1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SelectionDAGBuilder.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/DebugInfo.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/IntegersSubsetMapping.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetFrameLowering.h" 56 #include "llvm/Target/TargetInstrInfo.h" 57 #include "llvm/Target/TargetIntrinsicInfo.h" 58 #include "llvm/Target/TargetLibraryInfo.h" 59 #include "llvm/Target/TargetLowering.h" 60 #include "llvm/Target/TargetOptions.h" 61 #include <algorithm> 62 using namespace llvm; 63 64 /// LimitFloatPrecision - Generate low-precision inline sequences for 65 /// some float libcalls (6, 8 or 12 bits). 66 static unsigned LimitFloatPrecision; 67 68 static cl::opt<unsigned, true> 69 LimitFPPrecision("limit-float-precision", 70 cl::desc("Generate low-precision inline sequences " 71 "for some float libcalls"), 72 cl::location(LimitFloatPrecision), 73 cl::init(0)); 74 75 // Limit the width of DAG chains. This is important in general to prevent 76 // prevent DAG-based analysis from blowing up. For example, alias analysis and 77 // load clustering may not complete in reasonable time. It is difficult to 78 // recognize and avoid this situation within each individual analysis, and 79 // future analyses are likely to have the same behavior. Limiting DAG width is 80 // the safe approach, and will be especially important with global DAGs. 81 // 82 // MaxParallelChains default is arbitrarily high to avoid affecting 83 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 84 // sequence over this should have been converted to llvm.memcpy by the 85 // frontend. It easy to induce this behavior with .ll code such as: 86 // %buffer = alloca [4096 x i8] 87 // %data = load [4096 x i8]* %argPtr 88 // store [4096 x i8] %data, [4096 x i8]* %buffer 89 static const unsigned MaxParallelChains = 64; 90 91 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 92 const SDValue *Parts, unsigned NumParts, 93 MVT PartVT, EVT ValueVT, const Value *V); 94 95 /// getCopyFromParts - Create a value that contains the specified legal parts 96 /// combined into the value they represent. If the parts combine to a type 97 /// larger then ValueVT then AssertOp can be used to specify whether the extra 98 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 99 /// (ISD::AssertSext). 100 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 101 const SDValue *Parts, 102 unsigned NumParts, MVT PartVT, EVT ValueVT, 103 const Value *V, 104 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 105 if (ValueVT.isVector()) 106 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 107 PartVT, ValueVT, V); 108 109 assert(NumParts > 0 && "No parts to assemble!"); 110 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 111 SDValue Val = Parts[0]; 112 113 if (NumParts > 1) { 114 // Assemble the value from multiple parts. 115 if (ValueVT.isInteger()) { 116 unsigned PartBits = PartVT.getSizeInBits(); 117 unsigned ValueBits = ValueVT.getSizeInBits(); 118 119 // Assemble the power of 2 part. 120 unsigned RoundParts = NumParts & (NumParts - 1) ? 121 1 << Log2_32(NumParts) : NumParts; 122 unsigned RoundBits = PartBits * RoundParts; 123 EVT RoundVT = RoundBits == ValueBits ? 124 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 125 SDValue Lo, Hi; 126 127 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 128 129 if (RoundParts > 2) { 130 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 131 PartVT, HalfVT, V); 132 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 133 RoundParts / 2, PartVT, HalfVT, V); 134 } else { 135 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 136 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 137 } 138 139 if (TLI.isBigEndian()) 140 std::swap(Lo, Hi); 141 142 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 143 144 if (RoundParts < NumParts) { 145 // Assemble the trailing non-power-of-2 part. 146 unsigned OddParts = NumParts - RoundParts; 147 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 148 Hi = getCopyFromParts(DAG, DL, 149 Parts + RoundParts, OddParts, PartVT, OddVT, V); 150 151 // Combine the round and odd parts. 152 Lo = Val; 153 if (TLI.isBigEndian()) 154 std::swap(Lo, Hi); 155 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 156 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 157 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 158 DAG.getConstant(Lo.getValueType().getSizeInBits(), 159 TLI.getPointerTy())); 160 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 161 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 162 } 163 } else if (PartVT.isFloatingPoint()) { 164 // FP split into multiple FP parts (for ppcf128) 165 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 166 "Unexpected split"); 167 SDValue Lo, Hi; 168 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 169 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 170 if (TLI.isBigEndian()) 171 std::swap(Lo, Hi); 172 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 173 } else { 174 // FP split into integer parts (soft fp) 175 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 176 !PartVT.isVector() && "Unexpected split"); 177 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 178 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 179 } 180 } 181 182 // There is now one part, held in Val. Correct it to match ValueVT. 183 EVT PartEVT = Val.getValueType(); 184 185 if (PartEVT == ValueVT) 186 return Val; 187 188 if (PartEVT.isInteger() && ValueVT.isInteger()) { 189 if (ValueVT.bitsLT(PartEVT)) { 190 // For a truncate, see if we have any information to 191 // indicate whether the truncated bits will always be 192 // zero or sign-extension. 193 if (AssertOp != ISD::DELETED_NODE) 194 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 195 DAG.getValueType(ValueVT)); 196 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 197 } 198 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 199 } 200 201 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 202 // FP_ROUND's are always exact here. 203 if (ValueVT.bitsLT(Val.getValueType())) 204 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 205 DAG.getTargetConstant(1, TLI.getPointerTy())); 206 207 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 208 } 209 210 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 211 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 212 213 llvm_unreachable("Unknown mismatch!"); 214 } 215 216 /// getCopyFromPartsVector - Create a value that contains the specified legal 217 /// parts combined into the value they represent. If the parts combine to a 218 /// type larger then ValueVT then AssertOp can be used to specify whether the 219 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 220 /// ValueVT (ISD::AssertSext). 221 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 222 const SDValue *Parts, unsigned NumParts, 223 MVT PartVT, EVT ValueVT, const Value *V) { 224 assert(ValueVT.isVector() && "Not a vector value"); 225 assert(NumParts > 0 && "No parts to assemble!"); 226 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 227 SDValue Val = Parts[0]; 228 229 // Handle a multi-element vector. 230 if (NumParts > 1) { 231 EVT IntermediateVT; 232 MVT RegisterVT; 233 unsigned NumIntermediates; 234 unsigned NumRegs = 235 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 236 NumIntermediates, RegisterVT); 237 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 238 NumParts = NumRegs; // Silence a compiler warning. 239 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 240 assert(RegisterVT == Parts[0].getSimpleValueType() && 241 "Part type doesn't match part!"); 242 243 // Assemble the parts into intermediate operands. 244 SmallVector<SDValue, 8> Ops(NumIntermediates); 245 if (NumIntermediates == NumParts) { 246 // If the register was not expanded, truncate or copy the value, 247 // as appropriate. 248 for (unsigned i = 0; i != NumParts; ++i) 249 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 250 PartVT, IntermediateVT, V); 251 } else if (NumParts > 0) { 252 // If the intermediate type was expanded, build the intermediate 253 // operands from the parts. 254 assert(NumParts % NumIntermediates == 0 && 255 "Must expand into a divisible number of parts!"); 256 unsigned Factor = NumParts / NumIntermediates; 257 for (unsigned i = 0; i != NumIntermediates; ++i) 258 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 259 PartVT, IntermediateVT, V); 260 } 261 262 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 263 // intermediate operands. 264 Val = DAG.getNode(IntermediateVT.isVector() ? 265 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 266 ValueVT, &Ops[0], NumIntermediates); 267 } 268 269 // There is now one part, held in Val. Correct it to match ValueVT. 270 EVT PartEVT = Val.getValueType(); 271 272 if (PartEVT == ValueVT) 273 return Val; 274 275 if (PartEVT.isVector()) { 276 // If the element type of the source/dest vectors are the same, but the 277 // parts vector has more elements than the value vector, then we have a 278 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 279 // elements we want. 280 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 281 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 282 "Cannot narrow, it would be a lossy transformation"); 283 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 284 DAG.getIntPtrConstant(0)); 285 } 286 287 // Vector/Vector bitcast. 288 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 289 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 290 291 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 292 "Cannot handle this kind of promotion"); 293 // Promoted vector extract 294 bool Smaller = ValueVT.bitsLE(PartEVT); 295 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 296 DL, ValueVT, Val); 297 298 } 299 300 // Trivial bitcast if the types are the same size and the destination 301 // vector type is legal. 302 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 303 TLI.isTypeLegal(ValueVT)) 304 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 305 306 // Handle cases such as i8 -> <1 x i1> 307 if (ValueVT.getVectorNumElements() != 1) { 308 LLVMContext &Ctx = *DAG.getContext(); 309 Twine ErrMsg("non-trivial scalar-to-vector conversion"); 310 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 311 if (const CallInst *CI = dyn_cast<CallInst>(I)) 312 if (isa<InlineAsm>(CI->getCalledValue())) 313 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 314 Ctx.emitError(I, ErrMsg); 315 } else { 316 Ctx.emitError(ErrMsg); 317 } 318 return DAG.getUNDEF(ValueVT); 319 } 320 321 if (ValueVT.getVectorNumElements() == 1 && 322 ValueVT.getVectorElementType() != PartEVT) { 323 bool Smaller = ValueVT.bitsLE(PartEVT); 324 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 325 DL, ValueVT.getScalarType(), Val); 326 } 327 328 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 329 } 330 331 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 332 SDValue Val, SDValue *Parts, unsigned NumParts, 333 MVT PartVT, const Value *V); 334 335 /// getCopyToParts - Create a series of nodes that contain the specified value 336 /// split into legal parts. If the parts contain more bits than Val, then, for 337 /// integers, ExtendKind can be used to specify how to generate the extra bits. 338 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 339 SDValue Val, SDValue *Parts, unsigned NumParts, 340 MVT PartVT, const Value *V, 341 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 342 EVT ValueVT = Val.getValueType(); 343 344 // Handle the vector case separately. 345 if (ValueVT.isVector()) 346 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 347 348 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 349 unsigned PartBits = PartVT.getSizeInBits(); 350 unsigned OrigNumParts = NumParts; 351 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 352 353 if (NumParts == 0) 354 return; 355 356 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 357 EVT PartEVT = PartVT; 358 if (PartEVT == ValueVT) { 359 assert(NumParts == 1 && "No-op copy with multiple parts!"); 360 Parts[0] = Val; 361 return; 362 } 363 364 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 365 // If the parts cover more bits than the value has, promote the value. 366 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 367 assert(NumParts == 1 && "Do not know what to promote to!"); 368 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 369 } else { 370 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 371 ValueVT.isInteger() && 372 "Unknown mismatch!"); 373 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 374 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 375 if (PartVT == MVT::x86mmx) 376 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 377 } 378 } else if (PartBits == ValueVT.getSizeInBits()) { 379 // Different types of the same size. 380 assert(NumParts == 1 && PartEVT != ValueVT); 381 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 382 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 383 // If the parts cover less bits than value has, truncate the value. 384 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 385 ValueVT.isInteger() && 386 "Unknown mismatch!"); 387 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 388 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 389 if (PartVT == MVT::x86mmx) 390 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 391 } 392 393 // The value may have changed - recompute ValueVT. 394 ValueVT = Val.getValueType(); 395 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 396 "Failed to tile the value with PartVT!"); 397 398 if (NumParts == 1) { 399 if (PartEVT != ValueVT) { 400 LLVMContext &Ctx = *DAG.getContext(); 401 Twine ErrMsg("scalar-to-vector conversion failed"); 402 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 403 if (const CallInst *CI = dyn_cast<CallInst>(I)) 404 if (isa<InlineAsm>(CI->getCalledValue())) 405 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 406 Ctx.emitError(I, ErrMsg); 407 } else { 408 Ctx.emitError(ErrMsg); 409 } 410 } 411 412 Parts[0] = Val; 413 return; 414 } 415 416 // Expand the value into multiple parts. 417 if (NumParts & (NumParts - 1)) { 418 // The number of parts is not a power of 2. Split off and copy the tail. 419 assert(PartVT.isInteger() && ValueVT.isInteger() && 420 "Do not know what to expand to!"); 421 unsigned RoundParts = 1 << Log2_32(NumParts); 422 unsigned RoundBits = RoundParts * PartBits; 423 unsigned OddParts = NumParts - RoundParts; 424 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 425 DAG.getIntPtrConstant(RoundBits)); 426 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 427 428 if (TLI.isBigEndian()) 429 // The odd parts were reversed by getCopyToParts - unreverse them. 430 std::reverse(Parts + RoundParts, Parts + NumParts); 431 432 NumParts = RoundParts; 433 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 434 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 435 } 436 437 // The number of parts is a power of 2. Repeatedly bisect the value using 438 // EXTRACT_ELEMENT. 439 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 440 EVT::getIntegerVT(*DAG.getContext(), 441 ValueVT.getSizeInBits()), 442 Val); 443 444 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 445 for (unsigned i = 0; i < NumParts; i += StepSize) { 446 unsigned ThisBits = StepSize * PartBits / 2; 447 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 448 SDValue &Part0 = Parts[i]; 449 SDValue &Part1 = Parts[i+StepSize/2]; 450 451 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 452 ThisVT, Part0, DAG.getIntPtrConstant(1)); 453 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 454 ThisVT, Part0, DAG.getIntPtrConstant(0)); 455 456 if (ThisBits == PartBits && ThisVT != PartVT) { 457 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 458 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 } 466 467 468 /// getCopyToPartsVector - Create a series of nodes that contain the specified 469 /// value split into legal parts. 470 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V) { 473 EVT ValueVT = Val.getValueType(); 474 assert(ValueVT.isVector() && "Not a vector"); 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 477 if (NumParts == 1) { 478 EVT PartEVT = PartVT; 479 if (PartEVT == ValueVT) { 480 // Nothing to do. 481 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 482 // Bitconvert vector->vector case. 483 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 484 } else if (PartVT.isVector() && 485 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 486 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 487 EVT ElementVT = PartVT.getVectorElementType(); 488 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 489 // undef elements. 490 SmallVector<SDValue, 16> Ops; 491 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 492 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 493 ElementVT, Val, DAG.getIntPtrConstant(i))); 494 495 for (unsigned i = ValueVT.getVectorNumElements(), 496 e = PartVT.getVectorNumElements(); i != e; ++i) 497 Ops.push_back(DAG.getUNDEF(ElementVT)); 498 499 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 500 501 // FIXME: Use CONCAT for 2x -> 4x. 502 503 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 504 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 505 } else if (PartVT.isVector() && 506 PartEVT.getVectorElementType().bitsGE( 507 ValueVT.getVectorElementType()) && 508 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 509 510 // Promoted vector extract 511 bool Smaller = PartEVT.bitsLE(ValueVT); 512 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 513 DL, PartVT, Val); 514 } else{ 515 // Vector -> scalar conversion. 516 assert(ValueVT.getVectorNumElements() == 1 && 517 "Only trivial vector-to-scalar conversions should get here!"); 518 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 519 PartVT, Val, DAG.getIntPtrConstant(0)); 520 521 bool Smaller = ValueVT.bitsLE(PartVT); 522 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 523 DL, PartVT, Val); 524 } 525 526 Parts[0] = Val; 527 return; 528 } 529 530 // Handle a multi-element vector. 531 EVT IntermediateVT; 532 MVT RegisterVT; 533 unsigned NumIntermediates; 534 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 535 IntermediateVT, 536 NumIntermediates, RegisterVT); 537 unsigned NumElements = ValueVT.getVectorNumElements(); 538 539 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 540 NumParts = NumRegs; // Silence a compiler warning. 541 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 542 543 // Split the vector into intermediate operands. 544 SmallVector<SDValue, 8> Ops(NumIntermediates); 545 for (unsigned i = 0; i != NumIntermediates; ++i) { 546 if (IntermediateVT.isVector()) 547 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 548 IntermediateVT, Val, 549 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 550 else 551 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 552 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 553 } 554 555 // Split the intermediate operands into legal parts. 556 if (NumParts == NumIntermediates) { 557 // If the register was not expanded, promote or copy the value, 558 // as appropriate. 559 for (unsigned i = 0; i != NumParts; ++i) 560 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 561 } else if (NumParts > 0) { 562 // If the intermediate type was expanded, split each the value into 563 // legal parts. 564 assert(NumParts % NumIntermediates == 0 && 565 "Must expand into a divisible number of parts!"); 566 unsigned Factor = NumParts / NumIntermediates; 567 for (unsigned i = 0; i != NumIntermediates; ++i) 568 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 569 } 570 } 571 572 namespace { 573 /// RegsForValue - This struct represents the registers (physical or virtual) 574 /// that a particular set of values is assigned, and the type information 575 /// about the value. The most common situation is to represent one value at a 576 /// time, but struct or array values are handled element-wise as multiple 577 /// values. The splitting of aggregates is performed recursively, so that we 578 /// never have aggregate-typed registers. The values at this point do not 579 /// necessarily have legal types, so each value may require one or more 580 /// registers of some legal type. 581 /// 582 struct RegsForValue { 583 /// ValueVTs - The value types of the values, which may not be legal, and 584 /// may need be promoted or synthesized from one or more registers. 585 /// 586 SmallVector<EVT, 4> ValueVTs; 587 588 /// RegVTs - The value types of the registers. This is the same size as 589 /// ValueVTs and it records, for each value, what the type of the assigned 590 /// register or registers are. (Individual values are never synthesized 591 /// from more than one type of register.) 592 /// 593 /// With virtual registers, the contents of RegVTs is redundant with TLI's 594 /// getRegisterType member function, however when with physical registers 595 /// it is necessary to have a separate record of the types. 596 /// 597 SmallVector<MVT, 4> RegVTs; 598 599 /// Regs - This list holds the registers assigned to the values. 600 /// Each legal or promoted value requires one register, and each 601 /// expanded value requires multiple registers. 602 /// 603 SmallVector<unsigned, 4> Regs; 604 605 RegsForValue() {} 606 607 RegsForValue(const SmallVector<unsigned, 4> ®s, 608 MVT regvt, EVT valuevt) 609 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 610 611 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 612 unsigned Reg, Type *Ty) { 613 ComputeValueVTs(tli, Ty, ValueVTs); 614 615 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 616 EVT ValueVT = ValueVTs[Value]; 617 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 618 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 619 for (unsigned i = 0; i != NumRegs; ++i) 620 Regs.push_back(Reg + i); 621 RegVTs.push_back(RegisterVT); 622 Reg += NumRegs; 623 } 624 } 625 626 /// areValueTypesLegal - Return true if types of all the values are legal. 627 bool areValueTypesLegal(const TargetLowering &TLI) { 628 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 629 MVT RegisterVT = RegVTs[Value]; 630 if (!TLI.isTypeLegal(RegisterVT)) 631 return false; 632 } 633 return true; 634 } 635 636 /// append - Add the specified values to this one. 637 void append(const RegsForValue &RHS) { 638 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 639 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 640 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 641 } 642 643 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 644 /// this value and returns the result as a ValueVTs value. This uses 645 /// Chain/Flag as the input and updates them for the output Chain/Flag. 646 /// If the Flag pointer is NULL, no flag is used. 647 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 648 SDLoc dl, 649 SDValue &Chain, SDValue *Flag, 650 const Value *V = 0) const; 651 652 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 653 /// specified value into the registers specified by this object. This uses 654 /// Chain/Flag as the input and updates them for the output Chain/Flag. 655 /// If the Flag pointer is NULL, no flag is used. 656 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 657 SDValue &Chain, SDValue *Flag, const Value *V) const; 658 659 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 660 /// operand list. This adds the code marker, matching input operand index 661 /// (if applicable), and includes the number of values added into it. 662 void AddInlineAsmOperands(unsigned Kind, 663 bool HasMatching, unsigned MatchingIdx, 664 SelectionDAG &DAG, 665 std::vector<SDValue> &Ops) const; 666 }; 667 } 668 669 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 670 /// this value and returns the result as a ValueVT value. This uses 671 /// Chain/Flag as the input and updates them for the output Chain/Flag. 672 /// If the Flag pointer is NULL, no flag is used. 673 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 674 FunctionLoweringInfo &FuncInfo, 675 SDLoc dl, 676 SDValue &Chain, SDValue *Flag, 677 const Value *V) const { 678 // A Value with type {} or [0 x %t] needs no registers. 679 if (ValueVTs.empty()) 680 return SDValue(); 681 682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 683 684 // Assemble the legal parts into the final values. 685 SmallVector<SDValue, 4> Values(ValueVTs.size()); 686 SmallVector<SDValue, 8> Parts; 687 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 688 // Copy the legal parts from the registers. 689 EVT ValueVT = ValueVTs[Value]; 690 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 691 MVT RegisterVT = RegVTs[Value]; 692 693 Parts.resize(NumRegs); 694 for (unsigned i = 0; i != NumRegs; ++i) { 695 SDValue P; 696 if (Flag == 0) { 697 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 698 } else { 699 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 700 *Flag = P.getValue(2); 701 } 702 703 Chain = P.getValue(1); 704 Parts[i] = P; 705 706 // If the source register was virtual and if we know something about it, 707 // add an assert node. 708 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 709 !RegisterVT.isInteger() || RegisterVT.isVector()) 710 continue; 711 712 const FunctionLoweringInfo::LiveOutInfo *LOI = 713 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 714 if (!LOI) 715 continue; 716 717 unsigned RegSize = RegisterVT.getSizeInBits(); 718 unsigned NumSignBits = LOI->NumSignBits; 719 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 720 721 if (NumZeroBits == RegSize) { 722 // The current value is a zero. 723 // Explicitly express that as it would be easier for 724 // optimizations to kick in. 725 Parts[i] = DAG.getConstant(0, RegisterVT); 726 continue; 727 } 728 729 // FIXME: We capture more information than the dag can represent. For 730 // now, just use the tightest assertzext/assertsext possible. 731 bool isSExt = true; 732 EVT FromVT(MVT::Other); 733 if (NumSignBits == RegSize) 734 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 735 else if (NumZeroBits >= RegSize-1) 736 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 737 else if (NumSignBits > RegSize-8) 738 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 739 else if (NumZeroBits >= RegSize-8) 740 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 741 else if (NumSignBits > RegSize-16) 742 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 743 else if (NumZeroBits >= RegSize-16) 744 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 745 else if (NumSignBits > RegSize-32) 746 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 747 else if (NumZeroBits >= RegSize-32) 748 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 749 else 750 continue; 751 752 // Add an assertion node. 753 assert(FromVT != MVT::Other); 754 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 755 RegisterVT, P, DAG.getValueType(FromVT)); 756 } 757 758 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 759 NumRegs, RegisterVT, ValueVT, V); 760 Part += NumRegs; 761 Parts.clear(); 762 } 763 764 return DAG.getNode(ISD::MERGE_VALUES, dl, 765 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 766 &Values[0], ValueVTs.size()); 767 } 768 769 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 770 /// specified value into the registers specified by this object. This uses 771 /// Chain/Flag as the input and updates them for the output Chain/Flag. 772 /// If the Flag pointer is NULL, no flag is used. 773 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 774 SDValue &Chain, SDValue *Flag, 775 const Value *V) const { 776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 777 778 // Get the list of the values's legal parts. 779 unsigned NumRegs = Regs.size(); 780 SmallVector<SDValue, 8> Parts(NumRegs); 781 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 782 EVT ValueVT = ValueVTs[Value]; 783 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 784 MVT RegisterVT = RegVTs[Value]; 785 ISD::NodeType ExtendKind = 786 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 787 788 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 789 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 790 Part += NumParts; 791 } 792 793 // Copy the parts into the registers. 794 SmallVector<SDValue, 8> Chains(NumRegs); 795 for (unsigned i = 0; i != NumRegs; ++i) { 796 SDValue Part; 797 if (Flag == 0) { 798 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 799 } else { 800 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 801 *Flag = Part.getValue(1); 802 } 803 804 Chains[i] = Part.getValue(0); 805 } 806 807 if (NumRegs == 1 || Flag) 808 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 809 // flagged to it. That is the CopyToReg nodes and the user are considered 810 // a single scheduling unit. If we create a TokenFactor and return it as 811 // chain, then the TokenFactor is both a predecessor (operand) of the 812 // user as well as a successor (the TF operands are flagged to the user). 813 // c1, f1 = CopyToReg 814 // c2, f2 = CopyToReg 815 // c3 = TokenFactor c1, c2 816 // ... 817 // = op c3, ..., f2 818 Chain = Chains[NumRegs-1]; 819 else 820 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 821 } 822 823 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 824 /// operand list. This adds the code marker and includes the number of 825 /// values added into it. 826 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 827 unsigned MatchingIdx, 828 SelectionDAG &DAG, 829 std::vector<SDValue> &Ops) const { 830 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 831 832 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 833 if (HasMatching) 834 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 835 else if (!Regs.empty() && 836 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 837 // Put the register class of the virtual registers in the flag word. That 838 // way, later passes can recompute register class constraints for inline 839 // assembly as well as normal instructions. 840 // Don't do this for tied operands that can use the regclass information 841 // from the def. 842 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 843 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 844 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 845 } 846 847 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 848 Ops.push_back(Res); 849 850 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 851 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 852 MVT RegisterVT = RegVTs[Value]; 853 for (unsigned i = 0; i != NumRegs; ++i) { 854 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 855 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 856 } 857 } 858 } 859 860 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 861 const TargetLibraryInfo *li) { 862 AA = &aa; 863 GFI = gfi; 864 LibInfo = li; 865 TD = DAG.getTarget().getDataLayout(); 866 Context = DAG.getContext(); 867 LPadToCallSiteMap.clear(); 868 } 869 870 /// clear - Clear out the current SelectionDAG and the associated 871 /// state and prepare this SelectionDAGBuilder object to be used 872 /// for a new block. This doesn't clear out information about 873 /// additional blocks that are needed to complete switch lowering 874 /// or PHI node updating; that information is cleared out as it is 875 /// consumed. 