xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision a4951eca40c070e020aa5d2689c08177fbeb780d)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/RuntimeLibcalls.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
50 #include "llvm/CodeGen/StackMaps.h"
51 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
52 #include "llvm/CodeGen/TargetFrameLowering.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/WinEHFuncInfo.h"
58 #include "llvm/IR/Argument.h"
59 #include "llvm/IR/Attributes.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/CallingConv.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/ConstantRange.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfo.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/EHPersonalities.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsAMDGPU.h"
81 #include "llvm/IR/IntrinsicsWebAssembly.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/Metadata.h"
84 #include "llvm/IR/Module.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/IR/Statepoint.h"
88 #include "llvm/IR/Type.h"
89 #include "llvm/IR/User.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/MC/MCContext.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/InstructionCost.h"
98 #include "llvm/Support/MathExtras.h"
99 #include "llvm/Support/raw_ostream.h"
100 #include "llvm/Target/TargetIntrinsicInfo.h"
101 #include "llvm/Target/TargetMachine.h"
102 #include "llvm/Target/TargetOptions.h"
103 #include "llvm/TargetParser/Triple.h"
104 #include "llvm/Transforms/Utils/Local.h"
105 #include <cstddef>
106 #include <iterator>
107 #include <limits>
108 #include <optional>
109 #include <tuple>
110 
111 using namespace llvm;
112 using namespace PatternMatch;
113 using namespace SwitchCG;
114 
115 #define DEBUG_TYPE "isel"
116 
117 /// LimitFloatPrecision - Generate low-precision inline sequences for
118 /// some float libcalls (6, 8 or 12 bits).
119 static unsigned LimitFloatPrecision;
120 
121 static cl::opt<bool>
122     InsertAssertAlign("insert-assert-align", cl::init(true),
123                       cl::desc("Insert the experimental `assertalign` node."),
124                       cl::ReallyHidden);
125 
126 static cl::opt<unsigned, true>
127     LimitFPPrecision("limit-float-precision",
128                      cl::desc("Generate low-precision inline sequences "
129                               "for some float libcalls"),
130                      cl::location(LimitFloatPrecision), cl::Hidden,
131                      cl::init(0));
132 
133 static cl::opt<unsigned> SwitchPeelThreshold(
134     "switch-peel-threshold", cl::Hidden, cl::init(66),
135     cl::desc("Set the case probability threshold for peeling the case from a "
136              "switch statement. A value greater than 100 will void this "
137              "optimization"));
138 
139 // Limit the width of DAG chains. This is important in general to prevent
140 // DAG-based analysis from blowing up. For example, alias analysis and
141 // load clustering may not complete in reasonable time. It is difficult to
142 // recognize and avoid this situation within each individual analysis, and
143 // future analyses are likely to have the same behavior. Limiting DAG width is
144 // the safe approach and will be especially important with global DAGs.
145 //
146 // MaxParallelChains default is arbitrarily high to avoid affecting
147 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
148 // sequence over this should have been converted to llvm.memcpy by the
149 // frontend. It is easy to induce this behavior with .ll code such as:
150 // %buffer = alloca [4096 x i8]
151 // %data = load [4096 x i8]* %argPtr
152 // store [4096 x i8] %data, [4096 x i8]* %buffer
153 static const unsigned MaxParallelChains = 64;
154 
155 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
156                                       const SDValue *Parts, unsigned NumParts,
157                                       MVT PartVT, EVT ValueVT, const Value *V,
158                                       SDValue InChain,
159                                       std::optional<CallingConv::ID> CC);
160 
161 /// getCopyFromParts - Create a value that contains the specified legal parts
162 /// combined into the value they represent.  If the parts combine to a type
163 /// larger than ValueVT then AssertOp can be used to specify whether the extra
164 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
165 /// (ISD::AssertSext).
166 static SDValue
167 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
168                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
169                  SDValue InChain,
170                  std::optional<CallingConv::ID> CC = std::nullopt,
171                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
172   // Let the target assemble the parts if it wants to
173   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
174   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
175                                                    PartVT, ValueVT, CC))
176     return Val;
177 
178   if (ValueVT.isVector())
179     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
180                                   InChain, CC);
181 
182   assert(NumParts > 0 && "No parts to assemble!");
183   SDValue Val = Parts[0];
184 
185   if (NumParts > 1) {
186     // Assemble the value from multiple parts.
187     if (ValueVT.isInteger()) {
188       unsigned PartBits = PartVT.getSizeInBits();
189       unsigned ValueBits = ValueVT.getSizeInBits();
190 
191       // Assemble the power of 2 part.
192       unsigned RoundParts = llvm::bit_floor(NumParts);
193       unsigned RoundBits = PartBits * RoundParts;
194       EVT RoundVT = RoundBits == ValueBits ?
195         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
196       SDValue Lo, Hi;
197 
198       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
199 
200       if (RoundParts > 2) {
201         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
202                               InChain);
203         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
204                               PartVT, HalfVT, V, InChain);
205       } else {
206         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
207         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
208       }
209 
210       if (DAG.getDataLayout().isBigEndian())
211         std::swap(Lo, Hi);
212 
213       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
214 
215       if (RoundParts < NumParts) {
216         // Assemble the trailing non-power-of-2 part.
217         unsigned OddParts = NumParts - RoundParts;
218         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
219         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
220                               OddVT, V, InChain, CC);
221 
222         // Combine the round and odd parts.
223         Lo = Val;
224         if (DAG.getDataLayout().isBigEndian())
225           std::swap(Lo, Hi);
226         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
227         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
228         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
229                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
230                                          TLI.getShiftAmountTy(
231                                              TotalVT, DAG.getDataLayout())));
232         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
233         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
234       }
235     } else if (PartVT.isFloatingPoint()) {
236       // FP split into multiple FP parts (for ppcf128)
237       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
238              "Unexpected split");
239       SDValue Lo, Hi;
240       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
241       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
242       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
243         std::swap(Lo, Hi);
244       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
245     } else {
246       // FP split into integer parts (soft fp)
247       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
248              !PartVT.isVector() && "Unexpected split");
249       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
250       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
251                              InChain, CC);
252     }
253   }
254 
255   // There is now one part, held in Val.  Correct it to match ValueVT.
256   // PartEVT is the type of the register class that holds the value.
257   // ValueVT is the type of the inline asm operation.
258   EVT PartEVT = Val.getValueType();
259 
260   if (PartEVT == ValueVT)
261     return Val;
262 
263   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
264       ValueVT.bitsLT(PartEVT)) {
265     // For an FP value in an integer part, we need to truncate to the right
266     // width first.
267     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
268     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
269   }
270 
271   // Handle types that have the same size.
272   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
273     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
274 
275   // Handle types with different sizes.
276   if (PartEVT.isInteger() && ValueVT.isInteger()) {
277     if (ValueVT.bitsLT(PartEVT)) {
278       // For a truncate, see if we have any information to
279       // indicate whether the truncated bits will always be
280       // zero or sign-extension.
281       if (AssertOp)
282         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
283                           DAG.getValueType(ValueVT));
284       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
285     }
286     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
287   }
288 
289   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
290     // FP_ROUND's are always exact here.
291     if (ValueVT.bitsLT(Val.getValueType())) {
292 
293       SDValue NoChange =
294           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
295 
296       if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
297               llvm::Attribute::StrictFP)) {
298         return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
299                            DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
300                            NoChange);
301       }
302 
303       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
304     }
305 
306     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
307   }
308 
309   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
310   // then truncating.
311   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
312       ValueVT.bitsLT(PartEVT)) {
313     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
314     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
315   }
316 
317   report_fatal_error("Unknown mismatch in getCopyFromParts!");
318 }
319 
320 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
321                                               const Twine &ErrMsg) {
322   const Instruction *I = dyn_cast_or_null<Instruction>(V);
323   if (!V)
324     return Ctx.emitError(ErrMsg);
325 
326   const char *AsmError = ", possible invalid constraint for vector type";
327   if (const CallInst *CI = dyn_cast<CallInst>(I))
328     if (CI->isInlineAsm())
329       return Ctx.emitError(I, ErrMsg + AsmError);
330 
331   return Ctx.emitError(I, ErrMsg);
332 }
333 
334 /// getCopyFromPartsVector - Create a value that contains the specified legal
335 /// parts combined into the value they represent.  If the parts combine to a
336 /// type larger than ValueVT then AssertOp can be used to specify whether the
337 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
338 /// ValueVT (ISD::AssertSext).
339 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
340                                       const SDValue *Parts, unsigned NumParts,
341                                       MVT PartVT, EVT ValueVT, const Value *V,
342                                       SDValue InChain,
343                                       std::optional<CallingConv::ID> CallConv) {
344   assert(ValueVT.isVector() && "Not a vector value");
345   assert(NumParts > 0 && "No parts to assemble!");
346   const bool IsABIRegCopy = CallConv.has_value();
347 
348   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
349   SDValue Val = Parts[0];
350 
351   // Handle a multi-element vector.
352   if (NumParts > 1) {
353     EVT IntermediateVT;
354     MVT RegisterVT;
355     unsigned NumIntermediates;
356     unsigned NumRegs;
357 
358     if (IsABIRegCopy) {
359       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
360           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
361           NumIntermediates, RegisterVT);
362     } else {
363       NumRegs =
364           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
365                                      NumIntermediates, RegisterVT);
366     }
367 
368     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
369     NumParts = NumRegs; // Silence a compiler warning.
370     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
371     assert(RegisterVT.getSizeInBits() ==
372            Parts[0].getSimpleValueType().getSizeInBits() &&
373            "Part type sizes don't match!");
374 
375     // Assemble the parts into intermediate operands.
376     SmallVector<SDValue, 8> Ops(NumIntermediates);
377     if (NumIntermediates == NumParts) {
378       // If the register was not expanded, truncate or copy the value,
379       // as appropriate.
380       for (unsigned i = 0; i != NumParts; ++i)
381         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
382                                   V, InChain, CallConv);
383     } else if (NumParts > 0) {
384       // If the intermediate type was expanded, build the intermediate
385       // operands from the parts.
386       assert(NumParts % NumIntermediates == 0 &&
387              "Must expand into a divisible number of parts!");
388       unsigned Factor = NumParts / NumIntermediates;
389       for (unsigned i = 0; i != NumIntermediates; ++i)
390         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
391                                   IntermediateVT, V, InChain, CallConv);
392     }
393 
394     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
395     // intermediate operands.
396     EVT BuiltVectorTy =
397         IntermediateVT.isVector()
398             ? EVT::getVectorVT(
399                   *DAG.getContext(), IntermediateVT.getScalarType(),
400                   IntermediateVT.getVectorElementCount() * NumParts)
401             : EVT::getVectorVT(*DAG.getContext(),
402                                IntermediateVT.getScalarType(),
403                                NumIntermediates);
404     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
405                                                 : ISD::BUILD_VECTOR,
406                       DL, BuiltVectorTy, Ops);
407   }
408 
409   // There is now one part, held in Val.  Correct it to match ValueVT.
410   EVT PartEVT = Val.getValueType();
411 
412   if (PartEVT == ValueVT)
413     return Val;
414 
415   if (PartEVT.isVector()) {
416     // Vector/Vector bitcast.
417     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
418       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419 
420     // If the parts vector has more elements than the value vector, then we
421     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
422     // Extract the elements we want.
423     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
424       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
425               ValueVT.getVectorElementCount().getKnownMinValue()) &&
426              (PartEVT.getVectorElementCount().isScalable() ==
427               ValueVT.getVectorElementCount().isScalable()) &&
428              "Cannot narrow, it would be a lossy transformation");
429       PartEVT =
430           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
431                            ValueVT.getVectorElementCount());
432       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
433                         DAG.getVectorIdxConstant(0, DL));
434       if (PartEVT == ValueVT)
435         return Val;
436       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
437         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438 
439       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
440       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
441         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
442     }
443 
444     // Promoted vector extract
445     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
446   }
447 
448   // Trivial bitcast if the types are the same size and the destination
449   // vector type is legal.
450   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
451       TLI.isTypeLegal(ValueVT))
452     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
453 
454   if (ValueVT.getVectorNumElements() != 1) {
455      // Certain ABIs require that vectors are passed as integers. For vectors
456      // are the same size, this is an obvious bitcast.
457      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
458        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
459      } else if (ValueVT.bitsLT(PartEVT)) {
460        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
461        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
462        // Drop the extra bits.
463        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
464        return DAG.getBitcast(ValueVT, Val);
465      }
466 
467      diagnosePossiblyInvalidConstraint(
468          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
469      return DAG.getUNDEF(ValueVT);
470   }
471 
472   // Handle cases such as i8 -> <1 x i1>
473   EVT ValueSVT = ValueVT.getVectorElementType();
474   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
475     unsigned ValueSize = ValueSVT.getSizeInBits();
476     if (ValueSize == PartEVT.getSizeInBits()) {
477       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
478     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
479       // It's possible a scalar floating point type gets softened to integer and
480       // then promoted to a larger integer. If PartEVT is the larger integer
481       // we need to truncate it and then bitcast to the FP type.
482       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
483       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
484       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
485       Val = DAG.getBitcast(ValueSVT, Val);
486     } else {
487       Val = ValueVT.isFloatingPoint()
488                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
489                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
490     }
491   }
492 
493   return DAG.getBuildVector(ValueVT, DL, Val);
494 }
495 
496 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
497                                  SDValue Val, SDValue *Parts, unsigned NumParts,
498                                  MVT PartVT, const Value *V,
499                                  std::optional<CallingConv::ID> CallConv);
500 
501 /// getCopyToParts - Create a series of nodes that contain the specified value
502 /// split into legal parts.  If the parts contain more bits than Val, then, for
503 /// integers, ExtendKind can be used to specify how to generate the extra bits.
504 static void
505 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
506                unsigned NumParts, MVT PartVT, const Value *V,
507                std::optional<CallingConv::ID> CallConv = std::nullopt,
508                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
509   // Let the target split the parts if it wants to
510   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
511   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
512                                       CallConv))
513     return;
514   EVT ValueVT = Val.getValueType();
515 
516   // Handle the vector case separately.
517   if (ValueVT.isVector())
518     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
519                                 CallConv);
520 
521   unsigned OrigNumParts = NumParts;
522   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
523          "Copying to an illegal type!");
524 
525   if (NumParts == 0)
526     return;
527 
528   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
529   EVT PartEVT = PartVT;
530   if (PartEVT == ValueVT) {
531     assert(NumParts == 1 && "No-op copy with multiple parts!");
532     Parts[0] = Val;
533     return;
534   }
535 
536   unsigned PartBits = PartVT.getSizeInBits();
537   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
538     // If the parts cover more bits than the value has, promote the value.
539     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
540       assert(NumParts == 1 && "Do not know what to promote to!");
541       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
542     } else {
543       if (ValueVT.isFloatingPoint()) {
544         // FP values need to be bitcast, then extended if they are being put
545         // into a larger container.
546         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
547         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
548       }
549       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
550              ValueVT.isInteger() &&
551              "Unknown mismatch!");
552       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
553       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
554       if (PartVT == MVT::x86mmx)
555         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
556     }
557   } else if (PartBits == ValueVT.getSizeInBits()) {
558     // Different types of the same size.
559     assert(NumParts == 1 && PartEVT != ValueVT);
560     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
562     // If the parts cover less bits than value has, truncate the value.
563     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
564            ValueVT.isInteger() &&
565            "Unknown mismatch!");
566     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
567     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
568     if (PartVT == MVT::x86mmx)
569       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
570   }
571 
572   // The value may have changed - recompute ValueVT.
573   ValueVT = Val.getValueType();
574   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
575          "Failed to tile the value with PartVT!");
576 
577   if (NumParts == 1) {
578     if (PartEVT != ValueVT) {
579       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
580                                         "scalar-to-vector conversion failed");
581       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
582     }
583 
584     Parts[0] = Val;
585     return;
586   }
587 
588   // Expand the value into multiple parts.
589   if (NumParts & (NumParts - 1)) {
590     // The number of parts is not a power of 2.  Split off and copy the tail.
591     assert(PartVT.isInteger() && ValueVT.isInteger() &&
592            "Do not know what to expand to!");
593     unsigned RoundParts = llvm::bit_floor(NumParts);
594     unsigned RoundBits = RoundParts * PartBits;
595     unsigned OddParts = NumParts - RoundParts;
596     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
597       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
598 
599     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
600                    CallConv);
601 
602     if (DAG.getDataLayout().isBigEndian())
603       // The odd parts were reversed by getCopyToParts - unreverse them.
604       std::reverse(Parts + RoundParts, Parts + NumParts);
605 
606     NumParts = RoundParts;
607     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
608     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
609   }
610 
611   // The number of parts is a power of 2.  Repeatedly bisect the value using
612   // EXTRACT_ELEMENT.
613   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
614                          EVT::getIntegerVT(*DAG.getContext(),
615                                            ValueVT.getSizeInBits()),
616                          Val);
617 
618   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
619     for (unsigned i = 0; i < NumParts; i += StepSize) {
620       unsigned ThisBits = StepSize * PartBits / 2;
621       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
622       SDValue &Part0 = Parts[i];
623       SDValue &Part1 = Parts[i+StepSize/2];
624 
625       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
626                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
627       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
628                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
629 
630       if (ThisBits == PartBits && ThisVT != PartVT) {
631         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
632         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
633       }
634     }
635   }
636 
637   if (DAG.getDataLayout().isBigEndian())
638     std::reverse(Parts, Parts + OrigNumParts);
639 }
640 
641 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
642                                      const SDLoc &DL, EVT PartVT) {
643   if (!PartVT.isVector())
644     return SDValue();
645 
646   EVT ValueVT = Val.getValueType();
647   EVT PartEVT = PartVT.getVectorElementType();
648   EVT ValueEVT = ValueVT.getVectorElementType();
649   ElementCount PartNumElts = PartVT.getVectorElementCount();
650   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
651 
652   // We only support widening vectors with equivalent element types and
653   // fixed/scalable properties. If a target needs to widen a fixed-length type
654   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
655   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
656       PartNumElts.isScalable() != ValueNumElts.isScalable())
657     return SDValue();
658 
659   // Have a try for bf16 because some targets share its ABI with fp16.
660   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
661     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
662            "Cannot widen to illegal type");
663     Val = DAG.getNode(ISD::BITCAST, DL,
664                       ValueVT.changeVectorElementType(MVT::f16), Val);
665   } else if (PartEVT != ValueEVT) {
666     return SDValue();
667   }
668 
669   // Widening a scalable vector to another scalable vector is done by inserting
670   // the vector into a larger undef one.
671   if (PartNumElts.isScalable())
672     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
673                        Val, DAG.getVectorIdxConstant(0, DL));
674 
675   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
676   // undef elements.
677   SmallVector<SDValue, 16> Ops;
678   DAG.ExtractVectorElements(Val, Ops);
679   SDValue EltUndef = DAG.getUNDEF(PartEVT);
680   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
681 
682   // FIXME: Use CONCAT for 2x -> 4x.
683   return DAG.getBuildVector(PartVT, DL, Ops);
684 }
685 
686 /// getCopyToPartsVector - Create a series of nodes that contain the specified
687 /// value split into legal parts.
688 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
689                                  SDValue Val, SDValue *Parts, unsigned NumParts,
690                                  MVT PartVT, const Value *V,
691                                  std::optional<CallingConv::ID> CallConv) {
692   EVT ValueVT = Val.getValueType();
693   assert(ValueVT.isVector() && "Not a vector");
694   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
695   const bool IsABIRegCopy = CallConv.has_value();
696 
697   if (NumParts == 1) {
698     EVT PartEVT = PartVT;
699     if (PartEVT == ValueVT) {
700       // Nothing to do.
701     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
702       // Bitconvert vector->vector case.
703       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
704     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
705       Val = Widened;
706     } else if (PartVT.isVector() &&
707                PartEVT.getVectorElementType().bitsGE(
708                    ValueVT.getVectorElementType()) &&
709                PartEVT.getVectorElementCount() ==
710                    ValueVT.getVectorElementCount()) {
711 
712       // Promoted vector extract
713       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
714     } else if (PartEVT.isVector() &&
715                PartEVT.getVectorElementType() !=
716                    ValueVT.getVectorElementType() &&
717                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
718                    TargetLowering::TypeWidenVector) {
719       // Combination of widening and promotion.
720       EVT WidenVT =
721           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
722                            PartVT.getVectorElementCount());
723       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
724       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
725     } else {
726       // Don't extract an integer from a float vector. This can happen if the
727       // FP type gets softened to integer and then promoted. The promotion
728       // prevents it from being picked up by the earlier bitcast case.
729       if (ValueVT.getVectorElementCount().isScalar() &&
730           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
731         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
732                           DAG.getVectorIdxConstant(0, DL));
733       } else {
734         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
735         assert(PartVT.getFixedSizeInBits() > ValueSize &&
736                "lossy conversion of vector to scalar type");
737         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
738         Val = DAG.getBitcast(IntermediateType, Val);
739         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
740       }
741     }
742 
743     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
744     Parts[0] = Val;
745     return;
746   }
747 
748   // Handle a multi-element vector.
749   EVT IntermediateVT;
750   MVT RegisterVT;
751   unsigned NumIntermediates;
752   unsigned NumRegs;
753   if (IsABIRegCopy) {
754     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
755         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
756         RegisterVT);
757   } else {
758     NumRegs =
759         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
760                                    NumIntermediates, RegisterVT);
761   }
762 
763   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
764   NumParts = NumRegs; // Silence a compiler warning.
765   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
766 
767   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
768          "Mixing scalable and fixed vectors when copying in parts");
769 
770   std::optional<ElementCount> DestEltCnt;
771 
772   if (IntermediateVT.isVector())
773     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
774   else
775     DestEltCnt = ElementCount::getFixed(NumIntermediates);
776 
777   EVT BuiltVectorTy = EVT::getVectorVT(
778       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
779 
780   if (ValueVT == BuiltVectorTy) {
781     // Nothing to do.
782   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
783     // Bitconvert vector->vector case.
784     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
785   } else {
786     if (BuiltVectorTy.getVectorElementType().bitsGT(
787             ValueVT.getVectorElementType())) {
788       // Integer promotion.
789       ValueVT = EVT::getVectorVT(*DAG.getContext(),
790                                  BuiltVectorTy.getVectorElementType(),
791                                  ValueVT.getVectorElementCount());
792       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
793     }
794 
795     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
796       Val = Widened;
797     }
798   }
799 
800   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
801 
802   // Split the vector into intermediate operands.
803   SmallVector<SDValue, 8> Ops(NumIntermediates);
804   for (unsigned i = 0; i != NumIntermediates; ++i) {
805     if (IntermediateVT.isVector()) {
806       // This does something sensible for scalable vectors - see the
807       // definition of EXTRACT_SUBVECTOR for further details.
808       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
809       Ops[i] =
810           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
811                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
812     } else {
813       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
814                            DAG.getVectorIdxConstant(i, DL));
815     }
816   }
817 
818   // Split the intermediate operands into legal parts.
819   if (NumParts == NumIntermediates) {
820     // If the register was not expanded, promote or copy the value,
821     // as appropriate.
822     for (unsigned i = 0; i != NumParts; ++i)
823       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
824   } else if (NumParts > 0) {
825     // If the intermediate type was expanded, split each the value into
826     // legal parts.
827     assert(NumIntermediates != 0 && "division by zero");
828     assert(NumParts % NumIntermediates == 0 &&
829            "Must expand into a divisible number of parts!");
830     unsigned Factor = NumParts / NumIntermediates;
831     for (unsigned i = 0; i != NumIntermediates; ++i)
832       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
833                      CallConv);
834   }
835 }
836 
837 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
838                            EVT valuevt, std::optional<CallingConv::ID> CC)
839     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
840       RegCount(1, regs.size()), CallConv(CC) {}
841 
842 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
843                            const DataLayout &DL, unsigned Reg, Type *Ty,
844                            std::optional<CallingConv::ID> CC) {
845   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
846 
847   CallConv = CC;
848 
849   for (EVT ValueVT : ValueVTs) {
850     unsigned NumRegs =
851         isABIMangled()
852             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
853             : TLI.getNumRegisters(Context, ValueVT);
854     MVT RegisterVT =
855         isABIMangled()
856             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
857             : TLI.getRegisterType(Context, ValueVT);
858     for (unsigned i = 0; i != NumRegs; ++i)
859       Regs.push_back(Reg + i);
860     RegVTs.push_back(RegisterVT);
861     RegCount.push_back(NumRegs);
862     Reg += NumRegs;
863   }
864 }
865 
866 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
867                                       FunctionLoweringInfo &FuncInfo,
868                                       const SDLoc &dl, SDValue &Chain,
869                                       SDValue *Glue, const Value *V) const {
870   // A Value with type {} or [0 x %t] needs no registers.
871   if (ValueVTs.empty())
872     return SDValue();
873 
874   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
875 
876   // Assemble the legal parts into the final values.
877   SmallVector<SDValue, 4> Values(ValueVTs.size());
878   SmallVector<SDValue, 8> Parts;
879   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
880     // Copy the legal parts from the registers.
881     EVT ValueVT = ValueVTs[Value];
882     unsigned NumRegs = RegCount[Value];
883     MVT RegisterVT = isABIMangled()
884                          ? TLI.getRegisterTypeForCallingConv(
885                                *DAG.getContext(), *CallConv, RegVTs[Value])
886                          : RegVTs[Value];
887 
888     Parts.resize(NumRegs);
889     for (unsigned i = 0; i != NumRegs; ++i) {
890       SDValue P;
891       if (!Glue) {
892         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
893       } else {
894         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
895         *Glue = P.getValue(2);
896       }
897 
898       Chain = P.getValue(1);
899       Parts[i] = P;
900 
901       // If the source register was virtual and if we know something about it,
902       // add an assert node.
903       if (!Register::isVirtualRegister(Regs[Part + i]) ||
904           !RegisterVT.isInteger())
905         continue;
906 
907       const FunctionLoweringInfo::LiveOutInfo *LOI =
908         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
909       if (!LOI)
910         continue;
911 
912       unsigned RegSize = RegisterVT.getScalarSizeInBits();
913       unsigned NumSignBits = LOI->NumSignBits;
914       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
915 
916       if (NumZeroBits == RegSize) {
917         // The current value is a zero.
918         // Explicitly express that as it would be easier for
919         // optimizations to kick in.
920         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
921         continue;
922       }
923 
924       // FIXME: We capture more information than the dag can represent.  For
925       // now, just use the tightest assertzext/assertsext possible.
926       bool isSExt;
927       EVT FromVT(MVT::Other);
928       if (NumZeroBits) {
929         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
930         isSExt = false;
931       } else if (NumSignBits > 1) {
932         FromVT =
933             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
934         isSExt = true;
935       } else {
936         continue;
937       }
938       // Add an assertion node.
939       assert(FromVT != MVT::Other);
940       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
941                              RegisterVT, P, DAG.getValueType(FromVT));
942     }
943 
944     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
945                                      RegisterVT, ValueVT, V, Chain, CallConv);
946     Part += NumRegs;
947     Parts.clear();
948   }
949 
950   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
951 }
952 
953 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
954                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
955                                  const Value *V,
956                                  ISD::NodeType PreferredExtendType) const {
957   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
958   ISD::NodeType ExtendKind = PreferredExtendType;
959 
960   // Get the list of the values's legal parts.
961   unsigned NumRegs = Regs.size();
962   SmallVector<SDValue, 8> Parts(NumRegs);
963   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
964     unsigned NumParts = RegCount[Value];
965 
966     MVT RegisterVT = isABIMangled()
967                          ? TLI.getRegisterTypeForCallingConv(
968                                *DAG.getContext(), *CallConv, RegVTs[Value])
969                          : RegVTs[Value];
970 
971     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
972       ExtendKind = ISD::ZERO_EXTEND;
973 
974     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
975                    NumParts, RegisterVT, V, CallConv, ExtendKind);
976     Part += NumParts;
977   }
978 
979   // Copy the parts into the registers.
980   SmallVector<SDValue, 8> Chains(NumRegs);
981   for (unsigned i = 0; i != NumRegs; ++i) {
982     SDValue Part;
983     if (!Glue) {
984       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
985     } else {
986       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
987       *Glue = Part.getValue(1);
988     }
989 
990     Chains[i] = Part.getValue(0);
991   }
992 
993   if (NumRegs == 1 || Glue)
994     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
995     // flagged to it. That is the CopyToReg nodes and the user are considered
996     // a single scheduling unit. If we create a TokenFactor and return it as
997     // chain, then the TokenFactor is both a predecessor (operand) of the
998     // user as well as a successor (the TF operands are flagged to the user).
999     // c1, f1 = CopyToReg
1000     // c2, f2 = CopyToReg
1001     // c3     = TokenFactor c1, c2
1002     // ...
1003     //        = op c3, ..., f2
1004     Chain = Chains[NumRegs-1];
1005   else
1006     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1007 }
1008 
1009 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
1010                                         unsigned MatchingIdx, const SDLoc &dl,
1011                                         SelectionDAG &DAG,
1012                                         std::vector<SDValue> &Ops) const {
1013   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1014 
1015   InlineAsm::Flag Flag(Code, Regs.size());
1016   if (HasMatching)
1017     Flag.setMatchingOp(MatchingIdx);
1018   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1019     // Put the register class of the virtual registers in the flag word.  That
1020     // way, later passes can recompute register class constraints for inline
1021     // assembly as well as normal instructions.
1022     // Don't do this for tied operands that can use the regclass information
1023     // from the def.
1024     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1025     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1026     Flag.setRegClass(RC->getID());
1027   }
1028 
1029   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1030   Ops.push_back(Res);
1031 
1032   if (Code == InlineAsm::Kind::Clobber) {
1033     // Clobbers should always have a 1:1 mapping with registers, and may
1034     // reference registers that have illegal (e.g. vector) types. Hence, we
1035     // shouldn't try to apply any sort of splitting logic to them.
1036     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1037            "No 1:1 mapping from clobbers to regs?");
1038     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1039     (void)SP;
1040     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1041       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1042       assert(
1043           (Regs[I] != SP ||
1044            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1045           "If we clobbered the stack pointer, MFI should know about it.");
1046     }
1047     return;
1048   }
1049 
1050   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1051     MVT RegisterVT = RegVTs[Value];
1052     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1053                                            RegisterVT);
1054     for (unsigned i = 0; i != NumRegs; ++i) {
1055       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1056       unsigned TheReg = Regs[Reg++];
1057       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1058     }
1059   }
1060 }
1061 
1062 SmallVector<std::pair<unsigned, TypeSize>, 4>
1063 RegsForValue::getRegsAndSizes() const {
1064   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1065   unsigned I = 0;
1066   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1067     unsigned RegCount = std::get<0>(CountAndVT);
1068     MVT RegisterVT = std::get<1>(CountAndVT);
1069     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1070     for (unsigned E = I + RegCount; I != E; ++I)
1071       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1072   }
1073   return OutVec;
1074 }
1075 
1076 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1077                                AssumptionCache *ac,
1078                                const TargetLibraryInfo *li) {
1079   AA = aa;
1080   AC = ac;
1081   GFI = gfi;
1082   LibInfo = li;
1083   Context = DAG.getContext();
1084   LPadToCallSiteMap.clear();
1085   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1086   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1087       *DAG.getMachineFunction().getFunction().getParent());
1088 }
1089 
1090 void SelectionDAGBuilder::clear() {
1091   NodeMap.clear();
1092   UnusedArgNodeMap.clear();
1093   PendingLoads.clear();
1094   PendingExports.clear();
1095   PendingConstrainedFP.clear();
1096   PendingConstrainedFPStrict.clear();
1097   CurInst = nullptr;
1098   HasTailCall = false;
1099   SDNodeOrder = LowestSDNodeOrder;
1100   StatepointLowering.clear();
1101 }
1102 
1103 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1104   DanglingDebugInfoMap.clear();
1105 }
1106 
1107 // Update DAG root to include dependencies on Pending chains.
1108 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1109   SDValue Root = DAG.getRoot();
1110 
1111   if (Pending.empty())
1112     return Root;
1113 
1114   // Add current root to PendingChains, unless we already indirectly
1115   // depend on it.
1116   if (Root.getOpcode() != ISD::EntryToken) {
1117     unsigned i = 0, e = Pending.size();
1118     for (; i != e; ++i) {
1119       assert(Pending[i].getNode()->getNumOperands() > 1);
1120       if (Pending[i].getNode()->getOperand(0) == Root)
1121         break;  // Don't add the root if we already indirectly depend on it.
1122     }
1123 
1124     if (i == e)
1125       Pending.push_back(Root);
1126   }
1127 
1128   if (Pending.size() == 1)
1129     Root = Pending[0];
1130   else
1131     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1132 
1133   DAG.setRoot(Root);
1134   Pending.clear();
1135   return Root;
1136 }
1137 
1138 SDValue SelectionDAGBuilder::getMemoryRoot() {
1139   return updateRoot(PendingLoads);
1140 }
1141 
1142 SDValue SelectionDAGBuilder::getRoot() {
1143   // Chain up all pending constrained intrinsics together with all
1144   // pending loads, by simply appending them to PendingLoads and
1145   // then calling getMemoryRoot().
1146   PendingLoads.reserve(PendingLoads.size() +
1147                        PendingConstrainedFP.size() +
1148                        PendingConstrainedFPStrict.size());
1149   PendingLoads.append(PendingConstrainedFP.begin(),
1150                       PendingConstrainedFP.end());
1151   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1152                       PendingConstrainedFPStrict.end());
1153   PendingConstrainedFP.clear();
1154   PendingConstrainedFPStrict.clear();
1155   return getMemoryRoot();
1156 }
1157 
1158 SDValue SelectionDAGBuilder::getControlRoot() {
1159   // We need to emit pending fpexcept.strict constrained intrinsics,
1160   // so append them to the PendingExports list.
1161   PendingExports.append(PendingConstrainedFPStrict.begin(),
1162                         PendingConstrainedFPStrict.end());
1163   PendingConstrainedFPStrict.clear();
1164   return updateRoot(PendingExports);
1165 }
1166 
1167 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1168                                              DILocalVariable *Variable,
1169                                              DIExpression *Expression,
1170                                              DebugLoc DL) {
1171   assert(Variable && "Missing variable");
1172 
1173   // Check if address has undef value.
1174   if (!Address || isa<UndefValue>(Address) ||
1175       (Address->use_empty() && !isa<Argument>(Address))) {
1176     LLVM_DEBUG(
1177         dbgs()
1178         << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1179     return;
1180   }
1181 
1182   bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1183 
1184   SDValue &N = NodeMap[Address];
1185   if (!N.getNode() && isa<Argument>(Address))
1186     // Check unused arguments map.
1187     N = UnusedArgNodeMap[Address];
1188   SDDbgValue *SDV;
1189   if (N.getNode()) {
1190     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1191       Address = BCI->getOperand(0);
1192     // Parameters are handled specially.
1193     auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1194     if (IsParameter && FINode) {
1195       // Byval parameter. We have a frame index at this point.
1196       SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1197                                       /*IsIndirect*/ true, DL, SDNodeOrder);
1198     } else if (isa<Argument>(Address)) {
1199       // Address is an argument, so try to emit its dbg value using
1200       // virtual register info from the FuncInfo.ValueMap.
1201       EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1202                                FuncArgumentDbgValueKind::Declare, N);
1203       return;
1204     } else {
1205       SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1206                             true, DL, SDNodeOrder);
1207     }
1208     DAG.AddDbgValue(SDV, IsParameter);
1209   } else {
1210     // If Address is an argument then try to emit its dbg value using
1211     // virtual register info from the FuncInfo.ValueMap.
1212     if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1213                                   FuncArgumentDbgValueKind::Declare, N)) {
1214       LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1215                         << " (could not emit func-arg dbg_value)\n");
1216     }
1217   }
1218   return;
1219 }
1220 
1221 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1222   // Add SDDbgValue nodes for any var locs here. Do so before updating
1223   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1224   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1225     // Add SDDbgValue nodes for any var locs here. Do so before updating
1226     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1227     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1228          It != End; ++It) {
1229       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1230       dropDanglingDebugInfo(Var, It->Expr);
1231       if (It->Values.isKillLocation(It->Expr)) {
1232         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1233         continue;
1234       }
1235       SmallVector<Value *> Values(It->Values.location_ops());
1236       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1237                             It->Values.hasArgList())) {
1238         SmallVector<Value *, 4> Vals;
1239         for (Value *V : It->Values.location_ops())
1240           Vals.push_back(V);
1241         addDanglingDebugInfo(Vals,
1242                              FnVarLocs->getDILocalVariable(It->VariableID),
1243                              It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1244       }
1245     }
1246   }
1247 
1248   // We must skip DPValues if they've already been processed above as we
1249   // have just emitted the debug values resulting from assignment tracking
1250   // analysis, making any existing DPValues redundant (and probably less
1251   // correct). We still need to process DPLabels. This does sink DPLabels
1252   // to the bottom of the group of debug records. That sholdn't be important
1253   // as it does so deterministcally and ordering between DPLabels and DPValues
1254   // is immaterial (other than for MIR/IR printing).
1255   bool SkipDPValues = DAG.getFunctionVarLocs();
1256   // Is there is any debug-info attached to this instruction, in the form of
1257   // DbgRecord non-instruction debug-info records.
1258   for (DbgRecord &DR : I.getDbgValueRange()) {
1259     if (DPLabel *DPL = dyn_cast<DPLabel>(&DR)) {
1260       assert(DPL->getLabel() && "Missing label");
1261       SDDbgLabel *SDV =
1262           DAG.getDbgLabel(DPL->getLabel(), DPL->getDebugLoc(), SDNodeOrder);
1263       DAG.AddDbgLabel(SDV);
1264       continue;
1265     }
1266 
1267     if (SkipDPValues)
1268       continue;
1269     DPValue &DPV = cast<DPValue>(DR);
1270     DILocalVariable *Variable = DPV.getVariable();
1271     DIExpression *Expression = DPV.getExpression();
1272     dropDanglingDebugInfo(Variable, Expression);
1273 
1274     if (DPV.getType() == DPValue::LocationType::Declare) {
1275       if (FuncInfo.PreprocessedDPVDeclares.contains(&DPV))
1276         continue;
1277       LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DPV
1278                         << "\n");
1279       handleDebugDeclare(DPV.getVariableLocationOp(0), Variable, Expression,
1280                          DPV.getDebugLoc());
1281       continue;
1282     }
1283 
1284     // A DPValue with no locations is a kill location.
1285     SmallVector<Value *, 4> Values(DPV.location_ops());
1286     if (Values.empty()) {
1287       handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(),
1288                            SDNodeOrder);
1289       continue;
1290     }
1291 
1292     // A DPValue with an undef or absent location is also a kill location.
1293     if (llvm::any_of(Values,
1294                      [](Value *V) { return !V || isa<UndefValue>(V); })) {
1295       handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(),
1296                            SDNodeOrder);
1297       continue;
1298     }
1299 
1300     bool IsVariadic = DPV.hasArgList();
1301     if (!handleDebugValue(Values, Variable, Expression, DPV.getDebugLoc(),
1302                           SDNodeOrder, IsVariadic)) {
1303       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1304                            DPV.getDebugLoc(), SDNodeOrder);
1305     }
1306   }
1307 }
1308 
1309 void SelectionDAGBuilder::visit(const Instruction &I) {
1310   visitDbgInfo(I);
1311 
1312   // Set up outgoing PHI node register values before emitting the terminator.
1313   if (I.isTerminator()) {
1314     HandlePHINodesInSuccessorBlocks(I.getParent());
1315   }
1316 
1317   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1318   if (!isa<DbgInfoIntrinsic>(I))
1319     ++SDNodeOrder;
1320 
1321   CurInst = &I;
1322 
1323   // Set inserted listener only if required.
1324   bool NodeInserted = false;
1325   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1326   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1327   if (PCSectionsMD) {
1328     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1329         DAG, [&](SDNode *) { NodeInserted = true; });
1330   }
1331 
1332   visit(I.getOpcode(), I);
1333 
1334   if (!I.isTerminator() && !HasTailCall &&
1335       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1336     CopyToExportRegsIfNeeded(&I);
1337 
1338   // Handle metadata.
1339   if (PCSectionsMD) {
1340     auto It = NodeMap.find(&I);
1341     if (It != NodeMap.end()) {
1342       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1343     } else if (NodeInserted) {
1344       // This should not happen; if it does, don't let it go unnoticed so we can
1345       // fix it. Relevant visit*() function is probably missing a setValue().
1346       errs() << "warning: loosing !pcsections metadata ["
1347              << I.getModule()->getName() << "]\n";
1348       LLVM_DEBUG(I.dump());
1349       assert(false);
1350     }
1351   }
1352 
1353   CurInst = nullptr;
1354 }
1355 
1356 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1357   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1358 }
1359 
1360 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1361   // Note: this doesn't use InstVisitor, because it has to work with
1362   // ConstantExpr's in addition to instructions.
1363   switch (Opcode) {
1364   default: llvm_unreachable("Unknown instruction type encountered!");
1365     // Build the switch statement using the Instruction.def file.
1366 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1367     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1368 #include "llvm/IR/Instruction.def"
1369   }
1370 }
1371 
1372 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1373                                             DILocalVariable *Variable,
1374                                             DebugLoc DL, unsigned Order,
1375                                             SmallVectorImpl<Value *> &Values,
1376                                             DIExpression *Expression) {
1377   // For variadic dbg_values we will now insert an undef.
1378   // FIXME: We can potentially recover these!
1379   SmallVector<SDDbgOperand, 2> Locs;
1380   for (const Value *V : Values) {
1381     auto *Undef = UndefValue::get(V->getType());
1382     Locs.push_back(SDDbgOperand::fromConst(Undef));
1383   }
1384   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1385                                         /*IsIndirect=*/false, DL, Order,
1386                                         /*IsVariadic=*/true);
1387   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1388   return true;
1389 }
1390 
1391 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1392                                                DILocalVariable *Var,
1393                                                DIExpression *Expr,
1394                                                bool IsVariadic, DebugLoc DL,
1395                                                unsigned Order) {
1396   if (IsVariadic) {
1397     handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1398     return;
1399   }
1400   // TODO: Dangling debug info will eventually either be resolved or produce
1401   // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1402   // between the original dbg.value location and its resolved DBG_VALUE,
1403   // which we should ideally fill with an extra Undef DBG_VALUE.
1404   assert(Values.size() == 1);
1405   DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1406 }
1407 
1408 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1409                                                 const DIExpression *Expr) {
1410   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1411     DIVariable *DanglingVariable = DDI.getVariable();
1412     DIExpression *DanglingExpr = DDI.getExpression();
1413     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1414       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1415                         << printDDI(nullptr, DDI) << "\n");
1416       return true;
1417     }
1418     return false;
1419   };
1420 
1421   for (auto &DDIMI : DanglingDebugInfoMap) {
1422     DanglingDebugInfoVector &DDIV = DDIMI.second;
1423 
1424     // If debug info is to be dropped, run it through final checks to see
1425     // whether it can be salvaged.
1426     for (auto &DDI : DDIV)
1427       if (isMatchingDbgValue(DDI))
1428         salvageUnresolvedDbgValue(DDIMI.first, DDI);
1429 
1430     erase_if(DDIV, isMatchingDbgValue);
1431   }
1432 }
1433 
1434 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1435 // generate the debug data structures now that we've seen its definition.
1436 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1437                                                    SDValue Val) {
1438   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1439   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1440     return;
1441 
1442   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1443   for (auto &DDI : DDIV) {
1444     DebugLoc DL = DDI.getDebugLoc();
1445     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1446     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1447     DILocalVariable *Variable = DDI.getVariable();
1448     DIExpression *Expr = DDI.getExpression();
1449     assert(Variable->isValidLocationForIntrinsic(DL) &&
1450            "Expected inlined-at fields to agree");
1451     SDDbgValue *SDV;
1452     if (Val.getNode()) {
1453       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1454       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1455       // we couldn't resolve it directly when examining the DbgValue intrinsic
1456       // in the first place we should not be more successful here). Unless we
1457       // have some test case that prove this to be correct we should avoid
1458       // calling EmitFuncArgumentDbgValue here.
1459       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1460                                     FuncArgumentDbgValueKind::Value, Val)) {
1461         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1462                           << printDDI(V, DDI) << "\n");
1463         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1464         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1465         // inserted after the definition of Val when emitting the instructions
1466         // after ISel. An alternative could be to teach
1467         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1468         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1469                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1470                    << ValSDNodeOrder << "\n");
1471         SDV = getDbgValue(Val, Variable, Expr, DL,
1472                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1473         DAG.AddDbgValue(SDV, false);
1474       } else
1475         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1476                           << printDDI(V, DDI)
1477                           << " in EmitFuncArgumentDbgValue\n");
1478     } else {
1479       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1480                         << "\n");
1481       auto Undef = UndefValue::get(V->getType());
1482       auto SDV =
1483           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1484       DAG.AddDbgValue(SDV, false);
1485     }
1486   }
1487   DDIV.clear();
1488 }
1489 
1490 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1491                                                     DanglingDebugInfo &DDI) {
1492   // TODO: For the variadic implementation, instead of only checking the fail
1493   // state of `handleDebugValue`, we need know specifically which values were
1494   // invalid, so that we attempt to salvage only those values when processing
1495   // a DIArgList.
1496   const Value *OrigV = V;
1497   DILocalVariable *Var = DDI.getVariable();
1498   DIExpression *Expr = DDI.getExpression();
1499   DebugLoc DL = DDI.getDebugLoc();
1500   unsigned SDOrder = DDI.getSDNodeOrder();
1501 
1502   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1503   // that DW_OP_stack_value is desired.
1504   bool StackValue = true;
1505 
1506   // Can this Value can be encoded without any further work?
1507   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1508     return;
1509 
1510   // Attempt to salvage back through as many instructions as possible. Bail if
1511   // a non-instruction is seen, such as a constant expression or global
1512   // variable. FIXME: Further work could recover those too.
1513   while (isa<Instruction>(V)) {
1514     const Instruction &VAsInst = *cast<const Instruction>(V);
1515     // Temporary "0", awaiting real implementation.
1516     SmallVector<uint64_t, 16> Ops;
1517     SmallVector<Value *, 4> AdditionalValues;
1518     V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1519                              Expr->getNumLocationOperands(), Ops,
1520                              AdditionalValues);
1521     // If we cannot salvage any further, and haven't yet found a suitable debug
1522     // expression, bail out.
1523     if (!V)
1524       break;
1525 
1526     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1527     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1528     // here for variadic dbg_values, remove that condition.
1529     if (!AdditionalValues.empty())
1530       break;
1531 
1532     // New value and expr now represent this debuginfo.
1533     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1534 
1535     // Some kind of simplification occurred: check whether the operand of the
1536     // salvaged debug expression can be encoded in this DAG.
1537     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1538       LLVM_DEBUG(
1539           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1540                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1541       return;
1542     }
1543   }
1544 
1545   // This was the final opportunity to salvage this debug information, and it
1546   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1547   // any earlier variable location.
1548   assert(OrigV && "V shouldn't be null");
1549   auto *Undef = UndefValue::get(OrigV->getType());
1550   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1551   DAG.AddDbgValue(SDV, false);
1552   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  "
1553                     << printDDI(OrigV, DDI) << "\n");
1554 }
1555 
1556 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1557                                                DIExpression *Expr,
1558                                                DebugLoc DbgLoc,
1559                                                unsigned Order) {
1560   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1561   DIExpression *NewExpr =
1562       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1563   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1564                    /*IsVariadic*/ false);
1565 }
1566 
1567 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1568                                            DILocalVariable *Var,
1569                                            DIExpression *Expr, DebugLoc DbgLoc,
1570                                            unsigned Order, bool IsVariadic) {
1571   if (Values.empty())
1572     return true;
1573 
1574   // Filter EntryValue locations out early.
1575   if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1576     return true;
1577 
1578   SmallVector<SDDbgOperand> LocationOps;
1579   SmallVector<SDNode *> Dependencies;
1580   for (const Value *V : Values) {
1581     // Constant value.
1582     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1583         isa<ConstantPointerNull>(V)) {
1584       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1585       continue;
1586     }
1587 
1588     // Look through IntToPtr constants.
1589     if (auto *CE = dyn_cast<ConstantExpr>(V))
1590       if (CE->getOpcode() == Instruction::IntToPtr) {
1591         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1592         continue;
1593       }
1594 
1595     // If the Value is a frame index, we can create a FrameIndex debug value
1596     // without relying on the DAG at all.
1597     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1598       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1599       if (SI != FuncInfo.StaticAllocaMap.end()) {
1600         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1601         continue;
1602       }
1603     }
1604 
1605     // Do not use getValue() in here; we don't want to generate code at
1606     // this point if it hasn't been done yet.
