); 3314 3315 if (LimitFloatPrecision <= 6) { 3316 // For floating-point precision of 6: 3317 // 3318 // LogofMantissa = 3319 // -1.1609546f + 3320 // (1.4034025f - 0.23903021f * x) * x; 3321 // 3322 // error 0.0034276066, which is better than 8 bits 3323 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3324 getF32Constant(DAG, 0xbe74c456)); 3325 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3326 getF32Constant(DAG, 0x3fb3a2b1)); 3327 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3328 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3329 getF32Constant(DAG, 0x3f949a29)); 3330 3331 result = DAG.getNode(ISD::FADD, dl, 3332 MVT::f32, LogOfExponent, LogOfMantissa); 3333 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3334 // For floating-point precision of 12: 3335 // 3336 // LogOfMantissa = 3337 // -1.7417939f + 3338 // (2.8212026f + 3339 // (-1.4699568f + 3340 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3341 // 3342 // error 0.000061011436, which is 14 bits 3343 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3344 getF32Constant(DAG, 0xbd67b6d6)); 3345 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3346 getF32Constant(DAG, 0x3ee4f4b8)); 3347 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3348 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3349 getF32Constant(DAG, 0x3fbc278b)); 3350 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3351 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3352 getF32Constant(DAG, 0x40348e95)); 3353 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3354 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3355 getF32Constant(DAG, 0x3fdef31a)); 3356 3357 result = DAG.getNode(ISD::FADD, dl, 3358 MVT::f32, LogOfExponent, LogOfMantissa); 3359 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3360 // For floating-point precision of 18: 3361 // 3362 // LogOfMantissa = 3363 // -2.1072184f + 3364 // (4.2372794f + 3365 // (-3.7029485f + 3366 // (2.2781945f + 3367 // (-0.87823314f + 3368 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3369 // 3370 // error 0.0000023660568, which is better than 18 bits 3371 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3372 getF32Constant(DAG, 0xbc91e5ac)); 3373 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3374 getF32Constant(DAG, 0x3e4350aa)); 3375 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3376 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3377 getF32Constant(DAG, 0x3f60d3e3)); 3378 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3379 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3380 getF32Constant(DAG, 0x4011cdf0)); 3381 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3382 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3383 getF32Constant(DAG, 0x406cfd1c)); 3384 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3385 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3386 getF32Constant(DAG, 0x408797cb)); 3387 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3388 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3389 getF32Constant(DAG, 0x4006dcab)); 3390 3391 result = DAG.getNode(ISD::FADD, dl, 3392 MVT::f32, LogOfExponent, LogOfMantissa); 3393 } 3394 } else { 3395 // No special expansion. 3396 result = DAG.getNode(ISD::FLOG, dl, 3397 getValue(I.getArgOperand(0)).getValueType(), 3398 getValue(I.getArgOperand(0))); 3399 } 3400 3401 setValue(&I, result); 3402 } 3403 3404 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3405 /// limited-precision mode. 3406 void 3407 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3408 SDValue result; 3409 DebugLoc dl = getCurDebugLoc(); 3410 3411 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3412 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3413 SDValue Op = getValue(I.getArgOperand(0)); 3414 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3415 3416 // Get the exponent. 3417 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3418 3419 // Get the significand and build it into a floating-point number with 3420 // exponent of 1. 3421 SDValue X = GetSignificand(DAG, Op1, dl); 3422 3423 // Different possible minimax approximations of significand in 3424 // floating-point for various degrees of accuracy over [1,2]. 3425 if (LimitFloatPrecision <= 6) { 3426 // For floating-point precision of 6: 3427 // 3428 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3429 // 3430 // error 0.0049451742, which is more than 7 bits 3431 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3432 getF32Constant(DAG, 0xbeb08fe0)); 3433 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3434 getF32Constant(DAG, 0x40019463)); 3435 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3436 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3437 getF32Constant(DAG, 0x3fd6633d)); 3438 3439 result = DAG.getNode(ISD::FADD, dl, 3440 MVT::f32, LogOfExponent, Log2ofMantissa); 3441 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3442 // For floating-point precision of 12: 3443 // 3444 // Log2ofMantissa = 3445 // -2.51285454f + 3446 // (4.07009056f + 3447 // (-2.12067489f + 3448 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3449 // 3450 // error 0.0000876136000, which is better than 13 bits 3451 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3452 getF32Constant(DAG, 0xbda7262e)); 3453 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3454 getF32Constant(DAG, 0x3f25280b)); 3455 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3456 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3457 getF32Constant(DAG, 0x4007b923)); 3458 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3459 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3460 getF32Constant(DAG, 0x40823e2f)); 3461 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3462 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3463 getF32Constant(DAG, 0x4020d29c)); 3464 3465 result = DAG.getNode(ISD::FADD, dl, 3466 MVT::f32, LogOfExponent, Log2ofMantissa); 3467 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3468 // For floating-point precision of 18: 3469 // 3470 // Log2ofMantissa = 3471 // -3.0400495f + 3472 // (6.1129976f + 3473 // (-5.3420409f + 3474 // (3.2865683f + 3475 // (-1.2669343f + 3476 // (0.27515199f - 3477 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3478 // 3479 // error 0.0000018516, which is better than 18 bits 3480 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3481 getF32Constant(DAG, 0xbcd2769e)); 3482 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3483 getF32Constant(DAG, 0x3e8ce0b9)); 3484 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3485 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3486 getF32Constant(DAG, 0x3fa22ae7)); 3487 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3488 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3489 getF32Constant(DAG, 0x40525723)); 3490 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3491 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3492 getF32Constant(DAG, 0x40aaf200)); 3493 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3494 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3495 getF32Constant(DAG, 0x40c39dad)); 3496 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3497 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3498 getF32Constant(DAG, 0x4042902c)); 3499 3500 result = DAG.getNode(ISD::FADD, dl, 3501 MVT::f32, LogOfExponent, Log2ofMantissa); 3502 } 3503 } else { 3504 // No special expansion. 3505 result = DAG.getNode(ISD::FLOG2, dl, 3506 getValue(I.getArgOperand(0)).getValueType(), 3507 getValue(I.getArgOperand(0))); 3508 } 3509 3510 setValue(&I, result); 3511 } 3512 3513 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3514 /// limited-precision mode. 3515 void 3516 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3517 SDValue result; 3518 DebugLoc dl = getCurDebugLoc(); 3519 3520 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3521 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3522 SDValue Op = getValue(I.getArgOperand(0)); 3523 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3524 3525 // Scale the exponent by log10(2) [0.30102999f]. 3526 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3527 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3528 getF32Constant(DAG, 0x3e9a209a)); 3529 3530 // Get the significand and build it into a floating-point number with 3531 // exponent of 1. 3532 SDValue X = GetSignificand(DAG, Op1, dl); 3533 3534 if (LimitFloatPrecision <= 6) { 3535 // For floating-point precision of 6: 3536 // 3537 // Log10ofMantissa = 3538 // -0.50419619f + 3539 // (0.60948995f - 0.10380950f * x) * x; 3540 // 3541 // error 0.0014886165, which is 6 bits 3542 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3543 getF32Constant(DAG, 0xbdd49a13)); 3544 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3545 getF32Constant(DAG, 0x3f1c0789)); 3546 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3547 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3548 getF32Constant(DAG, 0x3f011300)); 3549 3550 result = DAG.getNode(ISD::FADD, dl, 3551 MVT::f32, LogOfExponent, Log10ofMantissa); 3552 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3553 // For floating-point precision of 12: 3554 // 3555 // Log10ofMantissa = 3556 // -0.64831180f + 3557 // (0.91751397f + 3558 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3559 // 3560 // error 0.00019228036, which is better than 12 bits 3561 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3562 getF32Constant(DAG, 0x3d431f31)); 3563 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3564 getF32Constant(DAG, 0x3ea21fb2)); 3565 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3566 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3567 getF32Constant(DAG, 0x3f6ae232)); 3568 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3569 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3570 getF32Constant(DAG, 0x3f25f7c3)); 3571 3572 result = DAG.getNode(ISD::FADD, dl, 3573 MVT::f32, LogOfExponent, Log10ofMantissa); 3574 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3575 // For floating-point precision of 18: 3576 // 3577 // Log10ofMantissa = 3578 // -0.84299375f + 3579 // (1.5327582f + 3580 // (-1.0688956f + 3581 // (0.49102474f + 3582 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3583 // 3584 // error 0.0000037995730, which is better than 18 bits 3585 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3586 getF32Constant(DAG, 0x3c5d51ce)); 3587 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3588 getF32Constant(DAG, 0x3e00685a)); 3589 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3590 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3591 getF32Constant(DAG, 0x3efb6798)); 3592 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3593 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3594 getF32Constant(DAG, 0x3f88d192)); 3595 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3596 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3597 getF32Constant(DAG, 0x3fc4316c)); 3598 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3599 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3600 getF32Constant(DAG, 0x3f57ce70)); 3601 3602 result = DAG.getNode(ISD::FADD, dl, 3603 MVT::f32, LogOfExponent, Log10ofMantissa); 3604 } 3605 } else { 3606 // No special expansion. 3607 result = DAG.getNode(ISD::FLOG10, dl, 3608 getValue(I.getArgOperand(0)).getValueType(), 3609 getValue(I.getArgOperand(0))); 3610 } 3611 3612 setValue(&I, result); 3613 } 3614 3615 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3616 /// limited-precision mode. 3617 void 3618 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3619 SDValue result; 3620 DebugLoc dl = getCurDebugLoc(); 3621 3622 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3623 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3624 SDValue Op = getValue(I.getArgOperand(0)); 3625 3626 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3627 3628 // FractionalPartOfX = x - (float)IntegerPartOfX; 3629 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3630 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3631 3632 // IntegerPartOfX <<= 23; 3633 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3634 DAG.getConstant(23, TLI.getPointerTy())); 3635 3636 if (LimitFloatPrecision <= 6) { 3637 // For floating-point precision of 6: 3638 // 3639 // TwoToFractionalPartOfX = 3640 // 0.997535578f + 3641 // (0.735607626f + 0.252464424f * x) * x; 3642 // 3643 // error 0.0144103317, which is 6 bits 3644 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3645 getF32Constant(DAG, 0x3e814304)); 3646 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3647 getF32Constant(DAG, 0x3f3c50c8)); 3648 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3649 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3650 getF32Constant(DAG, 0x3f7f5e7e)); 3651 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3652 SDValue TwoToFractionalPartOfX = 3653 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3654 3655 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3656 MVT::f32, TwoToFractionalPartOfX); 3657 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3658 // For floating-point precision of 12: 3659 // 3660 // TwoToFractionalPartOfX = 3661 // 0.999892986f + 3662 // (0.696457318f + 3663 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3664 // 3665 // error 0.000107046256, which is 13 to 14 bits 3666 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3667 getF32Constant(DAG, 0x3da235e3)); 3668 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3669 