876 void SelectionDAGBuilder::clear() { 877 NodeMap.clear(); 878 UnusedArgNodeMap.clear(); 879 PendingLoads.clear(); 880 PendingExports.clear(); 881 CurInst = NULL; 882 HasTailCall = false; 883 } 884 885 /// clearDanglingDebugInfo - Clear the dangling debug information 886 /// map. This function is separated from the clear so that debug 887 /// information that is dangling in a basic block can be properly 888 /// resolved in a different basic block. This allows the 889 /// SelectionDAG to resolve dangling debug information attached 890 /// to PHI nodes. 891 void SelectionDAGBuilder::clearDanglingDebugInfo() { 892 DanglingDebugInfoMap.clear(); 893 } 894 895 /// getRoot - Return the current virtual root of the Selection DAG, 896 /// flushing any PendingLoad items. This must be done before emitting 897 /// a store or any other node that may need to be ordered after any 898 /// prior load instructions. 899 /// 900 SDValue SelectionDAGBuilder::getRoot() { 901 if (PendingLoads.empty()) 902 return DAG.getRoot(); 903 904 if (PendingLoads.size() == 1) { 905 SDValue Root = PendingLoads[0]; 906 DAG.setRoot(Root); 907 PendingLoads.clear(); 908 return Root; 909 } 910 911 // Otherwise, we have to make a token factor node. 912 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 913 &PendingLoads[0], PendingLoads.size()); 914 PendingLoads.clear(); 915 DAG.setRoot(Root); 916 return Root; 917 } 918 919 /// getControlRoot - Similar to getRoot, but instead of flushing all the 920 /// PendingLoad items, flush all the PendingExports items. It is necessary 921 /// to do this before emitting a terminator instruction. 922 /// 923 SDValue SelectionDAGBuilder::getControlRoot() { 924 SDValue Root = DAG.getRoot(); 925 926 if (PendingExports.empty()) 927 return Root; 928 929 // Turn all of the CopyToReg chains into one factored node. 930 if (Root.getOpcode() != ISD::EntryToken) { 931 unsigned i = 0, e = PendingExports.size(); 932 for (; i != e; ++i) { 933 assert(PendingExports[i].getNode()->getNumOperands() > 1); 934 if (PendingExports[i].getNode()->getOperand(0) == Root) 935 break; // Don't add the root if we already indirectly depend on it. 936 } 937 938 if (i == e) 939 PendingExports.push_back(Root); 940 } 941 942 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 943 &PendingExports[0], 944 PendingExports.size()); 945 PendingExports.clear(); 946 DAG.setRoot(Root); 947 return Root; 948 } 949 950 void SelectionDAGBuilder::visit(const Instruction &I) { 951 // Set up outgoing PHI node register values before emitting the terminator. 952 if (isa<TerminatorInst>(&I)) 953 HandlePHINodesInSuccessorBlocks(I.getParent()); 954 955 ++SDNodeOrder; 956 957 CurInst = &I; 958 959 visit(I.getOpcode(), I); 960 961 if (!isa<TerminatorInst>(&I) && !HasTailCall) 962 CopyToExportRegsIfNeeded(&I); 963 964 CurInst = NULL; 965 } 966 967 void SelectionDAGBuilder::visitPHI(const PHINode &) { 968 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 969 } 970 971 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 972 // Note: this doesn't use InstVisitor, because it has to work with 973 // ConstantExpr's in addition to instructions. 974 switch (Opcode) { 975 default: llvm_unreachable("Unknown instruction type encountered!"); 976 // Build the switch statement using the Instruction.def file. 977 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 978 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 979 #include "llvm/IR/Instruction.def" 980 } 981 } 982 983 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 984 // generate the debug data structures now that we've seen its definition. 985 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 986 SDValue Val) { 987 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 988 if (DDI.getDI()) { 989 const DbgValueInst *DI = DDI.getDI(); 990 DebugLoc dl = DDI.getdl(); 991 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 992 MDNode *Variable = DI->getVariable(); 993 uint64_t Offset = DI->getOffset(); 994 SDDbgValue *SDV; 995 if (Val.getNode()) { 996 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 997 SDV = DAG.getDbgValue(Variable, Val.getNode(), 998 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 999 DAG.AddDbgValue(SDV, Val.getNode(), false); 1000 } 1001 } else 1002 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1003 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1004 } 1005 } 1006 1007 /// getValue - Return an SDValue for the given Value. 1008 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1009 // If we already have an SDValue for this value, use it. It's important 1010 // to do this first, so that we don't create a CopyFromReg if we already 1011 // have a regular SDValue. 1012 SDValue &N = NodeMap[V]; 1013 if (N.getNode()) return N; 1014 1015 // If there's a virtual register allocated and initialized for this 1016 // value, use it. 1017 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1018 if (It != FuncInfo.ValueMap.end()) { 1019 unsigned InReg = It->second; 1020 RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(), 1021 InReg, V->getType()); 1022 SDValue Chain = DAG.getEntryNode(); 1023 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); 1024 resolveDanglingDebugInfo(V, N); 1025 return N; 1026 } 1027 1028 // Otherwise create a new SDValue and remember it. 1029 SDValue Val = getValueImpl(V); 1030 NodeMap[V] = Val; 1031 resolveDanglingDebugInfo(V, Val); 1032 return Val; 1033 } 1034 1035 /// getNonRegisterValue - Return an SDValue for the given Value, but 1036 /// don't look in FuncInfo.ValueMap for a virtual register. 1037 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1038 // If we already have an SDValue for this value, use it. 1039 SDValue &N = NodeMap[V]; 1040 if (N.getNode()) return N; 1041 1042 // Otherwise create a new SDValue and remember it. 1043 SDValue Val = getValueImpl(V); 1044 NodeMap[V] = Val; 1045 resolveDanglingDebugInfo(V, Val); 1046 return Val; 1047 } 1048 1049 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1050 /// Create an SDValue for the given value. 1051 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1052 const TargetLowering *TLI = TM.getTargetLowering(); 1053 1054 if (const Constant *C = dyn_cast<Constant>(V)) { 1055 EVT VT = TLI->getValueType(V->getType(), true); 1056 1057 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1058 return DAG.getConstant(*CI, VT); 1059 1060 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1061 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1062 1063 if (isa<ConstantPointerNull>(C)) 1064 return DAG.getConstant(0, TLI->getPointerTy()); 1065 1066 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1067 return DAG.getConstantFP(*CFP, VT); 1068 1069 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1070 return DAG.getUNDEF(VT); 1071 1072 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1073 visit(CE->getOpcode(), *CE); 1074 SDValue N1 = NodeMap[V]; 1075 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1076 return N1; 1077 } 1078 1079 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1080 SmallVector<SDValue, 4> Constants; 1081 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1082 OI != OE; ++OI) { 1083 SDNode *Val = getValue(*OI).getNode(); 1084 // If the operand is an empty aggregate, there are no values. 1085 if (!Val) continue; 1086 // Add each leaf value from the operand to the Constants list 1087 // to form a flattened list of all the values. 1088 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1089 Constants.push_back(SDValue(Val, i)); 1090 } 1091 1092 return DAG.getMergeValues(&Constants[0], Constants.size(), 1093 getCurSDLoc()); 1094 } 1095 1096 if (const ConstantDataSequential *CDS = 1097 dyn_cast<ConstantDataSequential>(C)) { 1098 SmallVector<SDValue, 4> Ops; 1099 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1100 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1101 // Add each leaf value from the operand to the Constants list 1102 // to form a flattened list of all the values. 1103 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1104 Ops.push_back(SDValue(Val, i)); 1105 } 1106 1107 if (isa<ArrayType>(CDS->getType())) 1108 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc()); 1109 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1110 VT, &Ops[0], Ops.size()); 1111 } 1112 1113 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1114 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1115 "Unknown struct or array constant!"); 1116 1117 SmallVector<EVT, 4> ValueVTs; 1118 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1119 unsigned NumElts = ValueVTs.size(); 1120 if (NumElts == 0) 1121 return SDValue(); // empty struct 1122 SmallVector<SDValue, 4> Constants(NumElts); 1123 for (unsigned i = 0; i != NumElts; ++i) { 1124 EVT EltVT = ValueVTs[i]; 1125 if (isa<UndefValue>(C)) 1126 Constants[i] = DAG.getUNDEF(EltVT); 1127 else if (EltVT.isFloatingPoint()) 1128 Constants[i] = DAG.getConstantFP(0, EltVT); 1129 else 1130 Constants[i] = DAG.getConstant(0, EltVT); 1131 } 1132 1133 return DAG.getMergeValues(&Constants[0], NumElts, 1134 getCurSDLoc()); 1135 } 1136 1137 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1138 return DAG.getBlockAddress(BA, VT); 1139 1140 VectorType *VecTy = cast<VectorType>(V->getType()); 1141 unsigned NumElements = VecTy->getNumElements(); 1142 1143 // Now that we know the number and type of the elements, get that number of 1144 // elements into the Ops array based on what kind of constant it is. 1145 SmallVector<SDValue, 16> Ops; 1146 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1147 for (unsigned i = 0; i != NumElements; ++i) 1148 Ops.push_back(getValue(CV->getOperand(i))); 1149 } else { 1150 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1151 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1152 1153 SDValue Op; 1154 if (EltVT.isFloatingPoint()) 1155 Op = DAG.getConstantFP(0, EltVT); 1156 else 1157 Op = DAG.getConstant(0, EltVT); 1158 Ops.assign(NumElements, Op); 1159 } 1160 1161 // Create a BUILD_VECTOR node. 1162 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1163 VT, &Ops[0], Ops.size()); 1164 } 1165 1166 // If this is a static alloca, generate it as the frameindex instead of 1167 // computation. 1168 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1169 DenseMap<const AllocaInst*, int>::iterator SI = 1170 FuncInfo.StaticAllocaMap.find(AI); 1171 if (SI != FuncInfo.StaticAllocaMap.end()) 1172 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1173 } 1174 1175 // If this is an instruction which fast-isel has deferred, select it now. 1176 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1177 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1178 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1179 SDValue Chain = DAG.getEntryNode(); 1180 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); 1181 } 1182 1183 llvm_unreachable("Can't get register for value!"); 1184 } 1185 1186 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1187 const TargetLowering *TLI = TM.getTargetLowering(); 1188 SDValue Chain = getControlRoot(); 1189 SmallVector<ISD::OutputArg, 8> Outs; 1190 SmallVector<SDValue, 8> OutVals; 1191 1192 if (!FuncInfo.CanLowerReturn) { 1193 unsigned DemoteReg = FuncInfo.DemoteRegister; 1194 const Function *F = I.getParent()->getParent(); 1195 1196 // Emit a store of the return value through the virtual register. 1197 // Leave Outs empty so that LowerReturn won't try to load return 1198 // registers the usual way. 1199 SmallVector<EVT, 1> PtrValueVTs; 1200 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1201 PtrValueVTs); 1202 1203 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1204 SDValue RetOp = getValue(I.getOperand(0)); 1205 1206 SmallVector<EVT, 4> ValueVTs; 1207 SmallVector<uint64_t, 4> Offsets; 1208 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1209 unsigned NumValues = ValueVTs.size(); 1210 1211 SmallVector<SDValue, 4> Chains(NumValues); 1212 for (unsigned i = 0; i != NumValues; ++i) { 1213 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1214 RetPtr.getValueType(), RetPtr, 1215 DAG.getIntPtrConstant(Offsets[i])); 1216 Chains[i] = 1217 DAG.getStore(Chain, getCurSDLoc(), 1218 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1219 // FIXME: better loc info would be nice. 1220 Add, MachinePointerInfo(), false, false, 0); 1221 } 1222 1223 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1224 MVT::Other, &Chains[0], NumValues); 1225 } else if (I.getNumOperands() != 0) { 1226 SmallVector<EVT, 4> ValueVTs; 1227 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1228 unsigned NumValues = ValueVTs.size(); 1229 if (NumValues) { 1230 SDValue RetOp = getValue(I.getOperand(0)); 1231 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1232 EVT VT = ValueVTs[j]; 1233 1234 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1235 1236 const Function *F = I.getParent()->getParent(); 1237 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1238 Attribute::SExt)) 1239 ExtendKind = ISD::SIGN_EXTEND; 1240 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1241 Attribute::ZExt)) 1242 ExtendKind = ISD::ZERO_EXTEND; 1243 1244 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1245 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1246 1247 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1248 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1249 SmallVector<SDValue, 4> Parts(NumParts); 1250 getCopyToParts(DAG, getCurSDLoc(), 1251 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1252 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1253 1254 // 'inreg' on function refers to return value 1255 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1256 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1257 Attribute::InReg)) 1258 Flags.setInReg(); 1259 1260 // Propagate extension type if any 1261 if (ExtendKind == ISD::SIGN_EXTEND) 1262 Flags.setSExt(); 1263 else if (ExtendKind == ISD::ZERO_EXTEND) 1264 Flags.setZExt(); 1265 1266 for (unsigned i = 0; i < NumParts; ++i) { 1267 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1268 /*isfixed=*/true, 0, 0)); 1269 OutVals.push_back(Parts[i]); 1270 } 1271 } 1272 } 1273 } 1274 1275 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1276 CallingConv::ID CallConv = 1277 DAG.getMachineFunction().getFunction()->getCallingConv(); 1278 Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg, 1279 Outs, OutVals, getCurSDLoc(), 1280 DAG); 1281 1282 // Verify that the target's LowerReturn behaved as expected. 1283 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1284 "LowerReturn didn't return a valid chain!"); 1285 1286 // Update the DAG with the new chain value resulting from return lowering. 1287 DAG.setRoot(Chain); 1288 } 1289 1290 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1291 /// created for it, emit nodes to copy the value into the virtual 1292 /// registers. 1293 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1294 // Skip empty types 1295 if (V->getType()->isEmptyTy()) 1296 return; 1297 1298 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1299 if (VMI != FuncInfo.ValueMap.end()) { 1300 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1301 CopyValueToVirtualRegister(V, VMI->second); 1302 } 1303 } 1304 1305 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1306 /// the current basic block, add it to ValueMap now so that we'll get a 1307 /// CopyTo/FromReg. 1308 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1309 // No need to export constants. 1310 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1311 1312 // Already exported? 1313 if (FuncInfo.isExportedInst(V)) return; 1314 1315 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1316 CopyValueToVirtualRegister(V, Reg); 1317 } 1318 1319 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1320 const BasicBlock *FromBB) { 1321 // The operands of the setcc have to be in this block. We don't know 1322 // how to export them from some other block. 1323 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1324 // Can export from current BB. 1325 if (VI->getParent() == FromBB) 1326 return true; 1327 1328 // Is already exported, noop. 1329 return FuncInfo.isExportedInst(V); 1330 } 1331 1332 // If this is an argument, we can export it if the BB is the entry block or 1333 // if it is already exported. 1334 if (isa<Argument>(V)) { 1335 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1336 return true; 1337 1338 // Otherwise, can only export this if it is already exported. 1339 return FuncInfo.isExportedInst(V); 1340 } 1341 1342 // Otherwise, constants can always be exported. 1343 return true; 1344 } 1345 1346 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1347 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1348 const MachineBasicBlock *Dst) const { 1349 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1350 if (!BPI) 1351 return 0; 1352 const BasicBlock *SrcBB = Src->getBasicBlock(); 1353 const BasicBlock *DstBB = Dst->getBasicBlock(); 1354 return BPI->getEdgeWeight(SrcBB, DstBB); 1355 } 1356 1357 void SelectionDAGBuilder:: 1358 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1359 uint32_t Weight /* = 0 */) { 1360 if (!Weight) 1361 Weight = getEdgeWeight(Src, Dst); 1362 Src->addSuccessor(Dst, Weight); 1363 } 1364 1365 1366 static bool InBlock(const Value *V, const BasicBlock *BB) { 1367 if (const Instruction *I = dyn_cast<Instruction>(V)) 1368 return I->getParent() == BB; 1369 return true; 1370 } 1371 1372 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1373 /// This function emits a branch and is used at the leaves of an OR or an 1374 /// AND operator tree. 1375 /// 1376 void 1377 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1378 MachineBasicBlock *TBB, 1379 MachineBasicBlock *FBB, 1380 MachineBasicBlock *CurBB, 1381 MachineBasicBlock *SwitchBB) { 1382 const BasicBlock *BB = CurBB->getBasicBlock(); 1383 1384 // If the leaf of the tree is a comparison, merge the condition into 1385 // the caseblock. 1386 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1387 // The operands of the cmp have to be in this block. We don't know 1388 // how to export them from some other block. If this is the first block 1389 // of the sequence, no exporting is needed. 1390 if (CurBB == SwitchBB || 1391 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1392 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1393 ISD::CondCode Condition; 1394 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1395 Condition = getICmpCondCode(IC->getPredicate()); 1396 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1397 Condition = getFCmpCondCode(FC->getPredicate()); 1398 if (TM.Options.NoNaNsFPMath) 1399 Condition = getFCmpCodeWithoutNaN(Condition); 1400 } else { 1401 Condition = ISD::SETEQ; // silence warning. 1402 llvm_unreachable("Unknown compare instruction"); 1403 } 1404 1405 CaseBlock CB(Condition, BOp->getOperand(0), 1406 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1407 SwitchCases.push_back(CB); 1408 return; 1409 } 1410 } 1411 1412 // Create a CaseBlock record representing this branch. 1413 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1414 NULL, TBB, FBB, CurBB); 1415 SwitchCases.push_back(CB); 1416 } 1417 1418 /// FindMergedConditions - If Cond is an expression like 1419 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1420 MachineBasicBlock *TBB, 1421 MachineBasicBlock *FBB, 1422 MachineBasicBlock *CurBB, 1423 MachineBasicBlock *SwitchBB, 1424 unsigned Opc) { 1425 // If this node is not part of the or/and tree, emit it as a branch. 1426 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1427 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1428 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1429 BOp->getParent() != CurBB->getBasicBlock() || 1430 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1431 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1432 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1433 return; 1434 } 1435 1436 // Create TmpBB after CurBB. 1437 MachineFunction::iterator BBI = CurBB; 1438 MachineFunction &MF = DAG.getMachineFunction(); 1439 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1440 CurBB->getParent()->insert(++BBI, TmpBB); 1441 1442 if (Opc == Instruction::Or) { 1443 // Codegen X | Y as: 1444 // jmp_if_X TBB 1445 // jmp TmpBB 1446 // TmpBB: 1447 // jmp_if_Y TBB 1448 // jmp FBB 1449 // 1450 1451 // Emit the LHS condition. 1452 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1453 1454 // Emit the RHS condition into TmpBB. 1455 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1456 } else { 1457 assert(Opc == Instruction::And && "Unknown merge op!"); 1458 // Codegen X & Y as: 1459 // jmp_if_X TmpBB 1460 // jmp FBB 1461 // TmpBB: 1462 // jmp_if_Y TBB 1463 // jmp FBB 1464 // 1465 // This requires creation of TmpBB after CurBB. 1466 1467 // Emit the LHS condition. 1468 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1469 1470 // Emit the RHS condition into TmpBB. 1471 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1472 } 1473 } 1474 1475 /// If the set of cases should be emitted as a series of branches, return true. 1476 /// If we should emit this as a bunch of and/or'd together conditions, return 1477 /// false. 1478 bool 1479 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1480 if (Cases.size() != 2) return true; 1481 1482 // If this is two comparisons of the same values or'd or and'd together, they 1483 // will get folded into a single comparison, so don't emit two blocks. 1484 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1485 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1486 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1487 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1488 return false; 1489 } 1490 1491 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1492 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1493 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1494 Cases[0].CC == Cases[1].CC && 1495 isa<Constant>(Cases[0].CmpRHS) && 1496 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1497 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1498 return false; 1499 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1500 return false; 1501 } 1502 1503 return true; 1504 } 1505 1506 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1507 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1508 1509 // Update machine-CFG edges. 1510 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1511 1512 // Figure out which block is immediately after the current one. 1513 MachineBasicBlock *NextBlock = 0; 1514 MachineFunction::iterator BBI = BrMBB; 1515 if (++BBI != FuncInfo.MF->end()) 1516 NextBlock = BBI; 1517 1518 if (I.isUnconditional()) { 1519 // Update machine-CFG edges. 1520 BrMBB->addSuccessor(Succ0MBB); 1521 1522 // If this is not a fall-through branch, emit the branch. 1523 if (Succ0MBB != NextBlock) 1524 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1525 MVT::Other, getControlRoot(), 1526 DAG.getBasicBlock(Succ0MBB))); 1527 1528 return; 1529 } 1530 1531 // If this condition is one of the special cases we handle, do special stuff 1532 // now. 1533 const Value *CondVal = I.getCondition(); 1534 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1535 1536 // If this is a series of conditions that are or'd or and'd together, emit 1537 // this as a sequence of branches instead of setcc's with and/or operations. 1538 // As long as jumps are not expensive, this should improve performance. 1539 // For example, instead of something like: 1540 // cmp A, B 1541 // C = seteq 1542 // cmp D, E 1543 // F = setle 1544 // or C, F 1545 // jnz foo 1546 // Emit: 1547 // cmp A, B 1548 // je foo 1549 // cmp D, E 1550 // jle foo 1551 // 1552 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1553 if (!TM.getTargetLowering()->isJumpExpensive() && 1554 BOp->hasOneUse() && 1555 (BOp->getOpcode() == Instruction::And || 1556 BOp->getOpcode() == Instruction::Or)) { 1557 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1558 BOp->getOpcode()); 1559 // If the compares in later blocks need to use values not currently 1560 // exported from this block, export them now. This block should always 1561 // be the first entry. 1562 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1563 1564 // Allow some cases to be rejected. 1565 if (ShouldEmitAsBranches(SwitchCases)) { 1566 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1567 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1568 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1569 } 1570 1571 // Emit the branch for this block. 1572 visitSwitchCase(SwitchCases[0], BrMBB); 1573 SwitchCases.erase(SwitchCases.begin()); 1574 return; 1575 } 1576 1577 // Okay, we decided not to do this, remove any inserted MBB's and clear 1578 // SwitchCases. 1579 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1580 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1581 1582 SwitchCases.clear(); 1583 } 1584 } 1585 1586 // Create a CaseBlock record representing this branch. 1587 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1588 NULL, Succ0MBB, Succ1MBB, BrMBB); 1589 1590 // Use visitSwitchCase to actually insert the fast branch sequence for this 1591 // cond branch. 1592 visitSwitchCase(CB, BrMBB); 1593 } 1594 1595 /// visitSwitchCase - Emits the necessary code to represent a single node in 1596 /// the binary search tree resulting from lowering a switch instruction. 1597 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1598 MachineBasicBlock *SwitchBB) { 1599 SDValue Cond; 1600 SDValue CondLHS = getValue(CB.CmpLHS); 1601 SDLoc dl = getCurSDLoc(); 1602 1603 // Build the setcc now. 1604 if (CB.CmpMHS == NULL) { 1605 // Fold "(X == true)" to X and "(X == false)" to !X to 1606 // handle common cases produced by branch lowering. 1607 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1608 CB.CC == ISD::SETEQ) 1609 Cond = CondLHS; 1610 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1611 CB.CC == ISD::SETEQ) { 1612 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1613 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1614 } else 1615 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1616 } else { 1617 assert(CB.CC == ISD::SETCC_INVALID && 1618 "Condition is undefined for to-the-range belonging check."); 1619 1620 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1621 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1622 1623 SDValue CmpOp = getValue(CB.CmpMHS); 1624 EVT VT = CmpOp.getValueType(); 1625 1626 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) { 1627 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1628 ISD::SETULE); 1629 } else { 1630 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1631 VT, CmpOp, DAG.getConstant(Low, VT)); 1632 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1633 DAG.getConstant(High-Low, VT), ISD::SETULE); 1634 } 1635 } 1636 1637 // Update successor info 1638 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1639 // TrueBB and FalseBB are always different unless the incoming IR is 1640 // degenerate. This only happens when running llc on weird IR. 1641 if (CB.TrueBB != CB.FalseBB) 1642 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1643 1644 // Set NextBlock to be the MBB immediately after the current one, if any. 1645 // This is used to avoid emitting unnecessary branches to the next block. 1646 MachineBasicBlock *NextBlock = 0; 1647 MachineFunction::iterator BBI = SwitchBB; 1648 if (++BBI != FuncInfo.MF->end()) 1649 NextBlock = BBI; 1650 1651 // If the lhs block is the next block, invert the condition so that we can 1652 // fall through to the lhs instead of the rhs block. 1653 if (CB.TrueBB == NextBlock) { 1654 std::swap(CB.TrueBB, CB.FalseBB); 1655 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1656 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1657 } 1658 1659 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1660 MVT::Other, getControlRoot(), Cond, 1661 DAG.getBasicBlock(CB.TrueBB)); 1662 1663 // Insert the false branch. Do this even if it's a fall through branch, 1664 // this makes it easier to do DAG optimizations which require inverting 1665 // the branch condition. 1666 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1667 DAG.getBasicBlock(CB.FalseBB)); 1668 1669 DAG.setRoot(BrCond); 1670 } 1671 1672 /// visitJumpTable - Emit JumpTable node in the current MBB 1673 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1674 // Emit the code for the jump table 1675 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1676 EVT PTy = TM.getTargetLowering()->getPointerTy(); 1677 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1678 JT.Reg, PTy); 1679 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1680 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1681 MVT::Other, Index.getValue(1), 1682 Table, Index); 1683 DAG.setRoot(BrJumpTable); 1684 } 1685 1686 /// visitJumpTableHeader - This function emits necessary code to produce index 1687 /// in the JumpTable from switch case. 1688 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1689 JumpTableHeader &JTH, 1690 MachineBasicBlock *SwitchBB) { 1691 // Subtract the lowest switch case value from the value being switched on and 1692 // conditional branch to default mbb if the result is greater than the 1693 // difference between smallest and largest cases. 1694 SDValue SwitchOp = getValue(JTH.SValue); 1695 EVT VT = SwitchOp.getValueType(); 1696 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1697 DAG.getConstant(JTH.First, VT)); 1698 1699 // The SDNode we just created, which holds the value being switched on minus 1700 // the smallest case value, needs to be copied to a virtual register so it 1701 // can be used as an index into the jump table in a subsequent basic block. 1702 // This value may be smaller or larger than the target's pointer type, and 1703 // therefore require extension or truncating. 1704 const TargetLowering *TLI = TM.getTargetLowering(); 1705 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1706 1707 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1708 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1709 JumpTableReg, SwitchOp); 1710 JT.Reg = JumpTableReg; 1711 1712 // Emit the range check for the jump table, and branch to the default block 1713 // for the switch statement if the value being switched on exceeds the largest 1714 // case in the switch. 1715 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1716 TLI->getSetCCResultType(*DAG.getContext(), 1717 Sub.getValueType()), 1718 Sub, 1719 DAG.getConstant(JTH.Last - JTH.First,VT), 1720 ISD::SETUGT); 1721 1722 // Set NextBlock to be the MBB immediately after the current one, if any. 1723 // This is used to avoid emitting unnecessary branches to the next block. 1724 MachineBasicBlock *NextBlock = 0; 1725 MachineFunction::iterator BBI = SwitchBB; 1726 1727 if (++BBI != FuncInfo.MF->end()) 1728 NextBlock = BBI; 1729 1730 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1731 MVT::Other, CopyTo, CMP, 1732 DAG.getBasicBlock(JT.Default)); 1733 1734 if (JT.MBB != NextBlock) 1735 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1736 DAG.getBasicBlock(JT.MBB)); 1737 1738 DAG.setRoot(BrCond); 1739 } 1740 1741 /// visitBitTestHeader - This function emits necessary code to produce value 1742 /// suitable for "bit tests" 1743 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1744 MachineBasicBlock *SwitchBB) { 1745 // Subtract the minimum value 1746 SDValue SwitchOp = getValue(B.SValue); 1747 EVT VT = SwitchOp.getValueType(); 1748 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1749 DAG.getConstant(B.First, VT)); 1750 1751 // Check range 1752 const TargetLowering *TLI = TM.getTargetLowering(); 1753 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1754 TLI->getSetCCResultType(*DAG.getContext(), 1755 Sub.getValueType()), 1756 Sub, DAG.getConstant(B.Range, VT), 1757 ISD::SETUGT); 1758 1759 // Determine the type of the test operands. 