1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 /// LimitFloatPrecision - Generate low-precision inline sequences for 72 /// some float libcalls (6, 8 or 12 bits). 73 static unsigned LimitFloatPrecision; 74 75 static cl::opt<unsigned, true> 76 LimitFPPrecision("limit-float-precision", 77 cl::desc("Generate low-precision inline sequences " 78 "for some float libcalls"), 79 cl::location(LimitFloatPrecision), 80 cl::init(0)); 81 82 // Limit the width of DAG chains. This is important in general to prevent 83 // prevent DAG-based analysis from blowing up. For example, alias analysis and 84 // load clustering may not complete in reasonable time. It is difficult to 85 // recognize and avoid this situation within each individual analysis, and 86 // future analyses are likely to have the same behavior. Limiting DAG width is 87 // the safe approach, and will be especially important with global DAGs. 88 // 89 // MaxParallelChains default is arbitrarily high to avoid affecting 90 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 91 // sequence over this should have been converted to llvm.memcpy by the 92 // frontend. It easy to induce this behavior with .ll code such as: 93 // %buffer = alloca [4096 x i8] 94 // %data = load [4096 x i8]* %argPtr 95 // store [4096 x i8] %data, [4096 x i8]* %buffer 96 static const unsigned MaxParallelChains = 64; 97 98 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 99 const SDValue *Parts, unsigned NumParts, 100 MVT PartVT, EVT ValueVT, const Value *V); 101 102 /// getCopyFromParts - Create a value that contains the specified legal parts 103 /// combined into the value they represent. If the parts combine to a type 104 /// larger then ValueVT then AssertOp can be used to specify whether the extra 105 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 106 /// (ISD::AssertSext). 107 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 108 const SDValue *Parts, 109 unsigned NumParts, MVT PartVT, EVT ValueVT, 110 const Value *V, 111 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 112 if (ValueVT.isVector()) 113 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 114 PartVT, ValueVT, V); 115 116 assert(NumParts > 0 && "No parts to assemble!"); 117 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 118 SDValue Val = Parts[0]; 119 120 if (NumParts > 1) { 121 // Assemble the value from multiple parts. 122 if (ValueVT.isInteger()) { 123 unsigned PartBits = PartVT.getSizeInBits(); 124 unsigned ValueBits = ValueVT.getSizeInBits(); 125 126 // Assemble the power of 2 part. 127 unsigned RoundParts = NumParts & (NumParts - 1) ? 128 1 << Log2_32(NumParts) : NumParts; 129 unsigned RoundBits = PartBits * RoundParts; 130 EVT RoundVT = RoundBits == ValueBits ? 131 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 132 SDValue Lo, Hi; 133 134 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 135 136 if (RoundParts > 2) { 137 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 138 PartVT, HalfVT, V); 139 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 140 RoundParts / 2, PartVT, HalfVT, V); 141 } else { 142 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 143 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 144 } 145 146 if (TLI.isBigEndian()) 147 std::swap(Lo, Hi); 148 149 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 150 151 if (RoundParts < NumParts) { 152 // Assemble the trailing non-power-of-2 part. 153 unsigned OddParts = NumParts - RoundParts; 154 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 155 Hi = getCopyFromParts(DAG, DL, 156 Parts + RoundParts, OddParts, PartVT, OddVT, V); 157 158 // Combine the round and odd parts. 159 Lo = Val; 160 if (TLI.isBigEndian()) 161 std::swap(Lo, Hi); 162 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 163 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 164 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 165 DAG.getConstant(Lo.getValueType().getSizeInBits(), 166 TLI.getPointerTy())); 167 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 168 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 169 } 170 } else if (PartVT.isFloatingPoint()) { 171 // FP split into multiple FP parts (for ppcf128) 172 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 173 "Unexpected split"); 174 SDValue Lo, Hi; 175 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 176 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 177 if (TLI.hasBigEndianPartOrdering(ValueVT)) 178 std::swap(Lo, Hi); 179 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 180 } else { 181 // FP split into integer parts (soft fp) 182 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 183 !PartVT.isVector() && "Unexpected split"); 184 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 185 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 186 } 187 } 188 189 // There is now one part, held in Val. Correct it to match ValueVT. 190 EVT PartEVT = Val.getValueType(); 191 192 if (PartEVT == ValueVT) 193 return Val; 194 195 if (PartEVT.isInteger() && ValueVT.isInteger()) { 196 if (ValueVT.bitsLT(PartEVT)) { 197 // For a truncate, see if we have any information to 198 // indicate whether the truncated bits will always be 199 // zero or sign-extension. 200 if (AssertOp != ISD::DELETED_NODE) 201 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 202 DAG.getValueType(ValueVT)); 203 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 204 } 205 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 206 } 207 208 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 209 // FP_ROUND's are always exact here. 210 if (ValueVT.bitsLT(Val.getValueType())) 211 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 212 DAG.getTargetConstant(1, TLI.getPointerTy())); 213 214 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 215 } 216 217 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 218 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 219 220 llvm_unreachable("Unknown mismatch!"); 221 } 222 223 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 224 const Twine &ErrMsg) { 225 const Instruction *I = dyn_cast_or_null<Instruction>(V); 226 if (!V) 227 return Ctx.emitError(ErrMsg); 228 229 const char *AsmError = ", possible invalid constraint for vector type"; 230 if (const CallInst *CI = dyn_cast<CallInst>(I)) 231 if (isa<InlineAsm>(CI->getCalledValue())) 232 return Ctx.emitError(I, ErrMsg + AsmError); 233 234 return Ctx.emitError(I, ErrMsg); 235 } 236 237 /// getCopyFromPartsVector - Create a value that contains the specified legal 238 /// parts combined into the value they represent. If the parts combine to a 239 /// type larger then ValueVT then AssertOp can be used to specify whether the 240 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 241 /// ValueVT (ISD::AssertSext). 242 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 243 const SDValue *Parts, unsigned NumParts, 244 MVT PartVT, EVT ValueVT, const Value *V) { 245 assert(ValueVT.isVector() && "Not a vector value"); 246 assert(NumParts > 0 && "No parts to assemble!"); 247 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 248 SDValue Val = Parts[0]; 249 250 // Handle a multi-element vector. 251 if (NumParts > 1) { 252 EVT IntermediateVT; 253 MVT RegisterVT; 254 unsigned NumIntermediates; 255 unsigned NumRegs = 256 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 257 NumIntermediates, RegisterVT); 258 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 259 NumParts = NumRegs; // Silence a compiler warning. 260 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 261 assert(RegisterVT == Parts[0].getSimpleValueType() && 262 "Part type doesn't match part!"); 263 264 // Assemble the parts into intermediate operands. 265 SmallVector<SDValue, 8> Ops(NumIntermediates); 266 if (NumIntermediates == NumParts) { 267 // If the register was not expanded, truncate or copy the value, 268 // as appropriate. 269 for (unsigned i = 0; i != NumParts; ++i) 270 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 271 PartVT, IntermediateVT, V); 272 } else if (NumParts > 0) { 273 // If the intermediate type was expanded, build the intermediate 274 // operands from the parts. 275 assert(NumParts % NumIntermediates == 0 && 276 "Must expand into a divisible number of parts!"); 277 unsigned Factor = NumParts / NumIntermediates; 278 for (unsigned i = 0; i != NumIntermediates; ++i) 279 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 280 PartVT, IntermediateVT, V); 281 } 282 283 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 284 // intermediate operands. 285 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 286 : ISD::BUILD_VECTOR, 287 DL, ValueVT, Ops); 288 } 289 290 // There is now one part, held in Val. Correct it to match ValueVT. 291 EVT PartEVT = Val.getValueType(); 292 293 if (PartEVT == ValueVT) 294 return Val; 295 296 if (PartEVT.isVector()) { 297 // If the element type of the source/dest vectors are the same, but the 298 // parts vector has more elements than the value vector, then we have a 299 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 300 // elements we want. 301 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 302 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 303 "Cannot narrow, it would be a lossy transformation"); 304 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 305 DAG.getConstant(0, TLI.getVectorIdxTy())); 306 } 307 308 // Vector/Vector bitcast. 309 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 310 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 311 312 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 313 "Cannot handle this kind of promotion"); 314 // Promoted vector extract 315 bool Smaller = ValueVT.bitsLE(PartEVT); 316 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 317 DL, ValueVT, Val); 318 319 } 320 321 // Trivial bitcast if the types are the same size and the destination 322 // vector type is legal. 323 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 324 TLI.isTypeLegal(ValueVT)) 325 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 326 327 // Handle cases such as i8 -> <1 x i1> 328 if (ValueVT.getVectorNumElements() != 1) { 329 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 330 "non-trivial scalar-to-vector conversion"); 331 return DAG.getUNDEF(ValueVT); 332 } 333 334 if (ValueVT.getVectorNumElements() == 1 && 335 ValueVT.getVectorElementType() != PartEVT) { 336 bool Smaller = ValueVT.bitsLE(PartEVT); 337 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 338 DL, ValueVT.getScalarType(), Val); 339 } 340 341 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 342 } 343 344 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 345 SDValue Val, SDValue *Parts, unsigned NumParts, 346 MVT PartVT, const Value *V); 347 348 /// getCopyToParts - Create a series of nodes that contain the specified value 349 /// split into legal parts. If the parts contain more bits than Val, then, for 350 /// integers, ExtendKind can be used to specify how to generate the extra bits. 351 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 352 SDValue Val, SDValue *Parts, unsigned NumParts, 353 MVT PartVT, const Value *V, 354 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 355 EVT ValueVT = Val.getValueType(); 356 357 // Handle the vector case separately. 358 if (ValueVT.isVector()) 359 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 360 361 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 362 unsigned PartBits = PartVT.getSizeInBits(); 363 unsigned OrigNumParts = NumParts; 364 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 365 366 if (NumParts == 0) 367 return; 368 369 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 370 EVT PartEVT = PartVT; 371 if (PartEVT == ValueVT) { 372 assert(NumParts == 1 && "No-op copy with multiple parts!"); 373 Parts[0] = Val; 374 return; 375 } 376 377 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 378 // If the parts cover more bits than the value has, promote the value. 379 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 380 assert(NumParts == 1 && "Do not know what to promote to!"); 381 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 382 } else { 383 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 384 ValueVT.isInteger() && 385 "Unknown mismatch!"); 386 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 387 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 388 if (PartVT == MVT::x86mmx) 389 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 390 } 391 } else if (PartBits == ValueVT.getSizeInBits()) { 392 // Different types of the same size. 393 assert(NumParts == 1 && PartEVT != ValueVT); 394 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 395 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 396 // If the parts cover less bits than value has, truncate the value. 397 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 398 ValueVT.isInteger() && 399 "Unknown mismatch!"); 400 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 401 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 402 if (PartVT == MVT::x86mmx) 403 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 404 } 405 406 // The value may have changed - recompute ValueVT. 407 ValueVT = Val.getValueType(); 408 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 409 "Failed to tile the value with PartVT!"); 410 411 if (NumParts == 1) { 412 if (PartEVT != ValueVT) 413 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 414 "scalar-to-vector conversion failed"); 415 416 Parts[0] = Val; 417 return; 418 } 419 420 // Expand the value into multiple parts. 421 if (NumParts & (NumParts - 1)) { 422 // The number of parts is not a power of 2. Split off and copy the tail. 423 assert(PartVT.isInteger() && ValueVT.isInteger() && 424 "Do not know what to expand to!"); 425 unsigned RoundParts = 1 << Log2_32(NumParts); 426 unsigned RoundBits = RoundParts * PartBits; 427 unsigned OddParts = NumParts - RoundParts; 428 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 429 DAG.getIntPtrConstant(RoundBits)); 430 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 431 432 if (TLI.isBigEndian()) 433 // The odd parts were reversed by getCopyToParts - unreverse them. 434 std::reverse(Parts + RoundParts, Parts + NumParts); 435 436 NumParts = RoundParts; 437 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 438 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 439 } 440 441 // The number of parts is a power of 2. Repeatedly bisect the value using 442 // EXTRACT_ELEMENT. 443 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 444 EVT::getIntegerVT(*DAG.getContext(), 445 ValueVT.getSizeInBits()), 446 Val); 447 448 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 449 for (unsigned i = 0; i < NumParts; i += StepSize) { 450 unsigned ThisBits = StepSize * PartBits / 2; 451 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 452 SDValue &Part0 = Parts[i]; 453 SDValue &Part1 = Parts[i+StepSize/2]; 454 455 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 456 ThisVT, Part0, DAG.getIntPtrConstant(1)); 457 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 458 ThisVT, Part0, DAG.getIntPtrConstant(0)); 459 460 if (ThisBits == PartBits && ThisVT != PartVT) { 461 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 462 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 463 } 464 } 465 } 466 467 if (TLI.isBigEndian()) 468 std::reverse(Parts, Parts + OrigNumParts); 469 } 470 471 472 /// getCopyToPartsVector - Create a series of nodes that contain the specified 473 /// value split into legal parts. 474 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 475 SDValue Val, SDValue *Parts, unsigned NumParts, 476 MVT PartVT, const Value *V) { 477 EVT ValueVT = Val.getValueType(); 478 assert(ValueVT.isVector() && "Not a vector"); 479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 480 481 if (NumParts == 1) { 482 EVT PartEVT = PartVT; 483 if (PartEVT == ValueVT) { 484 // Nothing to do. 485 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 486 // Bitconvert vector->vector case. 487 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 488 } else if (PartVT.isVector() && 489 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 490 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 491 EVT ElementVT = PartVT.getVectorElementType(); 492 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 493 // undef elements. 494 SmallVector<SDValue, 16> Ops; 495 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 496 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 497 ElementVT, Val, DAG.getConstant(i, 498 TLI.getVectorIdxTy()))); 499 500 for (unsigned i = ValueVT.getVectorNumElements(), 501 e = PartVT.getVectorNumElements(); i != e; ++i) 502 Ops.push_back(DAG.getUNDEF(ElementVT)); 503 504 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 505 506 // FIXME: Use CONCAT for 2x -> 4x. 507 508 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 509 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 510 } else if (PartVT.isVector() && 511 PartEVT.getVectorElementType().bitsGE( 512 ValueVT.getVectorElementType()) && 513 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 514 515 // Promoted vector extract 516 bool Smaller = PartEVT.bitsLE(ValueVT); 517 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 518 DL, PartVT, Val); 519 } else{ 520 // Vector -> scalar conversion. 521 assert(ValueVT.getVectorNumElements() == 1 && 522 "Only trivial vector-to-scalar conversions should get here!"); 523 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 524 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 525 526 bool Smaller = ValueVT.bitsLE(PartVT); 527 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 528 DL, PartVT, Val); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 553 IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), 555 TLI.getVectorIdxTy())); 556 else 557 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 558 IntermediateVT, Val, 559 DAG.getConstant(i, TLI.getVectorIdxTy())); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 namespace { 581 /// RegsForValue - This struct represents the registers (physical or virtual) 582 /// that a particular set of values is assigned, and the type information 583 /// about the value. The most common situation is to represent one value at a 584 /// time, but struct or array values are handled element-wise as multiple 585 /// values. The splitting of aggregates is performed recursively, so that we 586 /// never have aggregate-typed registers. The values at this point do not 587 /// necessarily have legal types, so each value may require one or more 588 /// registers of some legal type. 589 /// 590 struct RegsForValue { 591 /// ValueVTs - The value types of the values, which may not be legal, and 592 /// may need be promoted or synthesized from one or more registers. 593 /// 594 SmallVector<EVT, 4> ValueVTs; 595 596 /// RegVTs - The value types of the registers. This is the same size as 597 /// ValueVTs and it records, for each value, what the type of the assigned 598 /// register or registers are. (Individual values are never synthesized 599 /// from more than one type of register.) 600 /// 601 /// With virtual registers, the contents of RegVTs is redundant with TLI's 602 /// getRegisterType member function, however when with physical registers 603 /// it is necessary to have a separate record of the types. 604 /// 605 SmallVector<MVT, 4> RegVTs; 606 607 /// Regs - This list holds the registers assigned to the values. 608 /// Each legal or promoted value requires one register, and each 609 /// expanded value requires multiple registers. 610 /// 611 SmallVector<unsigned, 4> Regs; 612 613 RegsForValue() {} 614 615 RegsForValue(const SmallVector<unsigned, 4> ®s, 616 MVT regvt, EVT valuevt) 617 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 618 619 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 620 unsigned Reg, Type *Ty) { 621 ComputeValueVTs(tli, Ty, ValueVTs); 622 623 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 624 EVT ValueVT = ValueVTs[Value]; 625 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 626 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 627 for (unsigned i = 0; i != NumRegs; ++i) 628 Regs.push_back(Reg + i); 629 RegVTs.push_back(RegisterVT); 630 Reg += NumRegs; 631 } 632 } 633 634 /// append - Add the specified values to this one. 635 void append(const RegsForValue &RHS) { 636 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 637 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 638 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 639 } 640 641 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 642 /// this value and returns the result as a ValueVTs value. This uses 643 /// Chain/Flag as the input and updates them for the output Chain/Flag. 644 /// If the Flag pointer is NULL, no flag is used. 645 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 646 SDLoc dl, 647 SDValue &Chain, SDValue *Flag, 648 const Value *V = nullptr) const; 649 650 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 651 /// specified value into the registers specified by this object. This uses 652 /// Chain/Flag as the input and updates them for the output Chain/Flag. 653 /// If the Flag pointer is NULL, no flag is used. 654 void 655 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 656 SDValue *Flag, const Value *V, 657 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 658 659 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 660 /// operand list. This adds the code marker, matching input operand index 661 /// (if applicable), and includes the number of values added into it. 662 void AddInlineAsmOperands(unsigned Kind, 663 bool HasMatching, unsigned MatchingIdx, 664 SelectionDAG &DAG, 665 std::vector<SDValue> &Ops) const; 666 }; 667 } 668 669 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 670 /// this value and returns the result as a ValueVT value. This uses 671 /// Chain/Flag as the input and updates them for the output Chain/Flag. 672 /// If the Flag pointer is NULL, no flag is used. 673 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 674 FunctionLoweringInfo &FuncInfo, 675 SDLoc dl, 676 SDValue &Chain, SDValue *Flag, 677 const Value *V) const { 678 // A Value with type {} or [0 x %t] needs no registers. 679 if (ValueVTs.empty()) 680 return SDValue(); 681 682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 683 684 // Assemble the legal parts into the final values. 685 SmallVector<SDValue, 4> Values(ValueVTs.size()); 686 SmallVector<SDValue, 8> Parts; 687 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 688 // Copy the legal parts from the registers. 689 EVT ValueVT = ValueVTs[Value]; 690 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 691 MVT RegisterVT = RegVTs[Value]; 692 693 Parts.resize(NumRegs); 694 for (unsigned i = 0; i != NumRegs; ++i) { 695 SDValue P; 696 if (!Flag) { 697 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 698 } else { 699 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 700 *Flag = P.getValue(2); 701 } 702 703 Chain = P.getValue(1); 704 Parts[i] = P; 705 706 // If the source register was virtual and if we know something about it, 707 // add an assert node. 708 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 709 !RegisterVT.isInteger() || RegisterVT.isVector()) 710 continue; 711 712 const FunctionLoweringInfo::LiveOutInfo *LOI = 713 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 714 if (!LOI) 715 continue; 716 717 unsigned RegSize = RegisterVT.getSizeInBits(); 718 unsigned NumSignBits = LOI->NumSignBits; 719 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 720 721 if (NumZeroBits == RegSize) { 722 // The current value is a zero. 723 // Explicitly express that as it would be easier for 724 // optimizations to kick in. 725 Parts[i] = DAG.getConstant(0, RegisterVT); 726 continue; 727 } 728 729 // FIXME: We capture more information than the dag can represent. For 730 // now, just use the tightest assertzext/assertsext possible. 731 bool isSExt = true; 732 EVT FromVT(MVT::Other); 733 if (NumSignBits == RegSize) 734 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 735 else if (NumZeroBits >= RegSize-1) 736 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 737 else if (NumSignBits > RegSize-8) 738 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 739 else if (NumZeroBits >= RegSize-8) 740 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 741 else if (NumSignBits > RegSize-16) 742 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 743 else if (NumZeroBits >= RegSize-16) 744 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 745 else if (NumSignBits > RegSize-32) 746 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 747 else if (NumZeroBits >= RegSize-32) 748 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 749 else 750 continue; 751 752 // Add an assertion node. 753 assert(FromVT != MVT::Other); 754 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 755 RegisterVT, P, DAG.getValueType(FromVT)); 756 } 757 758 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 759 NumRegs, RegisterVT, ValueVT, V); 760 Part += NumRegs; 761 Parts.clear(); 762 } 763 764 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 765 } 766 767 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 768 /// specified value into the registers specified by this object. This uses 769 /// Chain/Flag as the input and updates them for the output Chain/Flag. 770 /// If the Flag pointer is NULL, no flag is used. 771 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 772 SDValue &Chain, SDValue *Flag, const Value *V, 773 ISD::NodeType PreferredExtendType) const { 774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 775 ISD::NodeType ExtendKind = PreferredExtendType; 776 777 // Get the list of the values's legal parts. 778 unsigned NumRegs = Regs.size(); 779 SmallVector<SDValue, 8> Parts(NumRegs); 780 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 781 EVT ValueVT = ValueVTs[Value]; 782 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 783 MVT RegisterVT = RegVTs[Value]; 784 785 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 786 ExtendKind = ISD::ZERO_EXTEND; 787 788 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 789 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 790 Part += NumParts; 791 } 792 793 // Copy the parts into the registers. 794 SmallVector<SDValue, 8> Chains(NumRegs); 795 for (unsigned i = 0; i != NumRegs; ++i) { 796 SDValue Part; 797 if (!Flag) { 798 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 799 } else { 800 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 801 *Flag = Part.getValue(1); 802 } 803 804 Chains[i] = Part.getValue(0); 805 } 806 807 if (NumRegs == 1 || Flag) 808 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 809 // flagged to it. That is the CopyToReg nodes and the user are considered 810 // a single scheduling unit. If we create a TokenFactor and return it as 811 // chain, then the TokenFactor is both a predecessor (operand) of the 812 // user as well as a successor (the TF operands are flagged to the user). 813 // c1, f1 = CopyToReg 814 // c2, f2 = CopyToReg 815 // c3 = TokenFactor c1, c2 816 // ... 817 // = op c3, ..., f2 818 Chain = Chains[NumRegs-1]; 819 else 820 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 821 } 822 823 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 824 /// operand list. This adds the code marker and includes the number of 825 /// values added into it. 826 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 827 unsigned MatchingIdx, 828 SelectionDAG &DAG, 829 std::vector<SDValue> &Ops) const { 830 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 831 832 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 833 if (HasMatching) 834 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 835 else if (!Regs.empty() && 836 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 837 // Put the register class of the virtual registers in the flag word. That 838 // way, later passes can recompute register class constraints for inline 839 // assembly as well as normal instructions. 840 // Don't do this for tied operands that can use the regclass information 841 // from the def. 842 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 843 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 844 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 845 } 846 847 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 848 Ops.push_back(Res); 849 850 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 851 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 852 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 853 MVT RegisterVT = RegVTs[Value]; 854 for (unsigned i = 0; i != NumRegs; ++i) { 855 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 856 unsigned TheReg = Regs[Reg++]; 857 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 858 859 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 860 // If we clobbered the stack pointer, MFI should know about it. 861 assert(DAG.getMachineFunction().getFrameInfo()-> 862 hasInlineAsmWithSPAdjust()); 863 } 864 } 865 } 866 } 867 868 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 869 const TargetLibraryInfo *li) { 870 AA = &aa; 871 GFI = gfi; 872 LibInfo = li; 873 DL = DAG.getTarget().getDataLayout(); 874 Context = DAG.getContext(); 875 LPadToCallSiteMap.clear(); 876 } 877 878 /// clear - Clear out the current SelectionDAG and the associated 879 /// state and prepare this SelectionDAGBuilder object to be used 880 /// for a new block. This doesn't clear out information about 881 /// additional blocks that are needed to complete switch lowering 882 /// or PHI node updating; that information is cleared out as it is 883 /// consumed. 884 void SelectionDAGBuilder::clear() { 885 NodeMap.clear(); 886 UnusedArgNodeMap.clear(); 887 PendingLoads.clear(); 888 PendingExports.clear(); 889 CurInst = nullptr; 890 HasTailCall = false; 891 SDNodeOrder = LowestSDNodeOrder; 892 StatepointLowering.clear(); 893 } 894 895 /// clearDanglingDebugInfo - Clear the dangling debug information 896 /// map. This function is separated from the clear so that debug 897 /// information that is dangling in a basic block can be properly 898 /// resolved in a different basic block. This allows the 899 /// SelectionDAG to resolve dangling debug information attached 900 /// to PHI nodes. 901 void SelectionDAGBuilder::clearDanglingDebugInfo() { 902 DanglingDebugInfoMap.clear(); 903 } 904 905 /// getRoot - Return the current virtual root of the Selection DAG, 906 /// flushing any PendingLoad items. This must be done before emitting 907 /// a store or any other node that may need to be ordered after any 908 /// prior load instructions. 909 /// 910 SDValue SelectionDAGBuilder::getRoot() { 911 if (PendingLoads.empty()) 912 return DAG.getRoot(); 913 914 if (PendingLoads.size() == 1) { 915 SDValue Root = PendingLoads[0]; 916 DAG.setRoot(Root); 917 PendingLoads.clear(); 918 return Root; 919 } 920 921 // Otherwise, we have to make a token factor node. 922 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 923 PendingLoads); 924 PendingLoads.clear(); 925 DAG.setRoot(Root); 926 return Root; 927 } 928 929 /// getControlRoot - Similar to getRoot, but instead of flushing all the 930 /// PendingLoad items, flush all the PendingExports items. It is necessary 931 /// to do this before emitting a terminator instruction. 932 /// 933 SDValue SelectionDAGBuilder::getControlRoot() { 934 SDValue Root = DAG.getRoot(); 935 936 if (PendingExports.empty()) 937 return Root; 938 939 // Turn all of the CopyToReg chains into one factored node. 940 if (Root.getOpcode() != ISD::EntryToken) { 941 unsigned i = 0, e = PendingExports.size(); 942 for (; i != e; ++i) { 943 assert(PendingExports[i].getNode()->getNumOperands() > 1); 944 if (PendingExports[i].getNode()->getOperand(0) == Root) 945 break; // Don't add the root if we already indirectly depend on it. 946 } 947 948 if (i == e) 949 PendingExports.push_back(Root); 950 } 951 952 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 953 PendingExports); 954 PendingExports.clear(); 955 DAG.setRoot(Root); 956 return Root; 957 } 958 959 void SelectionDAGBuilder::visit(const Instruction &I) { 960 // Set up outgoing PHI node register values before emitting the terminator. 961 if (isa<TerminatorInst>(&I)) 962 HandlePHINodesInSuccessorBlocks(I.getParent()); 963 964 ++SDNodeOrder; 965 966 CurInst = &I; 967 968 visit(I.getOpcode(), I); 969 970 if (!isa<TerminatorInst>(&I) && !HasTailCall) 971 CopyToExportRegsIfNeeded(&I); 972 973 CurInst = nullptr; 974 } 975 976 void SelectionDAGBuilder::visitPHI(const PHINode &) { 977 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 978 } 979 980 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 981 // Note: this doesn't use InstVisitor, because it has to work with 982 // ConstantExpr's in addition to instructions. 983 switch (Opcode) { 984 default: llvm_unreachable("Unknown instruction type encountered!"); 985 // Build the switch statement using the Instruction.def file. 986 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 987 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 988 #include "llvm/IR/Instruction.def" 989 } 990 } 991 992 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 993 // generate the debug data structures now that we've seen its definition. 994 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 995 SDValue Val) { 996 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 997 if (DDI.getDI()) { 998 const DbgValueInst *DI = DDI.getDI(); 999 DebugLoc dl = DDI.getdl(); 1000 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1001 MDLocalVariable *Variable = DI->getVariable(); 1002 MDExpression *Expr = DI->getExpression(); 1003 assert(Variable->isValidLocationForIntrinsic(dl) && 1004 "Expected inlined-at fields to agree"); 1005 uint64_t Offset = DI->getOffset(); 1006 // A dbg.value for an alloca is always indirect. 1007 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1008 SDDbgValue *SDV; 1009 if (Val.getNode()) { 1010 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 1011 Val)) { 1012 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1013 IsIndirect, Offset, dl, DbgSDNodeOrder); 1014 DAG.AddDbgValue(SDV, Val.getNode(), false); 1015 } 1016 } else 1017 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1018 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1019 } 1020 } 1021 1022 /// getCopyFromRegs - If there was virtual register allocated for the value V 1023 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1024 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1025 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1026 SDValue res; 1027 1028 if (It != FuncInfo.ValueMap.end()) { 1029 unsigned InReg = It->second; 1030 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1031 Ty); 1032 SDValue Chain = DAG.getEntryNode(); 1033 res = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1034 resolveDanglingDebugInfo(V, res); 1035 } 1036 1037 return res; 1038 } 1039 1040 /// getValue - Return an SDValue for the given Value. 1041 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1042 // If we already have an SDValue for this value, use it. It's important 1043 // to do this first, so that we don't create a CopyFromReg if we already 1044 // have a regular SDValue. 