getF32Constant(DAG, 0x3e65b8f3)); 3670 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3671 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3672 getF32Constant(DAG, 0x3f324b07)); 3673 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3674 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3675 getF32Constant(DAG, 0x3f7ff8fd)); 3676 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3677 SDValue TwoToFractionalPartOfX = 3678 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3679 3680 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3681 MVT::f32, TwoToFractionalPartOfX); 3682 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3683 // For floating-point precision of 18: 3684 // 3685 // TwoToFractionalPartOfX = 3686 // 0.999999982f + 3687 // (0.693148872f + 3688 // (0.240227044f + 3689 // (0.554906021e-1f + 3690 // (0.961591928e-2f + 3691 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3692 // error 2.47208000*10^(-7), which is better than 18 bits 3693 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3694 getF32Constant(DAG, 0x3924b03e)); 3695 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3696 getF32Constant(DAG, 0x3ab24b87)); 3697 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3698 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3699 getF32Constant(DAG, 0x3c1d8c17)); 3700 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3701 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3702 getF32Constant(DAG, 0x3d634a1d)); 3703 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3704 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3705 getF32Constant(DAG, 0x3e75fe14)); 3706 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3707 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3708 getF32Constant(DAG, 0x3f317234)); 3709 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3710 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3711 getF32Constant(DAG, 0x3f800000)); 3712 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3713 SDValue TwoToFractionalPartOfX = 3714 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3715 3716 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3717 MVT::f32, TwoToFractionalPartOfX); 3718 } 3719 } else { 3720 // No special expansion. 3721 result = DAG.getNode(ISD::FEXP2, dl, 3722 getValue(I.getArgOperand(0)).getValueType(), 3723 getValue(I.getArgOperand(0))); 3724 } 3725 3726 setValue(&I, result); 3727 } 3728 3729 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3730 /// limited-precision mode with x == 10.0f. 3731 void 3732 SelectionDAGBuilder::visitPow(const CallInst &I) { 3733 SDValue result; 3734 const Value *Val = I.getArgOperand(0); 3735 DebugLoc dl = getCurDebugLoc(); 3736 bool IsExp10 = false; 3737 3738 if (getValue(Val).getValueType() == MVT::f32 && 3739 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 3740 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3741 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3742 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3743 APFloat Ten(10.0f); 3744 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3745 } 3746 } 3747 } 3748 3749 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3750 SDValue Op = getValue(I.getArgOperand(1)); 3751 3752 // Put the exponent in the right bit position for later addition to the 3753 // final result: 3754 // 3755 // #define LOG2OF10 3.3219281f 3756 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3757 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3758 getF32Constant(DAG, 0x40549a78)); 3759 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3760 3761 // FractionalPartOfX = x - (float)IntegerPartOfX; 3762 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3763 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3764 3765 // IntegerPartOfX <<= 23; 3766 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3767 DAG.getConstant(23, TLI.getPointerTy())); 3768 3769 if (LimitFloatPrecision <= 6) { 3770 // For floating-point precision of 6: 3771 // 3772 // twoToFractionalPartOfX = 3773 // 0.997535578f + 3774 // (0.735607626f + 0.252464424f * x) * x; 3775 // 3776 // error 0.0144103317, which is 6 bits 3777 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3778 getF32Constant(DAG, 0x3e814304)); 3779 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3780 getF32Constant(DAG, 0x3f3c50c8)); 3781 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3782 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3783 getF32Constant(DAG, 0x3f7f5e7e)); 3784 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3785 SDValue TwoToFractionalPartOfX = 3786 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3787 3788 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3789 MVT::f32, TwoToFractionalPartOfX); 3790 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3791 // For floating-point precision of 12: 3792 // 3793 // TwoToFractionalPartOfX = 3794 // 0.999892986f + 3795 // (0.696457318f + 3796 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3797 // 3798 // error 0.000107046256, which is 13 to 14 bits 3799 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3800 getF32Constant(DAG, 0x3da235e3)); 3801 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3802 getF32Constant(DAG, 0x3e65b8f3)); 3803 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3804 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3805 getF32Constant(DAG, 0x3f324b07)); 3806 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3807 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3808 getF32Constant(DAG, 0x3f7ff8fd)); 3809 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3810 SDValue TwoToFractionalPartOfX = 3811 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3812 3813 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3814 MVT::f32, TwoToFractionalPartOfX); 3815 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3816 // For floating-point precision of 18: 3817 // 3818 // TwoToFractionalPartOfX = 3819 // 0.999999982f + 3820 // (0.693148872f + 3821 // (0.240227044f + 3822 // (0.554906021e-1f + 3823 // (0.961591928e-2f + 3824 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3825 // error 2.47208000*10^(-7), which is better than 18 bits 3826 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3827 getF32Constant(DAG, 0x3924b03e)); 3828 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3829 getF32Constant(DAG, 0x3ab24b87)); 3830 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3831 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3832 getF32Constant(DAG, 0x3c1d8c17)); 3833 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3834 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3835 getF32Constant(DAG, 0x3d634a1d)); 3836 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3837 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3838 getF32Constant(DAG, 0x3e75fe14)); 3839 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3840 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3841 getF32Constant(DAG, 0x3f317234)); 3842 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3843 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3844 getF32Constant(DAG, 0x3f800000)); 3845 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3846 SDValue TwoToFractionalPartOfX = 3847 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3848 3849 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3850 MVT::f32, TwoToFractionalPartOfX); 3851 } 3852 } else { 3853 // No special expansion. 3854 result = DAG.getNode(ISD::FPOW, dl, 3855 getValue(I.getArgOperand(0)).getValueType(), 3856 getValue(I.getArgOperand(0)), 3857 getValue(I.getArgOperand(1))); 3858 } 3859 3860 setValue(&I, result); 3861 } 3862 3863 3864 /// ExpandPowI - Expand a llvm.powi intrinsic. 3865 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3866 SelectionDAG &DAG) { 3867 // If RHS is a constant, we can expand this out to a multiplication tree, 3868 // otherwise we end up lowering to a call to __powidf2 (for example). When 3869 // optimizing for size, we only want to do this if the expansion would produce 3870 // a small number of multiplies, otherwise we do the full expansion. 3871 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3872 // Get the exponent as a positive value. 3873 unsigned Val = RHSC->getSExtValue(); 3874 if ((int)Val < 0) Val = -Val; 3875 3876 // powi(x, 0) -> 1.0 3877 if (Val == 0) 3878 return DAG.getConstantFP(1.0, LHS.getValueType()); 3879 3880 const Function *F = DAG.getMachineFunction().getFunction(); 3881 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3882 // If optimizing for size, don't insert too many multiplies. This 3883 // inserts up to 5 multiplies. 3884 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3885 // We use the simple binary decomposition method to generate the multiply 3886 // sequence. There are more optimal ways to do this (for example, 3887 // powi(x,15) generates one more multiply than it should), but this has 3888 // the benefit of being both really simple and much better than a libcall. 3889 SDValue Res; // Logically starts equal to 1.0 3890 SDValue CurSquare = LHS; 3891 while (Val) { 3892 if (Val & 1) { 3893 if (Res.getNode()) 3894 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3895 else 3896 Res = CurSquare; // 1.0*CurSquare. 3897 } 3898 3899 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3900 CurSquare, CurSquare); 3901 Val >>= 1; 3902 } 3903 3904 // If the original was negative, invert the result, producing 1/(x*x*x). 3905 if (RHSC->getSExtValue() < 0) 3906 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3907 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 3908 return Res; 3909 } 3910 } 3911 3912 // Otherwise, expand to a libcall. 3913 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3914 } 3915 3916 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3917 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3918 /// At the end of instruction selection, they will be inserted to the entry BB. 3919 bool 3920 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 3921 int64_t Offset, 3922 const SDValue &N) { 3923 const Argument *Arg = dyn_cast<Argument>(V); 3924 if (!Arg) 3925 return false; 3926 3927 MachineFunction &MF = DAG.getMachineFunction(); 3928 // Ignore inlined function arguments here. 3929 DIVariable DV(Variable); 3930 if (DV.isInlinedFnArgument(MF.getFunction())) 3931 return false; 3932 3933 MachineBasicBlock *MBB = FuncInfo.MBB; 3934 if (MBB != &MF.front()) 3935 return false; 3936 3937 unsigned Reg = 0; 3938 if (Arg->hasByValAttr()) { 3939 // Byval arguments' frame index is recorded during argument lowering. 3940 // Use this info directly. 3941 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 3942 Reg = TRI->getFrameRegister(MF); 3943 Offset = FuncInfo.getByValArgumentFrameIndex(Arg); 3944 } 3945 3946 if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) { 3947 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3948 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3949 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3950 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3951 if (PR) 3952 Reg = PR; 3953 } 3954 } 3955 3956 if (!Reg) { 3957 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 3958 if (VMI == FuncInfo.ValueMap.end()) 3959 return false; 3960 Reg = VMI->second; 3961 } 3962 3963 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 3964 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 3965 TII->get(TargetOpcode::DBG_VALUE)) 3966 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 3967 FuncInfo.ArgDbgValues.push_back(&*MIB); 3968 return true; 3969 } 3970 3971 // VisualStudio defines setjmp as _setjmp 3972 #if defined(_MSC_VER) && defined(setjmp) 3973 #define setjmp_undefined_for_visual_studio 3974 #undef setjmp 3975 #endif 3976 3977 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3978 /// we want to emit this as a call to a named external function, return the name 3979 /// otherwise lower it and return null. 3980 const char * 3981 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 3982 DebugLoc dl = getCurDebugLoc(); 3983 SDValue Res; 3984 3985 switch (Intrinsic) { 3986 default: 3987 // By default, turn this into a target intrinsic node. 3988 visitTargetIntrinsic(I, Intrinsic); 3989 return 0; 3990 case Intrinsic::vastart: visitVAStart(I); return 0; 3991 case Intrinsic::vaend: visitVAEnd(I); return 0; 3992 case Intrinsic::vacopy: visitVACopy(I); return 0; 3993 case Intrinsic::returnaddress: 3994 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 3995 getValue(I.getArgOperand(0)))); 3996 return 0; 3997 case Intrinsic::frameaddress: 3998 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 3999 getValue(I.getArgOperand(0)))); 4000 return 0; 4001 case Intrinsic::setjmp: 4002 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4003 case Intrinsic::longjmp: 4004 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4005 case Intrinsic::memcpy: { 4006 // Assert for address < 256 since we support only user defined address 4007 // spaces. 4008 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4009 < 256 && 4010 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4011 < 256 && 4012 "Unknown address space"); 4013 SDValue Op1 = getValue(I.getArgOperand(0)); 4014 SDValue Op2 = getValue(I.getArgOperand(1)); 4015 SDValue Op3 = getValue(I.getArgOperand(2)); 4016 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4017 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4018 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4019 MachinePointerInfo(I.getArgOperand(0)), 4020 MachinePointerInfo(I.getArgOperand(1)))); 4021 return 0; 4022 } 4023 case Intrinsic::memset: { 4024 // Assert for address < 256 since we support only user defined address 4025 // spaces. 