1760 bool UsePtrType = false; 1761 if (!TLI->isTypeLegal(VT)) 1762 UsePtrType = true; 1763 else { 1764 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1765 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1766 // Switch table case range are encoded into series of masks. 1767 // Just use pointer type, it's guaranteed to fit. 1768 UsePtrType = true; 1769 break; 1770 } 1771 } 1772 if (UsePtrType) { 1773 VT = TLI->getPointerTy(); 1774 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1775 } 1776 1777 B.RegVT = VT.getSimpleVT(); 1778 B.Reg = FuncInfo.CreateReg(B.RegVT); 1779 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1780 B.Reg, Sub); 1781 1782 // Set NextBlock to be the MBB immediately after the current one, if any. 1783 // This is used to avoid emitting unnecessary branches to the next block. 1784 MachineBasicBlock *NextBlock = 0; 1785 MachineFunction::iterator BBI = SwitchBB; 1786 if (++BBI != FuncInfo.MF->end()) 1787 NextBlock = BBI; 1788 1789 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1790 1791 addSuccessorWithWeight(SwitchBB, B.Default); 1792 addSuccessorWithWeight(SwitchBB, MBB); 1793 1794 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1795 MVT::Other, CopyTo, RangeCmp, 1796 DAG.getBasicBlock(B.Default)); 1797 1798 if (MBB != NextBlock) 1799 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1800 DAG.getBasicBlock(MBB)); 1801 1802 DAG.setRoot(BrRange); 1803 } 1804 1805 /// visitBitTestCase - this function produces one "bit test" 1806 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1807 MachineBasicBlock* NextMBB, 1808 uint32_t BranchWeightToNext, 1809 unsigned Reg, 1810 BitTestCase &B, 1811 MachineBasicBlock *SwitchBB) { 1812 MVT VT = BB.RegVT; 1813 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1814 Reg, VT); 1815 SDValue Cmp; 1816 unsigned PopCount = CountPopulation_64(B.Mask); 1817 const TargetLowering *TLI = TM.getTargetLowering(); 1818 if (PopCount == 1) { 1819 // Testing for a single bit; just compare the shift count with what it 1820 // would need to be to shift a 1 bit in that position. 1821 Cmp = DAG.getSetCC(getCurSDLoc(), 1822 TLI->getSetCCResultType(*DAG.getContext(), VT), 1823 ShiftOp, 1824 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1825 ISD::SETEQ); 1826 } else if (PopCount == BB.Range) { 1827 // There is only one zero bit in the range, test for it directly. 1828 Cmp = DAG.getSetCC(getCurSDLoc(), 1829 TLI->getSetCCResultType(*DAG.getContext(), VT), 1830 ShiftOp, 1831 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1832 ISD::SETNE); 1833 } else { 1834 // Make desired shift 1835 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1836 DAG.getConstant(1, VT), ShiftOp); 1837 1838 // Emit bit tests and jumps 1839 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1840 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1841 Cmp = DAG.getSetCC(getCurSDLoc(), 1842 TLI->getSetCCResultType(*DAG.getContext(), VT), 1843 AndOp, DAG.getConstant(0, VT), 1844 ISD::SETNE); 1845 } 1846 1847 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1848 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1849 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1850 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1851 1852 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1853 MVT::Other, getControlRoot(), 1854 Cmp, DAG.getBasicBlock(B.TargetBB)); 1855 1856 // Set NextBlock to be the MBB immediately after the current one, if any. 1857 // This is used to avoid emitting unnecessary branches to the next block. 1858 MachineBasicBlock *NextBlock = 0; 1859 MachineFunction::iterator BBI = SwitchBB; 1860 if (++BBI != FuncInfo.MF->end()) 1861 NextBlock = BBI; 1862 1863 if (NextMBB != NextBlock) 1864 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1865 DAG.getBasicBlock(NextMBB)); 1866 1867 DAG.setRoot(BrAnd); 1868 } 1869 1870 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1871 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1872 1873 // Retrieve successors. 1874 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1875 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1876 1877 const Value *Callee(I.getCalledValue()); 1878 const Function *Fn = dyn_cast<Function>(Callee); 1879 if (isa<InlineAsm>(Callee)) 1880 visitInlineAsm(&I); 1881 else if (Fn && Fn->isIntrinsic()) { 1882 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 1883 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1884 } else 1885 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1886 1887 // If the value of the invoke is used outside of its defining block, make it 1888 // available as a virtual register. 1889 CopyToExportRegsIfNeeded(&I); 1890 1891 // Update successor info 1892 addSuccessorWithWeight(InvokeMBB, Return); 1893 addSuccessorWithWeight(InvokeMBB, LandingPad); 1894 1895 // Drop into normal successor. 1896 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1897 MVT::Other, getControlRoot(), 1898 DAG.getBasicBlock(Return))); 1899 } 1900 1901 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1902 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1903 } 1904 1905 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1906 assert(FuncInfo.MBB->isLandingPad() && 1907 "Call to landingpad not in landing pad!"); 1908 1909 MachineBasicBlock *MBB = FuncInfo.MBB; 1910 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1911 AddLandingPadInfo(LP, MMI, MBB); 1912 1913 // If there aren't registers to copy the values into (e.g., during SjLj 1914 // exceptions), then don't bother to create these DAG nodes. 1915 const TargetLowering *TLI = TM.getTargetLowering(); 1916 if (TLI->getExceptionPointerRegister() == 0 && 1917 TLI->getExceptionSelectorRegister() == 0) 1918 return; 1919 1920 SmallVector<EVT, 2> ValueVTs; 1921 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 1922 1923 // Insert the EXCEPTIONADDR instruction. 1924 assert(FuncInfo.MBB->isLandingPad() && 1925 "Call to eh.exception not in landing pad!"); 1926 SDVTList VTs = DAG.getVTList(TLI->getPointerTy(), MVT::Other); 1927 SDValue Ops[2]; 1928 Ops[0] = DAG.getRoot(); 1929 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurSDLoc(), VTs, Ops, 1); 1930 SDValue Chain = Op1.getValue(1); 1931 1932 // Insert the EHSELECTION instruction. 1933 VTs = DAG.getVTList(TLI->getPointerTy(), MVT::Other); 1934 Ops[0] = Op1; 1935 Ops[1] = Chain; 1936 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurSDLoc(), VTs, Ops, 2); 1937 Chain = Op2.getValue(1); 1938 Op2 = DAG.getSExtOrTrunc(Op2, getCurSDLoc(), MVT::i32); 1939 1940 Ops[0] = Op1; 1941 Ops[1] = Op2; 1942 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 1943 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1944 &Ops[0], 2); 1945 1946 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); 1947 setValue(&LP, RetPair.first); 1948 DAG.setRoot(RetPair.second); 1949 } 1950 1951 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1952 /// small case ranges). 1953 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1954 CaseRecVector& WorkList, 1955 const Value* SV, 1956 MachineBasicBlock *Default, 1957 MachineBasicBlock *SwitchBB) { 1958 // Size is the number of Cases represented by this range. 1959 size_t Size = CR.Range.second - CR.Range.first; 1960 if (Size > 3) 1961 return false; 1962 1963 // Get the MachineFunction which holds the current MBB. This is used when 1964 // inserting any additional MBBs necessary to represent the switch. 1965 MachineFunction *CurMF = FuncInfo.MF; 1966 1967 // Figure out which block is immediately after the current one. 1968 MachineBasicBlock *NextBlock = 0; 1969 MachineFunction::iterator BBI = CR.CaseBB; 1970 1971 if (++BBI != FuncInfo.MF->end()) 1972 NextBlock = BBI; 1973 1974 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1975 // If any two of the cases has the same destination, and if one value 1976 // is the same as the other, but has one bit unset that the other has set, 1977 // use bit manipulation to do two compares at once. For example: 1978 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1979 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1980 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1981 if (Size == 2 && CR.CaseBB == SwitchBB) { 1982 Case &Small = *CR.Range.first; 1983 Case &Big = *(CR.Range.second-1); 1984 1985 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1986 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1987 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1988 1989 // Check that there is only one bit different. 1990 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1991 (SmallValue | BigValue) == BigValue) { 1992 // Isolate the common bit. 1993 APInt CommonBit = BigValue & ~SmallValue; 1994 assert((SmallValue | CommonBit) == BigValue && 1995 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1996 1997 SDValue CondLHS = getValue(SV); 1998 EVT VT = CondLHS.getValueType(); 1999 SDLoc DL = getCurSDLoc(); 2000 2001 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2002 DAG.getConstant(CommonBit, VT)); 2003 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2004 Or, DAG.getConstant(BigValue, VT), 2005 ISD::SETEQ); 2006 2007 // Update successor info. 2008 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2009 addSuccessorWithWeight(SwitchBB, Small.BB, 2010 Small.ExtraWeight + Big.ExtraWeight); 2011 addSuccessorWithWeight(SwitchBB, Default, 2012 // The default destination is the first successor in IR. 2013 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2014 2015 // Insert the true branch. 2016 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2017 getControlRoot(), Cond, 2018 DAG.getBasicBlock(Small.BB)); 2019 2020 // Insert the false branch. 2021 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2022 DAG.getBasicBlock(Default)); 2023 2024 DAG.setRoot(BrCond); 2025 return true; 2026 } 2027 } 2028 } 2029 2030 // Order cases by weight so the most likely case will be checked first. 2031 uint32_t UnhandledWeights = 0; 2032 if (BPI) { 2033 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2034 uint32_t IWeight = I->ExtraWeight; 2035 UnhandledWeights += IWeight; 2036 for (CaseItr J = CR.Range.first; J < I; ++J) { 2037 uint32_t JWeight = J->ExtraWeight; 2038 if (IWeight > JWeight) 2039 std::swap(*I, *J); 2040 } 2041 } 2042 } 2043 // Rearrange the case blocks so that the last one falls through if possible. 2044 Case &BackCase = *(CR.Range.second-1); 2045 if (Size > 1 && 2046 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2047 // The last case block won't fall through into 'NextBlock' if we emit the 2048 // branches in this order. See if rearranging a case value would help. 2049 // We start at the bottom as it's the case with the least weight. 2050 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){ 2051 if (I->BB == NextBlock) { 2052 std::swap(*I, BackCase); 2053 break; 2054 } 2055 } 2056 } 2057 2058 // Create a CaseBlock record representing a conditional branch to 2059 // the Case's target mbb if the value being switched on SV is equal 2060 // to C. 2061 MachineBasicBlock *CurBlock = CR.CaseBB; 2062 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2063 MachineBasicBlock *FallThrough; 2064 if (I != E-1) { 2065 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2066 CurMF->insert(BBI, FallThrough); 2067 2068 // Put SV in a virtual register to make it available from the new blocks. 2069 ExportFromCurrentBlock(SV); 2070 } else { 2071 // If the last case doesn't match, go to the default block. 2072 FallThrough = Default; 2073 } 2074 2075 const Value *RHS, *LHS, *MHS; 2076 ISD::CondCode CC; 2077 if (I->High == I->Low) { 2078 // This is just small small case range :) containing exactly 1 case 2079 CC = ISD::SETEQ; 2080 LHS = SV; RHS = I->High; MHS = NULL; 2081 } else { 2082 CC = ISD::SETCC_INVALID; 2083 LHS = I->Low; MHS = SV; RHS = I->High; 2084 } 2085 2086 // The false weight should be sum of all un-handled cases. 2087 UnhandledWeights -= I->ExtraWeight; 2088 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2089 /* me */ CurBlock, 2090 /* trueweight */ I->ExtraWeight, 2091 /* falseweight */ UnhandledWeights); 2092 2093 // If emitting the first comparison, just call visitSwitchCase to emit the 2094 // code into the current block. Otherwise, push the CaseBlock onto the 2095 // vector to be later processed by SDISel, and insert the node's MBB 2096 // before the next MBB. 2097 if (CurBlock == SwitchBB) 2098 visitSwitchCase(CB, SwitchBB); 2099 else 2100 SwitchCases.push_back(CB); 2101 2102 CurBlock = FallThrough; 2103 } 2104 2105 return true; 2106 } 2107 2108 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2109 return TLI.supportJumpTables() && 2110 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2111 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2112 } 2113 2114 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2115 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2116 APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth); 2117 return (LastExt - FirstExt + 1ULL); 2118 } 2119 2120 /// handleJTSwitchCase - Emit jumptable for current switch case range 2121 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2122 CaseRecVector &WorkList, 2123 const Value *SV, 2124 MachineBasicBlock *Default, 2125 MachineBasicBlock *SwitchBB) { 2126 Case& FrontCase = *CR.Range.first; 2127 Case& BackCase = *(CR.Range.second-1); 2128 2129 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2130 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2131 2132 APInt TSize(First.getBitWidth(), 0); 2133 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2134 TSize += I->size(); 2135 2136 const TargetLowering *TLI = TM.getTargetLowering(); 2137 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2138 return false; 2139 2140 APInt Range = ComputeRange(First, Last); 2141 // The density is TSize / Range. Require at least 40%. 2142 // It should not be possible for IntTSize to saturate for sane code, but make 2143 // sure we handle Range saturation correctly. 2144 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2145 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2146 if (IntTSize * 10 < IntRange * 4) 2147 return false; 2148 2149 DEBUG(dbgs() << "Lowering jump table\n" 2150 << "First entry: " << First << ". Last entry: " << Last << '\n' 2151 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2152 2153 // Get the MachineFunction which holds the current MBB. This is used when 2154 // inserting any additional MBBs necessary to represent the switch. 2155 MachineFunction *CurMF = FuncInfo.MF; 2156 2157 // Figure out which block is immediately after the current one. 2158 MachineFunction::iterator BBI = CR.CaseBB; 2159 ++BBI; 2160 2161 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2162 2163 // Create a new basic block to hold the code for loading the address 2164 // of the jump table, and jumping to it. Update successor information; 2165 // we will either branch to the default case for the switch, or the jump 2166 // table. 2167 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2168 CurMF->insert(BBI, JumpTableBB); 2169 2170 addSuccessorWithWeight(CR.CaseBB, Default); 2171 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2172 2173 // Build a vector of destination BBs, corresponding to each target 2174 // of the jump table. If the value of the jump table slot corresponds to 2175 // a case statement, push the case's BB onto the vector, otherwise, push 2176 // the default BB. 2177 std::vector<MachineBasicBlock*> DestBBs; 2178 APInt TEI = First; 2179 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2180 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2181 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2182 2183 if (Low.ule(TEI) && TEI.ule(High)) { 2184 DestBBs.push_back(I->BB); 2185 if (TEI==High) 2186 ++I; 2187 } else { 2188 DestBBs.push_back(Default); 2189 } 2190 } 2191 2192 // Calculate weight for each unique destination in CR. 2193 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2194 if (FuncInfo.BPI) 2195 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2196 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2197 DestWeights.find(I->BB); 2198 if (Itr != DestWeights.end()) 2199 Itr->second += I->ExtraWeight; 2200 else 2201 DestWeights[I->BB] = I->ExtraWeight; 2202 } 2203 2204 // Update successor info. Add one edge to each unique successor. 2205 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2206 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2207 E = DestBBs.end(); I != E; ++I) { 2208 if (!SuccsHandled[(*I)->getNumber()]) { 2209 SuccsHandled[(*I)->getNumber()] = true; 2210 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2211 DestWeights.find(*I); 2212 addSuccessorWithWeight(JumpTableBB, *I, 2213 Itr != DestWeights.end() ? Itr->second : 0); 2214 } 2215 } 2216 2217 // Create a jump table index for this jump table. 2218 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2219 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2220 ->createJumpTableIndex(DestBBs); 2221 2222 // Set the jump table information so that we can codegen it as a second 2223 // MachineBasicBlock 2224 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2225 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2226 if (CR.CaseBB == SwitchBB) 2227 visitJumpTableHeader(JT, JTH, SwitchBB); 2228 2229 JTCases.push_back(JumpTableBlock(JTH, JT)); 2230 return true; 2231 } 2232 2233 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2234 /// 2 subtrees. 2235 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2236 CaseRecVector& WorkList, 2237 const Value* SV, 2238 MachineBasicBlock *Default, 2239 MachineBasicBlock *SwitchBB) { 2240 // Get the MachineFunction which holds the current MBB. This is used when 2241 // inserting any additional MBBs necessary to represent the switch. 2242 MachineFunction *CurMF = FuncInfo.MF; 2243 2244 // Figure out which block is immediately after the current one. 2245 MachineFunction::iterator BBI = CR.CaseBB; 2246 ++BBI; 2247 2248 Case& FrontCase = *CR.Range.first; 2249 Case& BackCase = *(CR.Range.second-1); 2250 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2251 2252 // Size is the number of Cases represented by this range. 2253 unsigned Size = CR.Range.second - CR.Range.first; 2254 2255 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2256 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2257 double FMetric = 0; 2258 CaseItr Pivot = CR.Range.first + Size/2; 2259 2260 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2261 // (heuristically) allow us to emit JumpTable's later. 2262 APInt TSize(First.getBitWidth(), 0); 2263 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2264 I!=E; ++I) 2265 TSize += I->size(); 2266 2267 APInt LSize = FrontCase.size(); 2268 APInt RSize = TSize-LSize; 2269 DEBUG(dbgs() << "Selecting best pivot: \n" 2270 << "First: " << First << ", Last: " << Last <<'\n' 2271 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2272 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2273 J!=E; ++I, ++J) { 2274 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2275 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2276 APInt Range = ComputeRange(LEnd, RBegin); 2277 assert((Range - 2ULL).isNonNegative() && 2278 "Invalid case distance"); 2279 // Use volatile double here to avoid excess precision issues on some hosts, 2280 // e.g. that use 80-bit X87 registers. 2281 volatile double LDensity = 2282 (double)LSize.roundToDouble() / 2283 (LEnd - First + 1ULL).roundToDouble(); 2284 volatile double RDensity = 2285 (double)RSize.roundToDouble() / 2286 (Last - RBegin + 1ULL).roundToDouble(); 2287 double Metric = Range.logBase2()*(LDensity+RDensity); 2288 // Should always split in some non-trivial place 2289 DEBUG(dbgs() <<"=>Step\n" 2290 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2291 << "LDensity: " << LDensity 2292 << ", RDensity: " << RDensity << '\n' 2293 << "Metric: " << Metric << '\n'); 2294 if (FMetric < Metric) { 2295 Pivot = J; 2296 FMetric = Metric; 2297 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2298 } 2299 2300 LSize += J->size(); 2301 RSize -= J->size(); 2302 } 2303 2304 const TargetLowering *TLI = TM.getTargetLowering(); 2305 if (areJTsAllowed(*TLI)) { 2306 // If our case is dense we *really* should handle it earlier! 2307 assert((FMetric > 0) && "Should handle dense range earlier!"); 2308 } else { 2309 Pivot = CR.Range.first + Size/2; 2310 } 2311 2312 CaseRange LHSR(CR.Range.first, Pivot); 2313 CaseRange RHSR(Pivot, CR.Range.second); 2314 const Constant *C = Pivot->Low; 2315 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2316 2317 // We know that we branch to the LHS if the Value being switched on is 2318 // less than the Pivot value, C. We use this to optimize our binary 2319 // tree a bit, by recognizing that if SV is greater than or equal to the 2320 // LHS's Case Value, and that Case Value is exactly one less than the 2321 // Pivot's Value, then we can branch directly to the LHS's Target, 2322 // rather than creating a leaf node for it. 2323 if ((LHSR.second - LHSR.first) == 1 && 2324 LHSR.first->High == CR.GE && 2325 cast<ConstantInt>(C)->getValue() == 2326 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2327 TrueBB = LHSR.first->BB; 2328 } else { 2329 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2330 CurMF->insert(BBI, TrueBB); 2331 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2332 2333 // Put SV in a virtual register to make it available from the new blocks. 2334 ExportFromCurrentBlock(SV); 2335 } 2336 2337 // Similar to the optimization above, if the Value being switched on is 2338 // known to be less than the Constant CR.LT, and the current Case Value 2339 // is CR.LT - 1, then we can branch directly to the target block for 2340 // the current Case Value, rather than emitting a RHS leaf node for it. 2341 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2342 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2343 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2344 FalseBB = RHSR.first->BB; 2345 } else { 2346 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2347 CurMF->insert(BBI, FalseBB); 2348 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2349 2350 // Put SV in a virtual register to make it available from the new blocks. 2351 ExportFromCurrentBlock(SV); 2352 } 2353 2354 // Create a CaseBlock record representing a conditional branch to 2355 // the LHS node if the value being switched on SV is less than C. 2356 // Otherwise, branch to LHS. 2357 CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2358 2359 if (CR.CaseBB == SwitchBB) 2360 visitSwitchCase(CB, SwitchBB); 2361 else 2362 SwitchCases.push_back(CB); 2363 2364 return true; 2365 } 2366 2367 /// handleBitTestsSwitchCase - if current case range has few destination and 2368 /// range span less, than machine word bitwidth, encode case range into series 2369 /// of masks and emit bit tests with these masks. 2370 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2371 CaseRecVector& WorkList, 2372 const Value* SV, 2373 MachineBasicBlock* Default, 2374 MachineBasicBlock *SwitchBB){ 2375 const TargetLowering *TLI = TM.getTargetLowering(); 2376 EVT PTy = TLI->getPointerTy(); 2377 unsigned IntPtrBits = PTy.getSizeInBits(); 2378 2379 Case& FrontCase = *CR.Range.first; 2380 Case& BackCase = *(CR.Range.second-1); 2381 2382 // Get the MachineFunction which holds the current MBB. This is used when 2383 // inserting any additional MBBs necessary to represent the switch. 2384 MachineFunction *CurMF = FuncInfo.MF; 2385 2386 // If target does not have legal shift left, do not emit bit tests at all. 2387 if (!TLI->isOperationLegal(ISD::SHL, TLI->getPointerTy())) 2388 return false; 2389 2390 size_t numCmps = 0; 2391 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2392 I!=E; ++I) { 2393 // Single case counts one, case range - two. 2394 numCmps += (I->Low == I->High ? 1 : 2); 2395 } 2396 2397 // Count unique destinations 2398 SmallSet<MachineBasicBlock*, 4> Dests; 2399 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2400 Dests.insert(I->BB); 2401 if (Dests.size() > 3) 2402 // Don't bother the code below, if there are too much unique destinations 2403 return false; 2404 } 2405 DEBUG(dbgs() << "Total number of unique destinations: " 2406 << Dests.size() << '\n' 2407 << "Total number of comparisons: " << numCmps << '\n'); 2408 2409 // Compute span of values. 2410 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2411 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2412 APInt cmpRange = maxValue - minValue; 2413 2414 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2415 << "Low bound: " << minValue << '\n' 2416 << "High bound: " << maxValue << '\n'); 2417 2418 if (cmpRange.uge(IntPtrBits) || 2419 (!(Dests.size() == 1 && numCmps >= 3) && 2420 !(Dests.size() == 2 && numCmps >= 5) && 2421 !(Dests.size() >= 3 && numCmps >= 6))) 2422 return false; 2423 2424 DEBUG(dbgs() << "Emitting bit tests\n"); 2425 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2426 2427 // Optimize the case where all the case values fit in a 2428 // word without having to subtract minValue. In this case, 2429 // we can optimize away the subtraction. 2430 if (maxValue.ult(IntPtrBits)) { 2431 cmpRange = maxValue; 2432 } else { 2433 lowBound = minValue; 2434 } 2435 2436 CaseBitsVector CasesBits; 2437 unsigned i, count = 0; 2438 2439 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2440 MachineBasicBlock* Dest = I->BB; 2441 for (i = 0; i < count; ++i) 2442 if (Dest == CasesBits[i].BB) 2443 break; 2444 2445 if (i == count) { 2446 assert((count < 3) && "Too much destinations to test!"); 2447 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2448 count++; 2449 } 2450 2451 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2452 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2453 2454 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2455 uint64_t hi = (highValue - lowBound).getZExtValue(); 2456 CasesBits[i].ExtraWeight += I->ExtraWeight; 2457 2458 for (uint64_t j = lo; j <= hi; j++) { 2459 CasesBits[i].Mask |= 1ULL << j; 2460 CasesBits[i].Bits++; 2461 } 2462 2463 } 2464 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2465 2466 BitTestInfo BTC; 2467 2468 // Figure out which block is immediately after the current one. 2469 MachineFunction::iterator BBI = CR.CaseBB; 2470 ++BBI; 2471 2472 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2473 2474 DEBUG(dbgs() << "Cases:\n"); 2475 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2476 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2477 << ", Bits: " << CasesBits[i].Bits 2478 << ", BB: " << CasesBits[i].BB << '\n'); 2479 2480 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2481 CurMF->insert(BBI, CaseBB); 2482 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2483 CaseBB, 2484 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2485 2486 // Put SV in a virtual register to make it available from the new blocks. 2487 ExportFromCurrentBlock(SV); 2488 } 2489 2490 BitTestBlock BTB(lowBound, cmpRange, SV, 2491 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2492 CR.CaseBB, Default, BTC); 2493 2494 if (CR.CaseBB == SwitchBB) 2495 visitBitTestHeader(BTB, SwitchBB); 2496 2497 BitTestCases.push_back(BTB); 2498 2499 return true; 2500 } 2501 2502 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2503 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2504 const SwitchInst& SI) { 2505 2506 /// Use a shorter form of declaration, and also 2507 /// show the we want to use CRSBuilder as Clusterifier. 2508 typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier; 2509 2510 Clusterifier TheClusterifier; 2511 2512 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2513 // Start with "simple" cases 2514 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2515 i != e; ++i) { 2516 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2517 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2518 2519 TheClusterifier.add(i.getCaseValueEx(), SMBB, 2520 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0); 2521 } 2522 2523 TheClusterifier.optimize(); 2524 2525 size_t numCmps = 0; 2526 for (Clusterifier::RangeIterator i = TheClusterifier.begin(), 2527 e = TheClusterifier.end(); i != e; ++i, ++numCmps) { 2528 Clusterifier::Cluster &C = *i; 2529 // Update edge weight for the cluster. 2530 unsigned W = C.first.Weight; 2531 2532 // FIXME: Currently work with ConstantInt based numbers. 2533 // Changing it to APInt based is a pretty heavy for this commit. 2534 Cases.push_back(Case(C.first.getLow().toConstantInt(), 2535 C.first.getHigh().toConstantInt(), C.second, W)); 2536 2537 if (C.first.getLow() != C.first.getHigh()) 2538 // A range counts double, since it requires two compares. 2539 ++numCmps; 2540 } 2541 2542 return numCmps; 2543 } 2544 2545 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2546 MachineBasicBlock *Last) { 2547 // Update JTCases. 2548 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2549 if (JTCases[i].first.HeaderBB == First) 2550 JTCases[i].first.HeaderBB = Last; 2551 2552 // Update BitTestCases. 2553 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2554 if (BitTestCases[i].Parent == First) 2555 BitTestCases[i].Parent = Last; 2556 } 2557 2558 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2559 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2560 2561 // Figure out which block is immediately after the current one. 2562 MachineBasicBlock *NextBlock = 0; 2563 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2564 2565 // If there is only the default destination, branch to it if it is not the 2566 // next basic block. Otherwise, just fall through. 2567 if (!SI.getNumCases()) { 2568 // Update machine-CFG edges. 2569 2570 // If this is not a fall-through branch, emit the branch. 2571 SwitchMBB->addSuccessor(Default); 2572 if (Default != NextBlock) 2573 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2574 MVT::Other, getControlRoot(), 2575 DAG.getBasicBlock(Default))); 2576 2577 return; 2578 } 2579 2580 // If there are any non-default case statements, create a vector of Cases 2581 // representing each one, and sort the vector so that we can efficiently 2582 // create a binary search tree from them. 2583 CaseVector Cases; 2584 size_t numCmps = Clusterify(Cases, SI); 2585 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2586 << ". Total compares: " << numCmps << '\n'); 2587 (void)numCmps; 2588 2589 // Get the Value to be switched on and default basic blocks, which will be 2590 // inserted into CaseBlock records, representing basic blocks in the binary 2591 // search tree. 2592 const Value *SV = SI.getCondition(); 2593 2594 // Push the initial CaseRec onto the worklist 2595 CaseRecVector WorkList; 2596 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2597 CaseRange(Cases.begin(),Cases.end()))); 2598 2599 while (!WorkList.empty()) { 2600 // Grab a record representing a case range to process off the worklist 2601 CaseRec CR = WorkList.back(); 2602 WorkList.pop_back(); 2603 2604 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2605 continue; 2606 2607 // If the range has few cases (two or less) emit a series of specific 2608 // tests. 2609 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2610 continue; 2611 2612 // If the switch has more than N blocks, and is at least 40% dense, and the 2613 // target supports indirect branches, then emit a jump table rather than 2614 // lowering the switch to a binary tree of conditional branches. 