xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision a2afcd5721869d1d03c8146bae3885b3385ba15e)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
33 #include "llvm/CodeGen/CodeGenCommonISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfo.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/EHPersonalities.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/InlineAsm.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instructions.h"
76 #include "llvm/IR/IntrinsicInst.h"
77 #include "llvm/IR/Intrinsics.h"
78 #include "llvm/IR/IntrinsicsAArch64.h"
79 #include "llvm/IR/IntrinsicsAMDGPU.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/Support/AtomicOrdering.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CommandLine.h"
94 #include "llvm/Support/Compiler.h"
95 #include "llvm/Support/Debug.h"
96 #include "llvm/Support/MathExtras.h"
97 #include "llvm/Support/raw_ostream.h"
98 #include "llvm/Target/TargetIntrinsicInfo.h"
99 #include "llvm/Target/TargetMachine.h"
100 #include "llvm/Target/TargetOptions.h"
101 #include "llvm/TargetParser/Triple.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <iterator>
105 #include <limits>
106 #include <optional>
107 #include <tuple>
108 
109 using namespace llvm;
110 using namespace PatternMatch;
111 using namespace SwitchCG;
112 
113 #define DEBUG_TYPE "isel"
114 
115 /// LimitFloatPrecision - Generate low-precision inline sequences for
116 /// some float libcalls (6, 8 or 12 bits).
117 static unsigned LimitFloatPrecision;
118 
119 static cl::opt<bool>
120     InsertAssertAlign("insert-assert-align", cl::init(true),
121                       cl::desc("Insert the experimental `assertalign` node."),
122                       cl::ReallyHidden);
123 
124 static cl::opt<unsigned, true>
125     LimitFPPrecision("limit-float-precision",
126                      cl::desc("Generate low-precision inline sequences "
127                               "for some float libcalls"),
128                      cl::location(LimitFloatPrecision), cl::Hidden,
129                      cl::init(0));
130 
131 static cl::opt<unsigned> SwitchPeelThreshold(
132     "switch-peel-threshold", cl::Hidden, cl::init(66),
133     cl::desc("Set the case probability threshold for peeling the case from a "
134              "switch statement. A value greater than 100 will void this "
135              "optimization"));
136 
137 // Limit the width of DAG chains. This is important in general to prevent
138 // DAG-based analysis from blowing up. For example, alias analysis and
139 // load clustering may not complete in reasonable time. It is difficult to
140 // recognize and avoid this situation within each individual analysis, and
141 // future analyses are likely to have the same behavior. Limiting DAG width is
142 // the safe approach and will be especially important with global DAGs.
143 //
144 // MaxParallelChains default is arbitrarily high to avoid affecting
145 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
146 // sequence over this should have been converted to llvm.memcpy by the
147 // frontend. It is easy to induce this behavior with .ll code such as:
148 // %buffer = alloca [4096 x i8]
149 // %data = load [4096 x i8]* %argPtr
150 // store [4096 x i8] %data, [4096 x i8]* %buffer
151 static const unsigned MaxParallelChains = 64;
152 
153 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
154                                       const SDValue *Parts, unsigned NumParts,
155                                       MVT PartVT, EVT ValueVT, const Value *V,
156                                       SDValue InChain,
157                                       std::optional<CallingConv::ID> CC);
158 
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent.  If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue
165 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
166                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
167                  SDValue InChain,
168                  std::optional<CallingConv::ID> CC = std::nullopt,
169                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
170   // Let the target assemble the parts if it wants to
171   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
172   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
173                                                    PartVT, ValueVT, CC))
174     return Val;
175 
176   if (ValueVT.isVector())
177     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
178                                   InChain, CC);
179 
180   assert(NumParts > 0 && "No parts to assemble!");
181   SDValue Val = Parts[0];
182 
183   if (NumParts > 1) {
184     // Assemble the value from multiple parts.
185     if (ValueVT.isInteger()) {
186       unsigned PartBits = PartVT.getSizeInBits();
187       unsigned ValueBits = ValueVT.getSizeInBits();
188 
189       // Assemble the power of 2 part.
190       unsigned RoundParts = llvm::bit_floor(NumParts);
191       unsigned RoundBits = PartBits * RoundParts;
192       EVT RoundVT = RoundBits == ValueBits ?
193         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194       SDValue Lo, Hi;
195 
196       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
197 
198       if (RoundParts > 2) {
199         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
200                               InChain);
201         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
202                               PartVT, HalfVT, V, InChain);
203       } else {
204         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
206       }
207 
208       if (DAG.getDataLayout().isBigEndian())
209         std::swap(Lo, Hi);
210 
211       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
212 
213       if (RoundParts < NumParts) {
214         // Assemble the trailing non-power-of-2 part.
215         unsigned OddParts = NumParts - RoundParts;
216         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218                               OddVT, V, InChain, CC);
219 
220         // Combine the round and odd parts.
221         Lo = Val;
222         if (DAG.getDataLayout().isBigEndian())
223           std::swap(Lo, Hi);
224         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
227                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
228                                          TLI.getShiftAmountTy(
229                                              TotalVT, DAG.getDataLayout())));
230         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232       }
233     } else if (PartVT.isFloatingPoint()) {
234       // FP split into multiple FP parts (for ppcf128)
235       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236              "Unexpected split");
237       SDValue Lo, Hi;
238       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241         std::swap(Lo, Hi);
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243     } else {
244       // FP split into integer parts (soft fp)
245       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246              !PartVT.isVector() && "Unexpected split");
247       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
249                              InChain, CC);
250     }
251   }
252 
253   // There is now one part, held in Val.  Correct it to match ValueVT.
254   // PartEVT is the type of the register class that holds the value.
255   // ValueVT is the type of the inline asm operation.
256   EVT PartEVT = Val.getValueType();
257 
258   if (PartEVT == ValueVT)
259     return Val;
260 
261   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
262       ValueVT.bitsLT(PartEVT)) {
263     // For an FP value in an integer part, we need to truncate to the right
264     // width first.
265     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
266     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
267   }
268 
269   // Handle types that have the same size.
270   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
271     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
272 
273   // Handle types with different sizes.
274   if (PartEVT.isInteger() && ValueVT.isInteger()) {
275     if (ValueVT.bitsLT(PartEVT)) {
276       // For a truncate, see if we have any information to
277       // indicate whether the truncated bits will always be
278       // zero or sign-extension.
279       if (AssertOp)
280         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
281                           DAG.getValueType(ValueVT));
282       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
283     }
284     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
285   }
286 
287   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
288     // FP_ROUND's are always exact here.
289     if (ValueVT.bitsLT(Val.getValueType())) {
290 
291       SDValue NoChange =
292           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
293 
294       if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
295               llvm::Attribute::StrictFP)) {
296         return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
297                            DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
298                            NoChange);
299       }
300 
301       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
302     }
303 
304     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
305   }
306 
307   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
308   // then truncating.
309   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
310       ValueVT.bitsLT(PartEVT)) {
311     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
312     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
313   }
314 
315   report_fatal_error("Unknown mismatch in getCopyFromParts!");
316 }
317 
318 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
319                                               const Twine &ErrMsg) {
320   const Instruction *I = dyn_cast_or_null<Instruction>(V);
321   if (!V)
322     return Ctx.emitError(ErrMsg);
323 
324   const char *AsmError = ", possible invalid constraint for vector type";
325   if (const CallInst *CI = dyn_cast<CallInst>(I))
326     if (CI->isInlineAsm())
327       return Ctx.emitError(I, ErrMsg + AsmError);
328 
329   return Ctx.emitError(I, ErrMsg);
330 }
331 
332 /// getCopyFromPartsVector - Create a value that contains the specified legal
333 /// parts combined into the value they represent.  If the parts combine to a
334 /// type larger than ValueVT then AssertOp can be used to specify whether the
335 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
336 /// ValueVT (ISD::AssertSext).
337 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
338                                       const SDValue *Parts, unsigned NumParts,
339                                       MVT PartVT, EVT ValueVT, const Value *V,
340                                       SDValue InChain,
341                                       std::optional<CallingConv::ID> CallConv) {
342   assert(ValueVT.isVector() && "Not a vector value");
343   assert(NumParts > 0 && "No parts to assemble!");
344   const bool IsABIRegCopy = CallConv.has_value();
345 
346   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
347   SDValue Val = Parts[0];
348 
349   // Handle a multi-element vector.
350   if (NumParts > 1) {
351     EVT IntermediateVT;
352     MVT RegisterVT;
353     unsigned NumIntermediates;
354     unsigned NumRegs;
355 
356     if (IsABIRegCopy) {
357       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
358           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
359           NumIntermediates, RegisterVT);
360     } else {
361       NumRegs =
362           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
363                                      NumIntermediates, RegisterVT);
364     }
365 
366     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
367     NumParts = NumRegs; // Silence a compiler warning.
368     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
369     assert(RegisterVT.getSizeInBits() ==
370            Parts[0].getSimpleValueType().getSizeInBits() &&
371            "Part type sizes don't match!");
372 
373     // Assemble the parts into intermediate operands.
374     SmallVector<SDValue, 8> Ops(NumIntermediates);
375     if (NumIntermediates == NumParts) {
376       // If the register was not expanded, truncate or copy the value,
377       // as appropriate.
378       for (unsigned i = 0; i != NumParts; ++i)
379         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
380                                   V, InChain, CallConv);
381     } else if (NumParts > 0) {
382       // If the intermediate type was expanded, build the intermediate
383       // operands from the parts.
384       assert(NumParts % NumIntermediates == 0 &&
385              "Must expand into a divisible number of parts!");
386       unsigned Factor = NumParts / NumIntermediates;
387       for (unsigned i = 0; i != NumIntermediates; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
389                                   IntermediateVT, V, InChain, CallConv);
390     }
391 
392     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
393     // intermediate operands.
394     EVT BuiltVectorTy =
395         IntermediateVT.isVector()
396             ? EVT::getVectorVT(
397                   *DAG.getContext(), IntermediateVT.getScalarType(),
398                   IntermediateVT.getVectorElementCount() * NumParts)
399             : EVT::getVectorVT(*DAG.getContext(),
400                                IntermediateVT.getScalarType(),
401                                NumIntermediates);
402     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
403                                                 : ISD::BUILD_VECTOR,
404                       DL, BuiltVectorTy, Ops);
405   }
406 
407   // There is now one part, held in Val.  Correct it to match ValueVT.
408   EVT PartEVT = Val.getValueType();
409 
410   if (PartEVT == ValueVT)
411     return Val;
412 
413   if (PartEVT.isVector()) {
414     // Vector/Vector bitcast.
415     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
416       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
417 
418     // If the parts vector has more elements than the value vector, then we
419     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
420     // Extract the elements we want.
421     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
422       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
423               ValueVT.getVectorElementCount().getKnownMinValue()) &&
424              (PartEVT.getVectorElementCount().isScalable() ==
425               ValueVT.getVectorElementCount().isScalable()) &&
426              "Cannot narrow, it would be a lossy transformation");
427       PartEVT =
428           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
429                            ValueVT.getVectorElementCount());
430       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
431                         DAG.getVectorIdxConstant(0, DL));
432       if (PartEVT == ValueVT)
433         return Val;
434       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
435         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
436 
437       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
438       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
439         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
440     }
441 
442     // Promoted vector extract
443     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
444   }
445 
446   // Trivial bitcast if the types are the same size and the destination
447   // vector type is legal.
448   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
449       TLI.isTypeLegal(ValueVT))
450     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
451 
452   if (ValueVT.getVectorNumElements() != 1) {
453      // Certain ABIs require that vectors are passed as integers. For vectors
454      // are the same size, this is an obvious bitcast.
455      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
456        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
457      } else if (ValueVT.bitsLT(PartEVT)) {
458        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
459        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
460        // Drop the extra bits.
461        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
462        return DAG.getBitcast(ValueVT, Val);
463      }
464 
465      diagnosePossiblyInvalidConstraint(
466          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
467      return DAG.getUNDEF(ValueVT);
468   }
469 
470   // Handle cases such as i8 -> <1 x i1>
471   EVT ValueSVT = ValueVT.getVectorElementType();
472   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
473     unsigned ValueSize = ValueSVT.getSizeInBits();
474     if (ValueSize == PartEVT.getSizeInBits()) {
475       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
476     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
477       // It's possible a scalar floating point type gets softened to integer and
478       // then promoted to a larger integer. If PartEVT is the larger integer
479       // we need to truncate it and then bitcast to the FP type.
480       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
481       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
482       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
483       Val = DAG.getBitcast(ValueSVT, Val);
484     } else {
485       Val = ValueVT.isFloatingPoint()
486                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
487                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
488     }
489   }
490 
491   return DAG.getBuildVector(ValueVT, DL, Val);
492 }
493 
494 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
495                                  SDValue Val, SDValue *Parts, unsigned NumParts,
496                                  MVT PartVT, const Value *V,
497                                  std::optional<CallingConv::ID> CallConv);
498 
499 /// getCopyToParts - Create a series of nodes that contain the specified value
500 /// split into legal parts.  If the parts contain more bits than Val, then, for
501 /// integers, ExtendKind can be used to specify how to generate the extra bits.
502 static void
503 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
504                unsigned NumParts, MVT PartVT, const Value *V,
505                std::optional<CallingConv::ID> CallConv = std::nullopt,
506                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
507   // Let the target split the parts if it wants to
508   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
509   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
510                                       CallConv))
511     return;
512   EVT ValueVT = Val.getValueType();
513 
514   // Handle the vector case separately.
515   if (ValueVT.isVector())
516     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
517                                 CallConv);
518 
519   unsigned OrigNumParts = NumParts;
520   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
521          "Copying to an illegal type!");
522 
523   if (NumParts == 0)
524     return;
525 
526   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
527   EVT PartEVT = PartVT;
528   if (PartEVT == ValueVT) {
529     assert(NumParts == 1 && "No-op copy with multiple parts!");
530     Parts[0] = Val;
531     return;
532   }
533 
534   unsigned PartBits = PartVT.getSizeInBits();
535   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
536     // If the parts cover more bits than the value has, promote the value.
537     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
538       assert(NumParts == 1 && "Do not know what to promote to!");
539       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
540     } else {
541       if (ValueVT.isFloatingPoint()) {
542         // FP values need to be bitcast, then extended if they are being put
543         // into a larger container.
544         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
545         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
546       }
547       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
548              ValueVT.isInteger() &&
549              "Unknown mismatch!");
550       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
551       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
552       if (PartVT == MVT::x86mmx)
553         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554     }
555   } else if (PartBits == ValueVT.getSizeInBits()) {
556     // Different types of the same size.
557     assert(NumParts == 1 && PartEVT != ValueVT);
558     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
560     // If the parts cover less bits than value has, truncate the value.
561     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
562            ValueVT.isInteger() &&
563            "Unknown mismatch!");
564     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
565     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
566     if (PartVT == MVT::x86mmx)
567       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
568   }
569 
570   // The value may have changed - recompute ValueVT.
571   ValueVT = Val.getValueType();
572   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
573          "Failed to tile the value with PartVT!");
574 
575   if (NumParts == 1) {
576     if (PartEVT != ValueVT) {
577       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
578                                         "scalar-to-vector conversion failed");
579       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
580     }
581 
582     Parts[0] = Val;
583     return;
584   }
585 
586   // Expand the value into multiple parts.