4026 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4027 < 256 && 4028 "Unknown address space"); 4029 SDValue Op1 = getValue(I.getArgOperand(0)); 4030 SDValue Op2 = getValue(I.getArgOperand(1)); 4031 SDValue Op3 = getValue(I.getArgOperand(2)); 4032 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4033 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4034 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4035 MachinePointerInfo(I.getArgOperand(0)))); 4036 return 0; 4037 } 4038 case Intrinsic::memmove: { 4039 // Assert for address < 256 since we support only user defined address 4040 // spaces. 4041 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4042 < 256 && 4043 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4044 < 256 && 4045 "Unknown address space"); 4046 SDValue Op1 = getValue(I.getArgOperand(0)); 4047 SDValue Op2 = getValue(I.getArgOperand(1)); 4048 SDValue Op3 = getValue(I.getArgOperand(2)); 4049 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4050 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4051 4052 // If the source and destination are known to not be aliases, we can 4053 // lower memmove as memcpy. 4054 uint64_t Size = -1ULL; 4055 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 4056 Size = C->getZExtValue(); 4057 if (AA->alias(I.getArgOperand(0), Size, I.getArgOperand(1), Size) == 4058 AliasAnalysis::NoAlias) { 4059 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4060 false, MachinePointerInfo(I.getArgOperand(0)), 4061 MachinePointerInfo(I.getArgOperand(1)))); 4062 return 0; 4063 } 4064 4065 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4066 MachinePointerInfo(I.getArgOperand(0)), 4067 MachinePointerInfo(I.getArgOperand(1)))); 4068 return 0; 4069 } 4070 case Intrinsic::dbg_declare: { 4071 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4072 MDNode *Variable = DI.getVariable(); 4073 const Value *Address = DI.getAddress(); 4074 if (!Address || !DIVariable(DI.getVariable()).Verify()) 4075 return 0; 4076 4077 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4078 // but do not always have a corresponding SDNode built. The SDNodeOrder 4079 // absolute, but not relative, values are different depending on whether 4080 // debug info exists. 4081 ++SDNodeOrder; 4082 4083 // Check if address has undef value. 4084 if (isa<UndefValue>(Address) || 4085 (Address->use_empty() && !isa<Argument>(Address))) { 4086 SDDbgValue*SDV = 4087 DAG.getDbgValue(Variable, UndefValue::get(Address->getType()), 4088 0, dl, SDNodeOrder); 4089 DAG.AddDbgValue(SDV, 0, false); 4090 return 0; 4091 } 4092 4093 SDValue &N = NodeMap[Address]; 4094 if (!N.getNode() && isa<Argument>(Address)) 4095 // Check unused arguments map. 4096 N = UnusedArgNodeMap[Address]; 4097 SDDbgValue *SDV; 4098 if (N.getNode()) { 4099 // Parameters are handled specially. 4100 bool isParameter = 4101 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4102 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4103 Address = BCI->getOperand(0); 4104 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4105 4106 if (isParameter && !AI) { 4107 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4108 if (FINode) 4109 // Byval parameter. We have a frame index at this point. 4110 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4111 0, dl, SDNodeOrder); 4112 else 4113 // Can't do anything with other non-AI cases yet. This might be a 4114 // parameter of a callee function that got inlined, for example. 4115 return 0; 4116 } else if (AI) 4117 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4118 0, dl, SDNodeOrder); 4119 else 4120 // Can't do anything with other non-AI cases yet. 4121 return 0; 4122 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4123 } else { 4124 // If Address is an arugment then try to emits its dbg value using 4125 // virtual register info from the FuncInfo.ValueMap. 4126 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4127 // If variable is pinned by a alloca in dominating bb then 4128 // use StaticAllocaMap. 4129 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4130 if (AI->getParent() != DI.getParent()) { 4131 DenseMap<const AllocaInst*, int>::iterator SI = 4132 FuncInfo.StaticAllocaMap.find(AI); 4133 if (SI != FuncInfo.StaticAllocaMap.end()) { 4134 SDV = DAG.getDbgValue(Variable, SI->second, 4135 0, dl, SDNodeOrder); 4136 DAG.AddDbgValue(SDV, 0, false); 4137 return 0; 4138 } 4139 } 4140 } 4141 // Otherwise add undef to help track missing debug info. 4142 SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()), 4143 0, dl, SDNodeOrder); 4144 DAG.AddDbgValue(SDV, 0, false); 4145 } 4146 } 4147 return 0; 4148 } 4149 case Intrinsic::dbg_value: { 4150 const DbgValueInst &DI = cast<DbgValueInst>(I); 4151 if (!DIVariable(DI.getVariable()).Verify()) 4152 return 0; 4153 4154 MDNode *Variable = DI.getVariable(); 4155 uint64_t Offset = DI.getOffset(); 4156 const Value *V = DI.getValue(); 4157 if (!V) 4158 return 0; 4159 4160 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4161 // but do not always have a corresponding SDNode built. The SDNodeOrder 4162 // absolute, but not relative, values are different depending on whether 4163 // debug info exists. 4164 ++SDNodeOrder; 4165 SDDbgValue *SDV; 4166 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 4167 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4168 DAG.AddDbgValue(SDV, 0, false); 4169 } else { 4170 // Do not use getValue() in here; we don't want to generate code at 4171 // this point if it hasn't been done yet. 4172 SDValue N = NodeMap[V]; 4173 if (!N.getNode() && isa<Argument>(V)) 4174 // Check unused arguments map. 4175 N = UnusedArgNodeMap[V]; 4176 if (N.getNode()) { 4177 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4178 SDV = DAG.getDbgValue(Variable, N.getNode(), 4179 N.getResNo(), Offset, dl, SDNodeOrder); 4180 DAG.AddDbgValue(SDV, N.getNode(), false); 4181 } 4182 } else if (isa<PHINode>(V) && !V->use_empty() ) { 4183 // Do not call getValue(V) yet, as we don't want to generate code. 4184 // Remember it for later. 4185 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4186 DanglingDebugInfoMap[V] = DDI; 4187 } else { 4188 // We may expand this to cover more cases. One case where we have no 4189 // data available is an unreferenced parameter; we need this fallback. 4190 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 4191 Offset, dl, SDNodeOrder); 4192 DAG.AddDbgValue(SDV, 0, false); 4193 } 4194 } 4195 4196 // Build a debug info table entry. 4197 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4198 V = BCI->getOperand(0); 4199 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4200 // Don't handle byval struct arguments or VLAs, for example. 4201 if (!AI) 4202 return 0; 4203 DenseMap<const AllocaInst*, int>::iterator SI = 4204 FuncInfo.StaticAllocaMap.find(AI); 4205 if (SI == FuncInfo.StaticAllocaMap.end()) 4206 return 0; // VLAs. 4207 int FI = SI->second; 4208 4209 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4210 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4211 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4212 return 0; 4213 } 4214 case Intrinsic::eh_exception: { 4215 // Insert the EXCEPTIONADDR instruction. 4216 assert(FuncInfo.MBB->isLandingPad() && 4217 "Call to eh.exception not in landing pad!"); 4218 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4219 SDValue Ops[1]; 4220 Ops[0] = DAG.getRoot(); 4221 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4222 setValue(&I, Op); 4223 DAG.setRoot(Op.getValue(1)); 4224 return 0; 4225 } 4226 4227 case Intrinsic::eh_selector: { 4228 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4229 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4230 if (CallMBB->isLandingPad()) 4231 AddCatchInfo(I, &MMI, CallMBB); 4232 else { 4233 #ifndef NDEBUG 4234 FuncInfo.CatchInfoLost.insert(&I); 4235 #endif 4236 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4237 unsigned Reg = TLI.getExceptionSelectorRegister(); 4238 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4239 } 4240 4241 // Insert the EHSELECTION instruction. 4242 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4243 SDValue Ops[2]; 4244 Ops[0] = getValue(I.getArgOperand(0)); 4245 Ops[1] = getRoot(); 4246 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4247 DAG.setRoot(Op.getValue(1)); 4248 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4249 return 0; 4250 } 4251 4252 case Intrinsic::eh_typeid_for: { 4253 // Find the type id for the given typeinfo. 4254 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4255 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4256 Res = DAG.getConstant(TypeID, MVT::i32); 4257 setValue(&I, Res); 4258 return 0; 4259 } 4260 4261 case Intrinsic::eh_return_i32: 4262 case Intrinsic::eh_return_i64: 4263 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4264 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4265 MVT::Other, 4266 getControlRoot(), 4267 getValue(I.getArgOperand(0)), 4268 getValue(I.getArgOperand(1)))); 4269 return 0; 4270 case Intrinsic::eh_unwind_init: 4271 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4272 return 0; 4273 case Intrinsic::eh_dwarf_cfa: { 4274 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4275 TLI.getPointerTy()); 4276 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4277 TLI.getPointerTy(), 4278 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4279 TLI.getPointerTy()), 4280 CfaArg); 4281 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4282 TLI.getPointerTy(), 4283 DAG.getConstant(0, TLI.getPointerTy())); 4284 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4285 FA, Offset)); 4286 return 0; 4287 } 4288 case Intrinsic::eh_sjlj_callsite: { 4289 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4290 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4291 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4292 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4293 4294 MMI.setCurrentCallSite(CI->getZExtValue()); 4295 return 0; 4296 } 4297 case Intrinsic::eh_sjlj_setjmp: { 4298 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(), 4299 getValue(I.getArgOperand(0)))); 4300 return 0; 4301 } 4302 case Intrinsic::eh_sjlj_longjmp: { 4303 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4304 getRoot(), 4305 getValue(I.getArgOperand(0)))); 4306 return 0; 4307 } 4308 4309 case Intrinsic::convertff: 4310 case Intrinsic::convertfsi: 4311 case Intrinsic::convertfui: 4312 case Intrinsic::convertsif: 4313 case Intrinsic::convertuif: 4314 case Intrinsic::convertss: 4315 case Intrinsic::convertsu: 4316 case Intrinsic::convertus: 4317 case Intrinsic::convertuu: { 4318 ISD::CvtCode Code = ISD::CVT_INVALID; 4319 switch (Intrinsic) { 4320 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4321 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4322 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4323 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4324 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4325 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4326 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4327 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4328 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4329 } 4330 EVT DestVT = TLI.getValueType(I.getType()); 4331 const Value *Op1 = I.getArgOperand(0); 4332 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4333 DAG.getValueType(DestVT), 4334 DAG.getValueType(getValue(Op1).getValueType()), 4335 getValue(I.getArgOperand(1)), 4336 getValue(I.getArgOperand(2)), 4337 Code); 4338 setValue(&I, Res); 4339 return 0; 4340 } 4341 case Intrinsic::sqrt: 4342 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4343 getValue(I.getArgOperand(0)).getValueType(), 4344 getValue(I.getArgOperand(0)))); 4345 return 0; 4346 case Intrinsic::powi: 4347 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4348 getValue(I.getArgOperand(1)), DAG)); 4349 return 0; 4350 case Intrinsic::sin: 4351 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4352 getValue(I.getArgOperand(0)).getValueType(), 4353 getValue(I.getArgOperand(0)))); 4354 return 0; 4355 case Intrinsic::cos: 4356 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4357 getValue(I.getArgOperand(0)).getValueType(), 4358 getValue(I.getArgOperand(0)))); 4359 return 0; 4360 case Intrinsic::log: 4361 visitLog(I); 4362 return 0; 4363 case Intrinsic::log2: 4364 visitLog2(I); 4365 return 0; 4366 case Intrinsic::log10: 4367 visitLog10(I); 4368 return 0; 4369 case Intrinsic::exp: 4370 visitExp(I); 4371 return 0; 4372 case Intrinsic::exp2: 4373 visitExp2(I); 4374 return 0; 4375 case Intrinsic::pow: 4376 visitPow(I); 4377 return 0; 4378 case Intrinsic::convert_to_fp16: 4379 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4380 MVT::i16, getValue(I.getArgOperand(0)))); 4381 return 0; 4382 case Intrinsic::convert_from_fp16: 4383 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4384 MVT::f32, getValue(I.getArgOperand(0)))); 4385 return 0; 4386 case Intrinsic::pcmarker: { 4387 SDValue Tmp = getValue(I.getArgOperand(0)); 4388 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4389 return 0; 4390 } 4391 case Intrinsic::readcyclecounter: { 4392 SDValue Op = getRoot(); 4393 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4394 DAG.getVTList(MVT::i64, MVT::Other), 4395 &Op, 1); 4396 setValue(&I, Res); 4397 DAG.setRoot(Res.getValue(1)); 4398 return 0; 4399 } 4400 case Intrinsic::bswap: 4401 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4402 getValue(I.getArgOperand(0)).getValueType(), 4403 getValue(I.getArgOperand(0)))); 4404 return 0; 4405 case Intrinsic::cttz: { 4406 SDValue Arg = getValue(I.getArgOperand(0)); 4407 EVT Ty = Arg.getValueType(); 4408 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4409 return 0; 4410 } 4411 case Intrinsic::ctlz: { 4412 SDValue Arg = getValue(I.getArgOperand(0)); 4413 EVT Ty = Arg.getValueType(); 4414 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4415 return 0; 4416 } 4417 case Intrinsic::ctpop: { 4418 SDValue Arg = getValue(I.getArgOperand(0)); 4419 EVT Ty = Arg.getValueType(); 4420 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4421 return 0; 4422 } 4423 case Intrinsic::stacksave: { 4424 SDValue Op = getRoot(); 4425 Res = DAG.getNode(ISD::STACKSAVE, dl, 4426 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4427 setValue(&I, Res); 4428 DAG.setRoot(Res.getValue(1)); 4429 return 0; 4430 } 4431 case Intrinsic::stackrestore: { 4432 Res = getValue(I.getArgOperand(0)); 4433 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4434 return 0; 4435 } 4436 case Intrinsic::stackprotector: { 4437 // Emit code into the DAG to store the stack guard onto the stack. 