2615 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2616 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2617 continue; 2618 2619 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2620 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2621 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2622 } 2623 } 2624 2625 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2626 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2627 2628 // Update machine-CFG edges with unique successors. 2629 SmallSet<BasicBlock*, 32> Done; 2630 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2631 BasicBlock *BB = I.getSuccessor(i); 2632 bool Inserted = Done.insert(BB); 2633 if (!Inserted) 2634 continue; 2635 2636 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2637 addSuccessorWithWeight(IndirectBrMBB, Succ); 2638 } 2639 2640 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2641 MVT::Other, getControlRoot(), 2642 getValue(I.getAddress()))); 2643 } 2644 2645 void SelectionDAGBuilder::visitFSub(const User &I) { 2646 // -0.0 - X --> fneg 2647 Type *Ty = I.getType(); 2648 if (isa<Constant>(I.getOperand(0)) && 2649 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2650 SDValue Op2 = getValue(I.getOperand(1)); 2651 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2652 Op2.getValueType(), Op2)); 2653 return; 2654 } 2655 2656 visitBinary(I, ISD::FSUB); 2657 } 2658 2659 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2660 SDValue Op1 = getValue(I.getOperand(0)); 2661 SDValue Op2 = getValue(I.getOperand(1)); 2662 setValue(&I, DAG.getNode(OpCode, getCurSDLoc(), 2663 Op1.getValueType(), Op1, Op2)); 2664 } 2665 2666 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2667 SDValue Op1 = getValue(I.getOperand(0)); 2668 SDValue Op2 = getValue(I.getOperand(1)); 2669 2670 EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType()); 2671 2672 // Coerce the shift amount to the right type if we can. 2673 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2674 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2675 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2676 SDLoc DL = getCurSDLoc(); 2677 2678 // If the operand is smaller than the shift count type, promote it. 2679 if (ShiftSize > Op2Size) 2680 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2681 2682 // If the operand is larger than the shift count type but the shift 2683 // count type has enough bits to represent any shift value, truncate 2684 // it now. This is a common case and it exposes the truncate to 2685 // optimization early. 2686 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2687 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2688 // Otherwise we'll need to temporarily settle for some other convenient 2689 // type. Type legalization will make adjustments once the shiftee is split. 2690 else 2691 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2692 } 2693 2694 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), 2695 Op1.getValueType(), Op1, Op2)); 2696 } 2697 2698 void SelectionDAGBuilder::visitSDiv(const User &I) { 2699 SDValue Op1 = getValue(I.getOperand(0)); 2700 SDValue Op2 = getValue(I.getOperand(1)); 2701 2702 // Turn exact SDivs into multiplications. 2703 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2704 // exact bit. 2705 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2706 !isa<ConstantSDNode>(Op1) && 2707 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2708 setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2, 2709 getCurSDLoc(), DAG)); 2710 else 2711 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2712 Op1, Op2)); 2713 } 2714 2715 void SelectionDAGBuilder::visitICmp(const User &I) { 2716 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2717 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2718 predicate = IC->getPredicate(); 2719 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2720 predicate = ICmpInst::Predicate(IC->getPredicate()); 2721 SDValue Op1 = getValue(I.getOperand(0)); 2722 SDValue Op2 = getValue(I.getOperand(1)); 2723 ISD::CondCode Opcode = getICmpCondCode(predicate); 2724 2725 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2726 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2727 } 2728 2729 void SelectionDAGBuilder::visitFCmp(const User &I) { 2730 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2731 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2732 predicate = FC->getPredicate(); 2733 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2734 predicate = FCmpInst::Predicate(FC->getPredicate()); 2735 SDValue Op1 = getValue(I.getOperand(0)); 2736 SDValue Op2 = getValue(I.getOperand(1)); 2737 ISD::CondCode Condition = getFCmpCondCode(predicate); 2738 if (TM.Options.NoNaNsFPMath) 2739 Condition = getFCmpCodeWithoutNaN(Condition); 2740 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2741 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2742 } 2743 2744 void SelectionDAGBuilder::visitSelect(const User &I) { 2745 SmallVector<EVT, 4> ValueVTs; 2746 ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs); 2747 unsigned NumValues = ValueVTs.size(); 2748 if (NumValues == 0) return; 2749 2750 SmallVector<SDValue, 4> Values(NumValues); 2751 SDValue Cond = getValue(I.getOperand(0)); 2752 SDValue TrueVal = getValue(I.getOperand(1)); 2753 SDValue FalseVal = getValue(I.getOperand(2)); 2754 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2755 ISD::VSELECT : ISD::SELECT; 2756 2757 for (unsigned i = 0; i != NumValues; ++i) 2758 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2759 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2760 Cond, 2761 SDValue(TrueVal.getNode(), 2762 TrueVal.getResNo() + i), 2763 SDValue(FalseVal.getNode(), 2764 FalseVal.getResNo() + i)); 2765 2766 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2767 DAG.getVTList(&ValueVTs[0], NumValues), 2768 &Values[0], NumValues)); 2769 } 2770 2771 void SelectionDAGBuilder::visitTrunc(const User &I) { 2772 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2773 SDValue N = getValue(I.getOperand(0)); 2774 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2775 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2776 } 2777 2778 void SelectionDAGBuilder::visitZExt(const User &I) { 2779 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2780 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2781 SDValue N = getValue(I.getOperand(0)); 2782 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2783 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2784 } 2785 2786 void SelectionDAGBuilder::visitSExt(const User &I) { 2787 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2788 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2789 SDValue N = getValue(I.getOperand(0)); 2790 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2791 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2792 } 2793 2794 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2795 // FPTrunc is never a no-op cast, no need to check 2796 SDValue N = getValue(I.getOperand(0)); 2797 const TargetLowering *TLI = TM.getTargetLowering(); 2798 EVT DestVT = TLI->getValueType(I.getType()); 2799 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2800 DestVT, N, 2801 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2802 } 2803 2804 void SelectionDAGBuilder::visitFPExt(const User &I){ 2805 // FPExt is never a no-op cast, no need to check 2806 SDValue N = getValue(I.getOperand(0)); 2807 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2808 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2809 } 2810 2811 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2812 // FPToUI is never a no-op cast, no need to check 2813 SDValue N = getValue(I.getOperand(0)); 2814 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2815 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2816 } 2817 2818 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2819 // FPToSI is never a no-op cast, no need to check 2820 SDValue N = getValue(I.getOperand(0)); 2821 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2822 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2823 } 2824 2825 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2826 // UIToFP is never a no-op cast, no need to check 2827 SDValue N = getValue(I.getOperand(0)); 2828 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2829 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2830 } 2831 2832 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2833 // SIToFP is never a no-op cast, no need to check 2834 SDValue N = getValue(I.getOperand(0)); 2835 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2836 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2837 } 2838 2839 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2840 // What to do depends on the size of the integer and the size of the pointer. 2841 // We can either truncate, zero extend, or no-op, accordingly. 2842 SDValue N = getValue(I.getOperand(0)); 2843 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2844 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2845 } 2846 2847 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2848 // What to do depends on the size of the integer and the size of the pointer. 2849 // We can either truncate, zero extend, or no-op, accordingly. 2850 SDValue N = getValue(I.getOperand(0)); 2851 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2852 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2853 } 2854 2855 void SelectionDAGBuilder::visitBitCast(const User &I) { 2856 SDValue N = getValue(I.getOperand(0)); 2857 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2858 2859 // BitCast assures us that source and destination are the same size so this is 2860 // either a BITCAST or a no-op. 2861 if (DestVT != N.getValueType()) 2862 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 2863 DestVT, N)); // convert types. 2864 else 2865 setValue(&I, N); // noop cast. 2866 } 2867 2868 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2869 SDValue InVec = getValue(I.getOperand(0)); 2870 SDValue InVal = getValue(I.getOperand(1)); 2871 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), 2872 TM.getTargetLowering()->getPointerTy(), 2873 getValue(I.getOperand(2))); 2874 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2875 TM.getTargetLowering()->getValueType(I.getType()), 2876 InVec, InVal, InIdx)); 2877 } 2878 2879 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2880 SDValue InVec = getValue(I.getOperand(0)); 2881 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), 2882 TM.getTargetLowering()->getPointerTy(), 2883 getValue(I.getOperand(1))); 2884 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2885 TM.getTargetLowering()->getValueType(I.getType()), 2886 InVec, InIdx)); 2887 } 2888 2889 // Utility for visitShuffleVector - Return true if every element in Mask, 2890 // beginning from position Pos and ending in Pos+Size, falls within the 2891 // specified sequential range [L, L+Pos). or is undef. 2892 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2893 unsigned Pos, unsigned Size, int Low) { 2894 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2895 if (Mask[i] >= 0 && Mask[i] != Low) 2896 return false; 2897 return true; 2898 } 2899 2900 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2901 SDValue Src1 = getValue(I.getOperand(0)); 2902 SDValue Src2 = getValue(I.getOperand(1)); 2903 2904 SmallVector<int, 8> Mask; 2905 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2906 unsigned MaskNumElts = Mask.size(); 2907 2908 const TargetLowering *TLI = TM.getTargetLowering(); 2909 EVT VT = TLI->getValueType(I.getType()); 2910 EVT SrcVT = Src1.getValueType(); 2911 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2912 2913 if (SrcNumElts == MaskNumElts) { 2914 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2915 &Mask[0])); 2916 return; 2917 } 2918 2919 // Normalize the shuffle vector since mask and vector length don't match. 2920 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2921 // Mask is longer than the source vectors and is a multiple of the source 2922 // vectors. We can use concatenate vector to make the mask and vectors 2923 // lengths match. 2924 if (SrcNumElts*2 == MaskNumElts) { 2925 // First check for Src1 in low and Src2 in high 2926 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2927 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2928 // The shuffle is concatenating two vectors together. 2929 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2930 VT, Src1, Src2)); 2931 return; 2932 } 2933 // Then check for Src2 in low and Src1 in high 2934 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2935 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2936 // The shuffle is concatenating two vectors together. 2937 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2938 VT, Src2, Src1)); 2939 return; 2940 } 2941 } 2942 2943 // Pad both vectors with undefs to make them the same length as the mask. 2944 unsigned NumConcat = MaskNumElts / SrcNumElts; 2945 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2946 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2947 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2948 2949 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2950 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2951 MOps1[0] = Src1; 2952 MOps2[0] = Src2; 2953 2954 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2955 getCurSDLoc(), VT, 2956 &MOps1[0], NumConcat); 2957 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2958 getCurSDLoc(), VT, 2959 &MOps2[0], NumConcat); 2960 2961 // Readjust mask for new input vector length. 2962 SmallVector<int, 8> MappedOps; 2963 for (unsigned i = 0; i != MaskNumElts; ++i) { 2964 int Idx = Mask[i]; 2965 if (Idx >= (int)SrcNumElts) 2966 Idx -= SrcNumElts - MaskNumElts; 2967 MappedOps.push_back(Idx); 2968 } 2969 2970 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2971 &MappedOps[0])); 2972 return; 2973 } 2974 2975 if (SrcNumElts > MaskNumElts) { 2976 // Analyze the access pattern of the vector to see if we can extract 2977 // two subvectors and do the shuffle. The analysis is done by calculating 2978 // the range of elements the mask access on both vectors. 2979 int MinRange[2] = { static_cast<int>(SrcNumElts), 2980 static_cast<int>(SrcNumElts)}; 2981 int MaxRange[2] = {-1, -1}; 2982 2983 for (unsigned i = 0; i != MaskNumElts; ++i) { 2984 int Idx = Mask[i]; 2985 unsigned Input = 0; 2986 if (Idx < 0) 2987 continue; 2988 2989 if (Idx >= (int)SrcNumElts) { 2990 Input = 1; 2991 Idx -= SrcNumElts; 2992 } 2993 if (Idx > MaxRange[Input]) 2994 MaxRange[Input] = Idx; 2995 if (Idx < MinRange[Input]) 2996 MinRange[Input] = Idx; 2997 } 2998 2999 // Check if the access is smaller than the vector size and can we find 3000 // a reasonable extract index. 3001 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3002 // Extract. 3003 int StartIdx[2]; // StartIdx to extract from 3004 for (unsigned Input = 0; Input < 2; ++Input) { 3005 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3006 RangeUse[Input] = 0; // Unused 3007 StartIdx[Input] = 0; 3008 continue; 3009 } 3010 3011 // Find a good start index that is a multiple of the mask length. Then 3012 // see if the rest of the elements are in range. 3013 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3014 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3015 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3016 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3017 } 3018 3019 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3020 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3021 return; 3022 } 3023 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3024 // Extract appropriate subvector and generate a vector shuffle 3025 for (unsigned Input = 0; Input < 2; ++Input) { 3026 SDValue &Src = Input == 0 ? Src1 : Src2; 3027 if (RangeUse[Input] == 0) 3028 Src = DAG.getUNDEF(VT); 3029 else 3030 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3031 Src, DAG.getIntPtrConstant(StartIdx[Input])); 3032 } 3033 3034 // Calculate new mask. 3035 SmallVector<int, 8> MappedOps; 3036 for (unsigned i = 0; i != MaskNumElts; ++i) { 3037 int Idx = Mask[i]; 3038 if (Idx >= 0) { 3039 if (Idx < (int)SrcNumElts) 3040 Idx -= StartIdx[0]; 3041 else 3042 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3043 } 3044 MappedOps.push_back(Idx); 3045 } 3046 3047 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3048 &MappedOps[0])); 3049 return; 3050 } 3051 } 3052 3053 // We can't use either concat vectors or extract subvectors so fall back to 3054 // replacing the shuffle with extract and build vector. 3055 // to insert and build vector. 3056 EVT EltVT = VT.getVectorElementType(); 3057 EVT PtrVT = TLI->getPointerTy(); 3058 SmallVector<SDValue,8> Ops; 3059 for (unsigned i = 0; i != MaskNumElts; ++i) { 3060 int Idx = Mask[i]; 3061 SDValue Res; 3062 3063 if (Idx < 0) { 3064 Res = DAG.getUNDEF(EltVT); 3065 } else { 3066 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3067 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3068 3069 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3070 EltVT, Src, DAG.getConstant(Idx, PtrVT)); 3071 } 3072 3073 Ops.push_back(Res); 3074 } 3075 3076 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 3077 VT, &Ops[0], Ops.size())); 3078 } 3079 3080 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3081 const Value *Op0 = I.getOperand(0); 3082 const Value *Op1 = I.getOperand(1); 3083 Type *AggTy = I.getType(); 3084 Type *ValTy = Op1->getType(); 3085 bool IntoUndef = isa<UndefValue>(Op0); 3086 bool FromUndef = isa<UndefValue>(Op1); 3087 3088 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3089 3090 const TargetLowering *TLI = TM.getTargetLowering(); 3091 SmallVector<EVT, 4> AggValueVTs; 3092 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3093 SmallVector<EVT, 4> ValValueVTs; 3094 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3095 3096 unsigned NumAggValues = AggValueVTs.size(); 3097 unsigned NumValValues = ValValueVTs.size(); 3098 SmallVector<SDValue, 4> Values(NumAggValues); 3099 3100 SDValue Agg = getValue(Op0); 3101 unsigned i = 0; 3102 // Copy the beginning value(s) from the original aggregate. 3103 for (; i != LinearIndex; ++i) 3104 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3105 SDValue(Agg.getNode(), Agg.getResNo() + i); 3106 // Copy values from the inserted value(s). 3107 if (NumValValues) { 3108 SDValue Val = getValue(Op1); 3109 for (; i != LinearIndex + NumValValues; ++i) 3110 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3111 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3112 } 3113 // Copy remaining value(s) from the original aggregate. 3114 for (; i != NumAggValues; ++i) 3115 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3116 SDValue(Agg.getNode(), Agg.getResNo() + i); 3117 3118 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3119 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3120 &Values[0], NumAggValues)); 3121 } 3122 3123 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3124 const Value *Op0 = I.getOperand(0); 3125 Type *AggTy = Op0->getType(); 3126 Type *ValTy = I.getType(); 3127 bool OutOfUndef = isa<UndefValue>(Op0); 3128 3129 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3130 3131 const TargetLowering *TLI = TM.getTargetLowering(); 3132 SmallVector<EVT, 4> ValValueVTs; 3133 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3134 3135 unsigned NumValValues = ValValueVTs.size(); 3136 3137 // Ignore a extractvalue that produces an empty object 3138 if (!NumValValues) { 3139 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3140 return; 3141 } 3142 3143 SmallVector<SDValue, 4> Values(NumValValues); 3144 3145 SDValue Agg = getValue(Op0); 3146 // Copy out the selected value(s). 3147 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3148 Values[i - LinearIndex] = 3149 OutOfUndef ? 3150 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3151 SDValue(Agg.getNode(), Agg.getResNo() + i); 3152 3153 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3154 DAG.getVTList(&ValValueVTs[0], NumValValues), 3155 &Values[0], NumValValues)); 3156 } 3157 3158 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3159 SDValue N = getValue(I.getOperand(0)); 3160 // Note that the pointer operand may be a vector of pointers. Take the scalar 3161 // element which holds a pointer. 3162 Type *Ty = I.getOperand(0)->getType()->getScalarType(); 3163 3164 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3165 OI != E; ++OI) { 3166 const Value *Idx = *OI; 3167 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3168 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3169 if (Field) { 3170 // N = N + Offset 3171 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3172 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3173 DAG.getConstant(Offset, N.getValueType())); 3174 } 3175 3176 Ty = StTy->getElementType(Field); 3177 } else { 3178 Ty = cast<SequentialType>(Ty)->getElementType(); 3179 3180 // If this is a constant subscript, handle it quickly. 3181 const TargetLowering *TLI = TM.getTargetLowering(); 3182 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3183 if (CI->isZero()) continue; 3184 uint64_t Offs = 3185 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3186 SDValue OffsVal; 3187 EVT PTy = TLI->getPointerTy(); 3188 unsigned PtrBits = PTy.getSizeInBits(); 3189 if (PtrBits < 64) 3190 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), 3191 TLI->getPointerTy(), 3192 DAG.getConstant(Offs, MVT::i64)); 3193 else 3194 OffsVal = DAG.getIntPtrConstant(Offs); 3195 3196 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3197 OffsVal); 3198 continue; 3199 } 3200 3201 // N = N + Idx * ElementSize; 3202 APInt ElementSize = APInt(TLI->getPointerTy().getSizeInBits(), 3203 TD->getTypeAllocSize(Ty)); 3204 SDValue IdxN = getValue(Idx); 3205 3206 // If the index is smaller or larger than intptr_t, truncate or extend 3207 // it. 3208 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3209 3210 // If this is a multiply by a power of two, turn it into a shl 3211 // immediately. This is a very common case. 3212 if (ElementSize != 1) { 3213 if (ElementSize.isPowerOf2()) { 3214 unsigned Amt = ElementSize.logBase2(); 3215 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3216 N.getValueType(), IdxN, 3217 DAG.getConstant(Amt, IdxN.getValueType())); 3218 } else { 3219 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3220 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3221 N.getValueType(), IdxN, Scale); 3222 } 3223 } 3224 3225 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3226 N.getValueType(), N, IdxN); 3227 } 3228 } 3229 3230 setValue(&I, N); 3231 } 3232 3233 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3234 // If this is a fixed sized alloca in the entry block of the function, 3235 // allocate it statically on the stack. 3236 if (FuncInfo.StaticAllocaMap.count(&I)) 3237 return; // getValue will auto-populate this. 3238 3239 Type *Ty = I.getAllocatedType(); 3240 const TargetLowering *TLI = TM.getTargetLowering(); 3241 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3242 unsigned Align = 3243 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3244 I.getAlignment()); 3245 3246 SDValue AllocSize = getValue(I.getArraySize()); 3247 3248 EVT IntPtr = TLI->getPointerTy(); 3249 if (AllocSize.getValueType() != IntPtr) 3250 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3251 3252 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3253 AllocSize, 3254 DAG.getConstant(TySize, IntPtr)); 3255 3256 // Handle alignment. If the requested alignment is less than or equal to 3257 // the stack alignment, ignore it. If the size is greater than or equal to 3258 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3259 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3260 if (Align <= StackAlign) 3261 Align = 0; 3262 3263 // Round the size of the allocation up to the stack alignment size 3264 // by add SA-1 to the size. 3265 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3266 AllocSize.getValueType(), AllocSize, 3267 DAG.getIntPtrConstant(StackAlign-1)); 3268 3269 // Mask out the low bits for alignment purposes. 3270 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3271 AllocSize.getValueType(), AllocSize, 3272 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3273 3274 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3275 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3276 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), 3277 VTs, Ops, 3); 3278 setValue(&I, DSA); 3279 DAG.setRoot(DSA.getValue(1)); 3280 3281 // Inform the Frame Information that we have just allocated a variable-sized 3282 // object. 3283 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3284 } 3285 3286 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3287 if (I.isAtomic()) 3288 return visitAtomicLoad(I); 3289 3290 const Value *SV = I.getOperand(0); 3291 SDValue Ptr = getValue(SV); 3292 3293 Type *Ty = I.getType(); 3294 3295 bool isVolatile = I.isVolatile(); 3296 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3297 bool isInvariant = I.getMetadata("invariant.load") != 0; 3298 unsigned Alignment = I.getAlignment(); 3299 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3300 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3301 3302 SmallVector<EVT, 4> ValueVTs; 3303 SmallVector<uint64_t, 4> Offsets; 3304 ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets); 3305 unsigned NumValues = ValueVTs.size(); 3306 if (NumValues == 0) 3307 return; 3308 3309 SDValue Root; 3310 bool ConstantMemory = false; 3311 if (I.isVolatile() || NumValues > MaxParallelChains) 3312 // Serialize volatile loads with other side effects. 3313 Root = getRoot(); 3314 else if (AA->pointsToConstantMemory( 3315 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3316 // Do not serialize (non-volatile) loads of constant memory with anything. 3317 Root = DAG.getEntryNode(); 3318 ConstantMemory = true; 3319 } else { 3320 // Do not serialize non-volatile loads against each other. 3321 Root = DAG.getRoot(); 3322 } 3323 3324 SmallVector<SDValue, 4> Values(NumValues); 3325 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3326 NumValues)); 3327 EVT PtrVT = Ptr.getValueType(); 3328 unsigned ChainI = 0; 3329 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3330 // Serializing loads here may result in excessive register pressure, and 3331 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3332 // could recover a bit by hoisting nodes upward in the chain by recognizing 3333 // they are side-effect free or do not alias. The optimizer should really 3334 // avoid this case by converting large object/array copies to llvm.memcpy 3335 // (MaxParallelChains should always remain as failsafe). 3336 if (ChainI == MaxParallelChains) { 3337 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3338 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3339 MVT::Other, &Chains[0], ChainI); 3340 Root = Chain; 3341 ChainI = 0; 3342 } 3343 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3344 PtrVT, Ptr, 3345 DAG.getConstant(Offsets[i], PtrVT)); 3346 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3347 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3348 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3349 Ranges); 3350 3351 Values[i] = L; 3352 Chains[ChainI] = L.getValue(1); 3353 } 3354 3355 if (!ConstantMemory) { 3356 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3357 MVT::Other, &Chains[0], ChainI); 3358 if (isVolatile) 3359 DAG.setRoot(Chain); 3360 else 3361 PendingLoads.push_back(Chain); 3362 } 3363 3364 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3365 DAG.getVTList(&ValueVTs[0], NumValues), 3366 &Values[0], NumValues)); 3367 } 3368 3369 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3370 if (I.isAtomic()) 3371 return visitAtomicStore(I); 3372 3373 const Value *SrcV = I.getOperand(0); 3374 const Value *PtrV = I.getOperand(1); 3375 3376 SmallVector<EVT, 4> ValueVTs; 3377 SmallVector<uint64_t, 4> Offsets; 3378 ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets); 3379 unsigned NumValues = ValueVTs.size(); 3380 if (NumValues == 0) 3381 return; 3382 3383 // Get the lowered operands. Note that we do this after 3384 // checking if NumResults is zero, because with zero results 3385 // the operands won't have values in the map. 3386 SDValue Src = getValue(SrcV); 3387 SDValue Ptr = getValue(PtrV); 3388 3389 SDValue Root = getRoot(); 3390 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3391 NumValues)); 3392 EVT PtrVT = Ptr.getValueType(); 3393 bool isVolatile = I.isVolatile(); 3394 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3395 unsigned Alignment = I.getAlignment(); 3396 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3397 3398 unsigned ChainI = 0; 3399 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3400 // See visitLoad comments. 