1607     SDValue N = NodeMap[V];
1608     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1609       N = UnusedArgNodeMap[V];
1610     if (N.getNode()) {
1611       // Only emit func arg dbg value for non-variadic dbg.values for now.
1612       if (!IsVariadic &&
1613           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1614                                    FuncArgumentDbgValueKind::Value, N))
1615         return true;
1616       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1617         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1618         // describe stack slot locations.
1619         //
1620         // Consider "int x = 0; int *px = &x;". There are two kinds of
1621         // interesting debug values here after optimization:
1622         //
1623         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1624         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1625         //
1626         // Both describe the direct values of their associated variables.
1627         Dependencies.push_back(N.getNode());
1628         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1629         continue;
1630       }
1631       LocationOps.emplace_back(
1632           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1633       continue;
1634     }
1635 
1636     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1637     // Special rules apply for the first dbg.values of parameter variables in a
1638     // function. Identify them by the fact they reference Argument Values, that
1639     // they're parameters, and they are parameters of the current function. We
1640     // need to let them dangle until they get an SDNode.
1641     bool IsParamOfFunc =
1642         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1643     if (IsParamOfFunc)
1644       return false;
1645 
1646     // The value is not used in this block yet (or it would have an SDNode).
1647     // We still want the value to appear for the user if possible -- if it has
1648     // an associated VReg, we can refer to that instead.
1649     auto VMI = FuncInfo.ValueMap.find(V);
1650     if (VMI != FuncInfo.ValueMap.end()) {
1651       unsigned Reg = VMI->second;
1652       // If this is a PHI node, it may be split up into several MI PHI nodes
1653       // (in FunctionLoweringInfo::set).
1654       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1655                        V->getType(), std::nullopt);
1656       if (RFV.occupiesMultipleRegs()) {
1657         // FIXME: We could potentially support variadic dbg_values here.
1658         if (IsVariadic)
1659           return false;
1660         unsigned Offset = 0;
1661         unsigned BitsToDescribe = 0;
1662         if (auto VarSize = Var->getSizeInBits())
1663           BitsToDescribe = *VarSize;
1664         if (auto Fragment = Expr->getFragmentInfo())
1665           BitsToDescribe = Fragment->SizeInBits;
1666         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1667           // Bail out if all bits are described already.
1668           if (Offset >= BitsToDescribe)
1669             break;
1670           // TODO: handle scalable vectors.
1671           unsigned RegisterSize = RegAndSize.second;
1672           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1673                                       ? BitsToDescribe - Offset
1674                                       : RegisterSize;
1675           auto FragmentExpr = DIExpression::createFragmentExpression(
1676               Expr, Offset, FragmentSize);
1677           if (!FragmentExpr)
1678             continue;
1679           SDDbgValue *SDV = DAG.getVRegDbgValue(
1680               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1681           DAG.AddDbgValue(SDV, false);
1682           Offset += RegisterSize;
1683         }
1684         return true;
1685       }
1686       // We can use simple vreg locations for variadic dbg_values as well.
1687       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1688       continue;
1689     }
1690     // We failed to create a SDDbgOperand for V.
1691     return false;
1692   }
1693 
1694   // We have created a SDDbgOperand for each Value in Values.
1695   // Should use Order instead of SDNodeOrder?
1696   assert(!LocationOps.empty());
1697   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1698                                         /*IsIndirect=*/false, DbgLoc,
1699                                         SDNodeOrder, IsVariadic);
1700   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1701   return true;
1702 }
1703 
1704 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1705   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1706   for (auto &Pair : DanglingDebugInfoMap)
1707     for (auto &DDI : Pair.second)
1708       salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1709   clearDanglingDebugInfo();
1710 }
1711 
1712 /// getCopyFromRegs - If there was virtual register allocated for the value V
1713 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1714 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1715   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1716   SDValue Result;
1717 
1718   if (It != FuncInfo.ValueMap.end()) {
1719     Register InReg = It->second;
1720 
1721     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1722                      DAG.getDataLayout(), InReg, Ty,
1723                      std::nullopt); // This is not an ABI copy.
1724     SDValue Chain = DAG.getEntryNode();
1725     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1726                                  V);
1727     resolveDanglingDebugInfo(V, Result);
1728   }
1729 
1730   return Result;
1731 }
1732 
1733 /// getValue - Return an SDValue for the given Value.
1734 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1735   // If we already have an SDValue for this value, use it. It's important
1736   // to do this first, so that we don't create a CopyFromReg if we already
1737   // have a regular SDValue.
1738   SDValue &N = NodeMap[V];
1739   if (N.getNode()) return N;
1740 
1741   // If there's a virtual register allocated and initialized for this
1742   // value, use it.
1743   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1744     return copyFromReg;
1745 
1746   // Otherwise create a new SDValue and remember it.
1747   SDValue Val = getValueImpl(V);
1748   NodeMap[V] = Val;
1749   resolveDanglingDebugInfo(V, Val);
1750   return Val;
1751 }
1752 
1753 /// getNonRegisterValue - Return an SDValue for the given Value, but
1754 /// don't look in FuncInfo.ValueMap for a virtual register.
1755 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1756   // If we already have an SDValue for this value, use it.
1757   SDValue &N = NodeMap[V];
1758   if (N.getNode()) {
1759     if (isIntOrFPConstant(N)) {
1760       // Remove the debug location from the node as the node is about to be used
1761       // in a location which may differ from the original debug location.  This
1762       // is relevant to Constant and ConstantFP nodes because they can appear
1763       // as constant expressions inside PHI nodes.
1764       N->setDebugLoc(DebugLoc());
1765     }
1766     return N;
1767   }
1768 
1769   // Otherwise create a new SDValue and remember it.
1770   SDValue Val = getValueImpl(V);
1771   NodeMap[V] = Val;
1772   resolveDanglingDebugInfo(V, Val);
1773   return Val;
1774 }
1775 
1776 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1777 /// Create an SDValue for the given value.
1778 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1779   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1780 
1781   if (const Constant *C = dyn_cast<Constant>(V)) {
1782     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1783 
1784     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1785       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1786 
1787     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1788       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1789 
1790     if (isa<ConstantPointerNull>(C)) {
1791       unsigned AS = V->getType()->getPointerAddressSpace();
1792       return DAG.getConstant(0, getCurSDLoc(),
1793                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1794     }
1795 
1796     if (match(C, m_VScale()))
1797       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1798 
1799     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1800       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1801 
1802     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1803       return DAG.getUNDEF(VT);
1804 
1805     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1806       visit(CE->getOpcode(), *CE);
1807       SDValue N1 = NodeMap[V];
1808       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1809       return N1;
1810     }
1811 
1812     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1813       SmallVector<SDValue, 4> Constants;
1814       for (const Use &U : C->operands()) {
1815         SDNode *Val = getValue(U).getNode();
1816         // If the operand is an empty aggregate, there are no values.
1817         if (!Val) continue;
1818         // Add each leaf value from the operand to the Constants list
1819         // to form a flattened list of all the values.
1820         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1821           Constants.push_back(SDValue(Val, i));
1822       }
1823 
1824       return DAG.getMergeValues(Constants, getCurSDLoc());
1825     }
1826 
1827     if (const ConstantDataSequential *CDS =
1828           dyn_cast<ConstantDataSequential>(C)) {
1829       SmallVector<SDValue, 4> Ops;
1830       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1831         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1832         // Add each leaf value from the operand to the Constants list
1833         // to form a flattened list of all the values.
1834         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1835           Ops.push_back(SDValue(Val, i));
1836       }
1837 
1838       if (isa<ArrayType>(CDS->getType()))
1839         return DAG.getMergeValues(Ops, getCurSDLoc());
1840       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1841     }
1842 
1843     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1844       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1845              "Unknown struct or array constant!");
1846 
1847       SmallVector<EVT, 4> ValueVTs;
1848       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1849       unsigned NumElts = ValueVTs.size();
1850       if (NumElts == 0)
1851         return SDValue(); // empty struct
1852       SmallVector<SDValue, 4> Constants(NumElts);
1853       for (unsigned i = 0; i != NumElts; ++i) {
1854         EVT EltVT = ValueVTs[i];
1855         if (isa<UndefValue>(C))
1856           Constants[i] = DAG.getUNDEF(EltVT);
1857         else if (EltVT.isFloatingPoint())
1858           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1859         else
1860           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1861       }
1862 
1863       return DAG.getMergeValues(Constants, getCurSDLoc());
1864     }
1865 
1866     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1867       return DAG.getBlockAddress(BA, VT);
1868 
1869     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1870       return getValue(Equiv->getGlobalValue());
1871 
1872     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1873       return getValue(NC->getGlobalValue());
1874 
1875     if (VT == MVT::aarch64svcount) {
1876       assert(C->isNullValue() && "Can only zero this target type!");
1877       return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1878                          DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1879     }
1880 
1881     VectorType *VecTy = cast<VectorType>(V->getType());
1882 
1883     // Now that we know the number and type of the elements, get that number of
1884     // elements into the Ops array based on what kind of constant it is.
1885     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1886       SmallVector<SDValue, 16> Ops;
1887       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1888       for (unsigned i = 0; i != NumElements; ++i)
1889         Ops.push_back(getValue(CV->getOperand(i)));
1890 
1891       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1892     }
1893 
1894     if (isa<ConstantAggregateZero>(C)) {
1895       EVT EltVT =
1896           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1897 
1898       SDValue Op;
1899       if (EltVT.isFloatingPoint())
1900         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1901       else
1902         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1903 
1904       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1905     }
1906 
1907     llvm_unreachable("Unknown vector constant");
1908   }
1909 
1910   // If this is a static alloca, generate it as the frameindex instead of
1911   // computation.
1912   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1913     DenseMap<const AllocaInst*, int>::iterator SI =
1914       FuncInfo.StaticAllocaMap.find(AI);
1915     if (SI != FuncInfo.StaticAllocaMap.end())
1916       return DAG.getFrameIndex(
1917           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1918   }
1919 
1920   // If this is an instruction which fast-isel has deferred, select it now.
1921   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1922     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1923 
1924     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1925                      Inst->getType(), std::nullopt);
1926     SDValue Chain = DAG.getEntryNode();
1927     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1928   }
1929 
1930   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1931     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1932 
1933   if (const auto *BB = dyn_cast<BasicBlock>(V))
1934     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1935 
1936   llvm_unreachable("Can't get register for value!");
1937 }
1938 
1939 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1940   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1941   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1942   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1943   bool IsSEH = isAsynchronousEHPersonality(Pers);
1944   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1945   if (!IsSEH)
1946     CatchPadMBB->setIsEHScopeEntry();
1947   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1948   if (IsMSVCCXX || IsCoreCLR)
1949     CatchPadMBB->setIsEHFuncletEntry();
1950 }
1951 
1952 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1953   // Update machine-CFG edge.
1954   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1955   FuncInfo.MBB->addSuccessor(TargetMBB);
1956   TargetMBB->setIsEHCatchretTarget(true);
1957   DAG.getMachineFunction().setHasEHCatchret(true);
1958 
1959   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1960   bool IsSEH = isAsynchronousEHPersonality(Pers);
1961   if (IsSEH) {
1962     // If this is not a fall-through branch or optimizations are switched off,
1963     // emit the branch.
1964     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1965         TM.getOptLevel() == CodeGenOptLevel::None)
1966       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1967                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1968     return;
1969   }
1970 
1971   // Figure out the funclet membership for the catchret's successor.
1972   // This will be used by the FuncletLayout pass to determine how to order the
1973   // BB's.
1974   // A 'catchret' returns to the outer scope's color.
1975   Value *ParentPad = I.getCatchSwitchParentPad();
1976   const BasicBlock *SuccessorColor;
1977   if (isa<ConstantTokenNone>(ParentPad))
1978     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1979   else
1980     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1981   assert(SuccessorColor && "No parent funclet for catchret!");
1982   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1983   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1984 
1985   // Create the terminator node.
1986   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1987                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1988                             DAG.getBasicBlock(SuccessorColorMBB));
1989   DAG.setRoot(Ret);
1990 }
1991 
1992 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1993   // Don't emit any special code for the cleanuppad instruction. It just marks
1994   // the start of an EH scope/funclet.
1995   FuncInfo.MBB->setIsEHScopeEntry();
1996   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1997   if (Pers != EHPersonality::Wasm_CXX) {
1998     FuncInfo.MBB->setIsEHFuncletEntry();
1999     FuncInfo.MBB->setIsCleanupFuncletEntry();
2000   }
2001 }
2002 
2003 // In wasm EH, even though a catchpad may not catch an exception if a tag does
2004 // not match, it is OK to add only the first unwind destination catchpad to the
2005 // successors, because there will be at least one invoke instruction within the
2006 // catch scope that points to the next unwind destination, if one exists, so
2007 // CFGSort cannot mess up with BB sorting order.
2008 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
2009 // call within them, and catchpads only consisting of 'catch (...)' have a
2010 // '__cxa_end_catch' call within them, both of which generate invokes in case
2011 // the next unwind destination exists, i.e., the next unwind destination is not
2012 // the caller.)
2013 //
2014 // Having at most one EH pad successor is also simpler and helps later
2015 // transformations.
2016 //
2017 // For example,
2018 // current:
2019 //   invoke void @foo to ... unwind label %catch.dispatch
2020 // catch.dispatch:
2021 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
2022 // catch.start:
2023 //   ...
2024 //   ... in this BB or some other child BB dominated by this BB there will be an
2025 //   invoke that points to 'next' BB as an unwind destination
2026 //
2027 // next: ; We don't need to add this to 'current' BB's successor
2028 //   ...
2029 static void findWasmUnwindDestinations(
2030     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2031     BranchProbability Prob,
2032     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2033         &UnwindDests) {
2034   while (EHPadBB) {
2035     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2036     if (isa<CleanupPadInst>(Pad)) {
2037       // Stop on cleanup pads.
2038       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2039       UnwindDests.back().first->setIsEHScopeEntry();
2040       break;
2041     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2042       // Add the catchpad handlers to the possible destinations. We don't
2043       // continue to the unwind destination of the catchswitch for wasm.
2044       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2045         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2046         UnwindDests.back().first->setIsEHScopeEntry();
2047       }
2048       break;
2049     } else {
2050       continue;
2051     }
2052   }
2053 }
2054 
2055 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2056 /// many places it could ultimately go. In the IR, we have a single unwind
2057 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2058 /// This function skips over imaginary basic blocks that hold catchswitch
2059 /// instructions, and finds all the "real" machine
2060 /// basic block destinations. As those destinations may not be successors of
2061 /// EHPadBB, here we also calculate the edge probability to those destinations.
2062 /// The passed-in Prob is the edge probability to EHPadBB.
2063 static void findUnwindDestinations(
2064     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2065     BranchProbability Prob,
2066     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2067         &UnwindDests) {
2068   EHPersonality Personality =
2069     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2070   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2071   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2072   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2073   bool IsSEH = isAsynchronousEHPersonality(Personality);
2074 
2075   if (IsWasmCXX) {
2076     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2077     assert(UnwindDests.size() <= 1 &&
2078            "There should be at most one unwind destination for wasm");
2079     return;
2080   }
2081 
2082   while (EHPadBB) {
2083     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2084     BasicBlock *NewEHPadBB = nullptr;
2085     if (isa<LandingPadInst>(Pad)) {
2086       // Stop on landingpads. They are not funclets.
2087       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2088       break;
2089     } else if (isa<CleanupPadInst>(Pad)) {
2090       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2091       // personalities.
2092       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2093       UnwindDests.back().first->setIsEHScopeEntry();
2094       UnwindDests.back().first->setIsEHFuncletEntry();
2095       break;
2096     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2097       // Add the catchpad handlers to the possible destinations.
2098       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2099         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2100         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2101         if (IsMSVCCXX || IsCoreCLR)
2102           UnwindDests.back().first->setIsEHFuncletEntry();
2103         if (!IsSEH)
2104           UnwindDests.back().first->setIsEHScopeEntry();
2105       }
2106       NewEHPadBB = CatchSwitch->getUnwindDest();
2107     } else {
2108       continue;
2109     }
2110 
2111     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2112     if (BPI && NewEHPadBB)
2113       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2114     EHPadBB = NewEHPadBB;
2115   }
2116 }
2117 
2118 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2119   // Update successor info.
2120   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2121   auto UnwindDest = I.getUnwindDest();
2122   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2123   BranchProbability UnwindDestProb =
2124       (BPI && UnwindDest)
2125           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2126           : BranchProbability::getZero();
2127   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2128   for (auto &UnwindDest : UnwindDests) {
2129     UnwindDest.first->setIsEHPad();
2130     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2131   }
2132   FuncInfo.MBB->normalizeSuccProbs();
2133 
2134   // Create the terminator node.
2135   SDValue Ret =
2136       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
2137   DAG.setRoot(Ret);
2138 }
2139 
2140 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2141   report_fatal_error("visitCatchSwitch not yet implemented!");
2142 }
2143 
2144 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2145   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2146   auto &DL = DAG.getDataLayout();
2147   SDValue Chain = getControlRoot();
2148   SmallVector<ISD::OutputArg, 8> Outs;
2149   SmallVector<SDValue, 8> OutVals;
2150 
2151   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2152   // lower
2153   //
2154   //   %val = call <ty> @llvm.experimental.deoptimize()
2155   //   ret <ty> %val
2156   //
2157   // differently.
2158   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2159     LowerDeoptimizingReturn();
2160     return;
2161   }
2162 
2163   if (!FuncInfo.CanLowerReturn) {
2164     unsigned DemoteReg = FuncInfo.DemoteRegister;
2165     const Function *F = I.getParent()->getParent();
2166 
2167     // Emit a store of the return value through the virtual register.
2168     // Leave Outs empty so that LowerReturn won't try to load return
2169     // registers the usual way.
2170     SmallVector<EVT, 1> PtrValueVTs;
2171     ComputeValueVTs(TLI, DL,
2172                     PointerType::get(F->getContext(),
2173                                      DAG.getDataLayout().getAllocaAddrSpace()),
2174                     PtrValueVTs);
2175 
2176     SDValue RetPtr =
2177         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2178     SDValue RetOp = getValue(I.getOperand(0));
2179 
2180     SmallVector<EVT, 4> ValueVTs, MemVTs;
2181     SmallVector<uint64_t, 4> Offsets;
2182     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2183                     &Offsets, 0);
2184     unsigned NumValues = ValueVTs.size();
2185 
2186     SmallVector<SDValue, 4> Chains(NumValues);
2187     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2188     for (unsigned i = 0; i != NumValues; ++i) {
2189       // An aggregate return value cannot wrap around the address space, so
2190       // offsets to its parts don't wrap either.
2191       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2192                                            TypeSize::getFixed(Offsets[i]));
2193 
2194       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2195       if (MemVTs[i] != ValueVTs[i])
2196         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2197       Chains[i] = DAG.getStore(
2198           Chain, getCurSDLoc(), Val,
2199           // FIXME: better loc info would be nice.
2200           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2201           commonAlignment(BaseAlign, Offsets[i]));
2202     }
2203 
2204     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2205                         MVT::Other, Chains);
2206   } else if (I.getNumOperands() != 0) {
2207     SmallVector<EVT, 4> ValueVTs;
2208     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2209     unsigned NumValues = ValueVTs.size();
2210     if (NumValues) {
2211       SDValue RetOp = getValue(I.getOperand(0));
2212 
2213       const Function *F = I.getParent()->getParent();
2214 
2215       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2216           I.getOperand(0)->getType(), F->getCallingConv(),
2217           /*IsVarArg*/ false, DL);
2218 
2219       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2220       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2221         ExtendKind = ISD::SIGN_EXTEND;
2222       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2223         ExtendKind = ISD::ZERO_EXTEND;
2224 
2225       LLVMContext &Context = F->getContext();
2226       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2227 
2228       for (unsigned j = 0; j != NumValues; ++j) {
2229         EVT VT = ValueVTs[j];
2230 
2231         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2232           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2233 
2234         CallingConv::ID CC = F->getCallingConv();
2235 
2236         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2237         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2238         SmallVector<SDValue, 4> Parts(NumParts);
2239         getCopyToParts(DAG, getCurSDLoc(),
2240                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2241                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2242 
2243         // 'inreg' on function refers to return value
2244         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2245         if (RetInReg)
2246           Flags.setInReg();
2247 
2248         if (I.getOperand(0)->getType()->isPointerTy()) {
2249           Flags.setPointer();
2250           Flags.setPointerAddrSpace(
2251               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2252         }
2253 
2254         if (NeedsRegBlock) {
2255           Flags.setInConsecutiveRegs();
2256           if (j == NumValues - 1)
2257             Flags.setInConsecutiveRegsLast();
2258         }
2259 
2260         // Propagate extension type if any
2261         if (ExtendKind == ISD::SIGN_EXTEND)
2262           Flags.setSExt();
2263         else if (ExtendKind == ISD::ZERO_EXTEND)
2264           Flags.setZExt();
2265 
2266         for (unsigned i = 0; i < NumParts; ++i) {
2267           Outs.push_back(ISD::OutputArg(Flags,
2268                                         Parts[i].getValueType().getSimpleVT(),
2269                                         VT, /*isfixed=*/true, 0, 0));
2270           OutVals.push_back(Parts[i]);
2271         }
2272       }
2273     }
2274   }
2275 
2276   // Push in swifterror virtual register as the last element of Outs. This makes
2277   // sure swifterror virtual register will be returned in the swifterror
2278   // physical register.
2279   const Function *F = I.getParent()->getParent();
2280   if (TLI.supportSwiftError() &&
2281       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2282     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2283     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2284     Flags.setSwiftError();
2285     Outs.push_back(ISD::OutputArg(
2286         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2287         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2288     // Create SDNode for the swifterror virtual register.
2289     OutVals.push_back(
2290         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2291                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2292                         EVT(TLI.getPointerTy(DL))));
2293   }
2294 
2295   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2296   CallingConv::ID CallConv =
2297     DAG.getMachineFunction().getFunction().getCallingConv();
2298   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2299       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2300 
2301   // Verify that the target's LowerReturn behaved as expected.
2302   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2303          "LowerReturn didn't return a valid chain!");
2304 
2305   // Update the DAG with the new chain value resulting from return lowering.
2306   DAG.setRoot(Chain);
2307 }
2308 
2309 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2310 /// created for it, emit nodes to copy the value into the virtual
2311 /// registers.
2312 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2313   // Skip empty types
2314   if (V->getType()->isEmptyTy())
2315     return;
2316 
2317   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2318   if (VMI != FuncInfo.ValueMap.end()) {
2319     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2320            "Unused value assigned virtual registers!");
2321     CopyValueToVirtualRegister(V, VMI->second);
2322   }
2323 }
2324 
2325 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2326 /// the current basic block, add it to ValueMap now so that we'll get a
2327 /// CopyTo/FromReg.
2328 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2329   // No need to export constants.
2330   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2331 
2332   // Already exported?
2333   if (FuncInfo.isExportedInst(V)) return;
2334 
2335   Register Reg = FuncInfo.InitializeRegForValue(V);
2336   CopyValueToVirtualRegister(V, Reg);
2337 }
2338 
2339 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2340                                                      const BasicBlock *FromBB) {
2341   // The operands of the setcc have to be in this block.  We don't know
2342   // how to export them from some other block.
2343   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2344     // Can export from current BB.
2345     if (VI->getParent() == FromBB)
2346       return true;
2347 
2348     // Is already exported, noop.
2349     return FuncInfo.isExportedInst(V);
2350   }
2351 
2352   // If this is an argument, we can export it if the BB is the entry block or
2353   // if it is already exported.
2354   if (isa<Argument>(V)) {
2355     if (FromBB->isEntryBlock())
2356       return true;
2357 
2358     // Otherwise, can only export this if it is already exported.
2359     return FuncInfo.isExportedInst(V);
2360   }
2361 
2362   // Otherwise, constants can always be exported.
2363   return true;
2364 }
2365 
2366 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2367 BranchProbability
2368 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2369                                         const MachineBasicBlock *Dst) const {
2370   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2371   const BasicBlock *SrcBB = Src->getBasicBlock();
2372   const BasicBlock *DstBB = Dst->getBasicBlock();
2373   if (!BPI) {
2374     // If BPI is not available, set the default probability as 1 / N, where N is
2375     // the number of successors.
2376     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2377     return BranchProbability(1, SuccSize);
2378   }
2379   return BPI->getEdgeProbability(SrcBB, DstBB);
2380 }
2381 
2382 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2383                                                MachineBasicBlock *Dst,
2384                                                BranchProbability Prob) {
2385   if (!FuncInfo.BPI)
2386     Src->addSuccessorWithoutProb(Dst);
2387   else {
2388     if (Prob.isUnknown())
2389       Prob = getEdgeProbability(Src, Dst);
2390     Src->addSuccessor(Dst, Prob);
2391   }
2392 }
2393 
2394 static bool InBlock(const Value *V, const BasicBlock *BB) {
2395   if (const Instruction *I = dyn_cast<Instruction>(V))
2396     return I->getParent() == BB;
2397   return true;
2398 }
2399 
2400 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2401 /// This function emits a branch and is used at the leaves of an OR or an
2402 /// AND operator tree.
2403 void
2404 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2405                                                   MachineBasicBlock *TBB,
2406                                                   MachineBasicBlock *FBB,
2407                                                   MachineBasicBlock *CurBB,
2408                                                   MachineBasicBlock *SwitchBB,
2409                                                   BranchProbability TProb,
2410                                                   BranchProbability FProb,
2411                                                   bool InvertCond) {
2412   const BasicBlock *BB = CurBB->getBasicBlock();
2413 
2414   // If the leaf of the tree is a comparison, merge the condition into
2415   // the caseblock.
2416   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2417     // The operands of the cmp have to be in this block.  We don't know
2418     // how to export them from some other block.  If this is the first block
2419     // of the sequence, no exporting is needed.
2420     if (CurBB == SwitchBB ||
2421         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2422          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2423       ISD::CondCode Condition;
2424       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2425         ICmpInst::Predicate Pred =
2426             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2427         Condition = getICmpCondCode(Pred);
2428       } else {
2429         const FCmpInst *FC = cast<FCmpInst>(Cond);
2430         FCmpInst::Predicate Pred =
2431             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2432         Condition = getFCmpCondCode(Pred);
2433         if (TM.Options.NoNaNsFPMath)
2434           Condition = getFCmpCodeWithoutNaN(Condition);
2435       }
2436 
2437       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2438                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2439       SL->SwitchCases.push_back(CB);
2440       return;
2441     }
2442   }
2443 
2444   // Create a CaseBlock record representing this branch.
2445   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2446   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2447                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2448   SL->SwitchCases.push_back(CB);
2449 }
2450 
2451 // Collect dependencies on V recursively. This is used for the cost analysis in
2452 // `shouldKeepJumpConditionsTogether`.
2453 static bool collectInstructionDeps(
2454     SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V,
2455     SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr,
2456     unsigned Depth = 0) {
2457   // Return false if we have an incomplete count.
2458   if (Depth >= SelectionDAG::MaxRecursionDepth)
2459     return false;
2460 
2461   auto *I = dyn_cast<Instruction>(V);
2462   if (I == nullptr)
2463     return true;
2464 
2465   if (Necessary != nullptr) {
2466     // This instruction is necessary for the other side of the condition so
2467     // don't count it.
2468     if (Necessary->contains(I))
2469       return true;
2470   }
2471 
2472   // Already added this dep.
2473   if (!Deps->try_emplace(I, false).second)
2474     return true;
2475 
2476   for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2477     if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2478                                 Depth + 1))
2479       return false;
2480   return true;
2481 }
2482 
2483 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether(
2484     const FunctionLoweringInfo &FuncInfo, const BranchInst &I,
2485     Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2486     TargetLoweringBase::CondMergingParams Params) const {
2487   if (I.getNumSuccessors() != 2)
2488     return false;
2489 
2490   if (!I.isConditional())
2491     return false;
2492 
2493   if (Params.BaseCost < 0)
2494     return false;
2495 
2496   // Baseline cost.
2497   InstructionCost CostThresh = Params.BaseCost;
2498 
2499   BranchProbabilityInfo *BPI = nullptr;
2500   if (Params.LikelyBias || Params.UnlikelyBias)
2501     BPI = FuncInfo.BPI;
2502   if (BPI != nullptr) {
2503     // See if we are either likely to get an early out or compute both lhs/rhs
2504     // of the condition.
2505     BasicBlock *IfFalse = I.getSuccessor(0);
2506     BasicBlock *IfTrue = I.getSuccessor(1);
2507 
2508     std::optional<bool> Likely;
2509     if (BPI->isEdgeHot(I.getParent(), IfTrue))
2510       Likely = true;
2511     else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2512       Likely = false;
2513 
2514     if (Likely) {
2515       if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2516         // Its likely we will have to compute both lhs and rhs of condition
2517         CostThresh += Params.LikelyBias;
2518       else {
2519         if (Params.UnlikelyBias < 0)
2520           return false;
2521         // Its likely we will get an early out.
2522         CostThresh -= Params.UnlikelyBias;
2523       }
2524     }
2525   }
2526 
2527   if (CostThresh <= 0)
2528     return false;
2529 
2530   // Collect "all" instructions that lhs condition is dependent on.
2531   // Use map for stable iteration (to avoid non-determanism of iteration of
2532   // SmallPtrSet). The `bool` value is just a dummy.
2533   SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps;
2534   collectInstructionDeps(&LhsDeps, Lhs);
2535   // Collect "all" instructions that rhs condition is dependent on AND are
2536   // dependencies of lhs. This gives us an estimate on which instructions we
2537   // stand to save by splitting the condition.
2538   if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2539     return false;
2540   // Add the compare instruction itself unless its a dependency on the LHS.
2541   if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2542     if (!LhsDeps.contains(RhsI))
2543       RhsDeps.try_emplace(RhsI, false);
2544 
2545   const auto &TLI = DAG.getTargetLoweringInfo();
2546   const auto &TTI =
2547       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
2548 
2549   InstructionCost CostOfIncluding = 0;
2550   // See if this instruction will need to computed independently of whether RHS
2551   // is.
2552   Value *BrCond = I.getCondition();
2553   auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2554     for (const auto *U : Ins->users()) {
2555       // If user is independent of RHS calculation we don't need to count it.
2556       if (auto *UIns = dyn_cast<Instruction>(U))
2557         if (UIns != BrCond && !RhsDeps.contains(UIns))
2558           return false;
2559     }
2560     return true;
2561   };
2562 
2563   // Prune instructions from RHS Deps that are dependencies of unrelated
2564   // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2565   // arbitrary and just meant to cap the how much time we spend in the pruning
2566   // loop. Its highly unlikely to come into affect.
2567   const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2568   // Stop after a certain point. No incorrectness from including too many
2569   // instructions.
2570   for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2571     const Instruction *ToDrop = nullptr;
2572     for (const auto &InsPair : RhsDeps) {
2573       if (!ShouldCountInsn(InsPair.first)) {
2574         ToDrop = InsPair.first;
2575         break;
2576       }
2577     }
2578     if (ToDrop == nullptr)
2579       break;
2580     RhsDeps.erase(ToDrop);
2581   }
2582 
2583   for (const auto &InsPair : RhsDeps) {
2584     // Finally accumulate latency that we can only attribute to computing the
2585     // RHS condition. Use latency because we are essentially trying to calculate
2586     // the cost of the dependency chain.
2587     // Possible TODO: We could try to estimate ILP and make this more precise.
2588     CostOfIncluding +=
2589         TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency);
2590 
2591     if (CostOfIncluding > CostThresh)
2592       return false;
2593   }
2594   return true;
2595 }
2596 
2597 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2598                                                MachineBasicBlock *TBB,
2599                                                MachineBasicBlock *FBB,
2600                                                MachineBasicBlock *CurBB,
2601                                                MachineBasicBlock *SwitchBB,
2602                                                Instruction::BinaryOps Opc,
2603                                                BranchProbability TProb,
2604                                                BranchProbability FProb,
2605                                                bool InvertCond) {
2606   // Skip over not part of the tree and remember to invert op and operands at
2607   // next level.
2608   Value *NotCond;
2609   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2610       InBlock(NotCond, CurBB->getBasicBlock())) {
2611     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2612                          !InvertCond);
2613     return;
2614   }
2615 
2616   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2617   const Value *BOpOp0, *BOpOp1;
2618   // Compute the effective opcode for Cond, taking into account whether it needs
2619   // to be inverted, e.g.
2620   //   and (not (or A, B)), C
2621   // gets lowered as
2622   //   and (and (not A, not B), C)
2623   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2624   if (BOp) {
2625     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2626                ? Instruction::And
2627                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2628                       ? Instruction::Or
2629                       : (Instruction::BinaryOps)0);
2630     if (InvertCond) {
2631       if (BOpc == Instruction::And)
2632         BOpc = Instruction::Or;
2633       else if (BOpc == Instruction::Or)
2634         BOpc = Instruction::And;
2635     }
2636   }
2637 
2638   // If this node is not part of the or/and tree, emit it as a branch.
2639   // Note that all nodes in the tree should have same opcode.
2640   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2641   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2642       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2643       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2644     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2645                                  TProb, FProb, InvertCond);
2646     return;
2647   }
2648 
2649   //  Create TmpBB after CurBB.
2650   MachineFunction::iterator BBI(CurBB);
2651   MachineFunction &MF = DAG.getMachineFunction();
2652   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2653   CurBB->getParent()->insert(++BBI, TmpBB);
2654 
2655   if (Opc == Instruction::Or) {
2656     // Codegen X | Y as:
2657     // BB1:
2658     //   jmp_if_X TBB
2659     //   jmp TmpBB
2660     // TmpBB:
2661     //   jmp_if_Y TBB
2662     //   jmp FBB
2663     //
2664 
2665     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2666     // The requirement is that
2667     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2668     //     = TrueProb for original BB.
2669     // Assuming the original probabilities are A and B, one choice is to set
2670     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2671     // A/(1+B) and 2B/(1+B). This choice assumes that
2672     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2673     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2674     // TmpBB, but the math is more complicated.
2675 
2676     auto NewTrueProb = TProb / 2;
2677     auto NewFalseProb = TProb / 2 + FProb;
2678     // Emit the LHS condition.
2679     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2680                          NewFalseProb, InvertCond);
2681 
2682     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2683     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2684     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2685     // Emit the RHS condition into TmpBB.
2686     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2687                          Probs[1], InvertCond);
2688   } else {
2689     assert(Opc == Instruction::And && "Unknown merge op!");
2690     // Codegen X & Y as:
2691     // BB1:
2692     //   jmp_if_X TmpBB
2693     //   jmp FBB
2694     // TmpBB:
2695     //   jmp_if_Y TBB
2696     //   jmp FBB
2697     //
2698     //  This requires creation of TmpBB after CurBB.
2699 
2700     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2701     // The requirement is that
2702     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2703     //     = FalseProb for original BB.
2704     // Assuming the original probabilities are A and B, one choice is to set
2705     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2706     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2707     // TrueProb for BB1 * FalseProb for TmpBB.
2708 
2709     auto NewTrueProb = TProb + FProb / 2;
2710     auto NewFalseProb = FProb / 2;
2711     // Emit the LHS condition.
2712     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2713                          NewFalseProb, InvertCond);
2714 
2715     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2716     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2717     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2718     // Emit the RHS condition into TmpBB.
2719     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2720                          Probs[1], InvertCond);
2721   }
2722 }
2723 
2724 /// If the set of cases should be emitted as a series of branches, return true.
2725 /// If we should emit this as a bunch of and/or'd together conditions, return
2726 /// false.
2727 bool
2728 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2729   if (Cases.size() != 2) return true;
2730 
2731   // If this is two comparisons of the same values or'd or and'd together, they
2732   // will get folded into a single comparison, so don't emit two blocks.
2733   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2734        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2735       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2736        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2737     return false;
2738   }
2739 
2740   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2741   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2742   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2743       Cases[0].CC == Cases[1].CC &&
2744       isa<Constant>(Cases[0].CmpRHS) &&
2745       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2746     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2747       return false;
2748     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2749       return false;
2750   }
2751 
2752   return true;
2753 }
2754 
2755 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2756   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2757 
2758   // Update machine-CFG edges.
2759   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2760 
2761   if (I.isUnconditional()) {
2762     // Update machine-CFG edges.
2763     BrMBB->addSuccessor(Succ0MBB);
2764 
2765     // If this is not a fall-through branch or optimizations are switched off,
2766     // emit the branch.
2767     if (Succ0MBB != NextBlock(BrMBB) ||
2768         TM.getOptLevel() == CodeGenOptLevel::None) {
2769       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2770                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2771       setValue(&I, Br);
2772       DAG.setRoot(Br);
2773     }
2774 
2775     return;
2776   }
2777 
2778   // If this condition is one of the special cases we handle, do special stuff
2779   // now.
2780   const Value *CondVal = I.getCondition();
2781   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2782 
2783   // If this is a series of conditions that are or'd or and'd together, emit
2784   // this as a sequence of branches instead of setcc's with and/or operations.
2785   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2786   // unpredictable branches, and vector extracts because those jumps are likely
2787   // expensive for any target), this should improve performance.
2788   // For example, instead of something like:
2789   //     cmp A, B
2790   //     C = seteq
2791   //     cmp D, E
2792   //     F = setle
2793   //     or C, F
2794   //     jnz foo
2795   // Emit:
2796   //     cmp A, B
2797   //     je foo
2798   //     cmp D, E
2799   //     jle foo
2800   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2801   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2802       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2803     Value *Vec;
2804     const Value *BOp0, *BOp1;
2805     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2806     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2807       Opcode = Instruction::And;
2808     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2809       Opcode = Instruction::Or;
2810 
2811     if (Opcode &&
2812         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2813           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2814         !shouldKeepJumpConditionsTogether(
2815             FuncInfo, I, Opcode, BOp0, BOp1,
2816             DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2817                 Opcode, BOp0, BOp1))) {
2818       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2819                            getEdgeProbability(BrMBB, Succ0MBB),
2820                            getEdgeProbability(BrMBB, Succ1MBB),
2821                            /*InvertCond=*/false);
2822       // If the compares in later blocks need to use values not currently
2823       // exported from this block, export them now.  This block should always
2824       // be the first entry.
2825       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2826 
2827       // Allow some cases to be rejected.
2828       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2829         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2830           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2831           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2832         }
2833 
2834         // Emit the branch for this block.
2835         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2836         SL->SwitchCases.erase(SL->SwitchCases.begin());
2837         return;
2838       }
2839 
2840       // Okay, we decided not to do this, remove any inserted MBB's and clear
2841       // SwitchCases.
2842       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2843         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2844 
2845       SL->SwitchCases.clear();
2846     }
2847   }
2848 
2849   // Create a CaseBlock record representing this branch.
2850   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2851                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2852 
2853   // Use visitSwitchCase to actually insert the fast branch sequence for this
2854   // cond branch.
2855   visitSwitchCase(CB, BrMBB);
2856 }
2857 
2858 /// visitSwitchCase - Emits the necessary code to represent a single node in
2859 /// the binary search tree resulting from lowering a switch instruction.
2860 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2861                                           MachineBasicBlock *SwitchBB) {
2862   SDValue Cond;
2863   SDValue CondLHS = getValue(CB.CmpLHS);
2864   SDLoc dl = CB.DL;
2865 
2866   if (CB.CC == ISD::SETTRUE) {
2867     // Branch or fall through to TrueBB.
2868     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2869     SwitchBB->normalizeSuccProbs();
2870     if (CB.TrueBB != NextBlock(SwitchBB)) {
2871       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2872                               DAG.getBasicBlock(CB.TrueBB)));
2873     }
2874     return;
2875   }
2876 
2877   auto &TLI = DAG.getTargetLoweringInfo();
2878   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2879 
2880   // Build the setcc now.
2881   if (!CB.CmpMHS) {
2882     // Fold "(X == true)" to X and "(X == false)" to !X to
2883     // handle common cases produced by branch lowering.
2884     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2885         CB.CC == ISD::SETEQ)
2886       Cond = CondLHS;
2887     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2888              CB.CC == ISD::SETEQ) {
2889       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2890       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2891     } else {
2892       SDValue CondRHS = getValue(CB.CmpRHS);
2893 
2894       // If a pointer's DAG type is larger than its memory type then the DAG
2895       // values are zero-extended. This breaks signed comparisons so truncate
2896       // back to the underlying type before doing the compare.
2897       if (CondLHS.getValueType() != MemVT) {
2898         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2899         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2900       }
2901       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2902     }
2903   } else {
2904     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2905 
2906     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2907     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2908 
2909     SDValue CmpOp = getValue(CB.CmpMHS);
2910     EVT VT = CmpOp.getValueType();
2911 
2912     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2913       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2914                           ISD::SETLE);
2915     } else {
2916       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2917                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2918       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2919                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2920     }
2921   }
2922 
2923   // Update successor info
2924   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2925   // TrueBB and FalseBB are always different unless the incoming IR is
2926   // degenerate. This only happens when running llc on weird IR.
2927   if (CB.TrueBB != CB.FalseBB)
2928     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2929   SwitchBB->normalizeSuccProbs();
2930 
2931   // If the lhs block is the next block, invert the condition so that we can
2932   // fall through to the lhs instead of the rhs block.
2933   if (CB.TrueBB == NextBlock(SwitchBB)) {
2934     std::swap(CB.TrueBB, CB.FalseBB);
2935     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2936     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2937   }
2938 
2939   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2940                                MVT::Other, getControlRoot(), Cond,
2941                                DAG.getBasicBlock(CB.TrueBB));
2942 
2943   setValue(CurInst, BrCond);
2944 
2945   // Insert the false branch. Do this even if it's a fall through branch,
2946   // this makes it easier to do DAG optimizations which require inverting
2947   // the branch condition.
2948   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2949                        DAG.getBasicBlock(CB.FalseBB));
2950 
2951   DAG.setRoot(BrCond);
2952 }
2953 
2954 /// visitJumpTable - Emit JumpTable node in the current MBB
2955 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2956   // Emit the code for the jump table
2957   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2958   assert(JT.Reg != -1U && "Should lower JT Header first!");
2959   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2960   SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2961   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2962   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2963                                     Index.getValue(1), Table, Index);
2964   DAG.setRoot(BrJumpTable);
2965 }
2966 
2967 /// visitJumpTableHeader - This function emits necessary code to produce index
2968 /// in the JumpTable from switch case.
2969 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2970                                                JumpTableHeader &JTH,
2971                                                MachineBasicBlock *SwitchBB) {
2972   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2973   const SDLoc &dl = *JT.SL;
2974 
2975   // Subtract the lowest switch case value from the value being switched on.
2976   SDValue SwitchOp = getValue(JTH.SValue);
2977   EVT VT = SwitchOp.getValueType();
2978   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2979                             DAG.getConstant(JTH.First, dl, VT));
2980 
2981   // The SDNode we just created, which holds the value being switched on minus
2982   // the smallest case value, needs to be copied to a virtual register so it
2983   // can be used as an index into the jump table in a subsequent basic block.
2984   // This value may be smaller or larger than the target's pointer type, and
2985   // therefore require extension or truncating.
2986   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2987   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2988 
2989   unsigned JumpTableReg =
2990       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2991   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2992                                     JumpTableReg, SwitchOp);
2993   JT.Reg = JumpTableReg;
2994 
2995   if (!JTH.FallthroughUnreachable) {
2996     // Emit the range check for the jump table, and branch to the default block
2997     // for the switch statement if the value being switched on exceeds the
2998     // largest case in the switch.
2999     SDValue CMP = DAG.getSetCC(
3000         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3001                                    Sub.getValueType()),
3002         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3003 
3004     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3005                                  MVT::Other, CopyTo, CMP,
3006                                  DAG.getBasicBlock(JT.Default));
3007 
3008     // Avoid emitting unnecessary branches to the next block.
3009     if (JT.MBB != NextBlock(SwitchBB))
3010       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3011                            DAG.getBasicBlock(JT.MBB));
3012 
3013     DAG.setRoot(BrCond);
3014   } else {
3015     // Avoid emitting unnecessary branches to the next block.
3016     if (JT.MBB != NextBlock(SwitchBB))
3017       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3018                               DAG.getBasicBlock(JT.MBB)));
3019     else
3020       DAG.setRoot(CopyTo);
3021   }
3022 }
3023 
3024 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3025 /// variable if there exists one.
3026 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
3027                                  SDValue &Chain) {
3028   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3029   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3030   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3031   MachineFunction &MF = DAG.getMachineFunction();
3032   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
3033   MachineSDNode *Node =
3034       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3035   if (Global) {
3036     MachinePointerInfo MPInfo(Global);
3037     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
3038                  MachineMemOperand::MODereferenceable;
3039     MachineMemOperand *MemRef = MF.getMachineMemOperand(
3040         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
3041     DAG.setNodeMemRefs(Node, {MemRef});
3042   }
3043   if (PtrTy != PtrMemTy)
3044     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3045   return SDValue(Node, 0);
3046 }
3047 
3048 /// Codegen a new tail for a stack protector check ParentMBB which has had its
3049 /// tail spliced into a stack protector check success bb.
3050 ///
3051 /// For a high level explanation of how this fits into the stack protector
3052 /// generation see the comment on the declaration of class
3053 /// StackProtectorDescriptor.
3054 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
3055                                                   MachineBasicBlock *ParentBB) {
3056 
3057   // First create the loads to the guard/stack slot for the comparison.
3058   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3059   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3060   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3061 
3062   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3063   int FI = MFI.getStackProtectorIndex();
3064 
3065   SDValue Guard;
3066   SDLoc dl = getCurSDLoc();
3067   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3068   const Module &M = *ParentBB->getParent()->getFunction().getParent();
3069   Align Align =
3070       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
3071 
3072   // Generate code to load the content of the guard slot.
3073   SDValue GuardVal = DAG.getLoad(
3074       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3075       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3076       MachineMemOperand::MOVolatile);
3077 
3078   if (TLI.useStackGuardXorFP())
3079     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3080 
3081   // Retrieve guard check function, nullptr if instrumentation is inlined.
3082   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3083     // The target provides a guard check function to validate the guard value.
3084     // Generate a call to that function with the content of the guard slot as
3085     // argument.
3086     FunctionType *FnTy = GuardCheckFn->getFunctionType();
3087     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3088 
3089     TargetLowering::ArgListTy Args;
3090     TargetLowering::ArgListEntry Entry;
3091     Entry.Node = GuardVal;
3092     Entry.Ty = FnTy->getParamType(0);
3093     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3094       Entry.IsInReg = true;
3095     Args.push_back(Entry);
3096 
3097     TargetLowering::CallLoweringInfo CLI(DAG);
3098     CLI.setDebugLoc(getCurSDLoc())
3099         .setChain(DAG.getEntryNode())
3100         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3101                    getValue(GuardCheckFn), std::move(Args));
3102 
3103     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3104     DAG.setRoot(Result.second);
3105     return;
3106   }
3107 
3108   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3109   // Otherwise, emit a volatile load to retrieve the stack guard value.
3110   SDValue Chain = DAG.getEntryNode();
3111   if (TLI.useLoadStackGuardNode()) {
3112     Guard = getLoadStackGuard(DAG, dl, Chain);
3113   } else {
3114     const Value *IRGuard = TLI.getSDagStackGuard(M);
3115     SDValue GuardPtr = getValue(IRGuard);
3116 
3117     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3118                         MachinePointerInfo(IRGuard, 0), Align,
3119                         MachineMemOperand::MOVolatile);
3120   }
3121 
3122   // Perform the comparison via a getsetcc.
3123   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
3124                                                         *DAG.getContext(),
3125                                                         Guard.getValueType()),
3126                              Guard, GuardVal, ISD::SETNE);
3127 
3128   // If the guard/stackslot do not equal, branch to failure MBB.
3129   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3130                                MVT::Other, GuardVal.getOperand(0),
3131                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3132   // Otherwise branch to success MBB.
3133   SDValue Br = DAG.getNode(ISD::BR, dl,
3134                            MVT::Other, BrCond,
3135                            DAG.getBasicBlock(SPD.getSuccessMBB()));
3136 
3137   DAG.setRoot(Br);
3138 }
3139 
3140 /// Codegen the failure basic block for a stack protector check.
3141 ///
3142 /// A failure stack protector machine basic block consists simply of a call to
3143 /// __stack_chk_fail().
3144 ///
3145 /// For a high level explanation of how this fits into the stack protector
3146 /// generation see the comment on the declaration of class
3147 /// StackProtectorDescriptor.
3148 void
3149 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
3150   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3151   TargetLowering::MakeLibCallOptions CallOptions;
3152   CallOptions.setDiscardResult(true);
3153   SDValue Chain =
3154       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3155                       std::nullopt, CallOptions, getCurSDLoc())
3156           .second;
3157   // On PS4/PS5, the "return address" must still be within the calling
3158   // function, even if it's at the very end, so emit an explicit TRAP here.
3159   // Passing 'true' for doesNotReturn above won't generate the trap for us.