1045 SDValue &N = NodeMap[V]; 1046 if (N.getNode()) return N; 1047 1048 // If there's a virtual register allocated and initialized for this 1049 // value, use it. 1050 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 1051 if (copyFromReg.getNode()) { 1052 return copyFromReg; 1053 } 1054 1055 // Otherwise create a new SDValue and remember it. 1056 SDValue Val = getValueImpl(V); 1057 NodeMap[V] = Val; 1058 resolveDanglingDebugInfo(V, Val); 1059 return Val; 1060 } 1061 1062 /// getNonRegisterValue - Return an SDValue for the given Value, but 1063 /// don't look in FuncInfo.ValueMap for a virtual register. 1064 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1065 // If we already have an SDValue for this value, use it. 1066 SDValue &N = NodeMap[V]; 1067 if (N.getNode()) return N; 1068 1069 // Otherwise create a new SDValue and remember it. 1070 SDValue Val = getValueImpl(V); 1071 NodeMap[V] = Val; 1072 resolveDanglingDebugInfo(V, Val); 1073 return Val; 1074 } 1075 1076 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1077 /// Create an SDValue for the given value. 1078 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1079 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1080 1081 if (const Constant *C = dyn_cast<Constant>(V)) { 1082 EVT VT = TLI.getValueType(V->getType(), true); 1083 1084 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1085 return DAG.getConstant(*CI, VT); 1086 1087 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1088 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1089 1090 if (isa<ConstantPointerNull>(C)) { 1091 unsigned AS = V->getType()->getPointerAddressSpace(); 1092 return DAG.getConstant(0, TLI.getPointerTy(AS)); 1093 } 1094 1095 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1096 return DAG.getConstantFP(*CFP, VT); 1097 1098 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1099 return DAG.getUNDEF(VT); 1100 1101 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1102 visit(CE->getOpcode(), *CE); 1103 SDValue N1 = NodeMap[V]; 1104 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1105 return N1; 1106 } 1107 1108 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1109 SmallVector<SDValue, 4> Constants; 1110 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1111 OI != OE; ++OI) { 1112 SDNode *Val = getValue(*OI).getNode(); 1113 // If the operand is an empty aggregate, there are no values. 1114 if (!Val) continue; 1115 // Add each leaf value from the operand to the Constants list 1116 // to form a flattened list of all the values. 1117 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1118 Constants.push_back(SDValue(Val, i)); 1119 } 1120 1121 return DAG.getMergeValues(Constants, getCurSDLoc()); 1122 } 1123 1124 if (const ConstantDataSequential *CDS = 1125 dyn_cast<ConstantDataSequential>(C)) { 1126 SmallVector<SDValue, 4> Ops; 1127 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1128 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1129 // Add each leaf value from the operand to the Constants list 1130 // to form a flattened list of all the values. 1131 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1132 Ops.push_back(SDValue(Val, i)); 1133 } 1134 1135 if (isa<ArrayType>(CDS->getType())) 1136 return DAG.getMergeValues(Ops, getCurSDLoc()); 1137 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1138 VT, Ops); 1139 } 1140 1141 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1142 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1143 "Unknown struct or array constant!"); 1144 1145 SmallVector<EVT, 4> ValueVTs; 1146 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1147 unsigned NumElts = ValueVTs.size(); 1148 if (NumElts == 0) 1149 return SDValue(); // empty struct 1150 SmallVector<SDValue, 4> Constants(NumElts); 1151 for (unsigned i = 0; i != NumElts; ++i) { 1152 EVT EltVT = ValueVTs[i]; 1153 if (isa<UndefValue>(C)) 1154 Constants[i] = DAG.getUNDEF(EltVT); 1155 else if (EltVT.isFloatingPoint()) 1156 Constants[i] = DAG.getConstantFP(0, EltVT); 1157 else 1158 Constants[i] = DAG.getConstant(0, EltVT); 1159 } 1160 1161 return DAG.getMergeValues(Constants, getCurSDLoc()); 1162 } 1163 1164 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1165 return DAG.getBlockAddress(BA, VT); 1166 1167 VectorType *VecTy = cast<VectorType>(V->getType()); 1168 unsigned NumElements = VecTy->getNumElements(); 1169 1170 // Now that we know the number and type of the elements, get that number of 1171 // elements into the Ops array based on what kind of constant it is. 1172 SmallVector<SDValue, 16> Ops; 1173 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1174 for (unsigned i = 0; i != NumElements; ++i) 1175 Ops.push_back(getValue(CV->getOperand(i))); 1176 } else { 1177 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1178 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1179 1180 SDValue Op; 1181 if (EltVT.isFloatingPoint()) 1182 Op = DAG.getConstantFP(0, EltVT); 1183 else 1184 Op = DAG.getConstant(0, EltVT); 1185 Ops.assign(NumElements, Op); 1186 } 1187 1188 // Create a BUILD_VECTOR node. 1189 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1190 } 1191 1192 // If this is a static alloca, generate it as the frameindex instead of 1193 // computation. 1194 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1195 DenseMap<const AllocaInst*, int>::iterator SI = 1196 FuncInfo.StaticAllocaMap.find(AI); 1197 if (SI != FuncInfo.StaticAllocaMap.end()) 1198 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1199 } 1200 1201 // If this is an instruction which fast-isel has deferred, select it now. 1202 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1203 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1204 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1205 SDValue Chain = DAG.getEntryNode(); 1206 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1207 } 1208 1209 llvm_unreachable("Can't get register for value!"); 1210 } 1211 1212 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1214 SDValue Chain = getControlRoot(); 1215 SmallVector<ISD::OutputArg, 8> Outs; 1216 SmallVector<SDValue, 8> OutVals; 1217 1218 if (!FuncInfo.CanLowerReturn) { 1219 unsigned DemoteReg = FuncInfo.DemoteRegister; 1220 const Function *F = I.getParent()->getParent(); 1221 1222 // Emit a store of the return value through the virtual register. 1223 // Leave Outs empty so that LowerReturn won't try to load return 1224 // registers the usual way. 1225 SmallVector<EVT, 1> PtrValueVTs; 1226 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1227 PtrValueVTs); 1228 1229 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1230 SDValue RetOp = getValue(I.getOperand(0)); 1231 1232 SmallVector<EVT, 4> ValueVTs; 1233 SmallVector<uint64_t, 4> Offsets; 1234 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1235 unsigned NumValues = ValueVTs.size(); 1236 1237 SmallVector<SDValue, 4> Chains(NumValues); 1238 for (unsigned i = 0; i != NumValues; ++i) { 1239 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1240 RetPtr.getValueType(), RetPtr, 1241 DAG.getIntPtrConstant(Offsets[i])); 1242 Chains[i] = 1243 DAG.getStore(Chain, getCurSDLoc(), 1244 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1245 // FIXME: better loc info would be nice. 1246 Add, MachinePointerInfo(), false, false, 0); 1247 } 1248 1249 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1250 MVT::Other, Chains); 1251 } else if (I.getNumOperands() != 0) { 1252 SmallVector<EVT, 4> ValueVTs; 1253 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1254 unsigned NumValues = ValueVTs.size(); 1255 if (NumValues) { 1256 SDValue RetOp = getValue(I.getOperand(0)); 1257 1258 const Function *F = I.getParent()->getParent(); 1259 1260 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1261 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1262 Attribute::SExt)) 1263 ExtendKind = ISD::SIGN_EXTEND; 1264 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1265 Attribute::ZExt)) 1266 ExtendKind = ISD::ZERO_EXTEND; 1267 1268 LLVMContext &Context = F->getContext(); 1269 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1270 Attribute::InReg); 1271 1272 for (unsigned j = 0; j != NumValues; ++j) { 1273 EVT VT = ValueVTs[j]; 1274 1275 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1276 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1277 1278 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1279 MVT PartVT = TLI.getRegisterType(Context, VT); 1280 SmallVector<SDValue, 4> Parts(NumParts); 1281 getCopyToParts(DAG, getCurSDLoc(), 1282 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1283 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1284 1285 // 'inreg' on function refers to return value 1286 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1287 if (RetInReg) 1288 Flags.setInReg(); 1289 1290 // Propagate extension type if any 1291 if (ExtendKind == ISD::SIGN_EXTEND) 1292 Flags.setSExt(); 1293 else if (ExtendKind == ISD::ZERO_EXTEND) 1294 Flags.setZExt(); 1295 1296 for (unsigned i = 0; i < NumParts; ++i) { 1297 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1298 VT, /*isfixed=*/true, 0, 0)); 1299 OutVals.push_back(Parts[i]); 1300 } 1301 } 1302 } 1303 } 1304 1305 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1306 CallingConv::ID CallConv = 1307 DAG.getMachineFunction().getFunction()->getCallingConv(); 1308 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1309 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1310 1311 // Verify that the target's LowerReturn behaved as expected. 1312 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1313 "LowerReturn didn't return a valid chain!"); 1314 1315 // Update the DAG with the new chain value resulting from return lowering. 1316 DAG.setRoot(Chain); 1317 } 1318 1319 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1320 /// created for it, emit nodes to copy the value into the virtual 1321 /// registers. 1322 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1323 // Skip empty types 1324 if (V->getType()->isEmptyTy()) 1325 return; 1326 1327 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1328 if (VMI != FuncInfo.ValueMap.end()) { 1329 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1330 CopyValueToVirtualRegister(V, VMI->second); 1331 } 1332 } 1333 1334 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1335 /// the current basic block, add it to ValueMap now so that we'll get a 1336 /// CopyTo/FromReg. 1337 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1338 // No need to export constants. 1339 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1340 1341 // Already exported? 1342 if (FuncInfo.isExportedInst(V)) return; 1343 1344 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1345 CopyValueToVirtualRegister(V, Reg); 1346 } 1347 1348 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1349 const BasicBlock *FromBB) { 1350 // The operands of the setcc have to be in this block. We don't know 1351 // how to export them from some other block. 1352 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1353 // Can export from current BB. 1354 if (VI->getParent() == FromBB) 1355 return true; 1356 1357 // Is already exported, noop. 1358 return FuncInfo.isExportedInst(V); 1359 } 1360 1361 // If this is an argument, we can export it if the BB is the entry block or 1362 // if it is already exported. 1363 if (isa<Argument>(V)) { 1364 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1365 return true; 1366 1367 // Otherwise, can only export this if it is already exported. 1368 return FuncInfo.isExportedInst(V); 1369 } 1370 1371 // Otherwise, constants can always be exported. 1372 return true; 1373 } 1374 1375 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1376 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1377 const MachineBasicBlock *Dst) const { 1378 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1379 if (!BPI) 1380 return 0; 1381 const BasicBlock *SrcBB = Src->getBasicBlock(); 1382 const BasicBlock *DstBB = Dst->getBasicBlock(); 1383 return BPI->getEdgeWeight(SrcBB, DstBB); 1384 } 1385 1386 void SelectionDAGBuilder:: 1387 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1388 uint32_t Weight /* = 0 */) { 1389 if (!Weight) 1390 Weight = getEdgeWeight(Src, Dst); 1391 Src->addSuccessor(Dst, Weight); 1392 } 1393 1394 1395 static bool InBlock(const Value *V, const BasicBlock *BB) { 1396 if (const Instruction *I = dyn_cast<Instruction>(V)) 1397 return I->getParent() == BB; 1398 return true; 1399 } 1400 1401 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1402 /// This function emits a branch and is used at the leaves of an OR or an 1403 /// AND operator tree. 1404 /// 1405 void 1406 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1407 MachineBasicBlock *TBB, 1408 MachineBasicBlock *FBB, 1409 MachineBasicBlock *CurBB, 1410 MachineBasicBlock *SwitchBB, 1411 uint32_t TWeight, 1412 uint32_t FWeight) { 1413 const BasicBlock *BB = CurBB->getBasicBlock(); 1414 1415 // If the leaf of the tree is a comparison, merge the condition into 1416 // the caseblock. 1417 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1418 // The operands of the cmp have to be in this block. We don't know 1419 // how to export them from some other block. If this is the first block 1420 // of the sequence, no exporting is needed. 1421 if (CurBB == SwitchBB || 1422 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1423 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1424 ISD::CondCode Condition; 1425 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1426 Condition = getICmpCondCode(IC->getPredicate()); 1427 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1428 Condition = getFCmpCondCode(FC->getPredicate()); 1429 if (TM.Options.NoNaNsFPMath) 1430 Condition = getFCmpCodeWithoutNaN(Condition); 1431 } else { 1432 (void)Condition; // silence warning. 1433 llvm_unreachable("Unknown compare instruction"); 1434 } 1435 1436 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1437 TBB, FBB, CurBB, TWeight, FWeight); 1438 SwitchCases.push_back(CB); 1439 return; 1440 } 1441 } 1442 1443 // Create a CaseBlock record representing this branch. 1444 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1445 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1446 SwitchCases.push_back(CB); 1447 } 1448 1449 /// Scale down both weights to fit into uint32_t. 1450 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1451 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1452 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1453 NewTrue = NewTrue / Scale; 1454 NewFalse = NewFalse / Scale; 1455 } 1456 1457 /// FindMergedConditions - If Cond is an expression like 1458 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1459 MachineBasicBlock *TBB, 1460 MachineBasicBlock *FBB, 1461 MachineBasicBlock *CurBB, 1462 MachineBasicBlock *SwitchBB, 1463 unsigned Opc, uint32_t TWeight, 1464 uint32_t FWeight) { 1465 // If this node is not part of the or/and tree, emit it as a branch. 1466 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1467 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1468 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1469 BOp->getParent() != CurBB->getBasicBlock() || 1470 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1471 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1472 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1473 TWeight, FWeight); 1474 return; 1475 } 1476 1477 // Create TmpBB after CurBB. 1478 MachineFunction::iterator BBI = CurBB; 1479 MachineFunction &MF = DAG.getMachineFunction(); 1480 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1481 CurBB->getParent()->insert(++BBI, TmpBB); 1482 1483 if (Opc == Instruction::Or) { 1484 // Codegen X | Y as: 1485 // BB1: 1486 // jmp_if_X TBB 1487 // jmp TmpBB 1488 // TmpBB: 1489 // jmp_if_Y TBB 1490 // jmp FBB 1491 // 1492 1493 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1494 // The requirement is that 1495 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1496 // = TrueProb for orignal BB. 1497 // Assuming the orignal weights are A and B, one choice is to set BB1's 1498 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1499 // assumes that 1500 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1501 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1502 // TmpBB, but the math is more complicated. 1503 1504 uint64_t NewTrueWeight = TWeight; 1505 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1506 ScaleWeights(NewTrueWeight, NewFalseWeight); 1507 // Emit the LHS condition. 1508 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1509 NewTrueWeight, NewFalseWeight); 1510 1511 NewTrueWeight = TWeight; 1512 NewFalseWeight = 2 * (uint64_t)FWeight; 1513 ScaleWeights(NewTrueWeight, NewFalseWeight); 1514 // Emit the RHS condition into TmpBB. 1515 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1516 NewTrueWeight, NewFalseWeight); 1517 } else { 1518 assert(Opc == Instruction::And && "Unknown merge op!"); 1519 // Codegen X & Y as: 1520 // BB1: 1521 // jmp_if_X TmpBB 1522 // jmp FBB 1523 // TmpBB: 1524 // jmp_if_Y TBB 1525 // jmp FBB 1526 // 1527 // This requires creation of TmpBB after CurBB. 1528 1529 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1530 // The requirement is that 1531 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1532 // = FalseProb for orignal BB. 1533 // Assuming the orignal weights are A and B, one choice is to set BB1's 1534 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1535 // assumes that 1536 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1537 1538 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1539 uint64_t NewFalseWeight = FWeight; 1540 ScaleWeights(NewTrueWeight, NewFalseWeight); 1541 // Emit the LHS condition. 1542 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1543 NewTrueWeight, NewFalseWeight); 1544 1545 NewTrueWeight = 2 * (uint64_t)TWeight; 1546 NewFalseWeight = FWeight; 1547 ScaleWeights(NewTrueWeight, NewFalseWeight); 1548 // Emit the RHS condition into TmpBB. 1549 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1550 NewTrueWeight, NewFalseWeight); 1551 } 1552 } 1553 1554 /// If the set of cases should be emitted as a series of branches, return true. 1555 /// If we should emit this as a bunch of and/or'd together conditions, return 1556 /// false. 1557 bool 1558 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1559 if (Cases.size() != 2) return true; 1560 1561 // If this is two comparisons of the same values or'd or and'd together, they 1562 // will get folded into a single comparison, so don't emit two blocks. 1563 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1564 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1565 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1566 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1567 return false; 1568 } 1569 1570 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1571 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1572 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1573 Cases[0].CC == Cases[1].CC && 1574 isa<Constant>(Cases[0].CmpRHS) && 1575 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1576 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1577 return false; 1578 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1579 return false; 1580 } 1581 1582 return true; 1583 } 1584 1585 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1586 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1587 1588 // Update machine-CFG edges. 1589 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1590 1591 if (I.isUnconditional()) { 1592 // Update machine-CFG edges. 1593 BrMBB->addSuccessor(Succ0MBB); 1594 1595 // If this is not a fall-through branch or optimizations are switched off, 1596 // emit the branch. 1597 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1598 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1599 MVT::Other, getControlRoot(), 1600 DAG.getBasicBlock(Succ0MBB))); 1601 1602 return; 1603 } 1604 1605 // If this condition is one of the special cases we handle, do special stuff 1606 // now. 1607 const Value *CondVal = I.getCondition(); 1608 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1609 1610 // If this is a series of conditions that are or'd or and'd together, emit 1611 // this as a sequence of branches instead of setcc's with and/or operations. 1612 // As long as jumps are not expensive, this should improve performance. 1613 // For example, instead of something like: 1614 // cmp A, B 1615 // C = seteq 1616 // cmp D, E 1617 // F = setle 1618 // or C, F 1619 // jnz foo 1620 // Emit: 1621 // cmp A, B 1622 // je foo 1623 // cmp D, E 1624 // jle foo 1625 // 1626 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1627 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1628 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1629 BOp->getOpcode() == Instruction::Or)) { 1630 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1631 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1632 getEdgeWeight(BrMBB, Succ1MBB)); 1633 // If the compares in later blocks need to use values not currently 1634 // exported from this block, export them now. This block should always 1635 // be the first entry. 1636 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1637 1638 // Allow some cases to be rejected. 1639 if (ShouldEmitAsBranches(SwitchCases)) { 1640 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1641 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1642 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1643 } 1644 1645 // Emit the branch for this block. 1646 visitSwitchCase(SwitchCases[0], BrMBB); 1647 SwitchCases.erase(SwitchCases.begin()); 1648 return; 1649 } 1650 1651 // Okay, we decided not to do this, remove any inserted MBB's and clear 1652 // SwitchCases. 1653 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1654 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1655 1656 SwitchCases.clear(); 1657 } 1658 } 1659 1660 // Create a CaseBlock record representing this branch. 1661 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1662 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1663 1664 // Use visitSwitchCase to actually insert the fast branch sequence for this 1665 // cond branch. 1666 visitSwitchCase(CB, BrMBB); 1667 } 1668 1669 /// visitSwitchCase - Emits the necessary code to represent a single node in 1670 /// the binary search tree resulting from lowering a switch instruction. 1671 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1672 MachineBasicBlock *SwitchBB) { 1673 SDValue Cond; 1674 SDValue CondLHS = getValue(CB.CmpLHS); 1675 SDLoc dl = getCurSDLoc(); 1676 1677 // Build the setcc now. 1678 if (!CB.CmpMHS) { 1679 // Fold "(X == true)" to X and "(X == false)" to !X to 1680 // handle common cases produced by branch lowering. 1681 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1682 CB.CC == ISD::SETEQ) 1683 Cond = CondLHS; 1684 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1685 CB.CC == ISD::SETEQ) { 1686 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1687 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1688 } else 1689 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1690 } else { 1691 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1692 1693 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1694 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1695 1696 SDValue CmpOp = getValue(CB.CmpMHS); 1697 EVT VT = CmpOp.getValueType(); 1698 1699 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1700 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1701 ISD::SETLE); 1702 } else { 1703 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1704 VT, CmpOp, DAG.getConstant(Low, VT)); 1705 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1706 DAG.getConstant(High-Low, VT), ISD::SETULE); 1707 } 1708 } 1709 1710 // Update successor info 1711 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1712 // TrueBB and FalseBB are always different unless the incoming IR is 1713 // degenerate. This only happens when running llc on weird IR. 1714 if (CB.TrueBB != CB.FalseBB) 1715 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1716 1717 // If the lhs block is the next block, invert the condition so that we can 1718 // fall through to the lhs instead of the rhs block. 1719 if (CB.TrueBB == NextBlock(SwitchBB)) { 1720 std::swap(CB.TrueBB, CB.FalseBB); 1721 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1722 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1723 } 1724 1725 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1726 MVT::Other, getControlRoot(), Cond, 1727 DAG.getBasicBlock(CB.TrueBB)); 1728 1729 // Insert the false branch. Do this even if it's a fall through branch, 1730 // this makes it easier to do DAG optimizations which require inverting 1731 // the branch condition. 1732 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1733 DAG.getBasicBlock(CB.FalseBB)); 1734 1735 DAG.setRoot(BrCond); 1736 } 1737 1738 /// visitJumpTable - Emit JumpTable node in the current MBB 1739 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1740 // Emit the code for the jump table 1741 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1742 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1743 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1744 JT.Reg, PTy); 1745 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1746 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1747 MVT::Other, Index.getValue(1), 1748 Table, Index); 1749 DAG.setRoot(BrJumpTable); 1750 } 1751 1752 /// visitJumpTableHeader - This function emits necessary code to produce index 1753 /// in the JumpTable from switch case. 1754 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1755 JumpTableHeader &JTH, 1756 MachineBasicBlock *SwitchBB) { 1757 // Subtract the lowest switch case value from the value being switched on and 1758 // conditional branch to default mbb if the result is greater than the 1759 // difference between smallest and largest cases. 1760 SDValue SwitchOp = getValue(JTH.SValue); 1761 EVT VT = SwitchOp.getValueType(); 1762 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1763 DAG.getConstant(JTH.First, VT)); 1764 1765 // The SDNode we just created, which holds the value being switched on minus 1766 // the smallest case value, needs to be copied to a virtual register so it 1767 // can be used as an index into the jump table in a subsequent basic block. 1768 // This value may be smaller or larger than the target's pointer type, and 1769 // therefore require extension or truncating. 1770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1771 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1772 1773 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1774 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1775 JumpTableReg, SwitchOp); 1776 JT.Reg = JumpTableReg; 1777 1778 // Emit the range check for the jump table, and branch to the default block 1779 // for the switch statement if the value being switched on exceeds the largest 1780 // case in the switch. 1781 SDValue CMP = 1782 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1783 Sub.getValueType()), 1784 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT); 1785 1786 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1787 MVT::Other, CopyTo, CMP, 1788 DAG.getBasicBlock(JT.Default)); 1789 1790 // Avoid emitting unnecessary branches to the next block. 1791 if (JT.MBB != NextBlock(SwitchBB)) 1792 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1793 DAG.getBasicBlock(JT.MBB)); 1794 1795 DAG.setRoot(BrCond); 1796 } 1797 1798 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1799 /// tail spliced into a stack protector check success bb. 1800 /// 1801 /// For a high level explanation of how this fits into the stack protector 1802 /// generation see the comment on the declaration of class 1803 /// StackProtectorDescriptor. 1804 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1805 MachineBasicBlock *ParentBB) { 1806 1807 // First create the loads to the guard/stack slot for the comparison. 1808 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1809 EVT PtrTy = TLI.getPointerTy(); 1810 1811 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1812 int FI = MFI->getStackProtectorIndex(); 1813 1814 const Value *IRGuard = SPD.getGuard(); 1815 SDValue GuardPtr = getValue(IRGuard); 1816 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1817 1818 unsigned Align = 1819 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1820 1821 SDValue Guard; 1822 1823 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1824 // guard value from the virtual register holding the value. Otherwise, emit a 1825 // volatile load to retrieve the stack guard value. 1826 unsigned GuardReg = SPD.getGuardReg(); 1827 1828 if (GuardReg && TLI.useLoadStackGuardNode()) 1829 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1830 PtrTy); 1831 else 1832 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1833 GuardPtr, MachinePointerInfo(IRGuard, 0), 1834 true, false, false, Align); 1835 1836 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1837 StackSlotPtr, 1838 MachinePointerInfo::getFixedStack(FI), 1839 true, false, false, Align); 1840 1841 // Perform the comparison via a subtract/getsetcc. 1842 EVT VT = Guard.getValueType(); 1843 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1844 1845 SDValue Cmp = 1846 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1847 Sub.getValueType()), 1848 Sub, DAG.getConstant(0, VT), ISD::SETNE); 1849 1850 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1851 // branch to failure MBB. 1852 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1853 MVT::Other, StackSlot.getOperand(0), 1854 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1855 // Otherwise branch to success MBB. 1856 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1857 MVT::Other, BrCond, 1858 DAG.getBasicBlock(SPD.getSuccessMBB())); 1859 1860 DAG.setRoot(Br); 1861 } 1862 1863 /// Codegen the failure basic block for a stack protector check. 1864 /// 1865 /// A failure stack protector machine basic block consists simply of a call to 1866 /// __stack_chk_fail(). 1867 /// 1868 /// For a high level explanation of how this fits into the stack protector 1869 /// generation see the comment on the declaration of class 1870 /// StackProtectorDescriptor. 1871 void 1872 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1873 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1874 SDValue Chain = 1875 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1876 nullptr, 0, false, getCurSDLoc(), false, false).second; 1877 DAG.setRoot(Chain); 1878 } 1879 1880 /// visitBitTestHeader - This function emits necessary code to produce value 1881 /// suitable for "bit tests" 1882 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1883 MachineBasicBlock *SwitchBB) { 1884 // Subtract the minimum value 1885 SDValue SwitchOp = getValue(B.SValue); 1886 EVT VT = SwitchOp.getValueType(); 1887 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1888 DAG.getConstant(B.First, VT)); 1889 1890 // Check range 1891 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1892 SDValue RangeCmp = 1893 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1894 Sub.getValueType()), 1895 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); 1896 1897 // Determine the type of the test operands. 1898 bool UsePtrType = false; 1899 if (!TLI.isTypeLegal(VT)) 1900 UsePtrType = true; 1901 else { 1902 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1903 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1904 // Switch table case range are encoded into series of masks. 1905 // Just use pointer type, it's guaranteed to fit. 1906 UsePtrType = true; 1907 break; 1908 } 1909 } 1910 if (UsePtrType) { 1911 VT = TLI.getPointerTy(); 1912 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1913 } 1914 1915 B.RegVT = VT.getSimpleVT(); 1916 B.Reg = FuncInfo.CreateReg(B.RegVT); 1917 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1918 B.Reg, Sub); 1919 1920 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1921 1922 addSuccessorWithWeight(SwitchBB, B.Default); 1923 addSuccessorWithWeight(SwitchBB, MBB); 1924 1925 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1926 MVT::Other, CopyTo, RangeCmp, 1927 DAG.getBasicBlock(B.Default)); 1928 1929 // Avoid emitting unnecessary branches to the next block. 1930 if (MBB != NextBlock(SwitchBB)) 1931 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1932 DAG.getBasicBlock(MBB)); 1933 1934 DAG.setRoot(BrRange); 1935 } 1936 1937 /// visitBitTestCase - this function produces one "bit test" 1938 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1939 MachineBasicBlock* NextMBB, 1940 uint32_t BranchWeightToNext, 1941 unsigned Reg, 1942 BitTestCase &B, 1943 MachineBasicBlock *SwitchBB) { 1944 MVT VT = BB.RegVT; 1945 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1946 Reg, VT); 1947 SDValue Cmp; 1948 unsigned PopCount = countPopulation(B.Mask); 1949 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1950 if (PopCount == 1) { 1951 // Testing for a single bit; just compare the shift count with what it 1952 // would need to be to shift a 1 bit in that position. 1953 Cmp = DAG.getSetCC( 1954 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1955 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); 1956 } else if (PopCount == BB.Range) { 1957 // There is only one zero bit in the range, test for it directly. 1958 Cmp = DAG.getSetCC( 1959 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1960 DAG.getConstant(countTrailingOnes(B.Mask), VT), ISD::SETNE); 1961 } else { 1962 // Make desired shift 1963 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1964 DAG.getConstant(1, VT), ShiftOp); 1965 1966 // Emit bit tests and jumps 1967 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1968 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1969 Cmp = DAG.getSetCC(getCurSDLoc(), 1970 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1971 DAG.getConstant(0, VT), ISD::SETNE); 1972 } 1973 1974 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1975 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1976 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1977 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1978 1979 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1980 MVT::Other, getControlRoot(), 1981 Cmp, DAG.getBasicBlock(B.TargetBB)); 1982 1983 // Avoid emitting unnecessary branches to the next block. 1984 if (NextMBB != NextBlock(SwitchBB)) 1985 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1986 DAG.getBasicBlock(NextMBB)); 1987 1988 DAG.setRoot(BrAnd); 1989 } 1990 1991 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1992 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1993 1994 // Retrieve successors. 1995 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1996 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1997 1998 const Value *Callee(I.getCalledValue()); 1999 const Function *Fn = dyn_cast<Function>(Callee); 2000 if (isa<InlineAsm>(Callee)) 2001 visitInlineAsm(&I); 2002 else if (Fn && Fn->isIntrinsic()) { 2003 switch (Fn->getIntrinsicID()) { 2004 default: 2005 llvm_unreachable("Cannot invoke this intrinsic"); 2006 case Intrinsic::donothing: 2007 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2008 break; 2009 case Intrinsic::experimental_patchpoint_void: 2010 case Intrinsic::experimental_patchpoint_i64: 2011 visitPatchpoint(&I, LandingPad); 2012 break; 2013 case Intrinsic::experimental_gc_statepoint: 2014 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 2015 break; 2016 } 2017 } else 2018 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2019 2020 // If the value of the invoke is used outside of its defining block, make it 2021 // available as a virtual register. 