587   if (NumParts & (NumParts - 1)) {
588     // The number of parts is not a power of 2.  Split off and copy the tail.
589     assert(PartVT.isInteger() && ValueVT.isInteger() &&
590            "Do not know what to expand to!");
591     unsigned RoundParts = llvm::bit_floor(NumParts);
592     unsigned RoundBits = RoundParts * PartBits;
593     unsigned OddParts = NumParts - RoundParts;
594     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
595       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
596 
597     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
598                    CallConv);
599 
600     if (DAG.getDataLayout().isBigEndian())
601       // The odd parts were reversed by getCopyToParts - unreverse them.
602       std::reverse(Parts + RoundParts, Parts + NumParts);
603 
604     NumParts = RoundParts;
605     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
606     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
607   }
608 
609   // The number of parts is a power of 2.  Repeatedly bisect the value using
610   // EXTRACT_ELEMENT.
611   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
612                          EVT::getIntegerVT(*DAG.getContext(),
613                                            ValueVT.getSizeInBits()),
614                          Val);
615 
616   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
617     for (unsigned i = 0; i < NumParts; i += StepSize) {
618       unsigned ThisBits = StepSize * PartBits / 2;
619       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
620       SDValue &Part0 = Parts[i];
621       SDValue &Part1 = Parts[i+StepSize/2];
622 
623       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
624                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
625       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
626                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
627 
628       if (ThisBits == PartBits && ThisVT != PartVT) {
629         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
630         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
631       }
632     }
633   }
634 
635   if (DAG.getDataLayout().isBigEndian())
636     std::reverse(Parts, Parts + OrigNumParts);
637 }
638 
639 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
640                                      const SDLoc &DL, EVT PartVT) {
641   if (!PartVT.isVector())
642     return SDValue();
643 
644   EVT ValueVT = Val.getValueType();
645   EVT PartEVT = PartVT.getVectorElementType();
646   EVT ValueEVT = ValueVT.getVectorElementType();
647   ElementCount PartNumElts = PartVT.getVectorElementCount();
648   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
649 
650   // We only support widening vectors with equivalent element types and
651   // fixed/scalable properties. If a target needs to widen a fixed-length type
652   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
653   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
654       PartNumElts.isScalable() != ValueNumElts.isScalable())
655     return SDValue();
656 
657   // Have a try for bf16 because some targets share its ABI with fp16.
658   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
659     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
660            "Cannot widen to illegal type");
661     Val = DAG.getNode(ISD::BITCAST, DL,
662                       ValueVT.changeVectorElementType(MVT::f16), Val);
663   } else if (PartEVT != ValueEVT) {
664     return SDValue();
665   }
666 
667   // Widening a scalable vector to another scalable vector is done by inserting
668   // the vector into a larger undef one.
669   if (PartNumElts.isScalable())
670     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
671                        Val, DAG.getVectorIdxConstant(0, DL));
672 
673   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
674   // undef elements.
675   SmallVector<SDValue, 16> Ops;
676   DAG.ExtractVectorElements(Val, Ops);
677   SDValue EltUndef = DAG.getUNDEF(PartEVT);
678   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
679 
680   // FIXME: Use CONCAT for 2x -> 4x.
681   return DAG.getBuildVector(PartVT, DL, Ops);
682 }
683 
684 /// getCopyToPartsVector - Create a series of nodes that contain the specified
685 /// value split into legal parts.
686 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
687                                  SDValue Val, SDValue *Parts, unsigned NumParts,
688                                  MVT PartVT, const Value *V,
689                                  std::optional<CallingConv::ID> CallConv) {
690   EVT ValueVT = Val.getValueType();
691   assert(ValueVT.isVector() && "Not a vector");
692   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
693   const bool IsABIRegCopy = CallConv.has_value();
694 
695   if (NumParts == 1) {
696     EVT PartEVT = PartVT;
697     if (PartEVT == ValueVT) {
698       // Nothing to do.
699     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
700       // Bitconvert vector->vector case.
701       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
702     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
703       Val = Widened;
704     } else if (PartVT.isVector() &&
705                PartEVT.getVectorElementType().bitsGE(
706                    ValueVT.getVectorElementType()) &&
707                PartEVT.getVectorElementCount() ==
708                    ValueVT.getVectorElementCount()) {
709 
710       // Promoted vector extract
711       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
712     } else if (PartEVT.isVector() &&
713                PartEVT.getVectorElementType() !=
714                    ValueVT.getVectorElementType() &&
715                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
716                    TargetLowering::TypeWidenVector) {
717       // Combination of widening and promotion.
718       EVT WidenVT =
719           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
720                            PartVT.getVectorElementCount());
721       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
722       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
723     } else {
724       // Don't extract an integer from a float vector. This can happen if the
725       // FP type gets softened to integer and then promoted. The promotion
726       // prevents it from being picked up by the earlier bitcast case.
727       if (ValueVT.getVectorElementCount().isScalar() &&
728           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
729         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
730                           DAG.getVectorIdxConstant(0, DL));
731       } else {
732         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
733         assert(PartVT.getFixedSizeInBits() > ValueSize &&
734                "lossy conversion of vector to scalar type");
735         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
736         Val = DAG.getBitcast(IntermediateType, Val);
737         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
738       }
739     }
740 
741     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
742     Parts[0] = Val;
743     return;
744   }
745 
746   // Handle a multi-element vector.
747   EVT IntermediateVT;
748   MVT RegisterVT;
749   unsigned NumIntermediates;
750   unsigned NumRegs;
751   if (IsABIRegCopy) {
752     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
753         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
754         RegisterVT);
755   } else {
756     NumRegs =
757         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
758                                    NumIntermediates, RegisterVT);
759   }
760 
761   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
762   NumParts = NumRegs; // Silence a compiler warning.
763   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
764 
765   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
766          "Mixing scalable and fixed vectors when copying in parts");
767 
768   std::optional<ElementCount> DestEltCnt;
769 
770   if (IntermediateVT.isVector())
771     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
772   else
773     DestEltCnt = ElementCount::getFixed(NumIntermediates);
774 
775   EVT BuiltVectorTy = EVT::getVectorVT(
776       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
777 
778   if (ValueVT == BuiltVectorTy) {
779     // Nothing to do.
780   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
781     // Bitconvert vector->vector case.
782     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
783   } else {
784     if (BuiltVectorTy.getVectorElementType().bitsGT(
785             ValueVT.getVectorElementType())) {
786       // Integer promotion.
787       ValueVT = EVT::getVectorVT(*DAG.getContext(),
788                                  BuiltVectorTy.getVectorElementType(),
789                                  ValueVT.getVectorElementCount());
790       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
791     }
792 
793     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
794       Val = Widened;
795     }
796   }
797 
798   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
799 
800   // Split the vector into intermediate operands.
801   SmallVector<SDValue, 8> Ops(NumIntermediates);
802   for (unsigned i = 0; i != NumIntermediates; ++i) {
803     if (IntermediateVT.isVector()) {
804       // This does something sensible for scalable vectors - see the
805       // definition of EXTRACT_SUBVECTOR for further details.
806       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
807       Ops[i] =
808           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
809                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
810     } else {
811       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
812                            DAG.getVectorIdxConstant(i, DL));
813     }
814   }
815 
816   // Split the intermediate operands into legal parts.
817   if (NumParts == NumIntermediates) {
818     // If the register was not expanded, promote or copy the value,
819     // as appropriate.
820     for (unsigned i = 0; i != NumParts; ++i)
821       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
822   } else if (NumParts > 0) {
823     // If the intermediate type was expanded, split each the value into
824     // legal parts.
825     assert(NumIntermediates != 0 && "division by zero");
826     assert(NumParts % NumIntermediates == 0 &&
827            "Must expand into a divisible number of parts!");
828     unsigned Factor = NumParts / NumIntermediates;
829     for (unsigned i = 0; i != NumIntermediates; ++i)
830       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
831                      CallConv);
832   }
833 }
834 
835 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
836                            EVT valuevt, std::optional<CallingConv::ID> CC)
837     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
838       RegCount(1, regs.size()), CallConv(CC) {}
839 
840 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
841                            const DataLayout &DL, unsigned Reg, Type *Ty,
842                            std::optional<CallingConv::ID> CC) {
843   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
844 
845   CallConv = CC;
846 
847   for (EVT ValueVT : ValueVTs) {
848     unsigned NumRegs =
849         isABIMangled()
850             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
851             : TLI.getNumRegisters(Context, ValueVT);
852     MVT RegisterVT =
853         isABIMangled()
854             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
855             : TLI.getRegisterType(Context, ValueVT);
856     for (unsigned i = 0; i != NumRegs; ++i)
857       Regs.push_back(Reg + i);
858     RegVTs.push_back(RegisterVT);
859     RegCount.push_back(NumRegs);
860     Reg += NumRegs;
861   }
862 }
863 
864 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
865                                       FunctionLoweringInfo &FuncInfo,
866                                       const SDLoc &dl, SDValue &Chain,
867                                       SDValue *Glue, const Value *V) const {
868   // A Value with type {} or [0 x %t] needs no registers.
869   if (ValueVTs.empty())
870     return SDValue();
871 
872   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
873 
874   // Assemble the legal parts into the final values.
875   SmallVector<SDValue, 4> Values(ValueVTs.size());
876   SmallVector<SDValue, 8> Parts;
877   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
878     // Copy the legal parts from the registers.
879     EVT ValueVT = ValueVTs[Value];
880     unsigned NumRegs = RegCount[Value];
881     MVT RegisterVT = isABIMangled()
882                          ? TLI.getRegisterTypeForCallingConv(
883                                *DAG.getContext(), *CallConv, RegVTs[Value])
884                          : RegVTs[Value];
885 
886     Parts.resize(NumRegs);
887     for (unsigned i = 0; i != NumRegs; ++i) {
888       SDValue P;
889       if (!Glue) {
890         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
891       } else {
892         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
893         *Glue = P.getValue(2);
894       }
895 
896       Chain = P.getValue(1);
897       Parts[i] = P;
898 
899       // If the source register was virtual and if we know something about it,
900       // add an assert node.
901       if (!Register::isVirtualRegister(Regs[Part + i]) ||
902           !RegisterVT.isInteger())
903         continue;
904 
905       const FunctionLoweringInfo::LiveOutInfo *LOI =
906         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
907       if (!LOI)
908         continue;
909 
910       unsigned RegSize = RegisterVT.getScalarSizeInBits();
911       unsigned NumSignBits = LOI->NumSignBits;
912       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
913 
914       if (NumZeroBits == RegSize) {
915         // The current value is a zero.
916         // Explicitly express that as it would be easier for
917         // optimizations to kick in.
918         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
919         continue;
920       }
921 
922       // FIXME: We capture more information than the dag can represent.  For
923       // now, just use the tightest assertzext/assertsext possible.
924       bool isSExt;
925       EVT FromVT(MVT::Other);
926       if (NumZeroBits) {
927         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
928         isSExt = false;
929       } else if (NumSignBits > 1) {
930         FromVT =
931             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
932         isSExt = true;
933       } else {
934         continue;
935       }
936       // Add an assertion node.
937       assert(FromVT != MVT::Other);
938       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
939                              RegisterVT, P, DAG.getValueType(FromVT));
940     }
941 
942     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
943                                      RegisterVT, ValueVT, V, Chain, CallConv);
944     Part += NumRegs;
945     Parts.clear();
946   }
947 
948   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
949 }
950 
951 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
952                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
953                                  const Value *V,
954                                  ISD::NodeType PreferredExtendType) const {
955   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
956   ISD::NodeType ExtendKind = PreferredExtendType;
957 
958   // Get the list of the values's legal parts.
959   unsigned NumRegs = Regs.size();
960   SmallVector<SDValue, 8> Parts(NumRegs);
961   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
962     unsigned NumParts = RegCount[Value];
963 
964     MVT RegisterVT = isABIMangled()
965                          ? TLI.getRegisterTypeForCallingConv(
966                                *DAG.getContext(), *CallConv, RegVTs[Value])
967                          : RegVTs[Value];
968 
969     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
970       ExtendKind = ISD::ZERO_EXTEND;
971 
972     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
973                    NumParts, RegisterVT, V, CallConv, ExtendKind);
974     Part += NumParts;
975   }
976 
977   // Copy the parts into the registers.
978   SmallVector<SDValue, 8> Chains(NumRegs);
979   for (unsigned i = 0; i != NumRegs; ++i) {
980     SDValue Part;
981     if (!Glue) {
982       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
983     } else {
984       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
985       *Glue = Part.getValue(1);
986     }
987 
988     Chains[i] = Part.getValue(0);
989   }
990 
991   if (NumRegs == 1 || Glue)
992     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
993     // flagged to it. That is the CopyToReg nodes and the user are considered
994     // a single scheduling unit. If we create a TokenFactor and return it as
995     // chain, then the TokenFactor is both a predecessor (operand) of the
996     // user as well as a successor (the TF operands are flagged to the user).
997     // c1, f1 = CopyToReg
998     // c2, f2 = CopyToReg
999     // c3     = TokenFactor c1, c2
1000     // ...
1001     //        = op c3, ..., f2
1002     Chain = Chains[NumRegs-1];
1003   else
1004     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1005 }
1006 
1007 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
1008                                         unsigned MatchingIdx, const SDLoc &dl,
1009                                         SelectionDAG &DAG,
1010                                         std::vector<SDValue> &Ops) const {
1011   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1012 
1013   InlineAsm::Flag Flag(Code, Regs.size());
1014   if (HasMatching)
1015     Flag.setMatchingOp(MatchingIdx);
1016   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1017     // Put the register class of the virtual registers in the flag word.  That
1018     // way, later passes can recompute register class constraints for inline
1019     // assembly as well as normal instructions.
1020     // Don't do this for tied operands that can use the regclass information
1021     // from the def.
1022     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1023     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1024     Flag.setRegClass(RC->getID());
1025   }
1026 
1027   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1028   Ops.push_back(Res);
1029 
1030   if (Code == InlineAsm::Kind::Clobber) {
1031     // Clobbers should always have a 1:1 mapping with registers, and may
1032     // reference registers that have illegal (e.g. vector) types. Hence, we
1033     // shouldn't try to apply any sort of splitting logic to them.