3160   if (TM.getTargetTriple().isPS())
3161     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3162   // WebAssembly needs an unreachable instruction after a non-returning call,
3163   // because the function return type can be different from __stack_chk_fail's
3164   // return type (void).
3165   if (TM.getTargetTriple().isWasm())
3166     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3167 
3168   DAG.setRoot(Chain);
3169 }
3170 
3171 /// visitBitTestHeader - This function emits necessary code to produce value
3172 /// suitable for "bit tests"
3173 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
3174                                              MachineBasicBlock *SwitchBB) {
3175   SDLoc dl = getCurSDLoc();
3176 
3177   // Subtract the minimum value.
3178   SDValue SwitchOp = getValue(B.SValue);
3179   EVT VT = SwitchOp.getValueType();
3180   SDValue RangeSub =
3181       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3182 
3183   // Determine the type of the test operands.
3184   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3185   bool UsePtrType = false;
3186   if (!TLI.isTypeLegal(VT)) {
3187     UsePtrType = true;
3188   } else {
3189     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
3190       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3191         // Switch table case range are encoded into series of masks.
3192         // Just use pointer type, it's guaranteed to fit.
3193         UsePtrType = true;
3194         break;
3195       }
3196   }
3197   SDValue Sub = RangeSub;
3198   if (UsePtrType) {
3199     VT = TLI.getPointerTy(DAG.getDataLayout());
3200     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3201   }
3202 
3203   B.RegVT = VT.getSimpleVT();
3204   B.Reg = FuncInfo.CreateReg(B.RegVT);
3205   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3206 
3207   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3208 
3209   if (!B.FallthroughUnreachable)
3210     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3211   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3212   SwitchBB->normalizeSuccProbs();
3213 
3214   SDValue Root = CopyTo;
3215   if (!B.FallthroughUnreachable) {
3216     // Conditional branch to the default block.
3217     SDValue RangeCmp = DAG.getSetCC(dl,
3218         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3219                                RangeSub.getValueType()),
3220         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3221         ISD::SETUGT);
3222 
3223     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3224                        DAG.getBasicBlock(B.Default));
3225   }
3226 
3227   // Avoid emitting unnecessary branches to the next block.
3228   if (MBB != NextBlock(SwitchBB))
3229     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3230 
3231   DAG.setRoot(Root);
3232 }
3233 
3234 /// visitBitTestCase - this function produces one "bit test"
3235 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3236                                            MachineBasicBlock* NextMBB,
3237                                            BranchProbability BranchProbToNext,
3238                                            unsigned Reg,
3239                                            BitTestCase &B,
3240                                            MachineBasicBlock *SwitchBB) {
3241   SDLoc dl = getCurSDLoc();
3242   MVT VT = BB.RegVT;
3243   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3244   SDValue Cmp;
3245   unsigned PopCount = llvm::popcount(B.Mask);
3246   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3247   if (PopCount == 1) {
3248     // Testing for a single bit; just compare the shift count with what it
3249     // would need to be to shift a 1 bit in that position.
3250     Cmp = DAG.getSetCC(
3251         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3252         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3253         ISD::SETEQ);
3254   } else if (PopCount == BB.Range) {
3255     // There is only one zero bit in the range, test for it directly.
3256     Cmp = DAG.getSetCC(
3257         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3258         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3259   } else {
3260     // Make desired shift
3261     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3262                                     DAG.getConstant(1, dl, VT), ShiftOp);
3263 
3264     // Emit bit tests and jumps
3265     SDValue AndOp = DAG.getNode(ISD::AND, dl,
3266                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3267     Cmp = DAG.getSetCC(
3268         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3269         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3270   }
3271 
3272   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3273   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3274   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3275   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3276   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3277   // one as they are relative probabilities (and thus work more like weights),
3278   // and hence we need to normalize them to let the sum of them become one.
3279   SwitchBB->normalizeSuccProbs();
3280 
3281   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3282                               MVT::Other, getControlRoot(),
3283                               Cmp, DAG.getBasicBlock(B.TargetBB));
3284 
3285   // Avoid emitting unnecessary branches to the next block.
3286   if (NextMBB != NextBlock(SwitchBB))
3287     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3288                         DAG.getBasicBlock(NextMBB));
3289 
3290   DAG.setRoot(BrAnd);
3291 }
3292 
3293 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3294   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3295 
3296   // Retrieve successors. Look through artificial IR level blocks like
3297   // catchswitch for successors.
3298   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3299   const BasicBlock *EHPadBB = I.getSuccessor(1);
3300   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3301 
3302   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3303   // have to do anything here to lower funclet bundles.
3304   assert(!I.hasOperandBundlesOtherThan(
3305              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3306               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3307               LLVMContext::OB_cfguardtarget,
3308               LLVMContext::OB_clang_arc_attachedcall}) &&
3309          "Cannot lower invokes with arbitrary operand bundles yet!");
3310 
3311   const Value *Callee(I.getCalledOperand());
3312   const Function *Fn = dyn_cast<Function>(Callee);
3313   if (isa<InlineAsm>(Callee))
3314     visitInlineAsm(I, EHPadBB);
3315   else if (Fn && Fn->isIntrinsic()) {
3316     switch (Fn->getIntrinsicID()) {
3317     default:
3318       llvm_unreachable("Cannot invoke this intrinsic");
3319     case Intrinsic::donothing:
3320       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3321     case Intrinsic::seh_try_begin:
3322     case Intrinsic::seh_scope_begin:
3323     case Intrinsic::seh_try_end:
3324     case Intrinsic::seh_scope_end:
3325       if (EHPadMBB)
3326           // a block referenced by EH table
3327           // so dtor-funclet not removed by opts
3328           EHPadMBB->setMachineBlockAddressTaken();
3329       break;
3330     case Intrinsic::experimental_patchpoint_void:
3331     case Intrinsic::experimental_patchpoint_i64:
3332       visitPatchpoint(I, EHPadBB);
3333       break;
3334     case Intrinsic::experimental_gc_statepoint:
3335       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3336       break;
3337     case Intrinsic::wasm_rethrow: {
3338       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3339       // special because it can be invoked, so we manually lower it to a DAG
3340       // node here.
3341       SmallVector<SDValue, 8> Ops;
3342       Ops.push_back(getRoot()); // inchain
3343       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3344       Ops.push_back(
3345           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3346                                 TLI.getPointerTy(DAG.getDataLayout())));
3347       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3348       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3349       break;
3350     }
3351     }
3352   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3353     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3354     // Eventually we will support lowering the @llvm.experimental.deoptimize
3355     // intrinsic, and right now there are no plans to support other intrinsics
3356     // with deopt state.
3357     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3358   } else {
3359     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3360   }
3361 
3362   // If the value of the invoke is used outside of its defining block, make it
3363   // available as a virtual register.
3364   // We already took care of the exported value for the statepoint instruction
3365   // during call to the LowerStatepoint.
3366   if (!isa<GCStatepointInst>(I)) {
3367     CopyToExportRegsIfNeeded(&I);
3368   }
3369 
3370   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3371   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3372   BranchProbability EHPadBBProb =
3373       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3374           : BranchProbability::getZero();
3375   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3376 
3377   // Update successor info.
3378   addSuccessorWithProb(InvokeMBB, Return);
3379   for (auto &UnwindDest : UnwindDests) {
3380     UnwindDest.first->setIsEHPad();
3381     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3382   }
3383   InvokeMBB->normalizeSuccProbs();
3384 
3385   // Drop into normal successor.
3386   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3387                           DAG.getBasicBlock(Return)));
3388 }
3389 
3390 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3391   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3392 
3393   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3394   // have to do anything here to lower funclet bundles.
3395   assert(!I.hasOperandBundlesOtherThan(
3396              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3397          "Cannot lower callbrs with arbitrary operand bundles yet!");
3398 
3399   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3400   visitInlineAsm(I);
3401   CopyToExportRegsIfNeeded(&I);
3402 
3403   // Retrieve successors.
3404   SmallPtrSet<BasicBlock *, 8> Dests;
3405   Dests.insert(I.getDefaultDest());
3406   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3407 
3408   // Update successor info.
3409   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3410   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3411     BasicBlock *Dest = I.getIndirectDest(i);
3412     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3413     Target->setIsInlineAsmBrIndirectTarget();
3414     Target->setMachineBlockAddressTaken();
3415     Target->setLabelMustBeEmitted();
3416     // Don't add duplicate machine successors.
3417     if (Dests.insert(Dest).second)
3418       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3419   }
3420   CallBrMBB->normalizeSuccProbs();
3421 
3422   // Drop into default successor.
3423   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3424                           MVT::Other, getControlRoot(),
3425                           DAG.getBasicBlock(Return)));
3426 }
3427 
3428 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3429   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3430 }
3431 
3432 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3433   assert(FuncInfo.MBB->isEHPad() &&
3434          "Call to landingpad not in landing pad!");
3435 
3436   // If there aren't registers to copy the values into (e.g., during SjLj
3437   // exceptions), then don't bother to create these DAG nodes.
3438   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3439   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3440   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3441       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3442     return;
3443 
3444   // If landingpad's return type is token type, we don't create DAG nodes
3445   // for its exception pointer and selector value. The extraction of exception
3446   // pointer or selector value from token type landingpads is not currently
3447   // supported.
3448   if (LP.getType()->isTokenTy())
3449     return;
3450 
3451   SmallVector<EVT, 2> ValueVTs;
3452   SDLoc dl = getCurSDLoc();
3453   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3454   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3455 
3456   // Get the two live-in registers as SDValues. The physregs have already been
3457   // copied into virtual registers.
3458   SDValue Ops[2];
3459   if (FuncInfo.ExceptionPointerVirtReg) {
3460     Ops[0] = DAG.getZExtOrTrunc(
3461         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3462                            FuncInfo.ExceptionPointerVirtReg,
3463                            TLI.getPointerTy(DAG.getDataLayout())),
3464         dl, ValueVTs[0]);
3465   } else {
3466     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3467   }
3468   Ops[1] = DAG.getZExtOrTrunc(
3469       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3470                          FuncInfo.ExceptionSelectorVirtReg,
3471                          TLI.getPointerTy(DAG.getDataLayout())),
3472       dl, ValueVTs[1]);
3473 
3474   // Merge into one.
3475   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3476                             DAG.getVTList(ValueVTs), Ops);
3477   setValue(&LP, Res);
3478 }
3479 
3480 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3481                                            MachineBasicBlock *Last) {
3482   // Update JTCases.
3483   for (JumpTableBlock &JTB : SL->JTCases)
3484     if (JTB.first.HeaderBB == First)
3485       JTB.first.HeaderBB = Last;
3486 
3487   // Update BitTestCases.
3488   for (BitTestBlock &BTB : SL->BitTestCases)
3489     if (BTB.Parent == First)
3490       BTB.Parent = Last;
3491 }
3492 
3493 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3494   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3495 
3496   // Update machine-CFG edges with unique successors.
3497   SmallSet<BasicBlock*, 32> Done;
3498   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3499     BasicBlock *BB = I.getSuccessor(i);
3500     bool Inserted = Done.insert(BB).second;
3501     if (!Inserted)
3502         continue;
3503 
3504     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3505     addSuccessorWithProb(IndirectBrMBB, Succ);
3506   }
3507   IndirectBrMBB->normalizeSuccProbs();
3508 
3509   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3510                           MVT::Other, getControlRoot(),
3511                           getValue(I.getAddress())));
3512 }
3513 
3514 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3515   if (!DAG.getTarget().Options.TrapUnreachable)
3516     return;
3517 
3518   // We may be able to ignore unreachable behind a noreturn call.
3519   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3520     if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) {
3521       if (Call->doesNotReturn())
3522         return;
3523     }
3524   }
3525 
3526   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3527 }
3528 
3529 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3530   SDNodeFlags Flags;
3531   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3532     Flags.copyFMF(*FPOp);
3533 
3534   SDValue Op = getValue(I.getOperand(0));
3535   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3536                                     Op, Flags);
3537   setValue(&I, UnNodeValue);
3538 }
3539 
3540 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3541   SDNodeFlags Flags;
3542   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3543     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3544     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3545   }
3546   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3547     Flags.setExact(ExactOp->isExact());
3548   if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3549     Flags.setDisjoint(DisjointOp->isDisjoint());
3550   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3551     Flags.copyFMF(*FPOp);
3552 
3553   SDValue Op1 = getValue(I.getOperand(0));
3554   SDValue Op2 = getValue(I.getOperand(1));
3555   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3556                                      Op1, Op2, Flags);
3557   setValue(&I, BinNodeValue);
3558 }
3559 
3560 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3561   SDValue Op1 = getValue(I.getOperand(0));
3562   SDValue Op2 = getValue(I.getOperand(1));
3563 
3564   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3565       Op1.getValueType(), DAG.getDataLayout());
3566 
3567   // Coerce the shift amount to the right type if we can. This exposes the
3568   // truncate or zext to optimization early.
3569   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3570     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3571            "Unexpected shift type");
3572     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3573   }
3574 
3575   bool nuw = false;
3576   bool nsw = false;
3577   bool exact = false;
3578 
3579   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3580 
3581     if (const OverflowingBinaryOperator *OFBinOp =
3582             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3583       nuw = OFBinOp->hasNoUnsignedWrap();
3584       nsw = OFBinOp->hasNoSignedWrap();
3585     }
3586     if (const PossiblyExactOperator *ExactOp =
3587             dyn_cast<const PossiblyExactOperator>(&I))
3588       exact = ExactOp->isExact();
3589   }
3590   SDNodeFlags Flags;
3591   Flags.setExact(exact);
3592   Flags.setNoSignedWrap(nsw);
3593   Flags.setNoUnsignedWrap(nuw);
3594   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3595                             Flags);
3596   setValue(&I, Res);
3597 }
3598 
3599 void SelectionDAGBuilder::visitSDiv(const User &I) {
3600   SDValue Op1 = getValue(I.getOperand(0));
3601   SDValue Op2 = getValue(I.getOperand(1));
3602 
3603   SDNodeFlags Flags;
3604   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3605                  cast<PossiblyExactOperator>(&I)->isExact());
3606   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3607                            Op2, Flags));
3608 }
3609 
3610 void SelectionDAGBuilder::visitICmp(const User &I) {
3611   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3612   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3613     predicate = IC->getPredicate();
3614   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3615     predicate = ICmpInst::Predicate(IC->getPredicate());
3616   SDValue Op1 = getValue(I.getOperand(0));
3617   SDValue Op2 = getValue(I.getOperand(1));
3618   ISD::CondCode Opcode = getICmpCondCode(predicate);
3619 
3620   auto &TLI = DAG.getTargetLoweringInfo();
3621   EVT MemVT =
3622       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3623 
3624   // If a pointer's DAG type is larger than its memory type then the DAG values
3625   // are zero-extended. This breaks signed comparisons so truncate back to the
3626   // underlying type before doing the compare.
3627   if (Op1.getValueType() != MemVT) {
3628     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3629     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3630   }
3631 
3632   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3633                                                         I.getType());
3634   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3635 }
3636 
3637 void SelectionDAGBuilder::visitFCmp(const User &I) {
3638   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3639   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3640     predicate = FC->getPredicate();
3641   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3642     predicate = FCmpInst::Predicate(FC->getPredicate());
3643   SDValue Op1 = getValue(I.getOperand(0));
3644   SDValue Op2 = getValue(I.getOperand(1));
3645 
3646   ISD::CondCode Condition = getFCmpCondCode(predicate);
3647   auto *FPMO = cast<FPMathOperator>(&I);
3648   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3649     Condition = getFCmpCodeWithoutNaN(Condition);
3650 
3651   SDNodeFlags Flags;
3652   Flags.copyFMF(*FPMO);
3653   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3654 
3655   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3656                                                         I.getType());
3657   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3658 }
3659 
3660 // Check if the condition of the select has one use or two users that are both
3661 // selects with the same condition.
3662 static bool hasOnlySelectUsers(const Value *Cond) {
3663   return llvm::all_of(Cond->users(), [](const Value *V) {
3664     return isa<SelectInst>(V);
3665   });
3666 }
3667 
3668 void SelectionDAGBuilder::visitSelect(const User &I) {
3669   SmallVector<EVT, 4> ValueVTs;
3670   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3671                   ValueVTs);
3672   unsigned NumValues = ValueVTs.size();
3673   if (NumValues == 0) return;
3674 
3675   SmallVector<SDValue, 4> Values(NumValues);
3676   SDValue Cond     = getValue(I.getOperand(0));
3677   SDValue LHSVal   = getValue(I.getOperand(1));
3678   SDValue RHSVal   = getValue(I.getOperand(2));
3679   SmallVector<SDValue, 1> BaseOps(1, Cond);
3680   ISD::NodeType OpCode =
3681       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3682 
3683   bool IsUnaryAbs = false;
3684   bool Negate = false;
3685 
3686   SDNodeFlags Flags;
3687   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3688     Flags.copyFMF(*FPOp);
3689 
3690   Flags.setUnpredictable(
3691       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3692 
3693   // Min/max matching is only viable if all output VTs are the same.
3694   if (all_equal(ValueVTs)) {
3695     EVT VT = ValueVTs[0];
3696     LLVMContext &Ctx = *DAG.getContext();
3697     auto &TLI = DAG.getTargetLoweringInfo();
3698 
3699     // We care about the legality of the operation after it has been type
3700     // legalized.
3701     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3702       VT = TLI.getTypeToTransformTo(Ctx, VT);
3703 
3704     // If the vselect is legal, assume we want to leave this as a vector setcc +
3705     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3706     // min/max is legal on the scalar type.
3707     bool UseScalarMinMax = VT.isVector() &&
3708       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3709 
3710     // ValueTracking's select pattern matching does not account for -0.0,
3711     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3712     // -0.0 is less than +0.0.
3713     Value *LHS, *RHS;
3714     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3715     ISD::NodeType Opc = ISD::DELETED_NODE;
3716     switch (SPR.Flavor) {
3717     case SPF_UMAX:    Opc = ISD::UMAX; break;
3718     case SPF_UMIN:    Opc = ISD::UMIN; break;
3719     case SPF_SMAX:    Opc = ISD::SMAX; break;
3720     case SPF_SMIN:    Opc = ISD::SMIN; break;
3721     case SPF_FMINNUM:
3722       switch (SPR.NaNBehavior) {
3723       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3724       case SPNB_RETURNS_NAN: break;
3725       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3726       case SPNB_RETURNS_ANY:
3727         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3728             (UseScalarMinMax &&
3729              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3730           Opc = ISD::FMINNUM;
3731         break;
3732       }
3733       break;
3734     case SPF_FMAXNUM:
3735       switch (SPR.NaNBehavior) {
3736       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3737       case SPNB_RETURNS_NAN: break;
3738       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3739       case SPNB_RETURNS_ANY:
3740         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3741             (UseScalarMinMax &&
3742              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3743           Opc = ISD::FMAXNUM;
3744         break;
3745       }
3746       break;
3747     case SPF_NABS:
3748       Negate = true;
3749       [[fallthrough]];
3750     case SPF_ABS:
3751       IsUnaryAbs = true;
3752       Opc = ISD::ABS;
3753       break;
3754     default: break;
3755     }
3756 
3757     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3758         (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) ||
3759          (UseScalarMinMax &&
3760           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3761         // If the underlying comparison instruction is used by any other
3762         // instruction, the consumed instructions won't be destroyed, so it is
3763         // not profitable to convert to a min/max.
3764         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3765       OpCode = Opc;
3766       LHSVal = getValue(LHS);
3767       RHSVal = getValue(RHS);
3768       BaseOps.clear();
3769     }
3770 
3771     if (IsUnaryAbs) {
3772       OpCode = Opc;
3773       LHSVal = getValue(LHS);
3774       BaseOps.clear();
3775     }
3776   }
3777 
3778   if (IsUnaryAbs) {
3779     for (unsigned i = 0; i != NumValues; ++i) {
3780       SDLoc dl = getCurSDLoc();
3781       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3782       Values[i] =
3783           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3784       if (Negate)
3785         Values[i] = DAG.getNegative(Values[i], dl, VT);
3786     }
3787   } else {
3788     for (unsigned i = 0; i != NumValues; ++i) {
3789       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3790       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3791       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3792       Values[i] = DAG.getNode(
3793           OpCode, getCurSDLoc(),
3794           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3795     }
3796   }
3797 
3798   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3799                            DAG.getVTList(ValueVTs), Values));
3800 }
3801 
3802 void SelectionDAGBuilder::visitTrunc(const User &I) {
3803   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3804   SDValue N = getValue(I.getOperand(0));
3805   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3806                                                         I.getType());
3807   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3808 }
3809 
3810 void SelectionDAGBuilder::visitZExt(const User &I) {
3811   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3812   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3813   SDValue N = getValue(I.getOperand(0));
3814   auto &TLI = DAG.getTargetLoweringInfo();
3815   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3816 
3817   SDNodeFlags Flags;
3818   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3819     Flags.setNonNeg(PNI->hasNonNeg());
3820 
3821   // Eagerly use nonneg information to canonicalize towards sign_extend if
3822   // that is the target's preference.
3823   // TODO: Let the target do this later.
3824   if (Flags.hasNonNeg() &&
3825       TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3826     setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3827     return;
3828   }
3829 
3830   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3831 }
3832 
3833 void SelectionDAGBuilder::visitSExt(const User &I) {
3834   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3835   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3836   SDValue N = getValue(I.getOperand(0));
3837   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3838                                                         I.getType());
3839   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3840 }
3841 
3842 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3843   // FPTrunc is never a no-op cast, no need to check
3844   SDValue N = getValue(I.getOperand(0));
3845   SDLoc dl = getCurSDLoc();
3846   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3847   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3848   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3849                            DAG.getTargetConstant(
3850                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3851 }
3852 
3853 void SelectionDAGBuilder::visitFPExt(const User &I) {
3854   // FPExt is never a no-op cast, no need to check
3855   SDValue N = getValue(I.getOperand(0));
3856   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3857                                                         I.getType());
3858   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3859 }
3860 
3861 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3862   // FPToUI is never a no-op cast, no need to check
3863   SDValue N = getValue(I.getOperand(0));
3864   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3865                                                         I.getType());
3866   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3867 }
3868 
3869 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3870   // FPToSI is never a no-op cast, no need to check
3871   SDValue N = getValue(I.getOperand(0));
3872   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3873                                                         I.getType());
3874   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3875 }
3876 
3877 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3878   // UIToFP is never a no-op cast, no need to check
3879   SDValue N = getValue(I.getOperand(0));
3880   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3881                                                         I.getType());
3882   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3883 }
3884 
3885 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3886   // SIToFP is never a no-op cast, no need to check
3887   SDValue N = getValue(I.getOperand(0));
3888   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3889                                                         I.getType());
3890   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3891 }
3892 
3893 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3894   // What to do depends on the size of the integer and the size of the pointer.
3895   // We can either truncate, zero extend, or no-op, accordingly.
3896   SDValue N = getValue(I.getOperand(0));
3897   auto &TLI = DAG.getTargetLoweringInfo();
3898   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3899                                                         I.getType());
3900   EVT PtrMemVT =
3901       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3902   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3903   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3904   setValue(&I, N);
3905 }
3906 
3907 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3908   // What to do depends on the size of the integer and the size of the pointer.
3909   // We can either truncate, zero extend, or no-op, accordingly.
3910   SDValue N = getValue(I.getOperand(0));
3911   auto &TLI = DAG.getTargetLoweringInfo();
3912   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3913   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3914   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3915   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3916   setValue(&I, N);
3917 }
3918 
3919 void SelectionDAGBuilder::visitBitCast(const User &I) {
3920   SDValue N = getValue(I.getOperand(0));
3921   SDLoc dl = getCurSDLoc();
3922   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3923                                                         I.getType());
3924 
3925   // BitCast assures us that source and destination are the same size so this is
3926   // either a BITCAST or a no-op.
3927   if (DestVT != N.getValueType())
3928     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3929                              DestVT, N)); // convert types.
3930   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3931   // might fold any kind of constant expression to an integer constant and that
3932   // is not what we are looking for. Only recognize a bitcast of a genuine
3933   // constant integer as an opaque constant.
3934   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3935     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3936                                  /*isOpaque*/true));
3937   else
3938     setValue(&I, N);            // noop cast.
3939 }
3940 
3941 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3942   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3943   const Value *SV = I.getOperand(0);
3944   SDValue N = getValue(SV);
3945   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3946 
3947   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3948   unsigned DestAS = I.getType()->getPointerAddressSpace();
3949 
3950   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3951     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3952 
3953   setValue(&I, N);
3954 }
3955 
3956 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3957   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3958   SDValue InVec = getValue(I.getOperand(0));
3959   SDValue InVal = getValue(I.getOperand(1));
3960   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3961                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3962   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3963                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3964                            InVec, InVal, InIdx));
3965 }
3966 
3967 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3968   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3969   SDValue InVec = getValue(I.getOperand(0));
3970   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3971                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3972   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3973                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3974                            InVec, InIdx));
3975 }
3976 
3977 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3978   SDValue Src1 = getValue(I.getOperand(0));
3979   SDValue Src2 = getValue(I.getOperand(1));
3980   ArrayRef<int> Mask;
3981   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3982     Mask = SVI->getShuffleMask();
3983   else
3984     Mask = cast<ConstantExpr>(I).getShuffleMask();
3985   SDLoc DL = getCurSDLoc();
3986   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3987   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3988   EVT SrcVT = Src1.getValueType();
3989 
3990   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3991       VT.isScalableVector()) {
3992     // Canonical splat form of first element of first input vector.
3993     SDValue FirstElt =
3994         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3995                     DAG.getVectorIdxConstant(0, DL));
3996     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3997     return;
3998   }
3999 
4000   // For now, we only handle splats for scalable vectors.
4001   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4002   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4003   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4004 
4005   unsigned SrcNumElts = SrcVT.getVectorNumElements();
4006   unsigned MaskNumElts = Mask.size();
4007 
4008   if (SrcNumElts == MaskNumElts) {
4009     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4010     return;
4011   }
4012 
4013   // Normalize the shuffle vector since mask and vector length don't match.
4014   if (SrcNumElts < MaskNumElts) {
4015     // Mask is longer than the source vectors. We can use concatenate vector to
4016     // make the mask and vectors lengths match.
4017 
4018     if (MaskNumElts % SrcNumElts == 0) {
4019       // Mask length is a multiple of the source vector length.
4020       // Check if the shuffle is some kind of concatenation of the input
4021       // vectors.
4022       unsigned NumConcat = MaskNumElts / SrcNumElts;
4023       bool IsConcat = true;
4024       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4025       for (unsigned i = 0; i != MaskNumElts; ++i) {
4026         int Idx = Mask[i];
4027         if (Idx < 0)
4028           continue;
4029         // Ensure the indices in each SrcVT sized piece are sequential and that
4030         // the same source is used for the whole piece.
4031         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4032             (ConcatSrcs[i / SrcNumElts] >= 0 &&
4033              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4034           IsConcat = false;
4035           break;
4036         }
4037         // Remember which source this index came from.
4038         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4039       }
4040 
4041       // The shuffle is concatenating multiple vectors together. Just emit
4042       // a CONCAT_VECTORS operation.
4043       if (IsConcat) {
4044         SmallVector<SDValue, 8> ConcatOps;
4045         for (auto Src : ConcatSrcs) {
4046           if (Src < 0)
4047             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4048           else if (Src == 0)
4049             ConcatOps.push_back(Src1);
4050           else
4051             ConcatOps.push_back(Src2);
4052         }
4053         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4054         return;
4055       }
4056     }
4057 
4058     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4059     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4060     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4061                                     PaddedMaskNumElts);
4062 
4063     // Pad both vectors with undefs to make them the same length as the mask.
4064     SDValue UndefVal = DAG.getUNDEF(SrcVT);
4065 
4066     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4067     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4068     MOps1[0] = Src1;
4069     MOps2[0] = Src2;
4070 
4071     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4072     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4073 
4074     // Readjust mask for new input vector length.
4075     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4076     for (unsigned i = 0; i != MaskNumElts; ++i) {
4077       int Idx = Mask[i];
4078       if (Idx >= (int)SrcNumElts)
4079         Idx -= SrcNumElts - PaddedMaskNumElts;
4080       MappedOps[i] = Idx;
4081     }
4082 
4083     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4084 
4085     // If the concatenated vector was padded, extract a subvector with the
4086     // correct number of elements.
4087     if (MaskNumElts != PaddedMaskNumElts)
4088       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4089                            DAG.getVectorIdxConstant(0, DL));
4090 
4091     setValue(&I, Result);
4092     return;
4093   }
4094 
4095   if (SrcNumElts > MaskNumElts) {
4096     // Analyze the access pattern of the vector to see if we can extract
4097     // two subvectors and do the shuffle.
4098     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
4099     bool CanExtract = true;
4100     for (int Idx : Mask) {
4101       unsigned Input = 0;
4102       if (Idx < 0)
4103         continue;
4104 
4105       if (Idx >= (int)SrcNumElts) {
4106         Input = 1;
4107         Idx -= SrcNumElts;
4108       }
4109 
4110       // If all the indices come from the same MaskNumElts sized portion of
4111       // the sources we can use extract. Also make sure the extract wouldn't
4112       // extract past the end of the source.
4113       int NewStartIdx = alignDown(Idx, MaskNumElts);
4114       if (NewStartIdx + MaskNumElts > SrcNumElts ||
4115           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4116         CanExtract = false;
4117       // Make sure we always update StartIdx as we use it to track if all
4118       // elements are undef.
4119       StartIdx[Input] = NewStartIdx;
4120     }
4121 
4122     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4123       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4124       return;
4125     }
4126     if (CanExtract) {
4127       // Extract appropriate subvector and generate a vector shuffle
4128       for (unsigned Input = 0; Input < 2; ++Input) {
4129         SDValue &Src = Input == 0 ? Src1 : Src2;
4130         if (StartIdx[Input] < 0)
4131           Src = DAG.getUNDEF(VT);
4132         else {
4133           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4134                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
4135         }
4136       }
4137 
4138       // Calculate new mask.
4139       SmallVector<int, 8> MappedOps(Mask);
4140       for (int &Idx : MappedOps) {
4141         if (Idx >= (int)SrcNumElts)
4142           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4143         else if (Idx >= 0)
4144           Idx -= StartIdx[0];
4145       }
4146 
4147       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4148       return;
4149     }
4150   }
4151 
4152   // We can't use either concat vectors or extract subvectors so fall back to
4153   // replacing the shuffle with extract and build vector.
4154   // to insert and build vector.
4155   EVT EltVT = VT.getVectorElementType();
4156   SmallVector<SDValue,8> Ops;
4157   for (int Idx : Mask) {
4158     SDValue Res;
4159 
4160     if (Idx < 0) {
4161       Res = DAG.getUNDEF(EltVT);
4162     } else {
4163       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4164       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4165 
4166       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4167                         DAG.getVectorIdxConstant(Idx, DL));
4168     }
4169 
4170     Ops.push_back(Res);
4171   }
4172 
4173   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4174 }
4175 
4176 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4177   ArrayRef<unsigned> Indices = I.getIndices();
4178   const Value *Op0 = I.getOperand(0);
4179   const Value *Op1 = I.getOperand(1);
4180   Type *AggTy = I.getType();
4181   Type *ValTy = Op1->getType();
4182   bool IntoUndef = isa<UndefValue>(Op0);
4183   bool FromUndef = isa<UndefValue>(Op1);
4184 
4185   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4186 
4187   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4188   SmallVector<EVT, 4> AggValueVTs;
4189   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4190   SmallVector<EVT, 4> ValValueVTs;
4191   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4192 
4193   unsigned NumAggValues = AggValueVTs.size();
4194   unsigned NumValValues = ValValueVTs.size();
4195   SmallVector<SDValue, 4> Values(NumAggValues);
4196 
4197   // Ignore an insertvalue that produces an empty object
4198   if (!NumAggValues) {
4199     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4200     return;
4201   }
4202 
4203   SDValue Agg = getValue(Op0);
4204   unsigned i = 0;
4205   // Copy the beginning value(s) from the original aggregate.
4206   for (; i != LinearIndex; ++i)
4207     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4208                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4209   // Copy values from the inserted value(s).
4210   if (NumValValues) {
4211     SDValue Val = getValue(Op1);
4212     for (; i != LinearIndex + NumValValues; ++i)
4213       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4214                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4215   }
4216   // Copy remaining value(s) from the original aggregate.
4217   for (; i != NumAggValues; ++i)
4218     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4219                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4220 
4221   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4222                            DAG.getVTList(AggValueVTs), Values));
4223 }
4224 
4225 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4226   ArrayRef<unsigned> Indices = I.getIndices();
4227   const Value *Op0 = I.getOperand(0);
4228   Type *AggTy = Op0->getType();
4229   Type *ValTy = I.getType();
4230   bool OutOfUndef = isa<UndefValue>(Op0);
4231 
4232   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4233 
4234   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4235   SmallVector<EVT, 4> ValValueVTs;
4236   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4237 
4238   unsigned NumValValues = ValValueVTs.size();
4239 
4240   // Ignore a extractvalue that produces an empty object
4241   if (!NumValValues) {
4242     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4243     return;
4244   }
4245 
4246   SmallVector<SDValue, 4> Values(NumValValues);
4247 
4248   SDValue Agg = getValue(Op0);
4249   // Copy out the selected value(s).
4250   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4251     Values[i - LinearIndex] =
4252       OutOfUndef ?
4253         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4254         SDValue(Agg.getNode(), Agg.getResNo() + i);
4255 
4256   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4257                            DAG.getVTList(ValValueVTs), Values));
4258 }
4259 
4260 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4261   Value *Op0 = I.getOperand(0);
4262   // Note that the pointer operand may be a vector of pointers. Take the scalar
4263   // element which holds a pointer.
4264   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4265   SDValue N = getValue(Op0);
4266   SDLoc dl = getCurSDLoc();
4267   auto &TLI = DAG.getTargetLoweringInfo();
4268 
4269   // Normalize Vector GEP - all scalar operands should be converted to the
4270   // splat vector.
4271   bool IsVectorGEP = I.getType()->isVectorTy();
4272   ElementCount VectorElementCount =
4273       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4274                   : ElementCount::getFixed(0);
4275 
4276   if (IsVectorGEP && !N.getValueType().isVector()) {
4277     LLVMContext &Context = *DAG.getContext();
4278     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4279     N = DAG.getSplat(VT, dl, N);
4280   }
4281 
4282   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4283        GTI != E; ++GTI) {
4284     const Value *Idx = GTI.getOperand();
4285     if (StructType *StTy = GTI.getStructTypeOrNull()) {
4286       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4287       if (Field) {
4288         // N = N + Offset
4289         uint64_t Offset =
4290             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4291 
4292         // In an inbounds GEP with an offset that is nonnegative even when
4293         // interpreted as signed, assume there is no unsigned overflow.
4294         SDNodeFlags Flags;
4295         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
4296           Flags.setNoUnsignedWrap(true);
4297 
4298         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4299                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4300       }
4301     } else {
4302       // IdxSize is the width of the arithmetic according to IR semantics.
4303       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4304       // (and fix up the result later).
4305       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4306       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4307       TypeSize ElementSize =
4308           GTI.getSequentialElementStride(DAG.getDataLayout());
4309       // We intentionally mask away the high bits here; ElementSize may not
4310       // fit in IdxTy.
4311       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4312       bool ElementScalable = ElementSize.isScalable();
4313 
4314       // If this is a scalar constant or a splat vector of constants,
4315       // handle it quickly.
4316       const auto *C = dyn_cast<Constant>(Idx);
4317       if (C && isa<VectorType>(C->getType()))
4318         C = C->getSplatValue();
4319 
4320       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4321       if (CI && CI->isZero())
4322         continue;
4323       if (CI && !ElementScalable) {
4324         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4325         LLVMContext &Context = *DAG.getContext();
4326         SDValue OffsVal;
4327         if (IsVectorGEP)
4328           OffsVal = DAG.getConstant(
4329               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4330         else
4331           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4332 
4333         // In an inbounds GEP with an offset that is nonnegative even when
4334         // interpreted as signed, assume there is no unsigned overflow.
4335         SDNodeFlags Flags;
4336         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4337           Flags.setNoUnsignedWrap(true);
4338 
4339         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4340 
4341         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4342         continue;
4343       }
4344 
4345       // N = N + Idx * ElementMul;
4346       SDValue IdxN = getValue(Idx);
4347 
4348       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4349         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4350                                   VectorElementCount);
4351         IdxN = DAG.getSplat(VT, dl, IdxN);
4352       }
4353 
4354       // If the index is smaller or larger than intptr_t, truncate or extend
4355       // it.
4356       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4357 
4358       if (ElementScalable) {
4359         EVT VScaleTy = N.getValueType().getScalarType();
4360         SDValue VScale = DAG.getNode(
4361             ISD::VSCALE, dl, VScaleTy,
4362             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4363         if (IsVectorGEP)
4364           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4365         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4366       } else {
4367         // If this is a multiply by a power of two, turn it into a shl
4368         // immediately.  This is a very common case.
4369         if (ElementMul != 1) {
4370           if (ElementMul.isPowerOf2()) {
4371             unsigned Amt = ElementMul.logBase2();
4372             IdxN = DAG.getNode(ISD::SHL, dl,
4373                                N.getValueType(), IdxN,
4374                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4375           } else {
4376             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4377                                             IdxN.getValueType());
4378             IdxN = DAG.getNode(ISD::MUL, dl,
4379                                N.getValueType(), IdxN, Scale);
4380           }
4381         }
4382       }
4383 
4384       N = DAG.getNode(ISD::ADD, dl,
4385                       N.getValueType(), N, IdxN);
4386     }
4387   }
4388 
4389   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4390   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4391   if (IsVectorGEP) {
4392     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4393     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4394   }
4395 
4396   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4397     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4398 
4399   setValue(&I, N);
4400 }
4401 
4402 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4403   // If this is a fixed sized alloca in the entry block of the function,
4404   // allocate it statically on the stack.
4405   if (FuncInfo.StaticAllocaMap.count(&I))
4406     return;   // getValue will auto-populate this.
4407 
4408   SDLoc dl = getCurSDLoc();
4409   Type *Ty = I.getAllocatedType();
4410   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4411   auto &DL = DAG.getDataLayout();
4412   TypeSize TySize = DL.getTypeAllocSize(Ty);
4413   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4414 
4415   SDValue AllocSize = getValue(I.getArraySize());
4416 
4417   EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4418   if (AllocSize.getValueType() != IntPtr)
4419     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4420 
4421   if (TySize.isScalable())
4422     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4423                             DAG.getVScale(dl, IntPtr,
4424                                           APInt(IntPtr.getScalarSizeInBits(),
4425                                                 TySize.getKnownMinValue())));
4426   else {
4427     SDValue TySizeValue =
4428         DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4429     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4430                             DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4431   }
4432 
4433   // Handle alignment.  If the requested alignment is less than or equal to
4434   // the stack alignment, ignore it.  If the size is greater than or equal to
4435   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4436   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4437   if (*Alignment <= StackAlign)
4438     Alignment = std::nullopt;
4439 
4440   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4441   // Round the size of the allocation up to the stack alignment size
4442   // by add SA-1 to the size. This doesn't overflow because we're computing
4443   // an address inside an alloca.
4444   SDNodeFlags Flags;
4445   Flags.setNoUnsignedWrap(true);
4446   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4447                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4448 
4449   // Mask out the low bits for alignment purposes.
4450   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4451                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4452 
4453   SDValue Ops[] = {
4454       getRoot(), AllocSize,
4455       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4456   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4457   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4458   setValue(&I, DSA);
4459   DAG.setRoot(DSA.getValue(1));
4460 
4461   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4462 }
4463 
4464 static const MDNode *getRangeMetadata(const Instruction &I) {
4465   // If !noundef is not present, then !range violation results in a poison
4466   // value rather than immediate undefined behavior. In theory, transferring
4467   // these annotations to SDAG is fine, but in practice there are key SDAG
4468   // transforms that are known not to be poison-safe, such as folding logical
4469   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4470   // also present.
4471   if (!I.hasMetadata(LLVMContext::MD_noundef))
4472     return nullptr;
4473   return I.getMetadata(LLVMContext::MD_range);
4474 }
4475 
4476 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4477   if (I.isAtomic())
4478     return visitAtomicLoad(I);
4479 
4480   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4481   const Value *SV = I.getOperand(0);
4482   if (TLI.supportSwiftError()) {
4483     // Swifterror values can come from either a function parameter with
4484     // swifterror attribute or an alloca with swifterror attribute.
4485     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4486       if (Arg->hasSwiftErrorAttr())
4487         return visitLoadFromSwiftError(I);
4488     }
4489 
4490     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4491       if (Alloca->isSwiftError())
4492         return visitLoadFromSwiftError(I);
4493     }
4494   }
4495 
4496   SDValue Ptr = getValue(SV);
4497 
4498   Type *Ty = I.getType();
4499   SmallVector<EVT, 4> ValueVTs, MemVTs;
4500   SmallVector<TypeSize, 4> Offsets;
4501   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4502   unsigned NumValues = ValueVTs.size();
4503   if (NumValues == 0)
4504     return;
4505 
4506   Align Alignment = I.getAlign();
4507   AAMDNodes AAInfo = I.getAAMetadata();
4508   const MDNode *Ranges = getRangeMetadata(I);
4509   bool isVolatile = I.isVolatile();
4510   MachineMemOperand::Flags MMOFlags =
4511       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4512 
4513   SDValue Root;
4514   bool ConstantMemory = false;
4515   if (isVolatile)
4516     // Serialize volatile loads with other side effects.
4517     Root = getRoot();
4518   else if (NumValues > MaxParallelChains)
4519     Root = getMemoryRoot();
4520   else if (AA &&
4521            AA->pointsToConstantMemory(MemoryLocation(
4522                SV,
4523                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4524                AAInfo))) {
4525     // Do not serialize (non-volatile) loads of constant memory with anything.
4526     Root = DAG.getEntryNode();
4527     ConstantMemory = true;
4528     MMOFlags |= MachineMemOperand::MOInvariant;
4529   } else {
4530     // Do not serialize non-volatile loads against each other.
4531     Root = DAG.getRoot();
4532   }
4533 
4534   SDLoc dl = getCurSDLoc();
4535 
4536   if (isVolatile)
4537     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4538 
4539   SmallVector<SDValue, 4> Values(NumValues);
4540   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4541 
4542   unsigned ChainI = 0;
4543   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4544     // Serializing loads here may result in excessive register pressure, and
4545     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4546     // could recover a bit by hoisting nodes upward in the chain by recognizing
4547     // they are side-effect free or do not alias. The optimizer should really
4548     // avoid this case by converting large object/array copies to llvm.memcpy
4549     // (MaxParallelChains should always remain as failsafe).
4550     if (ChainI == MaxParallelChains) {
4551       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4552       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4553                                   ArrayRef(Chains.data(), ChainI));
4554       Root = Chain;
4555       ChainI = 0;
4556     }
4557 
4558     // TODO: MachinePointerInfo only supports a fixed length offset.
4559     MachinePointerInfo PtrInfo =
4560         !Offsets[i].isScalable() || Offsets[i].isZero()
4561             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4562             : MachinePointerInfo();
4563 
4564     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4565     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4566                             MMOFlags, AAInfo, Ranges);
4567     Chains[ChainI] = L.getValue(1);
4568 
4569     if (MemVTs[i] != ValueVTs[i])
4570       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4571 
4572     Values[i] = L;
4573   }
4574 
4575   if (!ConstantMemory) {
4576     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4577                                 ArrayRef(Chains.data(), ChainI));
4578     if (isVolatile)
4579       DAG.setRoot(Chain);
4580     else
4581       PendingLoads.push_back(Chain);
4582   }
4583 
4584   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4585                            DAG.getVTList(ValueVTs), Values));
4586 }
4587 
4588 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4589   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4590          "call visitStoreToSwiftError when backend supports swifterror");
4591 
4592   SmallVector<EVT, 4> ValueVTs;
4593   SmallVector<uint64_t, 4> Offsets;
4594   const Value *SrcV = I.getOperand(0);
4595   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4596                   SrcV->getType(), ValueVTs, &Offsets, 0);
4597   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4598          "expect a single EVT for swifterror");
4599 
4600   SDValue Src = getValue(SrcV);
4601   // Create a virtual register, then update the virtual register.
4602   Register VReg =
4603       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4604   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4605   // Chain can be getRoot or getControlRoot.
4606   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4607                                       SDValue(Src.getNode(), Src.getResNo()));
4608   DAG.setRoot(CopyNode);
4609 }
4610 
4611 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4612   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4613          "call visitLoadFromSwiftError when backend supports swifterror");
4614 
4615   assert(!I.isVolatile() &&
4616          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4617          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4618          "Support volatile, non temporal, invariant for load_from_swift_error");
4619 
4620   const Value *SV = I.getOperand(0);
4621   Type *Ty = I.getType();
4622   assert(
4623       (!AA ||
4624        !AA->pointsToConstantMemory(MemoryLocation(
4625            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4626            I.getAAMetadata()))) &&
4627       "load_from_swift_error should not be constant memory");
4628 
4629   SmallVector<EVT, 4> ValueVTs;
4630   SmallVector<uint64_t, 4> Offsets;
4631   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4632                   ValueVTs, &Offsets, 0);
4633   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4634          "expect a single EVT for swifterror");
4635 
4636   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4637   SDValue L = DAG.getCopyFromReg(
4638       getRoot(), getCurSDLoc(),
4639       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4640 
4641   setValue(&I, L);
4642 }
4643 
4644 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4645   if (I.isAtomic())
4646     return visitAtomicStore(I);
4647 
4648   const Value *SrcV = I.getOperand(0);
4649   const Value *PtrV = I.getOperand(1);
4650 
4651   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4652   if (TLI.supportSwiftError()) {
4653     // Swifterror values can come from either a function parameter with
4654     // swifterror attribute or an alloca with swifterror attribute.
4655     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4656       if (Arg->hasSwiftErrorAttr())
4657         return visitStoreToSwiftError(I);
4658     }
4659 
4660     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4661       if (Alloca->isSwiftError())
4662         return visitStoreToSwiftError(I);
4663     }
4664   }
4665 
4666   SmallVector<EVT, 4> ValueVTs, MemVTs;
4667   SmallVector<TypeSize, 4> Offsets;
4668   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4669                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4670   unsigned NumValues = ValueVTs.size();
4671   if (NumValues == 0)
4672     return;
4673 
4674   // Get the lowered operands. Note that we do this after
4675   // checking if NumResults is zero, because with zero results
4676   // the operands won't have values in the map.
4677   SDValue Src = getValue(SrcV);
4678   SDValue Ptr = getValue(PtrV);
4679 
4680   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4681   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4682   SDLoc dl = getCurSDLoc();
4683   Align Alignment = I.getAlign();
4684   AAMDNodes AAInfo = I.getAAMetadata();
4685 
4686   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4687 
4688   unsigned ChainI = 0;
4689   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4690     // See visitLoad comments.
4691     if (ChainI == MaxParallelChains) {
4692       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4693                                   ArrayRef(Chains.data(), ChainI));
4694       Root = Chain;
4695       ChainI = 0;
4696     }
4697 
4698     // TODO: MachinePointerInfo only supports a fixed length offset.
4699     MachinePointerInfo PtrInfo =
4700         !Offsets[i].isScalable() || Offsets[i].isZero()
4701             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4702             : MachinePointerInfo();
4703 
4704     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4705     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4706     if (MemVTs[i] != ValueVTs[i])
4707       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4708     SDValue St =
4709         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4710     Chains[ChainI] = St;
4711   }
4712 
4713   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4714                                   ArrayRef(Chains.data(), ChainI));
4715   setValue(&I, StoreNode);
4716   DAG.setRoot(StoreNode);
4717 }
4718 
4719 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4720                                            bool IsCompressing) {
4721   SDLoc sdl = getCurSDLoc();
4722 
4723   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4724                                MaybeAlign &Alignment) {
4725     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4726     Src0 = I.getArgOperand(0);
4727     Ptr = I.getArgOperand(1);
4728     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4729     Mask = I.getArgOperand(3);
4730   };
4731   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4732                                     MaybeAlign &Alignment) {
4733     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4734     Src0 = I.getArgOperand(0);
4735     Ptr = I.getArgOperand(1);
4736     Mask = I.getArgOperand(2);
4737     Alignment = std::nullopt;
4738   };
4739 
4740   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4741   MaybeAlign Alignment;
4742   if (IsCompressing)
4743     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4744   else
4745     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4746 
4747   SDValue Ptr = getValue(PtrOperand);
4748   SDValue Src0 = getValue(Src0Operand);
4749   SDValue Mask = getValue(MaskOperand);
4750   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4751 
4752   EVT VT = Src0.getValueType();
4753   if (!Alignment)
4754     Alignment = DAG.getEVTAlign(VT);
4755 
4756   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4757       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4758       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4759   SDValue StoreNode =
4760       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4761                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4762   DAG.setRoot(StoreNode);
4763   setValue(&I, StoreNode);
4764 }
4765 
4766 // Get a uniform base for the Gather/Scatter intrinsic.