2022 // We already took care of the exported value for the statepoint instruction 2023 // during call to the LowerStatepoint. 2024 if (!isStatepoint(I)) { 2025 CopyToExportRegsIfNeeded(&I); 2026 } 2027 2028 // Update successor info 2029 addSuccessorWithWeight(InvokeMBB, Return); 2030 addSuccessorWithWeight(InvokeMBB, LandingPad); 2031 2032 // Drop into normal successor. 2033 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2034 MVT::Other, getControlRoot(), 2035 DAG.getBasicBlock(Return))); 2036 } 2037 2038 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2039 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2040 } 2041 2042 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2043 assert(FuncInfo.MBB->isLandingPad() && 2044 "Call to landingpad not in landing pad!"); 2045 2046 MachineBasicBlock *MBB = FuncInfo.MBB; 2047 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2048 AddLandingPadInfo(LP, MMI, MBB); 2049 2050 // If there aren't registers to copy the values into (e.g., during SjLj 2051 // exceptions), then don't bother to create these DAG nodes. 2052 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2053 if (TLI.getExceptionPointerRegister() == 0 && 2054 TLI.getExceptionSelectorRegister() == 0) 2055 return; 2056 2057 SmallVector<EVT, 2> ValueVTs; 2058 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2059 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2060 2061 // Get the two live-in registers as SDValues. The physregs have already been 2062 // copied into virtual registers. 2063 SDValue Ops[2]; 2064 if (FuncInfo.ExceptionPointerVirtReg) { 2065 Ops[0] = DAG.getZExtOrTrunc( 2066 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2067 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2068 getCurSDLoc(), ValueVTs[0]); 2069 } else { 2070 Ops[0] = DAG.getConstant(0, TLI.getPointerTy()); 2071 } 2072 Ops[1] = DAG.getZExtOrTrunc( 2073 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2074 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2075 getCurSDLoc(), ValueVTs[1]); 2076 2077 // Merge into one. 2078 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2079 DAG.getVTList(ValueVTs), Ops); 2080 setValue(&LP, Res); 2081 } 2082 2083 unsigned 2084 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2085 MachineBasicBlock *LPadBB) { 2086 SDValue Chain = getControlRoot(); 2087 2088 // Get the typeid that we will dispatch on later. 2089 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2090 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2091 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2092 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2093 SDValue Sel = DAG.getConstant(TypeID, TLI.getPointerTy()); 2094 Chain = DAG.getCopyToReg(Chain, getCurSDLoc(), VReg, Sel); 2095 2096 // Branch to the main landing pad block. 2097 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2098 ClauseMBB->addSuccessor(LPadBB); 2099 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain, 2100 DAG.getBasicBlock(LPadBB))); 2101 return VReg; 2102 } 2103 2104 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2105 /// small case ranges). 2106 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2107 CaseRecVector& WorkList, 2108 const Value* SV, 2109 MachineBasicBlock *Default, 2110 MachineBasicBlock *SwitchBB) { 2111 // Size is the number of Cases represented by this range. 2112 size_t Size = CR.Range.second - CR.Range.first; 2113 if (Size > 3) 2114 return false; 2115 2116 // Get the MachineFunction which holds the current MBB. This is used when 2117 // inserting any additional MBBs necessary to represent the switch. 2118 MachineFunction *CurMF = FuncInfo.MF; 2119 2120 // Figure out which block is immediately after the current one. 2121 MachineBasicBlock *NextMBB = nullptr; 2122 MachineFunction::iterator BBI = CR.CaseBB; 2123 if (++BBI != FuncInfo.MF->end()) 2124 NextMBB = BBI; 2125 2126 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2127 // If any two of the cases has the same destination, and if one value 2128 // is the same as the other, but has one bit unset that the other has set, 2129 // use bit manipulation to do two compares at once. For example: 2130 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2131 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2132 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2133 if (Size == 2 && CR.CaseBB == SwitchBB) { 2134 Case &Small = *CR.Range.first; 2135 Case &Big = *(CR.Range.second-1); 2136 2137 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2138 const APInt& SmallValue = Small.Low->getValue(); 2139 const APInt& BigValue = Big.Low->getValue(); 2140 2141 // Check that there is only one bit different. 2142 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2143 (SmallValue | BigValue) == BigValue) { 2144 // Isolate the common bit. 2145 APInt CommonBit = BigValue & ~SmallValue; 2146 assert((SmallValue | CommonBit) == BigValue && 2147 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2148 2149 SDValue CondLHS = getValue(SV); 2150 EVT VT = CondLHS.getValueType(); 2151 SDLoc DL = getCurSDLoc(); 2152 2153 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2154 DAG.getConstant(CommonBit, VT)); 2155 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2156 Or, DAG.getConstant(BigValue, VT), 2157 ISD::SETEQ); 2158 2159 // Update successor info. 2160 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2161 addSuccessorWithWeight(SwitchBB, Small.BB, 2162 Small.ExtraWeight + Big.ExtraWeight); 2163 addSuccessorWithWeight(SwitchBB, Default, 2164 // The default destination is the first successor in IR. 2165 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2166 2167 // Insert the true branch. 2168 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2169 getControlRoot(), Cond, 2170 DAG.getBasicBlock(Small.BB)); 2171 2172 // Insert the false branch. 2173 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2174 DAG.getBasicBlock(Default)); 2175 2176 DAG.setRoot(BrCond); 2177 return true; 2178 } 2179 } 2180 } 2181 2182 // Order cases by weight so the most likely case will be checked first. 2183 uint32_t UnhandledWeights = 0; 2184 if (BPI) { 2185 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2186 uint32_t IWeight = I->ExtraWeight; 2187 UnhandledWeights += IWeight; 2188 for (CaseItr J = CR.Range.first; J < I; ++J) { 2189 uint32_t JWeight = J->ExtraWeight; 2190 if (IWeight > JWeight) 2191 std::swap(*I, *J); 2192 } 2193 } 2194 } 2195 // Rearrange the case blocks so that the last one falls through if possible. 2196 Case &BackCase = *(CR.Range.second-1); 2197 if (Size > 1 && NextMBB && Default != NextMBB && BackCase.BB != NextMBB) { 2198 // The last case block won't fall through into 'NextMBB' if we emit the 2199 // branches in this order. See if rearranging a case value would help. 2200 // We start at the bottom as it's the case with the least weight. 2201 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2202 if (I->BB == NextMBB) { 2203 std::swap(*I, BackCase); 2204 break; 2205 } 2206 } 2207 2208 // Create a CaseBlock record representing a conditional branch to 2209 // the Case's target mbb if the value being switched on SV is equal 2210 // to C. 2211 MachineBasicBlock *CurBlock = CR.CaseBB; 2212 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2213 MachineBasicBlock *FallThrough; 2214 if (I != E-1) { 2215 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2216 CurMF->insert(BBI, FallThrough); 2217 2218 // Put SV in a virtual register to make it available from the new blocks. 2219 ExportFromCurrentBlock(SV); 2220 } else { 2221 // If the last case doesn't match, go to the default block. 2222 FallThrough = Default; 2223 } 2224 2225 const Value *RHS, *LHS, *MHS; 2226 ISD::CondCode CC; 2227 if (I->High == I->Low) { 2228 // This is just small small case range :) containing exactly 1 case 2229 CC = ISD::SETEQ; 2230 LHS = SV; RHS = I->High; MHS = nullptr; 2231 } else { 2232 CC = ISD::SETLE; 2233 LHS = I->Low; MHS = SV; RHS = I->High; 2234 } 2235 2236 // The false weight should be sum of all un-handled cases. 2237 UnhandledWeights -= I->ExtraWeight; 2238 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2239 /* me */ CurBlock, 2240 /* trueweight */ I->ExtraWeight, 2241 /* falseweight */ UnhandledWeights); 2242 2243 // If emitting the first comparison, just call visitSwitchCase to emit the 2244 // code into the current block. Otherwise, push the CaseBlock onto the 2245 // vector to be later processed by SDISel, and insert the node's MBB 2246 // before the next MBB. 2247 if (CurBlock == SwitchBB) 2248 visitSwitchCase(CB, SwitchBB); 2249 else 2250 SwitchCases.push_back(CB); 2251 2252 CurBlock = FallThrough; 2253 } 2254 2255 return true; 2256 } 2257 2258 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2259 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2260 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2261 } 2262 2263 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2264 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2265 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2266 return (LastExt - FirstExt + 1ULL); 2267 } 2268 2269 /// handleJTSwitchCase - Emit jumptable for current switch case range 2270 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2271 CaseRecVector &WorkList, 2272 const Value *SV, 2273 MachineBasicBlock *Default, 2274 MachineBasicBlock *SwitchBB) { 2275 Case& FrontCase = *CR.Range.first; 2276 Case& BackCase = *(CR.Range.second-1); 2277 2278 const APInt &First = FrontCase.Low->getValue(); 2279 const APInt &Last = BackCase.High->getValue(); 2280 2281 APInt TSize(First.getBitWidth(), 0); 2282 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2283 TSize += I->size(); 2284 2285 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2286 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2287 return false; 2288 2289 APInt Range = ComputeRange(First, Last); 2290 // The density is TSize / Range. Require at least 40%. 2291 // It should not be possible for IntTSize to saturate for sane code, but make 2292 // sure we handle Range saturation correctly. 2293 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2294 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2295 if (IntTSize * 10 < IntRange * 4) 2296 return false; 2297 2298 DEBUG(dbgs() << "Lowering jump table\n" 2299 << "First entry: " << First << ". Last entry: " << Last << '\n' 2300 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2301 2302 // Get the MachineFunction which holds the current MBB. This is used when 2303 // inserting any additional MBBs necessary to represent the switch. 2304 MachineFunction *CurMF = FuncInfo.MF; 2305 2306 // Figure out which block is immediately after the current one. 2307 MachineFunction::iterator BBI = CR.CaseBB; 2308 ++BBI; 2309 2310 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2311 2312 // Create a new basic block to hold the code for loading the address 2313 // of the jump table, and jumping to it. Update successor information; 2314 // we will either branch to the default case for the switch, or the jump 2315 // table. 2316 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2317 CurMF->insert(BBI, JumpTableBB); 2318 2319 addSuccessorWithWeight(CR.CaseBB, Default); 2320 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2321 2322 // Build a vector of destination BBs, corresponding to each target 2323 // of the jump table. If the value of the jump table slot corresponds to 2324 // a case statement, push the case's BB onto the vector, otherwise, push 2325 // the default BB. 2326 std::vector<MachineBasicBlock*> DestBBs; 2327 APInt TEI = First; 2328 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2329 const APInt &Low = I->Low->getValue(); 2330 const APInt &High = I->High->getValue(); 2331 2332 if (Low.sle(TEI) && TEI.sle(High)) { 2333 DestBBs.push_back(I->BB); 2334 if (TEI==High) 2335 ++I; 2336 } else { 2337 DestBBs.push_back(Default); 2338 } 2339 } 2340 2341 // Calculate weight for each unique destination in CR. 2342 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2343 if (FuncInfo.BPI) { 2344 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2345 DestWeights[I->BB] += I->ExtraWeight; 2346 } 2347 2348 // Update successor info. Add one edge to each unique successor. 2349 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2350 for (MachineBasicBlock *DestBB : DestBBs) { 2351 if (!SuccsHandled[DestBB->getNumber()]) { 2352 SuccsHandled[DestBB->getNumber()] = true; 2353 auto I = DestWeights.find(DestBB); 2354 addSuccessorWithWeight(JumpTableBB, DestBB, 2355 I != DestWeights.end() ? I->second : 0); 2356 } 2357 } 2358 2359 // Create a jump table index for this jump table. 2360 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2361 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2362 ->createJumpTableIndex(DestBBs); 2363 2364 // Set the jump table information so that we can codegen it as a second 2365 // MachineBasicBlock 2366 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2367 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2368 if (CR.CaseBB == SwitchBB) 2369 visitJumpTableHeader(JT, JTH, SwitchBB); 2370 2371 JTCases.push_back(JumpTableBlock(JTH, JT)); 2372 return true; 2373 } 2374 2375 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2376 /// 2 subtrees. 2377 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2378 CaseRecVector& WorkList, 2379 const Value* SV, 2380 MachineBasicBlock* SwitchBB) { 2381 Case& FrontCase = *CR.Range.first; 2382 Case& BackCase = *(CR.Range.second-1); 2383 2384 // Size is the number of Cases represented by this range. 2385 unsigned Size = CR.Range.second - CR.Range.first; 2386 2387 const APInt &First = FrontCase.Low->getValue(); 2388 const APInt &Last = BackCase.High->getValue(); 2389 double FMetric = 0; 2390 CaseItr Pivot = CR.Range.first + Size/2; 2391 2392 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2393 // (heuristically) allow us to emit JumpTable's later. 2394 APInt TSize(First.getBitWidth(), 0); 2395 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2396 I!=E; ++I) 2397 TSize += I->size(); 2398 2399 APInt LSize = FrontCase.size(); 2400 APInt RSize = TSize-LSize; 2401 DEBUG(dbgs() << "Selecting best pivot: \n" 2402 << "First: " << First << ", Last: " << Last <<'\n' 2403 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2404 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2405 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2406 J!=E; ++I, ++J) { 2407 const APInt &LEnd = I->High->getValue(); 2408 const APInt &RBegin = J->Low->getValue(); 2409 APInt Range = ComputeRange(LEnd, RBegin); 2410 assert((Range - 2ULL).isNonNegative() && 2411 "Invalid case distance"); 2412 // Use volatile double here to avoid excess precision issues on some hosts, 2413 // e.g. that use 80-bit X87 registers. 2414 // Only consider the density of sub-ranges that actually have sufficient 2415 // entries to be lowered as a jump table. 2416 volatile double LDensity = 2417 LSize.ult(TLI.getMinimumJumpTableEntries()) 2418 ? 0.0 2419 : LSize.roundToDouble() / (LEnd - First + 1ULL).roundToDouble(); 2420 volatile double RDensity = 2421 RSize.ult(TLI.getMinimumJumpTableEntries()) 2422 ? 0.0 2423 : RSize.roundToDouble() / (Last - RBegin + 1ULL).roundToDouble(); 2424 volatile double Metric = Range.logBase2() * (LDensity + RDensity); 2425 // Should always split in some non-trivial place 2426 DEBUG(dbgs() <<"=>Step\n" 2427 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2428 << "LDensity: " << LDensity 2429 << ", RDensity: " << RDensity << '\n' 2430 << "Metric: " << Metric << '\n'); 2431 if (FMetric < Metric) { 2432 Pivot = J; 2433 FMetric = Metric; 2434 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2435 } 2436 2437 LSize += J->size(); 2438 RSize -= J->size(); 2439 } 2440 2441 if (FMetric == 0 || !areJTsAllowed(TLI)) 2442 Pivot = CR.Range.first + Size/2; 2443 splitSwitchCase(CR, Pivot, WorkList, SV, SwitchBB); 2444 return true; 2445 } 2446 2447 void SelectionDAGBuilder::splitSwitchCase(CaseRec &CR, CaseItr Pivot, 2448 CaseRecVector &WorkList, 2449 const Value *SV, 2450 MachineBasicBlock *SwitchBB) { 2451 // Get the MachineFunction which holds the current MBB. This is used when 2452 // inserting any additional MBBs necessary to represent the switch. 2453 MachineFunction *CurMF = FuncInfo.MF; 2454 2455 // Figure out which block is immediately after the current one. 2456 MachineFunction::iterator BBI = CR.CaseBB; 2457 ++BBI; 2458 2459 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2460 2461 CaseRange LHSR(CR.Range.first, Pivot); 2462 CaseRange RHSR(Pivot, CR.Range.second); 2463 const ConstantInt *C = Pivot->Low; 2464 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2465 2466 // We know that we branch to the LHS if the Value being switched on is 2467 // less than the Pivot value, C. We use this to optimize our binary 2468 // tree a bit, by recognizing that if SV is greater than or equal to the 2469 // LHS's Case Value, and that Case Value is exactly one less than the 2470 // Pivot's Value, then we can branch directly to the LHS's Target, 2471 // rather than creating a leaf node for it. 2472 if ((LHSR.second - LHSR.first) == 1 && LHSR.first->High == CR.GE && 2473 C->getValue() == (CR.GE->getValue() + 1LL)) { 2474 TrueBB = LHSR.first->BB; 2475 } else { 2476 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2477 CurMF->insert(BBI, TrueBB); 2478 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2479 2480 // Put SV in a virtual register to make it available from the new blocks. 2481 ExportFromCurrentBlock(SV); 2482 } 2483 2484 // Similar to the optimization above, if the Value being switched on is 2485 // known to be less than the Constant CR.LT, and the current Case Value 2486 // is CR.LT - 1, then we can branch directly to the target block for 2487 // the current Case Value, rather than emitting a RHS leaf node for it. 2488 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2489 RHSR.first->Low->getValue() == (CR.LT->getValue() - 1LL)) { 2490 FalseBB = RHSR.first->BB; 2491 } else { 2492 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2493 CurMF->insert(BBI, FalseBB); 2494 WorkList.push_back(CaseRec(FalseBB, CR.LT, C, RHSR)); 2495 2496 // Put SV in a virtual register to make it available from the new blocks. 2497 ExportFromCurrentBlock(SV); 2498 } 2499 2500 // Create a CaseBlock record representing a conditional branch to 2501 // the LHS node if the value being switched on SV is less than C. 2502 // Otherwise, branch to LHS. 2503 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2504 2505 if (CR.CaseBB == SwitchBB) 2506 visitSwitchCase(CB, SwitchBB); 2507 else 2508 SwitchCases.push_back(CB); 2509 } 2510 2511 /// handleBitTestsSwitchCase - if current case range has few destination and 2512 /// range span less, than machine word bitwidth, encode case range into series 2513 /// of masks and emit bit tests with these masks. 2514 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2515 CaseRecVector& WorkList, 2516 const Value* SV, 2517 MachineBasicBlock* Default, 2518 MachineBasicBlock* SwitchBB) { 2519 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2520 EVT PTy = TLI.getPointerTy(); 2521 unsigned IntPtrBits = PTy.getSizeInBits(); 2522 2523 Case& FrontCase = *CR.Range.first; 2524 Case& BackCase = *(CR.Range.second-1); 2525 2526 // Get the MachineFunction which holds the current MBB. This is used when 2527 // inserting any additional MBBs necessary to represent the switch. 2528 MachineFunction *CurMF = FuncInfo.MF; 2529 2530 // If target does not have legal shift left, do not emit bit tests at all. 2531 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 2532 return false; 2533 2534 size_t numCmps = 0; 2535 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2536 // Single case counts one, case range - two. 2537 numCmps += (I->Low == I->High ? 1 : 2); 2538 } 2539 2540 // Count unique destinations 2541 SmallSet<MachineBasicBlock*, 4> Dests; 2542 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2543 Dests.insert(I->BB); 2544 if (Dests.size() > 3) 2545 // Don't bother the code below, if there are too much unique destinations 2546 return false; 2547 } 2548 DEBUG(dbgs() << "Total number of unique destinations: " 2549 << Dests.size() << '\n' 2550 << "Total number of comparisons: " << numCmps << '\n'); 2551 2552 // Compute span of values. 2553 const APInt& minValue = FrontCase.Low->getValue(); 2554 const APInt& maxValue = BackCase.High->getValue(); 2555 APInt cmpRange = maxValue - minValue; 2556 2557 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2558 << "Low bound: " << minValue << '\n' 2559 << "High bound: " << maxValue << '\n'); 2560 2561 if (cmpRange.uge(IntPtrBits) || 2562 (!(Dests.size() == 1 && numCmps >= 3) && 2563 !(Dests.size() == 2 && numCmps >= 5) && 2564 !(Dests.size() >= 3 && numCmps >= 6))) 2565 return false; 2566 2567 DEBUG(dbgs() << "Emitting bit tests\n"); 2568 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2569 2570 // Optimize the case where all the case values fit in a 2571 // word without having to subtract minValue. In this case, 2572 // we can optimize away the subtraction. 2573 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2574 cmpRange = maxValue; 2575 } else { 2576 lowBound = minValue; 2577 } 2578 2579 CaseBitsVector CasesBits; 2580 unsigned i, count = 0; 2581 2582 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2583 MachineBasicBlock* Dest = I->BB; 2584 for (i = 0; i < count; ++i) 2585 if (Dest == CasesBits[i].BB) 2586 break; 2587 2588 if (i == count) { 2589 assert((count < 3) && "Too much destinations to test!"); 2590 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2591 count++; 2592 } 2593 2594 const APInt& lowValue = I->Low->getValue(); 2595 const APInt& highValue = I->High->getValue(); 2596 2597 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2598 uint64_t hi = (highValue - lowBound).getZExtValue(); 2599 CasesBits[i].ExtraWeight += I->ExtraWeight; 2600 2601 for (uint64_t j = lo; j <= hi; j++) { 2602 CasesBits[i].Mask |= 1ULL << j; 2603 CasesBits[i].Bits++; 2604 } 2605 2606 } 2607 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2608 2609 BitTestInfo BTC; 2610 2611 // Figure out which block is immediately after the current one. 2612 MachineFunction::iterator BBI = CR.CaseBB; 2613 ++BBI; 2614 2615 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2616 2617 DEBUG(dbgs() << "Cases:\n"); 2618 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2619 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2620 << ", Bits: " << CasesBits[i].Bits 2621 << ", BB: " << CasesBits[i].BB << '\n'); 2622 2623 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2624 CurMF->insert(BBI, CaseBB); 2625 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2626 CaseBB, 2627 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2628 2629 // Put SV in a virtual register to make it available from the new blocks. 2630 ExportFromCurrentBlock(SV); 2631 } 2632 2633 BitTestBlock BTB(lowBound, cmpRange, SV, 2634 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2635 CR.CaseBB, Default, std::move(BTC)); 2636 2637 if (CR.CaseBB == SwitchBB) 2638 visitBitTestHeader(BTB, SwitchBB); 2639 2640 BitTestCases.push_back(std::move(BTB)); 2641 2642 return true; 2643 } 2644 2645 void SelectionDAGBuilder::Clusterify(CaseVector &Cases, const SwitchInst *SI) { 2646 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2647 2648 // Extract cases from the switch and sort them. 2649 typedef std::pair<const ConstantInt*, unsigned> CasePair; 2650 std::vector<CasePair> Sorted; 2651 Sorted.reserve(SI->getNumCases()); 2652 for (auto I : SI->cases()) 2653 Sorted.push_back(std::make_pair(I.getCaseValue(), I.getSuccessorIndex())); 2654 std::sort(Sorted.begin(), Sorted.end(), [](CasePair a, CasePair b) { 2655 return a.first->getValue().slt(b.first->getValue()); 2656 }); 2657 2658 // Merge adjacent cases with the same destination, build Cases vector. 2659 assert(Cases.empty() && "Cases should be empty before Clusterify;"); 2660 Cases.reserve(SI->getNumCases()); 2661 MachineBasicBlock *PreviousSucc = nullptr; 2662 for (CasePair &CP : Sorted) { 2663 const ConstantInt *CaseVal = CP.first; 2664 unsigned SuccIndex = CP.second; 2665 MachineBasicBlock *Succ = FuncInfo.MBBMap[SI->getSuccessor(SuccIndex)]; 2666 uint32_t Weight = BPI ? BPI->getEdgeWeight(SI->getParent(), SuccIndex) : 0; 2667 2668 if (PreviousSucc == Succ && 2669 (CaseVal->getValue() - Cases.back().High->getValue()) == 1) { 2670 // If this case has the same successor and is a neighbour, merge it into 2671 // the previous cluster. 2672 Cases.back().High = CaseVal; 2673 Cases.back().ExtraWeight += Weight; 2674 } else { 2675 Cases.push_back(Case(CaseVal, CaseVal, Succ, Weight)); 2676 } 2677 2678 PreviousSucc = Succ; 2679 } 2680 2681 DEBUG({ 2682 size_t numCmps = 0; 2683 for (auto &I : Cases) 2684 // A range counts double, since it requires two compares. 2685 numCmps += I.Low != I.High ? 2 : 1; 2686 2687 dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2688 << ". Total compares: " << numCmps << '\n'; 2689 }); 2690 } 2691 2692 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2693 MachineBasicBlock *Last) { 2694 // Update JTCases. 2695 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2696 if (JTCases[i].first.HeaderBB == First) 2697 JTCases[i].first.HeaderBB = Last; 2698 2699 // Update BitTestCases. 2700 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2701 if (BitTestCases[i].Parent == First) 2702 BitTestCases[i].Parent = Last; 2703 } 2704 2705 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2706 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2707 2708 // Create a vector of Cases, sorted so that we can efficiently create a binary 2709 // search tree from them. 2710 CaseVector Cases; 2711 Clusterify(Cases, &SI); 2712 2713 // Get the default destination MBB. 2714 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2715 2716 if (isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()) && 2717 !Cases.empty()) { 2718 // Replace an unreachable default destination with the most popular case 2719 // destination. 2720 DenseMap<const BasicBlock *, unsigned> Popularity; 2721 unsigned MaxPop = 0; 2722 const BasicBlock *MaxBB = nullptr; 2723 for (auto I : SI.cases()) { 2724 const BasicBlock *BB = I.getCaseSuccessor(); 2725 if (++Popularity[BB] > MaxPop) { 2726 MaxPop = Popularity[BB]; 2727 MaxBB = BB; 2728 } 2729 } 2730 2731 // Set new default. 2732 assert(MaxPop > 0); 2733 assert(MaxBB); 2734 Default = FuncInfo.MBBMap[MaxBB]; 2735 2736 // Remove cases that were pointing to the destination that is now the default. 2737 Cases.erase(std::remove_if(Cases.begin(), Cases.end(), 2738 [&](const Case &C) { return C.BB == Default; }), 2739 Cases.end()); 2740 } 2741 2742 // If there is only the default destination, go there directly. 2743 if (Cases.empty()) { 2744 // Update machine-CFG edges. 2745 SwitchMBB->addSuccessor(Default); 2746 2747 // If this is not a fall-through branch, emit the branch. 2748 if (Default != NextBlock(SwitchMBB)) { 2749 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2750 getControlRoot(), DAG.getBasicBlock(Default))); 2751 } 2752 return; 2753 } 2754 2755 // Get the Value to be switched on. 2756 const Value *SV = SI.getCondition(); 2757 2758 // Push the initial CaseRec onto the worklist 2759 CaseRecVector WorkList; 2760 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2761 CaseRange(Cases.begin(),Cases.end()))); 2762 2763 while (!WorkList.empty()) { 2764 // Grab a record representing a case range to process off the worklist 2765 CaseRec CR = WorkList.back(); 2766 WorkList.pop_back(); 2767 2768 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2769 continue; 2770 2771 // If the range has few cases (two or less) emit a series of specific 2772 // tests. 2773 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2774 continue; 2775 2776 // If the switch has more than N blocks, and is at least 40% dense, and the 2777 // target supports indirect branches, then emit a jump table rather than 2778 // lowering the switch to a binary tree of conditional branches. 2779 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2780 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2781 continue; 2782 2783 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2784 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2785 handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB); 2786 } 2787 } 2788 2789 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2790 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2791 2792 // Update machine-CFG edges with unique successors. 2793 SmallSet<BasicBlock*, 32> Done; 2794 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2795 BasicBlock *BB = I.getSuccessor(i); 2796 bool Inserted = Done.insert(BB).second; 2797 if (!Inserted) 2798 continue; 2799 2800 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2801 addSuccessorWithWeight(IndirectBrMBB, Succ); 2802 } 2803 2804 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2805 MVT::Other, getControlRoot(), 2806 getValue(I.getAddress()))); 2807 } 2808 2809 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2810 if (DAG.getTarget().Options.TrapUnreachable) 2811 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2812 } 2813 2814 void SelectionDAGBuilder::visitFSub(const User &I) { 2815 // -0.0 - X --> fneg 2816 Type *Ty = I.getType(); 2817 if (isa<Constant>(I.getOperand(0)) && 2818 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2819 SDValue Op2 = getValue(I.getOperand(1)); 2820 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2821 Op2.getValueType(), Op2)); 2822 return; 2823 } 2824 2825 visitBinary(I, ISD::FSUB); 2826 } 2827 2828 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2829 SDValue Op1 = getValue(I.getOperand(0)); 2830 SDValue Op2 = getValue(I.getOperand(1)); 2831 2832 bool nuw = false; 2833 bool nsw = false; 2834 bool exact = false; 2835 if (const OverflowingBinaryOperator *OFBinOp = 2836 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2837 nuw = OFBinOp->hasNoUnsignedWrap(); 2838 nsw = OFBinOp->hasNoSignedWrap(); 2839 } 2840 if (const PossiblyExactOperator *ExactOp = 2841 dyn_cast<const PossiblyExactOperator>(&I)) 2842 exact = ExactOp->isExact(); 2843 2844 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2845 Op1, Op2, nuw, nsw, exact); 2846 setValue(&I, BinNodeValue); 2847 } 2848 2849 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2850 SDValue Op1 = getValue(I.getOperand(0)); 2851 SDValue Op2 = getValue(I.getOperand(1)); 2852 2853 EVT ShiftTy = 2854 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2855 2856 // Coerce the shift amount to the right type if we can. 2857 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2858 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2859 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2860 SDLoc DL = getCurSDLoc(); 2861 2862 // If the operand is smaller than the shift count type, promote it. 2863 if (ShiftSize > Op2Size) 2864 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2865 2866 // If the operand is larger than the shift count type but the shift 2867 // count type has enough bits to represent any shift value, truncate 2868 // it now. This is a common case and it exposes the truncate to 2869 // optimization early. 2870 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2871 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2872 // Otherwise we'll need to temporarily settle for some other convenient 2873 // type. Type legalization will make adjustments once the shiftee is split. 2874 else 2875 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2876 } 2877 2878 bool nuw = false; 2879 bool nsw = false; 2880 bool exact = false; 2881 2882 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2883 2884 if (const OverflowingBinaryOperator *OFBinOp = 2885 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2886 nuw = OFBinOp->hasNoUnsignedWrap(); 2887 nsw = OFBinOp->hasNoSignedWrap(); 2888 } 2889 if (const PossiblyExactOperator *ExactOp = 2890 dyn_cast<const PossiblyExactOperator>(&I)) 2891 exact = ExactOp->isExact(); 2892 } 2893 2894 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2895 nuw, nsw, exact); 2896 setValue(&I, Res); 2897 } 2898 2899 void SelectionDAGBuilder::visitSDiv(const User &I) { 2900 SDValue Op1 = getValue(I.getOperand(0)); 2901 SDValue Op2 = getValue(I.getOperand(1)); 2902 2903 // Turn exact SDivs into multiplications. 2904 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2905 // exact bit. 2906 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2907 !isa<ConstantSDNode>(Op1) && 2908 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2909 setValue(&I, DAG.getTargetLoweringInfo() 2910 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2911 else 2912 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2913 Op1, Op2)); 2914 } 2915 2916 void SelectionDAGBuilder::visitICmp(const User &I) { 2917 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2918 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2919 predicate = IC->getPredicate(); 2920 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2921 predicate = ICmpInst::Predicate(IC->getPredicate()); 2922 SDValue Op1 = getValue(I.getOperand(0)); 2923 SDValue Op2 = getValue(I.getOperand(1)); 2924 ISD::CondCode Opcode = getICmpCondCode(predicate); 2925 2926 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2927 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2928 } 2929 2930 void SelectionDAGBuilder::visitFCmp(const User &I) { 2931 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2932 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2933 predicate = FC->getPredicate(); 2934 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2935 predicate = FCmpInst::Predicate(FC->getPredicate()); 2936 SDValue Op1 = getValue(I.getOperand(0)); 2937 SDValue Op2 = getValue(I.getOperand(1)); 2938 ISD::CondCode Condition = getFCmpCondCode(predicate); 2939 if (TM.Options.NoNaNsFPMath) 2940 Condition = getFCmpCodeWithoutNaN(Condition); 2941 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2942 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2943 } 2944 2945 void SelectionDAGBuilder::visitSelect(const User &I) { 2946 SmallVector<EVT, 4> ValueVTs; 2947 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2948 unsigned NumValues = ValueVTs.size(); 2949 if (NumValues == 0) return; 2950 2951 SmallVector<SDValue, 4> Values(NumValues); 2952 SDValue Cond = getValue(I.getOperand(0)); 2953 SDValue TrueVal = getValue(I.getOperand(1)); 2954 SDValue FalseVal = getValue(I.getOperand(2)); 2955 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2956 ISD::VSELECT : ISD::SELECT; 2957 2958 for (unsigned i = 0; i != NumValues; ++i) 2959 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2960 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2961 Cond, 2962 SDValue(TrueVal.getNode(), 2963 TrueVal.getResNo() + i), 2964 SDValue(FalseVal.getNode(), 2965 FalseVal.getResNo() + i)); 2966 2967 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2968 DAG.getVTList(ValueVTs), Values)); 2969 } 2970 2971 void SelectionDAGBuilder::visitTrunc(const User &I) { 2972 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2973 SDValue N = getValue(I.getOperand(0)); 2974 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2975 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2976 } 2977 2978 void SelectionDAGBuilder::visitZExt(const User &I) { 2979 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2980 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2981 SDValue N = getValue(I.getOperand(0)); 2982 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2983 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2984 } 2985 2986 void SelectionDAGBuilder::visitSExt(const User &I) { 2987 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2988 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2989 SDValue N = getValue(I.getOperand(0)); 2990 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2991 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2992 } 2993 2994 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2995 // FPTrunc is never a no-op cast, no need to check 2996 SDValue N = getValue(I.getOperand(0)); 2997 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2998 EVT DestVT = TLI.getValueType(I.getType()); 2999 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, 3000 DAG.getTargetConstant(0, TLI.getPointerTy()))); 3001 } 3002 3003 void SelectionDAGBuilder::visitFPExt(const User &I) { 3004 // FPExt is never a no-op cast, no need to check 3005 SDValue N = getValue(I.getOperand(0)); 3006 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3007 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3008 } 3009 3010 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3011 // FPToUI is never a no-op cast, no need to check 3012 SDValue N = getValue(I.getOperand(0)); 3013 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3014 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3015 } 3016 3017 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3018 // FPToSI is never a no-op cast, no need to check 3019 SDValue N = getValue(I.getOperand(0)); 3020 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3021 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3022 } 3023 3024 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3025 // UIToFP is never a no-op cast, no need to check 3026 SDValue N = getValue(I.getOperand(0)); 3027 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3028 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3029 } 3030 3031 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3032 // SIToFP is never a no-op cast, no need to check 3033 SDValue N = getValue(I.getOperand(0)); 3034 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3035 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3036 } 3037 3038 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3039 // What to do depends on the size of the integer and the size of the pointer. 