3401 if (ChainI == MaxParallelChains) { 3402 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3403 MVT::Other, &Chains[0], ChainI); 3404 Root = Chain; 3405 ChainI = 0; 3406 } 3407 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3408 DAG.getConstant(Offsets[i], PtrVT)); 3409 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3410 SDValue(Src.getNode(), Src.getResNo() + i), 3411 Add, MachinePointerInfo(PtrV, Offsets[i]), 3412 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3413 Chains[ChainI] = St; 3414 } 3415 3416 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3417 MVT::Other, &Chains[0], ChainI); 3418 DAG.setRoot(StoreNode); 3419 } 3420 3421 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3422 SynchronizationScope Scope, 3423 bool Before, SDLoc dl, 3424 SelectionDAG &DAG, 3425 const TargetLowering &TLI) { 3426 // Fence, if necessary 3427 if (Before) { 3428 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3429 Order = Release; 3430 else if (Order == Acquire || Order == Monotonic) 3431 return Chain; 3432 } else { 3433 if (Order == AcquireRelease) 3434 Order = Acquire; 3435 else if (Order == Release || Order == Monotonic) 3436 return Chain; 3437 } 3438 SDValue Ops[3]; 3439 Ops[0] = Chain; 3440 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3441 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3442 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3443 } 3444 3445 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3446 SDLoc dl = getCurSDLoc(); 3447 AtomicOrdering Order = I.getOrdering(); 3448 SynchronizationScope Scope = I.getSynchScope(); 3449 3450 SDValue InChain = getRoot(); 3451 3452 const TargetLowering *TLI = TM.getTargetLowering(); 3453 if (TLI->getInsertFencesForAtomic()) 3454 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3455 DAG, *TLI); 3456 3457 SDValue L = 3458 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3459 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3460 InChain, 3461 getValue(I.getPointerOperand()), 3462 getValue(I.getCompareOperand()), 3463 getValue(I.getNewValOperand()), 3464 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3465 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3466 Scope); 3467 3468 SDValue OutChain = L.getValue(1); 3469 3470 if (TLI->getInsertFencesForAtomic()) 3471 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3472 DAG, *TLI); 3473 3474 setValue(&I, L); 3475 DAG.setRoot(OutChain); 3476 } 3477 3478 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3479 SDLoc dl = getCurSDLoc(); 3480 ISD::NodeType NT; 3481 switch (I.getOperation()) { 3482 default: llvm_unreachable("Unknown atomicrmw operation"); 3483 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3484 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3485 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3486 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3487 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3488 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3489 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3490 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3491 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3492 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3493 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3494 } 3495 AtomicOrdering Order = I.getOrdering(); 3496 SynchronizationScope Scope = I.getSynchScope(); 3497 3498 SDValue InChain = getRoot(); 3499 3500 const TargetLowering *TLI = TM.getTargetLowering(); 3501 if (TLI->getInsertFencesForAtomic()) 3502 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3503 DAG, *TLI); 3504 3505 SDValue L = 3506 DAG.getAtomic(NT, dl, 3507 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3508 InChain, 3509 getValue(I.getPointerOperand()), 3510 getValue(I.getValOperand()), 3511 I.getPointerOperand(), 0 /* Alignment */, 3512 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3513 Scope); 3514 3515 SDValue OutChain = L.getValue(1); 3516 3517 if (TLI->getInsertFencesForAtomic()) 3518 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3519 DAG, *TLI); 3520 3521 setValue(&I, L); 3522 DAG.setRoot(OutChain); 3523 } 3524 3525 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3526 SDLoc dl = getCurSDLoc(); 3527 const TargetLowering *TLI = TM.getTargetLowering(); 3528 SDValue Ops[3]; 3529 Ops[0] = getRoot(); 3530 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3531 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3532 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3533 } 3534 3535 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3536 SDLoc dl = getCurSDLoc(); 3537 AtomicOrdering Order = I.getOrdering(); 3538 SynchronizationScope Scope = I.getSynchScope(); 3539 3540 SDValue InChain = getRoot(); 3541 3542 const TargetLowering *TLI = TM.getTargetLowering(); 3543 EVT VT = TLI->getValueType(I.getType()); 3544 3545 if (I.getAlignment() < VT.getSizeInBits() / 8) 3546 report_fatal_error("Cannot generate unaligned atomic load"); 3547 3548 SDValue L = 3549 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3550 getValue(I.getPointerOperand()), 3551 I.getPointerOperand(), I.getAlignment(), 3552 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3553 Scope); 3554 3555 SDValue OutChain = L.getValue(1); 3556 3557 if (TLI->getInsertFencesForAtomic()) 3558 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3559 DAG, *TLI); 3560 3561 setValue(&I, L); 3562 DAG.setRoot(OutChain); 3563 } 3564 3565 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3566 SDLoc dl = getCurSDLoc(); 3567 3568 AtomicOrdering Order = I.getOrdering(); 3569 SynchronizationScope Scope = I.getSynchScope(); 3570 3571 SDValue InChain = getRoot(); 3572 3573 const TargetLowering *TLI = TM.getTargetLowering(); 3574 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3575 3576 if (I.getAlignment() < VT.getSizeInBits() / 8) 3577 report_fatal_error("Cannot generate unaligned atomic store"); 3578 3579 if (TLI->getInsertFencesForAtomic()) 3580 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3581 DAG, *TLI); 3582 3583 SDValue OutChain = 3584 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3585 InChain, 3586 getValue(I.getPointerOperand()), 3587 getValue(I.getValueOperand()), 3588 I.getPointerOperand(), I.getAlignment(), 3589 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3590 Scope); 3591 3592 if (TLI->getInsertFencesForAtomic()) 3593 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3594 DAG, *TLI); 3595 3596 DAG.setRoot(OutChain); 3597 } 3598 3599 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3600 /// node. 3601 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3602 unsigned Intrinsic) { 3603 bool HasChain = !I.doesNotAccessMemory(); 3604 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3605 3606 // Build the operand list. 3607 SmallVector<SDValue, 8> Ops; 3608 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3609 if (OnlyLoad) { 3610 // We don't need to serialize loads against other loads. 3611 Ops.push_back(DAG.getRoot()); 3612 } else { 3613 Ops.push_back(getRoot()); 3614 } 3615 } 3616 3617 // Info is set by getTgtMemInstrinsic 3618 TargetLowering::IntrinsicInfo Info; 3619 const TargetLowering *TLI = TM.getTargetLowering(); 3620 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3621 3622 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3623 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3624 Info.opc == ISD::INTRINSIC_W_CHAIN) 3625 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3626 3627 // Add all operands of the call to the operand list. 3628 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3629 SDValue Op = getValue(I.getArgOperand(i)); 3630 Ops.push_back(Op); 3631 } 3632 3633 SmallVector<EVT, 4> ValueVTs; 3634 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3635 3636 if (HasChain) 3637 ValueVTs.push_back(MVT::Other); 3638 3639 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3640 3641 // Create the node. 3642 SDValue Result; 3643 if (IsTgtIntrinsic) { 3644 // This is target intrinsic that touches memory 3645 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3646 VTs, &Ops[0], Ops.size(), 3647 Info.memVT, 3648 MachinePointerInfo(Info.ptrVal, Info.offset), 3649 Info.align, Info.vol, 3650 Info.readMem, Info.writeMem); 3651 } else if (!HasChain) { 3652 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), 3653 VTs, &Ops[0], Ops.size()); 3654 } else if (!I.getType()->isVoidTy()) { 3655 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), 3656 VTs, &Ops[0], Ops.size()); 3657 } else { 3658 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), 3659 VTs, &Ops[0], Ops.size()); 3660 } 3661 3662 if (HasChain) { 3663 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3664 if (OnlyLoad) 3665 PendingLoads.push_back(Chain); 3666 else 3667 DAG.setRoot(Chain); 3668 } 3669 3670 if (!I.getType()->isVoidTy()) { 3671 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3672 EVT VT = TLI->getValueType(PTy); 3673 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3674 } 3675 3676 setValue(&I, Result); 3677 } 3678 } 3679 3680 /// GetSignificand - Get the significand and build it into a floating-point 3681 /// number with exponent of 1: 3682 /// 3683 /// Op = (Op & 0x007fffff) | 0x3f800000; 3684 /// 3685 /// where Op is the hexadecimal representation of floating point value. 3686 static SDValue 3687 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3688 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3689 DAG.getConstant(0x007fffff, MVT::i32)); 3690 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3691 DAG.getConstant(0x3f800000, MVT::i32)); 3692 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3693 } 3694 3695 /// GetExponent - Get the exponent: 3696 /// 3697 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3698 /// 3699 /// where Op is the hexadecimal representation of floating point value. 3700 static SDValue 3701 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3702 SDLoc dl) { 3703 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3704 DAG.getConstant(0x7f800000, MVT::i32)); 3705 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3706 DAG.getConstant(23, TLI.getPointerTy())); 3707 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3708 DAG.getConstant(127, MVT::i32)); 3709 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3710 } 3711 3712 /// getF32Constant - Get 32-bit floating point constant. 3713 static SDValue 3714 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3715 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3716 MVT::f32); 3717 } 3718 3719 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3720 /// limited-precision mode. 3721 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3722 const TargetLowering &TLI) { 3723 if (Op.getValueType() == MVT::f32 && 3724 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3725 3726 // Put the exponent in the right bit position for later addition to the 3727 // final result: 3728 // 3729 // #define LOG2OFe 1.4426950f 3730 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3731 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3732 getF32Constant(DAG, 0x3fb8aa3b)); 3733 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3734 3735 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3736 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3737 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3738 3739 // IntegerPartOfX <<= 23; 3740 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3741 DAG.getConstant(23, TLI.getPointerTy())); 3742 3743 SDValue TwoToFracPartOfX; 3744 if (LimitFloatPrecision <= 6) { 3745 // For floating-point precision of 6: 3746 // 3747 // TwoToFractionalPartOfX = 3748 // 0.997535578f + 3749 // (0.735607626f + 0.252464424f * x) * x; 3750 // 3751 // error 0.0144103317, which is 6 bits 3752 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3753 getF32Constant(DAG, 0x3e814304)); 3754 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3755 getF32Constant(DAG, 0x3f3c50c8)); 3756 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3757 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3758 getF32Constant(DAG, 0x3f7f5e7e)); 3759 } else if (LimitFloatPrecision <= 12) { 3760 // For floating-point precision of 12: 3761 // 3762 // TwoToFractionalPartOfX = 3763 // 0.999892986f + 3764 // (0.696457318f + 3765 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3766 // 3767 // 0.000107046256 error, which is 13 to 14 bits 3768 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3769 getF32Constant(DAG, 0x3da235e3)); 3770 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3771 getF32Constant(DAG, 0x3e65b8f3)); 3772 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3773 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3774 getF32Constant(DAG, 0x3f324b07)); 3775 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3776 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3777 getF32Constant(DAG, 0x3f7ff8fd)); 3778 } else { // LimitFloatPrecision <= 18 3779 // For floating-point precision of 18: 3780 // 3781 // TwoToFractionalPartOfX = 3782 // 0.999999982f + 3783 // (0.693148872f + 3784 // (0.240227044f + 3785 // (0.554906021e-1f + 3786 // (0.961591928e-2f + 3787 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3788 // 3789 // error 2.47208000*10^(-7), which is better than 18 bits 3790 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3791 getF32Constant(DAG, 0x3924b03e)); 3792 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3793 getF32Constant(DAG, 0x3ab24b87)); 3794 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3795 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3796 getF32Constant(DAG, 0x3c1d8c17)); 3797 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3798 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3799 getF32Constant(DAG, 0x3d634a1d)); 3800 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3801 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3802 getF32Constant(DAG, 0x3e75fe14)); 3803 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3804 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3805 getF32Constant(DAG, 0x3f317234)); 3806 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3807 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3808 getF32Constant(DAG, 0x3f800000)); 3809 } 3810 3811 // Add the exponent into the result in integer domain. 3812 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3813 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3814 DAG.getNode(ISD::ADD, dl, MVT::i32, 3815 t13, IntegerPartOfX)); 3816 } 3817 3818 // No special expansion. 3819 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3820 } 3821 3822 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3823 /// limited-precision mode. 3824 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3825 const TargetLowering &TLI) { 3826 if (Op.getValueType() == MVT::f32 && 3827 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3828 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3829 3830 // Scale the exponent by log(2) [0.69314718f]. 3831 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3832 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3833 getF32Constant(DAG, 0x3f317218)); 3834 3835 // Get the significand and build it into a floating-point number with 3836 // exponent of 1. 3837 SDValue X = GetSignificand(DAG, Op1, dl); 3838 3839 SDValue LogOfMantissa; 3840 if (LimitFloatPrecision <= 6) { 3841 // For floating-point precision of 6: 3842 // 3843 // LogofMantissa = 3844 // -1.1609546f + 3845 // (1.4034025f - 0.23903021f * x) * x; 3846 // 3847 // error 0.0034276066, which is better than 8 bits 3848 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3849 getF32Constant(DAG, 0xbe74c456)); 3850 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3851 getF32Constant(DAG, 0x3fb3a2b1)); 3852 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3853 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3854 getF32Constant(DAG, 0x3f949a29)); 3855 } else if (LimitFloatPrecision <= 12) { 3856 // For floating-point precision of 12: 3857 // 3858 // LogOfMantissa = 3859 // -1.7417939f + 3860 // (2.8212026f + 3861 // (-1.4699568f + 3862 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3863 // 3864 // error 0.000061011436, which is 14 bits 3865 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3866 getF32Constant(DAG, 0xbd67b6d6)); 3867 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3868 getF32Constant(DAG, 0x3ee4f4b8)); 3869 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3870 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3871 getF32Constant(DAG, 0x3fbc278b)); 3872 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3873 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3874 getF32Constant(DAG, 0x40348e95)); 3875 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3876 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3877 getF32Constant(DAG, 0x3fdef31a)); 3878 } else { // LimitFloatPrecision <= 18 3879 // For floating-point precision of 18: 3880 // 3881 // LogOfMantissa = 3882 // -2.1072184f + 3883 // (4.2372794f + 3884 // (-3.7029485f + 3885 // (2.2781945f + 3886 // (-0.87823314f + 3887 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3888 // 3889 // error 0.0000023660568, which is better than 18 bits 3890 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3891 getF32Constant(DAG, 0xbc91e5ac)); 3892 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3893 getF32Constant(DAG, 0x3e4350aa)); 3894 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3895 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3896 getF32Constant(DAG, 0x3f60d3e3)); 3897 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3898 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3899 getF32Constant(DAG, 0x4011cdf0)); 3900 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3901 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3902 getF32Constant(DAG, 0x406cfd1c)); 3903 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3904 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3905 getF32Constant(DAG, 0x408797cb)); 3906 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3907 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3908 getF32Constant(DAG, 0x4006dcab)); 3909 } 3910 3911 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3912 } 3913 3914 // No special expansion. 3915 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3916 } 3917 3918 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3919 /// limited-precision mode. 3920 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3921 const TargetLowering &TLI) { 3922 if (Op.getValueType() == MVT::f32 && 3923 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3924 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3925 3926 // Get the exponent. 3927 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3928 3929 // Get the significand and build it into a floating-point number with 3930 // exponent of 1. 3931 SDValue X = GetSignificand(DAG, Op1, dl); 3932 3933 // Different possible minimax approximations of significand in 3934 // floating-point for various degrees of accuracy over [1,2]. 3935 SDValue Log2ofMantissa; 3936 if (LimitFloatPrecision <= 6) { 3937 // For floating-point precision of 6: 3938 // 3939 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3940 // 3941 // error 0.0049451742, which is more than 7 bits 3942 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3943 getF32Constant(DAG, 0xbeb08fe0)); 3944 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3945 getF32Constant(DAG, 0x40019463)); 3946 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3947 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3948 getF32Constant(DAG, 0x3fd6633d)); 3949 } else if (LimitFloatPrecision <= 12) { 3950 // For floating-point precision of 12: 3951 // 3952 // Log2ofMantissa = 3953 // -2.51285454f + 3954 // (4.07009056f + 3955 // (-2.12067489f + 3956 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3957 // 3958 // error 0.0000876136000, which is better than 13 bits 3959 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3960 getF32Constant(DAG, 0xbda7262e)); 3961 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3962 getF32Constant(DAG, 0x3f25280b)); 3963 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3964 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3965 getF32Constant(DAG, 0x4007b923)); 3966 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3967 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3968 getF32Constant(DAG, 0x40823e2f)); 3969 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3970 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3971 getF32Constant(DAG, 0x4020d29c)); 3972 } else { // LimitFloatPrecision <= 18 3973 // For floating-point precision of 18: 3974 // 3975 // Log2ofMantissa = 3976 // -3.0400495f + 3977 // (6.1129976f + 3978 // (-5.3420409f + 3979 // (3.2865683f + 3980 // (-1.2669343f + 3981 // (0.27515199f - 3982 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3983 // 3984 // error 0.0000018516, which is better than 18 bits 3985 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3986 getF32Constant(DAG, 0xbcd2769e)); 3987 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3988 getF32Constant(DAG, 0x3e8ce0b9)); 3989 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3990 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3991 getF32Constant(DAG, 0x3fa22ae7)); 3992 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3993 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3994 getF32Constant(DAG, 0x40525723)); 3995 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3996 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3997 getF32Constant(DAG, 0x40aaf200)); 3998 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3999 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4000 getF32Constant(DAG, 0x40c39dad)); 4001 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4002 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4003 getF32Constant(DAG, 0x4042902c)); 4004 } 4005 4006 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4007 } 4008 4009 // No special expansion. 4010 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4011 } 4012 4013 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4014 /// limited-precision mode. 4015 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4016 const TargetLowering &TLI) { 4017 if (Op.getValueType() == MVT::f32 && 4018 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4019 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4020 4021 // Scale the exponent by log10(2) [0.30102999f]. 4022 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4023 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4024 getF32Constant(DAG, 0x3e9a209a)); 4025 4026 // Get the significand and build it into a floating-point number with 4027 // exponent of 1. 4028 SDValue X = GetSignificand(DAG, Op1, dl); 4029 4030 SDValue Log10ofMantissa; 4031 if (LimitFloatPrecision <= 6) { 4032 // For floating-point precision of 6: 4033 // 4034 // Log10ofMantissa = 4035 // -0.50419619f + 4036 // (0.60948995f - 0.10380950f * x) * x; 4037 // 4038 // error 0.0014886165, which is 6 bits 4039 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4040 getF32Constant(DAG, 0xbdd49a13)); 4041 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4042 getF32Constant(DAG, 0x3f1c0789)); 4043 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4044 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4045 getF32Constant(DAG, 0x3f011300)); 4046 } else if (LimitFloatPrecision <= 12) { 4047 // For floating-point precision of 12: 4048 // 4049 // Log10ofMantissa = 4050 // -0.64831180f + 4051 // (0.91751397f + 4052 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4053 // 4054 // error 0.00019228036, which is better than 12 bits 4055 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4056 getF32Constant(DAG, 0x3d431f31)); 4057 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4058 getF32Constant(DAG, 0x3ea21fb2)); 4059 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4060 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4061 getF32Constant(DAG, 0x3f6ae232)); 4062 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4063 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4064 getF32Constant(DAG, 0x3f25f7c3)); 4065 } else { // LimitFloatPrecision <= 18 4066 // For floating-point precision of 18: 4067 // 4068 // Log10ofMantissa = 4069 // -0.84299375f + 4070 // (1.5327582f + 4071 // (-1.0688956f + 4072 // (0.49102474f + 4073 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4074 // 4075 // error 0.0000037995730, which is better than 18 bits 4076 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4077 getF32Constant(DAG, 0x3c5d51ce)); 4078 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4079 getF32Constant(DAG, 0x3e00685a)); 4080 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4081 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4082 getF32Constant(DAG, 0x3efb6798)); 4083 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4084 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4085 getF32Constant(DAG, 0x3f88d192)); 4086 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4087 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4088 getF32Constant(DAG, 0x3fc4316c)); 4089 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4090 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4091 getF32Constant(DAG, 0x3f57ce70)); 4092 } 4093 4094 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4095 } 4096 4097 // No special expansion. 4098 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4099 } 4100 4101 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4102 /// limited-precision mode. 4103 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4104 const TargetLowering &TLI) { 4105 if (Op.getValueType() == MVT::f32 && 4106 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4107 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4108 4109 // FractionalPartOfX = x - (float)IntegerPartOfX; 4110 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4111 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4112 4113 // IntegerPartOfX <<= 23; 4114 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4115 DAG.getConstant(23, TLI.getPointerTy())); 4116 4117 SDValue TwoToFractionalPartOfX; 4118 if (LimitFloatPrecision <= 6) { 4119 // For floating-point precision of 6: 4120 // 4121 // TwoToFractionalPartOfX = 4122 // 0.997535578f + 4123 // (0.735607626f + 0.252464424f * x) * x; 4124 // 4125 // error 0.0144103317, which is 6 bits 4126 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4127 getF32Constant(DAG, 0x3e814304)); 4128 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4129 getF32Constant(DAG, 0x3f3c50c8)); 4130 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4131 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4132 getF32Constant(DAG, 0x3f7f5e7e)); 4133 } else if (LimitFloatPrecision <= 12) { 4134 // For floating-point precision of 12: 4135 // 4136 // TwoToFractionalPartOfX = 4137 // 0.999892986f + 4138 // (0.696457318f + 4139 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4140 // 4141 // error 0.000107046256, which is 13 to 14 bits 4142 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4143 getF32Constant(DAG, 0x3da235e3)); 4144 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4145 getF32Constant(DAG, 0x3e65b8f3)); 4146 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4147 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4148 getF32Constant(DAG, 0x3f324b07)); 4149 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4150 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4151 getF32Constant(DAG, 0x3f7ff8fd)); 4152 } else { // LimitFloatPrecision <= 18 4153 // For floating-point precision of 18: 4154 // 4155 // TwoToFractionalPartOfX = 4156 // 0.999999982f + 4157 // (0.693148872f + 4158 // (0.240227044f + 4159 // (0.554906021e-1f + 4160 // (0.961591928e-2f + 4161 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4162 // error 2.47208000*10^(-7), which is better than 18 bits 4163 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4164 getF32Constant(DAG, 0x3924b03e)); 4165 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4166 getF32Constant(DAG, 0x3ab24b87)); 4167 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4168 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4169 getF32Constant(DAG, 0x3c1d8c17)); 4170 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4171 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4172 getF32Constant(DAG, 0x3d634a1d)); 4173 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4174 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4175 getF32Constant(DAG, 0x3e75fe14)); 4176 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4177 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4178 getF32Constant(DAG, 0x3f317234)); 4179 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4180 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4181 getF32Constant(DAG, 0x3f800000)); 4182 } 4183 4184 // Add the exponent into the result in integer domain. 4185 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4186 TwoToFractionalPartOfX); 4187 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4188 DAG.getNode(ISD::ADD, dl, MVT::i32, 4189 t13, IntegerPartOfX)); 4190 } 4191 4192 // No special expansion. 4193 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4194 } 4195 4196 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4197 /// limited-precision mode with x == 10.0f. 4198 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4199 SelectionDAG &DAG, const TargetLowering &TLI) { 4200 bool IsExp10 = false; 4201 if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 && 4202 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4203 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4204 APFloat Ten(10.0f); 4205 IsExp10 = LHSC->isExactlyValue(Ten); 4206 } 4207 } 4208 4209 if (IsExp10) { 4210 // Put the exponent in the right bit position for later addition to the 4211 // final result: 4212 // 4213 // #define LOG2OF10 3.3219281f 4214 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4215 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4216 getF32Constant(DAG, 0x40549a78)); 4217 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4218 4219 // FractionalPartOfX = x - (float)IntegerPartOfX; 4220 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4221 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4222 4223 // IntegerPartOfX <<= 23; 4224 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4225 DAG.getConstant(23, TLI.getPointerTy())); 4226 4227 SDValue TwoToFractionalPartOfX; 4228 if (LimitFloatPrecision <= 6) { 4229 // For floating-point precision of 6: 4230 // 4231 // twoToFractionalPartOfX = 4232 // 0.997535578f + 4233 // (0.735607626f + 0.252464424f * x) * x; 4234 // 4235 // error 0.0144103317, which is 6 bits 4236 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4237 getF32Constant(DAG, 0x3e814304)); 4238 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4239 getF32Constant(DAG, 0x3f3c50c8)); 4240 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4241 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4242 getF32Constant(DAG, 0x3f7f5e7e)); 4243 } else if (LimitFloatPrecision <= 12) { 4244 // For floating-point precision of 12: 4245 // 4246 // TwoToFractionalPartOfX = 4247 // 0.999892986f + 4248 // (0.696457318f + 4249 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4250 // 4251 // error 0.000107046256, which is 13 to 14 bits 4252 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4253 getF32Constant(DAG, 0x3da235e3)); 4254 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4255 getF32Constant(DAG, 0x3e65b8f3)); 4256 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4257 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4258 getF32Constant(DAG, 0x3f324b07)); 4259 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4260 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4261 getF32Constant(DAG, 0x3f7ff8fd)); 4262 } else { // LimitFloatPrecision <= 18 4263 // For floating-point precision of 18: 4264 // 4265 // TwoToFractionalPartOfX = 4266 // 0.999999982f + 4267 // (0.693148872f + 4268 // (0.240227044f + 4269 // (0.554906021e-1f + 4270 // (0.961591928e-2f + 4271 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4272 // error 2.47208000*10^(-7), which is better than 18 bits 4273 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4274 getF32Constant(DAG, 0x3924b03e)); 4275 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4276 getF32Constant(DAG, 0x3ab24b87)); 4277 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4278 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4279 getF32Constant(DAG, 0x3c1d8c17)); 4280 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4281 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4282 getF32Constant(DAG, 0x3d634a1d)); 4283 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4284 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4285 getF32Constant(DAG, 0x3e75fe14)); 4286 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4287 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4288 getF32Constant(DAG, 0x3f317234)); 4289 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4290 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4291 getF32Constant(DAG, 0x3f800000)); 4292 } 4293 4294 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4295 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4296 DAG.getNode(ISD::ADD, dl, MVT::i32, 4297 t13, IntegerPartOfX)); 4298 } 4299 4300 // No special expansion. 4301 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4302 } 4303 4304 4305 /// ExpandPowI - Expand a llvm.powi intrinsic. 4306 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4307 SelectionDAG &DAG) { 4308 // If RHS is a constant, we can expand this out to a multiplication tree, 4309 // otherwise we end up lowering to a call to __powidf2 (for example). When 4310 // optimizing for size, we only want to do this if the expansion would produce 4311 // a small number of multiplies, otherwise we do the full expansion. 