4767 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4768 // We try to represent it as a base pointer + vector of indices.
4769 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4770 // The first operand of the GEP may be a single pointer or a vector of pointers
4771 // Example:
4772 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4773 //  or
4774 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4775 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4776 //
4777 // When the first GEP operand is a single pointer - it is the uniform base we
4778 // are looking for. If first operand of the GEP is a splat vector - we
4779 // extract the splat value and use it as a uniform base.
4780 // In all other cases the function returns 'false'.
4781 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4782                            ISD::MemIndexType &IndexType, SDValue &Scale,
4783                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4784                            uint64_t ElemSize) {
4785   SelectionDAG& DAG = SDB->DAG;
4786   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4787   const DataLayout &DL = DAG.getDataLayout();
4788 
4789   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4790 
4791   // Handle splat constant pointer.
4792   if (auto *C = dyn_cast<Constant>(Ptr)) {
4793     C = C->getSplatValue();
4794     if (!C)
4795       return false;
4796 
4797     Base = SDB->getValue(C);
4798 
4799     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4800     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4801     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4802     IndexType = ISD::SIGNED_SCALED;
4803     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4804     return true;
4805   }
4806 
4807   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4808   if (!GEP || GEP->getParent() != CurBB)
4809     return false;
4810 
4811   if (GEP->getNumOperands() != 2)
4812     return false;
4813 
4814   const Value *BasePtr = GEP->getPointerOperand();
4815   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4816 
4817   // Make sure the base is scalar and the index is a vector.
4818   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4819     return false;
4820 
4821   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4822   if (ScaleVal.isScalable())
4823     return false;
4824 
4825   // Target may not support the required addressing mode.
4826   if (ScaleVal != 1 &&
4827       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4828     return false;
4829 
4830   Base = SDB->getValue(BasePtr);
4831   Index = SDB->getValue(IndexVal);
4832   IndexType = ISD::SIGNED_SCALED;
4833 
4834   Scale =
4835       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4836   return true;
4837 }
4838 
4839 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4840   SDLoc sdl = getCurSDLoc();
4841 
4842   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4843   const Value *Ptr = I.getArgOperand(1);
4844   SDValue Src0 = getValue(I.getArgOperand(0));
4845   SDValue Mask = getValue(I.getArgOperand(3));
4846   EVT VT = Src0.getValueType();
4847   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4848                         ->getMaybeAlignValue()
4849                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4850   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4851 
4852   SDValue Base;
4853   SDValue Index;
4854   ISD::MemIndexType IndexType;
4855   SDValue Scale;
4856   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4857                                     I.getParent(), VT.getScalarStoreSize());
4858 
4859   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4860   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4861       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4862       // TODO: Make MachineMemOperands aware of scalable
4863       // vectors.
4864       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4865   if (!UniformBase) {
4866     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4867     Index = getValue(Ptr);
4868     IndexType = ISD::SIGNED_SCALED;
4869     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4870   }
4871 
4872   EVT IdxVT = Index.getValueType();
4873   EVT EltTy = IdxVT.getVectorElementType();
4874   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4875     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4876     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4877   }
4878 
4879   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4880   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4881                                          Ops, MMO, IndexType, false);
4882   DAG.setRoot(Scatter);
4883   setValue(&I, Scatter);
4884 }
4885 
4886 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4887   SDLoc sdl = getCurSDLoc();
4888 
4889   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4890                               MaybeAlign &Alignment) {
4891     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4892     Ptr = I.getArgOperand(0);
4893     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4894     Mask = I.getArgOperand(2);
4895     Src0 = I.getArgOperand(3);
4896   };
4897   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4898                                  MaybeAlign &Alignment) {
4899     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4900     Ptr = I.getArgOperand(0);
4901     Alignment = std::nullopt;
4902     Mask = I.getArgOperand(1);
4903     Src0 = I.getArgOperand(2);
4904   };
4905 
4906   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4907   MaybeAlign Alignment;
4908   if (IsExpanding)
4909     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4910   else
4911     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4912 
4913   SDValue Ptr = getValue(PtrOperand);
4914   SDValue Src0 = getValue(Src0Operand);
4915   SDValue Mask = getValue(MaskOperand);
4916   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4917 
4918   EVT VT = Src0.getValueType();
4919   if (!Alignment)
4920     Alignment = DAG.getEVTAlign(VT);
4921 
4922   AAMDNodes AAInfo = I.getAAMetadata();
4923   const MDNode *Ranges = getRangeMetadata(I);
4924 
4925   // Do not serialize masked loads of constant memory with anything.
4926   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4927   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4928 
4929   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4930 
4931   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4932       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4933       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4934 
4935   SDValue Load =
4936       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4937                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4938   if (AddToChain)
4939     PendingLoads.push_back(Load.getValue(1));
4940   setValue(&I, Load);
4941 }
4942 
4943 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4944   SDLoc sdl = getCurSDLoc();
4945 
4946   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4947   const Value *Ptr = I.getArgOperand(0);
4948   SDValue Src0 = getValue(I.getArgOperand(3));
4949   SDValue Mask = getValue(I.getArgOperand(2));
4950 
4951   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4952   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4953   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4954                         ->getMaybeAlignValue()
4955                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4956 
4957   const MDNode *Ranges = getRangeMetadata(I);
4958 
4959   SDValue Root = DAG.getRoot();
4960   SDValue Base;
4961   SDValue Index;
4962   ISD::MemIndexType IndexType;
4963   SDValue Scale;
4964   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4965                                     I.getParent(), VT.getScalarStoreSize());
4966   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4967   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4968       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4969       // TODO: Make MachineMemOperands aware of scalable
4970       // vectors.
4971       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4972 
4973   if (!UniformBase) {
4974     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4975     Index = getValue(Ptr);
4976     IndexType = ISD::SIGNED_SCALED;
4977     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4978   }
4979 
4980   EVT IdxVT = Index.getValueType();
4981   EVT EltTy = IdxVT.getVectorElementType();
4982   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4983     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4984     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4985   }
4986 
4987   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4988   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4989                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4990 
4991   PendingLoads.push_back(Gather.getValue(1));
4992   setValue(&I, Gather);
4993 }
4994 
4995 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4996   SDLoc dl = getCurSDLoc();
4997   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4998   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4999   SyncScope::ID SSID = I.getSyncScopeID();
5000 
5001   SDValue InChain = getRoot();
5002 
5003   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5004   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5005 
5006   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5007   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5008 
5009   MachineFunction &MF = DAG.getMachineFunction();
5010   MachineMemOperand *MMO = MF.getMachineMemOperand(
5011       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5012       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
5013       FailureOrdering);
5014 
5015   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5016                                    dl, MemVT, VTs, InChain,
5017                                    getValue(I.getPointerOperand()),
5018                                    getValue(I.getCompareOperand()),
5019                                    getValue(I.getNewValOperand()), MMO);
5020 
5021   SDValue OutChain = L.getValue(2);
5022 
5023   setValue(&I, L);
5024   DAG.setRoot(OutChain);
5025 }
5026 
5027 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5028   SDLoc dl = getCurSDLoc();
5029   ISD::NodeType NT;
5030   switch (I.getOperation()) {
5031   default: llvm_unreachable("Unknown atomicrmw operation");
5032   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
5033   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
5034   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
5035   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
5036   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
5037   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
5038   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
5039   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
5040   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
5041   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
5042   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
5043   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
5044   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
5045   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
5046   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
5047   case AtomicRMWInst::UIncWrap:
5048     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5049     break;
5050   case AtomicRMWInst::UDecWrap:
5051     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5052     break;
5053   }
5054   AtomicOrdering Ordering = I.getOrdering();
5055   SyncScope::ID SSID = I.getSyncScopeID();
5056 
5057   SDValue InChain = getRoot();
5058 
5059   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5060   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5061   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5062 
5063   MachineFunction &MF = DAG.getMachineFunction();
5064   MachineMemOperand *MMO = MF.getMachineMemOperand(
5065       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5066       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
5067 
5068   SDValue L =
5069     DAG.getAtomic(NT, dl, MemVT, InChain,
5070                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5071                   MMO);
5072 
5073   SDValue OutChain = L.getValue(1);
5074 
5075   setValue(&I, L);
5076   DAG.setRoot(OutChain);
5077 }
5078 
5079 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5080   SDLoc dl = getCurSDLoc();
5081   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5082   SDValue Ops[3];
5083   Ops[0] = getRoot();
5084   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5085                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5086   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5087                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5088   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5089   setValue(&I, N);
5090   DAG.setRoot(N);
5091 }
5092 
5093 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5094   SDLoc dl = getCurSDLoc();
5095   AtomicOrdering Order = I.getOrdering();
5096   SyncScope::ID SSID = I.getSyncScopeID();
5097 
5098   SDValue InChain = getRoot();
5099 
5100   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5101   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5102   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5103 
5104   if (!TLI.supportsUnalignedAtomics() &&
5105       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5106     report_fatal_error("Cannot generate unaligned atomic load");
5107 
5108   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5109 
5110   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5111       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5112       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
5113 
5114   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5115 
5116   SDValue Ptr = getValue(I.getPointerOperand());
5117   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
5118                             Ptr, MMO);
5119 
5120   SDValue OutChain = L.getValue(1);
5121   if (MemVT != VT)
5122     L = DAG.getPtrExtOrTrunc(L, dl, VT);
5123 
5124   setValue(&I, L);
5125   DAG.setRoot(OutChain);
5126 }
5127 
5128 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5129   SDLoc dl = getCurSDLoc();
5130 
5131   AtomicOrdering Ordering = I.getOrdering();
5132   SyncScope::ID SSID = I.getSyncScopeID();
5133 
5134   SDValue InChain = getRoot();
5135 
5136   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5137   EVT MemVT =
5138       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5139 
5140   if (!TLI.supportsUnalignedAtomics() &&
5141       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5142     report_fatal_error("Cannot generate unaligned atomic store");
5143 
5144   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5145 
5146   MachineFunction &MF = DAG.getMachineFunction();
5147   MachineMemOperand *MMO = MF.getMachineMemOperand(
5148       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5149       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
5150 
5151   SDValue Val = getValue(I.getValueOperand());
5152   if (Val.getValueType() != MemVT)
5153     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5154   SDValue Ptr = getValue(I.getPointerOperand());
5155 
5156   SDValue OutChain =
5157       DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5158 
5159   setValue(&I, OutChain);
5160   DAG.setRoot(OutChain);
5161 }
5162 
5163 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5164 /// node.
5165 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5166                                                unsigned Intrinsic) {
5167   // Ignore the callsite's attributes. A specific call site may be marked with
5168   // readnone, but the lowering code will expect the chain based on the
5169   // definition.
5170   const Function *F = I.getCalledFunction();
5171   bool HasChain = !F->doesNotAccessMemory();
5172   bool OnlyLoad = HasChain && F->onlyReadsMemory();
5173 
5174   // Build the operand list.
5175   SmallVector<SDValue, 8> Ops;
5176   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
5177     if (OnlyLoad) {
5178       // We don't need to serialize loads against other loads.
5179       Ops.push_back(DAG.getRoot());
5180     } else {
5181       Ops.push_back(getRoot());
5182     }
5183   }
5184 
5185   // Info is set by getTgtMemIntrinsic
5186   TargetLowering::IntrinsicInfo Info;
5187   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5188   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
5189                                                DAG.getMachineFunction(),
5190                                                Intrinsic);
5191 
5192   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5193   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5194       Info.opc == ISD::INTRINSIC_W_CHAIN)
5195     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5196                                         TLI.getPointerTy(DAG.getDataLayout())));
5197 
5198   // Add all operands of the call to the operand list.
5199   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5200     const Value *Arg = I.getArgOperand(i);
5201     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5202       Ops.push_back(getValue(Arg));
5203       continue;
5204     }
5205 
5206     // Use TargetConstant instead of a regular constant for immarg.
5207     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5208     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5209       assert(CI->getBitWidth() <= 64 &&
5210              "large intrinsic immediates not handled");
5211       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5212     } else {
5213       Ops.push_back(
5214           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5215     }
5216   }
5217 
5218   SmallVector<EVT, 4> ValueVTs;
5219   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5220 
5221   if (HasChain)
5222     ValueVTs.push_back(MVT::Other);
5223 
5224   SDVTList VTs = DAG.getVTList(ValueVTs);
5225 
5226   // Propagate fast-math-flags from IR to node(s).
5227   SDNodeFlags Flags;
5228   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5229     Flags.copyFMF(*FPMO);
5230   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5231 
5232   // Create the node.
5233   SDValue Result;
5234   // In some cases, custom collection of operands from CallInst I may be needed.
5235   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5236   if (IsTgtIntrinsic) {
5237     // This is target intrinsic that touches memory
5238     //
5239     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5240     //       didn't yield anything useful.
5241     MachinePointerInfo MPI;
5242     if (Info.ptrVal)
5243       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5244     else if (Info.fallbackAddressSpace)
5245       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5246     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5247                                      Info.memVT, MPI, Info.align, Info.flags,
5248                                      Info.size, I.getAAMetadata());
5249   } else if (!HasChain) {
5250     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5251   } else if (!I.getType()->isVoidTy()) {
5252     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5253   } else {
5254     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5255   }
5256 
5257   if (HasChain) {
5258     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5259     if (OnlyLoad)
5260       PendingLoads.push_back(Chain);
5261     else
5262       DAG.setRoot(Chain);
5263   }
5264 
5265   if (!I.getType()->isVoidTy()) {
5266     if (!isa<VectorType>(I.getType()))
5267       Result = lowerRangeToAssertZExt(DAG, I, Result);
5268 
5269     MaybeAlign Alignment = I.getRetAlign();
5270 
5271     // Insert `assertalign` node if there's an alignment.
5272     if (InsertAssertAlign && Alignment) {
5273       Result =
5274           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5275     }
5276 
5277     setValue(&I, Result);
5278   }
5279 }
5280 
5281 /// GetSignificand - Get the significand and build it into a floating-point
5282 /// number with exponent of 1:
5283 ///
5284 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5285 ///
5286 /// where Op is the hexadecimal representation of floating point value.
5287 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5288   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5289                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5290   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5291                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5292   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5293 }
5294 
5295 /// GetExponent - Get the exponent:
5296 ///
5297 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5298 ///
5299 /// where Op is the hexadecimal representation of floating point value.
5300 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5301                            const TargetLowering &TLI, const SDLoc &dl) {
5302   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5303                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5304   SDValue t1 = DAG.getNode(
5305       ISD::SRL, dl, MVT::i32, t0,
5306       DAG.getConstant(23, dl,
5307                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5308   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5309                            DAG.getConstant(127, dl, MVT::i32));
5310   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5311 }
5312 
5313 /// getF32Constant - Get 32-bit floating point constant.
5314 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5315                               const SDLoc &dl) {
5316   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5317                            MVT::f32);
5318 }
5319 
5320 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5321                                        SelectionDAG &DAG) {
5322   // TODO: What fast-math-flags should be set on the floating-point nodes?
5323 
5324   //   IntegerPartOfX = ((int32_t)(t0);
5325   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5326 
5327   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5328   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5329   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5330 
5331   //   IntegerPartOfX <<= 23;
5332   IntegerPartOfX =
5333       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5334                   DAG.getConstant(23, dl,
5335                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5336                                       MVT::i32, DAG.getDataLayout())));
5337 
5338   SDValue TwoToFractionalPartOfX;
5339   if (LimitFloatPrecision <= 6) {
5340     // For floating-point precision of 6:
5341     //
5342     //   TwoToFractionalPartOfX =
5343     //     0.997535578f +
5344     //       (0.735607626f + 0.252464424f * x) * x;
5345     //
5346     // error 0.0144103317, which is 6 bits
5347     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5348                              getF32Constant(DAG, 0x3e814304, dl));
5349     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5350                              getF32Constant(DAG, 0x3f3c50c8, dl));
5351     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5352     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5353                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5354   } else if (LimitFloatPrecision <= 12) {
5355     // For floating-point precision of 12:
5356     //
5357     //   TwoToFractionalPartOfX =
5358     //     0.999892986f +
5359     //       (0.696457318f +
5360     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5361     //
5362     // error 0.000107046256, which is 13 to 14 bits
5363     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5364                              getF32Constant(DAG, 0x3da235e3, dl));
5365     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5366                              getF32Constant(DAG, 0x3e65b8f3, dl));
5367     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5368     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5369                              getF32Constant(DAG, 0x3f324b07, dl));
5370     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5371     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5372                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5373   } else { // LimitFloatPrecision <= 18
5374     // For floating-point precision of 18:
5375     //
5376     //   TwoToFractionalPartOfX =
5377     //     0.999999982f +
5378     //       (0.693148872f +
5379     //         (0.240227044f +
5380     //           (0.554906021e-1f +
5381     //             (0.961591928e-2f +
5382     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5383     // error 2.47208000*10^(-7), which is better than 18 bits
5384     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5385                              getF32Constant(DAG, 0x3924b03e, dl));
5386     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5387                              getF32Constant(DAG, 0x3ab24b87, dl));
5388     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5389     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5390                              getF32Constant(DAG, 0x3c1d8c17, dl));
5391     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5392     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5393                              getF32Constant(DAG, 0x3d634a1d, dl));
5394     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5395     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5396                              getF32Constant(DAG, 0x3e75fe14, dl));
5397     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5398     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5399                               getF32Constant(DAG, 0x3f317234, dl));
5400     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5401     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5402                                          getF32Constant(DAG, 0x3f800000, dl));
5403   }
5404 
5405   // Add the exponent into the result in integer domain.
5406   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5407   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5408                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5409 }
5410 
5411 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5412 /// limited-precision mode.
5413 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5414                          const TargetLowering &TLI, SDNodeFlags Flags) {
5415   if (Op.getValueType() == MVT::f32 &&
5416       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5417 
5418     // Put the exponent in the right bit position for later addition to the
5419     // final result:
5420     //
5421     // t0 = Op * log2(e)
5422 
5423     // TODO: What fast-math-flags should be set here?
5424     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5425                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5426     return getLimitedPrecisionExp2(t0, dl, DAG);
5427   }
5428 
5429   // No special expansion.
5430   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5431 }
5432 
5433 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5434 /// limited-precision mode.
5435 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5436                          const TargetLowering &TLI, SDNodeFlags Flags) {
5437   // TODO: What fast-math-flags should be set on the floating-point nodes?
5438 
5439   if (Op.getValueType() == MVT::f32 &&
5440       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5441     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5442 
5443     // Scale the exponent by log(2).
5444     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5445     SDValue LogOfExponent =
5446         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5447                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5448 
5449     // Get the significand and build it into a floating-point number with
5450     // exponent of 1.
5451     SDValue X = GetSignificand(DAG, Op1, dl);
5452 
5453     SDValue LogOfMantissa;
5454     if (LimitFloatPrecision <= 6) {
5455       // For floating-point precision of 6:
5456       //
5457       //   LogofMantissa =
5458       //     -1.1609546f +
5459       //       (1.4034025f - 0.23903021f * x) * x;
5460       //
5461       // error 0.0034276066, which is better than 8 bits
5462       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5463                                getF32Constant(DAG, 0xbe74c456, dl));
5464       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5465                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5466       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5467       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5468                                   getF32Constant(DAG, 0x3f949a29, dl));
5469     } else if (LimitFloatPrecision <= 12) {
5470       // For floating-point precision of 12:
5471       //
5472       //   LogOfMantissa =
5473       //     -1.7417939f +
5474       //       (2.8212026f +
5475       //         (-1.4699568f +
5476       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5477       //
5478       // error 0.000061011436, which is 14 bits
5479       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5480                                getF32Constant(DAG, 0xbd67b6d6, dl));
5481       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5482                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5483       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5484       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5485                                getF32Constant(DAG, 0x3fbc278b, dl));
5486       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5487       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5488                                getF32Constant(DAG, 0x40348e95, dl));
5489       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5490       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5491                                   getF32Constant(DAG, 0x3fdef31a, dl));
5492     } else { // LimitFloatPrecision <= 18
5493       // For floating-point precision of 18:
5494       //
5495       //   LogOfMantissa =
5496       //     -2.1072184f +
5497       //       (4.2372794f +
5498       //         (-3.7029485f +
5499       //           (2.2781945f +
5500       //             (-0.87823314f +
5501       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5502       //
5503       // error 0.0000023660568, which is better than 18 bits
5504       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5505                                getF32Constant(DAG, 0xbc91e5ac, dl));
5506       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5507                                getF32Constant(DAG, 0x3e4350aa, dl));
5508       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5509       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5510                                getF32Constant(DAG, 0x3f60d3e3, dl));
5511       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5512       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5513                                getF32Constant(DAG, 0x4011cdf0, dl));
5514       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5515       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5516                                getF32Constant(DAG, 0x406cfd1c, dl));
5517       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5518       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5519                                getF32Constant(DAG, 0x408797cb, dl));
5520       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5521       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5522                                   getF32Constant(DAG, 0x4006dcab, dl));
5523     }
5524 
5525     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5526   }
5527 
5528   // No special expansion.
5529   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5530 }
5531 
5532 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5533 /// limited-precision mode.
5534 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5535                           const TargetLowering &TLI, SDNodeFlags Flags) {
5536   // TODO: What fast-math-flags should be set on the floating-point nodes?
5537 
5538   if (Op.getValueType() == MVT::f32 &&
5539       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5540     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5541 
5542     // Get the exponent.
5543     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5544 
5545     // Get the significand and build it into a floating-point number with
5546     // exponent of 1.
5547     SDValue X = GetSignificand(DAG, Op1, dl);
5548 
5549     // Different possible minimax approximations of significand in
5550     // floating-point for various degrees of accuracy over [1,2].
5551     SDValue Log2ofMantissa;
5552     if (LimitFloatPrecision <= 6) {
5553       // For floating-point precision of 6:
5554       //
5555       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5556       //
5557       // error 0.0049451742, which is more than 7 bits
5558       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5559                                getF32Constant(DAG, 0xbeb08fe0, dl));
5560       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5561                                getF32Constant(DAG, 0x40019463, dl));
5562       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5563       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5564                                    getF32Constant(DAG, 0x3fd6633d, dl));
5565     } else if (LimitFloatPrecision <= 12) {
5566       // For floating-point precision of 12:
5567       //
5568       //   Log2ofMantissa =
5569       //     -2.51285454f +
5570       //       (4.07009056f +
5571       //         (-2.12067489f +
5572       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5573       //
5574       // error 0.0000876136000, which is better than 13 bits
5575       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5576                                getF32Constant(DAG, 0xbda7262e, dl));
5577       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5578                                getF32Constant(DAG, 0x3f25280b, dl));
5579       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5580       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5581                                getF32Constant(DAG, 0x4007b923, dl));
5582       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5583       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5584                                getF32Constant(DAG, 0x40823e2f, dl));
5585       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5586       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5587                                    getF32Constant(DAG, 0x4020d29c, dl));
5588     } else { // LimitFloatPrecision <= 18
5589       // For floating-point precision of 18:
5590       //
5591       //   Log2ofMantissa =
5592       //     -3.0400495f +
5593       //       (6.1129976f +
5594       //         (-5.3420409f +
5595       //           (3.2865683f +
5596       //             (-1.2669343f +
5597       //               (0.27515199f -
5598       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5599       //
5600       // error 0.0000018516, which is better than 18 bits
5601       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5602                                getF32Constant(DAG, 0xbcd2769e, dl));
5603       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5604                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5605       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5606       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5607                                getF32Constant(DAG, 0x3fa22ae7, dl));
5608       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5609       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5610                                getF32Constant(DAG, 0x40525723, dl));
5611       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5612       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5613                                getF32Constant(DAG, 0x40aaf200, dl));
5614       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5615       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5616                                getF32Constant(DAG, 0x40c39dad, dl));
5617       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5618       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5619                                    getF32Constant(DAG, 0x4042902c, dl));
5620     }
5621 
5622     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5623   }
5624 
5625   // No special expansion.
5626   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5627 }
5628 
5629 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5630 /// limited-precision mode.
5631 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5632                            const TargetLowering &TLI, SDNodeFlags Flags) {
5633   // TODO: What fast-math-flags should be set on the floating-point nodes?
5634 
5635   if (Op.getValueType() == MVT::f32 &&
5636       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5637     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5638 
5639     // Scale the exponent by log10(2) [0.30102999f].
5640     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5641     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5642                                         getF32Constant(DAG, 0x3e9a209a, dl));
5643 
5644     // Get the significand and build it into a floating-point number with
5645     // exponent of 1.
5646     SDValue X = GetSignificand(DAG, Op1, dl);
5647 
5648     SDValue Log10ofMantissa;
5649     if (LimitFloatPrecision <= 6) {
5650       // For floating-point precision of 6:
5651       //
5652       //   Log10ofMantissa =
5653       //     -0.50419619f +
5654       //       (0.60948995f - 0.10380950f * x) * x;
5655       //
5656       // error 0.0014886165, which is 6 bits
5657       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5658                                getF32Constant(DAG, 0xbdd49a13, dl));
5659       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5660                                getF32Constant(DAG, 0x3f1c0789, dl));
5661       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5662       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5663                                     getF32Constant(DAG, 0x3f011300, dl));
5664     } else if (LimitFloatPrecision <= 12) {
5665       // For floating-point precision of 12:
5666       //
5667       //   Log10ofMantissa =
5668       //     -0.64831180f +
5669       //       (0.91751397f +
5670       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5671       //
5672       // error 0.00019228036, which is better than 12 bits
5673       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5674                                getF32Constant(DAG, 0x3d431f31, dl));
5675       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5676                                getF32Constant(DAG, 0x3ea21fb2, dl));
5677       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5678       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5679                                getF32Constant(DAG, 0x3f6ae232, dl));
5680       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5681       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5682                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5683     } else { // LimitFloatPrecision <= 18
5684       // For floating-point precision of 18:
5685       //
5686       //   Log10ofMantissa =
5687       //     -0.84299375f +
5688       //       (1.5327582f +
5689       //         (-1.0688956f +
5690       //           (0.49102474f +
5691       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5692       //
5693       // error 0.0000037995730, which is better than 18 bits
5694       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5695                                getF32Constant(DAG, 0x3c5d51ce, dl));
5696       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5697                                getF32Constant(DAG, 0x3e00685a, dl));
5698       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5699       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5700                                getF32Constant(DAG, 0x3efb6798, dl));
5701       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5702       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5703                                getF32Constant(DAG, 0x3f88d192, dl));
5704       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5705       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5706                                getF32Constant(DAG, 0x3fc4316c, dl));
5707       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5708       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5709                                     getF32Constant(DAG, 0x3f57ce70, dl));
5710     }
5711 
5712     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5713   }
5714 
5715   // No special expansion.
5716   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5717 }
5718 
5719 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5720 /// limited-precision mode.
5721 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5722                           const TargetLowering &TLI, SDNodeFlags Flags) {
5723   if (Op.getValueType() == MVT::f32 &&
5724       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5725     return getLimitedPrecisionExp2(Op, dl, DAG);
5726 
5727   // No special expansion.
5728   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5729 }
5730 
5731 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5732 /// limited-precision mode with x == 10.0f.
5733 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5734                          SelectionDAG &DAG, const TargetLowering &TLI,
5735                          SDNodeFlags Flags) {
5736   bool IsExp10 = false;
5737   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5738       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5739     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5740       APFloat Ten(10.0f);
5741       IsExp10 = LHSC->isExactlyValue(Ten);
5742     }
5743   }
5744 
5745   // TODO: What fast-math-flags should be set on the FMUL node?
5746   if (IsExp10) {
5747     // Put the exponent in the right bit position for later addition to the
5748     // final result:
5749     //
5750     //   #define LOG2OF10 3.3219281f
5751     //   t0 = Op * LOG2OF10;
5752     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5753                              getF32Constant(DAG, 0x40549a78, dl));
5754     return getLimitedPrecisionExp2(t0, dl, DAG);
5755   }
5756 
5757   // No special expansion.
5758   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5759 }
5760 
5761 /// ExpandPowI - Expand a llvm.powi intrinsic.
5762 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5763                           SelectionDAG &DAG) {
5764   // If RHS is a constant, we can expand this out to a multiplication tree if
5765   // it's beneficial on the target, otherwise we end up lowering to a call to
5766   // __powidf2 (for example).
5767   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5768     unsigned Val = RHSC->getSExtValue();
5769 
5770     // powi(x, 0) -> 1.0
5771     if (Val == 0)
5772       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5773 
5774     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5775             Val, DAG.shouldOptForSize())) {
5776       // Get the exponent as a positive value.
5777       if ((int)Val < 0)
5778         Val = -Val;
5779       // We use the simple binary decomposition method to generate the multiply
5780       // sequence.  There are more optimal ways to do this (for example,
5781       // powi(x,15) generates one more multiply than it should), but this has
5782       // the benefit of being both really simple and much better than a libcall.
5783       SDValue Res; // Logically starts equal to 1.0
5784       SDValue CurSquare = LHS;
5785       // TODO: Intrinsics should have fast-math-flags that propagate to these
5786       // nodes.
5787       while (Val) {
5788         if (Val & 1) {
5789           if (Res.getNode())
5790             Res =
5791                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5792           else
5793             Res = CurSquare; // 1.0*CurSquare.
5794         }
5795 
5796         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5797                                 CurSquare, CurSquare);
5798         Val >>= 1;
5799       }
5800 
5801       // If the original was negative, invert the result, producing 1/(x*x*x).
5802       if (RHSC->getSExtValue() < 0)
5803         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5804                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5805       return Res;
5806     }
5807   }
5808 
5809   // Otherwise, expand to a libcall.
5810   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5811 }
5812 
5813 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5814                             SDValue LHS, SDValue RHS, SDValue Scale,
5815                             SelectionDAG &DAG, const TargetLowering &TLI) {
5816   EVT VT = LHS.getValueType();
5817   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5818   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5819   LLVMContext &Ctx = *DAG.getContext();
5820 
5821   // If the type is legal but the operation isn't, this node might survive all
5822   // the way to operation legalization. If we end up there and we do not have
5823   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5824   // node.
5825 
5826   // Coax the legalizer into expanding the node during type legalization instead
5827   // by bumping the size by one bit. This will force it to Promote, enabling the
5828   // early expansion and avoiding the need to expand later.
5829 
5830   // We don't have to do this if Scale is 0; that can always be expanded, unless
5831   // it's a saturating signed operation. Those can experience true integer
5832   // division overflow, a case which we must avoid.
5833 
5834   // FIXME: We wouldn't have to do this (or any of the early
5835   // expansion/promotion) if it was possible to expand a libcall of an
5836   // illegal type during operation legalization. But it's not, so things
5837   // get a bit hacky.
5838   unsigned ScaleInt = Scale->getAsZExtVal();
5839   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5840       (TLI.isTypeLegal(VT) ||
5841        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5842     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5843         Opcode, VT, ScaleInt);
5844     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5845       EVT PromVT;
5846       if (VT.isScalarInteger())
5847         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5848       else if (VT.isVector()) {
5849         PromVT = VT.getVectorElementType();
5850         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5851         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5852       } else
5853         llvm_unreachable("Wrong VT for DIVFIX?");
5854       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5855       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5856       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5857       // For saturating operations, we need to shift up the LHS to get the
5858       // proper saturation width, and then shift down again afterwards.
5859       if (Saturating)
5860         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5861                           DAG.getConstant(1, DL, ShiftTy));
5862       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5863       if (Saturating)
5864         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5865                           DAG.getConstant(1, DL, ShiftTy));
5866       return DAG.getZExtOrTrunc(Res, DL, VT);
5867     }
5868   }
5869 
5870   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5871 }
5872 
5873 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5874 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5875 static void
5876 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5877                      const SDValue &N) {
5878   switch (N.getOpcode()) {
5879   case ISD::CopyFromReg: {
5880     SDValue Op = N.getOperand(1);
5881     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5882                       Op.getValueType().getSizeInBits());
5883     return;
5884   }
5885   case ISD::BITCAST:
5886   case ISD::AssertZext:
5887   case ISD::AssertSext:
5888   case ISD::TRUNCATE:
5889     getUnderlyingArgRegs(Regs, N.getOperand(0));
5890     return;
5891   case ISD::BUILD_PAIR:
5892   case ISD::BUILD_VECTOR:
5893   case ISD::CONCAT_VECTORS:
5894     for (SDValue Op : N->op_values())
5895       getUnderlyingArgRegs(Regs, Op);
5896     return;
5897   default:
5898     return;
5899   }
5900 }
5901 
5902 /// If the DbgValueInst is a dbg_value of a function argument, create the
5903 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5904 /// instruction selection, they will be inserted to the entry BB.
5905 /// We don't currently support this for variadic dbg_values, as they shouldn't
5906 /// appear for function arguments or in the prologue.
5907 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5908     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5909     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5910   const Argument *Arg = dyn_cast<Argument>(V);
5911   if (!Arg)
5912     return false;
5913 
5914   MachineFunction &MF = DAG.getMachineFunction();
5915   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5916 
5917   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5918   // we've been asked to pursue.
5919   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5920                               bool Indirect) {
5921     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5922       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5923       // pointing at the VReg, which will be patched up later.
5924       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5925       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5926           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5927           /* isKill */ false, /* isDead */ false,
5928           /* isUndef */ false, /* isEarlyClobber */ false,
5929           /* SubReg */ 0, /* isDebug */ true)});
5930 
5931       auto *NewDIExpr = FragExpr;
5932       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5933       // the DIExpression.
5934       if (Indirect)
5935         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5936       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5937       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5938       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5939     } else {
5940       // Create a completely standard DBG_VALUE.
5941       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5942       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5943     }
5944   };
5945 
5946   if (Kind == FuncArgumentDbgValueKind::Value) {
5947     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5948     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5949     // the entry block.
5950     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5951     if (!IsInEntryBlock)
5952       return false;
5953 
5954     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5955     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5956     // variable that also is a param.
5957     //
5958     // Although, if we are at the top of the entry block already, we can still
5959     // emit using ArgDbgValue. This might catch some situations when the
5960     // dbg.value refers to an argument that isn't used in the entry block, so
5961     // any CopyToReg node would be optimized out and the only way to express
5962     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5963     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5964     // we should only emit as ArgDbgValue if the Variable is an argument to the
5965     // current function, and the dbg.value intrinsic is found in the entry
5966     // block.
5967     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5968         !DL->getInlinedAt();
5969     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5970     if (!IsInPrologue && !VariableIsFunctionInputArg)
5971       return false;
5972 
5973     // Here we assume that a function argument on IR level only can be used to
5974     // describe one input parameter on source level. If we for example have
5975     // source code like this
5976     //
5977     //    struct A { long x, y; };
5978     //    void foo(struct A a, long b) {
5979     //      ...
5980     //      b = a.x;
5981     //      ...
5982     //    }
5983     //
5984     // and IR like this
5985     //
5986     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5987     //  entry:
5988     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5989     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5990     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5991     //    ...
5992     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5993     //    ...
5994     //
5995     // then the last dbg.value is describing a parameter "b" using a value that
5996     // is an argument. But since we already has used %a1 to describe a parameter
5997     // we should not handle that last dbg.value here (that would result in an
5998     // incorrect hoisting of the DBG_VALUE to the function entry).
5999     // Notice that we allow one dbg.value per IR level argument, to accommodate
6000     // for the situation with fragments above.
6001     if (VariableIsFunctionInputArg) {
6002       unsigned ArgNo = Arg->getArgNo();
6003       if (ArgNo >= FuncInfo.DescribedArgs.size())
6004         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6005       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6006         return false;
6007       FuncInfo.DescribedArgs.set(ArgNo);
6008     }
6009   }
6010 
6011   bool IsIndirect = false;
6012   std::optional<MachineOperand> Op;
6013   // Some arguments' frame index is recorded during argument lowering.
6014   int FI = FuncInfo.getArgumentFrameIndex(Arg);
6015   if (FI != std::numeric_limits<int>::max())
6016     Op = MachineOperand::CreateFI(FI);
6017 
6018   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
6019   if (!Op && N.getNode()) {
6020     getUnderlyingArgRegs(ArgRegsAndSizes, N);
6021     Register Reg;
6022     if (ArgRegsAndSizes.size() == 1)
6023       Reg = ArgRegsAndSizes.front().first;
6024 
6025     if (Reg && Reg.isVirtual()) {
6026       MachineRegisterInfo &RegInfo = MF.getRegInfo();
6027       Register PR = RegInfo.getLiveInPhysReg(Reg);
6028       if (PR)
6029         Reg = PR;
6030     }
6031     if (Reg) {
6032       Op = MachineOperand::CreateReg(Reg, false);
6033       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6034     }
6035   }
6036 
6037   if (!Op && N.getNode()) {
6038     // Check if frame index is available.
6039     SDValue LCandidate = peekThroughBitcasts(N);
6040     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6041       if (FrameIndexSDNode *FINode =
6042           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6043         Op = MachineOperand::CreateFI(FINode->getIndex());
6044   }
6045 
6046   if (!Op) {
6047     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6048     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
6049                                          SplitRegs) {
6050       unsigned Offset = 0;
6051       for (const auto &RegAndSize : SplitRegs) {
6052         // If the expression is already a fragment, the current register
6053         // offset+size might extend beyond the fragment. In this case, only
6054         // the register bits that are inside the fragment are relevant.
6055         int RegFragmentSizeInBits = RegAndSize.second;
6056         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6057           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6058           // The register is entirely outside the expression fragment,
6059           // so is irrelevant for debug info.
6060           if (Offset >= ExprFragmentSizeInBits)
6061             break;
6062           // The register is partially outside the expression fragment, only
6063           // the low bits within the fragment are relevant for debug info.
6064           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6065             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6066           }
6067         }
6068 
6069         auto FragmentExpr = DIExpression::createFragmentExpression(
6070             Expr, Offset, RegFragmentSizeInBits);
6071         Offset += RegAndSize.second;
6072         // If a valid fragment expression cannot be created, the variable's
6073         // correct value cannot be determined and so it is set as Undef.
6074         if (!FragmentExpr) {
6075           SDDbgValue *SDV = DAG.getConstantDbgValue(
6076               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
6077           DAG.AddDbgValue(SDV, false);
6078           continue;
6079         }
6080         MachineInstr *NewMI =
6081             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6082                              Kind != FuncArgumentDbgValueKind::Value);
6083         FuncInfo.ArgDbgValues.push_back(NewMI);
6084       }
6085     };
6086 
6087     // Check if ValueMap has reg number.
6088     DenseMap<const Value *, Register>::const_iterator
6089       VMI = FuncInfo.ValueMap.find(V);
6090     if (VMI != FuncInfo.ValueMap.end()) {
6091       const auto &TLI = DAG.getTargetLoweringInfo();
6092       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6093                        V->getType(), std::nullopt);
6094       if (RFV.occupiesMultipleRegs()) {
6095         splitMultiRegDbgValue(RFV.getRegsAndSizes());
6096         return true;
6097       }
6098 
6099       Op = MachineOperand::CreateReg(VMI->second, false);
6100       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6101     } else if (ArgRegsAndSizes.size() > 1) {
6102       // This was split due to the calling convention, and no virtual register
6103       // mapping exists for the value.
6104       splitMultiRegDbgValue(ArgRegsAndSizes);
6105       return true;
6106     }
6107   }
6108 
6109   if (!Op)
6110     return false;
6111 
6112   assert(Variable->isValidLocationForIntrinsic(DL) &&
6113          "Expected inlined-at fields to agree");
6114   MachineInstr *NewMI = nullptr;
6115 
6116   if (Op->isReg())
6117     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6118   else
6119     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6120                     Variable, Expr);
6121 
6122   // Otherwise, use ArgDbgValues.
6123   FuncInfo.ArgDbgValues.push_back(NewMI);
6124   return true;
6125 }
6126 
6127 /// Return the appropriate SDDbgValue based on N.
6128 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6129                                              DILocalVariable *Variable,
6130                                              DIExpression *Expr,
6131                                              const DebugLoc &dl,
6132                                              unsigned DbgSDNodeOrder) {
6133   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6134     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6135     // stack slot locations.
6136     //
6137     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6138     // debug values here after optimization:
6139     //
6140     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
6141     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6142     //
6143     // Both describe the direct values of their associated variables.
6144     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6145                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6146   }
6147   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6148                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6149 }
6150 
6151 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6152   switch (Intrinsic) {
6153   case Intrinsic::smul_fix:
6154     return ISD::SMULFIX;
6155   case Intrinsic::umul_fix:
6156     return ISD::UMULFIX;
6157   case Intrinsic::smul_fix_sat:
6158     return ISD::SMULFIXSAT;
6159   case Intrinsic::umul_fix_sat:
6160     return ISD::UMULFIXSAT;
6161   case Intrinsic::sdiv_fix:
6162     return ISD::SDIVFIX;
6163   case Intrinsic::udiv_fix:
6164     return ISD::UDIVFIX;
6165   case Intrinsic::sdiv_fix_sat:
6166     return ISD::SDIVFIXSAT;
6167   case Intrinsic::udiv_fix_sat:
6168     return ISD::UDIVFIXSAT;
6169   default:
6170     llvm_unreachable("Unhandled fixed point intrinsic");
6171   }
6172 }
6173 
6174 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
6175                                            const char *FunctionName) {
6176   assert(FunctionName && "FunctionName must not be nullptr");
6177   SDValue Callee = DAG.getExternalSymbol(
6178       FunctionName,
6179       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6180   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
6181 }
6182 
6183 /// Given a @llvm.call.preallocated.setup, return the corresponding
6184 /// preallocated call.
6185 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6186   assert(cast<CallBase>(PreallocatedSetup)
6187                  ->getCalledFunction()
6188                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6189          "expected call_preallocated_setup Value");
6190   for (const auto *U : PreallocatedSetup->users()) {
6191     auto *UseCall = cast<CallBase>(U);
6192     const Function *Fn = UseCall->getCalledFunction();
6193     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6194       return UseCall;
6195     }
6196   }
6197   llvm_unreachable("expected corresponding call to preallocated setup/arg");
6198 }
6199 
6200 /// If DI is a debug value with an EntryValue expression, lower it using the
6201 /// corresponding physical register of the associated Argument value
6202 /// (guaranteed to exist by the verifier).
6203 bool SelectionDAGBuilder::visitEntryValueDbgValue(
6204     ArrayRef<const Value *> Values, DILocalVariable *Variable,
6205     DIExpression *Expr, DebugLoc DbgLoc) {
6206   if (!Expr->isEntryValue() || !hasSingleElement(Values))
6207     return false;
6208 
6209   // These properties are guaranteed by the verifier.
6210   const Argument *Arg = cast<Argument>(Values[0]);
6211   assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6212 
6213   auto ArgIt = FuncInfo.ValueMap.find(Arg);
6214   if (ArgIt == FuncInfo.ValueMap.end()) {
6215     LLVM_DEBUG(
6216         dbgs() << "Dropping dbg.value: expression is entry_value but "
6217                   "couldn't find an associated register for the Argument\n");
6218     return true;
6219   }
6220   Register ArgVReg = ArgIt->getSecond();
6221 
6222   for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6223     if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6224       SDDbgValue *SDV = DAG.getVRegDbgValue(
6225           Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6226       DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6227       return true;
6228     }
6229   LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6230                        "couldn't find a physical register\n");
6231   return true;
6232 }
6233 
6234 /// Lower the call to the specified intrinsic function.
6235 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6236                                              unsigned Intrinsic) {
6237   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6238   SDLoc sdl = getCurSDLoc();
6239   DebugLoc dl = getCurDebugLoc();
6240   SDValue Res;
6241 
6242   SDNodeFlags Flags;
6243   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6244     Flags.copyFMF(*FPOp);
6245 
6246   switch (Intrinsic) {
6247   default:
6248     // By default, turn this into a target intrinsic node.
6249     visitTargetIntrinsic(I, Intrinsic);
6250     return;
6251   case Intrinsic::vscale: {
6252     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6253     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6254     return;
6255   }
6256   case Intrinsic::vastart:  visitVAStart(I); return;
6257   case Intrinsic::vaend:    visitVAEnd(I); return;
6258   case Intrinsic::vacopy:   visitVACopy(I); return;
6259   case Intrinsic::returnaddress:
6260     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6261                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6262                              getValue(I.getArgOperand(0))));
6263     return;
6264   case Intrinsic::addressofreturnaddress:
6265     setValue(&I,
6266              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6267                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6268     return;
6269   case Intrinsic::sponentry:
6270     setValue(&I,
6271              DAG.getNode(ISD::SPONENTRY, sdl,
6272                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6273     return;
6274   case Intrinsic::frameaddress:
6275     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6276                              TLI.getFrameIndexTy(DAG.getDataLayout()),
6277                              getValue(I.getArgOperand(0))));
6278     return;
6279   case Intrinsic::read_volatile_register:
6280   case Intrinsic::read_register: {
6281     Value *Reg = I.getArgOperand(0);
6282     SDValue Chain = getRoot();
6283     SDValue RegName =
6284         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6285     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6286     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6287       DAG.getVTList(VT, MVT::Other), Chain, RegName);
6288     setValue(&I, Res);
6289     DAG.setRoot(Res.getValue(1));
6290     return;
6291   }
6292   case Intrinsic::write_register: {
6293     Value *Reg = I.getArgOperand(0);
6294     Value *RegValue = I.getArgOperand(1);
6295     SDValue Chain = getRoot();
6296     SDValue RegName =
6297         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6298     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6299                             RegName, getValue(RegValue)));
6300     return;
6301   }
6302   case Intrinsic::memcpy: {
6303     const auto &MCI = cast<MemCpyInst>(I);
6304     SDValue Op1 = getValue(I.getArgOperand(0));
6305     SDValue Op2 = getValue(I.getArgOperand(1));
6306     SDValue Op3 = getValue(I.getArgOperand(2));
6307     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6308     Align DstAlign = MCI.getDestAlign().valueOrOne();
6309     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6310     Align Alignment = std::min(DstAlign, SrcAlign);
6311     bool isVol = MCI.isVolatile();
6312     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6313     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6314     // node.
6315     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6316     SDValue MC = DAG.getMemcpy(
6317         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6318         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
6319         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6320     updateDAGForMaybeTailCall(MC);
6321     return;
6322   }
6323   case Intrinsic::memcpy_inline: {
6324     const auto &MCI = cast<MemCpyInlineInst>(I);
6325     SDValue Dst = getValue(I.getArgOperand(0));
6326     SDValue Src = getValue(I.getArgOperand(1));
6327     SDValue Size = getValue(I.getArgOperand(2));
6328     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6329     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6330     Align DstAlign = MCI.getDestAlign().valueOrOne();
6331     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6332     Align Alignment = std::min(DstAlign, SrcAlign);
6333     bool isVol = MCI.isVolatile();
6334     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6335     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6336     // node.
6337     SDValue MC = DAG.getMemcpy(
6338         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6339         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
6340         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6341     updateDAGForMaybeTailCall(MC);
6342     return;
6343   }
6344   case Intrinsic::memset: {
6345     const auto &MSI = cast<MemSetInst>(I);
6346     SDValue Op1 = getValue(I.getArgOperand(0));
6347     SDValue Op2 = getValue(I.getArgOperand(1));
6348     SDValue Op3 = getValue(I.getArgOperand(2));
6349     // @llvm.memset defines 0 and 1 to both mean no alignment.
6350     Align Alignment = MSI.getDestAlign().valueOrOne();
6351     bool isVol = MSI.isVolatile();
6352     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6353     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6354     SDValue MS = DAG.getMemset(
6355         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6356         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6357     updateDAGForMaybeTailCall(MS);
6358     return;
6359   }
6360   case Intrinsic::memset_inline: {
6361     const auto &MSII = cast<MemSetInlineInst>(I);
6362     SDValue Dst = getValue(I.getArgOperand(0));
6363     SDValue Value = getValue(I.getArgOperand(1));
6364     SDValue Size = getValue(I.getArgOperand(2));
6365     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6366     // @llvm.memset defines 0 and 1 to both mean no alignment.
6367     Align DstAlign = MSII.getDestAlign().valueOrOne();
6368     bool isVol = MSII.isVolatile();
6369     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6370     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6371     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6372                                /* AlwaysInline */ true, isTC,
6373                                MachinePointerInfo(I.getArgOperand(0)),
6374                                I.getAAMetadata());
6375     updateDAGForMaybeTailCall(MC);
6376     return;
6377   }
6378   case Intrinsic::memmove: {
6379     const auto &MMI = cast<MemMoveInst>(I);
6380     SDValue Op1 = getValue(I.getArgOperand(0));
6381     SDValue Op2 = getValue(I.getArgOperand(1));
6382     SDValue Op3 = getValue(I.getArgOperand(2));
6383     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6384     Align DstAlign = MMI.getDestAlign().valueOrOne();
6385     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6386     Align Alignment = std::min(DstAlign, SrcAlign);
6387     bool isVol = MMI.isVolatile();
6388     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6389     // FIXME: Support passing different dest/src alignments to the memmove DAG
6390     // node.