1034     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1035            "No 1:1 mapping from clobbers to regs?");
1036     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1037     (void)SP;
1038     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1039       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1040       assert(
1041           (Regs[I] != SP ||
1042            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1043           "If we clobbered the stack pointer, MFI should know about it.");
1044     }
1045     return;
1046   }
1047 
1048   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1049     MVT RegisterVT = RegVTs[Value];
1050     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1051                                            RegisterVT);
1052     for (unsigned i = 0; i != NumRegs; ++i) {
1053       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1054       unsigned TheReg = Regs[Reg++];
1055       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1056     }
1057   }
1058 }
1059 
1060 SmallVector<std::pair<unsigned, TypeSize>, 4>
1061 RegsForValue::getRegsAndSizes() const {
1062   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1063   unsigned I = 0;
1064   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1065     unsigned RegCount = std::get<0>(CountAndVT);
1066     MVT RegisterVT = std::get<1>(CountAndVT);
1067     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1068     for (unsigned E = I + RegCount; I != E; ++I)
1069       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1070   }
1071   return OutVec;
1072 }
1073 
1074 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1075                                AssumptionCache *ac,
1076                                const TargetLibraryInfo *li) {
1077   AA = aa;
1078   AC = ac;
1079   GFI = gfi;
1080   LibInfo = li;
1081   Context = DAG.getContext();
1082   LPadToCallSiteMap.clear();
1083   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1084   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1085       *DAG.getMachineFunction().getFunction().getParent());
1086 }
1087 
1088 void SelectionDAGBuilder::clear() {
1089   NodeMap.clear();
1090   UnusedArgNodeMap.clear();
1091   PendingLoads.clear();
1092   PendingExports.clear();
1093   PendingConstrainedFP.clear();
1094   PendingConstrainedFPStrict.clear();
1095   CurInst = nullptr;
1096   HasTailCall = false;
1097   SDNodeOrder = LowestSDNodeOrder;
1098   StatepointLowering.clear();
1099 }
1100 
1101 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1102   DanglingDebugInfoMap.clear();
1103 }
1104 
1105 // Update DAG root to include dependencies on Pending chains.
1106 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1107   SDValue Root = DAG.getRoot();
1108 
1109   if (Pending.empty())
1110     return Root;
1111 
1112   // Add current root to PendingChains, unless we already indirectly
1113   // depend on it.
1114   if (Root.getOpcode() != ISD::EntryToken) {
1115     unsigned i = 0, e = Pending.size();
1116     for (; i != e; ++i) {
1117       assert(Pending[i].getNode()->getNumOperands() > 1);
1118       if (Pending[i].getNode()->getOperand(0) == Root)
1119         break;  // Don't add the root if we already indirectly depend on it.
1120     }
1121 
1122     if (i == e)
1123       Pending.push_back(Root);
1124   }
1125 
1126   if (Pending.size() == 1)
1127     Root = Pending[0];
1128   else
1129     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1130 
1131   DAG.setRoot(Root);
1132   Pending.clear();
1133   return Root;
1134 }
1135 
1136 SDValue SelectionDAGBuilder::getMemoryRoot() {
1137   return updateRoot(PendingLoads);
1138 }
1139 
1140 SDValue SelectionDAGBuilder::getRoot() {
1141   // Chain up all pending constrained intrinsics together with all
1142   // pending loads, by simply appending them to PendingLoads and
1143   // then calling getMemoryRoot().
1144   PendingLoads.reserve(PendingLoads.size() +
1145                        PendingConstrainedFP.size() +
1146                        PendingConstrainedFPStrict.size());
1147   PendingLoads.append(PendingConstrainedFP.begin(),
1148                       PendingConstrainedFP.end());
1149   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1150                       PendingConstrainedFPStrict.end());
1151   PendingConstrainedFP.clear();
1152   PendingConstrainedFPStrict.clear();
1153   return getMemoryRoot();
1154 }
1155 
1156 SDValue SelectionDAGBuilder::getControlRoot() {
1157   // We need to emit pending fpexcept.strict constrained intrinsics,
1158   // so append them to the PendingExports list.
1159   PendingExports.append(PendingConstrainedFPStrict.begin(),
1160                         PendingConstrainedFPStrict.end());
1161   PendingConstrainedFPStrict.clear();
1162   return updateRoot(PendingExports);
1163 }
1164 
1165 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1166                                              DILocalVariable *Variable,
1167                                              DIExpression *Expression,
1168                                              DebugLoc DL) {
1169   assert(Variable && "Missing variable");
1170 
1171   // Check if address has undef value.
1172   if (!Address || isa<UndefValue>(Address) ||
1173       (Address->use_empty() && !isa<Argument>(Address))) {
1174     LLVM_DEBUG(
1175         dbgs()
1176         << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1177     return;
1178   }
1179 
1180   bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1181 
1182   SDValue &N = NodeMap[Address];
1183   if (!N.getNode() && isa<Argument>(Address))
1184     // Check unused arguments map.
1185     N = UnusedArgNodeMap[Address];
1186   SDDbgValue *SDV;
1187   if (N.getNode()) {
1188     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1189       Address = BCI->getOperand(0);
1190     // Parameters are handled specially.
1191     auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1192     if (IsParameter && FINode) {
1193       // Byval parameter. We have a frame index at this point.
1194       SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1195                                       /*IsIndirect*/ true, DL, SDNodeOrder);
1196     } else if (isa<Argument>(Address)) {
1197       // Address is an argument, so try to emit its dbg value using
1198       // virtual register info from the FuncInfo.ValueMap.
1199       EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1200                                FuncArgumentDbgValueKind::Declare, N);
1201       return;
1202     } else {
1203       SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1204                             true, DL, SDNodeOrder);
1205     }
1206     DAG.AddDbgValue(SDV, IsParameter);
1207   } else {
1208     // If Address is an argument then try to emit its dbg value using
1209     // virtual register info from the FuncInfo.ValueMap.
1210     if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1211                                   FuncArgumentDbgValueKind::Declare, N)) {
1212       LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1213                         << " (could not emit func-arg dbg_value)\n");
1214     }
1215   }
1216   return;
1217 }
1218 
1219 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1220   // Add SDDbgValue nodes for any var locs here. Do so before updating
1221   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1222   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1223     // Add SDDbgValue nodes for any var locs here. Do so before updating
1224     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1225     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1226          It != End; ++It) {
1227       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1228       dropDanglingDebugInfo(Var, It->Expr);
1229       if (It->Values.isKillLocation(It->Expr)) {
1230         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1231         continue;
1232       }
1233       SmallVector<Value *> Values(It->Values.location_ops());
1234       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1235                             It->Values.hasArgList())) {
1236         SmallVector<Value *, 4> Vals;
1237         for (Value *V : It->Values.location_ops())
1238           Vals.push_back(V);
1239         addDanglingDebugInfo(Vals,
1240                              FnVarLocs->getDILocalVariable(It->VariableID),
1241                              It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1242       }
1243     }
1244     // We must early-exit here to prevent any DPValues from being emitted below,
1245     // as we have just emitted the debug values resulting from assignment
1246     // tracking analysis, making any existing DPValues redundant (and probably
1247     // less correct).
1248     return;
1249   }
1250 
1251   // Is there is any debug-info attached to this instruction, in the form of
1252   // DPValue non-instruction debug-info records.
1253   for (DbgRecord &DPR : I.getDbgValueRange()) {
1254     DPValue &DPV = cast<DPValue>(DPR);
1255     DILocalVariable *Variable = DPV.getVariable();
1256     DIExpression *Expression = DPV.getExpression();
1257     dropDanglingDebugInfo(Variable, Expression);
1258 
1259     if (DPV.getType() == DPValue::LocationType::Declare) {
1260       if (FuncInfo.PreprocessedDPVDeclares.contains(&DPV))
1261         continue;
1262       LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DPV
1263                         << "\n");
1264       handleDebugDeclare(DPV.getVariableLocationOp(0), Variable, Expression,
1265                          DPV.getDebugLoc());
1266       continue;
1267     }
1268 
1269     // A DPValue with no locations is a kill location.
1270     SmallVector<Value *, 4> Values(DPV.location_ops());
1271     if (Values.empty()) {
1272       handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(),
1273                            SDNodeOrder);
1274       continue;
1275     }
1276 
1277     // A DPValue with an undef or absent location is also a kill location.
1278     if (llvm::any_of(Values,
1279                      [](Value *V) { return !V || isa<UndefValue>(V); })) {
1280       handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(),
1281                            SDNodeOrder);
1282       continue;
1283     }
1284 
1285     bool IsVariadic = DPV.hasArgList();
1286     if (!handleDebugValue(Values, Variable, Expression, DPV.getDebugLoc(),
1287                           SDNodeOrder, IsVariadic)) {
1288       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1289                            DPV.getDebugLoc(), SDNodeOrder);
1290     }
1291   }
1292 }
1293 
1294 void SelectionDAGBuilder::visit(const Instruction &I) {
1295   visitDbgInfo(I);
1296 
1297   // Set up outgoing PHI node register values before emitting the terminator.
1298   if (I.isTerminator()) {
1299     HandlePHINodesInSuccessorBlocks(I.getParent());
1300   }
1301 
1302   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1303   if (!isa<DbgInfoIntrinsic>(I))
1304     ++SDNodeOrder;
1305 
1306   CurInst = &I;
1307 
1308   // Set inserted listener only if required.
1309   bool NodeInserted = false;
1310   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1311   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1312   if (PCSectionsMD) {
1313     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1314         DAG, [&](SDNode *) { NodeInserted = true; });
1315   }
1316 
1317   visit(I.getOpcode(), I);
1318 
1319   if (!I.isTerminator() && !HasTailCall &&
1320       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1321     CopyToExportRegsIfNeeded(&I);
1322 
1323   // Handle metadata.
1324   if (PCSectionsMD) {
1325     auto It = NodeMap.find(&I);
1326     if (It != NodeMap.end()) {
1327       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1328     } else if (NodeInserted) {
1329       // This should not happen; if it does, don't let it go unnoticed so we can
1330       // fix it. Relevant visit*() function is probably missing a setValue().
1331       errs() << "warning: loosing !pcsections metadata ["
1332              << I.getModule()->getName() << "]\n";
1333       LLVM_DEBUG(I.dump());
1334       assert(false);
1335     }
1336   }
1337 
1338   CurInst = nullptr;
1339 }
1340 
1341 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1342   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1343 }
1344 
1345 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1346   // Note: this doesn't use InstVisitor, because it has to work with
1347   // ConstantExpr's in addition to instructions.
1348   switch (Opcode) {
1349   default: llvm_unreachable("Unknown instruction type encountered!");
1350     // Build the switch statement using the Instruction.def file.
1351 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1352     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1353 #include "llvm/IR/Instruction.def"
1354   }
1355 }
1356 
1357 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1358                                             DILocalVariable *Variable,
1359                                             DebugLoc DL, unsigned Order,
1360                                             SmallVectorImpl<Value *> &Values,
1361                                             DIExpression *Expression) {
1362   // For variadic dbg_values we will now insert an undef.
1363   // FIXME: We can potentially recover these!
1364   SmallVector<SDDbgOperand, 2> Locs;
1365   for (const Value *V : Values) {
1366     auto *Undef = UndefValue::get(V->getType());
1367     Locs.push_back(SDDbgOperand::fromConst(Undef));
1368   }
1369   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1370                                         /*IsIndirect=*/false, DL, Order,
1371                                         /*IsVariadic=*/true);
1372   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1373   return true;
1374 }
1375 
1376 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1377                                                DILocalVariable *Var,
1378                                                DIExpression *Expr,
1379                                                bool IsVariadic, DebugLoc DL,
1380                                                unsigned Order) {
1381   if (IsVariadic) {
1382     handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1383     return;
1384   }
1385   // TODO: Dangling debug info will eventually either be resolved or produce
1386   // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1387   // between the original dbg.value location and its resolved DBG_VALUE,
1388   // which we should ideally fill with an extra Undef DBG_VALUE.
1389   assert(Values.size() == 1);
1390   DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1391 }
1392 
1393 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1394                                                 const DIExpression *Expr) {
1395   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1396     DIVariable *DanglingVariable = DDI.getVariable();
1397     DIExpression *DanglingExpr = DDI.getExpression();
1398     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1399       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1400                         << printDDI(nullptr, DDI) << "\n");
1401       return true;
1402     }
1403     return false;
1404   };
1405 
1406   for (auto &DDIMI : DanglingDebugInfoMap) {
1407     DanglingDebugInfoVector &DDIV = DDIMI.second;
1408 
1409     // If debug info is to be dropped, run it through final checks to see
1410     // whether it can be salvaged.
1411     for (auto &DDI : DDIV)
1412       if (isMatchingDbgValue(DDI))
1413         salvageUnresolvedDbgValue(DDIMI.first, DDI);
1414 
1415     erase_if(DDIV, isMatchingDbgValue);
1416   }
1417 }
1418 
1419 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1420 // generate the debug data structures now that we've seen its definition.
1421 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1422                                                    SDValue Val) {
1423   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1424   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1425     return;
1426 
1427   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1428   for (auto &DDI : DDIV) {
1429     DebugLoc DL = DDI.getDebugLoc();
1430     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1431     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1432     DILocalVariable *Variable = DDI.getVariable();
1433     DIExpression *Expr = DDI.getExpression();
1434     assert(Variable->isValidLocationForIntrinsic(DL) &&
1435            "Expected inlined-at fields to agree");
1436     SDDbgValue *SDV;
1437     if (Val.getNode()) {
1438       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1439       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1440       // we couldn't resolve it directly when examining the DbgValue intrinsic
1441       // in the first place we should not be more successful here). Unless we
1442       // have some test case that prove this to be correct we should avoid
1443       // calling EmitFuncArgumentDbgValue here.
1444       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1445                                     FuncArgumentDbgValueKind::Value, Val)) {
1446         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1447                           << printDDI(V, DDI) << "\n");
1448         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1449         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1450         // inserted after the definition of Val when emitting the instructions
1451         // after ISel. An alternative could be to teach
1452         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1453         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1454                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1455                    << ValSDNodeOrder << "\n");
1456         SDV = getDbgValue(Val, Variable, Expr, DL,
1457                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1458         DAG.AddDbgValue(SDV, false);
1459       } else
1460         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1461                           << printDDI(V, DDI)
1462                           << " in EmitFuncArgumentDbgValue\n");
1463     } else {
1464       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1465                         << "\n");
1466       auto Undef = UndefValue::get(V->getType());
1467       auto SDV =
1468           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1469       DAG.AddDbgValue(SDV, false);
1470     }
1471   }
1472   DDIV.clear();
1473 }
1474 
1475 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1476                                                     DanglingDebugInfo &DDI) {
1477   // TODO: For the variadic implementation, instead of only checking the fail
1478   // state of `handleDebugValue`, we need know specifically which values were
1479   // invalid, so that we attempt to salvage only those values when processing
1480   // a DIArgList.
1481   const Value *OrigV = V;
1482   DILocalVariable *Var = DDI.getVariable();
1483   DIExpression *Expr = DDI.getExpression();
1484   DebugLoc DL = DDI.getDebugLoc();
1485   unsigned SDOrder = DDI.getSDNodeOrder();
1486 
1487   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1488   // that DW_OP_stack_value is desired.
1489   bool StackValue = true;
1490 
1491   // Can this Value can be encoded without any further work?
1492   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1493     return;
1494 
1495   // Attempt to salvage back through as many instructions as possible. Bail if
1496   // a non-instruction is seen, such as a constant expression or global
1497   // variable. FIXME: Further work could recover those too.
1498   while (isa<Instruction>(V)) {
1499     const Instruction &VAsInst = *cast<const Instruction>(V);
1500     // Temporary "0", awaiting real implementation.
1501     SmallVector<uint64_t, 16> Ops;
1502     SmallVector<Value *, 4> AdditionalValues;
1503     V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1504                              Expr->getNumLocationOperands(), Ops,
1505                              AdditionalValues);
1506     // If we cannot salvage any further, and haven't yet found a suitable debug
1507     // expression, bail out.