3040 // We can either truncate, zero extend, or no-op, accordingly. 3041 SDValue N = getValue(I.getOperand(0)); 3042 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3043 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3044 } 3045 3046 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3047 // What to do depends on the size of the integer and the size of the pointer. 3048 // We can either truncate, zero extend, or no-op, accordingly. 3049 SDValue N = getValue(I.getOperand(0)); 3050 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3051 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3052 } 3053 3054 void SelectionDAGBuilder::visitBitCast(const User &I) { 3055 SDValue N = getValue(I.getOperand(0)); 3056 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3057 3058 // BitCast assures us that source and destination are the same size so this is 3059 // either a BITCAST or a no-op. 3060 if (DestVT != N.getValueType()) 3061 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3062 DestVT, N)); // convert types. 3063 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3064 // might fold any kind of constant expression to an integer constant and that 3065 // is not what we are looking for. Only regcognize a bitcast of a genuine 3066 // constant integer as an opaque constant. 3067 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3068 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3069 /*isOpaque*/true)); 3070 else 3071 setValue(&I, N); // noop cast. 3072 } 3073 3074 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3075 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3076 const Value *SV = I.getOperand(0); 3077 SDValue N = getValue(SV); 3078 EVT DestVT = TLI.getValueType(I.getType()); 3079 3080 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3081 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3082 3083 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3084 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3085 3086 setValue(&I, N); 3087 } 3088 3089 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3090 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3091 SDValue InVec = getValue(I.getOperand(0)); 3092 SDValue InVal = getValue(I.getOperand(1)); 3093 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3094 getCurSDLoc(), TLI.getVectorIdxTy()); 3095 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3096 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 3097 } 3098 3099 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3100 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3101 SDValue InVec = getValue(I.getOperand(0)); 3102 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3103 getCurSDLoc(), TLI.getVectorIdxTy()); 3104 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3105 TLI.getValueType(I.getType()), InVec, InIdx)); 3106 } 3107 3108 // Utility for visitShuffleVector - Return true if every element in Mask, 3109 // beginning from position Pos and ending in Pos+Size, falls within the 3110 // specified sequential range [L, L+Pos). or is undef. 3111 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3112 unsigned Pos, unsigned Size, int Low) { 3113 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3114 if (Mask[i] >= 0 && Mask[i] != Low) 3115 return false; 3116 return true; 3117 } 3118 3119 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3120 SDValue Src1 = getValue(I.getOperand(0)); 3121 SDValue Src2 = getValue(I.getOperand(1)); 3122 3123 SmallVector<int, 8> Mask; 3124 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3125 unsigned MaskNumElts = Mask.size(); 3126 3127 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3128 EVT VT = TLI.getValueType(I.getType()); 3129 EVT SrcVT = Src1.getValueType(); 3130 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3131 3132 if (SrcNumElts == MaskNumElts) { 3133 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3134 &Mask[0])); 3135 return; 3136 } 3137 3138 // Normalize the shuffle vector since mask and vector length don't match. 3139 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3140 // Mask is longer than the source vectors and is a multiple of the source 3141 // vectors. We can use concatenate vector to make the mask and vectors 3142 // lengths match. 3143 if (SrcNumElts*2 == MaskNumElts) { 3144 // First check for Src1 in low and Src2 in high 3145 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3146 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3147 // The shuffle is concatenating two vectors together. 3148 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3149 VT, Src1, Src2)); 3150 return; 3151 } 3152 // Then check for Src2 in low and Src1 in high 3153 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3154 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3155 // The shuffle is concatenating two vectors together. 3156 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3157 VT, Src2, Src1)); 3158 return; 3159 } 3160 } 3161 3162 // Pad both vectors with undefs to make them the same length as the mask. 3163 unsigned NumConcat = MaskNumElts / SrcNumElts; 3164 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3165 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3166 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3167 3168 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3169 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3170 MOps1[0] = Src1; 3171 MOps2[0] = Src2; 3172 3173 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3174 getCurSDLoc(), VT, MOps1); 3175 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3176 getCurSDLoc(), VT, MOps2); 3177 3178 // Readjust mask for new input vector length. 3179 SmallVector<int, 8> MappedOps; 3180 for (unsigned i = 0; i != MaskNumElts; ++i) { 3181 int Idx = Mask[i]; 3182 if (Idx >= (int)SrcNumElts) 3183 Idx -= SrcNumElts - MaskNumElts; 3184 MappedOps.push_back(Idx); 3185 } 3186 3187 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3188 &MappedOps[0])); 3189 return; 3190 } 3191 3192 if (SrcNumElts > MaskNumElts) { 3193 // Analyze the access pattern of the vector to see if we can extract 3194 // two subvectors and do the shuffle. The analysis is done by calculating 3195 // the range of elements the mask access on both vectors. 3196 int MinRange[2] = { static_cast<int>(SrcNumElts), 3197 static_cast<int>(SrcNumElts)}; 3198 int MaxRange[2] = {-1, -1}; 3199 3200 for (unsigned i = 0; i != MaskNumElts; ++i) { 3201 int Idx = Mask[i]; 3202 unsigned Input = 0; 3203 if (Idx < 0) 3204 continue; 3205 3206 if (Idx >= (int)SrcNumElts) { 3207 Input = 1; 3208 Idx -= SrcNumElts; 3209 } 3210 if (Idx > MaxRange[Input]) 3211 MaxRange[Input] = Idx; 3212 if (Idx < MinRange[Input]) 3213 MinRange[Input] = Idx; 3214 } 3215 3216 // Check if the access is smaller than the vector size and can we find 3217 // a reasonable extract index. 3218 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3219 // Extract. 3220 int StartIdx[2]; // StartIdx to extract from 3221 for (unsigned Input = 0; Input < 2; ++Input) { 3222 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3223 RangeUse[Input] = 0; // Unused 3224 StartIdx[Input] = 0; 3225 continue; 3226 } 3227 3228 // Find a good start index that is a multiple of the mask length. Then 3229 // see if the rest of the elements are in range. 3230 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3231 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3232 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3233 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3234 } 3235 3236 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3237 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3238 return; 3239 } 3240 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3241 // Extract appropriate subvector and generate a vector shuffle 3242 for (unsigned Input = 0; Input < 2; ++Input) { 3243 SDValue &Src = Input == 0 ? Src1 : Src2; 3244 if (RangeUse[Input] == 0) 3245 Src = DAG.getUNDEF(VT); 3246 else 3247 Src = DAG.getNode( 3248 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, 3249 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy())); 3250 } 3251 3252 // Calculate new mask. 3253 SmallVector<int, 8> MappedOps; 3254 for (unsigned i = 0; i != MaskNumElts; ++i) { 3255 int Idx = Mask[i]; 3256 if (Idx >= 0) { 3257 if (Idx < (int)SrcNumElts) 3258 Idx -= StartIdx[0]; 3259 else 3260 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3261 } 3262 MappedOps.push_back(Idx); 3263 } 3264 3265 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3266 &MappedOps[0])); 3267 return; 3268 } 3269 } 3270 3271 // We can't use either concat vectors or extract subvectors so fall back to 3272 // replacing the shuffle with extract and build vector. 3273 // to insert and build vector. 3274 EVT EltVT = VT.getVectorElementType(); 3275 EVT IdxVT = TLI.getVectorIdxTy(); 3276 SmallVector<SDValue,8> Ops; 3277 for (unsigned i = 0; i != MaskNumElts; ++i) { 3278 int Idx = Mask[i]; 3279 SDValue Res; 3280 3281 if (Idx < 0) { 3282 Res = DAG.getUNDEF(EltVT); 3283 } else { 3284 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3285 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3286 3287 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3288 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3289 } 3290 3291 Ops.push_back(Res); 3292 } 3293 3294 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3295 } 3296 3297 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3298 const Value *Op0 = I.getOperand(0); 3299 const Value *Op1 = I.getOperand(1); 3300 Type *AggTy = I.getType(); 3301 Type *ValTy = Op1->getType(); 3302 bool IntoUndef = isa<UndefValue>(Op0); 3303 bool FromUndef = isa<UndefValue>(Op1); 3304 3305 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3306 3307 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3308 SmallVector<EVT, 4> AggValueVTs; 3309 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3310 SmallVector<EVT, 4> ValValueVTs; 3311 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3312 3313 unsigned NumAggValues = AggValueVTs.size(); 3314 unsigned NumValValues = ValValueVTs.size(); 3315 SmallVector<SDValue, 4> Values(NumAggValues); 3316 3317 // Ignore an insertvalue that produces an empty object 3318 if (!NumAggValues) { 3319 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3320 return; 3321 } 3322 3323 SDValue Agg = getValue(Op0); 3324 unsigned i = 0; 3325 // Copy the beginning value(s) from the original aggregate. 3326 for (; i != LinearIndex; ++i) 3327 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3328 SDValue(Agg.getNode(), Agg.getResNo() + i); 3329 // Copy values from the inserted value(s). 3330 if (NumValValues) { 3331 SDValue Val = getValue(Op1); 3332 for (; i != LinearIndex + NumValValues; ++i) 3333 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3334 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3335 } 3336 // Copy remaining value(s) from the original aggregate. 3337 for (; i != NumAggValues; ++i) 3338 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3339 SDValue(Agg.getNode(), Agg.getResNo() + i); 3340 3341 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3342 DAG.getVTList(AggValueVTs), Values)); 3343 } 3344 3345 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3346 const Value *Op0 = I.getOperand(0); 3347 Type *AggTy = Op0->getType(); 3348 Type *ValTy = I.getType(); 3349 bool OutOfUndef = isa<UndefValue>(Op0); 3350 3351 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3352 3353 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3354 SmallVector<EVT, 4> ValValueVTs; 3355 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3356 3357 unsigned NumValValues = ValValueVTs.size(); 3358 3359 // Ignore a extractvalue that produces an empty object 3360 if (!NumValValues) { 3361 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3362 return; 3363 } 3364 3365 SmallVector<SDValue, 4> Values(NumValValues); 3366 3367 SDValue Agg = getValue(Op0); 3368 // Copy out the selected value(s). 3369 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3370 Values[i - LinearIndex] = 3371 OutOfUndef ? 3372 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3373 SDValue(Agg.getNode(), Agg.getResNo() + i); 3374 3375 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3376 DAG.getVTList(ValValueVTs), Values)); 3377 } 3378 3379 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3380 Value *Op0 = I.getOperand(0); 3381 // Note that the pointer operand may be a vector of pointers. Take the scalar 3382 // element which holds a pointer. 3383 Type *Ty = Op0->getType()->getScalarType(); 3384 unsigned AS = Ty->getPointerAddressSpace(); 3385 SDValue N = getValue(Op0); 3386 3387 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3388 OI != E; ++OI) { 3389 const Value *Idx = *OI; 3390 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3391 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3392 if (Field) { 3393 // N = N + Offset 3394 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3395 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3396 DAG.getConstant(Offset, N.getValueType())); 3397 } 3398 3399 Ty = StTy->getElementType(Field); 3400 } else { 3401 Ty = cast<SequentialType>(Ty)->getElementType(); 3402 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 3403 unsigned PtrSize = PtrTy.getSizeInBits(); 3404 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 3405 3406 // If this is a constant subscript, handle it quickly. 3407 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 3408 if (CI->isZero()) 3409 continue; 3410 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3411 SDValue OffsVal = DAG.getConstant(Offs, PtrTy); 3412 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, OffsVal); 3413 continue; 3414 } 3415 3416 // N = N + Idx * ElementSize; 3417 SDValue IdxN = getValue(Idx); 3418 3419 // If the index is smaller or larger than intptr_t, truncate or extend 3420 // it. 3421 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3422 3423 // If this is a multiply by a power of two, turn it into a shl 3424 // immediately. This is a very common case. 3425 if (ElementSize != 1) { 3426 if (ElementSize.isPowerOf2()) { 3427 unsigned Amt = ElementSize.logBase2(); 3428 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3429 N.getValueType(), IdxN, 3430 DAG.getConstant(Amt, IdxN.getValueType())); 3431 } else { 3432 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3433 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3434 N.getValueType(), IdxN, Scale); 3435 } 3436 } 3437 3438 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3439 N.getValueType(), N, IdxN); 3440 } 3441 } 3442 3443 setValue(&I, N); 3444 } 3445 3446 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3447 // If this is a fixed sized alloca in the entry block of the function, 3448 // allocate it statically on the stack. 3449 if (FuncInfo.StaticAllocaMap.count(&I)) 3450 return; // getValue will auto-populate this. 3451 3452 Type *Ty = I.getAllocatedType(); 3453 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3454 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3455 unsigned Align = 3456 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3457 I.getAlignment()); 3458 3459 SDValue AllocSize = getValue(I.getArraySize()); 3460 3461 EVT IntPtr = TLI.getPointerTy(); 3462 if (AllocSize.getValueType() != IntPtr) 3463 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3464 3465 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3466 AllocSize, 3467 DAG.getConstant(TySize, IntPtr)); 3468 3469 // Handle alignment. If the requested alignment is less than or equal to 3470 // the stack alignment, ignore it. If the size is greater than or equal to 3471 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3472 unsigned StackAlign = 3473 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3474 if (Align <= StackAlign) 3475 Align = 0; 3476 3477 // Round the size of the allocation up to the stack alignment size 3478 // by add SA-1 to the size. 3479 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3480 AllocSize.getValueType(), AllocSize, 3481 DAG.getIntPtrConstant(StackAlign-1)); 3482 3483 // Mask out the low bits for alignment purposes. 3484 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3485 AllocSize.getValueType(), AllocSize, 3486 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3487 3488 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3489 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3490 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3491 setValue(&I, DSA); 3492 DAG.setRoot(DSA.getValue(1)); 3493 3494 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3495 } 3496 3497 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3498 if (I.isAtomic()) 3499 return visitAtomicLoad(I); 3500 3501 const Value *SV = I.getOperand(0); 3502 SDValue Ptr = getValue(SV); 3503 3504 Type *Ty = I.getType(); 3505 3506 bool isVolatile = I.isVolatile(); 3507 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3508 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3509 unsigned Alignment = I.getAlignment(); 3510 3511 AAMDNodes AAInfo; 3512 I.getAAMetadata(AAInfo); 3513 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3514 3515 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3516 SmallVector<EVT, 4> ValueVTs; 3517 SmallVector<uint64_t, 4> Offsets; 3518 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3519 unsigned NumValues = ValueVTs.size(); 3520 if (NumValues == 0) 3521 return; 3522 3523 SDValue Root; 3524 bool ConstantMemory = false; 3525 if (isVolatile || NumValues > MaxParallelChains) 3526 // Serialize volatile loads with other side effects. 3527 Root = getRoot(); 3528 else if (AA->pointsToConstantMemory( 3529 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3530 // Do not serialize (non-volatile) loads of constant memory with anything. 3531 Root = DAG.getEntryNode(); 3532 ConstantMemory = true; 3533 } else { 3534 // Do not serialize non-volatile loads against each other. 3535 Root = DAG.getRoot(); 3536 } 3537 3538 if (isVolatile) 3539 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3540 3541 SmallVector<SDValue, 4> Values(NumValues); 3542 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3543 NumValues)); 3544 EVT PtrVT = Ptr.getValueType(); 3545 unsigned ChainI = 0; 3546 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3547 // Serializing loads here may result in excessive register pressure, and 3548 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3549 // could recover a bit by hoisting nodes upward in the chain by recognizing 3550 // they are side-effect free or do not alias. The optimizer should really 3551 // avoid this case by converting large object/array copies to llvm.memcpy 3552 // (MaxParallelChains should always remain as failsafe). 3553 if (ChainI == MaxParallelChains) { 3554 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3555 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3556 makeArrayRef(Chains.data(), ChainI)); 3557 Root = Chain; 3558 ChainI = 0; 3559 } 3560 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3561 PtrVT, Ptr, 3562 DAG.getConstant(Offsets[i], PtrVT)); 3563 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3564 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3565 isNonTemporal, isInvariant, Alignment, AAInfo, 3566 Ranges); 3567 3568 Values[i] = L; 3569 Chains[ChainI] = L.getValue(1); 3570 } 3571 3572 if (!ConstantMemory) { 3573 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3574 makeArrayRef(Chains.data(), ChainI)); 3575 if (isVolatile) 3576 DAG.setRoot(Chain); 3577 else 3578 PendingLoads.push_back(Chain); 3579 } 3580 3581 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3582 DAG.getVTList(ValueVTs), Values)); 3583 } 3584 3585 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3586 if (I.isAtomic()) 3587 return visitAtomicStore(I); 3588 3589 const Value *SrcV = I.getOperand(0); 3590 const Value *PtrV = I.getOperand(1); 3591 3592 SmallVector<EVT, 4> ValueVTs; 3593 SmallVector<uint64_t, 4> Offsets; 3594 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 3595 ValueVTs, &Offsets); 3596 unsigned NumValues = ValueVTs.size(); 3597 if (NumValues == 0) 3598 return; 3599 3600 // Get the lowered operands. Note that we do this after 3601 // checking if NumResults is zero, because with zero results 3602 // the operands won't have values in the map. 3603 SDValue Src = getValue(SrcV); 3604 SDValue Ptr = getValue(PtrV); 3605 3606 SDValue Root = getRoot(); 3607 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3608 NumValues)); 3609 EVT PtrVT = Ptr.getValueType(); 3610 bool isVolatile = I.isVolatile(); 3611 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3612 unsigned Alignment = I.getAlignment(); 3613 3614 AAMDNodes AAInfo; 3615 I.getAAMetadata(AAInfo); 3616 3617 unsigned ChainI = 0; 3618 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3619 // See visitLoad comments. 3620 if (ChainI == MaxParallelChains) { 3621 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3622 makeArrayRef(Chains.data(), ChainI)); 3623 Root = Chain; 3624 ChainI = 0; 3625 } 3626 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3627 DAG.getConstant(Offsets[i], PtrVT)); 3628 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3629 SDValue(Src.getNode(), Src.getResNo() + i), 3630 Add, MachinePointerInfo(PtrV, Offsets[i]), 3631 isVolatile, isNonTemporal, Alignment, AAInfo); 3632 Chains[ChainI] = St; 3633 } 3634 3635 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3636 makeArrayRef(Chains.data(), ChainI)); 3637 DAG.setRoot(StoreNode); 3638 } 3639 3640 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3641 SDLoc sdl = getCurSDLoc(); 3642 3643 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3644 Value *PtrOperand = I.getArgOperand(1); 3645 SDValue Ptr = getValue(PtrOperand); 3646 SDValue Src0 = getValue(I.getArgOperand(0)); 3647 SDValue Mask = getValue(I.getArgOperand(3)); 3648 EVT VT = Src0.getValueType(); 3649 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3650 if (!Alignment) 3651 Alignment = DAG.getEVTAlignment(VT); 3652 3653 AAMDNodes AAInfo; 3654 I.getAAMetadata(AAInfo); 3655 3656 MachineMemOperand *MMO = 3657 DAG.getMachineFunction(). 3658 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3659 MachineMemOperand::MOStore, VT.getStoreSize(), 3660 Alignment, AAInfo); 3661 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3662 MMO, false); 3663 DAG.setRoot(StoreNode); 3664 setValue(&I, StoreNode); 3665 } 3666 3667 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3668 SDLoc sdl = getCurSDLoc(); 3669 3670 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3671 Value *PtrOperand = I.getArgOperand(0); 3672 SDValue Ptr = getValue(PtrOperand); 3673 SDValue Src0 = getValue(I.getArgOperand(3)); 3674 SDValue Mask = getValue(I.getArgOperand(2)); 3675 3676 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3677 EVT VT = TLI.getValueType(I.getType()); 3678 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3679 if (!Alignment) 3680 Alignment = DAG.getEVTAlignment(VT); 3681 3682 AAMDNodes AAInfo; 3683 I.getAAMetadata(AAInfo); 3684 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3685 3686 SDValue InChain = DAG.getRoot(); 3687 if (AA->pointsToConstantMemory( 3688 AliasAnalysis::Location(PtrOperand, 3689 AA->getTypeStoreSize(I.getType()), 3690 AAInfo))) { 3691 // Do not serialize (non-volatile) loads of constant memory with anything. 3692 InChain = DAG.getEntryNode(); 3693 } 3694 3695 MachineMemOperand *MMO = 3696 DAG.getMachineFunction(). 3697 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3698 MachineMemOperand::MOLoad, VT.getStoreSize(), 3699 Alignment, AAInfo, Ranges); 3700 3701 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3702 ISD::NON_EXTLOAD); 3703 SDValue OutChain = Load.getValue(1); 3704 DAG.setRoot(OutChain); 3705 setValue(&I, Load); 3706 } 3707 3708 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3709 SDLoc dl = getCurSDLoc(); 3710 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3711 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3712 SynchronizationScope Scope = I.getSynchScope(); 3713 3714 SDValue InChain = getRoot(); 3715 3716 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3717 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3718 SDValue L = DAG.getAtomicCmpSwap( 3719 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3720 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3721 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3722 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3723 3724 SDValue OutChain = L.getValue(2); 3725 3726 setValue(&I, L); 3727 DAG.setRoot(OutChain); 3728 } 3729 3730 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3731 SDLoc dl = getCurSDLoc(); 3732 ISD::NodeType NT; 3733 switch (I.getOperation()) { 3734 default: llvm_unreachable("Unknown atomicrmw operation"); 3735 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3736 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3737 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3738 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3739 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3740 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3741 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3742 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3743 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3744 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3745 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3746 } 3747 AtomicOrdering Order = I.getOrdering(); 3748 SynchronizationScope Scope = I.getSynchScope(); 3749 3750 SDValue InChain = getRoot(); 3751 3752 SDValue L = 3753 DAG.getAtomic(NT, dl, 3754 getValue(I.getValOperand()).getSimpleValueType(), 3755 InChain, 3756 getValue(I.getPointerOperand()), 3757 getValue(I.getValOperand()), 3758 I.getPointerOperand(), 3759 /* Alignment=*/ 0, Order, Scope); 3760 3761 SDValue OutChain = L.getValue(1); 3762 3763 setValue(&I, L); 3764 DAG.setRoot(OutChain); 3765 } 3766 3767 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3768 SDLoc dl = getCurSDLoc(); 3769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3770 SDValue Ops[3]; 3771 Ops[0] = getRoot(); 3772 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3773 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3774 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3775 } 3776 3777 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3778 SDLoc dl = getCurSDLoc(); 3779 AtomicOrdering Order = I.getOrdering(); 3780 SynchronizationScope Scope = I.getSynchScope(); 3781 3782 SDValue InChain = getRoot(); 3783 3784 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3785 EVT VT = TLI.getValueType(I.getType()); 3786 3787 if (I.getAlignment() < VT.getSizeInBits() / 8) 3788 report_fatal_error("Cannot generate unaligned atomic load"); 3789 3790 MachineMemOperand *MMO = 3791 DAG.getMachineFunction(). 3792 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3793 MachineMemOperand::MOVolatile | 3794 MachineMemOperand::MOLoad, 3795 VT.getStoreSize(), 3796 I.getAlignment() ? I.getAlignment() : 3797 DAG.getEVTAlignment(VT)); 3798 3799 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3800 SDValue L = 3801 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3802 getValue(I.getPointerOperand()), MMO, 3803 Order, Scope); 3804 3805 SDValue OutChain = L.getValue(1); 3806 3807 setValue(&I, L); 3808 DAG.setRoot(OutChain); 3809 } 3810 3811 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3812 SDLoc dl = getCurSDLoc(); 3813 3814 AtomicOrdering Order = I.getOrdering(); 3815 SynchronizationScope Scope = I.getSynchScope(); 3816 3817 SDValue InChain = getRoot(); 3818 3819 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3820 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3821 3822 if (I.getAlignment() < VT.getSizeInBits() / 8) 3823 report_fatal_error("Cannot generate unaligned atomic store"); 3824 3825 SDValue OutChain = 3826 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3827 InChain, 3828 getValue(I.getPointerOperand()), 3829 getValue(I.getValueOperand()), 3830 I.getPointerOperand(), I.getAlignment(), 3831 Order, Scope); 3832 3833 DAG.setRoot(OutChain); 3834 } 3835 3836 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3837 /// node. 3838 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3839 unsigned Intrinsic) { 3840 bool HasChain = !I.doesNotAccessMemory(); 3841 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3842 3843 // Build the operand list. 3844 SmallVector<SDValue, 8> Ops; 3845 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3846 if (OnlyLoad) { 3847 // We don't need to serialize loads against other loads. 3848 Ops.push_back(DAG.getRoot()); 3849 } else { 3850 Ops.push_back(getRoot()); 3851 } 3852 } 3853 3854 // Info is set by getTgtMemInstrinsic 3855 TargetLowering::IntrinsicInfo Info; 3856 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3857 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3858 3859 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3860 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3861 Info.opc == ISD::INTRINSIC_W_CHAIN) 3862 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3863 3864 // Add all operands of the call to the operand list. 3865 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3866 SDValue Op = getValue(I.getArgOperand(i)); 3867 Ops.push_back(Op); 3868 } 3869 3870 SmallVector<EVT, 4> ValueVTs; 3871 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3872 3873 if (HasChain) 3874 ValueVTs.push_back(MVT::Other); 3875 3876 SDVTList VTs = DAG.getVTList(ValueVTs); 3877 3878 // Create the node. 3879 SDValue Result; 3880 if (IsTgtIntrinsic) { 3881 // This is target intrinsic that touches memory 3882 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3883 VTs, Ops, Info.memVT, 3884 MachinePointerInfo(Info.ptrVal, Info.offset), 3885 Info.align, Info.vol, 3886 Info.readMem, Info.writeMem, Info.size); 3887 } else if (!HasChain) { 3888 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3889 } else if (!I.getType()->isVoidTy()) { 3890 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3891 } else { 3892 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3893 } 3894 3895 if (HasChain) { 3896 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3897 if (OnlyLoad) 3898 PendingLoads.push_back(Chain); 3899 else 3900 DAG.setRoot(Chain); 3901 } 3902 3903 if (!I.getType()->isVoidTy()) { 3904 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3905 EVT VT = TLI.getValueType(PTy); 3906 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3907 } 3908 3909 setValue(&I, Result); 3910 } 3911 } 3912 3913 /// GetSignificand - Get the significand and build it into a floating-point 3914 /// number with exponent of 1: 3915 /// 3916 /// Op = (Op & 0x007fffff) | 0x3f800000; 3917 /// 3918 /// where Op is the hexadecimal representation of floating point value. 3919 static SDValue 3920 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3921 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3922 DAG.getConstant(0x007fffff, MVT::i32)); 3923 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3924 DAG.getConstant(0x3f800000, MVT::i32)); 3925 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3926 } 3927 3928 /// GetExponent - Get the exponent: 3929 /// 3930 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3931 /// 3932 /// where Op is the hexadecimal representation of floating point value. 3933 static SDValue 3934 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3935 SDLoc dl) { 3936 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3937 DAG.getConstant(0x7f800000, MVT::i32)); 3938 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3939 DAG.getConstant(23, TLI.getPointerTy())); 3940 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3941 DAG.getConstant(127, MVT::i32)); 3942 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3943 } 3944 3945 /// getF32Constant - Get 32-bit floating point constant. 