6391     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6392     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6393                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6394                                 MachinePointerInfo(I.getArgOperand(1)),
6395                                 I.getAAMetadata(), AA);
6396     updateDAGForMaybeTailCall(MM);
6397     return;
6398   }
6399   case Intrinsic::memcpy_element_unordered_atomic: {
6400     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6401     SDValue Dst = getValue(MI.getRawDest());
6402     SDValue Src = getValue(MI.getRawSource());
6403     SDValue Length = getValue(MI.getLength());
6404 
6405     Type *LengthTy = MI.getLength()->getType();
6406     unsigned ElemSz = MI.getElementSizeInBytes();
6407     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6408     SDValue MC =
6409         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6410                             isTC, MachinePointerInfo(MI.getRawDest()),
6411                             MachinePointerInfo(MI.getRawSource()));
6412     updateDAGForMaybeTailCall(MC);
6413     return;
6414   }
6415   case Intrinsic::memmove_element_unordered_atomic: {
6416     auto &MI = cast<AtomicMemMoveInst>(I);
6417     SDValue Dst = getValue(MI.getRawDest());
6418     SDValue Src = getValue(MI.getRawSource());
6419     SDValue Length = getValue(MI.getLength());
6420 
6421     Type *LengthTy = MI.getLength()->getType();
6422     unsigned ElemSz = MI.getElementSizeInBytes();
6423     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6424     SDValue MC =
6425         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6426                              isTC, MachinePointerInfo(MI.getRawDest()),
6427                              MachinePointerInfo(MI.getRawSource()));
6428     updateDAGForMaybeTailCall(MC);
6429     return;
6430   }
6431   case Intrinsic::memset_element_unordered_atomic: {
6432     auto &MI = cast<AtomicMemSetInst>(I);
6433     SDValue Dst = getValue(MI.getRawDest());
6434     SDValue Val = getValue(MI.getValue());
6435     SDValue Length = getValue(MI.getLength());
6436 
6437     Type *LengthTy = MI.getLength()->getType();
6438     unsigned ElemSz = MI.getElementSizeInBytes();
6439     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6440     SDValue MC =
6441         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6442                             isTC, MachinePointerInfo(MI.getRawDest()));
6443     updateDAGForMaybeTailCall(MC);
6444     return;
6445   }
6446   case Intrinsic::call_preallocated_setup: {
6447     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6448     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6449     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6450                               getRoot(), SrcValue);
6451     setValue(&I, Res);
6452     DAG.setRoot(Res);
6453     return;
6454   }
6455   case Intrinsic::call_preallocated_arg: {
6456     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6457     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6458     SDValue Ops[3];
6459     Ops[0] = getRoot();
6460     Ops[1] = SrcValue;
6461     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6462                                    MVT::i32); // arg index
6463     SDValue Res = DAG.getNode(
6464         ISD::PREALLOCATED_ARG, sdl,
6465         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6466     setValue(&I, Res);
6467     DAG.setRoot(Res.getValue(1));
6468     return;
6469   }
6470   case Intrinsic::dbg_declare: {
6471     const auto &DI = cast<DbgDeclareInst>(I);
6472     // Debug intrinsics are handled separately in assignment tracking mode.
6473     // Some intrinsics are handled right after Argument lowering.
6474     if (AssignmentTrackingEnabled ||
6475         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6476       return;
6477     LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6478     DILocalVariable *Variable = DI.getVariable();
6479     DIExpression *Expression = DI.getExpression();
6480     dropDanglingDebugInfo(Variable, Expression);
6481     // Assume dbg.declare can not currently use DIArgList, i.e.
6482     // it is non-variadic.
6483     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6484     handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6485                        DI.getDebugLoc());
6486     return;
6487   }
6488   case Intrinsic::dbg_label: {
6489     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6490     DILabel *Label = DI.getLabel();
6491     assert(Label && "Missing label");
6492 
6493     SDDbgLabel *SDV;
6494     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6495     DAG.AddDbgLabel(SDV);
6496     return;
6497   }
6498   case Intrinsic::dbg_assign: {
6499     // Debug intrinsics are handled seperately in assignment tracking mode.
6500     if (AssignmentTrackingEnabled)
6501       return;
6502     // If assignment tracking hasn't been enabled then fall through and treat
6503     // the dbg.assign as a dbg.value.
6504     [[fallthrough]];
6505   }
6506   case Intrinsic::dbg_value: {
6507     // Debug intrinsics are handled seperately in assignment tracking mode.
6508     if (AssignmentTrackingEnabled)
6509       return;
6510     const DbgValueInst &DI = cast<DbgValueInst>(I);
6511     assert(DI.getVariable() && "Missing variable");
6512 
6513     DILocalVariable *Variable = DI.getVariable();
6514     DIExpression *Expression = DI.getExpression();
6515     dropDanglingDebugInfo(Variable, Expression);
6516 
6517     if (DI.isKillLocation()) {
6518       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6519       return;
6520     }
6521 
6522     SmallVector<Value *, 4> Values(DI.getValues());
6523     if (Values.empty())
6524       return;
6525 
6526     bool IsVariadic = DI.hasArgList();
6527     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6528                           SDNodeOrder, IsVariadic))
6529       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6530                            DI.getDebugLoc(), SDNodeOrder);
6531     return;
6532   }
6533 
6534   case Intrinsic::eh_typeid_for: {
6535     // Find the type id for the given typeinfo.
6536     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6537     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6538     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6539     setValue(&I, Res);
6540     return;
6541   }
6542 
6543   case Intrinsic::eh_return_i32:
6544   case Intrinsic::eh_return_i64:
6545     DAG.getMachineFunction().setCallsEHReturn(true);
6546     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6547                             MVT::Other,
6548                             getControlRoot(),
6549                             getValue(I.getArgOperand(0)),
6550                             getValue(I.getArgOperand(1))));
6551     return;
6552   case Intrinsic::eh_unwind_init:
6553     DAG.getMachineFunction().setCallsUnwindInit(true);
6554     return;
6555   case Intrinsic::eh_dwarf_cfa:
6556     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6557                              TLI.getPointerTy(DAG.getDataLayout()),
6558                              getValue(I.getArgOperand(0))));
6559     return;
6560   case Intrinsic::eh_sjlj_callsite: {
6561     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6562     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6563     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6564 
6565     MMI.setCurrentCallSite(CI->getZExtValue());
6566     return;
6567   }
6568   case Intrinsic::eh_sjlj_functioncontext: {
6569     // Get and store the index of the function context.
6570     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6571     AllocaInst *FnCtx =
6572       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6573     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6574     MFI.setFunctionContextIndex(FI);
6575     return;
6576   }
6577   case Intrinsic::eh_sjlj_setjmp: {
6578     SDValue Ops[2];
6579     Ops[0] = getRoot();
6580     Ops[1] = getValue(I.getArgOperand(0));
6581     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6582                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6583     setValue(&I, Op.getValue(0));
6584     DAG.setRoot(Op.getValue(1));
6585     return;
6586   }
6587   case Intrinsic::eh_sjlj_longjmp:
6588     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6589                             getRoot(), getValue(I.getArgOperand(0))));
6590     return;
6591   case Intrinsic::eh_sjlj_setup_dispatch:
6592     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6593                             getRoot()));
6594     return;
6595   case Intrinsic::masked_gather:
6596     visitMaskedGather(I);
6597     return;
6598   case Intrinsic::masked_load:
6599     visitMaskedLoad(I);
6600     return;
6601   case Intrinsic::masked_scatter:
6602     visitMaskedScatter(I);
6603     return;
6604   case Intrinsic::masked_store:
6605     visitMaskedStore(I);
6606     return;
6607   case Intrinsic::masked_expandload:
6608     visitMaskedLoad(I, true /* IsExpanding */);
6609     return;
6610   case Intrinsic::masked_compressstore:
6611     visitMaskedStore(I, true /* IsCompressing */);
6612     return;
6613   case Intrinsic::powi:
6614     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6615                             getValue(I.getArgOperand(1)), DAG));
6616     return;
6617   case Intrinsic::log:
6618     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6619     return;
6620   case Intrinsic::log2:
6621     setValue(&I,
6622              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6623     return;
6624   case Intrinsic::log10:
6625     setValue(&I,
6626              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6627     return;
6628   case Intrinsic::exp:
6629     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6630     return;
6631   case Intrinsic::exp2:
6632     setValue(&I,
6633              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6634     return;
6635   case Intrinsic::pow:
6636     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6637                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6638     return;
6639   case Intrinsic::sqrt:
6640   case Intrinsic::fabs:
6641   case Intrinsic::sin:
6642   case Intrinsic::cos:
6643   case Intrinsic::exp10:
6644   case Intrinsic::floor:
6645   case Intrinsic::ceil:
6646   case Intrinsic::trunc:
6647   case Intrinsic::rint:
6648   case Intrinsic::nearbyint:
6649   case Intrinsic::round:
6650   case Intrinsic::roundeven:
6651   case Intrinsic::canonicalize: {
6652     unsigned Opcode;
6653     switch (Intrinsic) {
6654     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6655     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6656     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6657     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6658     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6659     case Intrinsic::exp10:     Opcode = ISD::FEXP10;     break;
6660     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6661     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6662     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6663     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6664     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6665     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6666     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6667     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6668     }
6669 
6670     setValue(&I, DAG.getNode(Opcode, sdl,
6671                              getValue(I.getArgOperand(0)).getValueType(),
6672                              getValue(I.getArgOperand(0)), Flags));
6673     return;
6674   }
6675   case Intrinsic::lround:
6676   case Intrinsic::llround:
6677   case Intrinsic::lrint:
6678   case Intrinsic::llrint: {
6679     unsigned Opcode;
6680     switch (Intrinsic) {
6681     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6682     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6683     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6684     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6685     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6686     }
6687 
6688     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6689     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6690                              getValue(I.getArgOperand(0))));
6691     return;
6692   }
6693   case Intrinsic::minnum:
6694     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6695                              getValue(I.getArgOperand(0)).getValueType(),
6696                              getValue(I.getArgOperand(0)),
6697                              getValue(I.getArgOperand(1)), Flags));
6698     return;
6699   case Intrinsic::maxnum:
6700     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6701                              getValue(I.getArgOperand(0)).getValueType(),
6702                              getValue(I.getArgOperand(0)),
6703                              getValue(I.getArgOperand(1)), Flags));
6704     return;
6705   case Intrinsic::minimum:
6706     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6707                              getValue(I.getArgOperand(0)).getValueType(),
6708                              getValue(I.getArgOperand(0)),
6709                              getValue(I.getArgOperand(1)), Flags));
6710     return;
6711   case Intrinsic::maximum:
6712     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6713                              getValue(I.getArgOperand(0)).getValueType(),
6714                              getValue(I.getArgOperand(0)),
6715                              getValue(I.getArgOperand(1)), Flags));
6716     return;
6717   case Intrinsic::copysign:
6718     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6719                              getValue(I.getArgOperand(0)).getValueType(),
6720                              getValue(I.getArgOperand(0)),
6721                              getValue(I.getArgOperand(1)), Flags));
6722     return;
6723   case Intrinsic::ldexp:
6724     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6725                              getValue(I.getArgOperand(0)).getValueType(),
6726                              getValue(I.getArgOperand(0)),
6727                              getValue(I.getArgOperand(1)), Flags));
6728     return;
6729   case Intrinsic::frexp: {
6730     SmallVector<EVT, 2> ValueVTs;
6731     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6732     SDVTList VTs = DAG.getVTList(ValueVTs);
6733     setValue(&I,
6734              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6735     return;
6736   }
6737   case Intrinsic::arithmetic_fence: {
6738     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6739                              getValue(I.getArgOperand(0)).getValueType(),
6740                              getValue(I.getArgOperand(0)), Flags));
6741     return;
6742   }
6743   case Intrinsic::fma:
6744     setValue(&I, DAG.getNode(
6745                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6746                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6747                      getValue(I.getArgOperand(2)), Flags));
6748     return;
6749 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6750   case Intrinsic::INTRINSIC:
6751 #include "llvm/IR/ConstrainedOps.def"
6752     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6753     return;
6754 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6755 #include "llvm/IR/VPIntrinsics.def"
6756     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6757     return;
6758   case Intrinsic::fptrunc_round: {
6759     // Get the last argument, the metadata and convert it to an integer in the
6760     // call
6761     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6762     std::optional<RoundingMode> RoundMode =
6763         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6764 
6765     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6766 
6767     // Propagate fast-math-flags from IR to node(s).
6768     SDNodeFlags Flags;
6769     Flags.copyFMF(*cast<FPMathOperator>(&I));
6770     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6771 
6772     SDValue Result;
6773     Result = DAG.getNode(
6774         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6775         DAG.getTargetConstant((int)*RoundMode, sdl,
6776                               TLI.getPointerTy(DAG.getDataLayout())));
6777     setValue(&I, Result);
6778 
6779     return;
6780   }
6781   case Intrinsic::fmuladd: {
6782     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6783     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6784         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6785       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6786                                getValue(I.getArgOperand(0)).getValueType(),
6787                                getValue(I.getArgOperand(0)),
6788                                getValue(I.getArgOperand(1)),
6789                                getValue(I.getArgOperand(2)), Flags));
6790     } else {
6791       // TODO: Intrinsic calls should have fast-math-flags.
6792       SDValue Mul = DAG.getNode(
6793           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6794           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6795       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6796                                 getValue(I.getArgOperand(0)).getValueType(),
6797                                 Mul, getValue(I.getArgOperand(2)), Flags);
6798       setValue(&I, Add);
6799     }
6800     return;
6801   }
6802   case Intrinsic::convert_to_fp16:
6803     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6804                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6805                                          getValue(I.getArgOperand(0)),
6806                                          DAG.getTargetConstant(0, sdl,
6807                                                                MVT::i32))));
6808     return;
6809   case Intrinsic::convert_from_fp16:
6810     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6811                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6812                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6813                                          getValue(I.getArgOperand(0)))));
6814     return;
6815   case Intrinsic::fptosi_sat: {
6816     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6817     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6818                              getValue(I.getArgOperand(0)),
6819                              DAG.getValueType(VT.getScalarType())));
6820     return;
6821   }
6822   case Intrinsic::fptoui_sat: {
6823     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6824     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6825                              getValue(I.getArgOperand(0)),
6826                              DAG.getValueType(VT.getScalarType())));
6827     return;
6828   }
6829   case Intrinsic::set_rounding:
6830     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6831                       {getRoot(), getValue(I.getArgOperand(0))});
6832     setValue(&I, Res);
6833     DAG.setRoot(Res.getValue(0));
6834     return;
6835   case Intrinsic::is_fpclass: {
6836     const DataLayout DLayout = DAG.getDataLayout();
6837     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6838     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6839     FPClassTest Test = static_cast<FPClassTest>(
6840         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6841     MachineFunction &MF = DAG.getMachineFunction();
6842     const Function &F = MF.getFunction();
6843     SDValue Op = getValue(I.getArgOperand(0));
6844     SDNodeFlags Flags;
6845     Flags.setNoFPExcept(
6846         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6847     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6848     // expansion can use illegal types. Making expansion early allows
6849     // legalizing these types prior to selection.
6850     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6851       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6852       setValue(&I, Result);
6853       return;
6854     }
6855 
6856     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6857     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6858     setValue(&I, V);
6859     return;
6860   }
6861   case Intrinsic::get_fpenv: {
6862     const DataLayout DLayout = DAG.getDataLayout();
6863     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
6864     Align TempAlign = DAG.getEVTAlign(EnvVT);
6865     SDValue Chain = getRoot();
6866     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
6867     // and temporary storage in stack.
6868     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
6869       Res = DAG.getNode(
6870           ISD::GET_FPENV, sdl,
6871           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6872                         MVT::Other),
6873           Chain);
6874     } else {
6875       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6876       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6877       auto MPI =
6878           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6879       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6880           MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize,
6881           TempAlign);
6882       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6883       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
6884     }
6885     setValue(&I, Res);
6886     DAG.setRoot(Res.getValue(1));
6887     return;
6888   }
6889   case Intrinsic::set_fpenv: {
6890     const DataLayout DLayout = DAG.getDataLayout();
6891     SDValue Env = getValue(I.getArgOperand(0));
6892     EVT EnvVT = Env.getValueType();
6893     Align TempAlign = DAG.getEVTAlign(EnvVT);
6894     SDValue Chain = getRoot();
6895     // If SET_FPENV is custom or legal, use it. Otherwise use loading
6896     // environment from memory.
6897     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
6898       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
6899     } else {
6900       // Allocate space in stack, copy environment bits into it and use this
6901       // memory in SET_FPENV_MEM.
6902       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6903       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6904       auto MPI =
6905           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6906       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
6907                            MachineMemOperand::MOStore);
6908       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6909           MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize,
6910           TempAlign);
6911       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6912     }
6913     DAG.setRoot(Chain);
6914     return;
6915   }
6916   case Intrinsic::reset_fpenv:
6917     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
6918     return;
6919   case Intrinsic::get_fpmode:
6920     Res = DAG.getNode(
6921         ISD::GET_FPMODE, sdl,
6922         DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6923                       MVT::Other),
6924         DAG.getRoot());
6925     setValue(&I, Res);
6926     DAG.setRoot(Res.getValue(1));
6927     return;
6928   case Intrinsic::set_fpmode:
6929     Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
6930                       getValue(I.getArgOperand(0)));
6931     DAG.setRoot(Res);
6932     return;
6933   case Intrinsic::reset_fpmode: {
6934     Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
6935     DAG.setRoot(Res);
6936     return;
6937   }
6938   case Intrinsic::pcmarker: {
6939     SDValue Tmp = getValue(I.getArgOperand(0));
6940     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6941     return;
6942   }
6943   case Intrinsic::readcyclecounter: {
6944     SDValue Op = getRoot();
6945     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6946                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6947     setValue(&I, Res);
6948     DAG.setRoot(Res.getValue(1));
6949     return;
6950   }
6951   case Intrinsic::readsteadycounter: {
6952     SDValue Op = getRoot();
6953     Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
6954                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6955     setValue(&I, Res);
6956     DAG.setRoot(Res.getValue(1));
6957     return;
6958   }
6959   case Intrinsic::bitreverse:
6960     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6961                              getValue(I.getArgOperand(0)).getValueType(),
6962                              getValue(I.getArgOperand(0))));
6963     return;
6964   case Intrinsic::bswap:
6965     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6966                              getValue(I.getArgOperand(0)).getValueType(),
6967                              getValue(I.getArgOperand(0))));
6968     return;
6969   case Intrinsic::cttz: {
6970     SDValue Arg = getValue(I.getArgOperand(0));
6971     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6972     EVT Ty = Arg.getValueType();
6973     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6974                              sdl, Ty, Arg));
6975     return;
6976   }
6977   case Intrinsic::ctlz: {
6978     SDValue Arg = getValue(I.getArgOperand(0));
6979     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6980     EVT Ty = Arg.getValueType();
6981     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6982                              sdl, Ty, Arg));
6983     return;
6984   }
6985   case Intrinsic::ctpop: {
6986     SDValue Arg = getValue(I.getArgOperand(0));
6987     EVT Ty = Arg.getValueType();
6988     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6989     return;
6990   }
6991   case Intrinsic::fshl:
6992   case Intrinsic::fshr: {
6993     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6994     SDValue X = getValue(I.getArgOperand(0));
6995     SDValue Y = getValue(I.getArgOperand(1));
6996     SDValue Z = getValue(I.getArgOperand(2));
6997     EVT VT = X.getValueType();
6998 
6999     if (X == Y) {
7000       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7001       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7002     } else {
7003       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7004       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7005     }
7006     return;
7007   }
7008   case Intrinsic::sadd_sat: {
7009     SDValue Op1 = getValue(I.getArgOperand(0));
7010     SDValue Op2 = getValue(I.getArgOperand(1));
7011     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7012     return;
7013   }
7014   case Intrinsic::uadd_sat: {
7015     SDValue Op1 = getValue(I.getArgOperand(0));
7016     SDValue Op2 = getValue(I.getArgOperand(1));
7017     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7018     return;
7019   }
7020   case Intrinsic::ssub_sat: {
7021     SDValue Op1 = getValue(I.getArgOperand(0));
7022     SDValue Op2 = getValue(I.getArgOperand(1));
7023     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7024     return;
7025   }
7026   case Intrinsic::usub_sat: {
7027     SDValue Op1 = getValue(I.getArgOperand(0));
7028     SDValue Op2 = getValue(I.getArgOperand(1));
7029     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7030     return;
7031   }
7032   case Intrinsic::sshl_sat: {
7033     SDValue Op1 = getValue(I.getArgOperand(0));
7034     SDValue Op2 = getValue(I.getArgOperand(1));
7035     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7036     return;
7037   }
7038   case Intrinsic::ushl_sat: {
7039     SDValue Op1 = getValue(I.getArgOperand(0));
7040     SDValue Op2 = getValue(I.getArgOperand(1));
7041     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7042     return;
7043   }
7044   case Intrinsic::smul_fix:
7045   case Intrinsic::umul_fix:
7046   case Intrinsic::smul_fix_sat:
7047   case Intrinsic::umul_fix_sat: {
7048     SDValue Op1 = getValue(I.getArgOperand(0));
7049     SDValue Op2 = getValue(I.getArgOperand(1));
7050     SDValue Op3 = getValue(I.getArgOperand(2));
7051     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7052                              Op1.getValueType(), Op1, Op2, Op3));
7053     return;
7054   }
7055   case Intrinsic::sdiv_fix:
7056   case Intrinsic::udiv_fix:
7057   case Intrinsic::sdiv_fix_sat:
7058   case Intrinsic::udiv_fix_sat: {
7059     SDValue Op1 = getValue(I.getArgOperand(0));
7060     SDValue Op2 = getValue(I.getArgOperand(1));
7061     SDValue Op3 = getValue(I.getArgOperand(2));
7062     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7063                               Op1, Op2, Op3, DAG, TLI));
7064     return;
7065   }
7066   case Intrinsic::smax: {
7067     SDValue Op1 = getValue(I.getArgOperand(0));
7068     SDValue Op2 = getValue(I.getArgOperand(1));
7069     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7070     return;
7071   }
7072   case Intrinsic::smin: {
7073     SDValue Op1 = getValue(I.getArgOperand(0));
7074     SDValue Op2 = getValue(I.getArgOperand(1));
7075     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7076     return;
7077   }
7078   case Intrinsic::umax: {
7079     SDValue Op1 = getValue(I.getArgOperand(0));
7080     SDValue Op2 = getValue(I.getArgOperand(1));
7081     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7082     return;
7083   }
7084   case Intrinsic::umin: {
7085     SDValue Op1 = getValue(I.getArgOperand(0));
7086     SDValue Op2 = getValue(I.getArgOperand(1));
7087     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7088     return;
7089   }
7090   case Intrinsic::abs: {
7091     // TODO: Preserve "int min is poison" arg in SDAG?
7092     SDValue Op1 = getValue(I.getArgOperand(0));
7093     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7094     return;
7095   }
7096   case Intrinsic::stacksave: {
7097     SDValue Op = getRoot();
7098     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7099     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7100     setValue(&I, Res);
7101     DAG.setRoot(Res.getValue(1));
7102     return;
7103   }
7104   case Intrinsic::stackrestore:
7105     Res = getValue(I.getArgOperand(0));
7106     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7107     return;
7108   case Intrinsic::get_dynamic_area_offset: {
7109     SDValue Op = getRoot();
7110     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7111     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7112     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
7113     // target.
7114     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
7115       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
7116                          " intrinsic!");
7117     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7118                       Op);
7119     DAG.setRoot(Op);
7120     setValue(&I, Res);
7121     return;
7122   }
7123   case Intrinsic::stackguard: {
7124     MachineFunction &MF = DAG.getMachineFunction();
7125     const Module &M = *MF.getFunction().getParent();
7126     EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7127     SDValue Chain = getRoot();
7128     if (TLI.useLoadStackGuardNode()) {
7129       Res = getLoadStackGuard(DAG, sdl, Chain);
7130       Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7131     } else {
7132       const Value *Global = TLI.getSDagStackGuard(M);
7133       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7134       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7135                         MachinePointerInfo(Global, 0), Align,
7136                         MachineMemOperand::MOVolatile);
7137     }
7138     if (TLI.useStackGuardXorFP())
7139       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7140     DAG.setRoot(Chain);
7141     setValue(&I, Res);
7142     return;
7143   }
7144   case Intrinsic::stackprotector: {
7145     // Emit code into the DAG to store the stack guard onto the stack.
7146     MachineFunction &MF = DAG.getMachineFunction();
7147     MachineFrameInfo &MFI = MF.getFrameInfo();
7148     SDValue Src, Chain = getRoot();
7149 
7150     if (TLI.useLoadStackGuardNode())
7151       Src = getLoadStackGuard(DAG, sdl, Chain);
7152     else
7153       Src = getValue(I.getArgOperand(0));   // The guard's value.
7154 
7155     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7156 
7157     int FI = FuncInfo.StaticAllocaMap[Slot];
7158     MFI.setStackProtectorIndex(FI);
7159     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7160 
7161     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7162 
7163     // Store the stack protector onto the stack.
7164     Res = DAG.getStore(
7165         Chain, sdl, Src, FIN,
7166         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7167         MaybeAlign(), MachineMemOperand::MOVolatile);
7168     setValue(&I, Res);
7169     DAG.setRoot(Res);
7170     return;
7171   }
7172   case Intrinsic::objectsize:
7173     llvm_unreachable("llvm.objectsize.* should have been lowered already");
7174 
7175   case Intrinsic::is_constant:
7176     llvm_unreachable("llvm.is.constant.* should have been lowered already");
7177 
7178   case Intrinsic::annotation:
7179   case Intrinsic::ptr_annotation:
7180   case Intrinsic::launder_invariant_group:
7181   case Intrinsic::strip_invariant_group:
7182     // Drop the intrinsic, but forward the value
7183     setValue(&I, getValue(I.getOperand(0)));
7184     return;
7185 
7186   case Intrinsic::assume:
7187   case Intrinsic::experimental_noalias_scope_decl:
7188   case Intrinsic::var_annotation:
7189   case Intrinsic::sideeffect:
7190     // Discard annotate attributes, noalias scope declarations, assumptions, and
7191     // artificial side-effects.
7192     return;
7193 
7194   case Intrinsic::codeview_annotation: {
7195     // Emit a label associated with this metadata.
7196     MachineFunction &MF = DAG.getMachineFunction();
7197     MCSymbol *Label =
7198         MF.getMMI().getContext().createTempSymbol("annotation", true);
7199     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7200     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7201     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7202     DAG.setRoot(Res);
7203     return;
7204   }
7205 
7206   case Intrinsic::init_trampoline: {
7207     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7208 
7209     SDValue Ops[6];
7210     Ops[0] = getRoot();
7211     Ops[1] = getValue(I.getArgOperand(0));
7212     Ops[2] = getValue(I.getArgOperand(1));
7213     Ops[3] = getValue(I.getArgOperand(2));
7214     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7215     Ops[5] = DAG.getSrcValue(F);
7216 
7217     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7218 
7219     DAG.setRoot(Res);
7220     return;
7221   }
7222   case Intrinsic::adjust_trampoline:
7223     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7224                              TLI.getPointerTy(DAG.getDataLayout()),
7225                              getValue(I.getArgOperand(0))));
7226     return;
7227   case Intrinsic::gcroot: {
7228     assert(DAG.getMachineFunction().getFunction().hasGC() &&
7229            "only valid in functions with gc specified, enforced by Verifier");
7230     assert(GFI && "implied by previous");
7231     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7232     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7233 
7234     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7235     GFI->addStackRoot(FI->getIndex(), TypeMap);
7236     return;
7237   }
7238   case Intrinsic::gcread:
7239   case Intrinsic::gcwrite:
7240     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7241   case Intrinsic::get_rounding:
7242     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7243     setValue(&I, Res);
7244     DAG.setRoot(Res.getValue(1));
7245     return;
7246 
7247   case Intrinsic::expect:
7248     // Just replace __builtin_expect(exp, c) with EXP.
7249     setValue(&I, getValue(I.getArgOperand(0)));
7250     return;
7251 
7252   case Intrinsic::ubsantrap:
7253   case Intrinsic::debugtrap:
7254   case Intrinsic::trap: {
7255     StringRef TrapFuncName =
7256         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7257     if (TrapFuncName.empty()) {
7258       switch (Intrinsic) {
7259       case Intrinsic::trap:
7260         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7261         break;
7262       case Intrinsic::debugtrap:
7263         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7264         break;
7265       case Intrinsic::ubsantrap:
7266         DAG.setRoot(DAG.getNode(
7267             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7268             DAG.getTargetConstant(
7269                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7270                 MVT::i32)));
7271         break;
7272       default: llvm_unreachable("unknown trap intrinsic");
7273       }
7274       return;
7275     }
7276     TargetLowering::ArgListTy Args;
7277     if (Intrinsic == Intrinsic::ubsantrap) {
7278       Args.push_back(TargetLoweringBase::ArgListEntry());
7279       Args[0].Val = I.getArgOperand(0);
7280       Args[0].Node = getValue(Args[0].Val);
7281       Args[0].Ty = Args[0].Val->getType();
7282     }
7283 
7284     TargetLowering::CallLoweringInfo CLI(DAG);
7285     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7286         CallingConv::C, I.getType(),
7287         DAG.getExternalSymbol(TrapFuncName.data(),
7288                               TLI.getPointerTy(DAG.getDataLayout())),
7289         std::move(Args));
7290 
7291     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7292     DAG.setRoot(Result.second);
7293     return;
7294   }
7295 
7296   case Intrinsic::uadd_with_overflow:
7297   case Intrinsic::sadd_with_overflow:
7298   case Intrinsic::usub_with_overflow:
7299   case Intrinsic::ssub_with_overflow:
7300   case Intrinsic::umul_with_overflow:
7301   case Intrinsic::smul_with_overflow: {
7302     ISD::NodeType Op;
7303     switch (Intrinsic) {
7304     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7305     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7306     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7307     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7308     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7309     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7310     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7311     }
7312     SDValue Op1 = getValue(I.getArgOperand(0));
7313     SDValue Op2 = getValue(I.getArgOperand(1));
7314 
7315     EVT ResultVT = Op1.getValueType();
7316     EVT OverflowVT = MVT::i1;
7317     if (ResultVT.isVector())
7318       OverflowVT = EVT::getVectorVT(
7319           *Context, OverflowVT, ResultVT.getVectorElementCount());
7320 
7321     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7322     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7323     return;
7324   }
7325   case Intrinsic::prefetch: {
7326     SDValue Ops[5];
7327     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7328     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7329     Ops[0] = DAG.getRoot();
7330     Ops[1] = getValue(I.getArgOperand(0));
7331     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7332                                    MVT::i32);
7333     Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7334                                    MVT::i32);
7335     Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7336                                    MVT::i32);
7337     SDValue Result = DAG.getMemIntrinsicNode(
7338         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7339         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7340         /* align */ std::nullopt, Flags);
7341 
7342     // Chain the prefetch in parallel with any pending loads, to stay out of
7343     // the way of later optimizations.
7344     PendingLoads.push_back(Result);
7345     Result = getRoot();
7346     DAG.setRoot(Result);
7347     return;
7348   }
7349   case Intrinsic::lifetime_start:
7350   case Intrinsic::lifetime_end: {
7351     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7352     // Stack coloring is not enabled in O0, discard region information.
7353     if (TM.getOptLevel() == CodeGenOptLevel::None)
7354       return;
7355 
7356     const int64_t ObjectSize =
7357         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7358     Value *const ObjectPtr = I.getArgOperand(1);
7359     SmallVector<const Value *, 4> Allocas;
7360     getUnderlyingObjects(ObjectPtr, Allocas);
7361 
7362     for (const Value *Alloca : Allocas) {
7363       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7364 
7365       // Could not find an Alloca.
7366       if (!LifetimeObject)
7367         continue;
7368 
7369       // First check that the Alloca is static, otherwise it won't have a
7370       // valid frame index.
7371       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7372       if (SI == FuncInfo.StaticAllocaMap.end())
7373         return;
7374 
7375       const int FrameIndex = SI->second;
7376       int64_t Offset;
7377       if (GetPointerBaseWithConstantOffset(
7378               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7379         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7380       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7381                                 Offset);
7382       DAG.setRoot(Res);
7383     }
7384     return;
7385   }
7386   case Intrinsic::pseudoprobe: {
7387     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7388     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7389     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7390     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7391     DAG.setRoot(Res);
7392     return;
7393   }
7394   case Intrinsic::invariant_start:
7395     // Discard region information.
7396     setValue(&I,
7397              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7398     return;
7399   case Intrinsic::invariant_end:
7400     // Discard region information.
7401     return;
7402   case Intrinsic::clear_cache:
7403     /// FunctionName may be null.
7404     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
7405       lowerCallToExternalSymbol(I, FunctionName);
7406     return;
7407   case Intrinsic::donothing:
7408   case Intrinsic::seh_try_begin:
7409   case Intrinsic::seh_scope_begin:
7410   case Intrinsic::seh_try_end:
7411   case Intrinsic::seh_scope_end:
7412     // ignore
7413     return;
7414   case Intrinsic::experimental_stackmap:
7415     visitStackmap(I);
7416     return;
7417   case Intrinsic::experimental_patchpoint_void:
7418   case Intrinsic::experimental_patchpoint_i64:
7419     visitPatchpoint(I);
7420     return;
7421   case Intrinsic::experimental_gc_statepoint:
7422     LowerStatepoint(cast<GCStatepointInst>(I));
7423     return;
7424   case Intrinsic::experimental_gc_result:
7425     visitGCResult(cast<GCResultInst>(I));
7426     return;
7427   case Intrinsic::experimental_gc_relocate:
7428     visitGCRelocate(cast<GCRelocateInst>(I));
7429     return;
7430   case Intrinsic::instrprof_cover:
7431     llvm_unreachable("instrprof failed to lower a cover");
7432   case Intrinsic::instrprof_increment:
7433     llvm_unreachable("instrprof failed to lower an increment");
7434   case Intrinsic::instrprof_timestamp:
7435     llvm_unreachable("instrprof failed to lower a timestamp");
7436   case Intrinsic::instrprof_value_profile:
7437     llvm_unreachable("instrprof failed to lower a value profiling call");
7438   case Intrinsic::instrprof_mcdc_parameters:
7439     llvm_unreachable("instrprof failed to lower mcdc parameters");
7440   case Intrinsic::instrprof_mcdc_tvbitmap_update:
7441     llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7442   case Intrinsic::instrprof_mcdc_condbitmap_update:
7443     llvm_unreachable("instrprof failed to lower an mcdc condbitmap update");
7444   case Intrinsic::localescape: {
7445     MachineFunction &MF = DAG.getMachineFunction();
7446     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7447 
7448     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7449     // is the same on all targets.
7450     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7451       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7452       if (isa<ConstantPointerNull>(Arg))
7453         continue; // Skip null pointers. They represent a hole in index space.
7454       AllocaInst *Slot = cast<AllocaInst>(Arg);
7455       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7456              "can only escape static allocas");
7457       int FI = FuncInfo.StaticAllocaMap[Slot];
7458       MCSymbol *FrameAllocSym =
7459           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7460               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7461       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7462               TII->get(TargetOpcode::LOCAL_ESCAPE))
7463           .addSym(FrameAllocSym)
7464           .addFrameIndex(FI);
7465     }
7466 
7467     return;
7468   }
7469 
7470   case Intrinsic::localrecover: {
7471     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7472     MachineFunction &MF = DAG.getMachineFunction();
7473 
7474     // Get the symbol that defines the frame offset.
7475     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7476     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7477     unsigned IdxVal =
7478         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7479     MCSymbol *FrameAllocSym =
7480         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7481             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7482 
7483     Value *FP = I.getArgOperand(1);
7484     SDValue FPVal = getValue(FP);
7485     EVT PtrVT = FPVal.getValueType();
7486 
7487     // Create a MCSymbol for the label to avoid any target lowering
7488     // that would make this PC relative.
7489     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7490     SDValue OffsetVal =
7491         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7492 
7493     // Add the offset to the FP.
7494     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7495     setValue(&I, Add);
7496 
7497     return;
7498   }
7499 
7500   case Intrinsic::eh_exceptionpointer:
7501   case Intrinsic::eh_exceptioncode: {
7502     // Get the exception pointer vreg, copy from it, and resize it to fit.
7503     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7504     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7505     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7506     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7507     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7508     if (Intrinsic == Intrinsic::eh_exceptioncode)
7509       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7510     setValue(&I, N);
7511     return;
7512   }
7513   case Intrinsic::xray_customevent: {
7514     // Here we want to make sure that the intrinsic behaves as if it has a
7515     // specific calling convention.
7516     const auto &Triple = DAG.getTarget().getTargetTriple();
7517     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7518       return;
7519 
7520     SmallVector<SDValue, 8> Ops;
7521 
7522     // We want to say that we always want the arguments in registers.
7523     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7524     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7525     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7526     SDValue Chain = getRoot();
7527     Ops.push_back(LogEntryVal);
7528     Ops.push_back(StrSizeVal);
7529     Ops.push_back(Chain);
7530 
7531     // We need to enforce the calling convention for the callsite, so that
7532     // argument ordering is enforced correctly, and that register allocation can
7533     // see that some registers may be assumed clobbered and have to preserve
7534     // them across calls to the intrinsic.
7535     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7536                                            sdl, NodeTys, Ops);
7537     SDValue patchableNode = SDValue(MN, 0);
7538     DAG.setRoot(patchableNode);
7539     setValue(&I, patchableNode);
7540     return;
7541   }
7542   case Intrinsic::xray_typedevent: {
7543     // Here we want to make sure that the intrinsic behaves as if it has a
7544     // specific calling convention.
7545     const auto &Triple = DAG.getTarget().getTargetTriple();
7546     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7547       return;
7548 
7549     SmallVector<SDValue, 8> Ops;
7550 
7551     // We want to say that we always want the arguments in registers.
7552     // It's unclear to me how manipulating the selection DAG here forces callers
7553     // to provide arguments in registers instead of on the stack.
7554     SDValue LogTypeId = getValue(I.getArgOperand(0));
7555     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7556     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7557     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7558     SDValue Chain = getRoot();
7559     Ops.push_back(LogTypeId);
7560     Ops.push_back(LogEntryVal);
7561     Ops.push_back(StrSizeVal);
7562     Ops.push_back(Chain);
7563 
7564     // We need to enforce the calling convention for the callsite, so that
7565     // argument ordering is enforced correctly, and that register allocation can
7566     // see that some registers may be assumed clobbered and have to preserve
7567     // them across calls to the intrinsic.
7568     MachineSDNode *MN = DAG.getMachineNode(
7569         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7570     SDValue patchableNode = SDValue(MN, 0);
7571     DAG.setRoot(patchableNode);
7572     setValue(&I, patchableNode);
7573     return;
7574   }
7575   case Intrinsic::experimental_deoptimize:
7576     LowerDeoptimizeCall(&I);
7577     return;
7578   case Intrinsic::experimental_stepvector:
7579     visitStepVector(I);
7580     return;
7581   case Intrinsic::vector_reduce_fadd:
7582   case Intrinsic::vector_reduce_fmul:
7583   case Intrinsic::vector_reduce_add:
7584   case Intrinsic::vector_reduce_mul:
7585   case Intrinsic::vector_reduce_and:
7586   case Intrinsic::vector_reduce_or:
7587   case Intrinsic::vector_reduce_xor:
7588   case Intrinsic::vector_reduce_smax:
7589   case Intrinsic::vector_reduce_smin:
7590   case Intrinsic::vector_reduce_umax:
7591   case Intrinsic::vector_reduce_umin:
7592   case Intrinsic::vector_reduce_fmax:
7593   case Intrinsic::vector_reduce_fmin:
7594   case Intrinsic::vector_reduce_fmaximum:
7595   case Intrinsic::vector_reduce_fminimum:
7596     visitVectorReduce(I, Intrinsic);
7597     return;
7598 
7599   case Intrinsic::icall_branch_funnel: {
7600     SmallVector<SDValue, 16> Ops;
7601     Ops.push_back(getValue(I.getArgOperand(0)));
7602 
7603     int64_t Offset;
7604     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7605         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7606     if (!Base)
7607       report_fatal_error(
7608           "llvm.icall.branch.funnel operand must be a GlobalValue");
7609     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7610 
7611     struct BranchFunnelTarget {
7612       int64_t Offset;
7613       SDValue Target;
7614     };
7615     SmallVector<BranchFunnelTarget, 8> Targets;
7616 
7617     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7618       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7619           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7620       if (ElemBase != Base)
7621         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7622                            "to the same GlobalValue");
7623 
7624       SDValue Val = getValue(I.getArgOperand(Op + 1));
7625       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7626       if (!GA)
7627         report_fatal_error(
7628             "llvm.icall.branch.funnel operand must be a GlobalValue");
7629       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7630                                      GA->getGlobal(), sdl, Val.getValueType(),
7631                                      GA->getOffset())});
7632     }
7633     llvm::sort(Targets,
7634                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7635                  return T1.Offset < T2.Offset;
7636                });
7637 
7638     for (auto &T : Targets) {
7639       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7640       Ops.push_back(T.Target);
7641     }
7642 
7643     Ops.push_back(DAG.getRoot()); // Chain
7644     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7645                                  MVT::Other, Ops),
7646               0);
7647     DAG.setRoot(N);
7648     setValue(&I, N);
7649     HasTailCall = true;
7650     return;
7651   }
7652 
7653   case Intrinsic::wasm_landingpad_index:
7654     // Information this intrinsic contained has been transferred to
7655     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7656     // delete it now.
7657     return;
7658 
7659   case Intrinsic::aarch64_settag:
7660   case Intrinsic::aarch64_settag_zero: {
7661     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7662     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7663     SDValue Val = TSI.EmitTargetCodeForSetTag(
7664         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7665         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7666         ZeroMemory);
7667     DAG.setRoot(Val);
7668     setValue(&I, Val);
7669     return;
7670   }
7671   case Intrinsic::amdgcn_cs_chain: {
7672     assert(I.arg_size() == 5 && "Additional args not supported yet");
7673     assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7674            "Non-zero flags not supported yet");
7675 
7676     // At this point we don't care if it's amdgpu_cs_chain or
7677     // amdgpu_cs_chain_preserve.
7678     CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7679 
7680     Type *RetTy = I.getType();
7681     assert(RetTy->isVoidTy() && "Should not return");
7682 
7683     SDValue Callee = getValue(I.getOperand(0));
7684 
7685     // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7686     // We'll also tack the value of the EXEC mask at the end.
7687     TargetLowering::ArgListTy Args;
7688     Args.reserve(3);
7689 
7690     for (unsigned Idx : {2, 3, 1}) {
7691       TargetLowering::ArgListEntry Arg;
7692       Arg.Node = getValue(I.getOperand(Idx));
7693       Arg.Ty = I.getOperand(Idx)->getType();
7694       Arg.setAttributes(&I, Idx);
7695       Args.push_back(Arg);
7696     }
7697 
7698     assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7699     assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7700     Args[2].IsInReg = true; // EXEC should be inreg
7701 
7702     TargetLowering::CallLoweringInfo CLI(DAG);
7703     CLI.setDebugLoc(getCurSDLoc())
7704         .setChain(getRoot())
7705         .setCallee(CC, RetTy, Callee, std::move(Args))
7706         .setNoReturn(true)
7707         .setTailCall(true)
7708         .setConvergent(I.isConvergent());
7709     CLI.CB = &I;
7710     std::pair<SDValue, SDValue> Result =
7711         lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7712     (void)Result;
7713     assert(!Result.first.getNode() && !Result.second.getNode() &&
7714            "Should've lowered as tail call");
7715 
7716     HasTailCall = true;
7717     return;
7718   }
7719   case Intrinsic::ptrmask: {
7720     SDValue Ptr = getValue(I.getOperand(0));
7721     SDValue Mask = getValue(I.getOperand(1));
7722 
7723     EVT PtrVT = Ptr.getValueType();
7724     assert(PtrVT == Mask.getValueType() &&
7725            "Pointers with different index type are not supported by SDAG");
7726     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
7727     return;
7728   }
7729   case Intrinsic::threadlocal_address: {
7730     setValue(&I, getValue(I.getOperand(0)));
7731     return;
7732   }
7733   case Intrinsic::get_active_lane_mask: {
7734     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7735     SDValue Index = getValue(I.getOperand(0));
7736     EVT ElementVT = Index.getValueType();
7737 
7738     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7739       visitTargetIntrinsic(I, Intrinsic);
7740       return;
7741     }
7742 
7743     SDValue TripCount = getValue(I.getOperand(1));
7744     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7745                                  CCVT.getVectorElementCount());
7746 
7747     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7748     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7749     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7750     SDValue VectorInduction = DAG.getNode(
7751         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7752     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7753                                  VectorTripCount, ISD::CondCode::SETULT);
7754     setValue(&I, SetCC);
7755     return;
7756   }
7757   case Intrinsic::experimental_get_vector_length: {
7758     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7759            "Expected positive VF");
7760     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7761     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7762 
7763     SDValue Count = getValue(I.getOperand(0));
7764     EVT CountVT = Count.getValueType();
7765 
7766     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7767       visitTargetIntrinsic(I, Intrinsic);
7768       return;
7769     }
7770 
7771     // Expand to a umin between the trip count and the maximum elements the type
7772     // can hold.
7773     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7774 
7775     // Extend the trip count to at least the result VT.
7776     if (CountVT.bitsLT(VT)) {
7777       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7778       CountVT = VT;
7779     }
7780 
7781     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7782                                          ElementCount::get(VF, IsScalable));
7783 
7784     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7785     // Clip to the result type if needed.
7786     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7787 
7788     setValue(&I, Trunc);
7789     return;
7790   }
7791   case Intrinsic::experimental_cttz_elts: {
7792     auto DL = getCurSDLoc();
7793     SDValue Op = getValue(I.getOperand(0));
7794     EVT OpVT = Op.getValueType();
7795 
7796     if (!TLI.shouldExpandCttzElements(OpVT)) {
7797       visitTargetIntrinsic(I, Intrinsic);
7798       return;
7799     }
7800 
7801     if (OpVT.getScalarType() != MVT::i1) {
7802       // Compare the input vector elements to zero & use to count trailing zeros
7803       SDValue AllZero = DAG.getConstant(0, DL, OpVT);
7804       OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
7805                               OpVT.getVectorElementCount());
7806       Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
7807     }
7808 
7809     // Find the smallest "sensible" element type to use for the expansion.
7810     ConstantRange CR(
7811         APInt(64, OpVT.getVectorElementCount().getKnownMinValue()));
7812     if (OpVT.isScalableVT())
7813       CR = CR.umul_sat(getVScaleRange(I.getCaller(), 64));
7814 
7815     // If the zero-is-poison flag is set, we can assume the upper limit
7816     // of the result is VF-1.
7817     if (!cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero())
7818       CR = CR.subtract(APInt(64, 1));
7819 
7820     unsigned EltWidth = I.getType()->getScalarSizeInBits();
7821     EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits());
7822     EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
7823 
7824     MVT NewEltTy = MVT::getIntegerVT(EltWidth);
7825 
7826     // Create the new vector type & get the vector length
7827     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
7828                                  OpVT.getVectorElementCount());
7829 
7830     SDValue VL =
7831         DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
7832 
7833     SDValue StepVec = DAG.getStepVector(DL, NewVT);
7834     SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
7835     SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
7836     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
7837     SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
7838     SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
7839     SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
7840 
7841     EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7842     SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
7843 
7844     setValue(&I, Ret);
7845     return;
7846   }
7847   case Intrinsic::vector_insert: {
7848     SDValue Vec = getValue(I.getOperand(0));
7849     SDValue SubVec = getValue(I.getOperand(1));
7850     SDValue Index = getValue(I.getOperand(2));
7851 
7852     // The intrinsic's index type is i64, but the SDNode requires an index type
7853     // suitable for the target. Convert the index as required.
7854     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7855     if (Index.getValueType() != VectorIdxTy)
7856       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7857 
7858     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7859     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7860                              Index));
7861     return;
7862   }
7863   case Intrinsic::vector_extract: {
7864     SDValue Vec = getValue(I.getOperand(0));
7865     SDValue Index = getValue(I.getOperand(1));
7866     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7867 
7868     // The intrinsic's index type is i64, but the SDNode requires an index type
7869     // suitable for the target. Convert the index as required.