4438 MachineFunction &MF = DAG.getMachineFunction(); 4439 MachineFrameInfo *MFI = MF.getFrameInfo(); 4440 EVT PtrTy = TLI.getPointerTy(); 4441 4442 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4443 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4444 4445 int FI = FuncInfo.StaticAllocaMap[Slot]; 4446 MFI->setStackProtectorIndex(FI); 4447 4448 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4449 4450 // Store the stack protector onto the stack. 4451 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4452 MachinePointerInfo::getFixedStack(FI), 4453 true, false, 0); 4454 setValue(&I, Res); 4455 DAG.setRoot(Res); 4456 return 0; 4457 } 4458 case Intrinsic::objectsize: { 4459 // If we don't know by now, we're never going to know. 4460 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4461 4462 assert(CI && "Non-constant type in __builtin_object_size?"); 4463 4464 SDValue Arg = getValue(I.getCalledValue()); 4465 EVT Ty = Arg.getValueType(); 4466 4467 if (CI->isZero()) 4468 Res = DAG.getConstant(-1ULL, Ty); 4469 else 4470 Res = DAG.getConstant(0, Ty); 4471 4472 setValue(&I, Res); 4473 return 0; 4474 } 4475 case Intrinsic::var_annotation: 4476 // Discard annotate attributes 4477 return 0; 4478 4479 case Intrinsic::init_trampoline: { 4480 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4481 4482 SDValue Ops[6]; 4483 Ops[0] = getRoot(); 4484 Ops[1] = getValue(I.getArgOperand(0)); 4485 Ops[2] = getValue(I.getArgOperand(1)); 4486 Ops[3] = getValue(I.getArgOperand(2)); 4487 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4488 Ops[5] = DAG.getSrcValue(F); 4489 4490 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4491 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4492 Ops, 6); 4493 4494 setValue(&I, Res); 4495 DAG.setRoot(Res.getValue(1)); 4496 return 0; 4497 } 4498 case Intrinsic::gcroot: 4499 if (GFI) { 4500 const Value *Alloca = I.getArgOperand(0); 4501 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4502 4503 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4504 GFI->addStackRoot(FI->getIndex(), TypeMap); 4505 } 4506 return 0; 4507 case Intrinsic::gcread: 4508 case Intrinsic::gcwrite: 4509 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4510 return 0; 4511 case Intrinsic::flt_rounds: 4512 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4513 return 0; 4514 case Intrinsic::trap: 4515 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4516 return 0; 4517 case Intrinsic::uadd_with_overflow: 4518 return implVisitAluOverflow(I, ISD::UADDO); 4519 case Intrinsic::sadd_with_overflow: 4520 return implVisitAluOverflow(I, ISD::SADDO); 4521 case Intrinsic::usub_with_overflow: 4522 return implVisitAluOverflow(I, ISD::USUBO); 4523 case Intrinsic::ssub_with_overflow: 4524 return implVisitAluOverflow(I, ISD::SSUBO); 4525 case Intrinsic::umul_with_overflow: 4526 return implVisitAluOverflow(I, ISD::UMULO); 4527 case Intrinsic::smul_with_overflow: 4528 return implVisitAluOverflow(I, ISD::SMULO); 4529 4530 case Intrinsic::prefetch: { 4531 SDValue Ops[4]; 4532 Ops[0] = getRoot(); 4533 Ops[1] = getValue(I.getArgOperand(0)); 4534 Ops[2] = getValue(I.getArgOperand(1)); 4535 Ops[3] = getValue(I.getArgOperand(2)); 4536 DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); 4537 return 0; 4538 } 4539 4540 case Intrinsic::memory_barrier: { 4541 SDValue Ops[6]; 4542 Ops[0] = getRoot(); 4543 for (int x = 1; x < 6; ++x) 4544 Ops[x] = getValue(I.getArgOperand(x - 1)); 4545 4546 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4547 return 0; 4548 } 4549 case Intrinsic::atomic_cmp_swap: { 4550 SDValue Root = getRoot(); 4551 SDValue L = 4552 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4553 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 4554 Root, 4555 getValue(I.getArgOperand(0)), 4556 getValue(I.getArgOperand(1)), 4557 getValue(I.getArgOperand(2)), 4558 MachinePointerInfo(I.getArgOperand(0))); 4559 setValue(&I, L); 4560 DAG.setRoot(L.getValue(1)); 4561 return 0; 4562 } 4563 case Intrinsic::atomic_load_add: 4564 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4565 case Intrinsic::atomic_load_sub: 4566 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4567 case Intrinsic::atomic_load_or: 4568 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4569 case Intrinsic::atomic_load_xor: 4570 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4571 case Intrinsic::atomic_load_and: 4572 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4573 case Intrinsic::atomic_load_nand: 4574 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4575 case Intrinsic::atomic_load_max: 4576 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4577 case Intrinsic::atomic_load_min: 4578 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4579 case Intrinsic::atomic_load_umin: 4580 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4581 case Intrinsic::atomic_load_umax: 4582 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4583 case Intrinsic::atomic_swap: 4584 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4585 4586 case Intrinsic::invariant_start: 4587 case Intrinsic::lifetime_start: 4588 // Discard region information. 4589 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4590 return 0; 4591 case Intrinsic::invariant_end: 4592 case Intrinsic::lifetime_end: 4593 // Discard region information. 4594 return 0; 4595 } 4596 } 4597 4598 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4599 bool isTailCall, 4600 MachineBasicBlock *LandingPad) { 4601 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4602 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4603 const Type *RetTy = FTy->getReturnType(); 4604 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4605 MCSymbol *BeginLabel = 0; 4606 4607 TargetLowering::ArgListTy Args; 4608 TargetLowering::ArgListEntry Entry; 4609 Args.reserve(CS.arg_size()); 4610 4611 // Check whether the function can return without sret-demotion. 4612 SmallVector<ISD::OutputArg, 4> Outs; 4613 SmallVector<uint64_t, 4> Offsets; 4614 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4615 Outs, TLI, &Offsets); 4616 4617 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4618 FTy->isVarArg(), Outs, FTy->getContext()); 4619 4620 SDValue DemoteStackSlot; 4621 int DemoteStackIdx = -100; 4622 4623 if (!CanLowerReturn) { 4624 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4625 FTy->getReturnType()); 4626 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4627 FTy->getReturnType()); 4628 MachineFunction &MF = DAG.getMachineFunction(); 4629 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4630 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4631 4632 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 4633 Entry.Node = DemoteStackSlot; 4634 Entry.Ty = StackSlotPtrType; 4635 Entry.isSExt = false; 4636 Entry.isZExt = false; 4637 Entry.isInReg = false; 4638 Entry.isSRet = true; 4639 Entry.isNest = false; 4640 Entry.isByVal = false; 4641 Entry.Alignment = Align; 4642 Args.push_back(Entry); 4643 RetTy = Type::getVoidTy(FTy->getContext()); 4644 } 4645 4646 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4647 i != e; ++i) { 4648 SDValue ArgNode = getValue(*i); 4649 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4650 4651 unsigned attrInd = i - CS.arg_begin() + 1; 4652 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4653 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4654 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4655 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4656 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4657 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4658 Entry.Alignment = CS.getParamAlignment(attrInd); 4659 Args.push_back(Entry); 4660 } 4661 4662 if (LandingPad) { 4663 // Insert a label before the invoke call to mark the try range. This can be 4664 // used to detect deletion of the invoke via the MachineModuleInfo. 4665 BeginLabel = MMI.getContext().CreateTempSymbol(); 4666 4667 // For SjLj, keep track of which landing pads go with which invokes 4668 // so as to maintain the ordering of pads in the LSDA. 4669 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4670 if (CallSiteIndex) { 4671 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4672 // Now that the call site is handled, stop tracking it. 4673 MMI.setCurrentCallSite(0); 4674 } 4675 4676 // Both PendingLoads and PendingExports must be flushed here; 4677 // this call might not return. 4678 (void)getRoot(); 4679 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4680 } 4681 4682 // Check if target-independent constraints permit a tail call here. 4683 // Target-dependent constraints are checked within TLI.LowerCallTo. 4684 if (isTailCall && 4685 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4686 isTailCall = false; 4687 4688 // If there's a possibility that fast-isel has already selected some amount 4689 // of the current basic block, don't emit a tail call. 4690 if (isTailCall && EnableFastISel) 4691 isTailCall = false; 4692 4693 std::pair<SDValue,SDValue> Result = 4694 TLI.LowerCallTo(getRoot(), RetTy, 4695 CS.paramHasAttr(0, Attribute::SExt), 4696 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4697 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4698 CS.getCallingConv(), 4699 isTailCall, 4700 !CS.getInstruction()->use_empty(), 4701 Callee, Args, DAG, getCurDebugLoc()); 4702 assert((isTailCall || Result.second.getNode()) && 4703 "Non-null chain expected with non-tail call!"); 4704 assert((Result.second.getNode() || !Result.first.getNode()) && 4705 "Null value expected with tail call!"); 4706 if (Result.first.getNode()) { 4707 setValue(CS.getInstruction(), Result.first); 4708 } else if (!CanLowerReturn && Result.second.getNode()) { 4709 // The instruction result is the result of loading from the 4710 // hidden sret parameter. 4711 SmallVector<EVT, 1> PVTs; 4712 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4713 4714 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4715 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4716 EVT PtrVT = PVTs[0]; 4717 unsigned NumValues = Outs.size(); 4718 SmallVector<SDValue, 4> Values(NumValues); 4719 SmallVector<SDValue, 4> Chains(NumValues); 4720 4721 for (unsigned i = 0; i < NumValues; ++i) { 4722 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4723 DemoteStackSlot, 4724 DAG.getConstant(Offsets[i], PtrVT)); 4725 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 4726 Add, 4727 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 4728 false, false, 1); 4729 Values[i] = L; 4730 Chains[i] = L.getValue(1); 4731 } 4732 4733 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4734 MVT::Other, &Chains[0], NumValues); 4735 PendingLoads.push_back(Chain); 4736 4737 // Collect the legal value parts into potentially illegal values 4738 // that correspond to the original function's return values. 4739 SmallVector<EVT, 4> RetTys; 4740 RetTy = FTy->getReturnType(); 4741 ComputeValueVTs(TLI, RetTy, RetTys); 4742 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4743 SmallVector<SDValue, 4> ReturnValues; 4744 unsigned CurReg = 0; 4745 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4746 EVT VT = RetTys[I]; 4747 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4748 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4749 4750 SDValue ReturnValue = 4751 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4752 RegisterVT, VT, AssertOp); 4753 ReturnValues.push_back(ReturnValue); 4754 CurReg += NumRegs; 4755 } 4756 4757 setValue(CS.getInstruction(), 4758 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4759 DAG.getVTList(&RetTys[0], RetTys.size()), 4760 &ReturnValues[0], ReturnValues.size())); 4761 4762 } 4763 4764 // As a special case, a null chain means that a tail call has been emitted and 4765 // the DAG root is already updated. 4766 if (Result.second.getNode()) 4767 DAG.setRoot(Result.second); 4768 else 4769 HasTailCall = true; 4770 4771 if (LandingPad) { 4772 // Insert a label at the end of the invoke call to mark the try range. This 4773 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4774 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4775 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4776 4777 // Inform MachineModuleInfo of range. 