3946 static SDValue 3947 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3948 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3949 MVT::f32); 3950 } 3951 3952 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3953 SelectionDAG &DAG) { 3954 // IntegerPartOfX = ((int32_t)(t0); 3955 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3956 3957 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3958 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3959 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3960 3961 // IntegerPartOfX <<= 23; 3962 IntegerPartOfX = DAG.getNode( 3963 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3964 DAG.getConstant(23, DAG.getTargetLoweringInfo().getPointerTy())); 3965 3966 SDValue TwoToFractionalPartOfX; 3967 if (LimitFloatPrecision <= 6) { 3968 // For floating-point precision of 6: 3969 // 3970 // TwoToFractionalPartOfX = 3971 // 0.997535578f + 3972 // (0.735607626f + 0.252464424f * x) * x; 3973 // 3974 // error 0.0144103317, which is 6 bits 3975 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3976 getF32Constant(DAG, 0x3e814304)); 3977 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3978 getF32Constant(DAG, 0x3f3c50c8)); 3979 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3980 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3981 getF32Constant(DAG, 0x3f7f5e7e)); 3982 } else if (LimitFloatPrecision <= 12) { 3983 // For floating-point precision of 12: 3984 // 3985 // TwoToFractionalPartOfX = 3986 // 0.999892986f + 3987 // (0.696457318f + 3988 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3989 // 3990 // error 0.000107046256, which is 13 to 14 bits 3991 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3992 getF32Constant(DAG, 0x3da235e3)); 3993 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3994 getF32Constant(DAG, 0x3e65b8f3)); 3995 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3996 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3997 getF32Constant(DAG, 0x3f324b07)); 3998 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3999 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4000 getF32Constant(DAG, 0x3f7ff8fd)); 4001 } else { // LimitFloatPrecision <= 18 4002 // For floating-point precision of 18: 4003 // 4004 // TwoToFractionalPartOfX = 4005 // 0.999999982f + 4006 // (0.693148872f + 4007 // (0.240227044f + 4008 // (0.554906021e-1f + 4009 // (0.961591928e-2f + 4010 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4011 // error 2.47208000*10^(-7), which is better than 18 bits 4012 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4013 getF32Constant(DAG, 0x3924b03e)); 4014 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4015 getF32Constant(DAG, 0x3ab24b87)); 4016 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4017 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4018 getF32Constant(DAG, 0x3c1d8c17)); 4019 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4020 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4021 getF32Constant(DAG, 0x3d634a1d)); 4022 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4023 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4024 getF32Constant(DAG, 0x3e75fe14)); 4025 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4026 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4027 getF32Constant(DAG, 0x3f317234)); 4028 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4029 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4030 getF32Constant(DAG, 0x3f800000)); 4031 } 4032 4033 // Add the exponent into the result in integer domain. 4034 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4035 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4036 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4037 } 4038 4039 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4040 /// limited-precision mode. 4041 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4042 const TargetLowering &TLI) { 4043 if (Op.getValueType() == MVT::f32 && 4044 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4045 4046 // Put the exponent in the right bit position for later addition to the 4047 // final result: 4048 // 4049 // #define LOG2OFe 1.4426950f 4050 // t0 = Op * LOG2OFe 4051 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4052 getF32Constant(DAG, 0x3fb8aa3b)); 4053 return getLimitedPrecisionExp2(t0, dl, DAG); 4054 } 4055 4056 // No special expansion. 4057 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4058 } 4059 4060 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4061 /// limited-precision mode. 4062 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4063 const TargetLowering &TLI) { 4064 if (Op.getValueType() == MVT::f32 && 4065 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4066 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4067 4068 // Scale the exponent by log(2) [0.69314718f]. 4069 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4070 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4071 getF32Constant(DAG, 0x3f317218)); 4072 4073 // Get the significand and build it into a floating-point number with 4074 // exponent of 1. 4075 SDValue X = GetSignificand(DAG, Op1, dl); 4076 4077 SDValue LogOfMantissa; 4078 if (LimitFloatPrecision <= 6) { 4079 // For floating-point precision of 6: 4080 // 4081 // LogofMantissa = 4082 // -1.1609546f + 4083 // (1.4034025f - 0.23903021f * x) * x; 4084 // 4085 // error 0.0034276066, which is better than 8 bits 4086 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4087 getF32Constant(DAG, 0xbe74c456)); 4088 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4089 getF32Constant(DAG, 0x3fb3a2b1)); 4090 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4091 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4092 getF32Constant(DAG, 0x3f949a29)); 4093 } else if (LimitFloatPrecision <= 12) { 4094 // For floating-point precision of 12: 4095 // 4096 // LogOfMantissa = 4097 // -1.7417939f + 4098 // (2.8212026f + 4099 // (-1.4699568f + 4100 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4101 // 4102 // error 0.000061011436, which is 14 bits 4103 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4104 getF32Constant(DAG, 0xbd67b6d6)); 4105 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4106 getF32Constant(DAG, 0x3ee4f4b8)); 4107 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4108 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4109 getF32Constant(DAG, 0x3fbc278b)); 4110 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4111 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4112 getF32Constant(DAG, 0x40348e95)); 4113 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4114 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4115 getF32Constant(DAG, 0x3fdef31a)); 4116 } else { // LimitFloatPrecision <= 18 4117 // For floating-point precision of 18: 4118 // 4119 // LogOfMantissa = 4120 // -2.1072184f + 4121 // (4.2372794f + 4122 // (-3.7029485f + 4123 // (2.2781945f + 4124 // (-0.87823314f + 4125 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4126 // 4127 // error 0.0000023660568, which is better than 18 bits 4128 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4129 getF32Constant(DAG, 0xbc91e5ac)); 4130 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4131 getF32Constant(DAG, 0x3e4350aa)); 4132 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4133 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4134 getF32Constant(DAG, 0x3f60d3e3)); 4135 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4136 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4137 getF32Constant(DAG, 0x4011cdf0)); 4138 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4139 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4140 getF32Constant(DAG, 0x406cfd1c)); 4141 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4142 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4143 getF32Constant(DAG, 0x408797cb)); 4144 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4145 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4146 getF32Constant(DAG, 0x4006dcab)); 4147 } 4148 4149 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4150 } 4151 4152 // No special expansion. 4153 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4154 } 4155 4156 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4157 /// limited-precision mode. 4158 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4159 const TargetLowering &TLI) { 4160 if (Op.getValueType() == MVT::f32 && 4161 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4162 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4163 4164 // Get the exponent. 4165 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4166 4167 // Get the significand and build it into a floating-point number with 4168 // exponent of 1. 4169 SDValue X = GetSignificand(DAG, Op1, dl); 4170 4171 // Different possible minimax approximations of significand in 4172 // floating-point for various degrees of accuracy over [1,2]. 4173 SDValue Log2ofMantissa; 4174 if (LimitFloatPrecision <= 6) { 4175 // For floating-point precision of 6: 4176 // 4177 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4178 // 4179 // error 0.0049451742, which is more than 7 bits 4180 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4181 getF32Constant(DAG, 0xbeb08fe0)); 4182 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4183 getF32Constant(DAG, 0x40019463)); 4184 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4185 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4186 getF32Constant(DAG, 0x3fd6633d)); 4187 } else if (LimitFloatPrecision <= 12) { 4188 // For floating-point precision of 12: 4189 // 4190 // Log2ofMantissa = 4191 // -2.51285454f + 4192 // (4.07009056f + 4193 // (-2.12067489f + 4194 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4195 // 4196 // error 0.0000876136000, which is better than 13 bits 4197 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4198 getF32Constant(DAG, 0xbda7262e)); 4199 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4200 getF32Constant(DAG, 0x3f25280b)); 4201 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4202 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4203 getF32Constant(DAG, 0x4007b923)); 4204 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4205 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4206 getF32Constant(DAG, 0x40823e2f)); 4207 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4208 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4209 getF32Constant(DAG, 0x4020d29c)); 4210 } else { // LimitFloatPrecision <= 18 4211 // For floating-point precision of 18: 4212 // 4213 // Log2ofMantissa = 4214 // -3.0400495f + 4215 // (6.1129976f + 4216 // (-5.3420409f + 4217 // (3.2865683f + 4218 // (-1.2669343f + 4219 // (0.27515199f - 4220 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4221 // 4222 // error 0.0000018516, which is better than 18 bits 4223 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4224 getF32Constant(DAG, 0xbcd2769e)); 4225 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4226 getF32Constant(DAG, 0x3e8ce0b9)); 4227 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4228 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4229 getF32Constant(DAG, 0x3fa22ae7)); 4230 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4231 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4232 getF32Constant(DAG, 0x40525723)); 4233 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4234 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4235 getF32Constant(DAG, 0x40aaf200)); 4236 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4237 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4238 getF32Constant(DAG, 0x40c39dad)); 4239 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4240 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4241 getF32Constant(DAG, 0x4042902c)); 4242 } 4243 4244 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4245 } 4246 4247 // No special expansion. 4248 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4249 } 4250 4251 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4252 /// limited-precision mode. 4253 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4254 const TargetLowering &TLI) { 4255 if (Op.getValueType() == MVT::f32 && 4256 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4257 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4258 4259 // Scale the exponent by log10(2) [0.30102999f]. 4260 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4261 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4262 getF32Constant(DAG, 0x3e9a209a)); 4263 4264 // Get the significand and build it into a floating-point number with 4265 // exponent of 1. 4266 SDValue X = GetSignificand(DAG, Op1, dl); 4267 4268 SDValue Log10ofMantissa; 4269 if (LimitFloatPrecision <= 6) { 4270 // For floating-point precision of 6: 4271 // 4272 // Log10ofMantissa = 4273 // -0.50419619f + 4274 // (0.60948995f - 0.10380950f * x) * x; 4275 // 4276 // error 0.0014886165, which is 6 bits 4277 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4278 getF32Constant(DAG, 0xbdd49a13)); 4279 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4280 getF32Constant(DAG, 0x3f1c0789)); 4281 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4282 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4283 getF32Constant(DAG, 0x3f011300)); 4284 } else if (LimitFloatPrecision <= 12) { 4285 // For floating-point precision of 12: 4286 // 4287 // Log10ofMantissa = 4288 // -0.64831180f + 4289 // (0.91751397f + 4290 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4291 // 4292 // error 0.00019228036, which is better than 12 bits 4293 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4294 getF32Constant(DAG, 0x3d431f31)); 4295 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4296 getF32Constant(DAG, 0x3ea21fb2)); 4297 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4298 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4299 getF32Constant(DAG, 0x3f6ae232)); 4300 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4301 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4302 getF32Constant(DAG, 0x3f25f7c3)); 4303 } else { // LimitFloatPrecision <= 18 4304 // For floating-point precision of 18: 4305 // 4306 // Log10ofMantissa = 4307 // -0.84299375f + 4308 // (1.5327582f + 4309 // (-1.0688956f + 4310 // (0.49102474f + 4311 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4312 // 4313 // error 0.0000037995730, which is better than 18 bits 4314 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4315 getF32Constant(DAG, 0x3c5d51ce)); 4316 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4317 getF32Constant(DAG, 0x3e00685a)); 4318 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4319 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4320 getF32Constant(DAG, 0x3efb6798)); 4321 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4322 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4323 getF32Constant(DAG, 0x3f88d192)); 4324 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4325 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4326 getF32Constant(DAG, 0x3fc4316c)); 4327 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4328 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4329 getF32Constant(DAG, 0x3f57ce70)); 4330 } 4331 4332 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4333 } 4334 4335 // No special expansion. 4336 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4337 } 4338 4339 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4340 /// limited-precision mode. 4341 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4342 const TargetLowering &TLI) { 4343 if (Op.getValueType() == MVT::f32 && 4344 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4345 return getLimitedPrecisionExp2(Op, dl, DAG); 4346 4347 // No special expansion. 4348 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4349 } 4350 4351 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4352 /// limited-precision mode with x == 10.0f. 4353 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4354 SelectionDAG &DAG, const TargetLowering &TLI) { 4355 bool IsExp10 = false; 4356 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4357 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4358 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4359 APFloat Ten(10.0f); 4360 IsExp10 = LHSC->isExactlyValue(Ten); 4361 } 4362 } 4363 4364 if (IsExp10) { 4365 // Put the exponent in the right bit position for later addition to the 4366 // final result: 4367 // 4368 // #define LOG2OF10 3.3219281f 4369 // t0 = Op * LOG2OF10; 4370 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4371 getF32Constant(DAG, 0x40549a78)); 4372 return getLimitedPrecisionExp2(t0, dl, DAG); 4373 } 4374 4375 // No special expansion. 4376 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4377 } 4378 4379 4380 /// ExpandPowI - Expand a llvm.powi intrinsic. 4381 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4382 SelectionDAG &DAG) { 4383 // If RHS is a constant, we can expand this out to a multiplication tree, 4384 // otherwise we end up lowering to a call to __powidf2 (for example). When 4385 // optimizing for size, we only want to do this if the expansion would produce 4386 // a small number of multiplies, otherwise we do the full expansion. 4387 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4388 // Get the exponent as a positive value. 4389 unsigned Val = RHSC->getSExtValue(); 4390 if ((int)Val < 0) Val = -Val; 4391 4392 // powi(x, 0) -> 1.0 4393 if (Val == 0) 4394 return DAG.getConstantFP(1.0, LHS.getValueType()); 4395 4396 const Function *F = DAG.getMachineFunction().getFunction(); 4397 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 4398 // If optimizing for size, don't insert too many multiplies. This 4399 // inserts up to 5 multiplies. 4400 countPopulation(Val) + Log2_32(Val) < 7) { 4401 // We use the simple binary decomposition method to generate the multiply 4402 // sequence. There are more optimal ways to do this (for example, 4403 // powi(x,15) generates one more multiply than it should), but this has 4404 // the benefit of being both really simple and much better than a libcall. 4405 SDValue Res; // Logically starts equal to 1.0 4406 SDValue CurSquare = LHS; 4407 while (Val) { 4408 if (Val & 1) { 4409 if (Res.getNode()) 4410 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4411 else 4412 Res = CurSquare; // 1.0*CurSquare. 4413 } 4414 4415 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4416 CurSquare, CurSquare); 4417 Val >>= 1; 4418 } 4419 4420 // If the original was negative, invert the result, producing 1/(x*x*x). 4421 if (RHSC->getSExtValue() < 0) 4422 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4423 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4424 return Res; 4425 } 4426 } 4427 4428 // Otherwise, expand to a libcall. 4429 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4430 } 4431 4432 // getTruncatedArgReg - Find underlying register used for an truncated 4433 // argument. 4434 static unsigned getTruncatedArgReg(const SDValue &N) { 4435 if (N.getOpcode() != ISD::TRUNCATE) 4436 return 0; 4437 4438 const SDValue &Ext = N.getOperand(0); 4439 if (Ext.getOpcode() == ISD::AssertZext || 4440 Ext.getOpcode() == ISD::AssertSext) { 4441 const SDValue &CFR = Ext.getOperand(0); 4442 if (CFR.getOpcode() == ISD::CopyFromReg) 4443 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4444 if (CFR.getOpcode() == ISD::TRUNCATE) 4445 return getTruncatedArgReg(CFR); 4446 } 4447 return 0; 4448 } 4449 4450 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4451 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4452 /// At the end of instruction selection, they will be inserted to the entry BB. 4453 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4454 const Value *V, MDLocalVariable *Variable, MDExpression *Expr, 4455 MDLocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4456 const Argument *Arg = dyn_cast<Argument>(V); 4457 if (!Arg) 4458 return false; 4459 4460 MachineFunction &MF = DAG.getMachineFunction(); 4461 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4462 4463 // Ignore inlined function arguments here. 4464 DIVariable DV(Variable); 4465 if (DV.isInlinedFnArgument(MF.getFunction())) 4466 return false; 4467 4468 Optional<MachineOperand> Op; 4469 // Some arguments' frame index is recorded during argument lowering. 4470 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4471 Op = MachineOperand::CreateFI(FI); 4472 4473 if (!Op && N.getNode()) { 4474 unsigned Reg; 4475 if (N.getOpcode() == ISD::CopyFromReg) 4476 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4477 else 4478 Reg = getTruncatedArgReg(N); 4479 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4480 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4481 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4482 if (PR) 4483 Reg = PR; 4484 } 4485 if (Reg) 4486 Op = MachineOperand::CreateReg(Reg, false); 4487 } 4488 4489 if (!Op) { 4490 // Check if ValueMap has reg number. 4491 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4492 if (VMI != FuncInfo.ValueMap.end()) 4493 Op = MachineOperand::CreateReg(VMI->second, false); 4494 } 4495 4496 if (!Op && N.getNode()) 4497 // Check if frame index is available. 4498 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4499 if (FrameIndexSDNode *FINode = 4500 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4501 Op = MachineOperand::CreateFI(FINode->getIndex()); 4502 4503 if (!Op) 4504 return false; 4505 4506 assert(Variable->isValidLocationForIntrinsic(DL) && 4507 "Expected inlined-at fields to agree"); 4508 if (Op->isReg()) 4509 FuncInfo.ArgDbgValues.push_back( 4510 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4511 Op->getReg(), Offset, Variable, Expr)); 4512 else 4513 FuncInfo.ArgDbgValues.push_back( 4514 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4515 .addOperand(*Op) 4516 .addImm(Offset) 4517 .addMetadata(Variable) 4518 .addMetadata(Expr)); 4519 4520 return true; 4521 } 4522 4523 // VisualStudio defines setjmp as _setjmp 4524 #if defined(_MSC_VER) && defined(setjmp) && \ 4525 !defined(setjmp_undefined_for_msvc) 4526 # pragma push_macro("setjmp") 4527 # undef setjmp 4528 # define setjmp_undefined_for_msvc 4529 #endif 4530 4531 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4532 /// we want to emit this as a call to a named external function, return the name 4533 /// otherwise lower it and return null. 4534 const char * 4535 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4537 SDLoc sdl = getCurSDLoc(); 4538 DebugLoc dl = getCurDebugLoc(); 4539 SDValue Res; 4540 4541 switch (Intrinsic) { 4542 default: 4543 // By default, turn this into a target intrinsic node. 4544 visitTargetIntrinsic(I, Intrinsic); 4545 return nullptr; 4546 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4547 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4548 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4549 case Intrinsic::returnaddress: 4550 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4551 getValue(I.getArgOperand(0)))); 4552 return nullptr; 4553 case Intrinsic::frameaddress: 4554 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4555 getValue(I.getArgOperand(0)))); 4556 return nullptr; 4557 case Intrinsic::read_register: { 4558 Value *Reg = I.getArgOperand(0); 4559 SDValue RegName = 4560 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4561 EVT VT = TLI.getValueType(I.getType()); 4562 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4563 return nullptr; 4564 } 4565 case Intrinsic::write_register: { 4566 Value *Reg = I.getArgOperand(0); 4567 Value *RegValue = I.getArgOperand(1); 4568 SDValue Chain = getValue(RegValue).getOperand(0); 4569 SDValue RegName = 4570 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4571 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4572 RegName, getValue(RegValue))); 4573 return nullptr; 4574 } 4575 case Intrinsic::setjmp: 4576 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4577 case Intrinsic::longjmp: 4578 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4579 case Intrinsic::memcpy: { 4580 // FIXME: this definition of "user defined address space" is x86-specific 4581 // Assert for address < 256 since we support only user defined address 4582 // spaces. 4583 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4584 < 256 && 4585 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4586 < 256 && 4587 "Unknown address space"); 4588 SDValue Op1 = getValue(I.getArgOperand(0)); 4589 SDValue Op2 = getValue(I.getArgOperand(1)); 4590 SDValue Op3 = getValue(I.getArgOperand(2)); 4591 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4592 if (!Align) 4593 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4594 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4595 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4596 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4597 false, isTC, 4598 MachinePointerInfo(I.getArgOperand(0)), 4599 MachinePointerInfo(I.getArgOperand(1))); 4600 updateDAGForMaybeTailCall(MC); 4601 return nullptr; 4602 } 4603 case Intrinsic::memset: { 4604 // FIXME: this definition of "user defined address space" is x86-specific 4605 // Assert for address < 256 since we support only user defined address 4606 // spaces. 4607 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4608 < 256 && 4609 "Unknown address space"); 4610 SDValue Op1 = getValue(I.getArgOperand(0)); 4611 SDValue Op2 = getValue(I.getArgOperand(1)); 4612 SDValue Op3 = getValue(I.getArgOperand(2)); 4613 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4614 if (!Align) 4615 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4616 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4617 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4618 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4619 isTC, MachinePointerInfo(I.getArgOperand(0))); 4620 updateDAGForMaybeTailCall(MS); 4621 return nullptr; 4622 } 4623 case Intrinsic::memmove: { 4624 // FIXME: this definition of "user defined address space" is x86-specific 4625 // Assert for address < 256 since we support only user defined address 4626 // spaces. 4627 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4628 < 256 && 4629 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4630 < 256 && 4631 "Unknown address space"); 4632 SDValue Op1 = getValue(I.getArgOperand(0)); 4633 SDValue Op2 = getValue(I.getArgOperand(1)); 4634 SDValue Op3 = getValue(I.getArgOperand(2)); 4635 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4636 if (!Align) 4637 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4638 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4639 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4640 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4641 isTC, MachinePointerInfo(I.getArgOperand(0)), 4642 MachinePointerInfo(I.getArgOperand(1))); 4643 updateDAGForMaybeTailCall(MM); 4644 return nullptr; 4645 } 4646 case Intrinsic::dbg_declare: { 4647 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4648 MDLocalVariable *Variable = DI.getVariable(); 4649 MDExpression *Expression = DI.getExpression(); 4650 const Value *Address = DI.getAddress(); 4651 DIVariable DIVar = Variable; 4652 if (!Address || !DIVar) { 4653 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4654 return nullptr; 4655 } 4656 4657 // Check if address has undef value. 4658 if (isa<UndefValue>(Address) || 4659 (Address->use_empty() && !isa<Argument>(Address))) { 4660 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4661 return nullptr; 4662 } 4663 4664 SDValue &N = NodeMap[Address]; 4665 if (!N.getNode() && isa<Argument>(Address)) 4666 // Check unused arguments map. 4667 N = UnusedArgNodeMap[Address]; 4668 SDDbgValue *SDV; 4669 if (N.getNode()) { 4670 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4671 Address = BCI->getOperand(0); 4672 // Parameters are handled specially. 4673 bool isParameter = 4674 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4675 isa<Argument>(Address)); 4676 4677 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4678 4679 if (isParameter && !AI) { 4680 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4681 if (FINode) 4682 // Byval parameter. We have a frame index at this point. 4683 SDV = DAG.getFrameIndexDbgValue( 4684 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4685 else { 4686 // Address is an argument, so try to emit its dbg value using 4687 // virtual register info from the FuncInfo.ValueMap. 4688 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4689 N); 4690 return nullptr; 4691 } 4692 } else if (AI) 4693 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4694 true, 0, dl, SDNodeOrder); 4695 else { 4696 // Can't do anything with other non-AI cases yet. 4697 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4698 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4699 DEBUG(Address->dump()); 4700 return nullptr; 4701 } 4702 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4703 } else { 4704 // If Address is an argument then try to emit its dbg value using 4705 // virtual register info from the FuncInfo.ValueMap. 4706 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4707 N)) { 4708 // If variable is pinned by a alloca in dominating bb then 4709 // use StaticAllocaMap. 4710 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4711 if (AI->getParent() != DI.getParent()) { 4712 DenseMap<const AllocaInst*, int>::iterator SI = 4713 FuncInfo.StaticAllocaMap.find(AI); 4714 if (SI != FuncInfo.StaticAllocaMap.end()) { 4715 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4716 0, dl, SDNodeOrder); 4717 DAG.AddDbgValue(SDV, nullptr, false); 4718 return nullptr; 4719 } 4720 } 4721 } 4722 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4723 } 4724 } 4725 return nullptr; 4726 } 4727 case Intrinsic::dbg_value: { 4728 const DbgValueInst &DI = cast<DbgValueInst>(I); 4729 DIVariable DIVar = DI.getVariable(); 4730 if (!DIVar) 4731 return nullptr; 4732 4733 MDLocalVariable *Variable = DI.getVariable(); 4734 MDExpression *Expression = DI.getExpression(); 4735 uint64_t Offset = DI.getOffset(); 4736 const Value *V = DI.getValue(); 4737 if (!V) 4738 return nullptr; 4739 4740 SDDbgValue *SDV; 4741 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4742 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4743 SDNodeOrder); 4744 DAG.AddDbgValue(SDV, nullptr, false); 4745 } else { 4746 // Do not use getValue() in here; we don't want to generate code at 4747 // this point if it hasn't been done yet. 4748 SDValue N = NodeMap[V]; 4749 if (!N.getNode() && isa<Argument>(V)) 4750 // Check unused arguments map. 4751 N = UnusedArgNodeMap[V]; 4752 if (N.getNode()) { 4753 // A dbg.value for an alloca is always indirect. 4754 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4755 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4756 IsIndirect, N)) { 4757 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4758 IsIndirect, Offset, dl, SDNodeOrder); 4759 DAG.AddDbgValue(SDV, N.getNode(), false); 4760 } 4761 } else if (!V->use_empty() ) { 4762 // Do not call getValue(V) yet, as we don't want to generate code. 4763 // Remember it for later. 4764 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4765 DanglingDebugInfoMap[V] = DDI; 4766 } else { 4767 // We may expand this to cover more cases. One case where we have no 4768 // data available is an unreferenced parameter. 4769 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4770 } 4771 } 4772 4773 // Build a debug info table entry. 4774 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4775 V = BCI->getOperand(0); 4776 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4777 // Don't handle byval struct arguments or VLAs, for example. 4778 if (!AI) { 4779 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4780 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4781 return nullptr; 4782 } 4783 DenseMap<const AllocaInst*, int>::iterator SI = 4784 FuncInfo.StaticAllocaMap.find(AI); 4785 if (SI == FuncInfo.StaticAllocaMap.end()) 4786 return nullptr; // VLAs. 4787 return nullptr; 4788 } 4789 4790 case Intrinsic::eh_typeid_for: { 4791 // Find the type id for the given typeinfo. 4792 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4793 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4794 Res = DAG.getConstant(TypeID, MVT::i32); 4795 setValue(&I, Res); 4796 return nullptr; 4797 } 4798 4799 case Intrinsic::eh_return_i32: 4800 case Intrinsic::eh_return_i64: 4801 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4802 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4803 MVT::Other, 4804 getControlRoot(), 4805 getValue(I.getArgOperand(0)), 4806 getValue(I.getArgOperand(1)))); 4807 return nullptr; 4808 case Intrinsic::eh_unwind_init: 4809 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4810 return nullptr; 4811 case Intrinsic::eh_dwarf_cfa: { 4812 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4813 TLI.getPointerTy()); 4814 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4815 CfaArg.getValueType(), 4816 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4817 CfaArg.getValueType()), 4818 CfaArg); 4819 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4820 DAG.getConstant(0, TLI.getPointerTy())); 4821 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4822 FA, Offset)); 4823 return nullptr; 4824 } 4825 case Intrinsic::eh_sjlj_callsite: { 4826 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4827 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4828 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4829 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4830 4831 MMI.setCurrentCallSite(CI->getZExtValue()); 4832 return nullptr; 4833 } 4834 case Intrinsic::eh_sjlj_functioncontext: { 4835 // Get and store the index of the function context. 