7870     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7871     if (Index.getValueType() != VectorIdxTy)
7872       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7873 
7874     setValue(&I,
7875              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7876     return;
7877   }
7878   case Intrinsic::experimental_vector_reverse:
7879     visitVectorReverse(I);
7880     return;
7881   case Intrinsic::experimental_vector_splice:
7882     visitVectorSplice(I);
7883     return;
7884   case Intrinsic::callbr_landingpad:
7885     visitCallBrLandingPad(I);
7886     return;
7887   case Intrinsic::experimental_vector_interleave2:
7888     visitVectorInterleave(I);
7889     return;
7890   case Intrinsic::experimental_vector_deinterleave2:
7891     visitVectorDeinterleave(I);
7892     return;
7893   }
7894 }
7895 
7896 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7897     const ConstrainedFPIntrinsic &FPI) {
7898   SDLoc sdl = getCurSDLoc();
7899 
7900   // We do not need to serialize constrained FP intrinsics against
7901   // each other or against (nonvolatile) loads, so they can be
7902   // chained like loads.
7903   SDValue Chain = DAG.getRoot();
7904   SmallVector<SDValue, 4> Opers;
7905   Opers.push_back(Chain);
7906   if (FPI.isUnaryOp()) {
7907     Opers.push_back(getValue(FPI.getArgOperand(0)));
7908   } else if (FPI.isTernaryOp()) {
7909     Opers.push_back(getValue(FPI.getArgOperand(0)));
7910     Opers.push_back(getValue(FPI.getArgOperand(1)));
7911     Opers.push_back(getValue(FPI.getArgOperand(2)));
7912   } else {
7913     Opers.push_back(getValue(FPI.getArgOperand(0)));
7914     Opers.push_back(getValue(FPI.getArgOperand(1)));
7915   }
7916 
7917   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7918     assert(Result.getNode()->getNumValues() == 2);
7919 
7920     // Push node to the appropriate list so that future instructions can be
7921     // chained up correctly.
7922     SDValue OutChain = Result.getValue(1);
7923     switch (EB) {
7924     case fp::ExceptionBehavior::ebIgnore:
7925       // The only reason why ebIgnore nodes still need to be chained is that
7926       // they might depend on the current rounding mode, and therefore must
7927       // not be moved across instruction that may change that mode.
7928       [[fallthrough]];
7929     case fp::ExceptionBehavior::ebMayTrap:
7930       // These must not be moved across calls or instructions that may change
7931       // floating-point exception masks.
7932       PendingConstrainedFP.push_back(OutChain);
7933       break;
7934     case fp::ExceptionBehavior::ebStrict:
7935       // These must not be moved across calls or instructions that may change
7936       // floating-point exception masks or read floating-point exception flags.
7937       // In addition, they cannot be optimized out even if unused.
7938       PendingConstrainedFPStrict.push_back(OutChain);
7939       break;
7940     }
7941   };
7942 
7943   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7944   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7945   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7946   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7947 
7948   SDNodeFlags Flags;
7949   if (EB == fp::ExceptionBehavior::ebIgnore)
7950     Flags.setNoFPExcept(true);
7951 
7952   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7953     Flags.copyFMF(*FPOp);
7954 
7955   unsigned Opcode;
7956   switch (FPI.getIntrinsicID()) {
7957   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7958 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7959   case Intrinsic::INTRINSIC:                                                   \
7960     Opcode = ISD::STRICT_##DAGN;                                               \
7961     break;
7962 #include "llvm/IR/ConstrainedOps.def"
7963   case Intrinsic::experimental_constrained_fmuladd: {
7964     Opcode = ISD::STRICT_FMA;
7965     // Break fmuladd into fmul and fadd.
7966     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7967         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7968       Opers.pop_back();
7969       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7970       pushOutChain(Mul, EB);
7971       Opcode = ISD::STRICT_FADD;
7972       Opers.clear();
7973       Opers.push_back(Mul.getValue(1));
7974       Opers.push_back(Mul.getValue(0));
7975       Opers.push_back(getValue(FPI.getArgOperand(2)));
7976     }
7977     break;
7978   }
7979   }
7980 
7981   // A few strict DAG nodes carry additional operands that are not
7982   // set up by the default code above.
7983   switch (Opcode) {
7984   default: break;
7985   case ISD::STRICT_FP_ROUND:
7986     Opers.push_back(
7987         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7988     break;
7989   case ISD::STRICT_FSETCC:
7990   case ISD::STRICT_FSETCCS: {
7991     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7992     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7993     if (TM.Options.NoNaNsFPMath)
7994       Condition = getFCmpCodeWithoutNaN(Condition);
7995     Opers.push_back(DAG.getCondCode(Condition));
7996     break;
7997   }
7998   }
7999 
8000   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8001   pushOutChain(Result, EB);
8002 
8003   SDValue FPResult = Result.getValue(0);
8004   setValue(&FPI, FPResult);
8005 }
8006 
8007 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8008   std::optional<unsigned> ResOPC;
8009   switch (VPIntrin.getIntrinsicID()) {
8010   case Intrinsic::vp_ctlz: {
8011     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8012     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8013     break;
8014   }
8015   case Intrinsic::vp_cttz: {
8016     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8017     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8018     break;
8019   }
8020 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
8021   case Intrinsic::VPID:                                                        \
8022     ResOPC = ISD::VPSD;                                                        \
8023     break;
8024 #include "llvm/IR/VPIntrinsics.def"
8025   }
8026 
8027   if (!ResOPC)
8028     llvm_unreachable(
8029         "Inconsistency: no SDNode available for this VPIntrinsic!");
8030 
8031   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8032       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8033     if (VPIntrin.getFastMathFlags().allowReassoc())
8034       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8035                                                 : ISD::VP_REDUCE_FMUL;
8036   }
8037 
8038   return *ResOPC;
8039 }
8040 
8041 void SelectionDAGBuilder::visitVPLoad(
8042     const VPIntrinsic &VPIntrin, EVT VT,
8043     const SmallVectorImpl<SDValue> &OpValues) {
8044   SDLoc DL = getCurSDLoc();
8045   Value *PtrOperand = VPIntrin.getArgOperand(0);
8046   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8047   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8048   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8049   SDValue LD;
8050   // Do not serialize variable-length loads of constant memory with
8051   // anything.
8052   if (!Alignment)
8053     Alignment = DAG.getEVTAlign(VT);
8054   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8055   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8056   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8057   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8058       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8059       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
8060   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8061                      MMO, false /*IsExpanding */);
8062   if (AddToChain)
8063     PendingLoads.push_back(LD.getValue(1));
8064   setValue(&VPIntrin, LD);
8065 }
8066 
8067 void SelectionDAGBuilder::visitVPGather(
8068     const VPIntrinsic &VPIntrin, EVT VT,
8069     const SmallVectorImpl<SDValue> &OpValues) {
8070   SDLoc DL = getCurSDLoc();
8071   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8072   Value *PtrOperand = VPIntrin.getArgOperand(0);
8073   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8074   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8075   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8076   SDValue LD;
8077   if (!Alignment)
8078     Alignment = DAG.getEVTAlign(VT.getScalarType());
8079   unsigned AS =
8080     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8081   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8082      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8083      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
8084   SDValue Base, Index, Scale;
8085   ISD::MemIndexType IndexType;
8086   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8087                                     this, VPIntrin.getParent(),
8088                                     VT.getScalarStoreSize());
8089   if (!UniformBase) {
8090     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8091     Index = getValue(PtrOperand);
8092     IndexType = ISD::SIGNED_SCALED;
8093     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8094   }
8095   EVT IdxVT = Index.getValueType();
8096   EVT EltTy = IdxVT.getVectorElementType();
8097   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8098     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8099     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8100   }
8101   LD = DAG.getGatherVP(
8102       DAG.getVTList(VT, MVT::Other), VT, DL,
8103       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8104       IndexType);
8105   PendingLoads.push_back(LD.getValue(1));
8106   setValue(&VPIntrin, LD);
8107 }
8108 
8109 void SelectionDAGBuilder::visitVPStore(
8110     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8111   SDLoc DL = getCurSDLoc();
8112   Value *PtrOperand = VPIntrin.getArgOperand(1);
8113   EVT VT = OpValues[0].getValueType();
8114   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8115   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8116   SDValue ST;
8117   if (!Alignment)
8118     Alignment = DAG.getEVTAlign(VT);
8119   SDValue Ptr = OpValues[1];
8120   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8121   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8122       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8123       MemoryLocation::UnknownSize, *Alignment, AAInfo);
8124   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8125                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8126                       /* IsTruncating */ false, /*IsCompressing*/ false);
8127   DAG.setRoot(ST);
8128   setValue(&VPIntrin, ST);
8129 }
8130 
8131 void SelectionDAGBuilder::visitVPScatter(
8132     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8133   SDLoc DL = getCurSDLoc();
8134   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8135   Value *PtrOperand = VPIntrin.getArgOperand(1);
8136   EVT VT = OpValues[0].getValueType();
8137   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8138   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8139   SDValue ST;
8140   if (!Alignment)
8141     Alignment = DAG.getEVTAlign(VT.getScalarType());
8142   unsigned AS =
8143       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8144   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8145       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8146       MemoryLocation::UnknownSize, *Alignment, AAInfo);
8147   SDValue Base, Index, Scale;
8148   ISD::MemIndexType IndexType;
8149   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8150                                     this, VPIntrin.getParent(),
8151                                     VT.getScalarStoreSize());
8152   if (!UniformBase) {
8153     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8154     Index = getValue(PtrOperand);
8155     IndexType = ISD::SIGNED_SCALED;
8156     Scale =
8157       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8158   }
8159   EVT IdxVT = Index.getValueType();
8160   EVT EltTy = IdxVT.getVectorElementType();
8161   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8162     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8163     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8164   }
8165   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8166                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8167                          OpValues[2], OpValues[3]},
8168                         MMO, IndexType);
8169   DAG.setRoot(ST);
8170   setValue(&VPIntrin, ST);
8171 }
8172 
8173 void SelectionDAGBuilder::visitVPStridedLoad(
8174     const VPIntrinsic &VPIntrin, EVT VT,
8175     const SmallVectorImpl<SDValue> &OpValues) {
8176   SDLoc DL = getCurSDLoc();
8177   Value *PtrOperand = VPIntrin.getArgOperand(0);
8178   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8179   if (!Alignment)
8180     Alignment = DAG.getEVTAlign(VT.getScalarType());
8181   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8182   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8183   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8184   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8185   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8186   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8187   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8188       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8189       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
8190 
8191   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8192                                     OpValues[2], OpValues[3], MMO,
8193                                     false /*IsExpanding*/);
8194 
8195   if (AddToChain)
8196     PendingLoads.push_back(LD.getValue(1));
8197   setValue(&VPIntrin, LD);
8198 }
8199 
8200 void SelectionDAGBuilder::visitVPStridedStore(
8201     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8202   SDLoc DL = getCurSDLoc();
8203   Value *PtrOperand = VPIntrin.getArgOperand(1);
8204   EVT VT = OpValues[0].getValueType();
8205   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8206   if (!Alignment)
8207     Alignment = DAG.getEVTAlign(VT.getScalarType());
8208   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8209   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8210   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8211       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8212       MemoryLocation::UnknownSize, *Alignment, AAInfo);
8213 
8214   SDValue ST = DAG.getStridedStoreVP(
8215       getMemoryRoot(), DL, OpValues[0], OpValues[1],
8216       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8217       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8218       /*IsCompressing*/ false);
8219 
8220   DAG.setRoot(ST);
8221   setValue(&VPIntrin, ST);
8222 }
8223 
8224 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8225   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8226   SDLoc DL = getCurSDLoc();
8227 
8228   ISD::CondCode Condition;
8229   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8230   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8231   if (IsFP) {
8232     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8233     // flags, but calls that don't return floating-point types can't be
8234     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8235     Condition = getFCmpCondCode(CondCode);
8236     if (TM.Options.NoNaNsFPMath)
8237       Condition = getFCmpCodeWithoutNaN(Condition);
8238   } else {
8239     Condition = getICmpCondCode(CondCode);
8240   }
8241 
8242   SDValue Op1 = getValue(VPIntrin.getOperand(0));
8243   SDValue Op2 = getValue(VPIntrin.getOperand(1));
8244   // #2 is the condition code
8245   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8246   SDValue EVL = getValue(VPIntrin.getOperand(4));
8247   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8248   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8249          "Unexpected target EVL type");
8250   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8251 
8252   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8253                                                         VPIntrin.getType());
8254   setValue(&VPIntrin,
8255            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8256 }
8257 
8258 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8259     const VPIntrinsic &VPIntrin) {
8260   SDLoc DL = getCurSDLoc();
8261   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8262 
8263   auto IID = VPIntrin.getIntrinsicID();
8264 
8265   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8266     return visitVPCmp(*CmpI);
8267 
8268   SmallVector<EVT, 4> ValueVTs;
8269   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8270   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8271   SDVTList VTs = DAG.getVTList(ValueVTs);
8272 
8273   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8274 
8275   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8276   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8277          "Unexpected target EVL type");
8278 
8279   // Request operands.
8280   SmallVector<SDValue, 7> OpValues;
8281   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8282     auto Op = getValue(VPIntrin.getArgOperand(I));
8283     if (I == EVLParamPos)
8284       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8285     OpValues.push_back(Op);
8286   }
8287 
8288   switch (Opcode) {
8289   default: {
8290     SDNodeFlags SDFlags;
8291     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8292       SDFlags.copyFMF(*FPMO);
8293     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8294     setValue(&VPIntrin, Result);
8295     break;
8296   }
8297   case ISD::VP_LOAD:
8298     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8299     break;
8300   case ISD::VP_GATHER:
8301     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8302     break;
8303   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8304     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8305     break;
8306   case ISD::VP_STORE:
8307     visitVPStore(VPIntrin, OpValues);
8308     break;
8309   case ISD::VP_SCATTER:
8310     visitVPScatter(VPIntrin, OpValues);
8311     break;
8312   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8313     visitVPStridedStore(VPIntrin, OpValues);
8314     break;
8315   case ISD::VP_FMULADD: {
8316     assert(OpValues.size() == 5 && "Unexpected number of operands");
8317     SDNodeFlags SDFlags;
8318     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8319       SDFlags.copyFMF(*FPMO);
8320     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8321         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8322       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8323     } else {
8324       SDValue Mul = DAG.getNode(
8325           ISD::VP_FMUL, DL, VTs,
8326           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8327       SDValue Add =
8328           DAG.getNode(ISD::VP_FADD, DL, VTs,
8329                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8330       setValue(&VPIntrin, Add);
8331     }
8332     break;
8333   }
8334   case ISD::VP_IS_FPCLASS: {
8335     const DataLayout DLayout = DAG.getDataLayout();
8336     EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8337     auto Constant = OpValues[1]->getAsZExtVal();
8338     SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8339     SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8340                             {OpValues[0], Check, OpValues[2], OpValues[3]});
8341     setValue(&VPIntrin, V);
8342     return;
8343   }
8344   case ISD::VP_INTTOPTR: {
8345     SDValue N = OpValues[0];
8346     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8347     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8348     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8349                                OpValues[2]);
8350     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8351                              OpValues[2]);
8352     setValue(&VPIntrin, N);
8353     break;
8354   }
8355   case ISD::VP_PTRTOINT: {
8356     SDValue N = OpValues[0];
8357     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8358                                                           VPIntrin.getType());
8359     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8360                                        VPIntrin.getOperand(0)->getType());
8361     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8362                                OpValues[2]);
8363     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8364                              OpValues[2]);
8365     setValue(&VPIntrin, N);
8366     break;
8367   }
8368   case ISD::VP_ABS:
8369   case ISD::VP_CTLZ:
8370   case ISD::VP_CTLZ_ZERO_UNDEF:
8371   case ISD::VP_CTTZ:
8372   case ISD::VP_CTTZ_ZERO_UNDEF: {
8373     SDValue Result =
8374         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8375     setValue(&VPIntrin, Result);
8376     break;
8377   }
8378   }
8379 }
8380 
8381 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8382                                           const BasicBlock *EHPadBB,
8383                                           MCSymbol *&BeginLabel) {
8384   MachineFunction &MF = DAG.getMachineFunction();
8385   MachineModuleInfo &MMI = MF.getMMI();
8386 
8387   // Insert a label before the invoke call to mark the try range.  This can be
8388   // used to detect deletion of the invoke via the MachineModuleInfo.
8389   BeginLabel = MMI.getContext().createTempSymbol();
8390 
8391   // For SjLj, keep track of which landing pads go with which invokes
8392   // so as to maintain the ordering of pads in the LSDA.
8393   unsigned CallSiteIndex = MMI.getCurrentCallSite();
8394   if (CallSiteIndex) {
8395     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8396     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
8397 
8398     // Now that the call site is handled, stop tracking it.
8399     MMI.setCurrentCallSite(0);
8400   }
8401 
8402   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8403 }
8404 
8405 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8406                                         const BasicBlock *EHPadBB,
8407                                         MCSymbol *BeginLabel) {
8408   assert(BeginLabel && "BeginLabel should've been set");
8409 
8410   MachineFunction &MF = DAG.getMachineFunction();
8411   MachineModuleInfo &MMI = MF.getMMI();
8412 
8413   // Insert a label at the end of the invoke call to mark the try range.  This
8414   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8415   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
8416   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8417 
8418   // Inform MachineModuleInfo of range.
8419   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8420   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8421   // actually use outlined funclets and their LSDA info style.
8422   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8423     assert(II && "II should've been set");
8424     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8425     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8426   } else if (!isScopedEHPersonality(Pers)) {
8427     assert(EHPadBB);
8428     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8429   }
8430 
8431   return Chain;
8432 }
8433 
8434 std::pair<SDValue, SDValue>
8435 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8436                                     const BasicBlock *EHPadBB) {
8437   MCSymbol *BeginLabel = nullptr;
8438 
8439   if (EHPadBB) {
8440     // Both PendingLoads and PendingExports must be flushed here;
8441     // this call might not return.
8442     (void)getRoot();
8443     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8444     CLI.setChain(getRoot());
8445   }
8446 
8447   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8448   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8449 
8450   assert((CLI.IsTailCall || Result.second.getNode()) &&
8451          "Non-null chain expected with non-tail call!");
8452   assert((Result.second.getNode() || !Result.first.getNode()) &&
8453          "Null value expected with tail call!");
8454 
8455   if (!Result.second.getNode()) {
8456     // As a special case, a null chain means that a tail call has been emitted
8457     // and the DAG root is already updated.
8458     HasTailCall = true;
8459 
8460     // Since there's no actual continuation from this block, nothing can be
8461     // relying on us setting vregs for them.
8462     PendingExports.clear();
8463   } else {
8464     DAG.setRoot(Result.second);
8465   }
8466 
8467   if (EHPadBB) {
8468     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8469                            BeginLabel));
8470   }
8471 
8472   return Result;
8473 }
8474 
8475 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8476                                       bool isTailCall,
8477                                       bool isMustTailCall,
8478                                       const BasicBlock *EHPadBB) {
8479   auto &DL = DAG.getDataLayout();
8480   FunctionType *FTy = CB.getFunctionType();
8481   Type *RetTy = CB.getType();
8482 
8483   TargetLowering::ArgListTy Args;
8484   Args.reserve(CB.arg_size());
8485 
8486   const Value *SwiftErrorVal = nullptr;
8487   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8488 
8489   if (isTailCall) {
8490     // Avoid emitting tail calls in functions with the disable-tail-calls
8491     // attribute.
8492     auto *Caller = CB.getParent()->getParent();
8493     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8494         "true" && !isMustTailCall)
8495       isTailCall = false;
8496 
8497     // We can't tail call inside a function with a swifterror argument. Lowering
8498     // does not support this yet. It would have to move into the swifterror
8499     // register before the call.
8500     if (TLI.supportSwiftError() &&
8501         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8502       isTailCall = false;
8503   }
8504 
8505   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8506     TargetLowering::ArgListEntry Entry;
8507     const Value *V = *I;
8508 
8509     // Skip empty types
8510     if (V->getType()->isEmptyTy())
8511       continue;
8512 
8513     SDValue ArgNode = getValue(V);
8514     Entry.Node = ArgNode; Entry.Ty = V->getType();
8515 
8516     Entry.setAttributes(&CB, I - CB.arg_begin());
8517 
8518     // Use swifterror virtual register as input to the call.
8519     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8520       SwiftErrorVal = V;
8521       // We find the virtual register for the actual swifterror argument.
8522       // Instead of using the Value, we use the virtual register instead.
8523       Entry.Node =
8524           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8525                           EVT(TLI.getPointerTy(DL)));
8526     }
8527 
8528     Args.push_back(Entry);
8529 
8530     // If we have an explicit sret argument that is an Instruction, (i.e., it
8531     // might point to function-local memory), we can't meaningfully tail-call.
8532     if (Entry.IsSRet && isa<Instruction>(V))
8533       isTailCall = false;
8534   }
8535 
8536   // If call site has a cfguardtarget operand bundle, create and add an
8537   // additional ArgListEntry.
8538   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8539     TargetLowering::ArgListEntry Entry;
8540     Value *V = Bundle->Inputs[0];
8541     SDValue ArgNode = getValue(V);
8542     Entry.Node = ArgNode;
8543     Entry.Ty = V->getType();
8544     Entry.IsCFGuardTarget = true;
8545     Args.push_back(Entry);
8546   }
8547 
8548   // Check if target-independent constraints permit a tail call here.
8549   // Target-dependent constraints are checked within TLI->LowerCallTo.
8550   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8551     isTailCall = false;
8552 
8553   // Disable tail calls if there is an swifterror argument. Targets have not
8554   // been updated to support tail calls.
8555   if (TLI.supportSwiftError() && SwiftErrorVal)
8556     isTailCall = false;
8557 
8558   ConstantInt *CFIType = nullptr;
8559   if (CB.isIndirectCall()) {
8560     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8561       if (!TLI.supportKCFIBundles())
8562         report_fatal_error(
8563             "Target doesn't support calls with kcfi operand bundles.");
8564       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8565       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8566     }
8567   }
8568 
8569   TargetLowering::CallLoweringInfo CLI(DAG);
8570   CLI.setDebugLoc(getCurSDLoc())
8571       .setChain(getRoot())
8572       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8573       .setTailCall(isTailCall)
8574       .setConvergent(CB.isConvergent())
8575       .setIsPreallocated(
8576           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8577       .setCFIType(CFIType);
8578   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8579 
8580   if (Result.first.getNode()) {
8581     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8582     setValue(&CB, Result.first);
8583   }
8584 
8585   // The last element of CLI.InVals has the SDValue for swifterror return.
8586   // Here we copy it to a virtual register and update SwiftErrorMap for
8587   // book-keeping.
8588   if (SwiftErrorVal && TLI.supportSwiftError()) {
8589     // Get the last element of InVals.
8590     SDValue Src = CLI.InVals.back();
8591     Register VReg =
8592         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8593     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8594     DAG.setRoot(CopyNode);
8595   }
8596 }
8597 
8598 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8599                              SelectionDAGBuilder &Builder) {
8600   // Check to see if this load can be trivially constant folded, e.g. if the
8601   // input is from a string literal.
8602   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8603     // Cast pointer to the type we really want to load.
8604     Type *LoadTy =
8605         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8606     if (LoadVT.isVector())
8607       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8608 
8609     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8610                                          PointerType::getUnqual(LoadTy));
8611 
8612     if (const Constant *LoadCst =
8613             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8614                                          LoadTy, Builder.DAG.getDataLayout()))
8615       return Builder.getValue(LoadCst);
8616   }
8617 
8618   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8619   // still constant memory, the input chain can be the entry node.
8620   SDValue Root;
8621   bool ConstantMemory = false;
8622 
8623   // Do not serialize (non-volatile) loads of constant memory with anything.
8624   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8625     Root = Builder.DAG.getEntryNode();
8626     ConstantMemory = true;
8627   } else {
8628     // Do not serialize non-volatile loads against each other.
8629     Root = Builder.DAG.getRoot();
8630   }
8631 
8632   SDValue Ptr = Builder.getValue(PtrVal);
8633   SDValue LoadVal =
8634       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8635                           MachinePointerInfo(PtrVal), Align(1));
8636 
8637   if (!ConstantMemory)
8638     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8639   return LoadVal;
8640 }
8641 
8642 /// Record the value for an instruction that produces an integer result,
8643 /// converting the type where necessary.
8644 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8645                                                   SDValue Value,
8646                                                   bool IsSigned) {
8647   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8648                                                     I.getType(), true);
8649   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8650   setValue(&I, Value);
8651 }
8652 
8653 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8654 /// true and lower it. Otherwise return false, and it will be lowered like a
8655 /// normal call.
8656 /// The caller already checked that \p I calls the appropriate LibFunc with a
8657 /// correct prototype.
8658 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8659   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8660   const Value *Size = I.getArgOperand(2);
8661   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8662   if (CSize && CSize->getZExtValue() == 0) {
8663     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8664                                                           I.getType(), true);
8665     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8666     return true;
8667   }
8668 
8669   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8670   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8671       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8672       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8673   if (Res.first.getNode()) {
8674     processIntegerCallValue(I, Res.first, true);
8675     PendingLoads.push_back(Res.second);
8676     return true;
8677   }
8678 
8679   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8680   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8681   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8682     return false;
8683 
8684   // If the target has a fast compare for the given size, it will return a
8685   // preferred load type for that size. Require that the load VT is legal and
8686   // that the target supports unaligned loads of that type. Otherwise, return
8687   // INVALID.
8688   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8689     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8690     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8691     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8692       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8693       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8694       // TODO: Check alignment of src and dest ptrs.
8695       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8696       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8697       if (!TLI.isTypeLegal(LVT) ||
8698           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8699           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8700         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8701     }
8702 
8703     return LVT;
8704   };
8705 
8706   // This turns into unaligned loads. We only do this if the target natively
8707   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8708   // we'll only produce a small number of byte loads.
8709   MVT LoadVT;
8710   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8711   switch (NumBitsToCompare) {
8712   default:
8713     return false;
8714   case 16:
8715     LoadVT = MVT::i16;
8716     break;
8717   case 32:
8718     LoadVT = MVT::i32;
8719     break;
8720   case 64:
8721   case 128:
8722   case 256:
8723     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8724     break;
8725   }
8726 
8727   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8728     return false;
8729 
8730   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8731   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8732 
8733   // Bitcast to a wide integer type if the loads are vectors.
8734   if (LoadVT.isVector()) {
8735     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8736     LoadL = DAG.getBitcast(CmpVT, LoadL);
8737     LoadR = DAG.getBitcast(CmpVT, LoadR);
8738   }
8739 
8740   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8741   processIntegerCallValue(I, Cmp, false);
8742   return true;
8743 }
8744 
8745 /// See if we can lower a memchr call into an optimized form. If so, return
8746 /// true and lower it. Otherwise return false, and it will be lowered like a
8747 /// normal call.
8748 /// The caller already checked that \p I calls the appropriate LibFunc with a
8749 /// correct prototype.
8750 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8751   const Value *Src = I.getArgOperand(0);
8752   const Value *Char = I.getArgOperand(1);
8753   const Value *Length = I.getArgOperand(2);
8754 
8755   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8756   std::pair<SDValue, SDValue> Res =
8757     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8758                                 getValue(Src), getValue(Char), getValue(Length),
8759                                 MachinePointerInfo(Src));
8760   if (Res.first.getNode()) {
8761     setValue(&I, Res.first);
8762     PendingLoads.push_back(Res.second);
8763     return true;
8764   }
8765 
8766   return false;
8767 }
8768 
8769 /// See if we can lower a mempcpy call into an optimized form. If so, return
8770 /// true and lower it. Otherwise return false, and it will be lowered like a
8771 /// normal call.
8772 /// The caller already checked that \p I calls the appropriate LibFunc with a
8773 /// correct prototype.
8774 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8775   SDValue Dst = getValue(I.getArgOperand(0));
8776   SDValue Src = getValue(I.getArgOperand(1));
8777   SDValue Size = getValue(I.getArgOperand(2));
8778 
8779   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8780   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8781   // DAG::getMemcpy needs Alignment to be defined.
8782   Align Alignment = std::min(DstAlign, SrcAlign);
8783 
8784   SDLoc sdl = getCurSDLoc();
8785 
8786   // In the mempcpy context we need to pass in a false value for isTailCall
8787   // because the return pointer needs to be adjusted by the size of
8788   // the copied memory.
8789   SDValue Root = getMemoryRoot();
8790   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false,
8791                              /*isTailCall=*/false,
8792                              MachinePointerInfo(I.getArgOperand(0)),
8793                              MachinePointerInfo(I.getArgOperand(1)),
8794                              I.getAAMetadata());
8795   assert(MC.getNode() != nullptr &&
8796          "** memcpy should not be lowered as TailCall in mempcpy context **");
8797   DAG.setRoot(MC);
8798 
8799   // Check if Size needs to be truncated or extended.
8800   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8801 
8802   // Adjust return pointer to point just past the last dst byte.
8803   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8804                                     Dst, Size);
8805   setValue(&I, DstPlusSize);
8806   return true;
8807 }
8808 
8809 /// See if we can lower a strcpy call into an optimized form.  If so, return
8810 /// true and lower it, otherwise return false and it will be lowered like a
8811 /// normal call.
8812 /// The caller already checked that \p I calls the appropriate LibFunc with a
8813 /// correct prototype.
8814 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8815   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8816 
8817   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8818   std::pair<SDValue, SDValue> Res =
8819     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8820                                 getValue(Arg0), getValue(Arg1),
8821                                 MachinePointerInfo(Arg0),
8822                                 MachinePointerInfo(Arg1), isStpcpy);
8823   if (Res.first.getNode()) {
8824     setValue(&I, Res.first);
8825     DAG.setRoot(Res.second);
8826     return true;
8827   }
8828 
8829   return false;
8830 }
8831 
8832 /// See if we can lower a strcmp call into an optimized form.  If so, return
8833 /// true and lower it, otherwise return false and it will be lowered like a
8834 /// normal call.
8835 /// The caller already checked that \p I calls the appropriate LibFunc with a
8836 /// correct prototype.
8837 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8838   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8839 
8840   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8841   std::pair<SDValue, SDValue> Res =
8842     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8843                                 getValue(Arg0), getValue(Arg1),
8844                                 MachinePointerInfo(Arg0),
8845                                 MachinePointerInfo(Arg1));
8846   if (Res.first.getNode()) {
8847     processIntegerCallValue(I, Res.first, true);
8848     PendingLoads.push_back(Res.second);
8849     return true;
8850   }
8851 
8852   return false;
8853 }
8854 
8855 /// See if we can lower a strlen call into an optimized form.  If so, return
8856 /// true and lower it, otherwise return false and it will be lowered like a
8857 /// normal call.
8858 /// The caller already checked that \p I calls the appropriate LibFunc with a
8859 /// correct prototype.
8860 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8861   const Value *Arg0 = I.getArgOperand(0);
8862 
8863   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8864   std::pair<SDValue, SDValue> Res =
8865     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8866                                 getValue(Arg0), MachinePointerInfo(Arg0));
8867   if (Res.first.getNode()) {
8868     processIntegerCallValue(I, Res.first, false);
8869     PendingLoads.push_back(Res.second);
8870     return true;
8871   }
8872 
8873   return false;
8874 }
8875 
8876 /// See if we can lower a strnlen call into an optimized form.  If so, return
8877 /// true and lower it, otherwise return false and it will be lowered like a
8878 /// normal call.
8879 /// The caller already checked that \p I calls the appropriate LibFunc with a
8880 /// correct prototype.
8881 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8882   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8883 
8884   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8885   std::pair<SDValue, SDValue> Res =
8886     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8887                                  getValue(Arg0), getValue(Arg1),
8888                                  MachinePointerInfo(Arg0));
8889   if (Res.first.getNode()) {
8890     processIntegerCallValue(I, Res.first, false);
8891     PendingLoads.push_back(Res.second);
8892     return true;
8893   }
8894 
8895   return false;
8896 }
8897 
8898 /// See if we can lower a unary floating-point operation into an SDNode with
8899 /// the specified Opcode.  If so, return true and lower it, otherwise return
8900 /// false and it will be lowered like a normal call.
8901 /// The caller already checked that \p I calls the appropriate LibFunc with a
8902 /// correct prototype.
8903 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8904                                               unsigned Opcode) {
8905   // We already checked this call's prototype; verify it doesn't modify errno.
8906   if (!I.onlyReadsMemory())
8907     return false;
8908 
8909   SDNodeFlags Flags;
8910   Flags.copyFMF(cast<FPMathOperator>(I));
8911 
8912   SDValue Tmp = getValue(I.getArgOperand(0));
8913   setValue(&I,
8914            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8915   return true;
8916 }
8917 
8918 /// See if we can lower a binary floating-point operation into an SDNode with
8919 /// the specified Opcode. If so, return true and lower it. Otherwise return
8920 /// false, and it will be lowered like a normal call.
8921 /// The caller already checked that \p I calls the appropriate LibFunc with a
8922 /// correct prototype.
8923 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8924                                                unsigned Opcode) {
8925   // We already checked this call's prototype; verify it doesn't modify errno.
8926   if (!I.onlyReadsMemory())
8927     return false;
8928 
8929   SDNodeFlags Flags;
8930   Flags.copyFMF(cast<FPMathOperator>(I));
8931 
8932   SDValue Tmp0 = getValue(I.getArgOperand(0));
8933   SDValue Tmp1 = getValue(I.getArgOperand(1));
8934   EVT VT = Tmp0.getValueType();
8935   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8936   return true;
8937 }
8938 
8939 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8940   // Handle inline assembly differently.
8941   if (I.isInlineAsm()) {
8942     visitInlineAsm(I);
8943     return;
8944   }
8945 
8946   diagnoseDontCall(I);
8947 
8948   if (Function *F = I.getCalledFunction()) {
8949     if (F->isDeclaration()) {
8950       // Is this an LLVM intrinsic or a target-specific intrinsic?
8951       unsigned IID = F->getIntrinsicID();
8952       if (!IID)
8953         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8954           IID = II->getIntrinsicID(F);
8955 
8956       if (IID) {
8957         visitIntrinsicCall(I, IID);
8958         return;
8959       }
8960     }
8961 
8962     // Check for well-known libc/libm calls.  If the function is internal, it
8963     // can't be a library call.  Don't do the check if marked as nobuiltin for
8964     // some reason or the call site requires strict floating point semantics.
8965     LibFunc Func;
8966     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8967         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8968         LibInfo->hasOptimizedCodeGen(Func)) {
8969       switch (Func) {
8970       default: break;
8971       case LibFunc_bcmp:
8972         if (visitMemCmpBCmpCall(I))
8973           return;
8974         break;
8975       case LibFunc_copysign:
8976       case LibFunc_copysignf:
8977       case LibFunc_copysignl:
8978         // We already checked this call's prototype; verify it doesn't modify
8979         // errno.
8980         if (I.onlyReadsMemory()) {
8981           SDValue LHS = getValue(I.getArgOperand(0));
8982           SDValue RHS = getValue(I.getArgOperand(1));
8983           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8984                                    LHS.getValueType(), LHS, RHS));
8985           return;
8986         }
8987         break;
8988       case LibFunc_fabs:
8989       case LibFunc_fabsf:
8990       case LibFunc_fabsl:
8991         if (visitUnaryFloatCall(I, ISD::FABS))
8992           return;
8993         break;
8994       case LibFunc_fmin:
8995       case LibFunc_fminf:
8996       case LibFunc_fminl:
8997         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8998           return;
8999         break;
9000       case LibFunc_fmax:
9001       case LibFunc_fmaxf:
9002       case LibFunc_fmaxl:
9003         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
9004           return;
9005         break;
9006       case LibFunc_sin:
9007       case LibFunc_sinf:
9008       case LibFunc_sinl:
9009         if (visitUnaryFloatCall(I, ISD::FSIN))
9010           return;
9011         break;
9012       case LibFunc_cos:
9013       case LibFunc_cosf:
9014       case LibFunc_cosl:
9015         if (visitUnaryFloatCall(I, ISD::FCOS))
9016           return;
9017         break;
9018       case LibFunc_sqrt:
9019       case LibFunc_sqrtf:
9020       case LibFunc_sqrtl:
9021       case LibFunc_sqrt_finite:
9022       case LibFunc_sqrtf_finite:
9023       case LibFunc_sqrtl_finite:
9024         if (visitUnaryFloatCall(I, ISD::FSQRT))
9025           return;
9026         break;
9027       case LibFunc_floor:
9028       case LibFunc_floorf:
9029       case LibFunc_floorl:
9030         if (visitUnaryFloatCall(I, ISD::FFLOOR))
9031           return;
9032         break;
9033       case LibFunc_nearbyint:
9034       case LibFunc_nearbyintf:
9035       case LibFunc_nearbyintl:
9036         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
9037           return;
9038         break;
9039       case LibFunc_ceil:
9040       case LibFunc_ceilf:
9041       case LibFunc_ceill:
9042         if (visitUnaryFloatCall(I, ISD::FCEIL))
9043           return;
9044         break;
9045       case LibFunc_rint:
9046       case LibFunc_rintf:
9047       case LibFunc_rintl:
9048         if (visitUnaryFloatCall(I, ISD::FRINT))
9049           return;
9050         break;
9051       case LibFunc_round:
9052       case LibFunc_roundf:
9053       case LibFunc_roundl:
9054         if (visitUnaryFloatCall(I, ISD::FROUND))
9055           return;
9056         break;
9057       case LibFunc_trunc:
9058       case LibFunc_truncf:
9059       case LibFunc_truncl:
9060         if (visitUnaryFloatCall(I, ISD::FTRUNC))
9061           return;
9062         break;
9063       case LibFunc_log2:
9064       case LibFunc_log2f:
9065       case LibFunc_log2l:
9066         if (visitUnaryFloatCall(I, ISD::FLOG2))
9067           return;
9068         break;
9069       case LibFunc_exp2:
9070       case LibFunc_exp2f:
9071       case LibFunc_exp2l:
9072         if (visitUnaryFloatCall(I, ISD::FEXP2))
9073           return;
9074         break;
9075       case LibFunc_exp10:
9076       case LibFunc_exp10f:
9077       case LibFunc_exp10l:
9078         if (visitUnaryFloatCall(I, ISD::FEXP10))
9079           return;
9080         break;
9081       case LibFunc_ldexp:
9082       case LibFunc_ldexpf:
9083       case LibFunc_ldexpl:
9084         if (visitBinaryFloatCall(I, ISD::FLDEXP))
9085           return;
9086         break;
9087       case LibFunc_memcmp:
9088         if (visitMemCmpBCmpCall(I))
9089           return;
9090         break;
9091       case LibFunc_mempcpy:
9092         if (visitMemPCpyCall(I))
9093           return;
9094         break;
9095       case LibFunc_memchr:
9096         if (visitMemChrCall(I))
9097           return;
9098         break;
9099       case LibFunc_strcpy:
9100         if (visitStrCpyCall(I, false))
9101           return;
9102         break;
9103       case LibFunc_stpcpy:
9104         if (visitStrCpyCall(I, true))
9105           return;
9106         break;
9107       case LibFunc_strcmp:
9108         if (visitStrCmpCall(I))
9109           return;
9110         break;
9111       case LibFunc_strlen:
9112         if (visitStrLenCall(I))
9113           return;
9114         break;
9115       case LibFunc_strnlen:
9116         if (visitStrNLenCall(I))
9117           return;
9118         break;
9119       }
9120     }
9121   }
9122 
9123   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9124   // have to do anything here to lower funclet bundles.
9125   // CFGuardTarget bundles are lowered in LowerCallTo.
9126   assert(!I.hasOperandBundlesOtherThan(
9127              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
9128               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
9129               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
9130          "Cannot lower calls with arbitrary operand bundles!");
9131 
9132   SDValue Callee = getValue(I.getCalledOperand());
9133 
9134   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
9135     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9136   else
9137     // Check if we can potentially perform a tail call. More detailed checking
9138     // is be done within LowerCallTo, after more information about the call is
9139     // known.
9140     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9141 }
9142 
9143 namespace {
9144 
9145 /// AsmOperandInfo - This contains information for each constraint that we are
9146 /// lowering.
9147 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9148 public:
9149   /// CallOperand - If this is the result output operand or a clobber
9150   /// this is null, otherwise it is the incoming operand to the CallInst.
9151   /// This gets modified as the asm is processed.
9152   SDValue CallOperand;
9153 
9154   /// AssignedRegs - If this is a register or register class operand, this
9155   /// contains the set of register corresponding to the operand.
9156   RegsForValue AssignedRegs;
9157 
9158   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9159     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9160   }
9161 
9162   /// Whether or not this operand accesses memory
9163   bool hasMemory(const TargetLowering &TLI) const {
9164     // Indirect operand accesses access memory.
9165     if (isIndirect)
9166       return true;
9167 
9168     for (const auto &Code : Codes)
9169       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
9170         return true;
9171 
9172     return false;
9173   }
9174 };
9175 
9176 
9177 } // end anonymous namespace
9178 
9179 /// Make sure that the output operand \p OpInfo and its corresponding input
9180 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9181 /// out).
9182 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9183                                SDISelAsmOperandInfo &MatchingOpInfo,
9184                                SelectionDAG &DAG) {
9185   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9186     return;
9187 
9188   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
9189   const auto &TLI = DAG.getTargetLoweringInfo();
9190 
9191   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9192       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9193                                        OpInfo.ConstraintVT);
9194   std::pair<unsigned, const TargetRegisterClass *> InputRC =
9195       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9196                                        MatchingOpInfo.ConstraintVT);
9197   if ((OpInfo.ConstraintVT.isInteger() !=
9198        MatchingOpInfo.ConstraintVT.isInteger()) ||
9199       (MatchRC.second != InputRC.second)) {
9200     // FIXME: error out in a more elegant fashion
9201     report_fatal_error("Unsupported asm: input constraint"
9202                        " with a matching output constraint of"
9203                        " incompatible type!");
9204   }
9205   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9206 }
9207 
9208 /// Get a direct memory input to behave well as an indirect operand.
9209 /// This may introduce stores, hence the need for a \p Chain.
9210 /// \return The (possibly updated) chain.
9211 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9212                                         SDISelAsmOperandInfo &OpInfo,
9213                                         SelectionDAG &DAG) {
9214   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9215 
9216   // If we don't have an indirect input, put it in the constpool if we can,
9217   // otherwise spill it to a stack slot.
9218   // TODO: This isn't quite right. We need to handle these according to
9219   // the addressing mode that the constraint wants. Also, this may take
9220   // an additional register for the computation and we don't want that
9221   // either.
9222 
9223   // If the operand is a float, integer, or vector constant, spill to a
9224   // constant pool entry to get its address.
9225   const Value *OpVal = OpInfo.CallOperandVal;
9226   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9227       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9228     OpInfo.CallOperand = DAG.getConstantPool(
9229         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9230     return Chain;
9231   }
9232 
9233   // Otherwise, create a stack slot and emit a store to it before the asm.
9234   Type *Ty = OpVal->getType();
9235   auto &DL = DAG.getDataLayout();
9236   uint64_t TySize = DL.getTypeAllocSize(Ty);
9237   MachineFunction &MF = DAG.getMachineFunction();
9238   int SSFI = MF.getFrameInfo().CreateStackObject(
9239       TySize, DL.getPrefTypeAlign(Ty), false);
9240   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9241   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9242                             MachinePointerInfo::getFixedStack(MF, SSFI),
9243                             TLI.getMemValueType(DL, Ty));
9244   OpInfo.CallOperand = StackSlot;
9245 
9246   return Chain;
9247 }
9248 
9249 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9250 /// specified operand.  We prefer to assign virtual registers, to allow the
9251 /// register allocator to handle the assignment process.  However, if the asm
9252 /// uses features that we can't model on machineinstrs, we have SDISel do the
9253 /// allocation.  This produces generally horrible, but correct, code.
9254 ///
9255 ///   OpInfo describes the operand
9256 ///   RefOpInfo describes the matching operand if any, the operand otherwise
9257 static std::optional<unsigned>
9258 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9259                      SDISelAsmOperandInfo &OpInfo,
9260                      SDISelAsmOperandInfo &RefOpInfo) {
9261   LLVMContext &Context = *DAG.getContext();
9262   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9263 
9264   MachineFunction &MF = DAG.getMachineFunction();
9265   SmallVector<unsigned, 4> Regs;
9266   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9267 
9268   // No work to do for memory/address operands.
9269   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9270       OpInfo.ConstraintType == TargetLowering::C_Address)
9271     return std::nullopt;
9272 
9273   // If this is a constraint for a single physreg, or a constraint for a
9274   // register class, find it.
9275   unsigned AssignedReg;
9276   const TargetRegisterClass *RC;
9277   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9278       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9279   // RC is unset only on failure. Return immediately.
9280   if (!RC)
9281     return std::nullopt;
9282 
9283   // Get the actual register value type.  This is important, because the user
9284   // may have asked for (e.g.) the AX register in i32 type.  We need to
9285   // remember that AX is actually i16 to get the right extension.
9286   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9287 
9288   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9289     // If this is an FP operand in an integer register (or visa versa), or more
9290     // generally if the operand value disagrees with the register class we plan
9291     // to stick it in, fix the operand type.
9292     //
9293     // If this is an input value, the bitcast to the new type is done now.
9294     // Bitcast for output value is done at the end of visitInlineAsm().
9295     if ((OpInfo.Type == InlineAsm::isOutput ||
9296          OpInfo.Type == InlineAsm::isInput) &&
9297         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9298       // Try to convert to the first EVT that the reg class contains.  If the
9299       // types are identical size, use a bitcast to convert (e.g. two differing
9300       // vector types).  Note: output bitcast is done at the end of
9301       // visitInlineAsm().
9302       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9303         // Exclude indirect inputs while they are unsupported because the code
9304         // to perform the load is missing and thus OpInfo.CallOperand still
9305         // refers to the input address rather than the pointed-to value.
9306         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9307           OpInfo.CallOperand =
9308               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9309         OpInfo.ConstraintVT = RegVT;
9310         // If the operand is an FP value and we want it in integer registers,
9311         // use the corresponding integer type. This turns an f64 value into
9312         // i64, which can be passed with two i32 values on a 32-bit machine.
9313       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9314         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9315         if (OpInfo.Type == InlineAsm::isInput)
9316           OpInfo.CallOperand =
9317               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9318         OpInfo.ConstraintVT = VT;
9319       }
9320     }
9321   }
9322 
9323   // No need to allocate a matching input constraint since the constraint it's
9324   // matching to has already been allocated.
9325   if (OpInfo.isMatchingInputConstraint())
9326     return std::nullopt;
9327 
9328   EVT ValueVT = OpInfo.ConstraintVT;
9329   if (OpInfo.ConstraintVT == MVT::Other)
9330     ValueVT = RegVT;
9331 
9332   // Initialize NumRegs.
9333   unsigned NumRegs = 1;
9334   if (OpInfo.ConstraintVT != MVT::Other)
9335     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9336 
9337   // If this is a constraint for a specific physical register, like {r17},
9338   // assign it now.
9339 
9340   // If this associated to a specific register, initialize iterator to correct
9341   // place. If virtual, make sure we have enough registers
9342 
9343   // Initialize iterator if necessary
9344   TargetRegisterClass::iterator I = RC->begin();
9345   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9346 
9347   // Do not check for single registers.
9348   if (AssignedReg) {
9349     I = std::find(I, RC->end(), AssignedReg);
9350     if (I == RC->end()) {
9351       // RC does not contain the selected register, which indicates a
9352       // mismatch between the register and the required type/bitwidth.
9353       return {AssignedReg};
9354     }
9355   }
9356 
9357   for (; NumRegs; --NumRegs, ++I) {
9358     assert(I != RC->end() && "Ran out of registers to allocate!");
9359     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9360     Regs.push_back(R);
9361   }
9362 
9363   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9364   return std::nullopt;
9365 }
9366 
9367 static unsigned
9368 findMatchingInlineAsmOperand(unsigned OperandNo,
9369                              const std::vector<SDValue> &AsmNodeOperands) {
9370   // Scan until we find the definition we already emitted of this operand.
9371   unsigned CurOp = InlineAsm::Op_FirstOperand;
9372   for (; OperandNo; --OperandNo) {
9373     // Advance to the next operand.
9374     unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9375     const InlineAsm::Flag F(OpFlag);
9376     assert(
9377         (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9378         "Skipped past definitions?");
9379     CurOp += F.getNumOperandRegisters() + 1;
9380   }
9381   return CurOp;
9382 }
9383 
9384 namespace {
9385 
9386 class ExtraFlags {
9387   unsigned Flags = 0;
9388 
9389 public:
9390   explicit ExtraFlags(const CallBase &Call) {
9391     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9392     if (IA->hasSideEffects())
9393       Flags |= InlineAsm::Extra_HasSideEffects;
9394     if (IA->isAlignStack())
9395       Flags |= InlineAsm::Extra_IsAlignStack;
9396     if (Call.isConvergent())
9397       Flags |= InlineAsm::Extra_IsConvergent;
9398     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9399   }
9400 
9401   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9402     // Ideally, we would only check against memory constraints.  However, the
9403     // meaning of an Other constraint can be target-specific and we can't easily
9404     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
9405     // for Other constraints as well.