4778 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4779 } 4780 } 4781 4782 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4783 /// value is equal or not-equal to zero. 4784 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4785 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 4786 UI != E; ++UI) { 4787 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4788 if (IC->isEquality()) 4789 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4790 if (C->isNullValue()) 4791 continue; 4792 // Unknown instruction. 4793 return false; 4794 } 4795 return true; 4796 } 4797 4798 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4799 const Type *LoadTy, 4800 SelectionDAGBuilder &Builder) { 4801 4802 // Check to see if this load can be trivially constant folded, e.g. if the 4803 // input is from a string literal. 4804 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4805 // Cast pointer to the type we really want to load. 4806 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4807 PointerType::getUnqual(LoadTy)); 4808 4809 if (const Constant *LoadCst = 4810 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 4811 Builder.TD)) 4812 return Builder.getValue(LoadCst); 4813 } 4814 4815 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4816 // still constant memory, the input chain can be the entry node. 4817 SDValue Root; 4818 bool ConstantMemory = false; 4819 4820 // Do not serialize (non-volatile) loads of constant memory with anything. 4821 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4822 Root = Builder.DAG.getEntryNode(); 4823 ConstantMemory = true; 4824 } else { 4825 // Do not serialize non-volatile loads against each other. 4826 Root = Builder.DAG.getRoot(); 4827 } 4828 4829 SDValue Ptr = Builder.getValue(PtrVal); 4830 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 4831 Ptr, MachinePointerInfo(PtrVal), 4832 false /*volatile*/, 4833 false /*nontemporal*/, 1 /* align=1 */); 4834 4835 if (!ConstantMemory) 4836 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 4837 return LoadVal; 4838 } 4839 4840 4841 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 4842 /// If so, return true and lower it, otherwise return false and it will be 4843 /// lowered like a normal call. 4844 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 4845 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 4846 if (I.getNumArgOperands() != 3) 4847 return false; 4848 4849 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 4850 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 4851 !I.getArgOperand(2)->getType()->isIntegerTy() || 4852 !I.getType()->isIntegerTy()) 4853 return false; 4854 4855 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 4856 4857 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 4858 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 4859 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 4860 bool ActuallyDoIt = true; 4861 MVT LoadVT; 4862 const Type *LoadTy; 4863 switch (Size->getZExtValue()) { 4864 default: 4865 LoadVT = MVT::Other; 4866 LoadTy = 0; 4867 ActuallyDoIt = false; 4868 break; 4869 case 2: 4870 LoadVT = MVT::i16; 4871 LoadTy = Type::getInt16Ty(Size->getContext()); 4872 break; 4873 case 4: 4874 LoadVT = MVT::i32; 4875 LoadTy = Type::getInt32Ty(Size->getContext()); 4876 break; 4877 case 8: 4878 LoadVT = MVT::i64; 4879 LoadTy = Type::getInt64Ty(Size->getContext()); 4880 break; 4881 /* 4882 case 16: 4883 LoadVT = MVT::v4i32; 4884 LoadTy = Type::getInt32Ty(Size->getContext()); 4885 LoadTy = VectorType::get(LoadTy, 4); 4886 break; 4887 */ 4888 } 4889 4890 // This turns into unaligned loads. We only do this if the target natively 4891 // supports the MVT we'll be loading or if it is small enough (<= 4) that 4892 // we'll only produce a small number of byte loads. 4893 4894 // Require that we can find a legal MVT, and only do this if the target 4895 // supports unaligned loads of that type. Expanding into byte loads would 4896 // bloat the code. 4897 if (ActuallyDoIt && Size->getZExtValue() > 4) { 4898 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 4899 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 4900 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 4901 ActuallyDoIt = false; 4902 } 4903 4904 if (ActuallyDoIt) { 4905 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 4906 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 4907 4908 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 4909 ISD::SETNE); 4910 EVT CallVT = TLI.getValueType(I.getType(), true); 4911 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 4912 return true; 4913 } 4914 } 4915 4916 4917 return false; 4918 } 4919 4920 4921 void SelectionDAGBuilder::visitCall(const CallInst &I) { 4922 // Handle inline assembly differently. 4923 if (isa<InlineAsm>(I.getCalledValue())) { 4924 visitInlineAsm(&I); 4925 return; 4926 } 4927 4928 const char *RenameFn = 0; 4929 if (Function *F = I.getCalledFunction()) { 4930 if (F->isDeclaration()) { 4931 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 4932 if (unsigned IID = II->getIntrinsicID(F)) { 4933 RenameFn = visitIntrinsicCall(I, IID); 4934 if (!RenameFn) 4935 return; 4936 } 4937 } 4938 if (unsigned IID = F->getIntrinsicID()) { 4939 RenameFn = visitIntrinsicCall(I, IID); 4940 if (!RenameFn) 4941 return; 4942 } 4943 } 4944 4945 // Check for well-known libc/libm calls. If the function is internal, it 4946 // can't be a library call. 4947 if (!F->hasLocalLinkage() && F->hasName()) { 4948 StringRef Name = F->getName(); 4949 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 4950 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 4951 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4952 I.getType() == I.getArgOperand(0)->getType() && 4953 I.getType() == I.getArgOperand(1)->getType()) { 4954 SDValue LHS = getValue(I.getArgOperand(0)); 4955 SDValue RHS = getValue(I.getArgOperand(1)); 4956 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 4957 LHS.getValueType(), LHS, RHS)); 4958 return; 4959 } 4960 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 4961 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4962 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4963 I.getType() == I.getArgOperand(0)->getType()) { 4964 SDValue Tmp = getValue(I.getArgOperand(0)); 4965 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 4966 Tmp.getValueType(), Tmp)); 4967 return; 4968 } 4969 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 4970 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4971 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4972 I.getType() == I.getArgOperand(0)->getType() && 4973 I.onlyReadsMemory()) { 4974 SDValue Tmp = getValue(I.getArgOperand(0)); 4975 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 4976 Tmp.getValueType(), Tmp)); 4977 return; 4978 } 4979 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 4980 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4981 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4982 I.getType() == I.getArgOperand(0)->getType() && 4983 I.onlyReadsMemory()) { 4984 SDValue Tmp = getValue(I.getArgOperand(0)); 4985 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 4986 Tmp.getValueType(), Tmp)); 4987 return; 4988 } 4989 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 4990 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4991 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4992 I.getType() == I.getArgOperand(0)->getType() && 4993 I.onlyReadsMemory()) { 4994 SDValue Tmp = getValue(I.getArgOperand(0)); 4995 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 4996 Tmp.getValueType(), Tmp)); 4997 return; 4998 } 4999 } else if (Name == "memcmp") { 5000 if (visitMemCmpCall(I)) 5001 return; 5002 } 5003 } 5004 } 5005 5006 SDValue Callee; 5007 if (!RenameFn) 5008 Callee = getValue(I.getCalledValue()); 5009 else 5010 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5011 5012 // Check if we can potentially perform a tail call. More detailed checking is 5013 // be done within LowerCallTo, after more information about the call is known. 5014 LowerCallTo(&I, Callee, I.isTailCall()); 5015 } 5016 5017 namespace llvm { 5018 5019 /// AsmOperandInfo - This contains information for each constraint that we are 5020 /// lowering. 5021 class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo : 5022 public TargetLowering::AsmOperandInfo { 5023 public: 5024 /// CallOperand - If this is the result output operand or a clobber 5025 /// this is null, otherwise it is the incoming operand to the CallInst. 5026 /// This gets modified as the asm is processed. 5027 SDValue CallOperand; 5028 5029 /// AssignedRegs - If this is a register or register class operand, this 5030 /// contains the set of register corresponding to the operand. 5031 RegsForValue AssignedRegs; 5032 5033 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5034 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5035 } 5036 5037 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5038 /// busy in OutputRegs/InputRegs. 5039 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5040 std::set<unsigned> &OutputRegs, 5041 std::set<unsigned> &InputRegs, 5042 const TargetRegisterInfo &TRI) const { 5043 if (isOutReg) { 5044 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5045 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5046 } 5047 if (isInReg) { 5048 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5049 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5050 } 5051 } 5052 5053 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5054 /// corresponds to. If there is no Value* for this operand, it returns 5055 /// MVT::Other. 5056 EVT getCallOperandValEVT(LLVMContext &Context, 5057 const TargetLowering &TLI, 5058 const TargetData *TD) const { 5059 if (CallOperandVal == 0) return MVT::Other; 5060 5061 if (isa<BasicBlock>(CallOperandVal)) 5062 return TLI.getPointerTy(); 5063 5064 const llvm::Type *OpTy = CallOperandVal->getType(); 5065 5066 // If this is an indirect operand, the operand is a pointer to the 5067 // accessed type. 5068 if (isIndirect) { 5069 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5070 if (!PtrTy) 5071 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5072 OpTy = PtrTy->getElementType(); 5073 } 5074 5075 // If OpTy is not a single value, it may be a struct/union that we 5076 // can tile with integers. 5077 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5078 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5079 switch (BitSize) { 5080 default: break; 5081 case 1: 5082 case 8: 5083 case 16: 5084 case 32: 5085 case 64: 5086 case 128: 5087 OpTy = IntegerType::get(Context, BitSize); 5088 break; 5089 } 5090 } 5091 5092 return TLI.getValueType(OpTy, true); 5093 } 5094 5095 private: 5096 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5097 /// specified set. 5098 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5099 const TargetRegisterInfo &TRI) { 5100 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5101 Regs.insert(Reg); 5102 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5103 for (; *Aliases; ++Aliases) 5104 Regs.insert(*Aliases); 5105 } 5106 }; 5107 5108 } // end llvm namespace. 5109 5110 /// isAllocatableRegister - If the specified register is safe to allocate, 5111 /// i.e. it isn't a stack pointer or some other special register, return the 5112 /// register class for the register. Otherwise, return null. 5113 static const TargetRegisterClass * 5114 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 5115 const TargetLowering &TLI, 5116 const TargetRegisterInfo *TRI) { 5117 EVT FoundVT = MVT::Other; 5118 const TargetRegisterClass *FoundRC = 0; 5119 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 5120 E = TRI->regclass_end(); RCI != E; ++RCI) { 5121 EVT ThisVT = MVT::Other; 5122 5123 const TargetRegisterClass *RC = *RCI; 5124 // If none of the value types for this register class are valid, we 5125 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5126 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 5127 I != E; ++I) { 5128 if (TLI.isTypeLegal(*I)) { 5129 // If we have already found this register in a different register class, 5130 // choose the one with the largest VT specified. For example, on 5131 // PowerPC, we favor f64 register classes over f32. 5132 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 5133 ThisVT = *I; 5134 break; 5135 } 5136 } 5137 } 5138 5139 if (ThisVT == MVT::Other) continue; 5140 5141 // NOTE: This isn't ideal. In particular, this might allocate the 5142 // frame pointer in functions that need it (due to them not being taken 5143 // out of allocation, because a variable sized allocation hasn't been seen 5144 // yet). This is a slight code pessimization, but should still work. 5145 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 5146 E = RC->allocation_order_end(MF); I != E; ++I) 5147 if (*I == Reg) { 5148 // We found a matching register class. Keep looking at others in case 5149 // we find one with larger registers that this physreg is also in. 5150 FoundRC = RC; 5151 FoundVT = ThisVT; 5152 break; 5153 } 5154 } 5155 return FoundRC; 5156 } 5157 5158 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5159 /// specified operand. We prefer to assign virtual registers, to allow the 5160 /// register allocator to handle the assignment process. However, if the asm 5161 /// uses features that we can't model on machineinstrs, we have SDISel do the 5162 /// allocation. This produces generally horrible, but correct, code. 5163 /// 5164 /// OpInfo describes the operand. 5165 /// Input and OutputRegs are the set of already allocated physical registers. 