1508     if (!V)
1509       break;
1510 
1511     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1512     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1513     // here for variadic dbg_values, remove that condition.
1514     if (!AdditionalValues.empty())
1515       break;
1516 
1517     // New value and expr now represent this debuginfo.
1518     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1519 
1520     // Some kind of simplification occurred: check whether the operand of the
1521     // salvaged debug expression can be encoded in this DAG.
1522     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1523       LLVM_DEBUG(
1524           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1525                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1526       return;
1527     }
1528   }
1529 
1530   // This was the final opportunity to salvage this debug information, and it
1531   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1532   // any earlier variable location.
1533   assert(OrigV && "V shouldn't be null");
1534   auto *Undef = UndefValue::get(OrigV->getType());
1535   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1536   DAG.AddDbgValue(SDV, false);
1537   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  "
1538                     << printDDI(OrigV, DDI) << "\n");
1539 }
1540 
1541 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1542                                                DIExpression *Expr,
1543                                                DebugLoc DbgLoc,
1544                                                unsigned Order) {
1545   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1546   DIExpression *NewExpr =
1547       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1548   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1549                    /*IsVariadic*/ false);
1550 }
1551 
1552 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1553                                            DILocalVariable *Var,
1554                                            DIExpression *Expr, DebugLoc DbgLoc,
1555                                            unsigned Order, bool IsVariadic) {
1556   if (Values.empty())
1557     return true;
1558 
1559   // Filter EntryValue locations out early.
1560   if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1561     return true;
1562 
1563   SmallVector<SDDbgOperand> LocationOps;
1564   SmallVector<SDNode *> Dependencies;
1565   for (const Value *V : Values) {
1566     // Constant value.
1567     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1568         isa<ConstantPointerNull>(V)) {
1569       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1570       continue;
1571     }
1572 
1573     // Look through IntToPtr constants.
1574     if (auto *CE = dyn_cast<ConstantExpr>(V))
1575       if (CE->getOpcode() == Instruction::IntToPtr) {
1576         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1577         continue;
1578       }
1579 
1580     // If the Value is a frame index, we can create a FrameIndex debug value
1581     // without relying on the DAG at all.
1582     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1583       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1584       if (SI != FuncInfo.StaticAllocaMap.end()) {
1585         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1586         continue;
1587       }
1588     }
1589 
1590     // Do not use getValue() in here; we don't want to generate code at
1591     // this point if it hasn't been done yet.
1592     SDValue N = NodeMap[V];
1593     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1594       N = UnusedArgNodeMap[V];
1595     if (N.getNode()) {
1596       // Only emit func arg dbg value for non-variadic dbg.values for now.
1597       if (!IsVariadic &&
1598           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1599                                    FuncArgumentDbgValueKind::Value, N))
1600         return true;
1601       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1602         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1603         // describe stack slot locations.
1604         //
1605         // Consider "int x = 0; int *px = &x;". There are two kinds of
1606         // interesting debug values here after optimization:
1607         //
1608         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1609         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1610         //
1611         // Both describe the direct values of their associated variables.
1612         Dependencies.push_back(N.getNode());
1613         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1614         continue;
1615       }
1616       LocationOps.emplace_back(
1617           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1618       continue;
1619     }
1620 
1621     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1622     // Special rules apply for the first dbg.values of parameter variables in a
1623     // function. Identify them by the fact they reference Argument Values, that
1624     // they're parameters, and they are parameters of the current function. We
1625     // need to let them dangle until they get an SDNode.
1626     bool IsParamOfFunc =
1627         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1628     if (IsParamOfFunc)
1629       return false;
1630 
1631     // The value is not used in this block yet (or it would have an SDNode).
1632     // We still want the value to appear for the user if possible -- if it has
1633     // an associated VReg, we can refer to that instead.
1634     auto VMI = FuncInfo.ValueMap.find(V);
1635     if (VMI != FuncInfo.ValueMap.end()) {
1636       unsigned Reg = VMI->second;
1637       // If this is a PHI node, it may be split up into several MI PHI nodes
1638       // (in FunctionLoweringInfo::set).
1639       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1640                        V->getType(), std::nullopt);
1641       if (RFV.occupiesMultipleRegs()) {
1642         // FIXME: We could potentially support variadic dbg_values here.
1643         if (IsVariadic)
1644           return false;
1645         unsigned Offset = 0;
1646         unsigned BitsToDescribe = 0;
1647         if (auto VarSize = Var->getSizeInBits())
1648           BitsToDescribe = *VarSize;
1649         if (auto Fragment = Expr->getFragmentInfo())
1650           BitsToDescribe = Fragment->SizeInBits;
1651         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1652           // Bail out if all bits are described already.
1653           if (Offset >= BitsToDescribe)
1654             break;
1655           // TODO: handle scalable vectors.
1656           unsigned RegisterSize = RegAndSize.second;
1657           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1658                                       ? BitsToDescribe - Offset
1659                                       : RegisterSize;
1660           auto FragmentExpr = DIExpression::createFragmentExpression(
1661               Expr, Offset, FragmentSize);
1662           if (!FragmentExpr)
1663             continue;
1664           SDDbgValue *SDV = DAG.getVRegDbgValue(
1665               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1666           DAG.AddDbgValue(SDV, false);
1667           Offset += RegisterSize;
1668         }
1669         return true;
1670       }
1671       // We can use simple vreg locations for variadic dbg_values as well.
1672       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1673       continue;
1674     }
1675     // We failed to create a SDDbgOperand for V.
1676     return false;
1677   }
1678 
1679   // We have created a SDDbgOperand for each Value in Values.
1680   // Should use Order instead of SDNodeOrder?
1681   assert(!LocationOps.empty());
1682   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1683                                         /*IsIndirect=*/false, DbgLoc,
1684                                         SDNodeOrder, IsVariadic);
1685   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1686   return true;
1687 }
1688 
1689 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1690   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1691   for (auto &Pair : DanglingDebugInfoMap)
1692     for (auto &DDI : Pair.second)
1693       salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1694   clearDanglingDebugInfo();
1695 }
1696 
1697 /// getCopyFromRegs - If there was virtual register allocated for the value V
1698 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1699 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1700   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1701   SDValue Result;
1702 
1703   if (It != FuncInfo.ValueMap.end()) {
1704     Register InReg = It->second;
1705 
1706     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1707                      DAG.getDataLayout(), InReg, Ty,
1708                      std::nullopt); // This is not an ABI copy.
1709     SDValue Chain = DAG.getEntryNode();
1710     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1711                                  V);
1712     resolveDanglingDebugInfo(V, Result);
1713   }
1714 
1715   return Result;
1716 }
1717 
1718 /// getValue - Return an SDValue for the given Value.
1719 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1720   // If we already have an SDValue for this value, use it. It's important
1721   // to do this first, so that we don't create a CopyFromReg if we already
1722   // have a regular SDValue.
1723   SDValue &N = NodeMap[V];
1724   if (N.getNode()) return N;
1725 
1726   // If there's a virtual register allocated and initialized for this
1727   // value, use it.
1728   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1729     return copyFromReg;
1730 
1731   // Otherwise create a new SDValue and remember it.
1732   SDValue Val = getValueImpl(V);
1733   NodeMap[V] = Val;
1734   resolveDanglingDebugInfo(V, Val);
1735   return Val;
1736 }
1737 
1738 /// getNonRegisterValue - Return an SDValue for the given Value, but
1739 /// don't look in FuncInfo.ValueMap for a virtual register.
1740 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1741   // If we already have an SDValue for this value, use it.
1742   SDValue &N = NodeMap[V];
1743   if (N.getNode()) {
1744     if (isIntOrFPConstant(N)) {
1745       // Remove the debug location from the node as the node is about to be used
1746       // in a location which may differ from the original debug location.  This
1747       // is relevant to Constant and ConstantFP nodes because they can appear
1748       // as constant expressions inside PHI nodes.
1749       N->setDebugLoc(DebugLoc());
1750     }
1751     return N;
1752   }
1753 
1754   // Otherwise create a new SDValue and remember it.
1755   SDValue Val = getValueImpl(V);
1756   NodeMap[V] = Val;
1757   resolveDanglingDebugInfo(V, Val);
1758   return Val;
1759 }
1760 
1761 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1762 /// Create an SDValue for the given value.
1763 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1764   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1765 
1766   if (const Constant *C = dyn_cast<Constant>(V)) {
1767     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1768 
1769     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1770       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1771 
1772     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1773       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1774 
1775     if (isa<ConstantPointerNull>(C)) {
1776       unsigned AS = V->getType()->getPointerAddressSpace();
1777       return DAG.getConstant(0, getCurSDLoc(),
1778                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1779     }
1780 
1781     if (match(C, m_VScale()))
1782       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1783 
1784     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1785       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1786 
1787     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1788       return DAG.getUNDEF(VT);
1789 
1790     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1791       visit(CE->getOpcode(), *CE);
1792       SDValue N1 = NodeMap[V];
1793       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1794       return N1;
1795     }
1796 
1797     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1798       SmallVector<SDValue, 4> Constants;
1799       for (const Use &U : C->operands()) {
1800         SDNode *Val = getValue(U).getNode();
1801         // If the operand is an empty aggregate, there are no values.
1802         if (!Val) continue;
1803         // Add each leaf value from the operand to the Constants list
1804         // to form a flattened list of all the values.
1805         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1806           Constants.push_back(SDValue(Val, i));
1807       }
1808 
1809       return DAG.getMergeValues(Constants, getCurSDLoc());
1810     }
1811 
1812     if (const ConstantDataSequential *CDS =
1813           dyn_cast<ConstantDataSequential>(C)) {
1814       SmallVector<SDValue, 4> Ops;
1815       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1816         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1817         // Add each leaf value from the operand to the Constants list
1818         // to form a flattened list of all the values.
1819         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1820           Ops.push_back(SDValue(Val, i));
1821       }
1822 
1823       if (isa<ArrayType>(CDS->getType()))
1824         return DAG.getMergeValues(Ops, getCurSDLoc());
1825       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1826     }
1827 
1828     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1829       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1830              "Unknown struct or array constant!");
1831 
1832       SmallVector<EVT, 4> ValueVTs;
1833       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1834       unsigned NumElts = ValueVTs.size();
1835       if (NumElts == 0)
1836         return SDValue(); // empty struct
1837       SmallVector<SDValue, 4> Constants(NumElts);
1838       for (unsigned i = 0; i != NumElts; ++i) {
1839         EVT EltVT = ValueVTs[i];
1840         if (isa<UndefValue>(C))
1841           Constants[i] = DAG.getUNDEF(EltVT);
1842         else if (EltVT.isFloatingPoint())
1843           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1844         else
1845           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1846       }
1847 
1848       return DAG.getMergeValues(Constants, getCurSDLoc());
1849     }
1850 
1851     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1852       return DAG.getBlockAddress(BA, VT);
1853 
1854     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1855       return getValue(Equiv->getGlobalValue());
1856 
1857     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1858       return getValue(NC->getGlobalValue());
1859 
1860     if (VT == MVT::aarch64svcount) {
1861       assert(C->isNullValue() && "Can only zero this target type!");
1862       return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1863                          DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1864     }
1865 
1866     VectorType *VecTy = cast<VectorType>(V->getType());
1867 
1868     // Now that we know the number and type of the elements, get that number of
1869     // elements into the Ops array based on what kind of constant it is.
1870     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1871       SmallVector<SDValue, 16> Ops;
1872       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1873       for (unsigned i = 0; i != NumElements; ++i)
1874         Ops.push_back(getValue(CV->getOperand(i)));
1875 
1876       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1877     }
1878 
1879     if (isa<ConstantAggregateZero>(C)) {
1880       EVT EltVT =
1881           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1882 
1883       SDValue Op;
1884       if (EltVT.isFloatingPoint())
1885         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1886       else
1887         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1888 
1889       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1890     }
1891 
1892     llvm_unreachable("Unknown vector constant");
1893   }
1894 
1895   // If this is a static alloca, generate it as the frameindex instead of
1896   // computation.
1897   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1898     DenseMap<const AllocaInst*, int>::iterator SI =
1899       FuncInfo.StaticAllocaMap.find(AI);
1900     if (SI != FuncInfo.StaticAllocaMap.end())
1901       return DAG.getFrameIndex(
1902           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1903   }
1904 
1905   // If this is an instruction which fast-isel has deferred, select it now.
1906   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1907     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1908 
1909     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1910                      Inst->getType(), std::nullopt);
1911     SDValue Chain = DAG.getEntryNode();
1912     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1913   }
1914 
1915   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1916     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1917 
1918   if (const auto *BB = dyn_cast<BasicBlock>(V))
1919     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1920 
1921   llvm_unreachable("Can't get register for value!");
1922 }
1923 
1924 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1925   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1926   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1927   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1928   bool IsSEH = isAsynchronousEHPersonality(Pers);
1929   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1930   if (!IsSEH)
1931     CatchPadMBB->setIsEHScopeEntry();
1932   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1933   if (IsMSVCCXX || IsCoreCLR)
1934     CatchPadMBB->setIsEHFuncletEntry();
1935 }
1936 
1937 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1938   // Update machine-CFG edge.
1939   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1940   FuncInfo.MBB->addSuccessor(TargetMBB);
1941   TargetMBB->setIsEHCatchretTarget(true);
1942   DAG.getMachineFunction().setHasEHCatchret(true);
1943 
1944   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1945   bool IsSEH = isAsynchronousEHPersonality(Pers);
1946   if (IsSEH) {
1947     // If this is not a fall-through branch or optimizations are switched off,
1948     // emit the branch.
1949     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1950         TM.getOptLevel() == CodeGenOptLevel::None)
1951       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1952                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1953     return;
1954   }
1955 
1956   // Figure out the funclet membership for the catchret's successor.
1957   // This will be used by the FuncletLayout pass to determine how to order the
1958   // BB's.
1959   // A 'catchret' returns to the outer scope's color.
1960   Value *ParentPad = I.getCatchSwitchParentPad();
1961   const BasicBlock *SuccessorColor;
1962   if (isa<ConstantTokenNone>(ParentPad))
1963     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1964   else
1965     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1966   assert(SuccessorColor && "No parent funclet for catchret!");
1967   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1968   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1969 
1970   // Create the terminator node.
1971   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1972                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1973                             DAG.getBasicBlock(SuccessorColorMBB));
1974   DAG.setRoot(Ret);
1975 }
1976 
1977 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1978   // Don't emit any special code for the cleanuppad instruction. It just marks
1979   // the start of an EH scope/funclet.
1980   FuncInfo.MBB->setIsEHScopeEntry();
1981   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1982   if (Pers != EHPersonality::Wasm_CXX) {
1983     FuncInfo.MBB->setIsEHFuncletEntry();
1984     FuncInfo.MBB->setIsCleanupFuncletEntry();
1985   }
1986 }
1987 
1988 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1989 // not match, it is OK to add only the first unwind destination catchpad to the
1990 // successors, because there will be at least one invoke instruction within the
1991 // catch scope that points to the next unwind destination, if one exists, so
1992 // CFGSort cannot mess up with BB sorting order.