4312 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4313 // Get the exponent as a positive value. 4314 unsigned Val = RHSC->getSExtValue(); 4315 if ((int)Val < 0) Val = -Val; 4316 4317 // powi(x, 0) -> 1.0 4318 if (Val == 0) 4319 return DAG.getConstantFP(1.0, LHS.getValueType()); 4320 4321 const Function *F = DAG.getMachineFunction().getFunction(); 4322 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4323 Attribute::OptimizeForSize) || 4324 // If optimizing for size, don't insert too many multiplies. This 4325 // inserts up to 5 multiplies. 4326 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4327 // We use the simple binary decomposition method to generate the multiply 4328 // sequence. There are more optimal ways to do this (for example, 4329 // powi(x,15) generates one more multiply than it should), but this has 4330 // the benefit of being both really simple and much better than a libcall. 4331 SDValue Res; // Logically starts equal to 1.0 4332 SDValue CurSquare = LHS; 4333 while (Val) { 4334 if (Val & 1) { 4335 if (Res.getNode()) 4336 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4337 else 4338 Res = CurSquare; // 1.0*CurSquare. 4339 } 4340 4341 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4342 CurSquare, CurSquare); 4343 Val >>= 1; 4344 } 4345 4346 // If the original was negative, invert the result, producing 1/(x*x*x). 4347 if (RHSC->getSExtValue() < 0) 4348 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4349 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4350 return Res; 4351 } 4352 } 4353 4354 // Otherwise, expand to a libcall. 4355 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4356 } 4357 4358 // getTruncatedArgReg - Find underlying register used for an truncated 4359 // argument. 4360 static unsigned getTruncatedArgReg(const SDValue &N) { 4361 if (N.getOpcode() != ISD::TRUNCATE) 4362 return 0; 4363 4364 const SDValue &Ext = N.getOperand(0); 4365 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4366 const SDValue &CFR = Ext.getOperand(0); 4367 if (CFR.getOpcode() == ISD::CopyFromReg) 4368 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4369 if (CFR.getOpcode() == ISD::TRUNCATE) 4370 return getTruncatedArgReg(CFR); 4371 } 4372 return 0; 4373 } 4374 4375 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4376 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4377 /// At the end of instruction selection, they will be inserted to the entry BB. 4378 bool 4379 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4380 int64_t Offset, 4381 const SDValue &N) { 4382 const Argument *Arg = dyn_cast<Argument>(V); 4383 if (!Arg) 4384 return false; 4385 4386 MachineFunction &MF = DAG.getMachineFunction(); 4387 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4388 4389 // Ignore inlined function arguments here. 4390 DIVariable DV(Variable); 4391 if (DV.isInlinedFnArgument(MF.getFunction())) 4392 return false; 4393 4394 Optional<MachineOperand> Op; 4395 // Some arguments' frame index is recorded during argument lowering. 4396 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4397 Op = MachineOperand::CreateFI(FI); 4398 4399 if (!Op && N.getNode()) { 4400 unsigned Reg; 4401 if (N.getOpcode() == ISD::CopyFromReg) 4402 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4403 else 4404 Reg = getTruncatedArgReg(N); 4405 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4406 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4407 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4408 if (PR) 4409 Reg = PR; 4410 } 4411 if (Reg) 4412 Op = MachineOperand::CreateReg(Reg, false); 4413 } 4414 4415 if (!Op) { 4416 // Check if ValueMap has reg number. 4417 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4418 if (VMI != FuncInfo.ValueMap.end()) 4419 Op = MachineOperand::CreateReg(VMI->second, false); 4420 } 4421 4422 if (!Op && N.getNode()) 4423 // Check if frame index is available. 4424 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4425 if (FrameIndexSDNode *FINode = 4426 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4427 Op = MachineOperand::CreateFI(FINode->getIndex()); 4428 4429 if (!Op) 4430 return false; 4431 4432 if (Op->isReg()) 4433 Op->setIsDebug(); 4434 4435 FuncInfo.ArgDbgValues.push_back( 4436 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4437 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4438 return true; 4439 } 4440 4441 // VisualStudio defines setjmp as _setjmp 4442 #if defined(_MSC_VER) && defined(setjmp) && \ 4443 !defined(setjmp_undefined_for_msvc) 4444 # pragma push_macro("setjmp") 4445 # undef setjmp 4446 # define setjmp_undefined_for_msvc 4447 #endif 4448 4449 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4450 /// we want to emit this as a call to a named external function, return the name 4451 /// otherwise lower it and return null. 4452 const char * 4453 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4454 const TargetLowering *TLI = TM.getTargetLowering(); 4455 SDLoc sdl = getCurSDLoc(); 4456 DebugLoc dl = getCurDebugLoc(); 4457 SDValue Res; 4458 4459 switch (Intrinsic) { 4460 default: 4461 // By default, turn this into a target intrinsic node. 4462 visitTargetIntrinsic(I, Intrinsic); 4463 return 0; 4464 case Intrinsic::vastart: visitVAStart(I); return 0; 4465 case Intrinsic::vaend: visitVAEnd(I); return 0; 4466 case Intrinsic::vacopy: visitVACopy(I); return 0; 4467 case Intrinsic::returnaddress: 4468 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4469 getValue(I.getArgOperand(0)))); 4470 return 0; 4471 case Intrinsic::frameaddress: 4472 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4473 getValue(I.getArgOperand(0)))); 4474 return 0; 4475 case Intrinsic::setjmp: 4476 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4477 case Intrinsic::longjmp: 4478 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4479 case Intrinsic::memcpy: { 4480 // Assert for address < 256 since we support only user defined address 4481 // spaces. 4482 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4483 < 256 && 4484 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4485 < 256 && 4486 "Unknown address space"); 4487 SDValue Op1 = getValue(I.getArgOperand(0)); 4488 SDValue Op2 = getValue(I.getArgOperand(1)); 4489 SDValue Op3 = getValue(I.getArgOperand(2)); 4490 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4491 if (!Align) 4492 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4493 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4494 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4495 MachinePointerInfo(I.getArgOperand(0)), 4496 MachinePointerInfo(I.getArgOperand(1)))); 4497 return 0; 4498 } 4499 case Intrinsic::memset: { 4500 // Assert for address < 256 since we support only user defined address 4501 // spaces. 4502 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4503 < 256 && 4504 "Unknown address space"); 4505 SDValue Op1 = getValue(I.getArgOperand(0)); 4506 SDValue Op2 = getValue(I.getArgOperand(1)); 4507 SDValue Op3 = getValue(I.getArgOperand(2)); 4508 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4509 if (!Align) 4510 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4511 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4512 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4513 MachinePointerInfo(I.getArgOperand(0)))); 4514 return 0; 4515 } 4516 case Intrinsic::memmove: { 4517 // Assert for address < 256 since we support only user defined address 4518 // spaces. 4519 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4520 < 256 && 4521 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4522 < 256 && 4523 "Unknown address space"); 4524 SDValue Op1 = getValue(I.getArgOperand(0)); 4525 SDValue Op2 = getValue(I.getArgOperand(1)); 4526 SDValue Op3 = getValue(I.getArgOperand(2)); 4527 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4528 if (!Align) 4529 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4530 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4531 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4532 MachinePointerInfo(I.getArgOperand(0)), 4533 MachinePointerInfo(I.getArgOperand(1)))); 4534 return 0; 4535 } 4536 case Intrinsic::dbg_declare: { 4537 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4538 MDNode *Variable = DI.getVariable(); 4539 const Value *Address = DI.getAddress(); 4540 if (!Address || !DIVariable(Variable).Verify()) { 4541 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4542 return 0; 4543 } 4544 4545 // Check if address has undef value. 4546 if (isa<UndefValue>(Address) || 4547 (Address->use_empty() && !isa<Argument>(Address))) { 4548 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4549 return 0; 4550 } 4551 4552 SDValue &N = NodeMap[Address]; 4553 if (!N.getNode() && isa<Argument>(Address)) 4554 // Check unused arguments map. 4555 N = UnusedArgNodeMap[Address]; 4556 SDDbgValue *SDV; 4557 if (N.getNode()) { 4558 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4559 Address = BCI->getOperand(0); 4560 // Parameters are handled specially. 4561 bool isParameter = 4562 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4563 isa<Argument>(Address)); 4564 4565 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4566 4567 if (isParameter && !AI) { 4568 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4569 if (FINode) 4570 // Byval parameter. We have a frame index at this point. 4571 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4572 0, dl, SDNodeOrder); 4573 else { 4574 // Address is an argument, so try to emit its dbg value using 4575 // virtual register info from the FuncInfo.ValueMap. 4576 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4577 return 0; 4578 } 4579 } else if (AI) 4580 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4581 0, dl, SDNodeOrder); 4582 else { 4583 // Can't do anything with other non-AI cases yet. 4584 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4585 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4586 DEBUG(Address->dump()); 4587 return 0; 4588 } 4589 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4590 } else { 4591 // If Address is an argument then try to emit its dbg value using 4592 // virtual register info from the FuncInfo.ValueMap. 4593 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4594 // If variable is pinned by a alloca in dominating bb then 4595 // use StaticAllocaMap. 4596 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4597 if (AI->getParent() != DI.getParent()) { 4598 DenseMap<const AllocaInst*, int>::iterator SI = 4599 FuncInfo.StaticAllocaMap.find(AI); 4600 if (SI != FuncInfo.StaticAllocaMap.end()) { 4601 SDV = DAG.getDbgValue(Variable, SI->second, 4602 0, dl, SDNodeOrder); 4603 DAG.AddDbgValue(SDV, 0, false); 4604 return 0; 4605 } 4606 } 4607 } 4608 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4609 } 4610 } 4611 return 0; 4612 } 4613 case Intrinsic::dbg_value: { 4614 const DbgValueInst &DI = cast<DbgValueInst>(I); 4615 if (!DIVariable(DI.getVariable()).Verify()) 4616 return 0; 4617 4618 MDNode *Variable = DI.getVariable(); 4619 uint64_t Offset = DI.getOffset(); 4620 const Value *V = DI.getValue(); 4621 if (!V) 4622 return 0; 4623 4624 SDDbgValue *SDV; 4625 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4626 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4627 DAG.AddDbgValue(SDV, 0, false); 4628 } else { 4629 // Do not use getValue() in here; we don't want to generate code at 4630 // this point if it hasn't been done yet. 4631 SDValue N = NodeMap[V]; 4632 if (!N.getNode() && isa<Argument>(V)) 4633 // Check unused arguments map. 4634 N = UnusedArgNodeMap[V]; 4635 if (N.getNode()) { 4636 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4637 SDV = DAG.getDbgValue(Variable, N.getNode(), 4638 N.getResNo(), Offset, dl, SDNodeOrder); 4639 DAG.AddDbgValue(SDV, N.getNode(), false); 4640 } 4641 } else if (!V->use_empty() ) { 4642 // Do not call getValue(V) yet, as we don't want to generate code. 4643 // Remember it for later. 4644 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4645 DanglingDebugInfoMap[V] = DDI; 4646 } else { 4647 // We may expand this to cover more cases. One case where we have no 4648 // data available is an unreferenced parameter. 4649 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4650 } 4651 } 4652 4653 // Build a debug info table entry. 4654 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4655 V = BCI->getOperand(0); 4656 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4657 // Don't handle byval struct arguments or VLAs, for example. 4658 if (!AI) { 4659 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4660 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4661 return 0; 4662 } 4663 DenseMap<const AllocaInst*, int>::iterator SI = 4664 FuncInfo.StaticAllocaMap.find(AI); 4665 if (SI == FuncInfo.StaticAllocaMap.end()) 4666 return 0; // VLAs. 4667 int FI = SI->second; 4668 4669 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4670 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4671 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4672 return 0; 4673 } 4674 4675 case Intrinsic::eh_typeid_for: { 4676 // Find the type id for the given typeinfo. 4677 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4678 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4679 Res = DAG.getConstant(TypeID, MVT::i32); 4680 setValue(&I, Res); 4681 return 0; 4682 } 4683 4684 case Intrinsic::eh_return_i32: 4685 case Intrinsic::eh_return_i64: 4686 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4687 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4688 MVT::Other, 4689 getControlRoot(), 4690 getValue(I.getArgOperand(0)), 4691 getValue(I.getArgOperand(1)))); 4692 return 0; 4693 case Intrinsic::eh_unwind_init: 4694 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4695 return 0; 4696 case Intrinsic::eh_dwarf_cfa: { 4697 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4698 TLI->getPointerTy()); 4699 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4700 TLI->getPointerTy(), 4701 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4702 TLI->getPointerTy()), 4703 CfaArg); 4704 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4705 TLI->getPointerTy(), 4706 DAG.getConstant(0, TLI->getPointerTy())); 4707 setValue(&I, DAG.getNode(ISD::ADD, sdl, TLI->getPointerTy(), 4708 FA, Offset)); 4709 return 0; 4710 } 4711 case Intrinsic::eh_sjlj_callsite: { 4712 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4713 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4714 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4715 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4716 4717 MMI.setCurrentCallSite(CI->getZExtValue()); 4718 return 0; 4719 } 4720 case Intrinsic::eh_sjlj_functioncontext: { 4721 // Get and store the index of the function context. 4722 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4723 AllocaInst *FnCtx = 4724 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4725 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4726 MFI->setFunctionContextIndex(FI); 4727 return 0; 4728 } 4729 case Intrinsic::eh_sjlj_setjmp: { 4730 SDValue Ops[2]; 4731 Ops[0] = getRoot(); 4732 Ops[1] = getValue(I.getArgOperand(0)); 4733 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4734 DAG.getVTList(MVT::i32, MVT::Other), 4735 Ops, 2); 4736 setValue(&I, Op.getValue(0)); 4737 DAG.setRoot(Op.getValue(1)); 4738 return 0; 4739 } 4740 case Intrinsic::eh_sjlj_longjmp: { 4741 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4742 getRoot(), getValue(I.getArgOperand(0)))); 4743 return 0; 4744 } 4745 4746 case Intrinsic::x86_mmx_pslli_w: 4747 case Intrinsic::x86_mmx_pslli_d: 4748 case Intrinsic::x86_mmx_pslli_q: 4749 case Intrinsic::x86_mmx_psrli_w: 4750 case Intrinsic::x86_mmx_psrli_d: 4751 case Intrinsic::x86_mmx_psrli_q: 4752 case Intrinsic::x86_mmx_psrai_w: 4753 case Intrinsic::x86_mmx_psrai_d: { 4754 SDValue ShAmt = getValue(I.getArgOperand(1)); 4755 if (isa<ConstantSDNode>(ShAmt)) { 4756 visitTargetIntrinsic(I, Intrinsic); 4757 return 0; 4758 } 4759 unsigned NewIntrinsic = 0; 4760 EVT ShAmtVT = MVT::v2i32; 4761 switch (Intrinsic) { 4762 case Intrinsic::x86_mmx_pslli_w: 4763 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4764 break; 4765 case Intrinsic::x86_mmx_pslli_d: 4766 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4767 break; 4768 case Intrinsic::x86_mmx_pslli_q: 4769 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4770 break; 4771 case Intrinsic::x86_mmx_psrli_w: 4772 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4773 break; 4774 case Intrinsic::x86_mmx_psrli_d: 4775 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4776 break; 4777 case Intrinsic::x86_mmx_psrli_q: 4778 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4779 break; 4780 case Intrinsic::x86_mmx_psrai_w: 4781 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4782 break; 4783 case Intrinsic::x86_mmx_psrai_d: 4784 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4785 break; 4786 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4787 } 4788 4789 // The vector shift intrinsics with scalars uses 32b shift amounts but 4790 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4791 // to be zero. 4792 // We must do this early because v2i32 is not a legal type. 4793 SDValue ShOps[2]; 4794 ShOps[0] = ShAmt; 4795 ShOps[1] = DAG.getConstant(0, MVT::i32); 4796 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2); 4797 EVT DestVT = TLI->getValueType(I.getType()); 4798 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4799 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4800 DAG.getConstant(NewIntrinsic, MVT::i32), 4801 getValue(I.getArgOperand(0)), ShAmt); 4802 setValue(&I, Res); 4803 return 0; 4804 } 4805 case Intrinsic::x86_avx_vinsertf128_pd_256: 4806 case Intrinsic::x86_avx_vinsertf128_ps_256: 4807 case Intrinsic::x86_avx_vinsertf128_si_256: 4808 case Intrinsic::x86_avx2_vinserti128: { 4809 EVT DestVT = TLI->getValueType(I.getType()); 4810 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 4811 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4812 ElVT.getVectorNumElements(); 4813 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4814 getValue(I.getArgOperand(0)), 4815 getValue(I.getArgOperand(1)), 4816 DAG.getIntPtrConstant(Idx)); 4817 setValue(&I, Res); 4818 return 0; 4819 } 4820 case Intrinsic::x86_avx_vextractf128_pd_256: 4821 case Intrinsic::x86_avx_vextractf128_ps_256: 4822 case Intrinsic::x86_avx_vextractf128_si_256: 4823 case Intrinsic::x86_avx2_vextracti128: { 4824 EVT DestVT = TLI->getValueType(I.getType()); 4825 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4826 DestVT.getVectorNumElements(); 4827 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 4828 getValue(I.getArgOperand(0)), 4829 DAG.getIntPtrConstant(Idx)); 4830 setValue(&I, Res); 4831 return 0; 4832 } 4833 case Intrinsic::convertff: 4834 case Intrinsic::convertfsi: 4835 case Intrinsic::convertfui: 4836 case Intrinsic::convertsif: 4837 case Intrinsic::convertuif: 4838 case Intrinsic::convertss: 4839 case Intrinsic::convertsu: 4840 case Intrinsic::convertus: 4841 case Intrinsic::convertuu: { 4842 ISD::CvtCode Code = ISD::CVT_INVALID; 4843 switch (Intrinsic) { 4844 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4845 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4846 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4847 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4848 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4849 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4850 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4851 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4852 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4853 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4854 } 4855 EVT DestVT = TLI->getValueType(I.getType()); 4856 const Value *Op1 = I.getArgOperand(0); 4857 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4858 DAG.getValueType(DestVT), 4859 DAG.getValueType(getValue(Op1).getValueType()), 4860 getValue(I.getArgOperand(1)), 4861 getValue(I.getArgOperand(2)), 4862 Code); 4863 setValue(&I, Res); 4864 return 0; 4865 } 4866 case Intrinsic::powi: 4867 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4868 getValue(I.getArgOperand(1)), DAG)); 4869 return 0; 4870 case Intrinsic::log: 4871 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4872 return 0; 4873 case Intrinsic::log2: 4874 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4875 return 0; 4876 case Intrinsic::log10: 4877 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4878 return 0; 4879 case Intrinsic::exp: 4880 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4881 return 0; 4882 case Intrinsic::exp2: 4883 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4884 return 0; 4885 case Intrinsic::pow: 4886 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4887 getValue(I.getArgOperand(1)), DAG, *TLI)); 4888 return 0; 4889 case Intrinsic::sqrt: 4890 case Intrinsic::fabs: 4891 case Intrinsic::sin: 4892 case Intrinsic::cos: 4893 case Intrinsic::floor: 4894 case Intrinsic::ceil: 4895 case Intrinsic::trunc: 4896 case Intrinsic::rint: 4897 case Intrinsic::nearbyint: { 4898 unsigned Opcode; 4899 switch (Intrinsic) { 4900 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4901 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4902 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4903 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4904 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4905 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4906 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4907 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4908 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4909 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4910 } 4911 4912 setValue(&I, DAG.getNode(Opcode, sdl, 4913 getValue(I.getArgOperand(0)).getValueType(), 4914 getValue(I.getArgOperand(0)))); 4915 return 0; 4916 } 4917 case Intrinsic::fma: 4918 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4919 getValue(I.getArgOperand(0)).getValueType(), 4920 getValue(I.getArgOperand(0)), 4921 getValue(I.getArgOperand(1)), 4922 getValue(I.getArgOperand(2)))); 4923 return 0; 4924 case Intrinsic::fmuladd: { 4925 EVT VT = TLI->getValueType(I.getType()); 4926 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4927 TLI->isFMAFasterThanMulAndAdd(VT)){ 4928 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4929 getValue(I.getArgOperand(0)).getValueType(), 4930 getValue(I.getArgOperand(0)), 4931 getValue(I.getArgOperand(1)), 4932 getValue(I.getArgOperand(2)))); 4933 } else { 4934 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4935 getValue(I.getArgOperand(0)).getValueType(), 4936 getValue(I.getArgOperand(0)), 4937 getValue(I.getArgOperand(1))); 4938 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4939 getValue(I.getArgOperand(0)).getValueType(), 4940 Mul, 4941 getValue(I.getArgOperand(2))); 4942 setValue(&I, Add); 4943 } 4944 return 0; 4945 } 4946 case Intrinsic::convert_to_fp16: 4947 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl, 4948 MVT::i16, getValue(I.getArgOperand(0)))); 4949 return 0; 4950 case Intrinsic::convert_from_fp16: 4951 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl, 4952 MVT::f32, getValue(I.getArgOperand(0)))); 4953 return 0; 4954 case Intrinsic::pcmarker: { 4955 SDValue Tmp = getValue(I.getArgOperand(0)); 4956 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4957 return 0; 4958 } 4959 case Intrinsic::readcyclecounter: { 4960 SDValue Op = getRoot(); 4961 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4962 DAG.getVTList(MVT::i64, MVT::Other), 4963 &Op, 1); 4964 setValue(&I, Res); 4965 DAG.setRoot(Res.getValue(1)); 4966 return 0; 4967 } 4968 case Intrinsic::bswap: 4969 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4970 getValue(I.getArgOperand(0)).getValueType(), 4971 getValue(I.getArgOperand(0)))); 4972 return 0; 4973 case Intrinsic::cttz: { 4974 SDValue Arg = getValue(I.getArgOperand(0)); 4975 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4976 EVT Ty = Arg.getValueType(); 4977 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4978 sdl, Ty, Arg)); 4979 return 0; 4980 } 4981 case Intrinsic::ctlz: { 4982 SDValue Arg = getValue(I.getArgOperand(0)); 4983 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4984 EVT Ty = Arg.getValueType(); 4985 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4986 sdl, Ty, Arg)); 4987 return 0; 4988 } 4989 case Intrinsic::ctpop: { 4990 SDValue Arg = getValue(I.getArgOperand(0)); 4991 EVT Ty = Arg.getValueType(); 4992 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4993 return 0; 4994 } 4995 case Intrinsic::stacksave: { 4996 SDValue Op = getRoot(); 4997 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4998 DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1); 4999 setValue(&I, Res); 5000 DAG.setRoot(Res.getValue(1)); 5001 return 0; 5002 } 5003 case Intrinsic::stackrestore: { 5004 Res = getValue(I.getArgOperand(0)); 5005 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5006 return 0; 5007 } 5008 case Intrinsic::stackprotector: { 5009 // Emit code into the DAG to store the stack guard onto the stack. 5010 MachineFunction &MF = DAG.getMachineFunction(); 5011 MachineFrameInfo *MFI = MF.getFrameInfo(); 5012 EVT PtrTy = TLI->getPointerTy(); 5013 5014 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5015 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5016 5017 int FI = FuncInfo.StaticAllocaMap[Slot]; 5018 MFI->setStackProtectorIndex(FI); 5019 5020 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5021 5022 // Store the stack protector onto the stack. 5023 Res = DAG.getStore(getRoot(), sdl, Src, FIN, 5024 MachinePointerInfo::getFixedStack(FI), 5025 true, false, 0); 5026 setValue(&I, Res); 5027 DAG.setRoot(Res); 5028 return 0; 5029 } 5030 case Intrinsic::objectsize: { 5031 // If we don't know by now, we're never going to know. 5032 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5033 5034 assert(CI && "Non-constant type in __builtin_object_size?"); 5035 5036 SDValue Arg = getValue(I.getCalledValue()); 5037 EVT Ty = Arg.getValueType(); 5038 5039 if (CI->isZero()) 5040 Res = DAG.getConstant(-1ULL, Ty); 5041 else 5042 Res = DAG.getConstant(0, Ty); 5043 5044 setValue(&I, Res); 5045 return 0; 5046 } 5047 case Intrinsic::annotation: 5048 case Intrinsic::ptr_annotation: 5049 // Drop the intrinsic, but forward the value 5050 setValue(&I, getValue(I.getOperand(0))); 5051 return 0; 5052 case Intrinsic::var_annotation: 5053 // Discard annotate attributes 5054 return 0; 5055 5056 case Intrinsic::init_trampoline: { 5057 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5058 5059 SDValue Ops[6]; 5060 Ops[0] = getRoot(); 5061 Ops[1] = getValue(I.getArgOperand(0)); 5062 Ops[2] = getValue(I.getArgOperand(1)); 5063 Ops[3] = getValue(I.getArgOperand(2)); 5064 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5065 Ops[5] = DAG.getSrcValue(F); 5066 5067 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6); 5068 5069 DAG.setRoot(Res); 5070 return 0; 5071 } 5072 case Intrinsic::adjust_trampoline: { 5073 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5074 TLI->getPointerTy(), 5075 getValue(I.getArgOperand(0)))); 5076 return 0; 5077 } 5078 case Intrinsic::gcroot: 5079 if (GFI) { 5080 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5081 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5082 5083 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5084 GFI->addStackRoot(FI->getIndex(), TypeMap); 5085 } 5086 return 0; 5087 case Intrinsic::gcread: 5088 case Intrinsic::gcwrite: 5089 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5090 case Intrinsic::flt_rounds: 5091 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5092 return 0; 5093 5094 case Intrinsic::expect: { 5095 // Just replace __builtin_expect(exp, c) with EXP. 5096 setValue(&I, getValue(I.getArgOperand(0))); 5097 return 0; 5098 } 5099 5100 case Intrinsic::debugtrap: 5101 case Intrinsic::trap: { 5102 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5103 if (TrapFuncName.empty()) { 5104 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5105 ISD::TRAP : ISD::DEBUGTRAP; 5106 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5107 return 0; 5108 } 5109 TargetLowering::ArgListTy Args; 5110 TargetLowering:: 5111 CallLoweringInfo CLI(getRoot(), I.getType(), 5112 false, false, false, false, 0, CallingConv::C, 5113 /*isTailCall=*/false, 5114 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5115 DAG.getExternalSymbol(TrapFuncName.data(), 5116 TLI->getPointerTy()), 5117 Args, DAG, sdl); 5118 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5119 DAG.setRoot(Result.second); 5120 return 0; 5121 } 5122 5123 case Intrinsic::uadd_with_overflow: 5124 case Intrinsic::sadd_with_overflow: 5125 case Intrinsic::usub_with_overflow: 5126 case Intrinsic::ssub_with_overflow: 5127 case Intrinsic::umul_with_overflow: 5128 case Intrinsic::smul_with_overflow: { 5129 ISD::NodeType Op; 5130 switch (Intrinsic) { 5131 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5132 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5133 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5134 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5135 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5136 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5137 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5138 } 5139 SDValue Op1 = getValue(I.getArgOperand(0)); 5140 SDValue Op2 = getValue(I.getArgOperand(1)); 5141 5142 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5143 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5144 return 0; 5145 } 5146 case Intrinsic::prefetch: { 5147 SDValue Ops[5]; 5148 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5149 Ops[0] = getRoot(); 5150 Ops[1] = getValue(I.getArgOperand(0)); 5151 Ops[2] = getValue(I.getArgOperand(1)); 5152 Ops[3] = getValue(I.getArgOperand(2)); 5153 Ops[4] = getValue(I.getArgOperand(3)); 5154 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5155 DAG.getVTList(MVT::Other), 5156 &Ops[0], 5, 5157 EVT::getIntegerVT(*Context, 8), 5158 MachinePointerInfo(I.getArgOperand(0)), 5159 0, /* align */ 5160 false, /* volatile */ 5161 rw==0, /* read */ 5162 rw==1)); /* write */ 5163 return 0; 5164 } 5165 case Intrinsic::lifetime_start: 5166 case Intrinsic::lifetime_end: { 5167 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5168 // Stack coloring is not enabled in O0, discard region information. 5169 if (TM.getOptLevel() == CodeGenOpt::None) 5170 return 0; 5171 5172 SmallVector<Value *, 4> Allocas; 5173 GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD); 5174 5175 for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(), 5176 E = Allocas.end(); Object != E; ++Object) { 5177 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5178 5179 // Could not find an Alloca. 5180 if (!LifetimeObject) 5181 continue; 5182 5183 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5184 5185 SDValue Ops[2]; 5186 Ops[0] = getRoot(); 5187 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5188 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5189 5190 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2); 5191 DAG.setRoot(Res); 5192 } 5193 return 0; 5194 } 5195 case Intrinsic::invariant_start: 5196 // Discard region information. 5197 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5198 return 0; 5199 case Intrinsic::invariant_end: 5200 // Discard region information. 