5166 /// 5167 void SelectionDAGBuilder:: 5168 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 5169 std::set<unsigned> &OutputRegs, 5170 std::set<unsigned> &InputRegs) { 5171 LLVMContext &Context = FuncInfo.Fn->getContext(); 5172 5173 // Compute whether this value requires an input register, an output register, 5174 // or both. 5175 bool isOutReg = false; 5176 bool isInReg = false; 5177 switch (OpInfo.Type) { 5178 case InlineAsm::isOutput: 5179 isOutReg = true; 5180 5181 // If there is an input constraint that matches this, we need to reserve 5182 // the input register so no other inputs allocate to it. 5183 isInReg = OpInfo.hasMatchingInput(); 5184 break; 5185 case InlineAsm::isInput: 5186 isInReg = true; 5187 isOutReg = false; 5188 break; 5189 case InlineAsm::isClobber: 5190 isOutReg = true; 5191 isInReg = true; 5192 break; 5193 } 5194 5195 5196 MachineFunction &MF = DAG.getMachineFunction(); 5197 SmallVector<unsigned, 4> Regs; 5198 5199 // If this is a constraint for a single physreg, or a constraint for a 5200 // register class, find it. 5201 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5202 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5203 OpInfo.ConstraintVT); 5204 5205 unsigned NumRegs = 1; 5206 if (OpInfo.ConstraintVT != MVT::Other) { 5207 // If this is a FP input in an integer register (or visa versa) insert a bit 5208 // cast of the input value. More generally, handle any case where the input 5209 // value disagrees with the register class we plan to stick this in. 5210 if (OpInfo.Type == InlineAsm::isInput && 5211 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5212 // Try to convert to the first EVT that the reg class contains. If the 5213 // types are identical size, use a bitcast to convert (e.g. two differing 5214 // vector types). 5215 EVT RegVT = *PhysReg.second->vt_begin(); 5216 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5217 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5218 RegVT, OpInfo.CallOperand); 5219 OpInfo.ConstraintVT = RegVT; 5220 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5221 // If the input is a FP value and we want it in FP registers, do a 5222 // bitcast to the corresponding integer type. This turns an f64 value 5223 // into i64, which can be passed with two i32 values on a 32-bit 5224 // machine. 5225 RegVT = EVT::getIntegerVT(Context, 5226 OpInfo.ConstraintVT.getSizeInBits()); 5227 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5228 RegVT, OpInfo.CallOperand); 5229 OpInfo.ConstraintVT = RegVT; 5230 } 5231 } 5232 5233 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5234 } 5235 5236 EVT RegVT; 5237 EVT ValueVT = OpInfo.ConstraintVT; 5238 5239 // If this is a constraint for a specific physical register, like {r17}, 5240 // assign it now. 5241 if (unsigned AssignedReg = PhysReg.first) { 5242 const TargetRegisterClass *RC = PhysReg.second; 5243 if (OpInfo.ConstraintVT == MVT::Other) 5244 ValueVT = *RC->vt_begin(); 5245 5246 // Get the actual register value type. This is important, because the user 5247 // may have asked for (e.g.) the AX register in i32 type. We need to 5248 // remember that AX is actually i16 to get the right extension. 5249 RegVT = *RC->vt_begin(); 5250 5251 // This is a explicit reference to a physical register. 5252 Regs.push_back(AssignedReg); 5253 5254 // If this is an expanded reference, add the rest of the regs to Regs. 5255 if (NumRegs != 1) { 5256 TargetRegisterClass::iterator I = RC->begin(); 5257 for (; *I != AssignedReg; ++I) 5258 assert(I != RC->end() && "Didn't find reg!"); 5259 5260 // Already added the first reg. 5261 --NumRegs; ++I; 5262 for (; NumRegs; --NumRegs, ++I) { 5263 assert(I != RC->end() && "Ran out of registers to allocate!"); 5264 Regs.push_back(*I); 5265 } 5266 } 5267 5268 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5269 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5270 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5271 return; 5272 } 5273 5274 // Otherwise, if this was a reference to an LLVM register class, create vregs 5275 // for this reference. 5276 if (const TargetRegisterClass *RC = PhysReg.second) { 5277 RegVT = *RC->vt_begin(); 5278 if (OpInfo.ConstraintVT == MVT::Other) 5279 ValueVT = RegVT; 5280 5281 // Create the appropriate number of virtual registers. 5282 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5283 for (; NumRegs; --NumRegs) 5284 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5285 5286 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5287 return; 5288 } 5289 5290 // This is a reference to a register class that doesn't directly correspond 5291 // to an LLVM register class. Allocate NumRegs consecutive, available, 5292 // registers from the class. 5293 std::vector<unsigned> RegClassRegs 5294 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5295 OpInfo.ConstraintVT); 5296 5297 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5298 unsigned NumAllocated = 0; 5299 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5300 unsigned Reg = RegClassRegs[i]; 5301 // See if this register is available. 5302 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5303 (isInReg && InputRegs.count(Reg))) { // Already used. 5304 // Make sure we find consecutive registers. 5305 NumAllocated = 0; 5306 continue; 5307 } 5308 5309 // Check to see if this register is allocatable (i.e. don't give out the 5310 // stack pointer). 5311 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5312 if (!RC) { // Couldn't allocate this register. 5313 // Reset NumAllocated to make sure we return consecutive registers. 5314 NumAllocated = 0; 5315 continue; 5316 } 5317 5318 // Okay, this register is good, we can use it. 5319 ++NumAllocated; 5320 5321 // If we allocated enough consecutive registers, succeed. 5322 if (NumAllocated == NumRegs) { 5323 unsigned RegStart = (i-NumAllocated)+1; 5324 unsigned RegEnd = i+1; 5325 // Mark all of the allocated registers used. 5326 for (unsigned i = RegStart; i != RegEnd; ++i) 5327 Regs.push_back(RegClassRegs[i]); 5328 5329 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(), 5330 OpInfo.ConstraintVT); 5331 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5332 return; 5333 } 5334 } 5335 5336 // Otherwise, we couldn't allocate enough registers for this. 5337 } 5338 5339 /// visitInlineAsm - Handle a call to an InlineAsm object. 5340 /// 5341 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5342 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5343 5344 /// ConstraintOperands - Information about all of the constraints. 5345 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 5346 5347 std::set<unsigned> OutputRegs, InputRegs; 5348 5349 std::vector<TargetLowering::AsmOperandInfo> TargetConstraints = TLI.ParseConstraints(CS); 5350 bool hasMemory = false; 5351 5352 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5353 unsigned ResNo = 0; // ResNo - The result number of the next output. 5354 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5355 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5356 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5357 5358 EVT OpVT = MVT::Other; 5359 5360 // Compute the value type for each operand. 5361 switch (OpInfo.Type) { 5362 case InlineAsm::isOutput: 5363 // Indirect outputs just consume an argument. 5364 if (OpInfo.isIndirect) { 5365 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5366 break; 5367 } 5368 5369 // The return value of the call is this value. As such, there is no 5370 // corresponding argument. 5371 assert(!CS.getType()->isVoidTy() && 5372 "Bad inline asm!"); 5373 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5374 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5375 } else { 5376 assert(ResNo == 0 && "Asm only has one result!"); 5377 OpVT = TLI.getValueType(CS.getType()); 5378 } 5379 ++ResNo; 5380 break; 5381 case InlineAsm::isInput: 5382 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5383 break; 5384 case InlineAsm::isClobber: 5385 // Nothing to do. 5386 break; 5387 } 5388 5389 // If this is an input or an indirect output, process the call argument. 5390 // BasicBlocks are labels, currently appearing only in asm's. 5391 if (OpInfo.CallOperandVal) { 5392 // Strip bitcasts, if any. This mostly comes up for functions. 5393 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 5394 5395 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5396 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5397 } else { 5398 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5399 } 5400 5401 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5402 } 5403 5404 OpInfo.ConstraintVT = OpVT; 5405 5406 // Indirect operand accesses access memory. 5407 if (OpInfo.isIndirect) 5408 hasMemory = true; 5409 else { 5410 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5411 TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]); 5412 if (CType == TargetLowering::C_Memory) { 5413 hasMemory = true; 5414 break; 5415 } 5416 } 5417 } 5418 } 5419 5420 SDValue Chain, Flag; 5421 5422 // We won't need to flush pending loads if this asm doesn't touch 5423 // memory and is nonvolatile. 5424 if (hasMemory || IA->hasSideEffects()) 5425 Chain = getRoot(); 5426 else 5427 Chain = DAG.getRoot(); 5428 5429 // Second pass over the constraints: compute which constraint option to use 5430 // and assign registers to constraints that want a specific physreg. 5431 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5432 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5433 5434 // Compute the constraint code and ConstraintType to use. 5435 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5436 5437 // If this is a memory input, and if the operand is not indirect, do what we 5438 // need to to provide an address for the memory input. 5439 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5440 !OpInfo.isIndirect) { 5441 assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) && 5442 "Can only indirectify direct input operands!"); 5443 5444 // Memory operands really want the address of the value. If we don't have 5445 // an indirect input, put it in the constpool if we can, otherwise spill 5446 // it to a stack slot. 5447 5448 // If the operand is a float, integer, or vector constant, spill to a 5449 // constant pool entry to get its address. 5450 const Value *OpVal = OpInfo.CallOperandVal; 5451 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5452 isa<ConstantVector>(OpVal)) { 5453 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5454 TLI.getPointerTy()); 5455 } else { 5456 // Otherwise, create a stack slot and emit a store to it before the 5457 // asm. 5458 const Type *Ty = OpVal->getType(); 5459 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5460 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5461 MachineFunction &MF = DAG.getMachineFunction(); 5462 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5463 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5464 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5465 OpInfo.CallOperand, StackSlot, 5466 MachinePointerInfo::getFixedStack(SSFI), 5467 false, false, 0); 5468 OpInfo.CallOperand = StackSlot; 5469 } 5470 5471 // There is no longer a Value* corresponding to this operand. 5472 OpInfo.CallOperandVal = 0; 5473 5474 // It is now an indirect operand. 5475 OpInfo.isIndirect = true; 5476 } 5477 5478 // If this constraint is for a specific register, allocate it before 5479 // anything else. 5480 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5481 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5482 } 5483 5484 // Second pass - Loop over all of the operands, assigning virtual or physregs 5485 // to register class operands. 5486 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5487 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5488 5489 // C_Register operands have already been allocated, Other/Memory don't need 5490 // to be. 5491 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5492 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5493 } 5494 5495 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5496 std::vector<SDValue> AsmNodeOperands; 5497 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5498 AsmNodeOperands.push_back( 5499 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5500 TLI.getPointerTy())); 5501 5502 // If we have a !srcloc metadata node associated with it, we want to attach 5503 // this to the ultimately generated inline asm machineinstr. To do this, we 5504 // pass in the third operand as this (potentially null) inline asm MDNode. 5505 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5506 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5507 5508 // Remember the AlignStack bit as operand 3. 5509 AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0, 5510 MVT::i1)); 5511 5512 // Loop over all of the inputs, copying the operand values into the 5513 // appropriate registers and processing the output regs. 5514 RegsForValue RetValRegs; 5515 5516 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5517 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5518 5519 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5520 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5521 5522 switch (OpInfo.Type) { 5523 case InlineAsm::isOutput: { 5524 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5525 OpInfo.ConstraintType != TargetLowering::C_Register) { 5526 // Memory output, or 'other' output (e.g. 'X' constraint). 5527 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5528 5529 // Add information to the INLINEASM node to know about this output. 