4836 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4837 AllocaInst *FnCtx = 4838 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4839 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4840 MFI->setFunctionContextIndex(FI); 4841 return nullptr; 4842 } 4843 case Intrinsic::eh_sjlj_setjmp: { 4844 SDValue Ops[2]; 4845 Ops[0] = getRoot(); 4846 Ops[1] = getValue(I.getArgOperand(0)); 4847 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4848 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4849 setValue(&I, Op.getValue(0)); 4850 DAG.setRoot(Op.getValue(1)); 4851 return nullptr; 4852 } 4853 case Intrinsic::eh_sjlj_longjmp: { 4854 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4855 getRoot(), getValue(I.getArgOperand(0)))); 4856 return nullptr; 4857 } 4858 4859 case Intrinsic::masked_load: 4860 visitMaskedLoad(I); 4861 return nullptr; 4862 case Intrinsic::masked_store: 4863 visitMaskedStore(I); 4864 return nullptr; 4865 case Intrinsic::x86_mmx_pslli_w: 4866 case Intrinsic::x86_mmx_pslli_d: 4867 case Intrinsic::x86_mmx_pslli_q: 4868 case Intrinsic::x86_mmx_psrli_w: 4869 case Intrinsic::x86_mmx_psrli_d: 4870 case Intrinsic::x86_mmx_psrli_q: 4871 case Intrinsic::x86_mmx_psrai_w: 4872 case Intrinsic::x86_mmx_psrai_d: { 4873 SDValue ShAmt = getValue(I.getArgOperand(1)); 4874 if (isa<ConstantSDNode>(ShAmt)) { 4875 visitTargetIntrinsic(I, Intrinsic); 4876 return nullptr; 4877 } 4878 unsigned NewIntrinsic = 0; 4879 EVT ShAmtVT = MVT::v2i32; 4880 switch (Intrinsic) { 4881 case Intrinsic::x86_mmx_pslli_w: 4882 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4883 break; 4884 case Intrinsic::x86_mmx_pslli_d: 4885 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4886 break; 4887 case Intrinsic::x86_mmx_pslli_q: 4888 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4889 break; 4890 case Intrinsic::x86_mmx_psrli_w: 4891 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4892 break; 4893 case Intrinsic::x86_mmx_psrli_d: 4894 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4895 break; 4896 case Intrinsic::x86_mmx_psrli_q: 4897 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4898 break; 4899 case Intrinsic::x86_mmx_psrai_w: 4900 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4901 break; 4902 case Intrinsic::x86_mmx_psrai_d: 4903 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4904 break; 4905 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4906 } 4907 4908 // The vector shift intrinsics with scalars uses 32b shift amounts but 4909 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4910 // to be zero. 4911 // We must do this early because v2i32 is not a legal type. 4912 SDValue ShOps[2]; 4913 ShOps[0] = ShAmt; 4914 ShOps[1] = DAG.getConstant(0, MVT::i32); 4915 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4916 EVT DestVT = TLI.getValueType(I.getType()); 4917 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4918 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4919 DAG.getConstant(NewIntrinsic, MVT::i32), 4920 getValue(I.getArgOperand(0)), ShAmt); 4921 setValue(&I, Res); 4922 return nullptr; 4923 } 4924 case Intrinsic::convertff: 4925 case Intrinsic::convertfsi: 4926 case Intrinsic::convertfui: 4927 case Intrinsic::convertsif: 4928 case Intrinsic::convertuif: 4929 case Intrinsic::convertss: 4930 case Intrinsic::convertsu: 4931 case Intrinsic::convertus: 4932 case Intrinsic::convertuu: { 4933 ISD::CvtCode Code = ISD::CVT_INVALID; 4934 switch (Intrinsic) { 4935 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4936 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4937 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4938 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4939 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4940 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4941 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4942 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4943 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4944 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4945 } 4946 EVT DestVT = TLI.getValueType(I.getType()); 4947 const Value *Op1 = I.getArgOperand(0); 4948 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4949 DAG.getValueType(DestVT), 4950 DAG.getValueType(getValue(Op1).getValueType()), 4951 getValue(I.getArgOperand(1)), 4952 getValue(I.getArgOperand(2)), 4953 Code); 4954 setValue(&I, Res); 4955 return nullptr; 4956 } 4957 case Intrinsic::powi: 4958 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4959 getValue(I.getArgOperand(1)), DAG)); 4960 return nullptr; 4961 case Intrinsic::log: 4962 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4963 return nullptr; 4964 case Intrinsic::log2: 4965 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4966 return nullptr; 4967 case Intrinsic::log10: 4968 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4969 return nullptr; 4970 case Intrinsic::exp: 4971 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4972 return nullptr; 4973 case Intrinsic::exp2: 4974 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4975 return nullptr; 4976 case Intrinsic::pow: 4977 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4978 getValue(I.getArgOperand(1)), DAG, TLI)); 4979 return nullptr; 4980 case Intrinsic::sqrt: 4981 case Intrinsic::fabs: 4982 case Intrinsic::sin: 4983 case Intrinsic::cos: 4984 case Intrinsic::floor: 4985 case Intrinsic::ceil: 4986 case Intrinsic::trunc: 4987 case Intrinsic::rint: 4988 case Intrinsic::nearbyint: 4989 case Intrinsic::round: { 4990 unsigned Opcode; 4991 switch (Intrinsic) { 4992 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4993 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4994 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4995 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4996 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4997 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4998 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4999 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5000 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5001 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5002 case Intrinsic::round: Opcode = ISD::FROUND; break; 5003 } 5004 5005 setValue(&I, DAG.getNode(Opcode, sdl, 5006 getValue(I.getArgOperand(0)).getValueType(), 5007 getValue(I.getArgOperand(0)))); 5008 return nullptr; 5009 } 5010 case Intrinsic::minnum: 5011 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 5012 getValue(I.getArgOperand(0)).getValueType(), 5013 getValue(I.getArgOperand(0)), 5014 getValue(I.getArgOperand(1)))); 5015 return nullptr; 5016 case Intrinsic::maxnum: 5017 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 5018 getValue(I.getArgOperand(0)).getValueType(), 5019 getValue(I.getArgOperand(0)), 5020 getValue(I.getArgOperand(1)))); 5021 return nullptr; 5022 case Intrinsic::copysign: 5023 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5024 getValue(I.getArgOperand(0)).getValueType(), 5025 getValue(I.getArgOperand(0)), 5026 getValue(I.getArgOperand(1)))); 5027 return nullptr; 5028 case Intrinsic::fma: 5029 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5030 getValue(I.getArgOperand(0)).getValueType(), 5031 getValue(I.getArgOperand(0)), 5032 getValue(I.getArgOperand(1)), 5033 getValue(I.getArgOperand(2)))); 5034 return nullptr; 5035 case Intrinsic::fmuladd: { 5036 EVT VT = TLI.getValueType(I.getType()); 5037 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5038 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5039 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5040 getValue(I.getArgOperand(0)).getValueType(), 5041 getValue(I.getArgOperand(0)), 5042 getValue(I.getArgOperand(1)), 5043 getValue(I.getArgOperand(2)))); 5044 } else { 5045 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5046 getValue(I.getArgOperand(0)).getValueType(), 5047 getValue(I.getArgOperand(0)), 5048 getValue(I.getArgOperand(1))); 5049 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5050 getValue(I.getArgOperand(0)).getValueType(), 5051 Mul, 5052 getValue(I.getArgOperand(2))); 5053 setValue(&I, Add); 5054 } 5055 return nullptr; 5056 } 5057 case Intrinsic::convert_to_fp16: 5058 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5059 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5060 getValue(I.getArgOperand(0)), 5061 DAG.getTargetConstant(0, MVT::i32)))); 5062 return nullptr; 5063 case Intrinsic::convert_from_fp16: 5064 setValue(&I, 5065 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 5066 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5067 getValue(I.getArgOperand(0))))); 5068 return nullptr; 5069 case Intrinsic::pcmarker: { 5070 SDValue Tmp = getValue(I.getArgOperand(0)); 5071 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5072 return nullptr; 5073 } 5074 case Intrinsic::readcyclecounter: { 5075 SDValue Op = getRoot(); 5076 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5077 DAG.getVTList(MVT::i64, MVT::Other), Op); 5078 setValue(&I, Res); 5079 DAG.setRoot(Res.getValue(1)); 5080 return nullptr; 5081 } 5082 case Intrinsic::bswap: 5083 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5084 getValue(I.getArgOperand(0)).getValueType(), 5085 getValue(I.getArgOperand(0)))); 5086 return nullptr; 5087 case Intrinsic::cttz: { 5088 SDValue Arg = getValue(I.getArgOperand(0)); 5089 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5090 EVT Ty = Arg.getValueType(); 5091 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5092 sdl, Ty, Arg)); 5093 return nullptr; 5094 } 5095 case Intrinsic::ctlz: { 5096 SDValue Arg = getValue(I.getArgOperand(0)); 5097 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5098 EVT Ty = Arg.getValueType(); 5099 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5100 sdl, Ty, Arg)); 5101 return nullptr; 5102 } 5103 case Intrinsic::ctpop: { 5104 SDValue Arg = getValue(I.getArgOperand(0)); 5105 EVT Ty = Arg.getValueType(); 5106 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5107 return nullptr; 5108 } 5109 case Intrinsic::stacksave: { 5110 SDValue Op = getRoot(); 5111 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5112 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 5113 setValue(&I, Res); 5114 DAG.setRoot(Res.getValue(1)); 5115 return nullptr; 5116 } 5117 case Intrinsic::stackrestore: { 5118 Res = getValue(I.getArgOperand(0)); 5119 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5120 return nullptr; 5121 } 5122 case Intrinsic::stackprotector: { 5123 // Emit code into the DAG to store the stack guard onto the stack. 5124 MachineFunction &MF = DAG.getMachineFunction(); 5125 MachineFrameInfo *MFI = MF.getFrameInfo(); 5126 EVT PtrTy = TLI.getPointerTy(); 5127 SDValue Src, Chain = getRoot(); 5128 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5129 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5130 5131 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5132 // global variable __stack_chk_guard. 5133 if (!GV) 5134 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5135 if (BC->getOpcode() == Instruction::BitCast) 5136 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5137 5138 if (GV && TLI.useLoadStackGuardNode()) { 5139 // Emit a LOAD_STACK_GUARD node. 5140 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5141 sdl, PtrTy, Chain); 5142 MachinePointerInfo MPInfo(GV); 5143 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5144 unsigned Flags = MachineMemOperand::MOLoad | 5145 MachineMemOperand::MOInvariant; 5146 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5147 PtrTy.getSizeInBits() / 8, 5148 DAG.getEVTAlignment(PtrTy)); 5149 Node->setMemRefs(MemRefs, MemRefs + 1); 5150 5151 // Copy the guard value to a virtual register so that it can be 5152 // retrieved in the epilogue. 5153 Src = SDValue(Node, 0); 5154 const TargetRegisterClass *RC = 5155 TLI.getRegClassFor(Src.getSimpleValueType()); 5156 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5157 5158 SPDescriptor.setGuardReg(Reg); 5159 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5160 } else { 5161 Src = getValue(I.getArgOperand(0)); // The guard's value. 5162 } 5163 5164 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5165 5166 int FI = FuncInfo.StaticAllocaMap[Slot]; 5167 MFI->setStackProtectorIndex(FI); 5168 5169 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5170 5171 // Store the stack protector onto the stack. 5172 Res = DAG.getStore(Chain, sdl, Src, FIN, 5173 MachinePointerInfo::getFixedStack(FI), 5174 true, false, 0); 5175 setValue(&I, Res); 5176 DAG.setRoot(Res); 5177 return nullptr; 5178 } 5179 case Intrinsic::objectsize: { 5180 // If we don't know by now, we're never going to know. 5181 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5182 5183 assert(CI && "Non-constant type in __builtin_object_size?"); 5184 5185 SDValue Arg = getValue(I.getCalledValue()); 5186 EVT Ty = Arg.getValueType(); 5187 5188 if (CI->isZero()) 5189 Res = DAG.getConstant(-1ULL, Ty); 5190 else 5191 Res = DAG.getConstant(0, Ty); 5192 5193 setValue(&I, Res); 5194 return nullptr; 5195 } 5196 case Intrinsic::annotation: 5197 case Intrinsic::ptr_annotation: 5198 // Drop the intrinsic, but forward the value 5199 setValue(&I, getValue(I.getOperand(0))); 5200 return nullptr; 5201 case Intrinsic::assume: 5202 case Intrinsic::var_annotation: 5203 // Discard annotate attributes and assumptions 5204 return nullptr; 5205 5206 case Intrinsic::init_trampoline: { 5207 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5208 5209 SDValue Ops[6]; 5210 Ops[0] = getRoot(); 5211 Ops[1] = getValue(I.getArgOperand(0)); 5212 Ops[2] = getValue(I.getArgOperand(1)); 5213 Ops[3] = getValue(I.getArgOperand(2)); 5214 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5215 Ops[5] = DAG.getSrcValue(F); 5216 5217 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5218 5219 DAG.setRoot(Res); 5220 return nullptr; 5221 } 5222 case Intrinsic::adjust_trampoline: { 5223 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5224 TLI.getPointerTy(), 5225 getValue(I.getArgOperand(0)))); 5226 return nullptr; 5227 } 5228 case Intrinsic::gcroot: 5229 if (GFI) { 5230 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5231 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5232 5233 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5234 GFI->addStackRoot(FI->getIndex(), TypeMap); 5235 } 5236 return nullptr; 5237 case Intrinsic::gcread: 5238 case Intrinsic::gcwrite: 5239 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5240 case Intrinsic::flt_rounds: 5241 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5242 return nullptr; 5243 5244 case Intrinsic::expect: { 5245 // Just replace __builtin_expect(exp, c) with EXP. 5246 setValue(&I, getValue(I.getArgOperand(0))); 5247 return nullptr; 5248 } 5249 5250 case Intrinsic::debugtrap: 5251 case Intrinsic::trap: { 5252 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5253 if (TrapFuncName.empty()) { 5254 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5255 ISD::TRAP : ISD::DEBUGTRAP; 5256 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5257 return nullptr; 5258 } 5259 TargetLowering::ArgListTy Args; 5260 5261 TargetLowering::CallLoweringInfo CLI(DAG); 5262 CLI.setDebugLoc(sdl).setChain(getRoot()) 5263 .setCallee(CallingConv::C, I.getType(), 5264 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5265 std::move(Args), 0); 5266 5267 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5268 DAG.setRoot(Result.second); 5269 return nullptr; 5270 } 5271 5272 case Intrinsic::uadd_with_overflow: 5273 case Intrinsic::sadd_with_overflow: 5274 case Intrinsic::usub_with_overflow: 5275 case Intrinsic::ssub_with_overflow: 5276 case Intrinsic::umul_with_overflow: 5277 case Intrinsic::smul_with_overflow: { 5278 ISD::NodeType Op; 5279 switch (Intrinsic) { 5280 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5281 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5282 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5283 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5284 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5285 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5286 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5287 } 5288 SDValue Op1 = getValue(I.getArgOperand(0)); 5289 SDValue Op2 = getValue(I.getArgOperand(1)); 5290 5291 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5292 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5293 return nullptr; 5294 } 5295 case Intrinsic::prefetch: { 5296 SDValue Ops[5]; 5297 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5298 Ops[0] = getRoot(); 5299 Ops[1] = getValue(I.getArgOperand(0)); 5300 Ops[2] = getValue(I.getArgOperand(1)); 5301 Ops[3] = getValue(I.getArgOperand(2)); 5302 Ops[4] = getValue(I.getArgOperand(3)); 5303 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5304 DAG.getVTList(MVT::Other), Ops, 5305 EVT::getIntegerVT(*Context, 8), 5306 MachinePointerInfo(I.getArgOperand(0)), 5307 0, /* align */ 5308 false, /* volatile */ 5309 rw==0, /* read */ 5310 rw==1)); /* write */ 5311 return nullptr; 5312 } 5313 case Intrinsic::lifetime_start: 5314 case Intrinsic::lifetime_end: { 5315 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5316 // Stack coloring is not enabled in O0, discard region information. 5317 if (TM.getOptLevel() == CodeGenOpt::None) 5318 return nullptr; 5319 5320 SmallVector<Value *, 4> Allocas; 5321 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5322 5323 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5324 E = Allocas.end(); Object != E; ++Object) { 5325 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5326 5327 // Could not find an Alloca. 5328 if (!LifetimeObject) 5329 continue; 5330 5331 // First check that the Alloca is static, otherwise it won't have a 5332 // valid frame index. 5333 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5334 if (SI == FuncInfo.StaticAllocaMap.end()) 5335 return nullptr; 5336 5337 int FI = SI->second; 5338 5339 SDValue Ops[2]; 5340 Ops[0] = getRoot(); 5341 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5342 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5343 5344 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5345 DAG.setRoot(Res); 5346 } 5347 return nullptr; 5348 } 5349 case Intrinsic::invariant_start: 5350 // Discard region information. 5351 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5352 return nullptr; 5353 case Intrinsic::invariant_end: 5354 // Discard region information. 5355 return nullptr; 5356 case Intrinsic::stackprotectorcheck: { 5357 // Do not actually emit anything for this basic block. Instead we initialize 5358 // the stack protector descriptor and export the guard variable so we can 5359 // access it in FinishBasicBlock. 5360 const BasicBlock *BB = I.getParent(); 5361 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5362 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5363 5364 // Flush our exports since we are going to process a terminator. 5365 (void)getControlRoot(); 5366 return nullptr; 5367 } 5368 case Intrinsic::clear_cache: 5369 return TLI.getClearCacheBuiltinName(); 5370 case Intrinsic::eh_actions: 5371 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5372 return nullptr; 5373 case Intrinsic::donothing: 5374 // ignore 5375 return nullptr; 5376 case Intrinsic::experimental_stackmap: { 5377 visitStackmap(I); 5378 return nullptr; 5379 } 5380 case Intrinsic::experimental_patchpoint_void: 5381 case Intrinsic::experimental_patchpoint_i64: { 5382 visitPatchpoint(&I); 5383 return nullptr; 5384 } 5385 case Intrinsic::experimental_gc_statepoint: { 5386 visitStatepoint(I); 5387 return nullptr; 5388 } 5389 case Intrinsic::experimental_gc_result_int: 5390 case Intrinsic::experimental_gc_result_float: 5391 case Intrinsic::experimental_gc_result_ptr: 5392 case Intrinsic::experimental_gc_result: { 5393 visitGCResult(I); 5394 return nullptr; 5395 } 5396 case Intrinsic::experimental_gc_relocate: { 5397 visitGCRelocate(I); 5398 return nullptr; 5399 } 5400 case Intrinsic::instrprof_increment: 5401 llvm_unreachable("instrprof failed to lower an increment"); 5402 5403 case Intrinsic::frameescape: { 5404 MachineFunction &MF = DAG.getMachineFunction(); 5405 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5406 5407 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 5408 // is the same on all targets. 5409 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5410 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5411 if (isa<ConstantPointerNull>(Arg)) 5412 continue; // Skip null pointers. They represent a hole in index space. 5413 AllocaInst *Slot = cast<AllocaInst>(Arg); 5414 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5415 "can only escape static allocas"); 5416 int FI = FuncInfo.StaticAllocaMap[Slot]; 5417 MCSymbol *FrameAllocSym = 5418 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5419 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5420 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5421 TII->get(TargetOpcode::FRAME_ALLOC)) 5422 .addSym(FrameAllocSym) 5423 .addFrameIndex(FI); 5424 } 5425 5426 return nullptr; 5427 } 5428 5429 case Intrinsic::framerecover: { 5430 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 5431 MachineFunction &MF = DAG.getMachineFunction(); 5432 MVT PtrVT = TLI.getPointerTy(0); 5433 5434 // Get the symbol that defines the frame offset. 5435 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5436 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5437 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5438 MCSymbol *FrameAllocSym = 5439 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5440 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5441 5442 // Create a TargetExternalSymbol for the label to avoid any target lowering 5443 // that would make this PC relative. 5444 StringRef Name = FrameAllocSym->getName(); 5445 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 5446 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 5447 SDValue OffsetVal = 5448 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 5449 5450 // Add the offset to the FP. 5451 Value *FP = I.getArgOperand(1); 5452 SDValue FPVal = getValue(FP); 5453 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5454 setValue(&I, Add); 5455 5456 return nullptr; 5457 } 5458 case Intrinsic::eh_begincatch: 5459 case Intrinsic::eh_endcatch: 5460 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5461 } 5462 } 5463 5464 std::pair<SDValue, SDValue> 5465 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5466 MachineBasicBlock *LandingPad) { 5467 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5468 MCSymbol *BeginLabel = nullptr; 5469 5470 if (LandingPad) { 5471 // Insert a label before the invoke call to mark the try range. This can be 5472 // used to detect deletion of the invoke via the MachineModuleInfo. 5473 BeginLabel = MMI.getContext().CreateTempSymbol(); 5474 5475 // For SjLj, keep track of which landing pads go with which invokes 5476 // so as to maintain the ordering of pads in the LSDA. 5477 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5478 if (CallSiteIndex) { 5479 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5480 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5481 5482 // Now that the call site is handled, stop tracking it. 5483 MMI.setCurrentCallSite(0); 5484 } 5485 5486 // Both PendingLoads and PendingExports must be flushed here; 5487 // this call might not return. 5488 (void)getRoot(); 5489 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5490 5491 CLI.setChain(getRoot()); 5492 } 5493 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5494 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5495 5496 assert((CLI.IsTailCall || Result.second.getNode()) && 5497 "Non-null chain expected with non-tail call!"); 5498 assert((Result.second.getNode() || !Result.first.getNode()) && 5499 "Null value expected with tail call!"); 5500 5501 if (!Result.second.getNode()) { 5502 // As a special case, a null chain means that a tail call has been emitted 5503 // and the DAG root is already updated. 5504 HasTailCall = true; 5505 5506 // Since there's no actual continuation from this block, nothing can be 5507 // relying on us setting vregs for them. 5508 PendingExports.clear(); 5509 } else { 5510 DAG.setRoot(Result.second); 5511 } 5512 5513 if (LandingPad) { 5514 // Insert a label at the end of the invoke call to mark the try range. This 5515 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5516 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5517 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5518 5519 // Inform MachineModuleInfo of range. 5520 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5521 } 5522 5523 return Result; 5524 } 5525 5526 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5527 bool isTailCall, 5528 MachineBasicBlock *LandingPad) { 5529 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5530 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5531 Type *RetTy = FTy->getReturnType(); 5532 5533 TargetLowering::ArgListTy Args; 5534 TargetLowering::ArgListEntry Entry; 5535 Args.reserve(CS.arg_size()); 5536 5537 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5538 i != e; ++i) { 5539 const Value *V = *i; 5540 5541 // Skip empty types 5542 if (V->getType()->isEmptyTy()) 5543 continue; 5544 5545 SDValue ArgNode = getValue(V); 5546 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5547 5548 // Skip the first return-type Attribute to get to params. 5549 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5550 Args.push_back(Entry); 5551 5552 // If we have an explicit sret argument that is an Instruction, (i.e., it 5553 // might point to function-local memory), we can't meaningfully tail-call. 5554 if (Entry.isSRet && isa<Instruction>(V)) 5555 isTailCall = false; 5556 } 5557 5558 // Check if target-independent constraints permit a tail call here. 5559 // Target-dependent constraints are checked within TLI->LowerCallTo. 5560 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5561 isTailCall = false; 5562 5563 TargetLowering::CallLoweringInfo CLI(DAG); 5564 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5565 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5566 .setTailCall(isTailCall); 5567 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5568 5569 if (Result.first.getNode()) 5570 setValue(CS.getInstruction(), Result.first); 5571 } 5572 5573 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5574 /// value is equal or not-equal to zero. 5575 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5576 for (const User *U : V->users()) { 5577 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5578 if (IC->isEquality()) 5579 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5580 if (C->isNullValue()) 5581 continue; 5582 // Unknown instruction. 5583 return false; 5584 } 5585 return true; 5586 } 5587 5588 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5589 Type *LoadTy, 5590 SelectionDAGBuilder &Builder) { 5591 5592 // Check to see if this load can be trivially constant folded, e.g. if the 5593 // input is from a string literal. 5594 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5595 // Cast pointer to the type we really want to load. 5596 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5597 PointerType::getUnqual(LoadTy)); 5598 5599 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5600 const_cast<Constant *>(LoadInput), *Builder.DL)) 5601 return Builder.getValue(LoadCst); 5602 } 5603 5604 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5605 // still constant memory, the input chain can be the entry node. 5606 SDValue Root; 5607 bool ConstantMemory = false; 5608 5609 // Do not serialize (non-volatile) loads of constant memory with anything. 5610 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5611 Root = Builder.DAG.getEntryNode(); 5612 ConstantMemory = true; 5613 } else { 5614 // Do not serialize non-volatile loads against each other. 5615 Root = Builder.DAG.getRoot(); 5616 } 5617 5618 SDValue Ptr = Builder.getValue(PtrVal); 5619 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5620 Ptr, MachinePointerInfo(PtrVal), 5621 false /*volatile*/, 5622 false /*nontemporal*/, 5623 false /*isinvariant*/, 1 /* align=1 */); 5624 5625 if (!ConstantMemory) 5626 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5627 return LoadVal; 5628 } 5629 5630 /// processIntegerCallValue - Record the value for an instruction that 5631 /// produces an integer result, converting the type where necessary. 5632 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5633 SDValue Value, 5634 bool IsSigned) { 5635 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5636 if (IsSigned) 5637 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5638 else 5639 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5640 setValue(&I, Value); 5641 } 5642 5643 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5644 /// If so, return true and lower it, otherwise return false and it will be 5645 /// lowered like a normal call. 5646 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5647 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5648 if (I.getNumArgOperands() != 3) 5649 return false; 5650 5651 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5652 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5653 !I.getArgOperand(2)->getType()->isIntegerTy() || 5654 !I.getType()->isIntegerTy()) 5655 return false; 5656 5657 const Value *Size = I.getArgOperand(2); 5658 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5659 if (CSize && CSize->getZExtValue() == 0) { 5660 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5661 setValue(&I, DAG.getConstant(0, CallVT)); 5662 return true; 5663 } 5664 5665 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5666 std::pair<SDValue, SDValue> Res = 5667 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5668 getValue(LHS), getValue(RHS), getValue(Size), 5669 MachinePointerInfo(LHS), 5670 MachinePointerInfo(RHS)); 5671 if (Res.first.getNode()) { 5672 processIntegerCallValue(I, Res.first, true); 5673 PendingLoads.push_back(Res.second); 5674 return true; 5675 } 5676 5677 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5678 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5679 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5680 bool ActuallyDoIt = true; 5681 MVT LoadVT; 5682 Type *LoadTy; 5683 switch (CSize->getZExtValue()) { 5684 default: 5685 LoadVT = MVT::Other; 5686 LoadTy = nullptr; 5687 ActuallyDoIt = false; 5688 break; 5689 case 2: 5690 LoadVT = MVT::i16; 5691 LoadTy = Type::getInt16Ty(CSize->getContext()); 5692 break; 5693 case 4: 5694 LoadVT = MVT::i32; 5695 LoadTy = Type::getInt32Ty(CSize->getContext()); 5696 break; 5697 case 8: 5698 LoadVT = MVT::i64; 5699 LoadTy = Type::getInt64Ty(CSize->getContext()); 5700 break; 5701 /* 5702 case 16: 5703 LoadVT = MVT::v4i32; 5704 LoadTy = Type::getInt32Ty(CSize->getContext()); 5705 LoadTy = VectorType::get(LoadTy, 4); 5706 break; 5707 */ 5708 } 5709 5710 // This turns into unaligned loads. We only do this if the target natively 5711 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5712 // we'll only produce a small number of byte loads. 5713 5714 // Require that we can find a legal MVT, and only do this if the target 5715 // supports unaligned loads of that type. Expanding into byte loads would 5716 // bloat the code. 5717 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5718 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5719 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5720 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5721 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5722 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5723 // TODO: Check alignment of src and dest ptrs. 5724 if (!TLI.isTypeLegal(LoadVT) || 5725 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5726 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5727 ActuallyDoIt = false; 5728 } 5729 5730 if (ActuallyDoIt) { 5731 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5732 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5733 5734 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5735 ISD::SETNE); 5736 processIntegerCallValue(I, Res, false); 5737 return true; 5738 } 5739 } 5740 5741 5742 return false; 5743 } 5744 5745 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5746 /// form. If so, return true and lower it, otherwise return false and it 5747 /// will be lowered like a normal call. 5748 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5749 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5750 if (I.getNumArgOperands() != 3) 5751 return false; 5752 5753 const Value *Src = I.getArgOperand(0); 5754 const Value *Char = I.getArgOperand(1); 5755 const Value *Length = I.getArgOperand(2); 5756 if (!Src->getType()->isPointerTy() || 5757 !Char->getType()->isIntegerTy() || 5758 !Length->getType()->isIntegerTy() || 5759 !I.getType()->isPointerTy()) 5760 return false; 5761 5762 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5763 std::pair<SDValue, SDValue> Res = 5764 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5765 getValue(Src), getValue(Char), getValue(Length), 5766 MachinePointerInfo(Src)); 5767 if (Res.first.getNode()) { 5768 setValue(&I, Res.first); 5769 PendingLoads.push_back(Res.second); 5770 return true; 5771 } 5772 5773 return false; 5774 } 5775 5776 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5777 /// optimized form. If so, return true and lower it, otherwise return false 5778 /// and it will be lowered like a normal call. 5779 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5780 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5781 if (I.getNumArgOperands() != 2) 5782 return false; 5783 5784 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5785 if (!Arg0->getType()->isPointerTy() || 5786 !Arg1->getType()->isPointerTy() || 5787 !I.getType()->isPointerTy()) 5788 return false; 5789 5790 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5791 std::pair<SDValue, SDValue> Res = 5792 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5793 getValue(Arg0), getValue(Arg1), 5794 MachinePointerInfo(Arg0), 5795 MachinePointerInfo(Arg1), isStpcpy); 5796 if (Res.first.getNode()) { 5797 setValue(&I, Res.first); 5798 DAG.setRoot(Res.second); 5799 return true; 5800 } 5801 5802 return false; 5803 } 5804 5805 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5806 /// If so, return true and lower it, otherwise return false and it will be 5807 /// lowered like a normal call. 5808 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5809 // Verify that the prototype makes sense. int strcmp(void*,void*) 5810 if (I.getNumArgOperands() != 2) 5811 return false; 5812 5813 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5814 if (!Arg0->getType()->isPointerTy() || 5815 !Arg1->getType()->isPointerTy() || 5816 !I.getType()->isIntegerTy()) 5817 return false; 5818 5819 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5820 std::pair<SDValue, SDValue> Res = 5821 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5822 getValue(Arg0), getValue(Arg1), 5823 MachinePointerInfo(Arg0), 5824 MachinePointerInfo(Arg1)); 5825 if (Res.first.getNode()) { 5826 processIntegerCallValue(I, Res.first, true); 5827 PendingLoads.push_back(Res.second); 5828 return true; 5829 } 5830 5831 return false; 5832 } 5833 5834 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5835 /// form. If so, return true and lower it, otherwise return false and it 5836 /// will be lowered like a normal call. 5837 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5838 // Verify that the prototype makes sense. size_t strlen(char *) 5839 if (I.getNumArgOperands() != 1) 5840 return false; 5841 5842 const Value *Arg0 = I.getArgOperand(0); 5843 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5844 return false; 5845 5846 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5847 std::pair<SDValue, SDValue> Res = 5848 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5849 getValue(Arg0), MachinePointerInfo(Arg0)); 5850 if (Res.first.getNode()) { 5851 processIntegerCallValue(I, Res.first, false); 5852 PendingLoads.push_back(Res.second); 5853 return true; 5854 } 5855 5856 return false; 5857 } 5858 5859 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5860 /// form. If so, return true and lower it, otherwise return false and it 5861 /// will be lowered like a normal call. 5862 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5863 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5864 if (I.getNumArgOperands() != 2) 5865 return false; 5866 5867 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5868 if (!Arg0->getType()->isPointerTy() || 5869 !Arg1->getType()->isIntegerTy() || 5870 !I.getType()->isIntegerTy()) 5871 return false; 5872 5873 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5874 std::pair<SDValue, SDValue> Res = 5875 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5876 getValue(Arg0), getValue(Arg1), 5877 MachinePointerInfo(Arg0)); 5878 if (Res.first.getNode()) { 5879 processIntegerCallValue(I, Res.first, false); 5880 PendingLoads.push_back(Res.second); 5881 return true; 5882 } 5883 5884 return false; 5885 } 5886 5887 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5888 /// operation (as expected), translate it to an SDNode with the specified opcode 5889 /// and return true. 5890 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5891 unsigned Opcode) { 5892 // Sanity check that it really is a unary floating-point call. 5893 if (I.getNumArgOperands() != 1 || 5894 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5895 I.getType() != I.getArgOperand(0)->getType() || 5896 !I.onlyReadsMemory()) 5897 return false; 5898 5899 SDValue Tmp = getValue(I.getArgOperand(0)); 5900 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5901 return true; 5902 } 5903 5904 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5905 /// operation (as expected), translate it to an SDNode with the specified opcode 5906 /// and return true. 5907 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5908 unsigned Opcode) { 5909 // Sanity check that it really is a binary floating-point call. 5910 if (I.getNumArgOperands() != 2 || 5911 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5912 I.getType() != I.getArgOperand(0)->getType() || 5913 I.getType() != I.getArgOperand(1)->getType() || 5914 !I.onlyReadsMemory()) 5915 return false; 5916 5917 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5918 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5919 EVT VT = Tmp0.getValueType(); 5920 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5921 return true; 5922 } 5923 5924 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5925 // Handle inline assembly differently. 