5201 return 0; 5202 case Intrinsic::donothing: 5203 // ignore 5204 return 0; 5205 } 5206 } 5207 5208 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5209 bool isTailCall, 5210 MachineBasicBlock *LandingPad) { 5211 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5212 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5213 Type *RetTy = FTy->getReturnType(); 5214 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5215 MCSymbol *BeginLabel = 0; 5216 5217 TargetLowering::ArgListTy Args; 5218 TargetLowering::ArgListEntry Entry; 5219 Args.reserve(CS.arg_size()); 5220 5221 // Check whether the function can return without sret-demotion. 5222 SmallVector<ISD::OutputArg, 4> Outs; 5223 const TargetLowering *TLI = TM.getTargetLowering(); 5224 GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI); 5225 5226 bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(), 5227 DAG.getMachineFunction(), 5228 FTy->isVarArg(), Outs, 5229 FTy->getContext()); 5230 5231 SDValue DemoteStackSlot; 5232 int DemoteStackIdx = -100; 5233 5234 if (!CanLowerReturn) { 5235 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize( 5236 FTy->getReturnType()); 5237 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment( 5238 FTy->getReturnType()); 5239 MachineFunction &MF = DAG.getMachineFunction(); 5240 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5241 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5242 5243 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy()); 5244 Entry.Node = DemoteStackSlot; 5245 Entry.Ty = StackSlotPtrType; 5246 Entry.isSExt = false; 5247 Entry.isZExt = false; 5248 Entry.isInReg = false; 5249 Entry.isSRet = true; 5250 Entry.isNest = false; 5251 Entry.isByVal = false; 5252 Entry.isReturned = false; 5253 Entry.Alignment = Align; 5254 Args.push_back(Entry); 5255 RetTy = Type::getVoidTy(FTy->getContext()); 5256 } 5257 5258 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5259 i != e; ++i) { 5260 const Value *V = *i; 5261 5262 // Skip empty types 5263 if (V->getType()->isEmptyTy()) 5264 continue; 5265 5266 SDValue ArgNode = getValue(V); 5267 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5268 5269 unsigned attrInd = i - CS.arg_begin() + 1; 5270 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5271 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5272 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5273 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5274 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5275 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5276 Entry.isReturned = CS.paramHasAttr(attrInd, Attribute::Returned); 5277 Entry.Alignment = CS.getParamAlignment(attrInd); 5278 Args.push_back(Entry); 5279 } 5280 5281 if (LandingPad) { 5282 // Insert a label before the invoke call to mark the try range. This can be 5283 // used to detect deletion of the invoke via the MachineModuleInfo. 5284 BeginLabel = MMI.getContext().CreateTempSymbol(); 5285 5286 // For SjLj, keep track of which landing pads go with which invokes 5287 // so as to maintain the ordering of pads in the LSDA. 5288 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5289 if (CallSiteIndex) { 5290 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5291 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5292 5293 // Now that the call site is handled, stop tracking it. 5294 MMI.setCurrentCallSite(0); 5295 } 5296 5297 // Both PendingLoads and PendingExports must be flushed here; 5298 // this call might not return. 5299 (void)getRoot(); 5300 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5301 } 5302 5303 // Check if target-independent constraints permit a tail call here. 5304 // Target-dependent constraints are checked within TLI->LowerCallTo. 5305 if (isTailCall && !isInTailCallPosition(CS, *TLI)) 5306 isTailCall = false; 5307 5308 TargetLowering:: 5309 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5310 getCurSDLoc(), CS); 5311 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5312 assert((isTailCall || Result.second.getNode()) && 5313 "Non-null chain expected with non-tail call!"); 5314 assert((Result.second.getNode() || !Result.first.getNode()) && 5315 "Null value expected with tail call!"); 5316 if (Result.first.getNode()) { 5317 setValue(CS.getInstruction(), Result.first); 5318 } else if (!CanLowerReturn && Result.second.getNode()) { 5319 // The instruction result is the result of loading from the 5320 // hidden sret parameter. 5321 SmallVector<EVT, 1> PVTs; 5322 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5323 5324 ComputeValueVTs(*TLI, PtrRetTy, PVTs); 5325 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5326 EVT PtrVT = PVTs[0]; 5327 5328 SmallVector<EVT, 4> RetTys; 5329 SmallVector<uint64_t, 4> Offsets; 5330 RetTy = FTy->getReturnType(); 5331 ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets); 5332 5333 unsigned NumValues = RetTys.size(); 5334 SmallVector<SDValue, 4> Values(NumValues); 5335 SmallVector<SDValue, 4> Chains(NumValues); 5336 5337 for (unsigned i = 0; i < NumValues; ++i) { 5338 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, 5339 DemoteStackSlot, 5340 DAG.getConstant(Offsets[i], PtrVT)); 5341 SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add, 5342 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5343 false, false, false, 1); 5344 Values[i] = L; 5345 Chains[i] = L.getValue(1); 5346 } 5347 5348 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 5349 MVT::Other, &Chains[0], NumValues); 5350 PendingLoads.push_back(Chain); 5351 5352 setValue(CS.getInstruction(), 5353 DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 5354 DAG.getVTList(&RetTys[0], RetTys.size()), 5355 &Values[0], Values.size())); 5356 } 5357 5358 if (!Result.second.getNode()) { 5359 // As a special case, a null chain means that a tail call has been emitted and 5360 // the DAG root is already updated. 5361 HasTailCall = true; 5362 } else { 5363 DAG.setRoot(Result.second); 5364 } 5365 5366 if (LandingPad) { 5367 // Insert a label at the end of the invoke call to mark the try range. This 5368 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5369 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5370 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5371 5372 // Inform MachineModuleInfo of range. 5373 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5374 } 5375 } 5376 5377 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5378 /// value is equal or not-equal to zero. 5379 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5380 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5381 UI != E; ++UI) { 5382 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5383 if (IC->isEquality()) 5384 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5385 if (C->isNullValue()) 5386 continue; 5387 // Unknown instruction. 5388 return false; 5389 } 5390 return true; 5391 } 5392 5393 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5394 Type *LoadTy, 5395 SelectionDAGBuilder &Builder) { 5396 5397 // Check to see if this load can be trivially constant folded, e.g. if the 5398 // input is from a string literal. 5399 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5400 // Cast pointer to the type we really want to load. 5401 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5402 PointerType::getUnqual(LoadTy)); 5403 5404 if (const Constant *LoadCst = 5405 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5406 Builder.TD)) 5407 return Builder.getValue(LoadCst); 5408 } 5409 5410 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5411 // still constant memory, the input chain can be the entry node. 5412 SDValue Root; 5413 bool ConstantMemory = false; 5414 5415 // Do not serialize (non-volatile) loads of constant memory with anything. 5416 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5417 Root = Builder.DAG.getEntryNode(); 5418 ConstantMemory = true; 5419 } else { 5420 // Do not serialize non-volatile loads against each other. 5421 Root = Builder.DAG.getRoot(); 5422 } 5423 5424 SDValue Ptr = Builder.getValue(PtrVal); 5425 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5426 Ptr, MachinePointerInfo(PtrVal), 5427 false /*volatile*/, 5428 false /*nontemporal*/, 5429 false /*isinvariant*/, 1 /* align=1 */); 5430 5431 if (!ConstantMemory) 5432 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5433 return LoadVal; 5434 } 5435 5436 5437 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5438 /// If so, return true and lower it, otherwise return false and it will be 5439 /// lowered like a normal call. 5440 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5441 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5442 if (I.getNumArgOperands() != 3) 5443 return false; 5444 5445 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5446 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5447 !I.getArgOperand(2)->getType()->isIntegerTy() || 5448 !I.getType()->isIntegerTy()) 5449 return false; 5450 5451 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5452 5453 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5454 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5455 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5456 bool ActuallyDoIt = true; 5457 MVT LoadVT; 5458 Type *LoadTy; 5459 switch (Size->getZExtValue()) { 5460 default: 5461 LoadVT = MVT::Other; 5462 LoadTy = 0; 5463 ActuallyDoIt = false; 5464 break; 5465 case 2: 5466 LoadVT = MVT::i16; 5467 LoadTy = Type::getInt16Ty(Size->getContext()); 5468 break; 5469 case 4: 5470 LoadVT = MVT::i32; 5471 LoadTy = Type::getInt32Ty(Size->getContext()); 5472 break; 5473 case 8: 5474 LoadVT = MVT::i64; 5475 LoadTy = Type::getInt64Ty(Size->getContext()); 5476 break; 5477 /* 5478 case 16: 5479 LoadVT = MVT::v4i32; 5480 LoadTy = Type::getInt32Ty(Size->getContext()); 5481 LoadTy = VectorType::get(LoadTy, 4); 5482 break; 5483 */ 5484 } 5485 5486 // This turns into unaligned loads. We only do this if the target natively 5487 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5488 // we'll only produce a small number of byte loads. 5489 5490 // Require that we can find a legal MVT, and only do this if the target 5491 // supports unaligned loads of that type. Expanding into byte loads would 5492 // bloat the code. 5493 const TargetLowering *TLI = TM.getTargetLowering(); 5494 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5495 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5496 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5497 if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT)) 5498 ActuallyDoIt = false; 5499 } 5500 5501 if (ActuallyDoIt) { 5502 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5503 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5504 5505 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5506 ISD::SETNE); 5507 EVT CallVT = TLI->getValueType(I.getType(), true); 5508 setValue(&I, DAG.getZExtOrTrunc(Res, getCurSDLoc(), CallVT)); 5509 return true; 5510 } 5511 } 5512 5513 5514 return false; 5515 } 5516 5517 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5518 /// operation (as expected), translate it to an SDNode with the specified opcode 5519 /// and return true. 5520 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5521 unsigned Opcode) { 5522 // Sanity check that it really is a unary floating-point call. 5523 if (I.getNumArgOperands() != 1 || 5524 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5525 I.getType() != I.getArgOperand(0)->getType() || 5526 !I.onlyReadsMemory()) 5527 return false; 5528 5529 SDValue Tmp = getValue(I.getArgOperand(0)); 5530 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5531 return true; 5532 } 5533 5534 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5535 // Handle inline assembly differently. 5536 if (isa<InlineAsm>(I.getCalledValue())) { 5537 visitInlineAsm(&I); 5538 return; 5539 } 5540 5541 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5542 ComputeUsesVAFloatArgument(I, &MMI); 5543 5544 const char *RenameFn = 0; 5545 if (Function *F = I.getCalledFunction()) { 5546 if (F->isDeclaration()) { 5547 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5548 if (unsigned IID = II->getIntrinsicID(F)) { 5549 RenameFn = visitIntrinsicCall(I, IID); 5550 if (!RenameFn) 5551 return; 5552 } 5553 } 5554 if (unsigned IID = F->getIntrinsicID()) { 5555 RenameFn = visitIntrinsicCall(I, IID); 5556 if (!RenameFn) 5557 return; 5558 } 5559 } 5560 5561 // Check for well-known libc/libm calls. If the function is internal, it 5562 // can't be a library call. 5563 LibFunc::Func Func; 5564 if (!F->hasLocalLinkage() && F->hasName() && 5565 LibInfo->getLibFunc(F->getName(), Func) && 5566 LibInfo->hasOptimizedCodeGen(Func)) { 5567 switch (Func) { 5568 default: break; 5569 case LibFunc::copysign: 5570 case LibFunc::copysignf: 5571 case LibFunc::copysignl: 5572 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5573 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5574 I.getType() == I.getArgOperand(0)->getType() && 5575 I.getType() == I.getArgOperand(1)->getType() && 5576 I.onlyReadsMemory()) { 5577 SDValue LHS = getValue(I.getArgOperand(0)); 5578 SDValue RHS = getValue(I.getArgOperand(1)); 5579 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5580 LHS.getValueType(), LHS, RHS)); 5581 return; 5582 } 5583 break; 5584 case LibFunc::fabs: 5585 case LibFunc::fabsf: 5586 case LibFunc::fabsl: 5587 if (visitUnaryFloatCall(I, ISD::FABS)) 5588 return; 5589 break; 5590 case LibFunc::sin: 5591 case LibFunc::sinf: 5592 case LibFunc::sinl: 5593 if (visitUnaryFloatCall(I, ISD::FSIN)) 5594 return; 5595 break; 5596 case LibFunc::cos: 5597 case LibFunc::cosf: 5598 case LibFunc::cosl: 5599 if (visitUnaryFloatCall(I, ISD::FCOS)) 5600 return; 5601 break; 5602 case LibFunc::sqrt: 5603 case LibFunc::sqrtf: 5604 case LibFunc::sqrtl: 5605 case LibFunc::sqrt_finite: 5606 case LibFunc::sqrtf_finite: 5607 case LibFunc::sqrtl_finite: 5608 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5609 return; 5610 break; 5611 case LibFunc::floor: 5612 case LibFunc::floorf: 5613 case LibFunc::floorl: 5614 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5615 return; 5616 break; 5617 case LibFunc::nearbyint: 5618 case LibFunc::nearbyintf: 5619 case LibFunc::nearbyintl: 5620 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5621 return; 5622 break; 5623 case LibFunc::ceil: 5624 case LibFunc::ceilf: 5625 case LibFunc::ceill: 5626 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5627 return; 5628 break; 5629 case LibFunc::rint: 5630 case LibFunc::rintf: 5631 case LibFunc::rintl: 5632 if (visitUnaryFloatCall(I, ISD::FRINT)) 5633 return; 5634 break; 5635 case LibFunc::trunc: 5636 case LibFunc::truncf: 5637 case LibFunc::truncl: 5638 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5639 return; 5640 break; 5641 case LibFunc::log2: 5642 case LibFunc::log2f: 5643 case LibFunc::log2l: 5644 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5645 return; 5646 break; 5647 case LibFunc::exp2: 5648 case LibFunc::exp2f: 5649 case LibFunc::exp2l: 5650 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5651 return; 5652 break; 5653 case LibFunc::memcmp: 5654 if (visitMemCmpCall(I)) 5655 return; 5656 break; 5657 } 5658 } 5659 } 5660 5661 SDValue Callee; 5662 if (!RenameFn) 5663 Callee = getValue(I.getCalledValue()); 5664 else 5665 Callee = DAG.getExternalSymbol(RenameFn, 5666 TM.getTargetLowering()->getPointerTy()); 5667 5668 // Check if we can potentially perform a tail call. More detailed checking is 5669 // be done within LowerCallTo, after more information about the call is known. 5670 LowerCallTo(&I, Callee, I.isTailCall()); 5671 } 5672 5673 namespace { 5674 5675 /// AsmOperandInfo - This contains information for each constraint that we are 5676 /// lowering. 5677 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5678 public: 5679 /// CallOperand - If this is the result output operand or a clobber 5680 /// this is null, otherwise it is the incoming operand to the CallInst. 5681 /// This gets modified as the asm is processed. 5682 SDValue CallOperand; 5683 5684 /// AssignedRegs - If this is a register or register class operand, this 5685 /// contains the set of register corresponding to the operand. 5686 RegsForValue AssignedRegs; 5687 5688 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5689 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5690 } 5691 5692 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5693 /// corresponds to. If there is no Value* for this operand, it returns 5694 /// MVT::Other. 5695 EVT getCallOperandValEVT(LLVMContext &Context, 5696 const TargetLowering &TLI, 5697 const DataLayout *TD) const { 5698 if (CallOperandVal == 0) return MVT::Other; 5699 5700 if (isa<BasicBlock>(CallOperandVal)) 5701 return TLI.getPointerTy(); 5702 5703 llvm::Type *OpTy = CallOperandVal->getType(); 5704 5705 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5706 // If this is an indirect operand, the operand is a pointer to the 5707 // accessed type. 5708 if (isIndirect) { 5709 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5710 if (!PtrTy) 5711 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5712 OpTy = PtrTy->getElementType(); 5713 } 5714 5715 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5716 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5717 if (STy->getNumElements() == 1) 5718 OpTy = STy->getElementType(0); 5719 5720 // If OpTy is not a single value, it may be a struct/union that we 5721 // can tile with integers. 5722 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5723 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5724 switch (BitSize) { 5725 default: break; 5726 case 1: 5727 case 8: 5728 case 16: 5729 case 32: 5730 case 64: 5731 case 128: 5732 OpTy = IntegerType::get(Context, BitSize); 5733 break; 5734 } 5735 } 5736 5737 return TLI.getValueType(OpTy, true); 5738 } 5739 }; 5740 5741 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5742 5743 } // end anonymous namespace 5744 5745 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5746 /// specified operand. We prefer to assign virtual registers, to allow the 5747 /// register allocator to handle the assignment process. However, if the asm 5748 /// uses features that we can't model on machineinstrs, we have SDISel do the 5749 /// allocation. This produces generally horrible, but correct, code. 5750 /// 5751 /// OpInfo describes the operand. 5752 /// 5753 static void GetRegistersForValue(SelectionDAG &DAG, 5754 const TargetLowering &TLI, 5755 SDLoc DL, 5756 SDISelAsmOperandInfo &OpInfo) { 5757 LLVMContext &Context = *DAG.getContext(); 5758 5759 MachineFunction &MF = DAG.getMachineFunction(); 5760 SmallVector<unsigned, 4> Regs; 5761 5762 // If this is a constraint for a single physreg, or a constraint for a 5763 // register class, find it. 5764 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5765 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5766 OpInfo.ConstraintVT); 5767 5768 unsigned NumRegs = 1; 5769 if (OpInfo.ConstraintVT != MVT::Other) { 5770 // If this is a FP input in an integer register (or visa versa) insert a bit 5771 // cast of the input value. More generally, handle any case where the input 5772 // value disagrees with the register class we plan to stick this in. 5773 if (OpInfo.Type == InlineAsm::isInput && 5774 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5775 // Try to convert to the first EVT that the reg class contains. If the 5776 // types are identical size, use a bitcast to convert (e.g. two differing 5777 // vector types). 5778 MVT RegVT = *PhysReg.second->vt_begin(); 5779 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5780 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5781 RegVT, OpInfo.CallOperand); 5782 OpInfo.ConstraintVT = RegVT; 5783 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5784 // If the input is a FP value and we want it in FP registers, do a 5785 // bitcast to the corresponding integer type. This turns an f64 value 5786 // into i64, which can be passed with two i32 values on a 32-bit 5787 // machine. 5788 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5789 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5790 RegVT, OpInfo.CallOperand); 5791 OpInfo.ConstraintVT = RegVT; 5792 } 5793 } 5794 5795 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5796 } 5797 5798 MVT RegVT; 5799 EVT ValueVT = OpInfo.ConstraintVT; 5800 5801 // If this is a constraint for a specific physical register, like {r17}, 5802 // assign it now. 5803 if (unsigned AssignedReg = PhysReg.first) { 5804 const TargetRegisterClass *RC = PhysReg.second; 5805 if (OpInfo.ConstraintVT == MVT::Other) 5806 ValueVT = *RC->vt_begin(); 5807 5808 // Get the actual register value type. This is important, because the user 5809 // may have asked for (e.g.) the AX register in i32 type. We need to 5810 // remember that AX is actually i16 to get the right extension. 5811 RegVT = *RC->vt_begin(); 5812 5813 // This is a explicit reference to a physical register. 5814 Regs.push_back(AssignedReg); 5815 5816 // If this is an expanded reference, add the rest of the regs to Regs. 5817 if (NumRegs != 1) { 5818 TargetRegisterClass::iterator I = RC->begin(); 5819 for (; *I != AssignedReg; ++I) 5820 assert(I != RC->end() && "Didn't find reg!"); 5821 5822 // Already added the first reg. 5823 --NumRegs; ++I; 5824 for (; NumRegs; --NumRegs, ++I) { 5825 assert(I != RC->end() && "Ran out of registers to allocate!"); 5826 Regs.push_back(*I); 5827 } 5828 } 5829 5830 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5831 return; 5832 } 5833 5834 // Otherwise, if this was a reference to an LLVM register class, create vregs 5835 // for this reference. 5836 if (const TargetRegisterClass *RC = PhysReg.second) { 5837 RegVT = *RC->vt_begin(); 5838 if (OpInfo.ConstraintVT == MVT::Other) 5839 ValueVT = RegVT; 5840 5841 // Create the appropriate number of virtual registers. 5842 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5843 for (; NumRegs; --NumRegs) 5844 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5845 5846 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5847 return; 5848 } 5849 5850 // Otherwise, we couldn't allocate enough registers for this. 5851 } 5852 5853 /// visitInlineAsm - Handle a call to an InlineAsm object. 5854 /// 5855 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5856 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5857 5858 /// ConstraintOperands - Information about all of the constraints. 5859 SDISelAsmOperandInfoVector ConstraintOperands; 5860 5861 const TargetLowering *TLI = TM.getTargetLowering(); 5862 TargetLowering::AsmOperandInfoVector 5863 TargetConstraints = TLI->ParseConstraints(CS); 5864 5865 bool hasMemory = false; 5866 5867 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5868 unsigned ResNo = 0; // ResNo - The result number of the next output. 5869 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5870 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5871 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5872 5873 MVT OpVT = MVT::Other; 5874 5875 // Compute the value type for each operand. 5876 switch (OpInfo.Type) { 5877 case InlineAsm::isOutput: 5878 // Indirect outputs just consume an argument. 5879 if (OpInfo.isIndirect) { 5880 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5881 break; 5882 } 5883 5884 // The return value of the call is this value. As such, there is no 5885 // corresponding argument. 5886 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5887 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5888 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 5889 } else { 5890 assert(ResNo == 0 && "Asm only has one result!"); 5891 OpVT = TLI->getSimpleValueType(CS.getType()); 5892 } 5893 ++ResNo; 5894 break; 5895 case InlineAsm::isInput: 5896 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5897 break; 5898 case InlineAsm::isClobber: 5899 // Nothing to do. 5900 break; 5901 } 5902 5903 // If this is an input or an indirect output, process the call argument. 5904 // BasicBlocks are labels, currently appearing only in asm's. 5905 if (OpInfo.CallOperandVal) { 5906 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5907 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5908 } else { 5909 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5910 } 5911 5912 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, TD). 5913 getSimpleVT(); 5914 } 5915 5916 OpInfo.ConstraintVT = OpVT; 5917 5918 // Indirect operand accesses access memory. 5919 if (OpInfo.isIndirect) 5920 hasMemory = true; 5921 else { 5922 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5923 TargetLowering::ConstraintType 5924 CType = TLI->getConstraintType(OpInfo.Codes[j]); 5925 if (CType == TargetLowering::C_Memory) { 5926 hasMemory = true; 5927 break; 5928 } 5929 } 5930 } 5931 } 5932 5933 SDValue Chain, Flag; 5934 5935 // We won't need to flush pending loads if this asm doesn't touch 5936 // memory and is nonvolatile. 5937 if (hasMemory || IA->hasSideEffects()) 5938 Chain = getRoot(); 5939 else 5940 Chain = DAG.getRoot(); 5941 5942 // Second pass over the constraints: compute which constraint option to use 5943 // and assign registers to constraints that want a specific physreg. 5944 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5945 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5946 5947 // If this is an output operand with a matching input operand, look up the 5948 // matching input. If their types mismatch, e.g. one is an integer, the 5949 // other is floating point, or their sizes are different, flag it as an 5950 // error. 5951 if (OpInfo.hasMatchingInput()) { 5952 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5953 5954 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5955 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 5956 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5957 OpInfo.ConstraintVT); 5958 std::pair<unsigned, const TargetRegisterClass*> InputRC = 5959 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 5960 Input.ConstraintVT); 5961 if ((OpInfo.ConstraintVT.isInteger() != 5962 Input.ConstraintVT.isInteger()) || 5963 (MatchRC.second != InputRC.second)) { 5964 report_fatal_error("Unsupported asm: input constraint" 5965 " with a matching output constraint of" 5966 " incompatible type!"); 5967 } 5968 Input.ConstraintVT = OpInfo.ConstraintVT; 5969 } 5970 } 5971 5972 // Compute the constraint code and ConstraintType to use. 5973 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5974 5975 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5976 OpInfo.Type == InlineAsm::isClobber) 5977 continue; 5978 5979 // If this is a memory input, and if the operand is not indirect, do what we 5980 // need to to provide an address for the memory input. 5981 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5982 !OpInfo.isIndirect) { 5983 assert((OpInfo.isMultipleAlternative || 5984 (OpInfo.Type == InlineAsm::isInput)) && 5985 "Can only indirectify direct input operands!"); 5986 5987 // Memory operands really want the address of the value. If we don't have 5988 // an indirect input, put it in the constpool if we can, otherwise spill 5989 // it to a stack slot. 5990 // TODO: This isn't quite right. We need to handle these according to 5991 // the addressing mode that the constraint wants. Also, this may take 5992 // an additional register for the computation and we don't want that 5993 // either. 5994 5995 // If the operand is a float, integer, or vector constant, spill to a 5996 // constant pool entry to get its address. 5997 const Value *OpVal = OpInfo.CallOperandVal; 5998 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5999 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6000 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6001 TLI->getPointerTy()); 6002 } else { 6003 // Otherwise, create a stack slot and emit a store to it before the 6004 // asm. 6005 Type *Ty = OpVal->getType(); 6006 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6007 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6008 MachineFunction &MF = DAG.getMachineFunction(); 6009 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6010 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6011 Chain = DAG.getStore(Chain, getCurSDLoc(), 6012 OpInfo.CallOperand, StackSlot, 6013 MachinePointerInfo::getFixedStack(SSFI), 6014 false, false, 0); 6015 OpInfo.CallOperand = StackSlot; 6016 } 6017 6018 // There is no longer a Value* corresponding to this operand. 6019 OpInfo.CallOperandVal = 0; 6020 6021 // It is now an indirect operand. 6022 OpInfo.isIndirect = true; 6023 } 6024 6025 // If this constraint is for a specific register, allocate it before 6026 // anything else. 6027 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6028 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6029 } 6030 6031 // Second pass - Loop over all of the operands, assigning virtual or physregs 6032 // to register class operands. 6033 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6034 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6035 6036 // C_Register operands have already been allocated, Other/Memory don't need 6037 // to be. 6038 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6039 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6040 } 6041 6042 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6043 std::vector<SDValue> AsmNodeOperands; 6044 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6045 AsmNodeOperands.push_back( 6046 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6047 TLI->getPointerTy())); 6048 6049 // If we have a !srcloc metadata node associated with it, we want to attach 6050 // this to the ultimately generated inline asm machineinstr. To do this, we 6051 // pass in the third operand as this (potentially null) inline asm MDNode. 6052 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6053 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6054 6055 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6056 // bits as operand 3. 6057 unsigned ExtraInfo = 0; 6058 if (IA->hasSideEffects()) 6059 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6060 if (IA->isAlignStack()) 6061 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6062 // Set the asm dialect. 6063 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6064 6065 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6066 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6067 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6068 6069 // Compute the constraint code and ConstraintType to use. 6070 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6071 6072 // Ideally, we would only check against memory constraints. However, the 6073 // meaning of an other constraint can be target-specific and we can't easily 6074 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6075 // for other constriants as well. 6076 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6077 OpInfo.ConstraintType == TargetLowering::C_Other) { 6078 if (OpInfo.Type == InlineAsm::isInput) 6079 ExtraInfo |= InlineAsm::Extra_MayLoad; 6080 else if (OpInfo.Type == InlineAsm::isOutput) 6081 ExtraInfo |= InlineAsm::Extra_MayStore; 6082 else if (OpInfo.Type == InlineAsm::isClobber) 6083 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6084 } 6085 } 6086 6087 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6088 TLI->getPointerTy())); 6089 6090 // Loop over all of the inputs, copying the operand values into the 6091 // appropriate registers and processing the output regs. 6092 RegsForValue RetValRegs; 6093 6094 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6095 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6096 6097 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6098 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6099 6100 switch (OpInfo.Type) { 6101 case InlineAsm::isOutput: { 6102 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6103 OpInfo.ConstraintType != TargetLowering::C_Register) { 6104 // Memory output, or 'other' output (e.g. 