5530 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5531 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5532 TLI.getPointerTy())); 5533 AsmNodeOperands.push_back(OpInfo.CallOperand); 5534 break; 5535 } 5536 5537 // Otherwise, this is a register or register class output. 5538 5539 // Copy the output from the appropriate register. Find a register that 5540 // we can use. 5541 if (OpInfo.AssignedRegs.Regs.empty()) 5542 report_fatal_error("Couldn't allocate output reg for constraint '" + 5543 Twine(OpInfo.ConstraintCode) + "'!"); 5544 5545 // If this is an indirect operand, store through the pointer after the 5546 // asm. 5547 if (OpInfo.isIndirect) { 5548 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5549 OpInfo.CallOperandVal)); 5550 } else { 5551 // This is the result value of the call. 5552 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5553 // Concatenate this output onto the outputs list. 5554 RetValRegs.append(OpInfo.AssignedRegs); 5555 } 5556 5557 // Add information to the INLINEASM node to know that this register is 5558 // set. 5559 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5560 InlineAsm::Kind_RegDefEarlyClobber : 5561 InlineAsm::Kind_RegDef, 5562 false, 5563 0, 5564 DAG, 5565 AsmNodeOperands); 5566 break; 5567 } 5568 case InlineAsm::isInput: { 5569 SDValue InOperandVal = OpInfo.CallOperand; 5570 5571 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5572 // If this is required to match an output register we have already set, 5573 // just use its register. 5574 unsigned OperandNo = OpInfo.getMatchedOperand(); 5575 5576 // Scan until we find the definition we already emitted of this operand. 5577 // When we find it, create a RegsForValue operand. 5578 unsigned CurOp = InlineAsm::Op_FirstOperand; 5579 for (; OperandNo; --OperandNo) { 5580 // Advance to the next operand. 5581 unsigned OpFlag = 5582 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5583 assert((InlineAsm::isRegDefKind(OpFlag) || 5584 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5585 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5586 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5587 } 5588 5589 unsigned OpFlag = 5590 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5591 if (InlineAsm::isRegDefKind(OpFlag) || 5592 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5593 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5594 if (OpInfo.isIndirect) { 5595 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5596 LLVMContext &Ctx = *DAG.getContext(); 5597 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5598 " don't know how to handle tied " 5599 "indirect register inputs"); 5600 } 5601 5602 RegsForValue MatchedRegs; 5603 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5604 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5605 MatchedRegs.RegVTs.push_back(RegVT); 5606 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5607 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5608 i != e; ++i) 5609 MatchedRegs.Regs.push_back 5610 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5611 5612 // Use the produced MatchedRegs object to 5613 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5614 Chain, &Flag); 5615 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5616 true, OpInfo.getMatchedOperand(), 5617 DAG, AsmNodeOperands); 5618 break; 5619 } 5620 5621 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5622 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5623 "Unexpected number of operands"); 5624 // Add information to the INLINEASM node to know about this input. 5625 // See InlineAsm.h isUseOperandTiedToDef. 5626 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5627 OpInfo.getMatchedOperand()); 5628 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5629 TLI.getPointerTy())); 5630 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5631 break; 5632 } 5633 5634 // Treat indirect 'X' constraint as memory. 5635 if (OpInfo.ConstraintType == TargetLowering::C_Other && 5636 OpInfo.isIndirect) 5637 OpInfo.ConstraintType = TargetLowering::C_Memory; 5638 5639 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5640 std::vector<SDValue> Ops; 5641 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5642 Ops, DAG); 5643 if (Ops.empty()) 5644 report_fatal_error("Invalid operand for inline asm constraint '" + 5645 Twine(OpInfo.ConstraintCode) + "'!"); 5646 5647 // Add information to the INLINEASM node to know about this input. 5648 unsigned ResOpType = 5649 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5650 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5651 TLI.getPointerTy())); 5652 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5653 break; 5654 } 5655 5656 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5657 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5658 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5659 "Memory operands expect pointer values"); 5660 5661 // Add information to the INLINEASM node to know about this input. 5662 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5663 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5664 TLI.getPointerTy())); 5665 AsmNodeOperands.push_back(InOperandVal); 5666 break; 5667 } 5668 5669 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5670 OpInfo.ConstraintType == TargetLowering::C_Register) && 5671 "Unknown constraint type!"); 5672 assert(!OpInfo.isIndirect && 5673 "Don't know how to handle indirect register inputs yet!"); 5674 5675 // Copy the input into the appropriate registers. 5676 if (OpInfo.AssignedRegs.Regs.empty() || 5677 !OpInfo.AssignedRegs.areValueTypesLegal(TLI)) 5678 report_fatal_error("Couldn't allocate input reg for constraint '" + 5679 Twine(OpInfo.ConstraintCode) + "'!"); 5680 5681 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5682 Chain, &Flag); 5683 5684 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 5685 DAG, AsmNodeOperands); 5686 break; 5687 } 5688 case InlineAsm::isClobber: { 5689 // Add the clobbered value to the operand list, so that the register 5690 // allocator is aware that the physreg got clobbered. 5691 if (!OpInfo.AssignedRegs.Regs.empty()) 5692 OpInfo.AssignedRegs.AddInlineAsmOperands( 5693 InlineAsm::Kind_RegDefEarlyClobber, 5694 false, 0, DAG, 5695 AsmNodeOperands); 5696 break; 5697 } 5698 } 5699 } 5700 5701 // Finish up input operands. Set the input chain and add the flag last. 5702 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 5703 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5704 5705 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5706 DAG.getVTList(MVT::Other, MVT::Flag), 5707 &AsmNodeOperands[0], AsmNodeOperands.size()); 5708 Flag = Chain.getValue(1); 5709 5710 // If this asm returns a register value, copy the result from that register 5711 // and set it as the value of the call. 5712 if (!RetValRegs.Regs.empty()) { 5713 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5714 Chain, &Flag); 5715 5716 // FIXME: Why don't we do this for inline asms with MRVs? 5717 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5718 EVT ResultType = TLI.getValueType(CS.getType()); 5719 5720 // If any of the results of the inline asm is a vector, it may have the 5721 // wrong width/num elts. This can happen for register classes that can 5722 // contain multiple different value types. The preg or vreg allocated may 5723 // not have the same VT as was expected. Convert it to the right type 5724 // with bit_convert. 5725 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5726 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5727 ResultType, Val); 5728 5729 } else if (ResultType != Val.getValueType() && 5730 ResultType.isInteger() && Val.getValueType().isInteger()) { 5731 // If a result value was tied to an input value, the computed result may 5732 // have a wider width than the expected result. Extract the relevant 5733 // portion. 5734 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5735 } 5736 5737 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5738 } 5739 5740 setValue(CS.getInstruction(), Val); 5741 // Don't need to use this as a chain in this case. 5742 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5743 return; 5744 } 5745 5746 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 5747 5748 // Process indirect outputs, first output all of the flagged copies out of 5749 // physregs. 5750 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5751 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5752 const Value *Ptr = IndirectStoresToEmit[i].second; 5753 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5754 Chain, &Flag); 5755 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5756 } 5757 5758 // Emit the non-flagged stores from the physregs. 5759 SmallVector<SDValue, 8> OutChains; 5760 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5761 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5762 StoresToEmit[i].first, 5763 getValue(StoresToEmit[i].second), 5764 MachinePointerInfo(StoresToEmit[i].second), 5765 false, false, 0); 5766 OutChains.push_back(Val); 5767 } 5768 5769 if (!OutChains.empty()) 5770 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5771 &OutChains[0], OutChains.size()); 5772 5773 DAG.setRoot(Chain); 5774 } 5775 5776 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 5777 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5778 MVT::Other, getRoot(), 5779 getValue(I.getArgOperand(0)), 5780 DAG.getSrcValue(I.getArgOperand(0)))); 5781 } 5782 5783 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 5784 const TargetData &TD = *TLI.getTargetData(); 5785 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5786 getRoot(), getValue(I.getOperand(0)), 5787 DAG.getSrcValue(I.getOperand(0)), 5788 TD.getABITypeAlignment(I.getType())); 5789 setValue(&I, V); 5790 DAG.setRoot(V.getValue(1)); 5791 } 5792 5793 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 5794 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5795 MVT::Other, getRoot(), 5796 getValue(I.getArgOperand(0)), 5797 DAG.getSrcValue(I.getArgOperand(0)))); 5798 } 5799 5800 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 5801 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5802 MVT::Other, getRoot(), 5803 getValue(I.getArgOperand(0)), 5804 getValue(I.getArgOperand(1)), 5805 DAG.getSrcValue(I.getArgOperand(0)), 5806 DAG.getSrcValue(I.getArgOperand(1)))); 5807 } 5808 5809 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5810 /// implementation, which just calls LowerCall. 5811 /// FIXME: When all targets are 5812 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5813 std::pair<SDValue, SDValue> 5814 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5815 bool RetSExt, bool RetZExt, bool isVarArg, 5816 bool isInreg, unsigned NumFixedArgs, 5817 CallingConv::ID CallConv, bool isTailCall, 5818 bool isReturnValueUsed, 5819 SDValue Callee, 5820 ArgListTy &Args, SelectionDAG &DAG, 5821 DebugLoc dl) const { 5822 // Handle all of the outgoing arguments. 5823 SmallVector<ISD::OutputArg, 32> Outs; 5824 SmallVector<SDValue, 32> OutVals; 5825 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 5826 SmallVector<EVT, 4> ValueVTs; 5827 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 5828 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5829 Value != NumValues; ++Value) { 5830 EVT VT = ValueVTs[Value]; 5831 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 5832 SDValue Op = SDValue(Args[i].Node.getNode(), 5833 Args[i].Node.getResNo() + Value); 5834 ISD::ArgFlagsTy Flags; 5835 unsigned OriginalAlignment = 5836 getTargetData()->getABITypeAlignment(ArgTy); 5837 5838 if (Args[i].isZExt) 5839 Flags.setZExt(); 5840 if (Args[i].isSExt) 5841 Flags.setSExt(); 5842 if (Args[i].isInReg) 5843 Flags.setInReg(); 5844 if (Args[i].isSRet) 5845 Flags.setSRet(); 5846 if (Args[i].isByVal) { 5847 Flags.setByVal(); 5848 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 5849 const Type *ElementTy = Ty->getElementType(); 5850 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 5851 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 5852 // For ByVal, alignment should come from FE. BE will guess if this 5853 // info is not there but there are cases it cannot get right. 5854 if (Args[i].Alignment) 5855 FrameAlign = Args[i].Alignment; 5856 Flags.setByValAlign(FrameAlign); 5857 Flags.setByValSize(FrameSize); 5858 } 5859 if (Args[i].isNest) 5860 Flags.setNest(); 5861 Flags.setOrigAlign(OriginalAlignment); 5862 5863 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 5864 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 5865 SmallVector<SDValue, 4> Parts(NumParts); 5866 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 5867 5868 if (Args[i].isSExt) 5869 ExtendKind = ISD::SIGN_EXTEND; 5870 else if (Args[i].isZExt) 5871 ExtendKind = ISD::ZERO_EXTEND; 5872 5873 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 5874 PartVT, ExtendKind); 5875 5876 for (unsigned j = 0; j != NumParts; ++j) { 5877 // if it isn't first piece, alignment must be 1 5878 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 5879 i < NumFixedArgs); 5880 if (NumParts > 1 && j == 0) 5881 MyFlags.Flags.setSplit(); 5882 else if (j != 0) 5883 MyFlags.Flags.setOrigAlign(1); 5884 5885 Outs.push_back(MyFlags); 5886 OutVals.push_back(Parts[j]); 5887 } 5888 } 5889 } 5890 5891 // Handle the incoming return values from the call. 5892 SmallVector<ISD::InputArg, 32> Ins; 5893 SmallVector<EVT, 4> RetTys; 5894 ComputeValueVTs(*this, RetTy, RetTys); 5895 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5896 EVT VT = RetTys[I]; 5897 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5898 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5899 for (unsigned i = 0; i != NumRegs; ++i) { 5900 ISD::InputArg MyFlags; 5901 MyFlags.VT = RegisterVT; 5902 MyFlags.Used = isReturnValueUsed; 5903 if (RetSExt) 5904 MyFlags.Flags.setSExt(); 5905 if (RetZExt) 5906 MyFlags.Flags.setZExt(); 5907 if (isInreg) 5908 MyFlags.Flags.setInReg(); 5909 Ins.push_back(MyFlags); 5910 } 5911 } 5912 5913 SmallVector<SDValue, 4> InVals; 5914 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 5915 Outs, OutVals, Ins, dl, DAG, InVals); 5916 5917 // Verify that the target's LowerCall behaved as expected. 