5926 if (isa<InlineAsm>(I.getCalledValue())) { 5927 visitInlineAsm(&I); 5928 return; 5929 } 5930 5931 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5932 ComputeUsesVAFloatArgument(I, &MMI); 5933 5934 const char *RenameFn = nullptr; 5935 if (Function *F = I.getCalledFunction()) { 5936 if (F->isDeclaration()) { 5937 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5938 if (unsigned IID = II->getIntrinsicID(F)) { 5939 RenameFn = visitIntrinsicCall(I, IID); 5940 if (!RenameFn) 5941 return; 5942 } 5943 } 5944 if (unsigned IID = F->getIntrinsicID()) { 5945 RenameFn = visitIntrinsicCall(I, IID); 5946 if (!RenameFn) 5947 return; 5948 } 5949 } 5950 5951 // Check for well-known libc/libm calls. If the function is internal, it 5952 // can't be a library call. 5953 LibFunc::Func Func; 5954 if (!F->hasLocalLinkage() && F->hasName() && 5955 LibInfo->getLibFunc(F->getName(), Func) && 5956 LibInfo->hasOptimizedCodeGen(Func)) { 5957 switch (Func) { 5958 default: break; 5959 case LibFunc::copysign: 5960 case LibFunc::copysignf: 5961 case LibFunc::copysignl: 5962 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5963 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5964 I.getType() == I.getArgOperand(0)->getType() && 5965 I.getType() == I.getArgOperand(1)->getType() && 5966 I.onlyReadsMemory()) { 5967 SDValue LHS = getValue(I.getArgOperand(0)); 5968 SDValue RHS = getValue(I.getArgOperand(1)); 5969 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5970 LHS.getValueType(), LHS, RHS)); 5971 return; 5972 } 5973 break; 5974 case LibFunc::fabs: 5975 case LibFunc::fabsf: 5976 case LibFunc::fabsl: 5977 if (visitUnaryFloatCall(I, ISD::FABS)) 5978 return; 5979 break; 5980 case LibFunc::fmin: 5981 case LibFunc::fminf: 5982 case LibFunc::fminl: 5983 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5984 return; 5985 break; 5986 case LibFunc::fmax: 5987 case LibFunc::fmaxf: 5988 case LibFunc::fmaxl: 5989 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5990 return; 5991 break; 5992 case LibFunc::sin: 5993 case LibFunc::sinf: 5994 case LibFunc::sinl: 5995 if (visitUnaryFloatCall(I, ISD::FSIN)) 5996 return; 5997 break; 5998 case LibFunc::cos: 5999 case LibFunc::cosf: 6000 case LibFunc::cosl: 6001 if (visitUnaryFloatCall(I, ISD::FCOS)) 6002 return; 6003 break; 6004 case LibFunc::sqrt: 6005 case LibFunc::sqrtf: 6006 case LibFunc::sqrtl: 6007 case LibFunc::sqrt_finite: 6008 case LibFunc::sqrtf_finite: 6009 case LibFunc::sqrtl_finite: 6010 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6011 return; 6012 break; 6013 case LibFunc::floor: 6014 case LibFunc::floorf: 6015 case LibFunc::floorl: 6016 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6017 return; 6018 break; 6019 case LibFunc::nearbyint: 6020 case LibFunc::nearbyintf: 6021 case LibFunc::nearbyintl: 6022 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6023 return; 6024 break; 6025 case LibFunc::ceil: 6026 case LibFunc::ceilf: 6027 case LibFunc::ceill: 6028 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6029 return; 6030 break; 6031 case LibFunc::rint: 6032 case LibFunc::rintf: 6033 case LibFunc::rintl: 6034 if (visitUnaryFloatCall(I, ISD::FRINT)) 6035 return; 6036 break; 6037 case LibFunc::round: 6038 case LibFunc::roundf: 6039 case LibFunc::roundl: 6040 if (visitUnaryFloatCall(I, ISD::FROUND)) 6041 return; 6042 break; 6043 case LibFunc::trunc: 6044 case LibFunc::truncf: 6045 case LibFunc::truncl: 6046 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6047 return; 6048 break; 6049 case LibFunc::log2: 6050 case LibFunc::log2f: 6051 case LibFunc::log2l: 6052 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6053 return; 6054 break; 6055 case LibFunc::exp2: 6056 case LibFunc::exp2f: 6057 case LibFunc::exp2l: 6058 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6059 return; 6060 break; 6061 case LibFunc::memcmp: 6062 if (visitMemCmpCall(I)) 6063 return; 6064 break; 6065 case LibFunc::memchr: 6066 if (visitMemChrCall(I)) 6067 return; 6068 break; 6069 case LibFunc::strcpy: 6070 if (visitStrCpyCall(I, false)) 6071 return; 6072 break; 6073 case LibFunc::stpcpy: 6074 if (visitStrCpyCall(I, true)) 6075 return; 6076 break; 6077 case LibFunc::strcmp: 6078 if (visitStrCmpCall(I)) 6079 return; 6080 break; 6081 case LibFunc::strlen: 6082 if (visitStrLenCall(I)) 6083 return; 6084 break; 6085 case LibFunc::strnlen: 6086 if (visitStrNLenCall(I)) 6087 return; 6088 break; 6089 } 6090 } 6091 } 6092 6093 SDValue Callee; 6094 if (!RenameFn) 6095 Callee = getValue(I.getCalledValue()); 6096 else 6097 Callee = DAG.getExternalSymbol(RenameFn, 6098 DAG.getTargetLoweringInfo().getPointerTy()); 6099 6100 // Check if we can potentially perform a tail call. More detailed checking is 6101 // be done within LowerCallTo, after more information about the call is known. 6102 LowerCallTo(&I, Callee, I.isTailCall()); 6103 } 6104 6105 namespace { 6106 6107 /// AsmOperandInfo - This contains information for each constraint that we are 6108 /// lowering. 6109 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6110 public: 6111 /// CallOperand - If this is the result output operand or a clobber 6112 /// this is null, otherwise it is the incoming operand to the CallInst. 6113 /// This gets modified as the asm is processed. 6114 SDValue CallOperand; 6115 6116 /// AssignedRegs - If this is a register or register class operand, this 6117 /// contains the set of register corresponding to the operand. 6118 RegsForValue AssignedRegs; 6119 6120 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6121 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6122 } 6123 6124 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6125 /// corresponds to. If there is no Value* for this operand, it returns 6126 /// MVT::Other. 6127 EVT getCallOperandValEVT(LLVMContext &Context, 6128 const TargetLowering &TLI, 6129 const DataLayout *DL) const { 6130 if (!CallOperandVal) return MVT::Other; 6131 6132 if (isa<BasicBlock>(CallOperandVal)) 6133 return TLI.getPointerTy(); 6134 6135 llvm::Type *OpTy = CallOperandVal->getType(); 6136 6137 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6138 // If this is an indirect operand, the operand is a pointer to the 6139 // accessed type. 6140 if (isIndirect) { 6141 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6142 if (!PtrTy) 6143 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6144 OpTy = PtrTy->getElementType(); 6145 } 6146 6147 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6148 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6149 if (STy->getNumElements() == 1) 6150 OpTy = STy->getElementType(0); 6151 6152 // If OpTy is not a single value, it may be a struct/union that we 6153 // can tile with integers. 6154 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6155 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6156 switch (BitSize) { 6157 default: break; 6158 case 1: 6159 case 8: 6160 case 16: 6161 case 32: 6162 case 64: 6163 case 128: 6164 OpTy = IntegerType::get(Context, BitSize); 6165 break; 6166 } 6167 } 6168 6169 return TLI.getValueType(OpTy, true); 6170 } 6171 }; 6172 6173 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6174 6175 } // end anonymous namespace 6176 6177 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6178 /// specified operand. We prefer to assign virtual registers, to allow the 6179 /// register allocator to handle the assignment process. However, if the asm 6180 /// uses features that we can't model on machineinstrs, we have SDISel do the 6181 /// allocation. This produces generally horrible, but correct, code. 6182 /// 6183 /// OpInfo describes the operand. 6184 /// 6185 static void GetRegistersForValue(SelectionDAG &DAG, 6186 const TargetLowering &TLI, 6187 SDLoc DL, 6188 SDISelAsmOperandInfo &OpInfo) { 6189 LLVMContext &Context = *DAG.getContext(); 6190 6191 MachineFunction &MF = DAG.getMachineFunction(); 6192 SmallVector<unsigned, 4> Regs; 6193 6194 // If this is a constraint for a single physreg, or a constraint for a 6195 // register class, find it. 6196 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6197 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6198 OpInfo.ConstraintCode, 6199 OpInfo.ConstraintVT); 6200 6201 unsigned NumRegs = 1; 6202 if (OpInfo.ConstraintVT != MVT::Other) { 6203 // If this is a FP input in an integer register (or visa versa) insert a bit 6204 // cast of the input value. More generally, handle any case where the input 6205 // value disagrees with the register class we plan to stick this in. 6206 if (OpInfo.Type == InlineAsm::isInput && 6207 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6208 // Try to convert to the first EVT that the reg class contains. If the 6209 // types are identical size, use a bitcast to convert (e.g. two differing 6210 // vector types). 6211 MVT RegVT = *PhysReg.second->vt_begin(); 6212 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6213 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6214 RegVT, OpInfo.CallOperand); 6215 OpInfo.ConstraintVT = RegVT; 6216 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6217 // If the input is a FP value and we want it in FP registers, do a 6218 // bitcast to the corresponding integer type. This turns an f64 value 6219 // into i64, which can be passed with two i32 values on a 32-bit 6220 // machine. 6221 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6222 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6223 RegVT, OpInfo.CallOperand); 6224 OpInfo.ConstraintVT = RegVT; 6225 } 6226 } 6227 6228 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6229 } 6230 6231 MVT RegVT; 6232 EVT ValueVT = OpInfo.ConstraintVT; 6233 6234 // If this is a constraint for a specific physical register, like {r17}, 6235 // assign it now. 6236 if (unsigned AssignedReg = PhysReg.first) { 6237 const TargetRegisterClass *RC = PhysReg.second; 6238 if (OpInfo.ConstraintVT == MVT::Other) 6239 ValueVT = *RC->vt_begin(); 6240 6241 // Get the actual register value type. This is important, because the user 6242 // may have asked for (e.g.) the AX register in i32 type. We need to 6243 // remember that AX is actually i16 to get the right extension. 6244 RegVT = *RC->vt_begin(); 6245 6246 // This is a explicit reference to a physical register. 6247 Regs.push_back(AssignedReg); 6248 6249 // If this is an expanded reference, add the rest of the regs to Regs. 6250 if (NumRegs != 1) { 6251 TargetRegisterClass::iterator I = RC->begin(); 6252 for (; *I != AssignedReg; ++I) 6253 assert(I != RC->end() && "Didn't find reg!"); 6254 6255 // Already added the first reg. 6256 --NumRegs; ++I; 6257 for (; NumRegs; --NumRegs, ++I) { 6258 assert(I != RC->end() && "Ran out of registers to allocate!"); 6259 Regs.push_back(*I); 6260 } 6261 } 6262 6263 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6264 return; 6265 } 6266 6267 // Otherwise, if this was a reference to an LLVM register class, create vregs 6268 // for this reference. 6269 if (const TargetRegisterClass *RC = PhysReg.second) { 6270 RegVT = *RC->vt_begin(); 6271 if (OpInfo.ConstraintVT == MVT::Other) 6272 ValueVT = RegVT; 6273 6274 // Create the appropriate number of virtual registers. 6275 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6276 for (; NumRegs; --NumRegs) 6277 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6278 6279 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6280 return; 6281 } 6282 6283 // Otherwise, we couldn't allocate enough registers for this. 6284 } 6285 6286 /// visitInlineAsm - Handle a call to an InlineAsm object. 6287 /// 6288 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6289 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6290 6291 /// ConstraintOperands - Information about all of the constraints. 6292 SDISelAsmOperandInfoVector ConstraintOperands; 6293 6294 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6295 TargetLowering::AsmOperandInfoVector TargetConstraints = 6296 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 6297 6298 bool hasMemory = false; 6299 6300 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6301 unsigned ResNo = 0; // ResNo - The result number of the next output. 6302 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6303 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6304 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6305 6306 MVT OpVT = MVT::Other; 6307 6308 // Compute the value type for each operand. 6309 switch (OpInfo.Type) { 6310 case InlineAsm::isOutput: 6311 // Indirect outputs just consume an argument. 6312 if (OpInfo.isIndirect) { 6313 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6314 break; 6315 } 6316 6317 // The return value of the call is this value. As such, there is no 6318 // corresponding argument. 6319 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6320 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6321 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 6322 } else { 6323 assert(ResNo == 0 && "Asm only has one result!"); 6324 OpVT = TLI.getSimpleValueType(CS.getType()); 6325 } 6326 ++ResNo; 6327 break; 6328 case InlineAsm::isInput: 6329 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6330 break; 6331 case InlineAsm::isClobber: 6332 // Nothing to do. 6333 break; 6334 } 6335 6336 // If this is an input or an indirect output, process the call argument. 6337 // BasicBlocks are labels, currently appearing only in asm's. 6338 if (OpInfo.CallOperandVal) { 6339 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6340 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6341 } else { 6342 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6343 } 6344 6345 OpVT = 6346 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 6347 } 6348 6349 OpInfo.ConstraintVT = OpVT; 6350 6351 // Indirect operand accesses access memory. 6352 if (OpInfo.isIndirect) 6353 hasMemory = true; 6354 else { 6355 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6356 TargetLowering::ConstraintType 6357 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6358 if (CType == TargetLowering::C_Memory) { 6359 hasMemory = true; 6360 break; 6361 } 6362 } 6363 } 6364 } 6365 6366 SDValue Chain, Flag; 6367 6368 // We won't need to flush pending loads if this asm doesn't touch 6369 // memory and is nonvolatile. 6370 if (hasMemory || IA->hasSideEffects()) 6371 Chain = getRoot(); 6372 else 6373 Chain = DAG.getRoot(); 6374 6375 // Second pass over the constraints: compute which constraint option to use 6376 // and assign registers to constraints that want a specific physreg. 6377 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6378 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6379 6380 // If this is an output operand with a matching input operand, look up the 6381 // matching input. If their types mismatch, e.g. one is an integer, the 6382 // other is floating point, or their sizes are different, flag it as an 6383 // error. 6384 if (OpInfo.hasMatchingInput()) { 6385 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6386 6387 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6388 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6389 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6390 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6391 OpInfo.ConstraintVT); 6392 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6393 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6394 Input.ConstraintVT); 6395 if ((OpInfo.ConstraintVT.isInteger() != 6396 Input.ConstraintVT.isInteger()) || 6397 (MatchRC.second != InputRC.second)) { 6398 report_fatal_error("Unsupported asm: input constraint" 6399 " with a matching output constraint of" 6400 " incompatible type!"); 6401 } 6402 Input.ConstraintVT = OpInfo.ConstraintVT; 6403 } 6404 } 6405 6406 // Compute the constraint code and ConstraintType to use. 6407 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6408 6409 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6410 OpInfo.Type == InlineAsm::isClobber) 6411 continue; 6412 6413 // If this is a memory input, and if the operand is not indirect, do what we 6414 // need to to provide an address for the memory input. 6415 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6416 !OpInfo.isIndirect) { 6417 assert((OpInfo.isMultipleAlternative || 6418 (OpInfo.Type == InlineAsm::isInput)) && 6419 "Can only indirectify direct input operands!"); 6420 6421 // Memory operands really want the address of the value. If we don't have 6422 // an indirect input, put it in the constpool if we can, otherwise spill 6423 // it to a stack slot. 6424 // TODO: This isn't quite right. We need to handle these according to 6425 // the addressing mode that the constraint wants. Also, this may take 6426 // an additional register for the computation and we don't want that 6427 // either. 6428 6429 // If the operand is a float, integer, or vector constant, spill to a 6430 // constant pool entry to get its address. 6431 const Value *OpVal = OpInfo.CallOperandVal; 6432 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6433 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6434 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6435 TLI.getPointerTy()); 6436 } else { 6437 // Otherwise, create a stack slot and emit a store to it before the 6438 // asm. 6439 Type *Ty = OpVal->getType(); 6440 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 6441 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 6442 MachineFunction &MF = DAG.getMachineFunction(); 6443 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6444 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6445 Chain = DAG.getStore(Chain, getCurSDLoc(), 6446 OpInfo.CallOperand, StackSlot, 6447 MachinePointerInfo::getFixedStack(SSFI), 6448 false, false, 0); 6449 OpInfo.CallOperand = StackSlot; 6450 } 6451 6452 // There is no longer a Value* corresponding to this operand. 6453 OpInfo.CallOperandVal = nullptr; 6454 6455 // It is now an indirect operand. 6456 OpInfo.isIndirect = true; 6457 } 6458 6459 // If this constraint is for a specific register, allocate it before 6460 // anything else. 6461 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6462 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6463 } 6464 6465 // Second pass - Loop over all of the operands, assigning virtual or physregs 6466 // to register class operands. 6467 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6468 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6469 6470 // C_Register operands have already been allocated, Other/Memory don't need 6471 // to be. 6472 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6473 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6474 } 6475 6476 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6477 std::vector<SDValue> AsmNodeOperands; 6478 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6479 AsmNodeOperands.push_back( 6480 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6481 TLI.getPointerTy())); 6482 6483 // If we have a !srcloc metadata node associated with it, we want to attach 6484 // this to the ultimately generated inline asm machineinstr. To do this, we 6485 // pass in the third operand as this (potentially null) inline asm MDNode. 6486 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6487 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6488 6489 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6490 // bits as operand 3. 6491 unsigned ExtraInfo = 0; 6492 if (IA->hasSideEffects()) 6493 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6494 if (IA->isAlignStack()) 6495 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6496 // Set the asm dialect. 6497 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6498 6499 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6500 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6501 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6502 6503 // Compute the constraint code and ConstraintType to use. 6504 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6505 6506 // Ideally, we would only check against memory constraints. However, the 6507 // meaning of an other constraint can be target-specific and we can't easily 6508 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6509 // for other constriants as well. 6510 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6511 OpInfo.ConstraintType == TargetLowering::C_Other) { 6512 if (OpInfo.Type == InlineAsm::isInput) 6513 ExtraInfo |= InlineAsm::Extra_MayLoad; 6514 else if (OpInfo.Type == InlineAsm::isOutput) 6515 ExtraInfo |= InlineAsm::Extra_MayStore; 6516 else if (OpInfo.Type == InlineAsm::isClobber) 6517 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6518 } 6519 } 6520 6521 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6522 TLI.getPointerTy())); 6523 6524 // Loop over all of the inputs, copying the operand values into the 6525 // appropriate registers and processing the output regs. 6526 RegsForValue RetValRegs; 6527 6528 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6529 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6530 6531 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6532 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6533 6534 switch (OpInfo.Type) { 6535 case InlineAsm::isOutput: { 6536 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6537 OpInfo.ConstraintType != TargetLowering::C_Register) { 6538 // Memory output, or 'other' output (e.g. 'X' constraint). 6539 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6540 6541 unsigned ConstraintID = 6542 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6543 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6544 "Failed to convert memory constraint code to constraint id."); 6545 6546 // Add information to the INLINEASM node to know about this output. 6547 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6548 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6549 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, MVT::i32)); 6550 AsmNodeOperands.push_back(OpInfo.CallOperand); 6551 break; 6552 } 6553 6554 // Otherwise, this is a register or register class output. 6555 6556 // Copy the output from the appropriate register. Find a register that 6557 // we can use. 6558 if (OpInfo.AssignedRegs.Regs.empty()) { 6559 LLVMContext &Ctx = *DAG.getContext(); 6560 Ctx.emitError(CS.getInstruction(), 6561 "couldn't allocate output register for constraint '" + 6562 Twine(OpInfo.ConstraintCode) + "'"); 6563 return; 6564 } 6565 6566 // If this is an indirect operand, store through the pointer after the 6567 // asm. 6568 if (OpInfo.isIndirect) { 6569 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6570 OpInfo.CallOperandVal)); 6571 } else { 6572 // This is the result value of the call. 6573 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6574 // Concatenate this output onto the outputs list. 6575 RetValRegs.append(OpInfo.AssignedRegs); 6576 } 6577 6578 // Add information to the INLINEASM node to know that this register is 6579 // set. 6580 OpInfo.AssignedRegs 6581 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6582 ? InlineAsm::Kind_RegDefEarlyClobber 6583 : InlineAsm::Kind_RegDef, 6584 false, 0, DAG, AsmNodeOperands); 6585 break; 6586 } 6587 case InlineAsm::isInput: { 6588 SDValue InOperandVal = OpInfo.CallOperand; 6589 6590 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6591 // If this is required to match an output register we have already set, 6592 // just use its register. 6593 unsigned OperandNo = OpInfo.getMatchedOperand(); 6594 6595 // Scan until we find the definition we already emitted of this operand. 6596 // When we find it, create a RegsForValue operand. 6597 unsigned CurOp = InlineAsm::Op_FirstOperand; 6598 for (; OperandNo; --OperandNo) { 6599 // Advance to the next operand. 6600 unsigned OpFlag = 6601 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6602 assert((InlineAsm::isRegDefKind(OpFlag) || 6603 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6604 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6605 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6606 } 6607 6608 unsigned OpFlag = 6609 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6610 if (InlineAsm::isRegDefKind(OpFlag) || 6611 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6612 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6613 if (OpInfo.isIndirect) { 6614 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6615 LLVMContext &Ctx = *DAG.getContext(); 6616 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6617 " don't know how to handle tied " 6618 "indirect register inputs"); 6619 return; 6620 } 6621 6622 RegsForValue MatchedRegs; 6623 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6624 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6625 MatchedRegs.RegVTs.push_back(RegVT); 6626 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6627 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6628 i != e; ++i) { 6629 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6630 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6631 else { 6632 LLVMContext &Ctx = *DAG.getContext(); 6633 Ctx.emitError(CS.getInstruction(), 6634 "inline asm error: This value" 6635 " type register class is not natively supported!"); 6636 return; 6637 } 6638 } 6639 // Use the produced MatchedRegs object to 6640 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6641 Chain, &Flag, CS.getInstruction()); 6642 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6643 true, OpInfo.getMatchedOperand(), 6644 DAG, AsmNodeOperands); 6645 break; 6646 } 6647 6648 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6649 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6650 "Unexpected number of operands"); 6651 // Add information to the INLINEASM node to know about this input. 6652 // See InlineAsm.h isUseOperandTiedToDef. 6653 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6654 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6655 OpInfo.getMatchedOperand()); 6656 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6657 TLI.getPointerTy())); 6658 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6659 break; 6660 } 6661 6662 // Treat indirect 'X' constraint as memory. 6663 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6664 OpInfo.isIndirect) 6665 OpInfo.ConstraintType = TargetLowering::C_Memory; 6666 6667 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6668 std::vector<SDValue> Ops; 6669 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6670 Ops, DAG); 6671 if (Ops.empty()) { 6672 LLVMContext &Ctx = *DAG.getContext(); 6673 Ctx.emitError(CS.getInstruction(), 6674 "invalid operand for inline asm constraint '" + 6675 Twine(OpInfo.ConstraintCode) + "'"); 6676 return; 6677 } 6678 6679 // Add information to the INLINEASM node to know about this input. 6680 unsigned ResOpType = 6681 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6682 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6683 TLI.getPointerTy())); 6684 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6685 break; 6686 } 6687 6688 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6689 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6690 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6691 "Memory operands expect pointer values"); 6692 6693 unsigned ConstraintID = 6694 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6695 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6696 "Failed to convert memory constraint code to constraint id."); 6697 6698 // Add information to the INLINEASM node to know about this input. 6699 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6700 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6701 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, MVT::i32)); 6702 AsmNodeOperands.push_back(InOperandVal); 6703 break; 6704 } 6705 6706 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6707 OpInfo.ConstraintType == TargetLowering::C_Register) && 6708 "Unknown constraint type!"); 6709 6710 // TODO: Support this. 6711 if (OpInfo.isIndirect) { 6712 LLVMContext &Ctx = *DAG.getContext(); 6713 Ctx.emitError(CS.getInstruction(), 6714 "Don't know how to handle indirect register inputs yet " 6715 "for constraint '" + 6716 Twine(OpInfo.ConstraintCode) + "'"); 6717 return; 6718 } 6719 6720 // Copy the input into the appropriate registers. 6721 if (OpInfo.AssignedRegs.Regs.empty()) { 6722 LLVMContext &Ctx = *DAG.getContext(); 6723 Ctx.emitError(CS.getInstruction(), 6724 "couldn't allocate input reg for constraint '" + 6725 Twine(OpInfo.ConstraintCode) + "'"); 6726 return; 6727 } 6728 6729 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6730 Chain, &Flag, CS.getInstruction()); 6731 6732 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6733 DAG, AsmNodeOperands); 6734 break; 6735 } 6736 case InlineAsm::isClobber: { 6737 // Add the clobbered value to the operand list, so that the register 6738 // allocator is aware that the physreg got clobbered. 6739 if (!OpInfo.AssignedRegs.Regs.empty()) 6740 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6741 false, 0, DAG, 6742 AsmNodeOperands); 6743 break; 6744 } 6745 } 6746 } 6747 6748 // Finish up input operands. Set the input chain and add the flag last. 6749 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6750 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6751 6752 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6753 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6754 Flag = Chain.getValue(1); 6755 6756 // If this asm returns a register value, copy the result from that register 6757 // and set it as the value of the call. 6758 if (!RetValRegs.Regs.empty()) { 6759 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6760 Chain, &Flag, CS.getInstruction()); 6761 6762 // FIXME: Why don't we do this for inline asms with MRVs? 6763 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6764 EVT ResultType = TLI.getValueType(CS.getType()); 6765 6766 // If any of the results of the inline asm is a vector, it may have the 6767 // wrong width/num elts. This can happen for register classes that can 6768 // contain multiple different value types. The preg or vreg allocated may 6769 // not have the same VT as was expected. Convert it to the right type 6770 // with bit_convert. 6771 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6772 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6773 ResultType, Val); 6774 6775 } else if (ResultType != Val.getValueType() && 6776 ResultType.isInteger() && Val.getValueType().isInteger()) { 6777 // If a result value was tied to an input value, the computed result may 6778 // have a wider width than the expected result. Extract the relevant 6779 // portion. 6780 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6781 } 6782 6783 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6784 } 6785 6786 setValue(CS.getInstruction(), Val); 6787 // Don't need to use this as a chain in this case. 6788 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6789 return; 6790 } 6791 6792 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6793 6794 // Process indirect outputs, first output all of the flagged copies out of 6795 // physregs. 6796 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6797 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6798 const Value *Ptr = IndirectStoresToEmit[i].second; 6799 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6800 Chain, &Flag, IA); 6801 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6802 } 6803 6804 // Emit the non-flagged stores from the physregs. 6805 SmallVector<SDValue, 8> OutChains; 6806 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6807 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6808 StoresToEmit[i].first, 6809 getValue(StoresToEmit[i].second), 6810 MachinePointerInfo(StoresToEmit[i].second), 6811 false, false, 0); 6812 OutChains.push_back(Val); 6813 } 6814 6815 if (!OutChains.empty()) 6816 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6817 6818 DAG.setRoot(Chain); 6819 } 6820 6821 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6822 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6823 MVT::Other, getRoot(), 6824 getValue(I.getArgOperand(0)), 6825 DAG.getSrcValue(I.getArgOperand(0)))); 6826 } 6827 6828 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6829 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6830 const DataLayout &DL = *TLI.getDataLayout(); 6831 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6832 getRoot(), getValue(I.getOperand(0)), 6833 DAG.getSrcValue(I.getOperand(0)), 6834 DL.getABITypeAlignment(I.getType())); 6835 setValue(&I, V); 6836 DAG.setRoot(V.getValue(1)); 6837 } 6838 6839 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6840 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6841 MVT::Other, getRoot(), 6842 getValue(I.getArgOperand(0)), 6843 DAG.getSrcValue(I.getArgOperand(0)))); 6844 } 6845 6846 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6847 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6848 MVT::Other, getRoot(), 6849 getValue(I.getArgOperand(0)), 6850 getValue(I.getArgOperand(1)), 6851 DAG.getSrcValue(I.getArgOperand(0)), 6852 DAG.getSrcValue(I.getArgOperand(1)))); 6853 } 6854 6855 /// \brief Lower an argument list according to the target calling convention. 6856 /// 6857 /// \return A tuple of <return-value, token-chain> 6858 /// 6859 /// This is a helper for lowering intrinsics that follow a target calling 6860 /// convention or require stack pointer adjustment. Only a subset of the 6861 /// intrinsic's operands need to participate in the calling convention. 6862 std::pair<SDValue, SDValue> 6863 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6864 unsigned NumArgs, SDValue Callee, 6865 bool UseVoidTy, 6866 MachineBasicBlock *LandingPad, 6867 bool IsPatchPoint) { 6868 TargetLowering::ArgListTy Args; 6869 Args.reserve(NumArgs); 6870 6871 // Populate the argument list. 6872 // Attributes for args start at offset 1, after the return attribute. 6873 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6874 ArgI != ArgE; ++ArgI) { 6875 const Value *V = CS->getOperand(ArgI); 6876 6877 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6878 6879 TargetLowering::ArgListEntry Entry; 6880 Entry.Node = getValue(V); 6881 Entry.Ty = V->getType(); 6882 Entry.setAttributes(&CS, AttrI); 6883 Args.push_back(Entry); 6884 } 6885 6886 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6887 TargetLowering::CallLoweringInfo CLI(DAG); 6888 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6889 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6890 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6891 6892 return lowerInvokable(CLI, LandingPad); 6893 } 6894 6895 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6896 /// or patchpoint target node's operand list. 6897 /// 6898 /// Constants are converted to TargetConstants purely as an optimization to 6899 /// avoid constant materialization and register allocation. 