1993 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1994 // call within them, and catchpads only consisting of 'catch (...)' have a
1995 // '__cxa_end_catch' call within them, both of which generate invokes in case
1996 // the next unwind destination exists, i.e., the next unwind destination is not
1997 // the caller.)
1998 //
1999 // Having at most one EH pad successor is also simpler and helps later
2000 // transformations.
2001 //
2002 // For example,
2003 // current:
2004 //   invoke void @foo to ... unwind label %catch.dispatch
2005 // catch.dispatch:
2006 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
2007 // catch.start:
2008 //   ...
2009 //   ... in this BB or some other child BB dominated by this BB there will be an
2010 //   invoke that points to 'next' BB as an unwind destination
2011 //
2012 // next: ; We don't need to add this to 'current' BB's successor
2013 //   ...
2014 static void findWasmUnwindDestinations(
2015     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2016     BranchProbability Prob,
2017     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2018         &UnwindDests) {
2019   while (EHPadBB) {
2020     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2021     if (isa<CleanupPadInst>(Pad)) {
2022       // Stop on cleanup pads.
2023       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2024       UnwindDests.back().first->setIsEHScopeEntry();
2025       break;
2026     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2027       // Add the catchpad handlers to the possible destinations. We don't
2028       // continue to the unwind destination of the catchswitch for wasm.
2029       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2030         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2031         UnwindDests.back().first->setIsEHScopeEntry();
2032       }
2033       break;
2034     } else {
2035       continue;
2036     }
2037   }
2038 }
2039 
2040 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2041 /// many places it could ultimately go. In the IR, we have a single unwind
2042 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2043 /// This function skips over imaginary basic blocks that hold catchswitch
2044 /// instructions, and finds all the "real" machine
2045 /// basic block destinations. As those destinations may not be successors of
2046 /// EHPadBB, here we also calculate the edge probability to those destinations.
2047 /// The passed-in Prob is the edge probability to EHPadBB.
2048 static void findUnwindDestinations(
2049     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2050     BranchProbability Prob,
2051     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2052         &UnwindDests) {
2053   EHPersonality Personality =
2054     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2055   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2056   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2057   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2058   bool IsSEH = isAsynchronousEHPersonality(Personality);
2059 
2060   if (IsWasmCXX) {
2061     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2062     assert(UnwindDests.size() <= 1 &&
2063            "There should be at most one unwind destination for wasm");
2064     return;
2065   }
2066 
2067   while (EHPadBB) {
2068     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2069     BasicBlock *NewEHPadBB = nullptr;
2070     if (isa<LandingPadInst>(Pad)) {
2071       // Stop on landingpads. They are not funclets.
2072       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2073       break;
2074     } else if (isa<CleanupPadInst>(Pad)) {
2075       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2076       // personalities.
2077       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2078       UnwindDests.back().first->setIsEHScopeEntry();
2079       UnwindDests.back().first->setIsEHFuncletEntry();
2080       break;
2081     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2082       // Add the catchpad handlers to the possible destinations.
2083       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2084         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2085         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2086         if (IsMSVCCXX || IsCoreCLR)
2087           UnwindDests.back().first->setIsEHFuncletEntry();
2088         if (!IsSEH)
2089           UnwindDests.back().first->setIsEHScopeEntry();
2090       }
2091       NewEHPadBB = CatchSwitch->getUnwindDest();
2092     } else {
2093       continue;
2094     }
2095 
2096     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2097     if (BPI && NewEHPadBB)
2098       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2099     EHPadBB = NewEHPadBB;
2100   }
2101 }
2102 
2103 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2104   // Update successor info.
2105   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2106   auto UnwindDest = I.getUnwindDest();
2107   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2108   BranchProbability UnwindDestProb =
2109       (BPI && UnwindDest)
2110           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2111           : BranchProbability::getZero();
2112   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2113   for (auto &UnwindDest : UnwindDests) {
2114     UnwindDest.first->setIsEHPad();
2115     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2116   }
2117   FuncInfo.MBB->normalizeSuccProbs();
2118 
2119   // Create the terminator node.
2120   SDValue Ret =
2121       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
2122   DAG.setRoot(Ret);
2123 }
2124 
2125 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2126   report_fatal_error("visitCatchSwitch not yet implemented!");
2127 }
2128 
2129 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2130   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2131   auto &DL = DAG.getDataLayout();
2132   SDValue Chain = getControlRoot();
2133   SmallVector<ISD::OutputArg, 8> Outs;
2134   SmallVector<SDValue, 8> OutVals;
2135 
2136   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2137   // lower
2138   //
2139   //   %val = call <ty> @llvm.experimental.deoptimize()
2140   //   ret <ty> %val
2141   //
2142   // differently.
2143   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2144     LowerDeoptimizingReturn();
2145     return;
2146   }
2147 
2148   if (!FuncInfo.CanLowerReturn) {
2149     unsigned DemoteReg = FuncInfo.DemoteRegister;
2150     const Function *F = I.getParent()->getParent();
2151 
2152     // Emit a store of the return value through the virtual register.
2153     // Leave Outs empty so that LowerReturn won't try to load return
2154     // registers the usual way.
2155     SmallVector<EVT, 1> PtrValueVTs;
2156     ComputeValueVTs(TLI, DL,
2157                     PointerType::get(F->getContext(),
2158                                      DAG.getDataLayout().getAllocaAddrSpace()),
2159                     PtrValueVTs);
2160 
2161     SDValue RetPtr =
2162         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2163     SDValue RetOp = getValue(I.getOperand(0));
2164 
2165     SmallVector<EVT, 4> ValueVTs, MemVTs;
2166     SmallVector<uint64_t, 4> Offsets;
2167     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2168                     &Offsets, 0);
2169     unsigned NumValues = ValueVTs.size();
2170 
2171     SmallVector<SDValue, 4> Chains(NumValues);
2172     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2173     for (unsigned i = 0; i != NumValues; ++i) {
2174       // An aggregate return value cannot wrap around the address space, so
2175       // offsets to its parts don't wrap either.
2176       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2177                                            TypeSize::getFixed(Offsets[i]));
2178 
2179       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2180       if (MemVTs[i] != ValueVTs[i])
2181         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2182       Chains[i] = DAG.getStore(
2183           Chain, getCurSDLoc(), Val,
2184           // FIXME: better loc info would be nice.
2185           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2186           commonAlignment(BaseAlign, Offsets[i]));
2187     }
2188 
2189     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2190                         MVT::Other, Chains);
2191   } else if (I.getNumOperands() != 0) {
2192     SmallVector<EVT, 4> ValueVTs;
2193     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2194     unsigned NumValues = ValueVTs.size();
2195     if (NumValues) {
2196       SDValue RetOp = getValue(I.getOperand(0));
2197 
2198       const Function *F = I.getParent()->getParent();
2199 
2200       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2201           I.getOperand(0)->getType(), F->getCallingConv(),
2202           /*IsVarArg*/ false, DL);
2203 
2204       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2205       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2206         ExtendKind = ISD::SIGN_EXTEND;
2207       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2208         ExtendKind = ISD::ZERO_EXTEND;
2209 
2210       LLVMContext &Context = F->getContext();
2211       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2212 
2213       for (unsigned j = 0; j != NumValues; ++j) {
2214         EVT VT = ValueVTs[j];
2215 
2216         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2217           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2218 
2219         CallingConv::ID CC = F->getCallingConv();
2220 
2221         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2222         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2223         SmallVector<SDValue, 4> Parts(NumParts);
2224         getCopyToParts(DAG, getCurSDLoc(),
2225                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2226                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2227 
2228         // 'inreg' on function refers to return value
2229         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2230         if (RetInReg)
2231           Flags.setInReg();
2232 
2233         if (I.getOperand(0)->getType()->isPointerTy()) {
2234           Flags.setPointer();
2235           Flags.setPointerAddrSpace(
2236               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2237         }
2238 
2239         if (NeedsRegBlock) {
2240           Flags.setInConsecutiveRegs();
2241           if (j == NumValues - 1)
2242             Flags.setInConsecutiveRegsLast();
2243         }
2244 
2245         // Propagate extension type if any
2246         if (ExtendKind == ISD::SIGN_EXTEND)
2247           Flags.setSExt();
2248         else if (ExtendKind == ISD::ZERO_EXTEND)
2249           Flags.setZExt();
2250 
2251         for (unsigned i = 0; i < NumParts; ++i) {
2252           Outs.push_back(ISD::OutputArg(Flags,
2253                                         Parts[i].getValueType().getSimpleVT(),
2254                                         VT, /*isfixed=*/true, 0, 0));
2255           OutVals.push_back(Parts[i]);
2256         }
2257       }
2258     }
2259   }
2260 
2261   // Push in swifterror virtual register as the last element of Outs. This makes
2262   // sure swifterror virtual register will be returned in the swifterror
2263   // physical register.
2264   const Function *F = I.getParent()->getParent();
2265   if (TLI.supportSwiftError() &&
2266       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2267     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2268     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2269     Flags.setSwiftError();
2270     Outs.push_back(ISD::OutputArg(
2271         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2272         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2273     // Create SDNode for the swifterror virtual register.
2274     OutVals.push_back(
2275         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2276                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2277                         EVT(TLI.getPointerTy(DL))));
2278   }
2279 
2280   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2281   CallingConv::ID CallConv =
2282     DAG.getMachineFunction().getFunction().getCallingConv();
2283   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2284       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2285 
2286   // Verify that the target's LowerReturn behaved as expected.
2287   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2288          "LowerReturn didn't return a valid chain!");
2289 
2290   // Update the DAG with the new chain value resulting from return lowering.
2291   DAG.setRoot(Chain);
2292 }
2293 
2294 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2295 /// created for it, emit nodes to copy the value into the virtual
2296 /// registers.
2297 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2298   // Skip empty types
2299   if (V->getType()->isEmptyTy())
2300     return;
2301 
2302   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2303   if (VMI != FuncInfo.ValueMap.end()) {
2304     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2305            "Unused value assigned virtual registers!");
2306     CopyValueToVirtualRegister(V, VMI->second);
2307   }
2308 }
2309 
2310 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2311 /// the current basic block, add it to ValueMap now so that we'll get a
2312 /// CopyTo/FromReg.
2313 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2314   // No need to export constants.
2315   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2316 
2317   // Already exported?
2318   if (FuncInfo.isExportedInst(V)) return;
2319 
2320   Register Reg = FuncInfo.InitializeRegForValue(V);
2321   CopyValueToVirtualRegister(V, Reg);
2322 }
2323 
2324 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2325                                                      const BasicBlock *FromBB) {
2326   // The operands of the setcc have to be in this block.  We don't know
2327   // how to export them from some other block.
2328   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2329     // Can export from current BB.
2330     if (VI->getParent() == FromBB)
2331       return true;
2332 
2333     // Is already exported, noop.
2334     return FuncInfo.isExportedInst(V);
2335   }
2336 
2337   // If this is an argument, we can export it if the BB is the entry block or
2338   // if it is already exported.
2339   if (isa<Argument>(V)) {
2340     if (FromBB->isEntryBlock())
2341       return true;
2342 
2343     // Otherwise, can only export this if it is already exported.
2344     return FuncInfo.isExportedInst(V);
2345   }
2346 
2347   // Otherwise, constants can always be exported.
2348   return true;
2349 }
2350 
2351 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2352 BranchProbability
2353 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2354                                         const MachineBasicBlock *Dst) const {
2355   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2356   const BasicBlock *SrcBB = Src->getBasicBlock();
2357   const BasicBlock *DstBB = Dst->getBasicBlock();
2358   if (!BPI) {
2359     // If BPI is not available, set the default probability as 1 / N, where N is
2360     // the number of successors.
2361     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2362     return BranchProbability(1, SuccSize);
2363   }
2364   return BPI->getEdgeProbability(SrcBB, DstBB);
2365 }
2366 
2367 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2368                                                MachineBasicBlock *Dst,
2369                                                BranchProbability Prob) {
2370   if (!FuncInfo.BPI)
2371     Src->addSuccessorWithoutProb(Dst);
2372   else {
2373     if (Prob.isUnknown())
2374       Prob = getEdgeProbability(Src, Dst);
2375     Src->addSuccessor(Dst, Prob);
2376   }
2377 }
2378 
2379 static bool InBlock(const Value *V, const BasicBlock *BB) {
2380   if (const Instruction *I = dyn_cast<Instruction>(V))
2381     return I->getParent() == BB;
2382   return true;
2383 }
2384 
2385 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2386 /// This function emits a branch and is used at the leaves of an OR or an
2387 /// AND operator tree.
2388 void
2389 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2390                                                   MachineBasicBlock *TBB,
2391                                                   MachineBasicBlock *FBB,
2392                                                   MachineBasicBlock *CurBB,
2393                                                   MachineBasicBlock *SwitchBB,
2394                                                   BranchProbability TProb,
2395                                                   BranchProbability FProb,
2396                                                   bool InvertCond) {
2397   const BasicBlock *BB = CurBB->getBasicBlock();
2398 
2399   // If the leaf of the tree is a comparison, merge the condition into
2400   // the caseblock.
2401   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2402     // The operands of the cmp have to be in this block.  We don't know
2403     // how to export them from some other block.  If this is the first block
2404     // of the sequence, no exporting is needed.
2405     if (CurBB == SwitchBB ||
2406         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2407          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2408       ISD::CondCode Condition;
2409       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2410         ICmpInst::Predicate Pred =
2411             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2412         Condition = getICmpCondCode(Pred);
2413       } else {
2414         const FCmpInst *FC = cast<FCmpInst>(Cond);
2415         FCmpInst::Predicate Pred =
2416             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2417         Condition = getFCmpCondCode(Pred);
2418         if (TM.Options.NoNaNsFPMath)
2419           Condition = getFCmpCodeWithoutNaN(Condition);
2420       }
2421 
2422       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2423                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2424       SL->SwitchCases.push_back(CB);
2425       return;
2426     }
2427   }
2428 
2429   // Create a CaseBlock record representing this branch.
2430   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2431   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2432                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2433   SL->SwitchCases.push_back(CB);
2434 }
2435 
2436 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2437                                                MachineBasicBlock *TBB,
2438                                                MachineBasicBlock *FBB,
2439                                                MachineBasicBlock *CurBB,
2440                                                MachineBasicBlock *SwitchBB,
2441                                                Instruction::BinaryOps Opc,
2442                                                BranchProbability TProb,
2443                                                BranchProbability FProb,
2444                                                bool InvertCond) {
2445   // Skip over not part of the tree and remember to invert op and operands at
2446   // next level.
2447   Value *NotCond;
2448   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2449       InBlock(NotCond, CurBB->getBasicBlock())) {
2450     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2451                          !InvertCond);
2452     return;
2453   }
2454 
2455   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2456   const Value *BOpOp0, *BOpOp1;
2457   // Compute the effective opcode for Cond, taking into account whether it needs
2458   // to be inverted, e.g.
2459   //   and (not (or A, B)), C
2460   // gets lowered as
2461   //   and (and (not A, not B), C)
2462   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2463   if (BOp) {
2464     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2465                ? Instruction::And
2466                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2467                       ? Instruction::Or
2468                       : (Instruction::BinaryOps)0);
2469     if (InvertCond) {
2470       if (BOpc == Instruction::And)
2471         BOpc = Instruction::Or;
2472       else if (BOpc == Instruction::Or)
2473         BOpc = Instruction::And;
2474     }
2475   }
2476 
2477   // If this node is not part of the or/and tree, emit it as a branch.