9406     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9407         OpInfo.ConstraintType == TargetLowering::C_Other) {
9408       if (OpInfo.Type == InlineAsm::isInput)
9409         Flags |= InlineAsm::Extra_MayLoad;
9410       else if (OpInfo.Type == InlineAsm::isOutput)
9411         Flags |= InlineAsm::Extra_MayStore;
9412       else if (OpInfo.Type == InlineAsm::isClobber)
9413         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9414     }
9415   }
9416 
9417   unsigned get() const { return Flags; }
9418 };
9419 
9420 } // end anonymous namespace
9421 
9422 static bool isFunction(SDValue Op) {
9423   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9424     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9425       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9426 
9427       // In normal "call dllimport func" instruction (non-inlineasm) it force
9428       // indirect access by specifing call opcode. And usually specially print
9429       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9430       // not do in this way now. (In fact, this is similar with "Data Access"
9431       // action). So here we ignore dllimport function.
9432       if (Fn && !Fn->hasDLLImportStorageClass())
9433         return true;
9434     }
9435   }
9436   return false;
9437 }
9438 
9439 /// visitInlineAsm - Handle a call to an InlineAsm object.
9440 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9441                                          const BasicBlock *EHPadBB) {
9442   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9443 
9444   /// ConstraintOperands - Information about all of the constraints.
9445   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9446 
9447   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9448   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9449       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9450 
9451   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9452   // AsmDialect, MayLoad, MayStore).
9453   bool HasSideEffect = IA->hasSideEffects();
9454   ExtraFlags ExtraInfo(Call);
9455 
9456   for (auto &T : TargetConstraints) {
9457     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9458     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9459 
9460     if (OpInfo.CallOperandVal)
9461       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9462 
9463     if (!HasSideEffect)
9464       HasSideEffect = OpInfo.hasMemory(TLI);
9465 
9466     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9467     // FIXME: Could we compute this on OpInfo rather than T?
9468 
9469     // Compute the constraint code and ConstraintType to use.
9470     TLI.ComputeConstraintToUse(T, SDValue());
9471 
9472     if (T.ConstraintType == TargetLowering::C_Immediate &&
9473         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9474       // We've delayed emitting a diagnostic like the "n" constraint because
9475       // inlining could cause an integer showing up.
9476       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9477                                           "' expects an integer constant "
9478                                           "expression");
9479 
9480     ExtraInfo.update(T);
9481   }
9482 
9483   // We won't need to flush pending loads if this asm doesn't touch
9484   // memory and is nonvolatile.
9485   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9486 
9487   bool EmitEHLabels = isa<InvokeInst>(Call);
9488   if (EmitEHLabels) {
9489     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9490   }
9491   bool IsCallBr = isa<CallBrInst>(Call);
9492 
9493   if (IsCallBr || EmitEHLabels) {
9494     // If this is a callbr or invoke we need to flush pending exports since
9495     // inlineasm_br and invoke are terminators.
9496     // We need to do this before nodes are glued to the inlineasm_br node.
9497     Chain = getControlRoot();
9498   }
9499 
9500   MCSymbol *BeginLabel = nullptr;
9501   if (EmitEHLabels) {
9502     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9503   }
9504 
9505   int OpNo = -1;
9506   SmallVector<StringRef> AsmStrs;
9507   IA->collectAsmStrs(AsmStrs);
9508 
9509   // Second pass over the constraints: compute which constraint option to use.
9510   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9511     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9512       OpNo++;
9513 
9514     // If this is an output operand with a matching input operand, look up the
9515     // matching input. If their types mismatch, e.g. one is an integer, the
9516     // other is floating point, or their sizes are different, flag it as an
9517     // error.
9518     if (OpInfo.hasMatchingInput()) {
9519       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9520       patchMatchingInput(OpInfo, Input, DAG);
9521     }
9522 
9523     // Compute the constraint code and ConstraintType to use.
9524     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9525 
9526     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9527          OpInfo.Type == InlineAsm::isClobber) ||
9528         OpInfo.ConstraintType == TargetLowering::C_Address)
9529       continue;
9530 
9531     // In Linux PIC model, there are 4 cases about value/label addressing:
9532     //
9533     // 1: Function call or Label jmp inside the module.
9534     // 2: Data access (such as global variable, static variable) inside module.
9535     // 3: Function call or Label jmp outside the module.
9536     // 4: Data access (such as global variable) outside the module.
9537     //
9538     // Due to current llvm inline asm architecture designed to not "recognize"
9539     // the asm code, there are quite troubles for us to treat mem addressing
9540     // differently for same value/adress used in different instuctions.
9541     // For example, in pic model, call a func may in plt way or direclty
9542     // pc-related, but lea/mov a function adress may use got.
9543     //
9544     // Here we try to "recognize" function call for the case 1 and case 3 in
9545     // inline asm. And try to adjust the constraint for them.
9546     //
9547     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9548     // label, so here we don't handle jmp function label now, but we need to
9549     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9550     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9551         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9552         TM.getCodeModel() != CodeModel::Large) {
9553       OpInfo.isIndirect = false;
9554       OpInfo.ConstraintType = TargetLowering::C_Address;
9555     }
9556 
9557     // If this is a memory input, and if the operand is not indirect, do what we
9558     // need to provide an address for the memory input.
9559     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9560         !OpInfo.isIndirect) {
9561       assert((OpInfo.isMultipleAlternative ||
9562               (OpInfo.Type == InlineAsm::isInput)) &&
9563              "Can only indirectify direct input operands!");
9564 
9565       // Memory operands really want the address of the value.
9566       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9567 
9568       // There is no longer a Value* corresponding to this operand.
9569       OpInfo.CallOperandVal = nullptr;
9570 
9571       // It is now an indirect operand.
9572       OpInfo.isIndirect = true;
9573     }
9574 
9575   }
9576 
9577   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9578   std::vector<SDValue> AsmNodeOperands;
9579   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9580   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9581       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9582 
9583   // If we have a !srcloc metadata node associated with it, we want to attach
9584   // this to the ultimately generated inline asm machineinstr.  To do this, we
9585   // pass in the third operand as this (potentially null) inline asm MDNode.
9586   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9587   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9588 
9589   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9590   // bits as operand 3.
9591   AsmNodeOperands.push_back(DAG.getTargetConstant(
9592       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9593 
9594   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9595   // this, assign virtual and physical registers for inputs and otput.
9596   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9597     // Assign Registers.
9598     SDISelAsmOperandInfo &RefOpInfo =
9599         OpInfo.isMatchingInputConstraint()
9600             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9601             : OpInfo;
9602     const auto RegError =
9603         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9604     if (RegError) {
9605       const MachineFunction &MF = DAG.getMachineFunction();
9606       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9607       const char *RegName = TRI.getName(*RegError);
9608       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9609                                    "' allocated for constraint '" +
9610                                    Twine(OpInfo.ConstraintCode) +
9611                                    "' does not match required type");
9612       return;
9613     }
9614 
9615     auto DetectWriteToReservedRegister = [&]() {
9616       const MachineFunction &MF = DAG.getMachineFunction();
9617       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9618       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9619         if (Register::isPhysicalRegister(Reg) &&
9620             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9621           const char *RegName = TRI.getName(Reg);
9622           emitInlineAsmError(Call, "write to reserved register '" +
9623                                        Twine(RegName) + "'");
9624           return true;
9625         }
9626       }
9627       return false;
9628     };
9629     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9630             (OpInfo.Type == InlineAsm::isInput &&
9631              !OpInfo.isMatchingInputConstraint())) &&
9632            "Only address as input operand is allowed.");
9633 
9634     switch (OpInfo.Type) {
9635     case InlineAsm::isOutput:
9636       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9637         const InlineAsm::ConstraintCode ConstraintID =
9638             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9639         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9640                "Failed to convert memory constraint code to constraint id.");
9641 
9642         // Add information to the INLINEASM node to know about this output.
9643         InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
9644         OpFlags.setMemConstraint(ConstraintID);
9645         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9646                                                         MVT::i32));
9647         AsmNodeOperands.push_back(OpInfo.CallOperand);
9648       } else {
9649         // Otherwise, this outputs to a register (directly for C_Register /
9650         // C_RegisterClass, and a target-defined fashion for
9651         // C_Immediate/C_Other). Find a register that we can use.
9652         if (OpInfo.AssignedRegs.Regs.empty()) {
9653           emitInlineAsmError(
9654               Call, "couldn't allocate output register for constraint '" +
9655                         Twine(OpInfo.ConstraintCode) + "'");
9656           return;
9657         }
9658 
9659         if (DetectWriteToReservedRegister())
9660           return;
9661 
9662         // Add information to the INLINEASM node to know that this register is
9663         // set.
9664         OpInfo.AssignedRegs.AddInlineAsmOperands(
9665             OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
9666                                   : InlineAsm::Kind::RegDef,
9667             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9668       }
9669       break;
9670 
9671     case InlineAsm::isInput:
9672     case InlineAsm::isLabel: {
9673       SDValue InOperandVal = OpInfo.CallOperand;
9674 
9675       if (OpInfo.isMatchingInputConstraint()) {
9676         // If this is required to match an output register we have already set,
9677         // just use its register.
9678         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9679                                                   AsmNodeOperands);
9680         InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
9681         if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
9682           if (OpInfo.isIndirect) {
9683             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9684             emitInlineAsmError(Call, "inline asm not supported yet: "
9685                                      "don't know how to handle tied "
9686                                      "indirect register inputs");
9687             return;
9688           }
9689 
9690           SmallVector<unsigned, 4> Regs;
9691           MachineFunction &MF = DAG.getMachineFunction();
9692           MachineRegisterInfo &MRI = MF.getRegInfo();
9693           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9694           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9695           Register TiedReg = R->getReg();
9696           MVT RegVT = R->getSimpleValueType(0);
9697           const TargetRegisterClass *RC =
9698               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9699               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9700                                       : TRI.getMinimalPhysRegClass(TiedReg);
9701           for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
9702             Regs.push_back(MRI.createVirtualRegister(RC));
9703 
9704           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9705 
9706           SDLoc dl = getCurSDLoc();
9707           // Use the produced MatchedRegs object to
9708           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9709           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
9710                                            OpInfo.getMatchedOperand(), dl, DAG,
9711                                            AsmNodeOperands);
9712           break;
9713         }
9714 
9715         assert(Flag.isMemKind() && "Unknown matching constraint!");
9716         assert(Flag.getNumOperandRegisters() == 1 &&
9717                "Unexpected number of operands");
9718         // Add information to the INLINEASM node to know about this input.
9719         // See InlineAsm.h isUseOperandTiedToDef.
9720         Flag.clearMemConstraint();
9721         Flag.setMatchingOp(OpInfo.getMatchedOperand());
9722         AsmNodeOperands.push_back(DAG.getTargetConstant(
9723             Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9724         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9725         break;
9726       }
9727 
9728       // Treat indirect 'X' constraint as memory.
9729       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9730           OpInfo.isIndirect)
9731         OpInfo.ConstraintType = TargetLowering::C_Memory;
9732 
9733       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9734           OpInfo.ConstraintType == TargetLowering::C_Other) {
9735         std::vector<SDValue> Ops;
9736         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9737                                           Ops, DAG);
9738         if (Ops.empty()) {
9739           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9740             if (isa<ConstantSDNode>(InOperandVal)) {
9741               emitInlineAsmError(Call, "value out of range for constraint '" +
9742                                            Twine(OpInfo.ConstraintCode) + "'");
9743               return;
9744             }
9745 
9746           emitInlineAsmError(Call,
9747                              "invalid operand for inline asm constraint '" +
9748                                  Twine(OpInfo.ConstraintCode) + "'");
9749           return;
9750         }
9751 
9752         // Add information to the INLINEASM node to know about this input.
9753         InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
9754         AsmNodeOperands.push_back(DAG.getTargetConstant(
9755             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9756         llvm::append_range(AsmNodeOperands, Ops);
9757         break;
9758       }
9759 
9760       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9761         assert((OpInfo.isIndirect ||
9762                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9763                "Operand must be indirect to be a mem!");
9764         assert(InOperandVal.getValueType() ==
9765                    TLI.getPointerTy(DAG.getDataLayout()) &&
9766                "Memory operands expect pointer values");
9767 
9768         const InlineAsm::ConstraintCode ConstraintID =
9769             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9770         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9771                "Failed to convert memory constraint code to constraint id.");
9772 
9773         // Add information to the INLINEASM node to know about this input.
9774         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9775         ResOpType.setMemConstraint(ConstraintID);
9776         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9777                                                         getCurSDLoc(),
9778                                                         MVT::i32));
9779         AsmNodeOperands.push_back(InOperandVal);
9780         break;
9781       }
9782 
9783       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9784         const InlineAsm::ConstraintCode ConstraintID =
9785             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9786         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9787                "Failed to convert memory constraint code to constraint id.");
9788 
9789         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9790 
9791         SDValue AsmOp = InOperandVal;
9792         if (isFunction(InOperandVal)) {
9793           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9794           ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
9795           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9796                                              InOperandVal.getValueType(),
9797                                              GA->getOffset());
9798         }
9799 
9800         // Add information to the INLINEASM node to know about this input.
9801         ResOpType.setMemConstraint(ConstraintID);
9802 
9803         AsmNodeOperands.push_back(
9804             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9805 
9806         AsmNodeOperands.push_back(AsmOp);
9807         break;
9808       }
9809 
9810       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9811               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9812              "Unknown constraint type!");
9813 
9814       // TODO: Support this.
9815       if (OpInfo.isIndirect) {
9816         emitInlineAsmError(
9817             Call, "Don't know how to handle indirect register inputs yet "
9818                   "for constraint '" +
9819                       Twine(OpInfo.ConstraintCode) + "'");
9820         return;
9821       }
9822 
9823       // Copy the input into the appropriate registers.
9824       if (OpInfo.AssignedRegs.Regs.empty()) {
9825         emitInlineAsmError(Call,
9826                            "couldn't allocate input reg for constraint '" +
9827                                Twine(OpInfo.ConstraintCode) + "'");
9828         return;
9829       }
9830 
9831       if (DetectWriteToReservedRegister())
9832         return;
9833 
9834       SDLoc dl = getCurSDLoc();
9835 
9836       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
9837                                         &Call);
9838 
9839       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
9840                                                0, dl, DAG, AsmNodeOperands);
9841       break;
9842     }
9843     case InlineAsm::isClobber:
9844       // Add the clobbered value to the operand list, so that the register
9845       // allocator is aware that the physreg got clobbered.
9846       if (!OpInfo.AssignedRegs.Regs.empty())
9847         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
9848                                                  false, 0, getCurSDLoc(), DAG,
9849                                                  AsmNodeOperands);
9850       break;
9851     }
9852   }
9853 
9854   // Finish up input operands.  Set the input chain and add the flag last.
9855   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9856   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
9857 
9858   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9859   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9860                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9861   Glue = Chain.getValue(1);
9862 
9863   // Do additional work to generate outputs.
9864 
9865   SmallVector<EVT, 1> ResultVTs;
9866   SmallVector<SDValue, 1> ResultValues;
9867   SmallVector<SDValue, 8> OutChains;
9868 
9869   llvm::Type *CallResultType = Call.getType();
9870   ArrayRef<Type *> ResultTypes;
9871   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9872     ResultTypes = StructResult->elements();
9873   else if (!CallResultType->isVoidTy())
9874     ResultTypes = ArrayRef(CallResultType);
9875 
9876   auto CurResultType = ResultTypes.begin();
9877   auto handleRegAssign = [&](SDValue V) {
9878     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9879     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9880     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9881     ++CurResultType;
9882     // If the type of the inline asm call site return value is different but has
9883     // same size as the type of the asm output bitcast it.  One example of this
9884     // is for vectors with different width / number of elements.  This can
9885     // happen for register classes that can contain multiple different value
9886     // types.  The preg or vreg allocated may not have the same VT as was
9887     // expected.
9888     //
9889     // This can also happen for a return value that disagrees with the register
9890     // class it is put in, eg. a double in a general-purpose register on a
9891     // 32-bit machine.
9892     if (ResultVT != V.getValueType() &&
9893         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9894       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9895     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9896              V.getValueType().isInteger()) {
9897       // If a result value was tied to an input value, the computed result
9898       // may have a wider width than the expected result.  Extract the
9899       // relevant portion.
9900       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9901     }
9902     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9903     ResultVTs.push_back(ResultVT);
9904     ResultValues.push_back(V);
9905   };
9906 
9907   // Deal with output operands.
9908   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9909     if (OpInfo.Type == InlineAsm::isOutput) {
9910       SDValue Val;
9911       // Skip trivial output operands.
9912       if (OpInfo.AssignedRegs.Regs.empty())
9913         continue;
9914 
9915       switch (OpInfo.ConstraintType) {
9916       case TargetLowering::C_Register:
9917       case TargetLowering::C_RegisterClass:
9918         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9919                                                   Chain, &Glue, &Call);
9920         break;
9921       case TargetLowering::C_Immediate:
9922       case TargetLowering::C_Other:
9923         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
9924                                               OpInfo, DAG);
9925         break;
9926       case TargetLowering::C_Memory:
9927         break; // Already handled.
9928       case TargetLowering::C_Address:
9929         break; // Silence warning.
9930       case TargetLowering::C_Unknown:
9931         assert(false && "Unexpected unknown constraint");
9932       }
9933 
9934       // Indirect output manifest as stores. Record output chains.
9935       if (OpInfo.isIndirect) {
9936         const Value *Ptr = OpInfo.CallOperandVal;
9937         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9938         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9939                                      MachinePointerInfo(Ptr));
9940         OutChains.push_back(Store);
9941       } else {
9942         // generate CopyFromRegs to associated registers.
9943         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9944         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9945           for (const SDValue &V : Val->op_values())
9946             handleRegAssign(V);
9947         } else
9948           handleRegAssign(Val);
9949       }
9950     }
9951   }
9952 
9953   // Set results.
9954   if (!ResultValues.empty()) {
9955     assert(CurResultType == ResultTypes.end() &&
9956            "Mismatch in number of ResultTypes");
9957     assert(ResultValues.size() == ResultTypes.size() &&
9958            "Mismatch in number of output operands in asm result");
9959 
9960     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9961                             DAG.getVTList(ResultVTs), ResultValues);
9962     setValue(&Call, V);
9963   }
9964 
9965   // Collect store chains.
9966   if (!OutChains.empty())
9967     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9968 
9969   if (EmitEHLabels) {
9970     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9971   }
9972 
9973   // Only Update Root if inline assembly has a memory effect.
9974   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9975       EmitEHLabels)
9976     DAG.setRoot(Chain);
9977 }
9978 
9979 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9980                                              const Twine &Message) {
9981   LLVMContext &Ctx = *DAG.getContext();
9982   Ctx.emitError(&Call, Message);
9983 
9984   // Make sure we leave the DAG in a valid state
9985   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9986   SmallVector<EVT, 1> ValueVTs;
9987   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9988 
9989   if (ValueVTs.empty())
9990     return;
9991 
9992   SmallVector<SDValue, 1> Ops;
9993   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9994     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9995 
9996   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9997 }
9998 
9999 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10000   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10001                           MVT::Other, getRoot(),
10002                           getValue(I.getArgOperand(0)),
10003                           DAG.getSrcValue(I.getArgOperand(0))));
10004 }
10005 
10006 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10007   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10008   const DataLayout &DL = DAG.getDataLayout();
10009   SDValue V = DAG.getVAArg(
10010       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10011       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10012       DL.getABITypeAlign(I.getType()).value());
10013   DAG.setRoot(V.getValue(1));
10014 
10015   if (I.getType()->isPointerTy())
10016     V = DAG.getPtrExtOrTrunc(
10017         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10018   setValue(&I, V);
10019 }
10020 
10021 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10022   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10023                           MVT::Other, getRoot(),
10024                           getValue(I.getArgOperand(0)),
10025                           DAG.getSrcValue(I.getArgOperand(0))));
10026 }
10027 
10028 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10029   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10030                           MVT::Other, getRoot(),
10031                           getValue(I.getArgOperand(0)),
10032                           getValue(I.getArgOperand(1)),
10033                           DAG.getSrcValue(I.getArgOperand(0)),
10034                           DAG.getSrcValue(I.getArgOperand(1))));
10035 }
10036 
10037 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
10038                                                     const Instruction &I,
10039                                                     SDValue Op) {
10040   const MDNode *Range = getRangeMetadata(I);
10041   if (!Range)
10042     return Op;
10043 
10044   ConstantRange CR = getConstantRangeFromMetadata(*Range);
10045   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
10046     return Op;
10047 
10048   APInt Lo = CR.getUnsignedMin();
10049   if (!Lo.isMinValue())
10050     return Op;
10051 
10052   APInt Hi = CR.getUnsignedMax();
10053   unsigned Bits = std::max(Hi.getActiveBits(),
10054                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10055 
10056   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10057 
10058   SDLoc SL = getCurSDLoc();
10059 
10060   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10061                              DAG.getValueType(SmallVT));
10062   unsigned NumVals = Op.getNode()->getNumValues();
10063   if (NumVals == 1)
10064     return ZExt;
10065 
10066   SmallVector<SDValue, 4> Ops;
10067 
10068   Ops.push_back(ZExt);
10069   for (unsigned I = 1; I != NumVals; ++I)
10070     Ops.push_back(Op.getValue(I));
10071 
10072   return DAG.getMergeValues(Ops, SL);
10073 }
10074 
10075 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10076 /// the call being lowered.
10077 ///
10078 /// This is a helper for lowering intrinsics that follow a target calling
10079 /// convention or require stack pointer adjustment. Only a subset of the
10080 /// intrinsic's operands need to participate in the calling convention.
10081 void SelectionDAGBuilder::populateCallLoweringInfo(
10082     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
10083     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10084     AttributeSet RetAttrs, bool IsPatchPoint) {
10085   TargetLowering::ArgListTy Args;
10086   Args.reserve(NumArgs);
10087 
10088   // Populate the argument list.
10089   // Attributes for args start at offset 1, after the return attribute.
10090   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10091        ArgI != ArgE; ++ArgI) {
10092     const Value *V = Call->getOperand(ArgI);
10093 
10094     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10095 
10096     TargetLowering::ArgListEntry Entry;
10097     Entry.Node = getValue(V);
10098     Entry.Ty = V->getType();
10099     Entry.setAttributes(Call, ArgI);
10100     Args.push_back(Entry);
10101   }
10102 
10103   CLI.setDebugLoc(getCurSDLoc())
10104       .setChain(getRoot())
10105       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10106                  RetAttrs)
10107       .setDiscardResult(Call->use_empty())
10108       .setIsPatchPoint(IsPatchPoint)
10109       .setIsPreallocated(
10110           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10111 }
10112 
10113 /// Add a stack map intrinsic call's live variable operands to a stackmap
10114 /// or patchpoint target node's operand list.
10115 ///
10116 /// Constants are converted to TargetConstants purely as an optimization to
10117 /// avoid constant materialization and register allocation.
10118 ///
10119 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10120 /// generate addess computation nodes, and so FinalizeISel can convert the
10121 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10122 /// address materialization and register allocation, but may also be required
10123 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10124 /// alloca in the entry block, then the runtime may assume that the alloca's
10125 /// StackMap location can be read immediately after compilation and that the
10126 /// location is valid at any point during execution (this is similar to the
10127 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10128 /// only available in a register, then the runtime would need to trap when
10129 /// execution reaches the StackMap in order to read the alloca's location.
10130 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10131                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
10132                                 SelectionDAGBuilder &Builder) {
10133   SelectionDAG &DAG = Builder.DAG;
10134   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10135     SDValue Op = Builder.getValue(Call.getArgOperand(I));
10136 
10137     // Things on the stack are pointer-typed, meaning that they are already
10138     // legal and can be emitted directly to target nodes.
10139     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
10140       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10141     } else {
10142       // Otherwise emit a target independent node to be legalised.
10143       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10144     }
10145   }
10146 }
10147 
10148 /// Lower llvm.experimental.stackmap.
10149 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10150   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10151   //                                  [live variables...])
10152 
10153   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10154 
10155   SDValue Chain, InGlue, Callee;
10156   SmallVector<SDValue, 32> Ops;
10157 
10158   SDLoc DL = getCurSDLoc();
10159   Callee = getValue(CI.getCalledOperand());
10160 
10161   // The stackmap intrinsic only records the live variables (the arguments
10162   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10163   // intrinsic, this won't be lowered to a function call. This means we don't
10164   // have to worry about calling conventions and target specific lowering code.
10165   // Instead we perform the call lowering right here.
10166   //
10167   // chain, flag = CALLSEQ_START(chain, 0, 0)
10168   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10169   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10170   //
10171   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10172   InGlue = Chain.getValue(1);
10173 
10174   // Add the STACKMAP operands, starting with DAG house-keeping.
10175   Ops.push_back(Chain);
10176   Ops.push_back(InGlue);
10177 
10178   // Add the <id>, <numShadowBytes> operands.
10179   //
10180   // These do not require legalisation, and can be emitted directly to target
10181   // constant nodes.
10182   SDValue ID = getValue(CI.getArgOperand(0));
10183   assert(ID.getValueType() == MVT::i64);
10184   SDValue IDConst =
10185       DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10186   Ops.push_back(IDConst);
10187 
10188   SDValue Shad = getValue(CI.getArgOperand(1));
10189   assert(Shad.getValueType() == MVT::i32);
10190   SDValue ShadConst =
10191       DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10192   Ops.push_back(ShadConst);
10193 
10194   // Add the live variables.
10195   addStackMapLiveVars(CI, 2, DL, Ops, *this);
10196 
10197   // Create the STACKMAP node.
10198   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10199   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10200   InGlue = Chain.getValue(1);
10201 
10202   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10203 
10204   // Stackmaps don't generate values, so nothing goes into the NodeMap.
10205 
10206   // Set the root to the target-lowered call chain.
10207   DAG.setRoot(Chain);
10208 
10209   // Inform the Frame Information that we have a stackmap in this function.
10210   FuncInfo.MF->getFrameInfo().setHasStackMap();
10211 }
10212 
10213 /// Lower llvm.experimental.patchpoint directly to its target opcode.
10214 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10215                                           const BasicBlock *EHPadBB) {
10216   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
10217   //                                                 i32 <numBytes>,
10218   //                                                 i8* <target>,
10219   //                                                 i32 <numArgs>,
10220   //                                                 [Args...],
10221   //                                                 [live variables...])
10222 
10223   CallingConv::ID CC = CB.getCallingConv();
10224   bool IsAnyRegCC = CC == CallingConv::AnyReg;
10225   bool HasDef = !CB.getType()->isVoidTy();
10226   SDLoc dl = getCurSDLoc();
10227   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10228 
10229   // Handle immediate and symbolic callees.
10230   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10231     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10232                                    /*isTarget=*/true);
10233   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10234     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10235                                          SDLoc(SymbolicCallee),
10236                                          SymbolicCallee->getValueType(0));
10237 
10238   // Get the real number of arguments participating in the call <numArgs>
10239   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10240   unsigned NumArgs = NArgVal->getAsZExtVal();
10241 
10242   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10243   // Intrinsics include all meta-operands up to but not including CC.
10244   unsigned NumMetaOpers = PatchPointOpers::CCPos;
10245   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10246          "Not enough arguments provided to the patchpoint intrinsic");
10247 
10248   // For AnyRegCC the arguments are lowered later on manually.
10249   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10250   Type *ReturnTy =
10251       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10252 
10253   TargetLowering::CallLoweringInfo CLI(DAG);
10254   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10255                            ReturnTy, CB.getAttributes().getRetAttrs(), true);
10256   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10257 
10258   SDNode *CallEnd = Result.second.getNode();
10259   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10260     CallEnd = CallEnd->getOperand(0).getNode();
10261 
10262   /// Get a call instruction from the call sequence chain.
10263   /// Tail calls are not allowed.
10264   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10265          "Expected a callseq node.");
10266   SDNode *Call = CallEnd->getOperand(0).getNode();
10267   bool HasGlue = Call->getGluedNode();
10268 
10269   // Replace the target specific call node with the patchable intrinsic.
10270   SmallVector<SDValue, 8> Ops;
10271 
10272   // Push the chain.
10273   Ops.push_back(*(Call->op_begin()));
10274 
10275   // Optionally, push the glue (if any).
10276   if (HasGlue)
10277     Ops.push_back(*(Call->op_end() - 1));
10278 
10279   // Push the register mask info.
10280   if (HasGlue)
10281     Ops.push_back(*(Call->op_end() - 2));
10282   else
10283     Ops.push_back(*(Call->op_end() - 1));
10284 
10285   // Add the <id> and <numBytes> constants.
10286   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10287   Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10288   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10289   Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10290 
10291   // Add the callee.
10292   Ops.push_back(Callee);
10293 
10294   // Adjust <numArgs> to account for any arguments that have been passed on the
10295   // stack instead.
10296   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10297   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10298   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10299   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10300 
10301   // Add the calling convention
10302   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10303 
10304   // Add the arguments we omitted previously. The register allocator should
10305   // place these in any free register.
10306   if (IsAnyRegCC)
10307     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10308       Ops.push_back(getValue(CB.getArgOperand(i)));
10309 
10310   // Push the arguments from the call instruction.
10311   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10312   Ops.append(Call->op_begin() + 2, e);
10313 
10314   // Push live variables for the stack map.
10315   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10316 
10317   SDVTList NodeTys;
10318   if (IsAnyRegCC && HasDef) {
10319     // Create the return types based on the intrinsic definition
10320     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10321     SmallVector<EVT, 3> ValueVTs;
10322     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10323     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10324 
10325     // There is always a chain and a glue type at the end
10326     ValueVTs.push_back(MVT::Other);
10327     ValueVTs.push_back(MVT::Glue);
10328     NodeTys = DAG.getVTList(ValueVTs);
10329   } else
10330     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10331 
10332   // Replace the target specific call node with a PATCHPOINT node.
10333   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10334 
10335   // Update the NodeMap.
10336   if (HasDef) {
10337     if (IsAnyRegCC)
10338       setValue(&CB, SDValue(PPV.getNode(), 0));
10339     else
10340       setValue(&CB, Result.first);
10341   }
10342 
10343   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10344   // call sequence. Furthermore the location of the chain and glue can change
10345   // when the AnyReg calling convention is used and the intrinsic returns a
10346   // value.
10347   if (IsAnyRegCC && HasDef) {
10348     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10349     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10350     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10351   } else
10352     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10353   DAG.DeleteNode(Call);
10354 
10355   // Inform the Frame Information that we have a patchpoint in this function.
10356   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10357 }
10358 
10359 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10360                                             unsigned Intrinsic) {
10361   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10362   SDValue Op1 = getValue(I.getArgOperand(0));
10363   SDValue Op2;
10364   if (I.arg_size() > 1)
10365     Op2 = getValue(I.getArgOperand(1));
10366   SDLoc dl = getCurSDLoc();
10367   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10368   SDValue Res;
10369   SDNodeFlags SDFlags;
10370   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10371     SDFlags.copyFMF(*FPMO);
10372 
10373   switch (Intrinsic) {
10374   case Intrinsic::vector_reduce_fadd:
10375     if (SDFlags.hasAllowReassociation())
10376       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10377                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10378                         SDFlags);
10379     else
10380       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10381     break;
10382   case Intrinsic::vector_reduce_fmul:
10383     if (SDFlags.hasAllowReassociation())
10384       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10385                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10386                         SDFlags);
10387     else
10388       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10389     break;
10390   case Intrinsic::vector_reduce_add:
10391     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10392     break;
10393   case Intrinsic::vector_reduce_mul:
10394     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10395     break;
10396   case Intrinsic::vector_reduce_and:
10397     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10398     break;
10399   case Intrinsic::vector_reduce_or:
10400     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10401     break;
10402   case Intrinsic::vector_reduce_xor:
10403     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10404     break;
10405   case Intrinsic::vector_reduce_smax:
10406     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10407     break;
10408   case Intrinsic::vector_reduce_smin:
10409     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10410     break;
10411   case Intrinsic::vector_reduce_umax:
10412     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10413     break;
10414   case Intrinsic::vector_reduce_umin:
10415     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10416     break;
10417   case Intrinsic::vector_reduce_fmax:
10418     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10419     break;
10420   case Intrinsic::vector_reduce_fmin:
10421     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10422     break;
10423   case Intrinsic::vector_reduce_fmaximum:
10424     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10425     break;
10426   case Intrinsic::vector_reduce_fminimum:
10427     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10428     break;
10429   default:
10430     llvm_unreachable("Unhandled vector reduce intrinsic");
10431   }
10432   setValue(&I, Res);
10433 }
10434 
10435 /// Returns an AttributeList representing the attributes applied to the return
10436 /// value of the given call.
10437 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10438   SmallVector<Attribute::AttrKind, 2> Attrs;
10439   if (CLI.RetSExt)
10440     Attrs.push_back(Attribute::SExt);
10441   if (CLI.RetZExt)
10442     Attrs.push_back(Attribute::ZExt);
10443   if (CLI.IsInReg)
10444     Attrs.push_back(Attribute::InReg);
10445 
10446   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10447                             Attrs);
10448 }
10449 
10450 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10451 /// implementation, which just calls LowerCall.
10452 /// FIXME: When all targets are
10453 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10454 std::pair<SDValue, SDValue>
10455 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10456   // Handle the incoming return values from the call.
10457   CLI.Ins.clear();
10458   Type *OrigRetTy = CLI.RetTy;
10459   SmallVector<EVT, 4> RetTys;
10460   SmallVector<uint64_t, 4> Offsets;
10461   auto &DL = CLI.DAG.getDataLayout();
10462   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0);
10463 
10464   if (CLI.IsPostTypeLegalization) {
10465     // If we are lowering a libcall after legalization, split the return type.
10466     SmallVector<EVT, 4> OldRetTys;
10467     SmallVector<uint64_t, 4> OldOffsets;
10468     RetTys.swap(OldRetTys);
10469     Offsets.swap(OldOffsets);
10470 
10471     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10472       EVT RetVT = OldRetTys[i];
10473       uint64_t Offset = OldOffsets[i];
10474       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10475       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10476       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10477       RetTys.append(NumRegs, RegisterVT);
10478       for (unsigned j = 0; j != NumRegs; ++j)
10479         Offsets.push_back(Offset + j * RegisterVTByteSZ);
10480     }
10481   }
10482 
10483   SmallVector<ISD::OutputArg, 4> Outs;
10484   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10485 
10486   bool CanLowerReturn =
10487       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10488                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10489 
10490   SDValue DemoteStackSlot;
10491   int DemoteStackIdx = -100;
10492   if (!CanLowerReturn) {
10493     // FIXME: equivalent assert?
10494     // assert(!CS.hasInAllocaArgument() &&
10495     //        "sret demotion is incompatible with inalloca");
10496     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10497     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10498     MachineFunction &MF = CLI.DAG.getMachineFunction();
10499     DemoteStackIdx =
10500         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10501     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10502                                               DL.getAllocaAddrSpace());
10503 
10504     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10505     ArgListEntry Entry;
10506     Entry.Node = DemoteStackSlot;
10507     Entry.Ty = StackSlotPtrType;
10508     Entry.IsSExt = false;
10509     Entry.IsZExt = false;
10510     Entry.IsInReg = false;
10511     Entry.IsSRet = true;
10512     Entry.IsNest = false;
10513     Entry.IsByVal = false;
10514     Entry.IsByRef = false;
10515     Entry.IsReturned = false;
10516     Entry.IsSwiftSelf = false;
10517     Entry.IsSwiftAsync = false;
10518     Entry.IsSwiftError = false;
10519     Entry.IsCFGuardTarget = false;
10520     Entry.Alignment = Alignment;
10521     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10522     CLI.NumFixedArgs += 1;
10523     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10524     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10525 
10526     // sret demotion isn't compatible with tail-calls, since the sret argument
10527     // points into the callers stack frame.
10528     CLI.IsTailCall = false;
10529   } else {
10530     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10531         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10532     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10533       ISD::ArgFlagsTy Flags;
10534       if (NeedsRegBlock) {
10535         Flags.setInConsecutiveRegs();
10536         if (I == RetTys.size() - 1)
10537           Flags.setInConsecutiveRegsLast();
10538       }
10539       EVT VT = RetTys[I];
10540       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10541                                                      CLI.CallConv, VT);
10542       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10543                                                        CLI.CallConv, VT);
10544       for (unsigned i = 0; i != NumRegs; ++i) {
10545         ISD::InputArg MyFlags;
10546         MyFlags.Flags = Flags;
10547         MyFlags.VT = RegisterVT;
10548         MyFlags.ArgVT = VT;
10549         MyFlags.Used = CLI.IsReturnValueUsed;
10550         if (CLI.RetTy->isPointerTy()) {
10551           MyFlags.Flags.setPointer();
10552           MyFlags.Flags.setPointerAddrSpace(
10553               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10554         }
10555         if (CLI.RetSExt)
10556           MyFlags.Flags.setSExt();
10557         if (CLI.RetZExt)
10558           MyFlags.Flags.setZExt();
10559         if (CLI.IsInReg)
10560           MyFlags.Flags.setInReg();
10561         CLI.Ins.push_back(MyFlags);
10562       }
10563     }
10564   }
10565 
10566   // We push in swifterror return as the last element of CLI.Ins.
10567   ArgListTy &Args = CLI.getArgs();
10568   if (supportSwiftError()) {
10569     for (const ArgListEntry &Arg : Args) {
10570       if (Arg.IsSwiftError) {
10571         ISD::InputArg MyFlags;
10572         MyFlags.VT = getPointerTy(DL);
10573         MyFlags.ArgVT = EVT(getPointerTy(DL));
10574         MyFlags.Flags.setSwiftError();
10575         CLI.Ins.push_back(MyFlags);
10576       }
10577     }
10578   }
10579 
10580   // Handle all of the outgoing arguments.
10581   CLI.Outs.clear();
10582   CLI.OutVals.clear();
10583   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10584     SmallVector<EVT, 4> ValueVTs;
10585     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10586     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10587     Type *FinalType = Args[i].Ty;
10588     if (Args[i].IsByVal)
10589       FinalType = Args[i].IndirectType;
10590     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10591         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10592     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10593          ++Value) {
10594       EVT VT = ValueVTs[Value];
10595       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10596       SDValue Op = SDValue(Args[i].Node.getNode(),
10597                            Args[i].Node.getResNo() + Value);
10598       ISD::ArgFlagsTy Flags;
10599 
10600       // Certain targets (such as MIPS), may have a different ABI alignment
10601       // for a type depending on the context. Give the target a chance to
10602       // specify the alignment it wants.
10603       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10604       Flags.setOrigAlign(OriginalAlignment);
10605 
10606       if (Args[i].Ty->isPointerTy()) {
10607         Flags.setPointer();
10608         Flags.setPointerAddrSpace(
10609             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10610       }
10611       if (Args[i].IsZExt)
10612         Flags.setZExt();
10613       if (Args[i].IsSExt)
10614         Flags.setSExt();
10615       if (Args[i].IsInReg) {
10616         // If we are using vectorcall calling convention, a structure that is
10617         // passed InReg - is surely an HVA
10618         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10619             isa<StructType>(FinalType)) {
10620           // The first value of a structure is marked
10621           if (0 == Value)
10622             Flags.setHvaStart();
10623           Flags.setHva();
10624         }
10625         // Set InReg Flag
10626         Flags.setInReg();
10627       }
10628       if (Args[i].IsSRet)
10629         Flags.setSRet();
10630       if (Args[i].IsSwiftSelf)
10631         Flags.setSwiftSelf();
10632       if (Args[i].IsSwiftAsync)
10633         Flags.setSwiftAsync();
10634       if (Args[i].IsSwiftError)
10635         Flags.setSwiftError();
10636       if (Args[i].IsCFGuardTarget)
10637         Flags.setCFGuardTarget();
10638       if (Args[i].IsByVal)
10639         Flags.setByVal();
10640       if (Args[i].IsByRef)
10641         Flags.setByRef();
10642       if (Args[i].IsPreallocated) {
10643         Flags.setPreallocated();
10644         // Set the byval flag for CCAssignFn callbacks that don't know about
10645         // preallocated.  This way we can know how many bytes we should've
10646         // allocated and how many bytes a callee cleanup function will pop.  If
10647         // we port preallocated to more targets, we'll have to add custom
10648         // preallocated handling in the various CC lowering callbacks.
10649         Flags.setByVal();
10650       }
10651       if (Args[i].IsInAlloca) {
10652         Flags.setInAlloca();
10653         // Set the byval flag for CCAssignFn callbacks that don't know about
10654         // inalloca.  This way we can know how many bytes we should've allocated
10655         // and how many bytes a callee cleanup function will pop.  If we port
10656         // inalloca to more targets, we'll have to add custom inalloca handling
10657         // in the various CC lowering callbacks.
10658         Flags.setByVal();
10659       }
10660       Align MemAlign;
10661       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10662         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10663         Flags.setByValSize(FrameSize);
10664 
10665         // info is not there but there are cases it cannot get right.
10666         if (auto MA = Args[i].Alignment)
10667           MemAlign = *MA;
10668         else
10669           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10670       } else if (auto MA = Args[i].Alignment) {
10671         MemAlign = *MA;
10672       } else {
10673         MemAlign = OriginalAlignment;
10674       }
10675       Flags.setMemAlign(MemAlign);
10676       if (Args[i].IsNest)
10677         Flags.setNest();
10678       if (NeedsRegBlock)
10679         Flags.setInConsecutiveRegs();
10680 
10681       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10682                                                  CLI.CallConv, VT);
10683       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10684                                                         CLI.CallConv, VT);
10685       SmallVector<SDValue, 4> Parts(NumParts);
10686       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10687 
10688       if (Args[i].IsSExt)
10689         ExtendKind = ISD::SIGN_EXTEND;
10690       else if (Args[i].IsZExt)
10691         ExtendKind = ISD::ZERO_EXTEND;
10692 
10693       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10694       // for now.
10695       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10696           CanLowerReturn) {
10697         assert((CLI.RetTy == Args[i].Ty ||
10698                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10699                  CLI.RetTy->getPointerAddressSpace() ==
10700                      Args[i].Ty->getPointerAddressSpace())) &&
10701                RetTys.size() == NumValues && "unexpected use of 'returned'");
10702         // Before passing 'returned' to the target lowering code, ensure that
10703         // either the register MVT and the actual EVT are the same size or that
10704         // the return value and argument are extended in the same way; in these
10705         // cases it's safe to pass the argument register value unchanged as the
10706         // return register value (although it's at the target's option whether
10707         // to do so)
10708         // TODO: allow code generation to take advantage of partially preserved
10709         // registers rather than clobbering the entire register when the
10710         // parameter extension method is not compatible with the return
10711         // extension method
10712         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10713             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10714              CLI.RetZExt == Args[i].IsZExt))
10715           Flags.setReturned();
10716       }
10717 
10718       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10719                      CLI.CallConv, ExtendKind);
10720 
10721       for (unsigned j = 0; j != NumParts; ++j) {
10722         // if it isn't first piece, alignment must be 1
10723         // For scalable vectors the scalable part is currently handled
10724         // by individual targets, so we just use the known minimum size here.
10725         ISD::OutputArg MyFlags(
10726             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10727             i < CLI.NumFixedArgs, i,
10728             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10729         if (NumParts > 1 && j == 0)
10730           MyFlags.Flags.setSplit();
10731         else if (j != 0) {
10732           MyFlags.Flags.setOrigAlign(Align(1));
10733           if (j == NumParts - 1)
10734             MyFlags.Flags.setSplitEnd();
10735         }
10736 
10737         CLI.Outs.push_back(MyFlags);
10738         CLI.OutVals.push_back(Parts[j]);
10739       }
10740 
10741       if (NeedsRegBlock && Value == NumValues - 1)
10742         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10743     }
10744   }
10745 
10746   SmallVector<SDValue, 4> InVals;
10747   CLI.Chain = LowerCall(CLI, InVals);
10748 
10749   // Update CLI.InVals to use outside of this function.
10750   CLI.InVals = InVals;
10751 
10752   // Verify that the target's LowerCall behaved as expected.
10753   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10754          "LowerCall didn't return a valid chain!");
10755   assert((!CLI.IsTailCall || InVals.empty()) &&
10756          "LowerCall emitted a return value for a tail call!");
10757   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10758          "LowerCall didn't emit the correct number of values!");
10759 
10760   // For a tail call, the return value is merely live-out and there aren't
10761   // any nodes in the DAG representing it. Return a special value to
10762   // indicate that a tail call has been emitted and no more Instructions
10763   // should be processed in the current block.
10764   if (CLI.IsTailCall) {
10765     CLI.DAG.setRoot(CLI.Chain);
10766     return std::make_pair(SDValue(), SDValue());
10767   }
10768 
10769 #ifndef NDEBUG
10770   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10771     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10772     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10773            "LowerCall emitted a value with the wrong type!");
10774   }
10775 #endif
10776 
10777   SmallVector<SDValue, 4> ReturnValues;
10778   if (!CanLowerReturn) {
10779     // The instruction result is the result of loading from the
10780     // hidden sret parameter.
10781     SmallVector<EVT, 1> PVTs;
10782     Type *PtrRetTy =
10783         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
10784 
10785     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10786     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10787     EVT PtrVT = PVTs[0];
10788 
10789     unsigned NumValues = RetTys.size();
10790     ReturnValues.resize(NumValues);
10791     SmallVector<SDValue, 4> Chains(NumValues);
10792 
10793     // An aggregate return value cannot wrap around the address space, so
10794     // offsets to its parts don't wrap either.
10795     SDNodeFlags Flags;
10796     Flags.setNoUnsignedWrap(true);
10797 
10798     MachineFunction &MF = CLI.DAG.getMachineFunction();
10799     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10800     for (unsigned i = 0; i < NumValues; ++i) {
10801       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10802                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10803                                                         PtrVT), Flags);
10804       SDValue L = CLI.DAG.getLoad(
10805           RetTys[i], CLI.DL, CLI.Chain, Add,
10806           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10807                                             DemoteStackIdx, Offsets[i]),
10808           HiddenSRetAlign);
10809       ReturnValues[i] = L;
10810       Chains[i] = L.getValue(1);
10811     }
10812 
10813     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10814   } else {
10815     // Collect the legal value parts into potentially illegal values
10816     // that correspond to the original function's return values.
10817     std::optional<ISD::NodeType> AssertOp;
10818     if (CLI.RetSExt)
10819       AssertOp = ISD::AssertSext;
10820     else if (CLI.RetZExt)
10821       AssertOp = ISD::AssertZext;
10822     unsigned CurReg = 0;
10823     for (EVT VT : RetTys) {
10824       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10825                                                      CLI.CallConv, VT);
10826       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10827                                                        CLI.CallConv, VT);
10828 
10829       ReturnValues.push_back(getCopyFromParts(
10830           CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
10831           CLI.Chain, CLI.CallConv, AssertOp));
10832       CurReg += NumRegs;
10833     }
10834 
10835     // For a function returning void, there is no return value. We can't create
10836     // such a node, so we just return a null return value in that case. In
10837     // that case, nothing will actually look at the value.
10838     if (ReturnValues.empty())
10839       return std::make_pair(SDValue(), CLI.Chain);
10840   }
10841 
10842   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10843                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10844   return std::make_pair(Res, CLI.Chain);
10845 }
10846 
10847 /// Places new result values for the node in Results (their number
10848 /// and types must exactly match those of the original return values of
10849 /// the node), or leaves Results empty, which indicates that the node is not
10850 /// to be custom lowered after all.
10851 void TargetLowering::LowerOperationWrapper(SDNode *N,
10852                                            SmallVectorImpl<SDValue> &Results,
10853                                            SelectionDAG &DAG) const {
10854   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10855 
10856   if (!Res.getNode())
10857     return;
10858 
10859   // If the original node has one result, take the return value from
10860   // LowerOperation as is. It might not be result number 0.
10861   if (N->getNumValues() == 1) {
10862     Results.push_back(Res);
10863     return;
10864   }
10865 
10866   // If the original node has multiple results, then the return node should
10867   // have the same number of results.
10868   assert((N->getNumValues() == Res->getNumValues()) &&
10869       "Lowering returned the wrong number of results!");
10870 
10871   // Places new result values base on N result number.
10872   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10873     Results.push_back(Res.getValue(I));
10874 }
10875 
10876 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10877   llvm_unreachable("LowerOperation not implemented for this target!");
10878 }
10879 
10880 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10881                                                      unsigned Reg,
10882                                                      ISD::NodeType ExtendType) {
10883   SDValue Op = getNonRegisterValue(V);
10884   assert((Op.getOpcode() != ISD::CopyFromReg ||
10885           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10886          "Copy from a reg to the same reg!");
10887   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10888 
10889   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10890   // If this is an InlineAsm we have to match the registers required, not the
10891   // notional registers required by the type.