6900 /// 6901 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6902 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6903 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6904 /// address materialization and register allocation, but may also be required 6905 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6906 /// alloca in the entry block, then the runtime may assume that the alloca's 6907 /// StackMap location can be read immediately after compilation and that the 6908 /// location is valid at any point during execution (this is similar to the 6909 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6910 /// only available in a register, then the runtime would need to trap when 6911 /// execution reaches the StackMap in order to read the alloca's location. 6912 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6913 SmallVectorImpl<SDValue> &Ops, 6914 SelectionDAGBuilder &Builder) { 6915 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6916 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6917 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6918 Ops.push_back( 6919 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6920 Ops.push_back( 6921 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6922 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6923 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6924 Ops.push_back( 6925 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6926 } else 6927 Ops.push_back(OpVal); 6928 } 6929 } 6930 6931 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6932 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6933 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6934 // [live variables...]) 6935 6936 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6937 6938 SDValue Chain, InFlag, Callee, NullPtr; 6939 SmallVector<SDValue, 32> Ops; 6940 6941 SDLoc DL = getCurSDLoc(); 6942 Callee = getValue(CI.getCalledValue()); 6943 NullPtr = DAG.getIntPtrConstant(0, true); 6944 6945 // The stackmap intrinsic only records the live variables (the arguemnts 6946 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6947 // intrinsic, this won't be lowered to a function call. This means we don't 6948 // have to worry about calling conventions and target specific lowering code. 6949 // Instead we perform the call lowering right here. 6950 // 6951 // chain, flag = CALLSEQ_START(chain, 0) 6952 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6953 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6954 // 6955 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6956 InFlag = Chain.getValue(1); 6957 6958 // Add the <id> and <numBytes> constants. 6959 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6960 Ops.push_back(DAG.getTargetConstant( 6961 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6962 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6963 Ops.push_back(DAG.getTargetConstant( 6964 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6965 6966 // Push live variables for the stack map. 6967 addStackMapLiveVars(&CI, 2, Ops, *this); 6968 6969 // We are not pushing any register mask info here on the operands list, 6970 // because the stackmap doesn't clobber anything. 6971 6972 // Push the chain and the glue flag. 6973 Ops.push_back(Chain); 6974 Ops.push_back(InFlag); 6975 6976 // Create the STACKMAP node. 6977 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6978 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6979 Chain = SDValue(SM, 0); 6980 InFlag = Chain.getValue(1); 6981 6982 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6983 6984 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6985 6986 // Set the root to the target-lowered call chain. 6987 DAG.setRoot(Chain); 6988 6989 // Inform the Frame Information that we have a stackmap in this function. 6990 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6991 } 6992 6993 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6994 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6995 MachineBasicBlock *LandingPad) { 6996 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6997 // i32 <numBytes>, 6998 // i8* <target>, 6999 // i32 <numArgs>, 7000 // [Args...], 7001 // [live variables...]) 7002 7003 CallingConv::ID CC = CS.getCallingConv(); 7004 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7005 bool HasDef = !CS->getType()->isVoidTy(); 7006 SDValue Callee = getValue(CS->getOperand(2)); // <target> 7007 7008 // Get the real number of arguments participating in the call <numArgs> 7009 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7010 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7011 7012 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7013 // Intrinsics include all meta-operands up to but not including CC. 7014 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7015 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7016 "Not enough arguments provided to the patchpoint intrinsic"); 7017 7018 // For AnyRegCC the arguments are lowered later on manually. 7019 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7020 std::pair<SDValue, SDValue> Result = 7021 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 7022 LandingPad, true); 7023 7024 SDNode *CallEnd = Result.second.getNode(); 7025 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7026 CallEnd = CallEnd->getOperand(0).getNode(); 7027 7028 /// Get a call instruction from the call sequence chain. 7029 /// Tail calls are not allowed. 7030 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7031 "Expected a callseq node."); 7032 SDNode *Call = CallEnd->getOperand(0).getNode(); 7033 bool HasGlue = Call->getGluedNode(); 7034 7035 // Replace the target specific call node with the patchable intrinsic. 7036 SmallVector<SDValue, 8> Ops; 7037 7038 // Add the <id> and <numBytes> constants. 7039 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7040 Ops.push_back(DAG.getTargetConstant( 7041 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7042 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7043 Ops.push_back(DAG.getTargetConstant( 7044 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7045 7046 // Assume that the Callee is a constant address. 7047 // FIXME: handle function symbols in the future. 7048 Ops.push_back( 7049 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7050 /*isTarget=*/true)); 7051 7052 // Adjust <numArgs> to account for any arguments that have been passed on the 7053 // stack instead. 7054 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7055 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7056 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7057 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7058 7059 // Add the calling convention 7060 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7061 7062 // Add the arguments we omitted previously. The register allocator should 7063 // place these in any free register. 7064 if (IsAnyRegCC) 7065 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7066 Ops.push_back(getValue(CS.getArgument(i))); 7067 7068 // Push the arguments from the call instruction up to the register mask. 7069 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7070 Ops.append(Call->op_begin() + 2, e); 7071 7072 // Push live variables for the stack map. 7073 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this); 7074 7075 // Push the register mask info. 7076 if (HasGlue) 7077 Ops.push_back(*(Call->op_end()-2)); 7078 else 7079 Ops.push_back(*(Call->op_end()-1)); 7080 7081 // Push the chain (this is originally the first operand of the call, but 7082 // becomes now the last or second to last operand). 7083 Ops.push_back(*(Call->op_begin())); 7084 7085 // Push the glue flag (last operand). 7086 if (HasGlue) 7087 Ops.push_back(*(Call->op_end()-1)); 7088 7089 SDVTList NodeTys; 7090 if (IsAnyRegCC && HasDef) { 7091 // Create the return types based on the intrinsic definition 7092 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7093 SmallVector<EVT, 3> ValueVTs; 7094 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 7095 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7096 7097 // There is always a chain and a glue type at the end 7098 ValueVTs.push_back(MVT::Other); 7099 ValueVTs.push_back(MVT::Glue); 7100 NodeTys = DAG.getVTList(ValueVTs); 7101 } else 7102 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7103 7104 // Replace the target specific call node with a PATCHPOINT node. 7105 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7106 getCurSDLoc(), NodeTys, Ops); 7107 7108 // Update the NodeMap. 7109 if (HasDef) { 7110 if (IsAnyRegCC) 7111 setValue(CS.getInstruction(), SDValue(MN, 0)); 7112 else 7113 setValue(CS.getInstruction(), Result.first); 7114 } 7115 7116 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7117 // call sequence. Furthermore the location of the chain and glue can change 7118 // when the AnyReg calling convention is used and the intrinsic returns a 7119 // value. 7120 if (IsAnyRegCC && HasDef) { 7121 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7122 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7123 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7124 } else 7125 DAG.ReplaceAllUsesWith(Call, MN); 7126 DAG.DeleteNode(Call); 7127 7128 // Inform the Frame Information that we have a patchpoint in this function. 7129 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7130 } 7131 7132 /// Returns an AttributeSet representing the attributes applied to the return 7133 /// value of the given call. 7134 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7135 SmallVector<Attribute::AttrKind, 2> Attrs; 7136 if (CLI.RetSExt) 7137 Attrs.push_back(Attribute::SExt); 7138 if (CLI.RetZExt) 7139 Attrs.push_back(Attribute::ZExt); 7140 if (CLI.IsInReg) 7141 Attrs.push_back(Attribute::InReg); 7142 7143 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7144 Attrs); 7145 } 7146 7147 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7148 /// implementation, which just calls LowerCall. 7149 /// FIXME: When all targets are 7150 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7151 std::pair<SDValue, SDValue> 7152 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7153 // Handle the incoming return values from the call. 7154 CLI.Ins.clear(); 7155 Type *OrigRetTy = CLI.RetTy; 7156 SmallVector<EVT, 4> RetTys; 7157 SmallVector<uint64_t, 4> Offsets; 7158 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7159 7160 SmallVector<ISD::OutputArg, 4> Outs; 7161 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7162 7163 bool CanLowerReturn = 7164 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7165 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7166 7167 SDValue DemoteStackSlot; 7168 int DemoteStackIdx = -100; 7169 if (!CanLowerReturn) { 7170 // FIXME: equivalent assert? 7171 // assert(!CS.hasInAllocaArgument() && 7172 // "sret demotion is incompatible with inalloca"); 7173 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7174 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7175 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7176 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7177 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7178 7179 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7180 ArgListEntry Entry; 7181 Entry.Node = DemoteStackSlot; 7182 Entry.Ty = StackSlotPtrType; 7183 Entry.isSExt = false; 7184 Entry.isZExt = false; 7185 Entry.isInReg = false; 7186 Entry.isSRet = true; 7187 Entry.isNest = false; 7188 Entry.isByVal = false; 7189 Entry.isReturned = false; 7190 Entry.Alignment = Align; 7191 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7192 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7193 7194 // sret demotion isn't compatible with tail-calls, since the sret argument 7195 // points into the callers stack frame. 7196 CLI.IsTailCall = false; 7197 } else { 7198 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7199 EVT VT = RetTys[I]; 7200 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7201 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7202 for (unsigned i = 0; i != NumRegs; ++i) { 7203 ISD::InputArg MyFlags; 7204 MyFlags.VT = RegisterVT; 7205 MyFlags.ArgVT = VT; 7206 MyFlags.Used = CLI.IsReturnValueUsed; 7207 if (CLI.RetSExt) 7208 MyFlags.Flags.setSExt(); 7209 if (CLI.RetZExt) 7210 MyFlags.Flags.setZExt(); 7211 if (CLI.IsInReg) 7212 MyFlags.Flags.setInReg(); 7213 CLI.Ins.push_back(MyFlags); 7214 } 7215 } 7216 } 7217 7218 // Handle all of the outgoing arguments. 7219 CLI.Outs.clear(); 7220 CLI.OutVals.clear(); 7221 ArgListTy &Args = CLI.getArgs(); 7222 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7223 SmallVector<EVT, 4> ValueVTs; 7224 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7225 Type *FinalType = Args[i].Ty; 7226 if (Args[i].isByVal) 7227 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7228 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7229 FinalType, CLI.CallConv, CLI.IsVarArg); 7230 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7231 ++Value) { 7232 EVT VT = ValueVTs[Value]; 7233 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7234 SDValue Op = SDValue(Args[i].Node.getNode(), 7235 Args[i].Node.getResNo() + Value); 7236 ISD::ArgFlagsTy Flags; 7237 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7238 7239 if (Args[i].isZExt) 7240 Flags.setZExt(); 7241 if (Args[i].isSExt) 7242 Flags.setSExt(); 7243 if (Args[i].isInReg) 7244 Flags.setInReg(); 7245 if (Args[i].isSRet) 7246 Flags.setSRet(); 7247 if (Args[i].isByVal) 7248 Flags.setByVal(); 7249 if (Args[i].isInAlloca) { 7250 Flags.setInAlloca(); 7251 // Set the byval flag for CCAssignFn callbacks that don't know about 7252 // inalloca. This way we can know how many bytes we should've allocated 7253 // and how many bytes a callee cleanup function will pop. If we port 7254 // inalloca to more targets, we'll have to add custom inalloca handling 7255 // in the various CC lowering callbacks. 7256 Flags.setByVal(); 7257 } 7258 if (Args[i].isByVal || Args[i].isInAlloca) { 7259 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7260 Type *ElementTy = Ty->getElementType(); 7261 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7262 // For ByVal, alignment should come from FE. BE will guess if this 7263 // info is not there but there are cases it cannot get right. 7264 unsigned FrameAlign; 7265 if (Args[i].Alignment) 7266 FrameAlign = Args[i].Alignment; 7267 else 7268 FrameAlign = getByValTypeAlignment(ElementTy); 7269 Flags.setByValAlign(FrameAlign); 7270 } 7271 if (Args[i].isNest) 7272 Flags.setNest(); 7273 if (NeedsRegBlock) 7274 Flags.setInConsecutiveRegs(); 7275 Flags.setOrigAlign(OriginalAlignment); 7276 7277 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7278 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7279 SmallVector<SDValue, 4> Parts(NumParts); 7280 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7281 7282 if (Args[i].isSExt) 7283 ExtendKind = ISD::SIGN_EXTEND; 7284 else if (Args[i].isZExt) 7285 ExtendKind = ISD::ZERO_EXTEND; 7286 7287 // Conservatively only handle 'returned' on non-vectors for now 7288 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7289 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7290 "unexpected use of 'returned'"); 7291 // Before passing 'returned' to the target lowering code, ensure that 7292 // either the register MVT and the actual EVT are the same size or that 7293 // the return value and argument are extended in the same way; in these 7294 // cases it's safe to pass the argument register value unchanged as the 7295 // return register value (although it's at the target's option whether 7296 // to do so) 7297 // TODO: allow code generation to take advantage of partially preserved 7298 // registers rather than clobbering the entire register when the 7299 // parameter extension method is not compatible with the return 7300 // extension method 7301 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7302 (ExtendKind != ISD::ANY_EXTEND && 7303 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7304 Flags.setReturned(); 7305 } 7306 7307 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7308 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7309 7310 for (unsigned j = 0; j != NumParts; ++j) { 7311 // if it isn't first piece, alignment must be 1 7312 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7313 i < CLI.NumFixedArgs, 7314 i, j*Parts[j].getValueType().getStoreSize()); 7315 if (NumParts > 1 && j == 0) 7316 MyFlags.Flags.setSplit(); 7317 else if (j != 0) 7318 MyFlags.Flags.setOrigAlign(1); 7319 7320 CLI.Outs.push_back(MyFlags); 7321 CLI.OutVals.push_back(Parts[j]); 7322 } 7323 7324 if (NeedsRegBlock && Value == NumValues - 1) 7325 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7326 } 7327 } 7328 7329 SmallVector<SDValue, 4> InVals; 7330 CLI.Chain = LowerCall(CLI, InVals); 7331 7332 // Verify that the target's LowerCall behaved as expected. 7333 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7334 "LowerCall didn't return a valid chain!"); 7335 assert((!CLI.IsTailCall || InVals.empty()) && 7336 "LowerCall emitted a return value for a tail call!"); 7337 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7338 "LowerCall didn't emit the correct number of values!"); 7339 7340 // For a tail call, the return value is merely live-out and there aren't 7341 // any nodes in the DAG representing it. Return a special value to 7342 // indicate that a tail call has been emitted and no more Instructions 7343 // should be processed in the current block. 7344 if (CLI.IsTailCall) { 7345 CLI.DAG.setRoot(CLI.Chain); 7346 return std::make_pair(SDValue(), SDValue()); 7347 } 7348 7349 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7350 assert(InVals[i].getNode() && 7351 "LowerCall emitted a null value!"); 7352 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7353 "LowerCall emitted a value with the wrong type!"); 7354 }); 7355 7356 SmallVector<SDValue, 4> ReturnValues; 7357 if (!CanLowerReturn) { 7358 // The instruction result is the result of loading from the 7359 // hidden sret parameter. 7360 SmallVector<EVT, 1> PVTs; 7361 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7362 7363 ComputeValueVTs(*this, PtrRetTy, PVTs); 7364 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7365 EVT PtrVT = PVTs[0]; 7366 7367 unsigned NumValues = RetTys.size(); 7368 ReturnValues.resize(NumValues); 7369 SmallVector<SDValue, 4> Chains(NumValues); 7370 7371 for (unsigned i = 0; i < NumValues; ++i) { 7372 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7373 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7374 SDValue L = CLI.DAG.getLoad( 7375 RetTys[i], CLI.DL, CLI.Chain, Add, 7376 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7377 false, false, 1); 7378 ReturnValues[i] = L; 7379 Chains[i] = L.getValue(1); 7380 } 7381 7382 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7383 } else { 7384 // Collect the legal value parts into potentially illegal values 7385 // that correspond to the original function's return values. 7386 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7387 if (CLI.RetSExt) 7388 AssertOp = ISD::AssertSext; 7389 else if (CLI.RetZExt) 7390 AssertOp = ISD::AssertZext; 7391 unsigned CurReg = 0; 7392 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7393 EVT VT = RetTys[I]; 7394 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7395 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7396 7397 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7398 NumRegs, RegisterVT, VT, nullptr, 7399 AssertOp)); 7400 CurReg += NumRegs; 7401 } 7402 7403 // For a function returning void, there is no return value. We can't create 7404 // such a node, so we just return a null return value in that case. In 7405 // that case, nothing will actually look at the value. 7406 if (ReturnValues.empty()) 7407 return std::make_pair(SDValue(), CLI.Chain); 7408 } 7409 7410 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7411 CLI.DAG.getVTList(RetTys), ReturnValues); 7412 return std::make_pair(Res, CLI.Chain); 7413 } 7414 7415 void TargetLowering::LowerOperationWrapper(SDNode *N, 7416 SmallVectorImpl<SDValue> &Results, 7417 SelectionDAG &DAG) const { 7418 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7419 if (Res.getNode()) 7420 Results.push_back(Res); 7421 } 7422 7423 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7424 llvm_unreachable("LowerOperation not implemented for this target!"); 7425 } 7426 7427 void 7428 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7429 SDValue Op = getNonRegisterValue(V); 7430 assert((Op.getOpcode() != ISD::CopyFromReg || 7431 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7432 "Copy from a reg to the same reg!"); 7433 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7434 7435 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7436 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7437 SDValue Chain = DAG.getEntryNode(); 7438 7439 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7440 FuncInfo.PreferredExtendType.end()) 7441 ? ISD::ANY_EXTEND 7442 : FuncInfo.PreferredExtendType[V]; 7443 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7444 PendingExports.push_back(Chain); 7445 } 7446 7447 #include "llvm/CodeGen/SelectionDAGISel.h" 7448 7449 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7450 /// entry block, return true. This includes arguments used by switches, since 7451 /// the switch may expand into multiple basic blocks. 7452 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7453 // With FastISel active, we may be splitting blocks, so force creation 7454 // of virtual registers for all non-dead arguments. 7455 if (FastISel) 7456 return A->use_empty(); 7457 7458 const BasicBlock *Entry = A->getParent()->begin(); 7459 for (const User *U : A->users()) 7460 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7461 return false; // Use not in entry block. 7462 7463 return true; 7464 } 7465 7466 void SelectionDAGISel::LowerArguments(const Function &F) { 7467 SelectionDAG &DAG = SDB->DAG; 7468 SDLoc dl = SDB->getCurSDLoc(); 7469 const DataLayout *DL = TLI->getDataLayout(); 7470 SmallVector<ISD::InputArg, 16> Ins; 7471 7472 if (!FuncInfo->CanLowerReturn) { 7473 // Put in an sret pointer parameter before all the other parameters. 7474 SmallVector<EVT, 1> ValueVTs; 7475 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7476 7477 // NOTE: Assuming that a pointer will never break down to more than one VT 7478 // or one register. 7479 ISD::ArgFlagsTy Flags; 7480 Flags.setSRet(); 7481 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7482 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7483 ISD::InputArg::NoArgIndex, 0); 7484 Ins.push_back(RetArg); 7485 } 7486 7487 // Set up the incoming argument description vector. 7488 unsigned Idx = 1; 7489 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7490 I != E; ++I, ++Idx) { 7491 SmallVector<EVT, 4> ValueVTs; 7492 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7493 bool isArgValueUsed = !I->use_empty(); 7494 unsigned PartBase = 0; 7495 Type *FinalType = I->getType(); 7496 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7497 FinalType = cast<PointerType>(FinalType)->getElementType(); 7498 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7499 FinalType, F.getCallingConv(), F.isVarArg()); 7500 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7501 Value != NumValues; ++Value) { 7502 EVT VT = ValueVTs[Value]; 7503 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7504 ISD::ArgFlagsTy Flags; 7505 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7506 7507 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7508 Flags.setZExt(); 7509 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7510 Flags.setSExt(); 7511 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7512 Flags.setInReg(); 7513 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7514 Flags.setSRet(); 7515 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7516 Flags.setByVal(); 7517 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7518 Flags.setInAlloca(); 7519 // Set the byval flag for CCAssignFn callbacks that don't know about 7520 // inalloca. This way we can know how many bytes we should've allocated 7521 // and how many bytes a callee cleanup function will pop. If we port 7522 // inalloca to more targets, we'll have to add custom inalloca handling 7523 // in the various CC lowering callbacks. 7524 Flags.setByVal(); 7525 } 7526 if (Flags.isByVal() || Flags.isInAlloca()) { 7527 PointerType *Ty = cast<PointerType>(I->getType()); 7528 Type *ElementTy = Ty->getElementType(); 7529 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7530 // For ByVal, alignment should be passed from FE. BE will guess if 7531 // this info is not there but there are cases it cannot get right. 7532 unsigned FrameAlign; 7533 if (F.getParamAlignment(Idx)) 7534 FrameAlign = F.getParamAlignment(Idx); 7535 else 7536 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7537 Flags.setByValAlign(FrameAlign); 7538 } 7539 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7540 Flags.setNest(); 7541 if (NeedsRegBlock) 7542 Flags.setInConsecutiveRegs(); 7543 Flags.setOrigAlign(OriginalAlignment); 7544 7545 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7546 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7547 for (unsigned i = 0; i != NumRegs; ++i) { 7548 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7549 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7550 if (NumRegs > 1 && i == 0) 7551 MyFlags.Flags.setSplit(); 7552 // if it isn't first piece, alignment must be 1 7553 else if (i > 0) 7554 MyFlags.Flags.setOrigAlign(1); 7555 Ins.push_back(MyFlags); 7556 } 7557 if (NeedsRegBlock && Value == NumValues - 1) 7558 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7559 PartBase += VT.getStoreSize(); 7560 } 7561 } 7562 7563 // Call the target to set up the argument values. 7564 SmallVector<SDValue, 8> InVals; 7565 SDValue NewRoot = TLI->LowerFormalArguments( 7566 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7567 7568 // Verify that the target's LowerFormalArguments behaved as expected. 7569 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7570 "LowerFormalArguments didn't return a valid chain!"); 7571 assert(InVals.size() == Ins.size() && 7572 "LowerFormalArguments didn't emit the correct number of values!"); 7573 DEBUG({ 7574 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7575 assert(InVals[i].getNode() && 7576 "LowerFormalArguments emitted a null value!"); 7577 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7578 "LowerFormalArguments emitted a value with the wrong type!"); 7579 } 7580 }); 7581 7582 // Update the DAG with the new chain value resulting from argument lowering. 7583 DAG.setRoot(NewRoot); 7584 7585 // Set up the argument values. 7586 unsigned i = 0; 7587 Idx = 1; 7588 if (!FuncInfo->CanLowerReturn) { 7589 // Create a virtual register for the sret pointer, and put in a copy 7590 // from the sret argument into it. 7591 SmallVector<EVT, 1> ValueVTs; 7592 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7593 MVT VT = ValueVTs[0].getSimpleVT(); 7594 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7595 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7596 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7597 RegVT, VT, nullptr, AssertOp); 7598 7599 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7600 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7601 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7602 FuncInfo->DemoteRegister = SRetReg; 7603 NewRoot = 7604 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7605 DAG.setRoot(NewRoot); 7606 7607 // i indexes lowered arguments. Bump it past the hidden sret argument. 7608 // Idx indexes LLVM arguments. Don't touch it. 7609 ++i; 7610 } 7611 7612 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7613 ++I, ++Idx) { 7614 SmallVector<SDValue, 4> ArgValues; 7615 SmallVector<EVT, 4> ValueVTs; 7616 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7617 unsigned NumValues = ValueVTs.size(); 7618 7619 // If this argument is unused then remember its value. It is used to generate 7620 // debugging information. 7621 if (I->use_empty() && NumValues) { 7622 SDB->setUnusedArgValue(I, InVals[i]); 7623 7624 // Also remember any frame index for use in FastISel. 7625 if (FrameIndexSDNode *FI = 7626 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7627 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7628 } 7629 7630 for (unsigned Val = 0; Val != NumValues; ++Val) { 7631 EVT VT = ValueVTs[Val]; 7632 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7633 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7634 7635 if (!I->use_empty()) { 7636 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7637 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7638 AssertOp = ISD::AssertSext; 7639 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7640 AssertOp = ISD::AssertZext; 7641 7642 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7643 NumParts, PartVT, VT, 7644 nullptr, AssertOp)); 7645 } 7646 7647 i += NumParts; 7648 } 7649 7650 // We don't need to do anything else for unused arguments. 7651 if (ArgValues.empty()) 7652 continue; 7653 7654 // Note down frame index. 7655 if (FrameIndexSDNode *FI = 7656 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7657 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7658 7659 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7660 SDB->getCurSDLoc()); 7661 7662 SDB->setValue(I, Res); 7663 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7664 if (LoadSDNode *LNode = 7665 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7666 if (FrameIndexSDNode *FI = 7667 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7668 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7669 } 7670 7671 // If this argument is live outside of the entry block, insert a copy from 7672 // wherever we got it to the vreg that other BB's will reference it as. 7673 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7674 // If we can, though, try to skip creating an unnecessary vreg. 7675 // FIXME: This isn't very clean... it would be nice to make this more 7676 // general. It's also subtly incompatible with the hacks FastISel 7677 // uses with vregs. 7678 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7679 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7680 FuncInfo->ValueMap[I] = Reg; 7681 continue; 7682 } 7683 } 7684 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7685 FuncInfo->InitializeRegForValue(I); 7686 SDB->CopyToExportRegsIfNeeded(I); 7687 } 7688 } 7689 7690 assert(i == InVals.size() && "Argument register count mismatch!"); 7691 7692 // Finally, if the target has anything special to do, allow it to do so. 7693 EmitFunctionEntryCode(); 7694 } 7695 7696 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7697 /// ensure constants are generated when needed. Remember the virtual registers 7698 /// that need to be added to the Machine PHI nodes as input. We cannot just 7699 /// directly add them, because expansion might result in multiple MBB's for one 7700 /// BB. As such, the start of the BB might correspond to a different MBB than 7701 /// the end. 7702 /// 7703 void 7704 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7705 const TerminatorInst *TI = LLVMBB->getTerminator(); 7706 7707 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7708 7709 // Check PHI nodes in successors that expect a value to be available from this 7710 // block. 7711 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7712 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7713 if (!isa<PHINode>(SuccBB->begin())) continue; 7714 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7715 7716 // If this terminator has multiple identical successors (common for 7717 // switches), only handle each succ once. 7718 if (!SuccsHandled.insert(SuccMBB).second) 7719 continue; 7720 7721 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7722 7723 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7724 // nodes and Machine PHI nodes, but the incoming operands have not been 7725 // emitted yet. 7726 for (BasicBlock::const_iterator I = SuccBB->begin(); 7727 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7728 // Ignore dead phi's. 7729 if (PN->use_empty()) continue; 7730 7731 // Skip empty types 7732 if (PN->getType()->isEmptyTy()) 7733 continue; 7734 7735 unsigned Reg; 7736 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7737 7738 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7739 unsigned &RegOut = ConstantsOut[C]; 7740 if (RegOut == 0) { 7741 RegOut = FuncInfo.CreateRegs(C->getType()); 7742 CopyValueToVirtualRegister(C, RegOut); 7743 } 7744 Reg = RegOut; 7745 } else { 7746 DenseMap<const Value *, unsigned>::iterator I = 7747 FuncInfo.ValueMap.find(PHIOp); 7748 if (I != FuncInfo.ValueMap.end()) 7749 Reg = I->second; 7750 else { 7751 assert(isa<AllocaInst>(PHIOp) && 7752 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7753 "Didn't codegen value into a register!??"); 7754 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7755 CopyValueToVirtualRegister(PHIOp, Reg); 7756 } 7757 } 7758 7759 // Remember that this register needs to added to the machine PHI node as 7760 // the input for this MBB. 7761 SmallVector<EVT, 4> ValueVTs; 7762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7763 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7764 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7765 EVT VT = ValueVTs[vti]; 7766 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7767 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7768 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7769 Reg += NumRegisters; 7770 } 7771 } 7772 } 7773 7774 ConstantsOut.clear(); 7775 } 7776 7777 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7778 /// is 0. 7779 MachineBasicBlock * 7780 SelectionDAGBuilder::StackProtectorDescriptor:: 7781 AddSuccessorMBB(const BasicBlock *BB, 7782 MachineBasicBlock *ParentMBB, 7783 bool IsLikely, 7784 MachineBasicBlock *SuccMBB) { 7785 // If SuccBB has not been created yet, create it. 7786 if (!SuccMBB) { 7787 MachineFunction *MF = ParentMBB->getParent(); 7788 MachineFunction::iterator BBI = ParentMBB; 7789 SuccMBB = MF->CreateMachineBasicBlock(BB); 7790 MF->insert(++BBI, SuccMBB); 7791 } 7792 // Add it as a successor of ParentMBB. 7793 ParentMBB->addSuccessor( 7794 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7795 return SuccMBB; 7796 } 7797 7798 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7799 MachineFunction::iterator I = MBB; 7800 if (++I == FuncInfo.MF->end()) 7801 return nullptr; 7802 return I; 7803 } 7804 7805 /// During lowering new call nodes can be created (such as memset, etc.). 7806 /// Those will become new roots of the current DAG, but complications arise 7807 /// when they are tail calls. In such cases, the call lowering will update 7808 /// the root, but the builder still needs to know that a tail call has been 7809 /// lowered in order to avoid generating an additional return. 7810 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7811 // If the node is null, we do have a tail call. 7812 if (MaybeTC.getNode() != nullptr) 7813 DAG.setRoot(MaybeTC); 7814 else 7815 HasTailCall = true; 7816 } 7817 7818