2478   // Note that all nodes in the tree should have same opcode.
2479   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2480   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2481       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2482       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2483     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2484                                  TProb, FProb, InvertCond);
2485     return;
2486   }
2487 
2488   //  Create TmpBB after CurBB.
2489   MachineFunction::iterator BBI(CurBB);
2490   MachineFunction &MF = DAG.getMachineFunction();
2491   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2492   CurBB->getParent()->insert(++BBI, TmpBB);
2493 
2494   if (Opc == Instruction::Or) {
2495     // Codegen X | Y as:
2496     // BB1:
2497     //   jmp_if_X TBB
2498     //   jmp TmpBB
2499     // TmpBB:
2500     //   jmp_if_Y TBB
2501     //   jmp FBB
2502     //
2503 
2504     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2505     // The requirement is that
2506     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2507     //     = TrueProb for original BB.
2508     // Assuming the original probabilities are A and B, one choice is to set
2509     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2510     // A/(1+B) and 2B/(1+B). This choice assumes that
2511     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2512     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2513     // TmpBB, but the math is more complicated.
2514 
2515     auto NewTrueProb = TProb / 2;
2516     auto NewFalseProb = TProb / 2 + FProb;
2517     // Emit the LHS condition.
2518     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2519                          NewFalseProb, InvertCond);
2520 
2521     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2522     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2523     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2524     // Emit the RHS condition into TmpBB.
2525     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2526                          Probs[1], InvertCond);
2527   } else {
2528     assert(Opc == Instruction::And && "Unknown merge op!");
2529     // Codegen X & Y as:
2530     // BB1:
2531     //   jmp_if_X TmpBB
2532     //   jmp FBB
2533     // TmpBB:
2534     //   jmp_if_Y TBB
2535     //   jmp FBB
2536     //
2537     //  This requires creation of TmpBB after CurBB.
2538 
2539     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2540     // The requirement is that
2541     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2542     //     = FalseProb for original BB.
2543     // Assuming the original probabilities are A and B, one choice is to set
2544     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2545     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2546     // TrueProb for BB1 * FalseProb for TmpBB.
2547 
2548     auto NewTrueProb = TProb + FProb / 2;
2549     auto NewFalseProb = FProb / 2;
2550     // Emit the LHS condition.
2551     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2552                          NewFalseProb, InvertCond);
2553 
2554     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2555     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2556     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2557     // Emit the RHS condition into TmpBB.
2558     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2559                          Probs[1], InvertCond);
2560   }
2561 }
2562 
2563 /// If the set of cases should be emitted as a series of branches, return true.
2564 /// If we should emit this as a bunch of and/or'd together conditions, return
2565 /// false.
2566 bool
2567 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2568   if (Cases.size() != 2) return true;
2569 
2570   // If this is two comparisons of the same values or'd or and'd together, they
2571   // will get folded into a single comparison, so don't emit two blocks.
2572   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2573        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2574       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2575        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2576     return false;
2577   }
2578 
2579   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2580   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2581   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2582       Cases[0].CC == Cases[1].CC &&
2583       isa<Constant>(Cases[0].CmpRHS) &&
2584       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2585     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2586       return false;
2587     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2588       return false;
2589   }
2590 
2591   return true;
2592 }
2593 
2594 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2595   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2596 
2597   // Update machine-CFG edges.
2598   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2599 
2600   if (I.isUnconditional()) {
2601     // Update machine-CFG edges.
2602     BrMBB->addSuccessor(Succ0MBB);
2603 
2604     // If this is not a fall-through branch or optimizations are switched off,
2605     // emit the branch.
2606     if (Succ0MBB != NextBlock(BrMBB) ||
2607         TM.getOptLevel() == CodeGenOptLevel::None) {
2608       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2609                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2610       setValue(&I, Br);
2611       DAG.setRoot(Br);
2612     }
2613 
2614     return;
2615   }
2616 
2617   // If this condition is one of the special cases we handle, do special stuff
2618   // now.
2619   const Value *CondVal = I.getCondition();
2620   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2621 
2622   // If this is a series of conditions that are or'd or and'd together, emit
2623   // this as a sequence of branches instead of setcc's with and/or operations.
2624   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2625   // unpredictable branches, and vector extracts because those jumps are likely
2626   // expensive for any target), this should improve performance.
2627   // For example, instead of something like:
2628   //     cmp A, B
2629   //     C = seteq
2630   //     cmp D, E
2631   //     F = setle
2632   //     or C, F
2633   //     jnz foo
2634   // Emit:
2635   //     cmp A, B
2636   //     je foo
2637   //     cmp D, E
2638   //     jle foo
2639   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2640   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2641       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2642     Value *Vec;
2643     const Value *BOp0, *BOp1;
2644     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2645     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2646       Opcode = Instruction::And;
2647     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2648       Opcode = Instruction::Or;
2649 
2650     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2651                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2652       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2653                            getEdgeProbability(BrMBB, Succ0MBB),
2654                            getEdgeProbability(BrMBB, Succ1MBB),
2655                            /*InvertCond=*/false);
2656       // If the compares in later blocks need to use values not currently
2657       // exported from this block, export them now.  This block should always
2658       // be the first entry.
2659       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2660 
2661       // Allow some cases to be rejected.
2662       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2663         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2664           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2665           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2666         }
2667 
2668         // Emit the branch for this block.
2669         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2670         SL->SwitchCases.erase(SL->SwitchCases.begin());
2671         return;
2672       }
2673 
2674       // Okay, we decided not to do this, remove any inserted MBB's and clear
2675       // SwitchCases.
2676       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2677         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2678 
2679       SL->SwitchCases.clear();
2680     }
2681   }
2682 
2683   // Create a CaseBlock record representing this branch.
2684   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2685                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2686 
2687   // Use visitSwitchCase to actually insert the fast branch sequence for this
2688   // cond branch.
2689   visitSwitchCase(CB, BrMBB);
2690 }
2691 
2692 /// visitSwitchCase - Emits the necessary code to represent a single node in
2693 /// the binary search tree resulting from lowering a switch instruction.
2694 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2695                                           MachineBasicBlock *SwitchBB) {
2696   SDValue Cond;
2697   SDValue CondLHS = getValue(CB.CmpLHS);
2698   SDLoc dl = CB.DL;
2699 
2700   if (CB.CC == ISD::SETTRUE) {
2701     // Branch or fall through to TrueBB.
2702     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2703     SwitchBB->normalizeSuccProbs();
2704     if (CB.TrueBB != NextBlock(SwitchBB)) {
2705       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2706                               DAG.getBasicBlock(CB.TrueBB)));
2707     }
2708     return;
2709   }
2710 
2711   auto &TLI = DAG.getTargetLoweringInfo();
2712   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2713 
2714   // Build the setcc now.
2715   if (!CB.CmpMHS) {
2716     // Fold "(X == true)" to X and "(X == false)" to !X to
2717     // handle common cases produced by branch lowering.
2718     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2719         CB.CC == ISD::SETEQ)
2720       Cond = CondLHS;
2721     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2722              CB.CC == ISD::SETEQ) {
2723       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2724       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2725     } else {
2726       SDValue CondRHS = getValue(CB.CmpRHS);
2727 
2728       // If a pointer's DAG type is larger than its memory type then the DAG
2729       // values are zero-extended. This breaks signed comparisons so truncate
2730       // back to the underlying type before doing the compare.
2731       if (CondLHS.getValueType() != MemVT) {
2732         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2733         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2734       }
2735       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2736     }
2737   } else {
2738     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2739 
2740     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2741     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2742 
2743     SDValue CmpOp = getValue(CB.CmpMHS);
2744     EVT VT = CmpOp.getValueType();
2745 
2746     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2747       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2748                           ISD::SETLE);
2749     } else {
2750       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2751                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2752       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2753                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2754     }
2755   }
2756 
2757   // Update successor info
2758   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2759   // TrueBB and FalseBB are always different unless the incoming IR is
2760   // degenerate. This only happens when running llc on weird IR.
2761   if (CB.TrueBB != CB.FalseBB)
2762     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2763   SwitchBB->normalizeSuccProbs();
2764 
2765   // If the lhs block is the next block, invert the condition so that we can
2766   // fall through to the lhs instead of the rhs block.
2767   if (CB.TrueBB == NextBlock(SwitchBB)) {
2768     std::swap(CB.TrueBB, CB.FalseBB);
2769     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2770     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2771   }
2772 
2773   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2774                                MVT::Other, getControlRoot(), Cond,
2775                                DAG.getBasicBlock(CB.TrueBB));
2776 
2777   setValue(CurInst, BrCond);
2778 
2779   // Insert the false branch. Do this even if it's a fall through branch,
2780   // this makes it easier to do DAG optimizations which require inverting
2781   // the branch condition.
2782   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2783                        DAG.getBasicBlock(CB.FalseBB));
2784 
2785   DAG.setRoot(BrCond);
2786 }
2787 
2788 /// visitJumpTable - Emit JumpTable node in the current MBB
2789 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2790   // Emit the code for the jump table
2791   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2792   assert(JT.Reg != -1U && "Should lower JT Header first!");
2793   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2794   SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2795   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2796   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2797                                     Index.getValue(1), Table, Index);
2798   DAG.setRoot(BrJumpTable);
2799 }
2800 
2801 /// visitJumpTableHeader - This function emits necessary code to produce index
2802 /// in the JumpTable from switch case.
2803 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2804                                                JumpTableHeader &JTH,
2805                                                MachineBasicBlock *SwitchBB) {
2806   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2807   const SDLoc &dl = *JT.SL;
2808 
2809   // Subtract the lowest switch case value from the value being switched on.
2810   SDValue SwitchOp = getValue(JTH.SValue);
2811   EVT VT = SwitchOp.getValueType();
2812   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2813                             DAG.getConstant(JTH.First, dl, VT));
2814 
2815   // The SDNode we just created, which holds the value being switched on minus
2816   // the smallest case value, needs to be copied to a virtual register so it
2817   // can be used as an index into the jump table in a subsequent basic block.
2818   // This value may be smaller or larger than the target's pointer type, and
2819   // therefore require extension or truncating.
2820   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2821   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2822 
2823   unsigned JumpTableReg =
2824       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2825   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2826                                     JumpTableReg, SwitchOp);
2827   JT.Reg = JumpTableReg;
2828 
2829   if (!JTH.FallthroughUnreachable) {
2830     // Emit the range check for the jump table, and branch to the default block
2831     // for the switch statement if the value being switched on exceeds the
2832     // largest case in the switch.
2833     SDValue CMP = DAG.getSetCC(
2834         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2835                                    Sub.getValueType()),
2836         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2837 
2838     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2839                                  MVT::Other, CopyTo, CMP,
2840                                  DAG.getBasicBlock(JT.Default));
2841 
2842     // Avoid emitting unnecessary branches to the next block.
2843     if (JT.MBB != NextBlock(SwitchBB))
2844       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2845                            DAG.getBasicBlock(JT.MBB));
2846 
2847     DAG.setRoot(BrCond);
2848   } else {
2849     // Avoid emitting unnecessary branches to the next block.
2850     if (JT.MBB != NextBlock(SwitchBB))
2851       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2852                               DAG.getBasicBlock(JT.MBB)));
2853     else
2854       DAG.setRoot(CopyTo);
2855   }
2856 }
2857 
2858 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2859 /// variable if there exists one.
2860 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2861                                  SDValue &Chain) {
2862   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2863   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2864   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2865   MachineFunction &MF = DAG.getMachineFunction();
2866   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2867   MachineSDNode *Node =
2868       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2869   if (Global) {
2870     MachinePointerInfo MPInfo(Global);
2871     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2872                  MachineMemOperand::MODereferenceable;
2873     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2874         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2875     DAG.setNodeMemRefs(Node, {MemRef});
2876   }
2877   if (PtrTy != PtrMemTy)
2878     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2879   return SDValue(Node, 0);
2880 }
2881 
2882 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2883 /// tail spliced into a stack protector check success bb.
2884 ///
2885 /// For a high level explanation of how this fits into the stack protector
2886 /// generation see the comment on the declaration of class
2887 /// StackProtectorDescriptor.
2888 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2889                                                   MachineBasicBlock *ParentBB) {
2890 
2891   // First create the loads to the guard/stack slot for the comparison.
2892   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2893   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2894   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2895 
2896   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2897   int FI = MFI.getStackProtectorIndex();
2898 
2899   SDValue Guard;
2900   SDLoc dl = getCurSDLoc();
2901   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2902   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2903   Align Align =
2904       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
2905 
2906   // Generate code to load the content of the guard slot.
2907   SDValue GuardVal = DAG.getLoad(
2908       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2909       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2910       MachineMemOperand::MOVolatile);
2911 
2912   if (TLI.useStackGuardXorFP())
2913     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2914 
2915   // Retrieve guard check function, nullptr if instrumentation is inlined.
2916   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2917     // The target provides a guard check function to validate the guard value.
2918     // Generate a call to that function with the content of the guard slot as
2919     // argument.
2920     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2921     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2922 
2923     TargetLowering::ArgListTy Args;
2924     TargetLowering::ArgListEntry Entry;
2925     Entry.Node = GuardVal;
2926     Entry.Ty = FnTy->getParamType(0);
2927     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2928       Entry.IsInReg = true;
2929     Args.push_back(Entry);
2930 
2931     TargetLowering::CallLoweringInfo CLI(DAG);
2932     CLI.setDebugLoc(getCurSDLoc())
2933         .setChain(DAG.getEntryNode())
2934         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2935                    getValue(GuardCheckFn), std::move(Args));
2936 
2937     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2938     DAG.setRoot(Result.second);
2939     return;
2940   }
2941 
2942   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2943   // Otherwise, emit a volatile load to retrieve the stack guard value.
2944   SDValue Chain = DAG.getEntryNode();
2945   if (TLI.useLoadStackGuardNode()) {
2946     Guard = getLoadStackGuard(DAG, dl, Chain);
2947   } else {
2948     const Value *IRGuard = TLI.getSDagStackGuard(M);
2949     SDValue GuardPtr = getValue(IRGuard);
2950 
2951     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2952                         MachinePointerInfo(IRGuard, 0), Align,
2953                         MachineMemOperand::MOVolatile);
2954   }
2955 
2956   // Perform the comparison via a getsetcc.
2957   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2958                                                         *DAG.getContext(),
2959                                                         Guard.getValueType()),
2960                              Guard, GuardVal, ISD::SETNE);
2961 
2962   // If the guard/stackslot do not equal, branch to failure MBB.
2963   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2964                                MVT::Other, GuardVal.getOperand(0),
2965                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2966   // Otherwise branch to success MBB.
2967   SDValue Br = DAG.getNode(ISD::BR, dl,
2968                            MVT::Other, BrCond,
2969                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2970 
2971   DAG.setRoot(Br);
2972 }
2973 
2974 /// Codegen the failure basic block for a stack protector check.
2975 ///
2976 /// A failure stack protector machine basic block consists simply of a call to
2977 /// __stack_chk_fail().