5918 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 5919 "LowerCall didn't return a valid chain!"); 5920 assert((!isTailCall || InVals.empty()) && 5921 "LowerCall emitted a return value for a tail call!"); 5922 assert((isTailCall || InVals.size() == Ins.size()) && 5923 "LowerCall didn't emit the correct number of values!"); 5924 5925 // For a tail call, the return value is merely live-out and there aren't 5926 // any nodes in the DAG representing it. Return a special value to 5927 // indicate that a tail call has been emitted and no more Instructions 5928 // should be processed in the current block. 5929 if (isTailCall) { 5930 DAG.setRoot(Chain); 5931 return std::make_pair(SDValue(), SDValue()); 5932 } 5933 5934 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5935 assert(InVals[i].getNode() && 5936 "LowerCall emitted a null value!"); 5937 assert(Ins[i].VT == InVals[i].getValueType() && 5938 "LowerCall emitted a value with the wrong type!"); 5939 }); 5940 5941 // Collect the legal value parts into potentially illegal values 5942 // that correspond to the original function's return values. 5943 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5944 if (RetSExt) 5945 AssertOp = ISD::AssertSext; 5946 else if (RetZExt) 5947 AssertOp = ISD::AssertZext; 5948 SmallVector<SDValue, 4> ReturnValues; 5949 unsigned CurReg = 0; 5950 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5951 EVT VT = RetTys[I]; 5952 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5953 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5954 5955 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 5956 NumRegs, RegisterVT, VT, 5957 AssertOp)); 5958 CurReg += NumRegs; 5959 } 5960 5961 // For a function returning void, there is no return value. We can't create 5962 // such a node, so we just return a null return value in that case. In 5963 // that case, nothing will actualy look at the value. 5964 if (ReturnValues.empty()) 5965 return std::make_pair(SDValue(), Chain); 5966 5967 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 5968 DAG.getVTList(&RetTys[0], RetTys.size()), 5969 &ReturnValues[0], ReturnValues.size()); 5970 return std::make_pair(Res, Chain); 5971 } 5972 5973 void TargetLowering::LowerOperationWrapper(SDNode *N, 5974 SmallVectorImpl<SDValue> &Results, 5975 SelectionDAG &DAG) const { 5976 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 5977 if (Res.getNode()) 5978 Results.push_back(Res); 5979 } 5980 5981 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 5982 llvm_unreachable("LowerOperation not implemented for this target!"); 5983 return SDValue(); 5984 } 5985 5986 void 5987 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 5988 SDValue Op = getNonRegisterValue(V); 5989 assert((Op.getOpcode() != ISD::CopyFromReg || 5990 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 5991 "Copy from a reg to the same reg!"); 5992 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 5993 5994 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 5995 SDValue Chain = DAG.getEntryNode(); 5996 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 5997 PendingExports.push_back(Chain); 5998 } 5999 6000 #include "llvm/CodeGen/SelectionDAGISel.h" 6001 6002 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6003 // If this is the entry block, emit arguments. 6004 const Function &F = *LLVMBB->getParent(); 6005 SelectionDAG &DAG = SDB->DAG; 6006 DebugLoc dl = SDB->getCurDebugLoc(); 6007 const TargetData *TD = TLI.getTargetData(); 6008 SmallVector<ISD::InputArg, 16> Ins; 6009 6010 // Check whether the function can return without sret-demotion. 6011 SmallVector<ISD::OutputArg, 4> Outs; 6012 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6013 Outs, TLI); 6014 6015 if (!FuncInfo->CanLowerReturn) { 6016 // Put in an sret pointer parameter before all the other parameters. 6017 SmallVector<EVT, 1> ValueVTs; 6018 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6019 6020 // NOTE: Assuming that a pointer will never break down to more than one VT 6021 // or one register. 6022 ISD::ArgFlagsTy Flags; 6023 Flags.setSRet(); 6024 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6025 ISD::InputArg RetArg(Flags, RegisterVT, true); 6026 Ins.push_back(RetArg); 6027 } 6028 6029 // Set up the incoming argument description vector. 6030 unsigned Idx = 1; 6031 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6032 I != E; ++I, ++Idx) { 6033 SmallVector<EVT, 4> ValueVTs; 6034 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6035 bool isArgValueUsed = !I->use_empty(); 6036 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6037 Value != NumValues; ++Value) { 6038 EVT VT = ValueVTs[Value]; 6039 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6040 ISD::ArgFlagsTy Flags; 6041 unsigned OriginalAlignment = 6042 TD->getABITypeAlignment(ArgTy); 6043 6044 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6045 Flags.setZExt(); 6046 if (F.paramHasAttr(Idx, Attribute::SExt)) 6047 Flags.setSExt(); 6048 if (F.paramHasAttr(Idx, Attribute::InReg)) 6049 Flags.setInReg(); 6050 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6051 Flags.setSRet(); 6052 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6053 Flags.setByVal(); 6054 const PointerType *Ty = cast<PointerType>(I->getType()); 6055 const Type *ElementTy = Ty->getElementType(); 6056 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6057 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 6058 // For ByVal, alignment should be passed from FE. BE will guess if 6059 // this info is not there but there are cases it cannot get right. 6060 if (F.getParamAlignment(Idx)) 6061 FrameAlign = F.getParamAlignment(Idx); 6062 Flags.setByValAlign(FrameAlign); 6063 Flags.setByValSize(FrameSize); 6064 } 6065 if (F.paramHasAttr(Idx, Attribute::Nest)) 6066 Flags.setNest(); 6067 Flags.setOrigAlign(OriginalAlignment); 6068 6069 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6070 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6071 for (unsigned i = 0; i != NumRegs; ++i) { 6072 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6073 if (NumRegs > 1 && i == 0) 6074 MyFlags.Flags.setSplit(); 6075 // if it isn't first piece, alignment must be 1 6076 else if (i > 0) 6077 MyFlags.Flags.setOrigAlign(1); 6078 Ins.push_back(MyFlags); 6079 } 6080 } 6081 } 6082 6083 // Call the target to set up the argument values. 6084 SmallVector<SDValue, 8> InVals; 6085 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6086 F.isVarArg(), Ins, 6087 dl, DAG, InVals); 6088 6089 // Verify that the target's LowerFormalArguments behaved as expected. 6090 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6091 "LowerFormalArguments didn't return a valid chain!"); 6092 assert(InVals.size() == Ins.size() && 6093 "LowerFormalArguments didn't emit the correct number of values!"); 6094 DEBUG({ 6095 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6096 assert(InVals[i].getNode() && 6097 "LowerFormalArguments emitted a null value!"); 6098 assert(Ins[i].VT == InVals[i].getValueType() && 6099 "LowerFormalArguments emitted a value with the wrong type!"); 6100 } 6101 }); 6102 6103 // Update the DAG with the new chain value resulting from argument lowering. 6104 DAG.setRoot(NewRoot); 6105 6106 // Set up the argument values. 6107 unsigned i = 0; 6108 Idx = 1; 6109 if (!FuncInfo->CanLowerReturn) { 6110 // Create a virtual register for the sret pointer, and put in a copy 6111 // from the sret argument into it. 6112 SmallVector<EVT, 1> ValueVTs; 6113 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6114 EVT VT = ValueVTs[0]; 6115 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6116 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6117 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6118 RegVT, VT, AssertOp); 6119 6120 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6121 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6122 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6123 FuncInfo->DemoteRegister = SRetReg; 6124 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6125 SRetReg, ArgValue); 6126 DAG.setRoot(NewRoot); 6127 6128 // i indexes lowered arguments. Bump it past the hidden sret argument. 6129 // Idx indexes LLVM arguments. Don't touch it. 6130 ++i; 6131 } 6132 6133 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6134 ++I, ++Idx) { 6135 SmallVector<SDValue, 4> ArgValues; 6136 SmallVector<EVT, 4> ValueVTs; 6137 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6138 unsigned NumValues = ValueVTs.size(); 6139 6140 // If this argument is unused then remember its value. It is used to generate 6141 // debugging information. 6142 if (I->use_empty() && NumValues) 6143 SDB->setUnusedArgValue(I, InVals[i]); 6144 6145 for (unsigned Value = 0; Value != NumValues; ++Value) { 6146 EVT VT = ValueVTs[Value]; 6147 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6148 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6149 6150 if (!I->use_empty()) { 6151 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6152 if (F.paramHasAttr(Idx, Attribute::SExt)) 6153 AssertOp = ISD::AssertSext; 6154 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6155 AssertOp = ISD::AssertZext; 6156 6157 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6158 NumParts, PartVT, VT, 6159 AssertOp)); 6160 } 6161 6162 i += NumParts; 6163 } 6164 6165 // Note down frame index for byval arguments. 6166 if (I->hasByValAttr() && !ArgValues.empty()) 6167 if (FrameIndexSDNode *FI = 6168 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6169 FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex()); 6170 6171 if (!I->use_empty()) { 6172 SDValue Res; 6173 if (!ArgValues.empty()) 6174 Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6175 SDB->getCurDebugLoc()); 6176 SDB->setValue(I, Res); 6177 6178 // If this argument is live outside of the entry block, insert a copy from 6179 // whereever we got it to the vreg that other BB's will reference it as. 6180 SDB->CopyToExportRegsIfNeeded(I); 6181 } 6182 } 6183 6184 assert(i == InVals.size() && "Argument register count mismatch!"); 6185 6186 // Finally, if the target has anything special to do, allow it to do so. 6187 // FIXME: this should insert code into the DAG! 6188 EmitFunctionEntryCode(); 6189 } 6190 6191 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6192 /// ensure constants are generated when needed. Remember the virtual registers 6193 /// that need to be added to the Machine PHI nodes as input. We cannot just 6194 /// directly add them, because expansion might result in multiple MBB's for one 6195 /// BB. As such, the start of the BB might correspond to a different MBB than 6196 /// the end. 6197 /// 6198 void 6199 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6200 const TerminatorInst *TI = LLVMBB->getTerminator(); 6201 6202 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6203 6204 // Check successor nodes' PHI nodes that expect a constant to be available 6205 // from this block. 6206 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6207 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6208 if (!isa<PHINode>(SuccBB->begin())) continue; 6209 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6210 6211 // If this terminator has multiple identical successors (common for 6212 // switches), only handle each succ once. 6213 if (!SuccsHandled.insert(SuccMBB)) continue; 6214 6215 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6216 6217 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6218 // nodes and Machine PHI nodes, but the incoming operands have not been 6219 // emitted yet. 6220 for (BasicBlock::const_iterator I = SuccBB->begin(); 6221 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6222 // Ignore dead phi's. 6223 if (PN->use_empty()) continue; 6224 6225 unsigned Reg; 6226 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6227 6228 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6229 unsigned &RegOut = ConstantsOut[C]; 6230 if (RegOut == 0) { 6231 RegOut = FuncInfo.CreateRegs(C->getType()); 6232 CopyValueToVirtualRegister(C, RegOut); 6233 } 6234 Reg = RegOut; 6235 } else { 6236 DenseMap<const Value *, unsigned>::iterator I = 6237 FuncInfo.ValueMap.find(PHIOp); 6238 if (I != FuncInfo.ValueMap.end()) 6239 Reg = I->second; 6240 else { 6241 assert(isa<AllocaInst>(PHIOp) && 6242 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6243 "Didn't codegen value into a register!??"); 6244 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6245 CopyValueToVirtualRegister(PHIOp, Reg); 6246 } 6247 } 6248 6249 // Remember that this register needs to added to the machine PHI node as 6250 // the input for this MBB. 6251 SmallVector<EVT, 4> ValueVTs; 6252 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6253 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6254 EVT VT = ValueVTs[vti]; 6255 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6256 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6257 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6258 Reg += NumRegisters; 6259 } 6260 } 6261 } 6262 ConstantsOut.clear(); 6263 } 6264