10892 
10893   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10894                    std::nullopt); // This is not an ABI copy.
10895   SDValue Chain = DAG.getEntryNode();
10896 
10897   if (ExtendType == ISD::ANY_EXTEND) {
10898     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10899     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10900       ExtendType = PreferredExtendIt->second;
10901   }
10902   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10903   PendingExports.push_back(Chain);
10904 }
10905 
10906 #include "llvm/CodeGen/SelectionDAGISel.h"
10907 
10908 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10909 /// entry block, return true.  This includes arguments used by switches, since
10910 /// the switch may expand into multiple basic blocks.
10911 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10912   // With FastISel active, we may be splitting blocks, so force creation
10913   // of virtual registers for all non-dead arguments.
10914   if (FastISel)
10915     return A->use_empty();
10916 
10917   const BasicBlock &Entry = A->getParent()->front();
10918   for (const User *U : A->users())
10919     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10920       return false;  // Use not in entry block.
10921 
10922   return true;
10923 }
10924 
10925 using ArgCopyElisionMapTy =
10926     DenseMap<const Argument *,
10927              std::pair<const AllocaInst *, const StoreInst *>>;
10928 
10929 /// Scan the entry block of the function in FuncInfo for arguments that look
10930 /// like copies into a local alloca. Record any copied arguments in
10931 /// ArgCopyElisionCandidates.
10932 static void
10933 findArgumentCopyElisionCandidates(const DataLayout &DL,
10934                                   FunctionLoweringInfo *FuncInfo,
10935                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10936   // Record the state of every static alloca used in the entry block. Argument
10937   // allocas are all used in the entry block, so we need approximately as many
10938   // entries as we have arguments.
10939   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10940   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10941   unsigned NumArgs = FuncInfo->Fn->arg_size();
10942   StaticAllocas.reserve(NumArgs * 2);
10943 
10944   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10945     if (!V)
10946       return nullptr;
10947     V = V->stripPointerCasts();
10948     const auto *AI = dyn_cast<AllocaInst>(V);
10949     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10950       return nullptr;
10951     auto Iter = StaticAllocas.insert({AI, Unknown});
10952     return &Iter.first->second;
10953   };
10954 
10955   // Look for stores of arguments to static allocas. Look through bitcasts and
10956   // GEPs to handle type coercions, as long as the alloca is fully initialized
10957   // by the store. Any non-store use of an alloca escapes it and any subsequent
10958   // unanalyzed store might write it.
10959   // FIXME: Handle structs initialized with multiple stores.
10960   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10961     // Look for stores, and handle non-store uses conservatively.
10962     const auto *SI = dyn_cast<StoreInst>(&I);
10963     if (!SI) {
10964       // We will look through cast uses, so ignore them completely.
10965       if (I.isCast())
10966         continue;
10967       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10968       // to allocas.
10969       if (I.isDebugOrPseudoInst())
10970         continue;
10971       // This is an unknown instruction. Assume it escapes or writes to all
10972       // static alloca operands.
10973       for (const Use &U : I.operands()) {
10974         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10975           *Info = StaticAllocaInfo::Clobbered;
10976       }
10977       continue;
10978     }
10979 
10980     // If the stored value is a static alloca, mark it as escaped.
10981     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10982       *Info = StaticAllocaInfo::Clobbered;
10983 
10984     // Check if the destination is a static alloca.
10985     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10986     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10987     if (!Info)
10988       continue;
10989     const AllocaInst *AI = cast<AllocaInst>(Dst);
10990 
10991     // Skip allocas that have been initialized or clobbered.
10992     if (*Info != StaticAllocaInfo::Unknown)
10993       continue;
10994 
10995     // Check if the stored value is an argument, and that this store fully
10996     // initializes the alloca.
10997     // If the argument type has padding bits we can't directly forward a pointer
10998     // as the upper bits may contain garbage.
10999     // Don't elide copies from the same argument twice.
11000     const Value *Val = SI->getValueOperand()->stripPointerCasts();
11001     const auto *Arg = dyn_cast<Argument>(Val);
11002     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11003         Arg->getType()->isEmptyTy() ||
11004         DL.getTypeStoreSize(Arg->getType()) !=
11005             DL.getTypeAllocSize(AI->getAllocatedType()) ||
11006         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11007         ArgCopyElisionCandidates.count(Arg)) {
11008       *Info = StaticAllocaInfo::Clobbered;
11009       continue;
11010     }
11011 
11012     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11013                       << '\n');
11014 
11015     // Mark this alloca and store for argument copy elision.
11016     *Info = StaticAllocaInfo::Elidable;
11017     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11018 
11019     // Stop scanning if we've seen all arguments. This will happen early in -O0
11020     // builds, which is useful, because -O0 builds have large entry blocks and
11021     // many allocas.
11022     if (ArgCopyElisionCandidates.size() == NumArgs)
11023       break;
11024   }
11025 }
11026 
11027 /// Try to elide argument copies from memory into a local alloca. Succeeds if
11028 /// ArgVal is a load from a suitable fixed stack object.
11029 static void tryToElideArgumentCopy(
11030     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
11031     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11032     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11033     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11034     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11035   // Check if this is a load from a fixed stack object.
11036   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11037   if (!LNode)
11038     return;
11039   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11040   if (!FINode)
11041     return;
11042 
11043   // Check that the fixed stack object is the right size and alignment.
11044   // Look at the alignment that the user wrote on the alloca instead of looking
11045   // at the stack object.
11046   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11047   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11048   const AllocaInst *AI = ArgCopyIter->second.first;
11049   int FixedIndex = FINode->getIndex();
11050   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11051   int OldIndex = AllocaIndex;
11052   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11053   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11054     LLVM_DEBUG(
11055         dbgs() << "  argument copy elision failed due to bad fixed stack "
11056                   "object size\n");
11057     return;
11058   }
11059   Align RequiredAlignment = AI->getAlign();
11060   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11061     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
11062                          "greater than stack argument alignment ("
11063                       << DebugStr(RequiredAlignment) << " vs "
11064                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11065     return;
11066   }
11067 
11068   // Perform the elision. Delete the old stack object and replace its only use
11069   // in the variable info map. Mark the stack object as mutable.
11070   LLVM_DEBUG({
11071     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11072            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
11073            << '\n';
11074   });
11075   MFI.RemoveStackObject(OldIndex);
11076   MFI.setIsImmutableObjectIndex(FixedIndex, false);
11077   AllocaIndex = FixedIndex;
11078   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11079   for (SDValue ArgVal : ArgVals)
11080     Chains.push_back(ArgVal.getValue(1));
11081 
11082   // Avoid emitting code for the store implementing the copy.
11083   const StoreInst *SI = ArgCopyIter->second.second;
11084   ElidedArgCopyInstrs.insert(SI);
11085 
11086   // Check for uses of the argument again so that we can avoid exporting ArgVal
11087   // if it is't used by anything other than the store.
11088   for (const Value *U : Arg.users()) {
11089     if (U != SI) {
11090       ArgHasUses = true;
11091       break;
11092     }
11093   }
11094 }
11095 
11096 void SelectionDAGISel::LowerArguments(const Function &F) {
11097   SelectionDAG &DAG = SDB->DAG;
11098   SDLoc dl = SDB->getCurSDLoc();
11099   const DataLayout &DL = DAG.getDataLayout();
11100   SmallVector<ISD::InputArg, 16> Ins;
11101 
11102   // In Naked functions we aren't going to save any registers.
11103   if (F.hasFnAttribute(Attribute::Naked))
11104     return;
11105 
11106   if (!FuncInfo->CanLowerReturn) {
11107     // Put in an sret pointer parameter before all the other parameters.
11108     SmallVector<EVT, 1> ValueVTs;
11109     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11110                     PointerType::get(F.getContext(),
11111                                      DAG.getDataLayout().getAllocaAddrSpace()),
11112                     ValueVTs);
11113 
11114     // NOTE: Assuming that a pointer will never break down to more than one VT
11115     // or one register.
11116     ISD::ArgFlagsTy Flags;
11117     Flags.setSRet();
11118     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
11119     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
11120                          ISD::InputArg::NoArgIndex, 0);
11121     Ins.push_back(RetArg);
11122   }
11123 
11124   // Look for stores of arguments to static allocas. Mark such arguments with a
11125   // flag to ask the target to give us the memory location of that argument if
11126   // available.
11127   ArgCopyElisionMapTy ArgCopyElisionCandidates;
11128   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
11129                                     ArgCopyElisionCandidates);
11130 
11131   // Set up the incoming argument description vector.
11132   for (const Argument &Arg : F.args()) {
11133     unsigned ArgNo = Arg.getArgNo();
11134     SmallVector<EVT, 4> ValueVTs;
11135     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11136     bool isArgValueUsed = !Arg.use_empty();
11137     unsigned PartBase = 0;
11138     Type *FinalType = Arg.getType();
11139     if (Arg.hasAttribute(Attribute::ByVal))
11140       FinalType = Arg.getParamByValType();
11141     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11142         FinalType, F.getCallingConv(), F.isVarArg(), DL);
11143     for (unsigned Value = 0, NumValues = ValueVTs.size();
11144          Value != NumValues; ++Value) {
11145       EVT VT = ValueVTs[Value];
11146       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
11147       ISD::ArgFlagsTy Flags;
11148 
11149 
11150       if (Arg.getType()->isPointerTy()) {
11151         Flags.setPointer();
11152         Flags.setPointerAddrSpace(
11153             cast<PointerType>(Arg.getType())->getAddressSpace());
11154       }
11155       if (Arg.hasAttribute(Attribute::ZExt))
11156         Flags.setZExt();
11157       if (Arg.hasAttribute(Attribute::SExt))
11158         Flags.setSExt();
11159       if (Arg.hasAttribute(Attribute::InReg)) {
11160         // If we are using vectorcall calling convention, a structure that is
11161         // passed InReg - is surely an HVA
11162         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11163             isa<StructType>(Arg.getType())) {
11164           // The first value of a structure is marked
11165           if (0 == Value)
11166             Flags.setHvaStart();
11167           Flags.setHva();
11168         }
11169         // Set InReg Flag
11170         Flags.setInReg();
11171       }
11172       if (Arg.hasAttribute(Attribute::StructRet))
11173         Flags.setSRet();
11174       if (Arg.hasAttribute(Attribute::SwiftSelf))
11175         Flags.setSwiftSelf();
11176       if (Arg.hasAttribute(Attribute::SwiftAsync))
11177         Flags.setSwiftAsync();
11178       if (Arg.hasAttribute(Attribute::SwiftError))
11179         Flags.setSwiftError();
11180       if (Arg.hasAttribute(Attribute::ByVal))
11181         Flags.setByVal();
11182       if (Arg.hasAttribute(Attribute::ByRef))
11183         Flags.setByRef();
11184       if (Arg.hasAttribute(Attribute::InAlloca)) {
11185         Flags.setInAlloca();
11186         // Set the byval flag for CCAssignFn callbacks that don't know about
11187         // inalloca.  This way we can know how many bytes we should've allocated
11188         // and how many bytes a callee cleanup function will pop.  If we port
11189         // inalloca to more targets, we'll have to add custom inalloca handling
11190         // in the various CC lowering callbacks.
11191         Flags.setByVal();
11192       }
11193       if (Arg.hasAttribute(Attribute::Preallocated)) {
11194         Flags.setPreallocated();
11195         // Set the byval flag for CCAssignFn callbacks that don't know about
11196         // preallocated.  This way we can know how many bytes we should've
11197         // allocated and how many bytes a callee cleanup function will pop.  If
11198         // we port preallocated to more targets, we'll have to add custom
11199         // preallocated handling in the various CC lowering callbacks.
11200         Flags.setByVal();
11201       }
11202 
11203       // Certain targets (such as MIPS), may have a different ABI alignment
11204       // for a type depending on the context. Give the target a chance to
11205       // specify the alignment it wants.
11206       const Align OriginalAlignment(
11207           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11208       Flags.setOrigAlign(OriginalAlignment);
11209 
11210       Align MemAlign;
11211       Type *ArgMemTy = nullptr;
11212       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11213           Flags.isByRef()) {
11214         if (!ArgMemTy)
11215           ArgMemTy = Arg.getPointeeInMemoryValueType();
11216 
11217         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11218 
11219         // For in-memory arguments, size and alignment should be passed from FE.
11220         // BE will guess if this info is not there but there are cases it cannot
11221         // get right.
11222         if (auto ParamAlign = Arg.getParamStackAlign())
11223           MemAlign = *ParamAlign;
11224         else if ((ParamAlign = Arg.getParamAlign()))
11225           MemAlign = *ParamAlign;
11226         else
11227           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11228         if (Flags.isByRef())
11229           Flags.setByRefSize(MemSize);
11230         else
11231           Flags.setByValSize(MemSize);
11232       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11233         MemAlign = *ParamAlign;
11234       } else {
11235         MemAlign = OriginalAlignment;
11236       }
11237       Flags.setMemAlign(MemAlign);
11238 
11239       if (Arg.hasAttribute(Attribute::Nest))
11240         Flags.setNest();
11241       if (NeedsRegBlock)
11242         Flags.setInConsecutiveRegs();
11243       if (ArgCopyElisionCandidates.count(&Arg))
11244         Flags.setCopyElisionCandidate();
11245       if (Arg.hasAttribute(Attribute::Returned))
11246         Flags.setReturned();
11247 
11248       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11249           *CurDAG->getContext(), F.getCallingConv(), VT);
11250       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11251           *CurDAG->getContext(), F.getCallingConv(), VT);
11252       for (unsigned i = 0; i != NumRegs; ++i) {
11253         // For scalable vectors, use the minimum size; individual targets
11254         // are responsible for handling scalable vector arguments and
11255         // return values.
11256         ISD::InputArg MyFlags(
11257             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11258             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11259         if (NumRegs > 1 && i == 0)
11260           MyFlags.Flags.setSplit();
11261         // if it isn't first piece, alignment must be 1
11262         else if (i > 0) {
11263           MyFlags.Flags.setOrigAlign(Align(1));
11264           if (i == NumRegs - 1)
11265             MyFlags.Flags.setSplitEnd();
11266         }
11267         Ins.push_back(MyFlags);
11268       }
11269       if (NeedsRegBlock && Value == NumValues - 1)
11270         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11271       PartBase += VT.getStoreSize().getKnownMinValue();
11272     }
11273   }
11274 
11275   // Call the target to set up the argument values.
11276   SmallVector<SDValue, 8> InVals;
11277   SDValue NewRoot = TLI->LowerFormalArguments(
11278       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11279 
11280   // Verify that the target's LowerFormalArguments behaved as expected.
11281   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11282          "LowerFormalArguments didn't return a valid chain!");
11283   assert(InVals.size() == Ins.size() &&
11284          "LowerFormalArguments didn't emit the correct number of values!");
11285   LLVM_DEBUG({
11286     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11287       assert(InVals[i].getNode() &&
11288              "LowerFormalArguments emitted a null value!");
11289       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11290              "LowerFormalArguments emitted a value with the wrong type!");
11291     }
11292   });
11293 
11294   // Update the DAG with the new chain value resulting from argument lowering.
11295   DAG.setRoot(NewRoot);
11296 
11297   // Set up the argument values.
11298   unsigned i = 0;
11299   if (!FuncInfo->CanLowerReturn) {
11300     // Create a virtual register for the sret pointer, and put in a copy
11301     // from the sret argument into it.
11302     SmallVector<EVT, 1> ValueVTs;
11303     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11304                     PointerType::get(F.getContext(),
11305                                      DAG.getDataLayout().getAllocaAddrSpace()),
11306                     ValueVTs);
11307     MVT VT = ValueVTs[0].getSimpleVT();
11308     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11309     std::optional<ISD::NodeType> AssertOp;
11310     SDValue ArgValue =
11311         getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11312                          F.getCallingConv(), AssertOp);
11313 
11314     MachineFunction& MF = SDB->DAG.getMachineFunction();
11315     MachineRegisterInfo& RegInfo = MF.getRegInfo();
11316     Register SRetReg =
11317         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11318     FuncInfo->DemoteRegister = SRetReg;
11319     NewRoot =
11320         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11321     DAG.setRoot(NewRoot);
11322 
11323     // i indexes lowered arguments.  Bump it past the hidden sret argument.
11324     ++i;
11325   }
11326 
11327   SmallVector<SDValue, 4> Chains;
11328   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11329   for (const Argument &Arg : F.args()) {
11330     SmallVector<SDValue, 4> ArgValues;
11331     SmallVector<EVT, 4> ValueVTs;
11332     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11333     unsigned NumValues = ValueVTs.size();
11334     if (NumValues == 0)
11335       continue;
11336 
11337     bool ArgHasUses = !Arg.use_empty();
11338 
11339     // Elide the copying store if the target loaded this argument from a
11340     // suitable fixed stack object.
11341     if (Ins[i].Flags.isCopyElisionCandidate()) {
11342       unsigned NumParts = 0;
11343       for (EVT VT : ValueVTs)
11344         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11345                                                        F.getCallingConv(), VT);
11346 
11347       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11348                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11349                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
11350     }
11351 
11352     // If this argument is unused then remember its value. It is used to generate
11353     // debugging information.
11354     bool isSwiftErrorArg =
11355         TLI->supportSwiftError() &&
11356         Arg.hasAttribute(Attribute::SwiftError);
11357     if (!ArgHasUses && !isSwiftErrorArg) {
11358       SDB->setUnusedArgValue(&Arg, InVals[i]);
11359 
11360       // Also remember any frame index for use in FastISel.
11361       if (FrameIndexSDNode *FI =
11362           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11363         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11364     }
11365 
11366     for (unsigned Val = 0; Val != NumValues; ++Val) {
11367       EVT VT = ValueVTs[Val];
11368       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11369                                                       F.getCallingConv(), VT);
11370       unsigned NumParts = TLI->getNumRegistersForCallingConv(
11371           *CurDAG->getContext(), F.getCallingConv(), VT);
11372 
11373       // Even an apparent 'unused' swifterror argument needs to be returned. So
11374       // we do generate a copy for it that can be used on return from the
11375       // function.
11376       if (ArgHasUses || isSwiftErrorArg) {
11377         std::optional<ISD::NodeType> AssertOp;
11378         if (Arg.hasAttribute(Attribute::SExt))
11379           AssertOp = ISD::AssertSext;
11380         else if (Arg.hasAttribute(Attribute::ZExt))
11381           AssertOp = ISD::AssertZext;
11382 
11383         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11384                                              PartVT, VT, nullptr, NewRoot,
11385                                              F.getCallingConv(), AssertOp));
11386       }
11387 
11388       i += NumParts;
11389     }
11390 
11391     // We don't need to do anything else for unused arguments.
11392     if (ArgValues.empty())
11393       continue;
11394 
11395     // Note down frame index.
11396     if (FrameIndexSDNode *FI =
11397         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11398       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11399 
11400     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11401                                      SDB->getCurSDLoc());
11402 
11403     SDB->setValue(&Arg, Res);
11404     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11405       // We want to associate the argument with the frame index, among
11406       // involved operands, that correspond to the lowest address. The
11407       // getCopyFromParts function, called earlier, is swapping the order of
11408       // the operands to BUILD_PAIR depending on endianness. The result of
11409       // that swapping is that the least significant bits of the argument will
11410       // be in the first operand of the BUILD_PAIR node, and the most
11411       // significant bits will be in the second operand.
11412       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11413       if (LoadSDNode *LNode =
11414           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11415         if (FrameIndexSDNode *FI =
11416             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11417           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11418     }
11419 
11420     // Analyses past this point are naive and don't expect an assertion.
11421     if (Res.getOpcode() == ISD::AssertZext)
11422       Res = Res.getOperand(0);
11423 
11424     // Update the SwiftErrorVRegDefMap.
11425     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11426       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11427       if (Register::isVirtualRegister(Reg))
11428         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11429                                    Reg);
11430     }
11431 
11432     // If this argument is live outside of the entry block, insert a copy from
11433     // wherever we got it to the vreg that other BB's will reference it as.
11434     if (Res.getOpcode() == ISD::CopyFromReg) {
11435       // If we can, though, try to skip creating an unnecessary vreg.
11436       // FIXME: This isn't very clean... it would be nice to make this more
11437       // general.
11438       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11439       if (Register::isVirtualRegister(Reg)) {
11440         FuncInfo->ValueMap[&Arg] = Reg;
11441         continue;
11442       }
11443     }
11444     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11445       FuncInfo->InitializeRegForValue(&Arg);
11446       SDB->CopyToExportRegsIfNeeded(&Arg);
11447     }
11448   }
11449 
11450   if (!Chains.empty()) {
11451     Chains.push_back(NewRoot);
11452     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11453   }
11454 
11455   DAG.setRoot(NewRoot);
11456 
11457   assert(i == InVals.size() && "Argument register count mismatch!");
11458 
11459   // If any argument copy elisions occurred and we have debug info, update the
11460   // stale frame indices used in the dbg.declare variable info table.
11461   if (!ArgCopyElisionFrameIndexMap.empty()) {
11462     for (MachineFunction::VariableDbgInfo &VI :
11463          MF->getInStackSlotVariableDbgInfo()) {
11464       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11465       if (I != ArgCopyElisionFrameIndexMap.end())
11466         VI.updateStackSlot(I->second);
11467     }
11468   }
11469 
11470   // Finally, if the target has anything special to do, allow it to do so.
11471   emitFunctionEntryCode();
11472 }
11473 
11474 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11475 /// ensure constants are generated when needed.  Remember the virtual registers
11476 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11477 /// directly add them, because expansion might result in multiple MBB's for one
11478 /// BB.  As such, the start of the BB might correspond to a different MBB than
11479 /// the end.
11480 void
11481 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11482   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11483 
11484   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11485 
11486   // Check PHI nodes in successors that expect a value to be available from this
11487   // block.
11488   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11489     if (!isa<PHINode>(SuccBB->begin())) continue;
11490     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11491 
11492     // If this terminator has multiple identical successors (common for
11493     // switches), only handle each succ once.
11494     if (!SuccsHandled.insert(SuccMBB).second)
11495       continue;
11496 
11497     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11498 
11499     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11500     // nodes and Machine PHI nodes, but the incoming operands have not been
11501     // emitted yet.
11502     for (const PHINode &PN : SuccBB->phis()) {
11503       // Ignore dead phi's.
11504       if (PN.use_empty())
11505         continue;
11506 
11507       // Skip empty types
11508       if (PN.getType()->isEmptyTy())
11509         continue;
11510 
11511       unsigned Reg;
11512       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11513 
11514       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11515         unsigned &RegOut = ConstantsOut[C];
11516         if (RegOut == 0) {
11517           RegOut = FuncInfo.CreateRegs(C);
11518           // We need to zero/sign extend ConstantInt phi operands to match
11519           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11520           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11521           if (auto *CI = dyn_cast<ConstantInt>(C))
11522             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11523                                                     : ISD::ZERO_EXTEND;
11524           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11525         }
11526         Reg = RegOut;
11527       } else {
11528         DenseMap<const Value *, Register>::iterator I =
11529           FuncInfo.ValueMap.find(PHIOp);
11530         if (I != FuncInfo.ValueMap.end())
11531           Reg = I->second;
11532         else {
11533           assert(isa<AllocaInst>(PHIOp) &&
11534                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11535                  "Didn't codegen value into a register!??");
11536           Reg = FuncInfo.CreateRegs(PHIOp);
11537           CopyValueToVirtualRegister(PHIOp, Reg);
11538         }
11539       }
11540 
11541       // Remember that this register needs to added to the machine PHI node as
11542       // the input for this MBB.
11543       SmallVector<EVT, 4> ValueVTs;
11544       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11545       for (EVT VT : ValueVTs) {
11546         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11547         for (unsigned i = 0; i != NumRegisters; ++i)
11548           FuncInfo.PHINodesToUpdate.push_back(
11549               std::make_pair(&*MBBI++, Reg + i));
11550         Reg += NumRegisters;
11551       }
11552     }
11553   }
11554 
11555   ConstantsOut.clear();
11556 }
11557 
11558 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11559   MachineFunction::iterator I(MBB);
11560   if (++I == FuncInfo.MF->end())
11561     return nullptr;
11562   return &*I;
11563 }
11564 
11565 /// During lowering new call nodes can be created (such as memset, etc.).
11566 /// Those will become new roots of the current DAG, but complications arise
11567 /// when they are tail calls. In such cases, the call lowering will update
11568 /// the root, but the builder still needs to know that a tail call has been
11569 /// lowered in order to avoid generating an additional return.
11570 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11571   // If the node is null, we do have a tail call.
11572   if (MaybeTC.getNode() != nullptr)
11573     DAG.setRoot(MaybeTC);
11574   else
11575     HasTailCall = true;
11576 }
11577 
11578 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11579                                         MachineBasicBlock *SwitchMBB,
11580                                         MachineBasicBlock *DefaultMBB) {
11581   MachineFunction *CurMF = FuncInfo.MF;
11582   MachineBasicBlock *NextMBB = nullptr;
11583   MachineFunction::iterator BBI(W.MBB);
11584   if (++BBI != FuncInfo.MF->end())
11585     NextMBB = &*BBI;
11586 
11587   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11588 
11589   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11590 
11591   if (Size == 2 && W.MBB == SwitchMBB) {
11592     // If any two of the cases has the same destination, and if one value
11593     // is the same as the other, but has one bit unset that the other has set,
11594     // use bit manipulation to do two compares at once.  For example:
11595     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11596     // TODO: This could be extended to merge any 2 cases in switches with 3
11597     // cases.
11598     // TODO: Handle cases where W.CaseBB != SwitchBB.
11599     CaseCluster &Small = *W.FirstCluster;
11600     CaseCluster &Big = *W.LastCluster;
11601 
11602     if (Small.Low == Small.High && Big.Low == Big.High &&
11603         Small.MBB == Big.MBB) {
11604       const APInt &SmallValue = Small.Low->getValue();
11605       const APInt &BigValue = Big.Low->getValue();
11606 
11607       // Check that there is only one bit different.
11608       APInt CommonBit = BigValue ^ SmallValue;
11609       if (CommonBit.isPowerOf2()) {
11610         SDValue CondLHS = getValue(Cond);
11611         EVT VT = CondLHS.getValueType();
11612         SDLoc DL = getCurSDLoc();
11613 
11614         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11615                                  DAG.getConstant(CommonBit, DL, VT));
11616         SDValue Cond = DAG.getSetCC(
11617             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11618             ISD::SETEQ);
11619 
11620         // Update successor info.
11621         // Both Small and Big will jump to Small.BB, so we sum up the
11622         // probabilities.
11623         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11624         if (BPI)
11625           addSuccessorWithProb(
11626               SwitchMBB, DefaultMBB,
11627               // The default destination is the first successor in IR.
11628               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11629         else
11630           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11631 
11632         // Insert the true branch.
11633         SDValue BrCond =
11634             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11635                         DAG.getBasicBlock(Small.MBB));
11636         // Insert the false branch.
11637         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11638                              DAG.getBasicBlock(DefaultMBB));
11639 
11640         DAG.setRoot(BrCond);
11641         return;
11642       }
11643     }
11644   }
11645 
11646   if (TM.getOptLevel() != CodeGenOptLevel::None) {
11647     // Here, we order cases by probability so the most likely case will be
11648     // checked first. However, two clusters can have the same probability in
11649     // which case their relative ordering is non-deterministic. So we use Low
11650     // as a tie-breaker as clusters are guaranteed to never overlap.
11651     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11652                [](const CaseCluster &a, const CaseCluster &b) {
11653       return a.Prob != b.Prob ?
11654              a.Prob > b.Prob :
11655              a.Low->getValue().slt(b.Low->getValue());
11656     });
11657 
11658     // Rearrange the case blocks so that the last one falls through if possible
11659     // without changing the order of probabilities.
11660     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11661       --I;
11662       if (I->Prob > W.LastCluster->Prob)
11663         break;
11664       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11665         std::swap(*I, *W.LastCluster);
11666         break;
11667       }
11668     }
11669   }
11670 
11671   // Compute total probability.
11672   BranchProbability DefaultProb = W.DefaultProb;
11673   BranchProbability UnhandledProbs = DefaultProb;
11674   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11675     UnhandledProbs += I->Prob;
11676 
11677   MachineBasicBlock *CurMBB = W.MBB;
11678   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11679     bool FallthroughUnreachable = false;
11680     MachineBasicBlock *Fallthrough;
11681     if (I == W.LastCluster) {
11682       // For the last cluster, fall through to the default destination.
11683       Fallthrough = DefaultMBB;
11684       FallthroughUnreachable = isa<UnreachableInst>(
11685           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11686     } else {
11687       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11688       CurMF->insert(BBI, Fallthrough);
11689       // Put Cond in a virtual register to make it available from the new blocks.
11690       ExportFromCurrentBlock(Cond);
11691     }
11692     UnhandledProbs -= I->Prob;
11693 
11694     switch (I->Kind) {
11695       case CC_JumpTable: {
11696         // FIXME: Optimize away range check based on pivot comparisons.
11697         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11698         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11699 
11700         // The jump block hasn't been inserted yet; insert it here.
11701         MachineBasicBlock *JumpMBB = JT->MBB;
11702         CurMF->insert(BBI, JumpMBB);
11703 
11704         auto JumpProb = I->Prob;
11705         auto FallthroughProb = UnhandledProbs;
11706 
11707         // If the default statement is a target of the jump table, we evenly
11708         // distribute the default probability to successors of CurMBB. Also
11709         // update the probability on the edge from JumpMBB to Fallthrough.
11710         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11711                                               SE = JumpMBB->succ_end();
11712              SI != SE; ++SI) {
11713           if (*SI == DefaultMBB) {
11714             JumpProb += DefaultProb / 2;
11715             FallthroughProb -= DefaultProb / 2;
11716             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11717             JumpMBB->normalizeSuccProbs();
11718             break;
11719           }
11720         }
11721 
11722         // If the default clause is unreachable, propagate that knowledge into
11723         // JTH->FallthroughUnreachable which will use it to suppress the range
11724         // check.
11725         //
11726         // However, don't do this if we're doing branch target enforcement,
11727         // because a table branch _without_ a range check can be a tempting JOP
11728         // gadget - out-of-bounds inputs that are impossible in correct
11729         // execution become possible again if an attacker can influence the
11730         // control flow. So if an attacker doesn't already have a BTI bypass
11731         // available, we don't want them to be able to get one out of this
11732         // table branch.
11733         if (FallthroughUnreachable) {
11734           Function &CurFunc = CurMF->getFunction();
11735           bool HasBranchTargetEnforcement = false;
11736           if (CurFunc.hasFnAttribute("branch-target-enforcement")) {
11737             HasBranchTargetEnforcement =
11738                 CurFunc.getFnAttribute("branch-target-enforcement")
11739                     .getValueAsBool();
11740           } else {
11741             HasBranchTargetEnforcement =
11742                 CurMF->getMMI().getModule()->getModuleFlag(
11743                     "branch-target-enforcement");
11744           }
11745           if (!HasBranchTargetEnforcement)
11746             JTH->FallthroughUnreachable = true;
11747         }
11748 
11749         if (!JTH->FallthroughUnreachable)
11750           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11751         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11752         CurMBB->normalizeSuccProbs();
11753 
11754         // The jump table header will be inserted in our current block, do the
11755         // range check, and fall through to our fallthrough block.
11756         JTH->HeaderBB = CurMBB;
11757         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11758 
11759         // If we're in the right place, emit the jump table header right now.
11760         if (CurMBB == SwitchMBB) {
11761           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11762           JTH->Emitted = true;
11763         }
11764         break;
11765       }
11766       case CC_BitTests: {
11767         // FIXME: Optimize away range check based on pivot comparisons.
11768         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11769 
11770         // The bit test blocks haven't been inserted yet; insert them here.
11771         for (BitTestCase &BTC : BTB->Cases)
11772           CurMF->insert(BBI, BTC.ThisBB);
11773 
11774         // Fill in fields of the BitTestBlock.
11775         BTB->Parent = CurMBB;
11776         BTB->Default = Fallthrough;
11777 
11778         BTB->DefaultProb = UnhandledProbs;
11779         // If the cases in bit test don't form a contiguous range, we evenly
11780         // distribute the probability on the edge to Fallthrough to two
11781         // successors of CurMBB.
11782         if (!BTB->ContiguousRange) {
11783           BTB->Prob += DefaultProb / 2;
11784           BTB->DefaultProb -= DefaultProb / 2;
11785         }
11786 
11787         if (FallthroughUnreachable)
11788           BTB->FallthroughUnreachable = true;
11789 
11790         // If we're in the right place, emit the bit test header right now.
11791         if (CurMBB == SwitchMBB) {
11792           visitBitTestHeader(*BTB, SwitchMBB);
11793           BTB->Emitted = true;
11794         }
11795         break;
11796       }
11797       case CC_Range: {
11798         const Value *RHS, *LHS, *MHS;
11799         ISD::CondCode CC;
11800         if (I->Low == I->High) {
11801           // Check Cond == I->Low.
11802           CC = ISD::SETEQ;
11803           LHS = Cond;
11804           RHS=I->Low;
11805           MHS = nullptr;
11806         } else {
11807           // Check I->Low <= Cond <= I->High.
11808           CC = ISD::SETLE;
11809           LHS = I->Low;
11810           MHS = Cond;
11811           RHS = I->High;
11812         }
11813 
11814         // If Fallthrough is unreachable, fold away the comparison.
11815         if (FallthroughUnreachable)
11816           CC = ISD::SETTRUE;
11817 
11818         // The false probability is the sum of all unhandled cases.
11819         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11820                      getCurSDLoc(), I->Prob, UnhandledProbs);
11821 
11822         if (CurMBB == SwitchMBB)
11823           visitSwitchCase(CB, SwitchMBB);
11824         else
11825           SL->SwitchCases.push_back(CB);
11826 
11827         break;
11828       }
11829     }
11830     CurMBB = Fallthrough;
11831   }
11832 }
11833 
11834 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11835                                         const SwitchWorkListItem &W,
11836                                         Value *Cond,
11837                                         MachineBasicBlock *SwitchMBB) {
11838   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11839          "Clusters not sorted?");
11840   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11841 
11842   auto [LastLeft, FirstRight, LeftProb, RightProb] =
11843       SL->computeSplitWorkItemInfo(W);
11844 
11845   // Use the first element on the right as pivot since we will make less-than
11846   // comparisons against it.
11847   CaseClusterIt PivotCluster = FirstRight;
11848   assert(PivotCluster > W.FirstCluster);
11849   assert(PivotCluster <= W.LastCluster);
11850 
11851   CaseClusterIt FirstLeft = W.FirstCluster;
11852   CaseClusterIt LastRight = W.LastCluster;
11853 
11854   const ConstantInt *Pivot = PivotCluster->Low;
11855 
11856   // New blocks will be inserted immediately after the current one.
11857   MachineFunction::iterator BBI(W.MBB);
11858   ++BBI;
11859 
11860   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11861   // we can branch to its destination directly if it's squeezed exactly in
11862   // between the known lower bound and Pivot - 1.
11863   MachineBasicBlock *LeftMBB;
11864   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11865       FirstLeft->Low == W.GE &&
11866       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11867     LeftMBB = FirstLeft->MBB;
11868   } else {
11869     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11870     FuncInfo.MF->insert(BBI, LeftMBB);
11871     WorkList.push_back(
11872         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11873     // Put Cond in a virtual register to make it available from the new blocks.
11874     ExportFromCurrentBlock(Cond);
11875   }
11876 
11877   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11878   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11879   // directly if RHS.High equals the current upper bound.
11880   MachineBasicBlock *RightMBB;
11881   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11882       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11883     RightMBB = FirstRight->MBB;
11884   } else {
11885     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11886     FuncInfo.MF->insert(BBI, RightMBB);
11887     WorkList.push_back(
11888         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11889     // Put Cond in a virtual register to make it available from the new blocks.
11890     ExportFromCurrentBlock(Cond);
11891   }
11892 
11893   // Create the CaseBlock record that will be used to lower the branch.
11894   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11895                getCurSDLoc(), LeftProb, RightProb);
11896 
11897   if (W.MBB == SwitchMBB)
11898     visitSwitchCase(CB, SwitchMBB);
11899   else
11900     SL->SwitchCases.push_back(CB);
11901 }
11902 
11903 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11904 // from the swith statement.
11905 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11906                                             BranchProbability PeeledCaseProb) {
11907   if (PeeledCaseProb == BranchProbability::getOne())
11908     return BranchProbability::getZero();
11909   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11910 
11911   uint32_t Numerator = CaseProb.getNumerator();
11912   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11913   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11914 }
11915 
11916 // Try to peel the top probability case if it exceeds the threshold.
11917 // Return current MachineBasicBlock for the switch statement if the peeling
11918 // does not occur.
11919 // If the peeling is performed, return the newly created MachineBasicBlock
11920 // for the peeled switch statement. Also update Clusters to remove the peeled
11921 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11922 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11923     const SwitchInst &SI, CaseClusterVector &Clusters,
11924     BranchProbability &PeeledCaseProb) {
11925   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11926   // Don't perform if there is only one cluster or optimizing for size.
11927   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11928       TM.getOptLevel() == CodeGenOptLevel::None ||
11929       SwitchMBB->getParent()->getFunction().hasMinSize())
11930     return SwitchMBB;
11931 
11932   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11933   unsigned PeeledCaseIndex = 0;
11934   bool SwitchPeeled = false;
11935   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11936     CaseCluster &CC = Clusters[Index];
11937     if (CC.Prob < TopCaseProb)
11938       continue;
11939     TopCaseProb = CC.Prob;
11940     PeeledCaseIndex = Index;
11941     SwitchPeeled = true;
11942   }
11943   if (!SwitchPeeled)
11944     return SwitchMBB;
11945 
11946   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11947                     << TopCaseProb << "\n");
11948 
11949   // Record the MBB for the peeled switch statement.
11950   MachineFunction::iterator BBI(SwitchMBB);
11951   ++BBI;
11952   MachineBasicBlock *PeeledSwitchMBB =
11953       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11954   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11955 
11956   ExportFromCurrentBlock(SI.getCondition());
11957   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11958   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11959                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11960   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11961 
11962   Clusters.erase(PeeledCaseIt);
11963   for (CaseCluster &CC : Clusters) {
11964     LLVM_DEBUG(
11965         dbgs() << "Scale the probablity for one cluster, before scaling: "
11966                << CC.Prob << "\n");
11967     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11968     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11969   }
11970   PeeledCaseProb = TopCaseProb;
11971   return PeeledSwitchMBB;
11972 }
11973 
11974 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11975   // Extract cases from the switch.
11976   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11977   CaseClusterVector Clusters;
11978   Clusters.reserve(SI.getNumCases());
11979   for (auto I : SI.cases()) {
11980     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11981     const ConstantInt *CaseVal = I.getCaseValue();
11982     BranchProbability Prob =
11983         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11984             : BranchProbability(1, SI.getNumCases() + 1);
11985     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11986   }
11987 
11988   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11989 
11990   // Cluster adjacent cases with the same destination. We do this at all
11991   // optimization levels because it's cheap to do and will make codegen faster
11992   // if there are many clusters.
11993   sortAndRangeify(Clusters);
11994 
11995   // The branch probablity of the peeled case.
11996   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11997   MachineBasicBlock *PeeledSwitchMBB =
11998       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11999 
12000   // If there is only the default destination, jump there directly.
12001   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12002   if (Clusters.empty()) {
12003     assert(PeeledSwitchMBB == SwitchMBB);
12004     SwitchMBB->addSuccessor(DefaultMBB);
12005     if (DefaultMBB != NextBlock(SwitchMBB)) {
12006       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12007                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12008     }
12009     return;
12010   }
12011 
12012   SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12013                      DAG.getBFI());
12014   SL->findBitTestClusters(Clusters, &SI);
12015 
12016   LLVM_DEBUG({
12017     dbgs() << "Case clusters: ";
12018     for (const CaseCluster &C : Clusters) {
12019       if (C.Kind == CC_JumpTable)
12020         dbgs() << "JT:";
12021       if (C.Kind == CC_BitTests)
12022         dbgs() << "BT:";
12023 
12024       C.Low->getValue().print(dbgs(), true);
12025       if (C.Low != C.High) {
12026         dbgs() << '-';
12027         C.High->getValue().print(dbgs(), true);
12028       }
12029       dbgs() << ' ';
12030     }
12031     dbgs() << '\n';
12032   });
12033 
12034   assert(!Clusters.empty());
12035   SwitchWorkList WorkList;
12036   CaseClusterIt First = Clusters.begin();
12037   CaseClusterIt Last = Clusters.end() - 1;
12038   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12039   // Scale the branchprobability for DefaultMBB if the peel occurs and
12040   // DefaultMBB is not replaced.
12041   if (PeeledCaseProb != BranchProbability::getZero() &&
12042       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
12043     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12044   WorkList.push_back(
12045       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12046 
12047   while (!WorkList.empty()) {
12048     SwitchWorkListItem W = WorkList.pop_back_val();
12049     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12050 
12051     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12052         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12053       // For optimized builds, lower large range as a balanced binary tree.
12054       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12055       continue;
12056     }
12057 
12058     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12059   }
12060 }
12061 
12062 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12063   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12064   auto DL = getCurSDLoc();
12065   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12066   setValue(&I, DAG.getStepVector(DL, ResultVT));
12067 }
12068 
12069 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12070   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12071   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12072 
12073   SDLoc DL = getCurSDLoc();
12074   SDValue V = getValue(I.getOperand(0));
12075   assert(VT == V.getValueType() && "Malformed vector.reverse!");
12076 
12077   if (VT.isScalableVector()) {
12078     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12079     return;
12080   }
12081 
12082   // Use VECTOR_SHUFFLE for the fixed-length vector
12083   // to maintain existing behavior.
12084   SmallVector<int, 8> Mask;
12085   unsigned NumElts = VT.getVectorMinNumElements();
12086   for (unsigned i = 0; i != NumElts; ++i)
12087     Mask.push_back(NumElts - 1 - i);
12088 
12089   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12090 }
12091 
12092 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
12093   auto DL = getCurSDLoc();
12094   SDValue InVec = getValue(I.getOperand(0));
12095   EVT OutVT =
12096       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
12097 
12098   unsigned OutNumElts = OutVT.getVectorMinNumElements();
12099 
12100   // ISD Node needs the input vectors split into two equal parts
12101   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12102                            DAG.getVectorIdxConstant(0, DL));
12103   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12104                            DAG.getVectorIdxConstant(OutNumElts, DL));
12105 
12106   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12107   // legalisation and combines.
12108   if (OutVT.isFixedLengthVector()) {
12109     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12110                                         createStrideMask(0, 2, OutNumElts));
12111     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12112                                        createStrideMask(1, 2, OutNumElts));
12113     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12114     setValue(&I, Res);
12115     return;
12116   }
12117 
12118   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12119                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
12120   setValue(&I, Res);
12121 }
12122 
12123 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
12124   auto DL = getCurSDLoc();
12125   EVT InVT = getValue(I.getOperand(0)).getValueType();
12126   SDValue InVec0 = getValue(I.getOperand(0));
12127   SDValue InVec1 = getValue(I.getOperand(1));
12128   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12129   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12130 
12131   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12132   // legalisation and combines.
12133   if (OutVT.isFixedLengthVector()) {
12134     unsigned NumElts = InVT.getVectorMinNumElements();
12135     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
12136     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12137                                       createInterleaveMask(NumElts, 2)));
12138     return;
12139   }
12140 
12141   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
12142                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
12143   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
12144                     Res.getValue(1));
12145   setValue(&I, Res);
12146 }
12147 
12148 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12149   SmallVector<EVT, 4> ValueVTs;
12150   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12151                   ValueVTs);
12152   unsigned NumValues = ValueVTs.size();
12153   if (NumValues == 0) return;
12154 
12155   SmallVector<SDValue, 4> Values(NumValues);
12156   SDValue Op = getValue(I.getOperand(0));
12157 
12158   for (unsigned i = 0; i != NumValues; ++i)
12159     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12160                             SDValue(Op.getNode(), Op.getResNo() + i));
12161 
12162   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12163                            DAG.getVTList(ValueVTs), Values));
12164 }
12165 
12166 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12167   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12168   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12169 
12170   SDLoc DL = getCurSDLoc();
12171   SDValue V1 = getValue(I.getOperand(0));
12172   SDValue V2 = getValue(I.getOperand(1));
12173   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12174 
12175   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12176   if (VT.isScalableVector()) {
12177     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
12178     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12179                              DAG.getConstant(Imm, DL, IdxVT)));
12180     return;
12181   }
12182 
12183   unsigned NumElts = VT.getVectorNumElements();
12184 
12185   uint64_t Idx = (NumElts + Imm) % NumElts;
12186 
12187   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12188   SmallVector<int, 8> Mask;
12189   for (unsigned i = 0; i < NumElts; ++i)
12190     Mask.push_back(Idx + i);
12191   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12192 }
12193 
12194 // Consider the following MIR after SelectionDAG, which produces output in
12195 // phyregs in the first case or virtregs in the second case.
12196 //
12197 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12198 // %5:gr32 = COPY $ebx
12199 // %6:gr32 = COPY $edx
12200 // %1:gr32 = COPY %6:gr32
12201 // %0:gr32 = COPY %5:gr32
12202 //
12203 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12204 // %1:gr32 = COPY %6:gr32
12205 // %0:gr32 = COPY %5:gr32
12206 //
12207 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12208 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12209 //
12210 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12211 // to a single virtreg (such as %0). The remaining outputs monotonically
12212 // increase in virtreg number from there. If a callbr has no outputs, then it
12213 // should not have a corresponding callbr landingpad; in fact, the callbr
12214 // landingpad would not even be able to refer to such a callbr.
12215 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12216   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12217   // There is definitely at least one copy.
12218   assert(MI->getOpcode() == TargetOpcode::COPY &&
12219          "start of copy chain MUST be COPY");
12220   Reg = MI->getOperand(1).getReg();
12221   MI = MRI.def_begin(Reg)->getParent();
12222   // There may be an optional second copy.
12223   if (MI->getOpcode() == TargetOpcode::COPY) {
12224     assert(Reg.isVirtual() && "expected COPY of virtual register");
12225     Reg = MI->getOperand(1).getReg();
12226     assert(Reg.isPhysical() && "expected COPY of physical register");
12227     MI = MRI.def_begin(Reg)->getParent();
12228   }
12229   // The start of the chain must be an INLINEASM_BR.
12230   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12231          "end of copy chain MUST be INLINEASM_BR");
12232   return Reg;
12233 }
12234 
12235 // We must do this walk rather than the simpler
12236 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12237 // otherwise we will end up with copies of virtregs only valid along direct
12238 // edges.
12239 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12240   SmallVector<EVT, 8> ResultVTs;
12241   SmallVector<SDValue, 8> ResultValues;
12242   const auto *CBR =
12243       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12244 
12245   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12246   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12247   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12248 
12249   unsigned InitialDef = FuncInfo.ValueMap[CBR];
12250   SDValue Chain = DAG.getRoot();
12251 
12252   // Re-parse the asm constraints string.
12253   TargetLowering::AsmOperandInfoVector TargetConstraints =
12254       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12255   for (auto &T : TargetConstraints) {
12256     SDISelAsmOperandInfo OpInfo(T);
12257     if (OpInfo.Type != InlineAsm::isOutput)
12258       continue;
12259 
12260     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12261     // individual constraint.
12262     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12263 
12264     switch (OpInfo.ConstraintType) {
12265     case TargetLowering::C_Register:
12266     case TargetLowering::C_RegisterClass: {
12267       // Fill in OpInfo.AssignedRegs.Regs.
12268       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12269 
12270       // getRegistersForValue may produce 1 to many registers based on whether
12271       // the OpInfo.ConstraintVT is legal on the target or not.
12272       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
12273         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12274         if (Register::isPhysicalRegister(OriginalDef))
12275           FuncInfo.MBB->addLiveIn(OriginalDef);
12276         // Update the assigned registers to use the original defs.
12277         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
12278       }
12279 
12280       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12281           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12282       ResultValues.push_back(V);
12283       ResultVTs.push_back(OpInfo.ConstraintVT);
12284       break;
12285     }
12286     case TargetLowering::C_Other: {
12287       SDValue Flag;
12288       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12289                                                   OpInfo, DAG);
12290       ++InitialDef;
12291       ResultValues.push_back(V);
12292       ResultVTs.push_back(OpInfo.ConstraintVT);
12293       break;
12294     }
12295     default:
12296       break;
12297     }
12298   }
12299   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12300                           DAG.getVTList(ResultVTs), ResultValues);
12301   setValue(&I, V);
12302 }
12303