2978 ///
2979 /// For a high level explanation of how this fits into the stack protector
2980 /// generation see the comment on the declaration of class
2981 /// StackProtectorDescriptor.
2982 void
2983 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2984   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2985   TargetLowering::MakeLibCallOptions CallOptions;
2986   CallOptions.setDiscardResult(true);
2987   SDValue Chain =
2988       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2989                       std::nullopt, CallOptions, getCurSDLoc())
2990           .second;
2991   // On PS4/PS5, the "return address" must still be within the calling
2992   // function, even if it's at the very end, so emit an explicit TRAP here.
2993   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2994   if (TM.getTargetTriple().isPS())
2995     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2996   // WebAssembly needs an unreachable instruction after a non-returning call,
2997   // because the function return type can be different from __stack_chk_fail's
2998   // return type (void).
2999   if (TM.getTargetTriple().isWasm())
3000     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3001 
3002   DAG.setRoot(Chain);
3003 }
3004 
3005 /// visitBitTestHeader - This function emits necessary code to produce value
3006 /// suitable for "bit tests"
3007 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
3008                                              MachineBasicBlock *SwitchBB) {
3009   SDLoc dl = getCurSDLoc();
3010 
3011   // Subtract the minimum value.
3012   SDValue SwitchOp = getValue(B.SValue);
3013   EVT VT = SwitchOp.getValueType();
3014   SDValue RangeSub =
3015       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3016 
3017   // Determine the type of the test operands.
3018   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3019   bool UsePtrType = false;
3020   if (!TLI.isTypeLegal(VT)) {
3021     UsePtrType = true;
3022   } else {
3023     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
3024       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3025         // Switch table case range are encoded into series of masks.
3026         // Just use pointer type, it's guaranteed to fit.
3027         UsePtrType = true;
3028         break;
3029       }
3030   }
3031   SDValue Sub = RangeSub;
3032   if (UsePtrType) {
3033     VT = TLI.getPointerTy(DAG.getDataLayout());
3034     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3035   }
3036 
3037   B.RegVT = VT.getSimpleVT();
3038   B.Reg = FuncInfo.CreateReg(B.RegVT);
3039   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3040 
3041   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3042 
3043   if (!B.FallthroughUnreachable)
3044     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3045   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3046   SwitchBB->normalizeSuccProbs();
3047 
3048   SDValue Root = CopyTo;
3049   if (!B.FallthroughUnreachable) {
3050     // Conditional branch to the default block.
3051     SDValue RangeCmp = DAG.getSetCC(dl,
3052         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3053                                RangeSub.getValueType()),
3054         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3055         ISD::SETUGT);
3056 
3057     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3058                        DAG.getBasicBlock(B.Default));
3059   }
3060 
3061   // Avoid emitting unnecessary branches to the next block.
3062   if (MBB != NextBlock(SwitchBB))
3063     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3064 
3065   DAG.setRoot(Root);
3066 }
3067 
3068 /// visitBitTestCase - this function produces one "bit test"
3069 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3070                                            MachineBasicBlock* NextMBB,
3071                                            BranchProbability BranchProbToNext,
3072                                            unsigned Reg,
3073                                            BitTestCase &B,
3074                                            MachineBasicBlock *SwitchBB) {
3075   SDLoc dl = getCurSDLoc();
3076   MVT VT = BB.RegVT;
3077   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3078   SDValue Cmp;
3079   unsigned PopCount = llvm::popcount(B.Mask);
3080   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3081   if (PopCount == 1) {
3082     // Testing for a single bit; just compare the shift count with what it
3083     // would need to be to shift a 1 bit in that position.
3084     Cmp = DAG.getSetCC(
3085         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3086         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3087         ISD::SETEQ);
3088   } else if (PopCount == BB.Range) {
3089     // There is only one zero bit in the range, test for it directly.
3090     Cmp = DAG.getSetCC(
3091         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3092         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3093   } else {
3094     // Make desired shift
3095     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3096                                     DAG.getConstant(1, dl, VT), ShiftOp);
3097 
3098     // Emit bit tests and jumps
3099     SDValue AndOp = DAG.getNode(ISD::AND, dl,
3100                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3101     Cmp = DAG.getSetCC(
3102         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3103         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3104   }
3105 
3106   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3107   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3108   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3109   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3110   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3111   // one as they are relative probabilities (and thus work more like weights),
3112   // and hence we need to normalize them to let the sum of them become one.
3113   SwitchBB->normalizeSuccProbs();
3114 
3115   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3116                               MVT::Other, getControlRoot(),
3117                               Cmp, DAG.getBasicBlock(B.TargetBB));
3118 
3119   // Avoid emitting unnecessary branches to the next block.
3120   if (NextMBB != NextBlock(SwitchBB))
3121     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3122                         DAG.getBasicBlock(NextMBB));
3123 
3124   DAG.setRoot(BrAnd);
3125 }
3126 
3127 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3128   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3129 
3130   // Retrieve successors. Look through artificial IR level blocks like
3131   // catchswitch for successors.
3132   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3133   const BasicBlock *EHPadBB = I.getSuccessor(1);
3134   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3135 
3136   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3137   // have to do anything here to lower funclet bundles.
3138   assert(!I.hasOperandBundlesOtherThan(
3139              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3140               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3141               LLVMContext::OB_cfguardtarget,
3142               LLVMContext::OB_clang_arc_attachedcall}) &&
3143          "Cannot lower invokes with arbitrary operand bundles yet!");
3144 
3145   const Value *Callee(I.getCalledOperand());
3146   const Function *Fn = dyn_cast<Function>(Callee);
3147   if (isa<InlineAsm>(Callee))
3148     visitInlineAsm(I, EHPadBB);
3149   else if (Fn && Fn->isIntrinsic()) {
3150     switch (Fn->getIntrinsicID()) {
3151     default:
3152       llvm_unreachable("Cannot invoke this intrinsic");
3153     case Intrinsic::donothing:
3154       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3155     case Intrinsic::seh_try_begin:
3156     case Intrinsic::seh_scope_begin:
3157     case Intrinsic::seh_try_end:
3158     case Intrinsic::seh_scope_end:
3159       if (EHPadMBB)
3160           // a block referenced by EH table
3161           // so dtor-funclet not removed by opts
3162           EHPadMBB->setMachineBlockAddressTaken();
3163       break;
3164     case Intrinsic::experimental_patchpoint_void:
3165     case Intrinsic::experimental_patchpoint_i64:
3166       visitPatchpoint(I, EHPadBB);
3167       break;
3168     case Intrinsic::experimental_gc_statepoint:
3169       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3170       break;
3171     case Intrinsic::wasm_rethrow: {
3172       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3173       // special because it can be invoked, so we manually lower it to a DAG
3174       // node here.
3175       SmallVector<SDValue, 8> Ops;
3176       Ops.push_back(getRoot()); // inchain
3177       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3178       Ops.push_back(
3179           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3180                                 TLI.getPointerTy(DAG.getDataLayout())));
3181       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3182       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3183       break;
3184     }
3185     }
3186   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3187     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3188     // Eventually we will support lowering the @llvm.experimental.deoptimize
3189     // intrinsic, and right now there are no plans to support other intrinsics
3190     // with deopt state.
3191     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3192   } else {
3193     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3194   }
3195 
3196   // If the value of the invoke is used outside of its defining block, make it
3197   // available as a virtual register.
3198   // We already took care of the exported value for the statepoint instruction
3199   // during call to the LowerStatepoint.
3200   if (!isa<GCStatepointInst>(I)) {
3201     CopyToExportRegsIfNeeded(&I);
3202   }
3203 
3204   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3205   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3206   BranchProbability EHPadBBProb =
3207       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3208           : BranchProbability::getZero();
3209   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3210 
3211   // Update successor info.
3212   addSuccessorWithProb(InvokeMBB, Return);
3213   for (auto &UnwindDest : UnwindDests) {
3214     UnwindDest.first->setIsEHPad();
3215     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3216   }
3217   InvokeMBB->normalizeSuccProbs();
3218 
3219   // Drop into normal successor.
3220   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3221                           DAG.getBasicBlock(Return)));
3222 }
3223 
3224 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3225   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3226 
3227   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3228   // have to do anything here to lower funclet bundles.
3229   assert(!I.hasOperandBundlesOtherThan(
3230              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3231          "Cannot lower callbrs with arbitrary operand bundles yet!");
3232 
3233   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3234   visitInlineAsm(I);
3235   CopyToExportRegsIfNeeded(&I);
3236 
3237   // Retrieve successors.
3238   SmallPtrSet<BasicBlock *, 8> Dests;
3239   Dests.insert(I.getDefaultDest());
3240   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3241 
3242   // Update successor info.
3243   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3244   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3245     BasicBlock *Dest = I.getIndirectDest(i);
3246     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3247     Target->setIsInlineAsmBrIndirectTarget();
3248     Target->setMachineBlockAddressTaken();
3249     Target->setLabelMustBeEmitted();
3250     // Don't add duplicate machine successors.
3251     if (Dests.insert(Dest).second)
3252       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3253   }
3254   CallBrMBB->normalizeSuccProbs();
3255 
3256   // Drop into default successor.
3257   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3258                           MVT::Other, getControlRoot(),
3259                           DAG.getBasicBlock(Return)));
3260 }
3261 
3262 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3263   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3264 }
3265 
3266 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3267   assert(FuncInfo.MBB->isEHPad() &&
3268          "Call to landingpad not in landing pad!");
3269 
3270   // If there aren't registers to copy the values into (e.g., during SjLj
3271   // exceptions), then don't bother to create these DAG nodes.
3272   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3273   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3274   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3275       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3276     return;
3277 
3278   // If landingpad's return type is token type, we don't create DAG nodes
3279   // for its exception pointer and selector value. The extraction of exception
3280   // pointer or selector value from token type landingpads is not currently
3281   // supported.
3282   if (LP.getType()->isTokenTy())
3283     return;
3284 
3285   SmallVector<EVT, 2> ValueVTs;
3286   SDLoc dl = getCurSDLoc();
3287   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3288   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3289 
3290   // Get the two live-in registers as SDValues. The physregs have already been
3291   // copied into virtual registers.
3292   SDValue Ops[2];
3293   if (FuncInfo.ExceptionPointerVirtReg) {
3294     Ops[0] = DAG.getZExtOrTrunc(
3295         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3296                            FuncInfo.ExceptionPointerVirtReg,
3297                            TLI.getPointerTy(DAG.getDataLayout())),
3298         dl, ValueVTs[0]);
3299   } else {
3300     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3301   }
3302   Ops[1] = DAG.getZExtOrTrunc(
3303       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3304                          FuncInfo.ExceptionSelectorVirtReg,
3305                          TLI.getPointerTy(DAG.getDataLayout())),
3306       dl, ValueVTs[1]);
3307 
3308   // Merge into one.
3309   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3310                             DAG.getVTList(ValueVTs), Ops);
3311   setValue(&LP, Res);
3312 }
3313 
3314 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3315                                            MachineBasicBlock *Last) {
3316   // Update JTCases.
3317   for (JumpTableBlock &JTB : SL->JTCases)
3318     if (JTB.first.HeaderBB == First)
3319       JTB.first.HeaderBB = Last;
3320 
3321   // Update BitTestCases.
3322   for (BitTestBlock &BTB : SL->BitTestCases)
3323     if (BTB.Parent == First)
3324       BTB.Parent = Last;
3325 }
3326 
3327 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3328   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3329 
3330   // Update machine-CFG edges with unique successors.
3331   SmallSet<BasicBlock*, 32> Done;
3332   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3333     BasicBlock *BB = I.getSuccessor(i);
3334     bool Inserted = Done.insert(BB).second;
3335     if (!Inserted)
3336         continue;
3337 
3338     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3339     addSuccessorWithProb(IndirectBrMBB, Succ);
3340   }
3341   IndirectBrMBB->normalizeSuccProbs();
3342 
3343   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3344                           MVT::Other, getControlRoot(),
3345                           getValue(I.getAddress())));
3346 }
3347 
3348 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3349   if (!DAG.getTarget().Options.TrapUnreachable)
3350     return;
3351 
3352   // We may be able to ignore unreachable behind a noreturn call.
3353   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3354     if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) {
3355       if (Call->doesNotReturn())
3356         return;
3357     }
3358   }
3359 
3360   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3361 }
3362 
3363 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3364   SDNodeFlags Flags;
3365   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3366     Flags.copyFMF(*FPOp);
3367 
3368   SDValue Op = getValue(I.getOperand(0));
3369   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3370                                     Op, Flags);
3371   setValue(&I, UnNodeValue);
3372 }
3373 
3374 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3375   SDNodeFlags Flags;
3376   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3377     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3378     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3379   }
3380   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3381     Flags.setExact(ExactOp->isExact());
3382   if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3383     Flags.setDisjoint(DisjointOp->isDisjoint());
3384   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3385     Flags.copyFMF(*FPOp);
3386 
3387   SDValue Op1 = getValue(I.getOperand(0));
3388   SDValue Op2 = getValue(I.getOperand(1));
3389   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3390                                      Op1, Op2, Flags);
3391   setValue(&I, BinNodeValue);
3392 }
3393 
3394 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3395   SDValue Op1 = getValue(I.getOperand(0));
3396   SDValue Op2 = getValue(I.getOperand(1));
3397 
3398   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3399       Op1.getValueType(), DAG.getDataLayout());
3400 
3401   // Coerce the shift amount to the right type if we can. This exposes the
3402   // truncate or zext to optimization early.
3403   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3404     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3405            "Unexpected shift type");
3406     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3407   }
3408 
3409   bool nuw = false;
3410   bool nsw = false;
3411   bool exact = false;
3412 
3413   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3414 
3415     if (const OverflowingBinaryOperator *OFBinOp =
3416             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3417       nuw = OFBinOp->hasNoUnsignedWrap();
3418       nsw = OFBinOp->hasNoSignedWrap();
3419     }
3420     if (const PossiblyExactOperator *ExactOp =
3421             dyn_cast<const PossiblyExactOperator>(&I))
3422       exact = ExactOp->isExact();
3423   }
3424   SDNodeFlags Flags;
3425   Flags.setExact(exact);
3426   Flags.setNoSignedWrap(nsw);
3427   Flags.setNoUnsignedWrap(nuw);
3428   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3429                             Flags);
3430   setValue(&I, Res);
3431 }
3432 
3433 void SelectionDAGBuilder::visitSDiv(const User &I) {
3434   SDValue Op1 = getValue(I.getOperand(0));
3435   SDValue Op2 = getValue(I.getOperand(1));
3436 
3437   SDNodeFlags Flags;
3438   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3439                  cast<PossiblyExactOperator>(&I)->isExact());
3440   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3441                            Op2, Flags));
3442 }
3443 
3444 void SelectionDAGBuilder::visitICmp(const User &I) {
3445   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3446   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3447     predicate = IC->getPredicate();
3448   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3449     predicate = ICmpInst::Predicate(IC->getPredicate());
3450   SDValue Op1 = getValue(I.getOperand(0));
3451   SDValue Op2 = getValue(I.getOperand(1));
3452   ISD::CondCode Opcode = getICmpCondCode(predicate);
3453 
3454   auto &TLI = DAG.getTargetLoweringInfo();
3455   EVT MemVT =
3456       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3457 
3458   // If a pointer's DAG type is larger than its memory type then the DAG values
3459   // are zero-extended. This breaks signed comparisons so truncate back to the
3460   // underlying type before doing the compare.