'X' constraint). 6105 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6106 6107 // Add information to the INLINEASM node to know about this output. 6108 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6109 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6110 TLI->getPointerTy())); 6111 AsmNodeOperands.push_back(OpInfo.CallOperand); 6112 break; 6113 } 6114 6115 // Otherwise, this is a register or register class output. 6116 6117 // Copy the output from the appropriate register. Find a register that 6118 // we can use. 6119 if (OpInfo.AssignedRegs.Regs.empty()) { 6120 LLVMContext &Ctx = *DAG.getContext(); 6121 Ctx.emitError(CS.getInstruction(), 6122 "couldn't allocate output register for constraint '" + 6123 Twine(OpInfo.ConstraintCode) + "'"); 6124 break; 6125 } 6126 6127 // If this is an indirect operand, store through the pointer after the 6128 // asm. 6129 if (OpInfo.isIndirect) { 6130 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6131 OpInfo.CallOperandVal)); 6132 } else { 6133 // This is the result value of the call. 6134 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6135 // Concatenate this output onto the outputs list. 6136 RetValRegs.append(OpInfo.AssignedRegs); 6137 } 6138 6139 // Add information to the INLINEASM node to know that this register is 6140 // set. 6141 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6142 InlineAsm::Kind_RegDefEarlyClobber : 6143 InlineAsm::Kind_RegDef, 6144 false, 6145 0, 6146 DAG, 6147 AsmNodeOperands); 6148 break; 6149 } 6150 case InlineAsm::isInput: { 6151 SDValue InOperandVal = OpInfo.CallOperand; 6152 6153 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6154 // If this is required to match an output register we have already set, 6155 // just use its register. 6156 unsigned OperandNo = OpInfo.getMatchedOperand(); 6157 6158 // Scan until we find the definition we already emitted of this operand. 6159 // When we find it, create a RegsForValue operand. 6160 unsigned CurOp = InlineAsm::Op_FirstOperand; 6161 for (; OperandNo; --OperandNo) { 6162 // Advance to the next operand. 6163 unsigned OpFlag = 6164 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6165 assert((InlineAsm::isRegDefKind(OpFlag) || 6166 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6167 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6168 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6169 } 6170 6171 unsigned OpFlag = 6172 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6173 if (InlineAsm::isRegDefKind(OpFlag) || 6174 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6175 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6176 if (OpInfo.isIndirect) { 6177 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6178 LLVMContext &Ctx = *DAG.getContext(); 6179 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6180 " don't know how to handle tied " 6181 "indirect register inputs"); 6182 report_fatal_error("Cannot handle indirect register inputs!"); 6183 } 6184 6185 RegsForValue MatchedRegs; 6186 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6187 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6188 MatchedRegs.RegVTs.push_back(RegVT); 6189 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6190 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6191 i != e; ++i) { 6192 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6193 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6194 else { 6195 LLVMContext &Ctx = *DAG.getContext(); 6196 Ctx.emitError(CS.getInstruction(), "inline asm error: This value" 6197 " type register class is not natively supported!"); 6198 report_fatal_error("inline asm error: This value type register " 6199 "class is not natively supported!"); 6200 } 6201 } 6202 // Use the produced MatchedRegs object to 6203 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6204 Chain, &Flag, CS.getInstruction()); 6205 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6206 true, OpInfo.getMatchedOperand(), 6207 DAG, AsmNodeOperands); 6208 break; 6209 } 6210 6211 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6212 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6213 "Unexpected number of operands"); 6214 // Add information to the INLINEASM node to know about this input. 6215 // See InlineAsm.h isUseOperandTiedToDef. 6216 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6217 OpInfo.getMatchedOperand()); 6218 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6219 TLI->getPointerTy())); 6220 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6221 break; 6222 } 6223 6224 // Treat indirect 'X' constraint as memory. 6225 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6226 OpInfo.isIndirect) 6227 OpInfo.ConstraintType = TargetLowering::C_Memory; 6228 6229 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6230 std::vector<SDValue> Ops; 6231 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6232 Ops, DAG); 6233 if (Ops.empty()) { 6234 LLVMContext &Ctx = *DAG.getContext(); 6235 Ctx.emitError(CS.getInstruction(), 6236 "invalid operand for inline asm constraint '" + 6237 Twine(OpInfo.ConstraintCode) + "'"); 6238 break; 6239 } 6240 6241 // Add information to the INLINEASM node to know about this input. 6242 unsigned ResOpType = 6243 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6244 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6245 TLI->getPointerTy())); 6246 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6247 break; 6248 } 6249 6250 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6251 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6252 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6253 "Memory operands expect pointer values"); 6254 6255 // Add information to the INLINEASM node to know about this input. 6256 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6257 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6258 TLI->getPointerTy())); 6259 AsmNodeOperands.push_back(InOperandVal); 6260 break; 6261 } 6262 6263 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6264 OpInfo.ConstraintType == TargetLowering::C_Register) && 6265 "Unknown constraint type!"); 6266 6267 // TODO: Support this. 6268 if (OpInfo.isIndirect) { 6269 LLVMContext &Ctx = *DAG.getContext(); 6270 Ctx.emitError(CS.getInstruction(), 6271 "Don't know how to handle indirect register inputs yet " 6272 "for constraint '" + Twine(OpInfo.ConstraintCode) + "'"); 6273 break; 6274 } 6275 6276 // Copy the input into the appropriate registers. 6277 if (OpInfo.AssignedRegs.Regs.empty()) { 6278 LLVMContext &Ctx = *DAG.getContext(); 6279 Ctx.emitError(CS.getInstruction(), 6280 "couldn't allocate input reg for constraint '" + 6281 Twine(OpInfo.ConstraintCode) + "'"); 6282 break; 6283 } 6284 6285 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6286 Chain, &Flag, CS.getInstruction()); 6287 6288 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6289 DAG, AsmNodeOperands); 6290 break; 6291 } 6292 case InlineAsm::isClobber: { 6293 // Add the clobbered value to the operand list, so that the register 6294 // allocator is aware that the physreg got clobbered. 6295 if (!OpInfo.AssignedRegs.Regs.empty()) 6296 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6297 false, 0, DAG, 6298 AsmNodeOperands); 6299 break; 6300 } 6301 } 6302 } 6303 6304 // Finish up input operands. Set the input chain and add the flag last. 6305 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6306 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6307 6308 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6309 DAG.getVTList(MVT::Other, MVT::Glue), 6310 &AsmNodeOperands[0], AsmNodeOperands.size()); 6311 Flag = Chain.getValue(1); 6312 6313 // If this asm returns a register value, copy the result from that register 6314 // and set it as the value of the call. 6315 if (!RetValRegs.Regs.empty()) { 6316 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6317 Chain, &Flag, CS.getInstruction()); 6318 6319 // FIXME: Why don't we do this for inline asms with MRVs? 6320 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6321 EVT ResultType = TLI->getValueType(CS.getType()); 6322 6323 // If any of the results of the inline asm is a vector, it may have the 6324 // wrong width/num elts. This can happen for register classes that can 6325 // contain multiple different value types. The preg or vreg allocated may 6326 // not have the same VT as was expected. Convert it to the right type 6327 // with bit_convert. 6328 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6329 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6330 ResultType, Val); 6331 6332 } else if (ResultType != Val.getValueType() && 6333 ResultType.isInteger() && Val.getValueType().isInteger()) { 6334 // If a result value was tied to an input value, the computed result may 6335 // have a wider width than the expected result. Extract the relevant 6336 // portion. 6337 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6338 } 6339 6340 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6341 } 6342 6343 setValue(CS.getInstruction(), Val); 6344 // Don't need to use this as a chain in this case. 6345 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6346 return; 6347 } 6348 6349 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6350 6351 // Process indirect outputs, first output all of the flagged copies out of 6352 // physregs. 6353 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6354 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6355 const Value *Ptr = IndirectStoresToEmit[i].second; 6356 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6357 Chain, &Flag, IA); 6358 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6359 } 6360 6361 // Emit the non-flagged stores from the physregs. 6362 SmallVector<SDValue, 8> OutChains; 6363 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6364 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6365 StoresToEmit[i].first, 6366 getValue(StoresToEmit[i].second), 6367 MachinePointerInfo(StoresToEmit[i].second), 6368 false, false, 0); 6369 OutChains.push_back(Val); 6370 } 6371 6372 if (!OutChains.empty()) 6373 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 6374 &OutChains[0], OutChains.size()); 6375 6376 DAG.setRoot(Chain); 6377 } 6378 6379 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6380 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6381 MVT::Other, getRoot(), 6382 getValue(I.getArgOperand(0)), 6383 DAG.getSrcValue(I.getArgOperand(0)))); 6384 } 6385 6386 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6387 const TargetLowering *TLI = TM.getTargetLowering(); 6388 const DataLayout &TD = *TLI->getDataLayout(); 6389 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6390 getRoot(), getValue(I.getOperand(0)), 6391 DAG.getSrcValue(I.getOperand(0)), 6392 TD.getABITypeAlignment(I.getType())); 6393 setValue(&I, V); 6394 DAG.setRoot(V.getValue(1)); 6395 } 6396 6397 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6398 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6399 MVT::Other, getRoot(), 6400 getValue(I.getArgOperand(0)), 6401 DAG.getSrcValue(I.getArgOperand(0)))); 6402 } 6403 6404 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6405 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6406 MVT::Other, getRoot(), 6407 getValue(I.getArgOperand(0)), 6408 getValue(I.getArgOperand(1)), 6409 DAG.getSrcValue(I.getArgOperand(0)), 6410 DAG.getSrcValue(I.getArgOperand(1)))); 6411 } 6412 6413 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6414 /// implementation, which just calls LowerCall. 6415 /// FIXME: When all targets are 6416 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6417 std::pair<SDValue, SDValue> 6418 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6419 // Handle the incoming return values from the call. 6420 CLI.Ins.clear(); 6421 SmallVector<EVT, 4> RetTys; 6422 ComputeValueVTs(*this, CLI.RetTy, RetTys); 6423 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6424 EVT VT = RetTys[I]; 6425 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6426 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6427 for (unsigned i = 0; i != NumRegs; ++i) { 6428 ISD::InputArg MyFlags; 6429 MyFlags.VT = RegisterVT; 6430 MyFlags.Used = CLI.IsReturnValueUsed; 6431 if (CLI.RetSExt) 6432 MyFlags.Flags.setSExt(); 6433 if (CLI.RetZExt) 6434 MyFlags.Flags.setZExt(); 6435 if (CLI.IsInReg) 6436 MyFlags.Flags.setInReg(); 6437 CLI.Ins.push_back(MyFlags); 6438 } 6439 } 6440 6441 // Handle all of the outgoing arguments. 6442 CLI.Outs.clear(); 6443 CLI.OutVals.clear(); 6444 ArgListTy &Args = CLI.Args; 6445 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6446 SmallVector<EVT, 4> ValueVTs; 6447 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6448 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6449 Value != NumValues; ++Value) { 6450 EVT VT = ValueVTs[Value]; 6451 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6452 SDValue Op = SDValue(Args[i].Node.getNode(), 6453 Args[i].Node.getResNo() + Value); 6454 ISD::ArgFlagsTy Flags; 6455 unsigned OriginalAlignment = 6456 getDataLayout()->getABITypeAlignment(ArgTy); 6457 6458 if (Args[i].isZExt) 6459 Flags.setZExt(); 6460 if (Args[i].isSExt) 6461 Flags.setSExt(); 6462 if (Args[i].isInReg) 6463 Flags.setInReg(); 6464 if (Args[i].isSRet) 6465 Flags.setSRet(); 6466 if (Args[i].isByVal) { 6467 Flags.setByVal(); 6468 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6469 Type *ElementTy = Ty->getElementType(); 6470 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6471 // For ByVal, alignment should come from FE. BE will guess if this 6472 // info is not there but there are cases it cannot get right. 6473 unsigned FrameAlign; 6474 if (Args[i].Alignment) 6475 FrameAlign = Args[i].Alignment; 6476 else 6477 FrameAlign = getByValTypeAlignment(ElementTy); 6478 Flags.setByValAlign(FrameAlign); 6479 } 6480 if (Args[i].isNest) 6481 Flags.setNest(); 6482 Flags.setOrigAlign(OriginalAlignment); 6483 6484 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6485 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6486 SmallVector<SDValue, 4> Parts(NumParts); 6487 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6488 6489 if (Args[i].isSExt) 6490 ExtendKind = ISD::SIGN_EXTEND; 6491 else if (Args[i].isZExt) 6492 ExtendKind = ISD::ZERO_EXTEND; 6493 6494 // Conservatively only handle 'returned' on non-vectors for now 6495 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6496 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6497 "unexpected use of 'returned'"); 6498 // Before passing 'returned' to the target lowering code, ensure that 6499 // either the register MVT and the actual EVT are the same size or that 6500 // the return value and argument are extended in the same way; in these 6501 // cases it's safe to pass the argument register value unchanged as the 6502 // return register value (although it's at the target's option whether 6503 // to do so) 6504 // TODO: allow code generation to take advantage of partially preserved 6505 // registers rather than clobbering the entire register when the 6506 // parameter extension method is not compatible with the return 6507 // extension method 6508 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6509 (ExtendKind != ISD::ANY_EXTEND && 6510 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6511 Flags.setReturned(); 6512 } 6513 6514 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, 6515 PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind); 6516 6517 for (unsigned j = 0; j != NumParts; ++j) { 6518 // if it isn't first piece, alignment must be 1 6519 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6520 i < CLI.NumFixedArgs, 6521 i, j*Parts[j].getValueType().getStoreSize()); 6522 if (NumParts > 1 && j == 0) 6523 MyFlags.Flags.setSplit(); 6524 else if (j != 0) 6525 MyFlags.Flags.setOrigAlign(1); 6526 6527 CLI.Outs.push_back(MyFlags); 6528 CLI.OutVals.push_back(Parts[j]); 6529 } 6530 } 6531 } 6532 6533 SmallVector<SDValue, 4> InVals; 6534 CLI.Chain = LowerCall(CLI, InVals); 6535 6536 // Verify that the target's LowerCall behaved as expected. 6537 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6538 "LowerCall didn't return a valid chain!"); 6539 assert((!CLI.IsTailCall || InVals.empty()) && 6540 "LowerCall emitted a return value for a tail call!"); 6541 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6542 "LowerCall didn't emit the correct number of values!"); 6543 6544 // For a tail call, the return value is merely live-out and there aren't 6545 // any nodes in the DAG representing it. Return a special value to 6546 // indicate that a tail call has been emitted and no more Instructions 6547 // should be processed in the current block. 6548 if (CLI.IsTailCall) { 6549 CLI.DAG.setRoot(CLI.Chain); 6550 return std::make_pair(SDValue(), SDValue()); 6551 } 6552 6553 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6554 assert(InVals[i].getNode() && 6555 "LowerCall emitted a null value!"); 6556 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6557 "LowerCall emitted a value with the wrong type!"); 6558 }); 6559 6560 // Collect the legal value parts into potentially illegal values 6561 // that correspond to the original function's return values. 6562 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6563 if (CLI.RetSExt) 6564 AssertOp = ISD::AssertSext; 6565 else if (CLI.RetZExt) 6566 AssertOp = ISD::AssertZext; 6567 SmallVector<SDValue, 4> ReturnValues; 6568 unsigned CurReg = 0; 6569 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6570 EVT VT = RetTys[I]; 6571 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6572 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6573 6574 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6575 NumRegs, RegisterVT, VT, NULL, 6576 AssertOp)); 6577 CurReg += NumRegs; 6578 } 6579 6580 // For a function returning void, there is no return value. We can't create 6581 // such a node, so we just return a null return value in that case. In 6582 // that case, nothing will actually look at the value. 6583 if (ReturnValues.empty()) 6584 return std::make_pair(SDValue(), CLI.Chain); 6585 6586 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6587 CLI.DAG.getVTList(&RetTys[0], RetTys.size()), 6588 &ReturnValues[0], ReturnValues.size()); 6589 return std::make_pair(Res, CLI.Chain); 6590 } 6591 6592 void TargetLowering::LowerOperationWrapper(SDNode *N, 6593 SmallVectorImpl<SDValue> &Results, 6594 SelectionDAG &DAG) const { 6595 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6596 if (Res.getNode()) 6597 Results.push_back(Res); 6598 } 6599 6600 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6601 llvm_unreachable("LowerOperation not implemented for this target!"); 6602 } 6603 6604 void 6605 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6606 SDValue Op = getNonRegisterValue(V); 6607 assert((Op.getOpcode() != ISD::CopyFromReg || 6608 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6609 "Copy from a reg to the same reg!"); 6610 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6611 6612 const TargetLowering *TLI = TM.getTargetLowering(); 6613 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 6614 SDValue Chain = DAG.getEntryNode(); 6615 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V); 6616 PendingExports.push_back(Chain); 6617 } 6618 6619 #include "llvm/CodeGen/SelectionDAGISel.h" 6620 6621 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6622 /// entry block, return true. This includes arguments used by switches, since 6623 /// the switch may expand into multiple basic blocks. 6624 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6625 // With FastISel active, we may be splitting blocks, so force creation 6626 // of virtual registers for all non-dead arguments. 6627 if (FastISel) 6628 return A->use_empty(); 6629 6630 const BasicBlock *Entry = A->getParent()->begin(); 6631 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6632 UI != E; ++UI) { 6633 const User *U = *UI; 6634 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6635 return false; // Use not in entry block. 6636 } 6637 return true; 6638 } 6639 6640 void SelectionDAGISel::LowerArguments(const Function &F) { 6641 SelectionDAG &DAG = SDB->DAG; 6642 SDLoc dl = SDB->getCurSDLoc(); 6643 const TargetLowering *TLI = getTargetLowering(); 6644 const DataLayout *TD = TLI->getDataLayout(); 6645 SmallVector<ISD::InputArg, 16> Ins; 6646 6647 if (!FuncInfo->CanLowerReturn) { 6648 // Put in an sret pointer parameter before all the other parameters. 6649 SmallVector<EVT, 1> ValueVTs; 6650 ComputeValueVTs(*getTargetLowering(), 6651 PointerType::getUnqual(F.getReturnType()), ValueVTs); 6652 6653 // NOTE: Assuming that a pointer will never break down to more than one VT 6654 // or one register. 6655 ISD::ArgFlagsTy Flags; 6656 Flags.setSRet(); 6657 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 6658 ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0); 6659 Ins.push_back(RetArg); 6660 } 6661 6662 // Set up the incoming argument description vector. 6663 unsigned Idx = 1; 6664 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6665 I != E; ++I, ++Idx) { 6666 SmallVector<EVT, 4> ValueVTs; 6667 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 6668 bool isArgValueUsed = !I->use_empty(); 6669 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6670 Value != NumValues; ++Value) { 6671 EVT VT = ValueVTs[Value]; 6672 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6673 ISD::ArgFlagsTy Flags; 6674 unsigned OriginalAlignment = 6675 TD->getABITypeAlignment(ArgTy); 6676 6677 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 6678 Flags.setZExt(); 6679 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 6680 Flags.setSExt(); 6681 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 6682 Flags.setInReg(); 6683 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 6684 Flags.setSRet(); 6685 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) { 6686 Flags.setByVal(); 6687 PointerType *Ty = cast<PointerType>(I->getType()); 6688 Type *ElementTy = Ty->getElementType(); 6689 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6690 // For ByVal, alignment should be passed from FE. BE will guess if 6691 // this info is not there but there are cases it cannot get right. 6692 unsigned FrameAlign; 6693 if (F.getParamAlignment(Idx)) 6694 FrameAlign = F.getParamAlignment(Idx); 6695 else 6696 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 6697 Flags.setByValAlign(FrameAlign); 6698 } 6699 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 6700 Flags.setNest(); 6701 Flags.setOrigAlign(OriginalAlignment); 6702 6703 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 6704 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 6705 for (unsigned i = 0; i != NumRegs; ++i) { 6706 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed, 6707 Idx-1, i*RegisterVT.getStoreSize()); 6708 if (NumRegs > 1 && i == 0) 6709 MyFlags.Flags.setSplit(); 6710 // if it isn't first piece, alignment must be 1 6711 else if (i > 0) 6712 MyFlags.Flags.setOrigAlign(1); 6713 Ins.push_back(MyFlags); 6714 } 6715 } 6716 } 6717 6718 // Call the target to set up the argument values. 6719 SmallVector<SDValue, 8> InVals; 6720 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6721 F.isVarArg(), Ins, 6722 dl, DAG, InVals); 6723 6724 // Verify that the target's LowerFormalArguments behaved as expected. 6725 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6726 "LowerFormalArguments didn't return a valid chain!"); 6727 assert(InVals.size() == Ins.size() && 6728 "LowerFormalArguments didn't emit the correct number of values!"); 6729 DEBUG({ 6730 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6731 assert(InVals[i].getNode() && 6732 "LowerFormalArguments emitted a null value!"); 6733 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6734 "LowerFormalArguments emitted a value with the wrong type!"); 6735 } 6736 }); 6737 6738 // Update the DAG with the new chain value resulting from argument lowering. 6739 DAG.setRoot(NewRoot); 6740 6741 // Set up the argument values. 6742 unsigned i = 0; 6743 Idx = 1; 6744 if (!FuncInfo->CanLowerReturn) { 6745 // Create a virtual register for the sret pointer, and put in a copy 6746 // from the sret argument into it. 6747 SmallVector<EVT, 1> ValueVTs; 6748 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6749 MVT VT = ValueVTs[0].getSimpleVT(); 6750 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 6751 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6752 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6753 RegVT, VT, NULL, AssertOp); 6754 6755 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6756 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6757 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 6758 FuncInfo->DemoteRegister = SRetReg; 6759 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 6760 SRetReg, ArgValue); 6761 DAG.setRoot(NewRoot); 6762 6763 // i indexes lowered arguments. Bump it past the hidden sret argument. 6764 // Idx indexes LLVM arguments. Don't touch it. 6765 ++i; 6766 } 6767 6768 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6769 ++I, ++Idx) { 6770 SmallVector<SDValue, 4> ArgValues; 6771 SmallVector<EVT, 4> ValueVTs; 6772 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 6773 unsigned NumValues = ValueVTs.size(); 6774 6775 // If this argument is unused then remember its value. It is used to generate 6776 // debugging information. 6777 if (I->use_empty() && NumValues) { 6778 SDB->setUnusedArgValue(I, InVals[i]); 6779 6780 // Also remember any frame index for use in FastISel. 6781 if (FrameIndexSDNode *FI = 6782 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 6783 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6784 } 6785 6786 for (unsigned Val = 0; Val != NumValues; ++Val) { 6787 EVT VT = ValueVTs[Val]; 6788 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 6789 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 6790 6791 if (!I->use_empty()) { 6792 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6793 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 6794 AssertOp = ISD::AssertSext; 6795 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 6796 AssertOp = ISD::AssertZext; 6797 6798 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6799 NumParts, PartVT, VT, 6800 NULL, AssertOp)); 6801 } 6802 6803 i += NumParts; 6804 } 6805 6806 // We don't need to do anything else for unused arguments. 6807 if (ArgValues.empty()) 6808 continue; 6809 6810 // Note down frame index. 6811 if (FrameIndexSDNode *FI = 6812 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6813 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6814 6815 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6816 SDB->getCurSDLoc()); 6817 6818 SDB->setValue(I, Res); 6819 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 6820 if (LoadSDNode *LNode = 6821 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 6822 if (FrameIndexSDNode *FI = 6823 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6824 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6825 } 6826 6827 // If this argument is live outside of the entry block, insert a copy from 6828 // wherever we got it to the vreg that other BB's will reference it as. 6829 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6830 // If we can, though, try to skip creating an unnecessary vreg. 6831 // FIXME: This isn't very clean... it would be nice to make this more 6832 // general. It's also subtly incompatible with the hacks FastISel 6833 // uses with vregs. 6834 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6835 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6836 FuncInfo->ValueMap[I] = Reg; 6837 continue; 6838 } 6839 } 6840 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 6841 FuncInfo->InitializeRegForValue(I); 6842 SDB->CopyToExportRegsIfNeeded(I); 6843 } 6844 } 6845 6846 assert(i == InVals.size() && "Argument register count mismatch!"); 6847 6848 // Finally, if the target has anything special to do, allow it to do so. 6849 // FIXME: this should insert code into the DAG! 6850 EmitFunctionEntryCode(); 6851 } 6852 6853 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6854 /// ensure constants are generated when needed. Remember the virtual registers 6855 /// that need to be added to the Machine PHI nodes as input. We cannot just 6856 /// directly add them, because expansion might result in multiple MBB's for one 6857 /// BB. As such, the start of the BB might correspond to a different MBB than 6858 /// the end. 6859 /// 6860 void 6861 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6862 const TerminatorInst *TI = LLVMBB->getTerminator(); 6863 6864 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6865 6866 // Check successor nodes' PHI nodes that expect a constant to be available 6867 // from this block. 6868 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6869 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6870 if (!isa<PHINode>(SuccBB->begin())) continue; 6871 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6872 6873 // If this terminator has multiple identical successors (common for 6874 // switches), only handle each succ once. 6875 if (!SuccsHandled.insert(SuccMBB)) continue; 6876 6877 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6878 6879 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6880 // nodes and Machine PHI nodes, but the incoming operands have not been 6881 // emitted yet. 6882 for (BasicBlock::const_iterator I = SuccBB->begin(); 6883 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6884 // Ignore dead phi's. 6885 if (PN->use_empty()) continue; 6886 6887 // Skip empty types 6888 if (PN->getType()->isEmptyTy()) 6889 continue; 6890 6891 unsigned Reg; 6892 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6893 6894 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6895 unsigned &RegOut = ConstantsOut[C]; 6896 if (RegOut == 0) { 6897 RegOut = FuncInfo.CreateRegs(C->getType()); 6898 CopyValueToVirtualRegister(C, RegOut); 6899 } 6900 Reg = RegOut; 6901 } else { 6902 DenseMap<const Value *, unsigned>::iterator I = 6903 FuncInfo.ValueMap.find(PHIOp); 6904 if (I != FuncInfo.ValueMap.end()) 6905 Reg = I->second; 6906 else { 6907 assert(isa<AllocaInst>(PHIOp) && 6908 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6909 "Didn't codegen value into a register!??"); 6910 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6911 CopyValueToVirtualRegister(PHIOp, Reg); 6912 } 6913 } 6914 6915 // Remember that this register needs to added to the machine PHI node as 6916 // the input for this MBB. 6917 SmallVector<EVT, 4> ValueVTs; 6918 const TargetLowering *TLI = TM.getTargetLowering(); 6919 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 6920 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6921 EVT VT = ValueVTs[vti]; 6922 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 6923 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6924 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6925 Reg += NumRegisters; 6926 } 6927 } 6928 } 6929 6930 ConstantsOut.clear(); 6931 } 6932