3461   if (Op1.getValueType() != MemVT) {
3462     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3463     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3464   }
3465 
3466   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3467                                                         I.getType());
3468   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3469 }
3470 
3471 void SelectionDAGBuilder::visitFCmp(const User &I) {
3472   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3473   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3474     predicate = FC->getPredicate();
3475   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3476     predicate = FCmpInst::Predicate(FC->getPredicate());
3477   SDValue Op1 = getValue(I.getOperand(0));
3478   SDValue Op2 = getValue(I.getOperand(1));
3479 
3480   ISD::CondCode Condition = getFCmpCondCode(predicate);
3481   auto *FPMO = cast<FPMathOperator>(&I);
3482   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3483     Condition = getFCmpCodeWithoutNaN(Condition);
3484 
3485   SDNodeFlags Flags;
3486   Flags.copyFMF(*FPMO);
3487   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3488 
3489   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3490                                                         I.getType());
3491   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3492 }
3493 
3494 // Check if the condition of the select has one use or two users that are both
3495 // selects with the same condition.
3496 static bool hasOnlySelectUsers(const Value *Cond) {
3497   return llvm::all_of(Cond->users(), [](const Value *V) {
3498     return isa<SelectInst>(V);
3499   });
3500 }
3501 
3502 void SelectionDAGBuilder::visitSelect(const User &I) {
3503   SmallVector<EVT, 4> ValueVTs;
3504   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3505                   ValueVTs);
3506   unsigned NumValues = ValueVTs.size();
3507   if (NumValues == 0) return;
3508 
3509   SmallVector<SDValue, 4> Values(NumValues);
3510   SDValue Cond     = getValue(I.getOperand(0));
3511   SDValue LHSVal   = getValue(I.getOperand(1));
3512   SDValue RHSVal   = getValue(I.getOperand(2));
3513   SmallVector<SDValue, 1> BaseOps(1, Cond);
3514   ISD::NodeType OpCode =
3515       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3516 
3517   bool IsUnaryAbs = false;
3518   bool Negate = false;
3519 
3520   SDNodeFlags Flags;
3521   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3522     Flags.copyFMF(*FPOp);
3523 
3524   Flags.setUnpredictable(
3525       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3526 
3527   // Min/max matching is only viable if all output VTs are the same.
3528   if (all_equal(ValueVTs)) {
3529     EVT VT = ValueVTs[0];
3530     LLVMContext &Ctx = *DAG.getContext();
3531     auto &TLI = DAG.getTargetLoweringInfo();
3532 
3533     // We care about the legality of the operation after it has been type
3534     // legalized.
3535     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3536       VT = TLI.getTypeToTransformTo(Ctx, VT);
3537 
3538     // If the vselect is legal, assume we want to leave this as a vector setcc +
3539     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3540     // min/max is legal on the scalar type.
3541     bool UseScalarMinMax = VT.isVector() &&
3542       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3543 
3544     // ValueTracking's select pattern matching does not account for -0.0,
3545     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3546     // -0.0 is less than +0.0.
3547     Value *LHS, *RHS;
3548     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3549     ISD::NodeType Opc = ISD::DELETED_NODE;
3550     switch (SPR.Flavor) {
3551     case SPF_UMAX:    Opc = ISD::UMAX; break;
3552     case SPF_UMIN:    Opc = ISD::UMIN; break;
3553     case SPF_SMAX:    Opc = ISD::SMAX; break;
3554     case SPF_SMIN:    Opc = ISD::SMIN; break;
3555     case SPF_FMINNUM:
3556       switch (SPR.NaNBehavior) {
3557       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3558       case SPNB_RETURNS_NAN: break;
3559       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3560       case SPNB_RETURNS_ANY:
3561         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3562             (UseScalarMinMax &&
3563              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3564           Opc = ISD::FMINNUM;
3565         break;
3566       }
3567       break;
3568     case SPF_FMAXNUM:
3569       switch (SPR.NaNBehavior) {
3570       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3571       case SPNB_RETURNS_NAN: break;
3572       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3573       case SPNB_RETURNS_ANY:
3574         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3575             (UseScalarMinMax &&
3576              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3577           Opc = ISD::FMAXNUM;
3578         break;
3579       }
3580       break;
3581     case SPF_NABS:
3582       Negate = true;
3583       [[fallthrough]];
3584     case SPF_ABS:
3585       IsUnaryAbs = true;
3586       Opc = ISD::ABS;
3587       break;
3588     default: break;
3589     }
3590 
3591     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3592         (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) ||
3593          (UseScalarMinMax &&
3594           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3595         // If the underlying comparison instruction is used by any other
3596         // instruction, the consumed instructions won't be destroyed, so it is
3597         // not profitable to convert to a min/max.
3598         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3599       OpCode = Opc;
3600       LHSVal = getValue(LHS);
3601       RHSVal = getValue(RHS);
3602       BaseOps.clear();
3603     }
3604 
3605     if (IsUnaryAbs) {
3606       OpCode = Opc;
3607       LHSVal = getValue(LHS);
3608       BaseOps.clear();
3609     }
3610   }
3611 
3612   if (IsUnaryAbs) {
3613     for (unsigned i = 0; i != NumValues; ++i) {
3614       SDLoc dl = getCurSDLoc();
3615       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3616       Values[i] =
3617           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3618       if (Negate)
3619         Values[i] = DAG.getNegative(Values[i], dl, VT);
3620     }
3621   } else {
3622     for (unsigned i = 0; i != NumValues; ++i) {
3623       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3624       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3625       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3626       Values[i] = DAG.getNode(
3627           OpCode, getCurSDLoc(),
3628           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3629     }
3630   }
3631 
3632   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3633                            DAG.getVTList(ValueVTs), Values));
3634 }
3635 
3636 void SelectionDAGBuilder::visitTrunc(const User &I) {
3637   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3638   SDValue N = getValue(I.getOperand(0));
3639   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3640                                                         I.getType());
3641   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3642 }
3643 
3644 void SelectionDAGBuilder::visitZExt(const User &I) {
3645   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3646   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3647   SDValue N = getValue(I.getOperand(0));
3648   auto &TLI = DAG.getTargetLoweringInfo();
3649   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3650 
3651   SDNodeFlags Flags;
3652   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3653     Flags.setNonNeg(PNI->hasNonNeg());
3654 
3655   // Eagerly use nonneg information to canonicalize towards sign_extend if
3656   // that is the target's preference.
3657   // TODO: Let the target do this later.
3658   if (Flags.hasNonNeg() &&
3659       TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3660     setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3661     return;
3662   }
3663 
3664   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3665 }
3666 
3667 void SelectionDAGBuilder::visitSExt(const User &I) {
3668   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3669   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3670   SDValue N = getValue(I.getOperand(0));
3671   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3672                                                         I.getType());
3673   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3674 }
3675 
3676 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3677   // FPTrunc is never a no-op cast, no need to check
3678   SDValue N = getValue(I.getOperand(0));
3679   SDLoc dl = getCurSDLoc();
3680   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3681   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3682   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3683                            DAG.getTargetConstant(
3684                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3685 }
3686 
3687 void SelectionDAGBuilder::visitFPExt(const User &I) {
3688   // FPExt is never a no-op cast, no need to check
3689   SDValue N = getValue(I.getOperand(0));
3690   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3691                                                         I.getType());
3692   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3693 }
3694 
3695 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3696   // FPToUI is never a no-op cast, no need to check
3697   SDValue N = getValue(I.getOperand(0));
3698   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3699                                                         I.getType());
3700   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3701 }
3702 
3703 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3704   // FPToSI is never a no-op cast, no need to check
3705   SDValue N = getValue(I.getOperand(0));
3706   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3707                                                         I.getType());
3708   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3709 }
3710 
3711 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3712   // UIToFP is never a no-op cast, no need to check
3713   SDValue N = getValue(I.getOperand(0));
3714   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3715                                                         I.getType());
3716   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3717 }
3718 
3719 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3720   // SIToFP is never a no-op cast, no need to check
3721   SDValue N = getValue(I.getOperand(0));
3722   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3723                                                         I.getType());
3724   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3725 }
3726 
3727 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3728   // What to do depends on the size of the integer and the size of the pointer.
3729   // We can either truncate, zero extend, or no-op, accordingly.
3730   SDValue N = getValue(I.getOperand(0));
3731   auto &TLI = DAG.getTargetLoweringInfo();
3732   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3733                                                         I.getType());
3734   EVT PtrMemVT =
3735       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3736   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3737   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3738   setValue(&I, N);
3739 }
3740 
3741 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3742   // What to do depends on the size of the integer and the size of the pointer.
3743   // We can either truncate, zero extend, or no-op, accordingly.
3744   SDValue N = getValue(I.getOperand(0));
3745   auto &TLI = DAG.getTargetLoweringInfo();
3746   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3747   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3748   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3749   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3750   setValue(&I, N);
3751 }
3752 
3753 void SelectionDAGBuilder::visitBitCast(const User &I) {
3754   SDValue N = getValue(I.getOperand(0));
3755   SDLoc dl = getCurSDLoc();
3756   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3757                                                         I.getType());
3758 
3759   // BitCast assures us that source and destination are the same size so this is
3760   // either a BITCAST or a no-op.
3761   if (DestVT != N.getValueType())
3762     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3763                              DestVT, N)); // convert types.
3764   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3765   // might fold any kind of constant expression to an integer constant and that
3766   // is not what we are looking for. Only recognize a bitcast of a genuine
3767   // constant integer as an opaque constant.
3768   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3769     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3770                                  /*isOpaque*/true));
3771   else
3772     setValue(&I, N);            // noop cast.
3773 }
3774 
3775 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3776   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3777   const Value *SV = I.getOperand(0);
3778   SDValue N = getValue(SV);
3779   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3780 
3781   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3782   unsigned DestAS = I.getType()->getPointerAddressSpace();
3783 
3784   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3785     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3786 
3787   setValue(&I, N);
3788 }
3789 
3790 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3791   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3792   SDValue InVec = getValue(I.getOperand(0));
3793   SDValue InVal = getValue(I.getOperand(1));
3794   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3795                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3796   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3797                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3798                            InVec, InVal, InIdx));
3799 }
3800 
3801 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3802   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3803   SDValue InVec = getValue(I.getOperand(0));
3804   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3805                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3806   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3807                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3808                            InVec, InIdx));
3809 }
3810 
3811 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3812   SDValue Src1 = getValue(I.getOperand(0));
3813   SDValue Src2 = getValue(I.getOperand(1));
3814   ArrayRef<int> Mask;
3815   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3816     Mask = SVI->getShuffleMask();
3817   else
3818     Mask = cast<ConstantExpr>(I).getShuffleMask();
3819   SDLoc DL = getCurSDLoc();
3820   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3821   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3822   EVT SrcVT = Src1.getValueType();
3823 
3824   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3825       VT.isScalableVector()) {
3826     // Canonical splat form of first element of first input vector.
3827     SDValue FirstElt =
3828         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3829                     DAG.getVectorIdxConstant(0, DL));
3830     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3831     return;
3832   }
3833 
3834   // For now, we only handle splats for scalable vectors.
3835   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3836   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3837   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3838 
3839   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3840   unsigned MaskNumElts = Mask.size();
3841 
3842   if (SrcNumElts == MaskNumElts) {
3843     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3844     return;
3845   }
3846 
3847   // Normalize the shuffle vector since mask and vector length don't match.
3848   if (SrcNumElts < MaskNumElts) {
3849     // Mask is longer than the source vectors. We can use concatenate vector to
3850     // make the mask and vectors lengths match.
3851 
3852     if (MaskNumElts % SrcNumElts == 0) {
3853       // Mask length is a multiple of the source vector length.
3854       // Check if the shuffle is some kind of concatenation of the input
3855       // vectors.
3856       unsigned NumConcat = MaskNumElts / SrcNumElts;
3857       bool IsConcat = true;
3858       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3859       for (unsigned i = 0; i != MaskNumElts; ++i) {
3860         int Idx = Mask[i];
3861         if (Idx < 0)
3862           continue;
3863         // Ensure the indices in each SrcVT sized piece are sequential and that
3864         // the same source is used for the whole piece.
3865         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3866             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3867              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3868           IsConcat = false;
3869           break;
3870         }
3871         // Remember which source this index came from.
3872         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3873       }
3874 
3875       // The shuffle is concatenating multiple vectors together. Just emit
3876       // a CONCAT_VECTORS operation.
3877       if (IsConcat) {
3878         SmallVector<SDValue, 8> ConcatOps;
3879         for (auto Src : ConcatSrcs) {
3880           if (Src < 0)
3881             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3882           else if (Src == 0)
3883             ConcatOps.push_back(Src1);
3884           else
3885             ConcatOps.push_back(Src2);
3886         }
3887         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3888         return;
3889       }
3890     }
3891 
3892     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3893     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3894     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3895                                     PaddedMaskNumElts);
3896 
3897     // Pad both vectors with undefs to make them the same length as the mask.
3898     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3899 
3900     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3901     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3902     MOps1[0] = Src1;
3903     MOps2[0] = Src2;
3904 
3905     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3906     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3907 
3908     // Readjust mask for new input vector length.
3909     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3910     for (unsigned i = 0; i != MaskNumElts; ++i) {
3911       int Idx = Mask[i];
3912       if (Idx >= (int)SrcNumElts)
3913         Idx -= SrcNumElts - PaddedMaskNumElts;
3914       MappedOps[i] = Idx;
3915     }
3916 
3917     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3918 
3919     // If the concatenated vector was padded, extract a subvector with the
3920     // correct number of elements.
3921     if (MaskNumElts != PaddedMaskNumElts)
3922       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3923                            DAG.getVectorIdxConstant(0, DL));
3924 
3925     setValue(&I, Result);
3926     return;
3927   }
3928 
3929   if (SrcNumElts > MaskNumElts) {
3930     // Analyze the access pattern of the vector to see if we can extract
3931     // two subvectors and do the shuffle.
3932     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3933     bool CanExtract = true;
3934     for (int Idx : Mask) {
3935       unsigned Input = 0;
3936       if (Idx < 0)
3937         continue;
3938 
3939       if (Idx >= (int)SrcNumElts) {
3940         Input = 1;
3941         Idx -= SrcNumElts;
3942       }
3943 
3944       // If all the indices come from the same MaskNumElts sized portion of
3945       // the sources we can use extract. Also make sure the extract wouldn't
3946       // extract past the end of the source.
3947       int NewStartIdx = alignDown(Idx, MaskNumElts);
3948       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3949           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3950         CanExtract = false;
3951       // Make sure we always update StartIdx as we use it to track if all
3952       // elements are undef.
3953       StartIdx[Input] = NewStartIdx;
3954     }
3955 
3956     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3957       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3958       return;
3959     }
3960     if (CanExtract) {
3961       // Extract appropriate subvector and generate a vector shuffle
3962       for (unsigned Input = 0; Input < 2; ++Input) {
3963         SDValue &Src = Input == 0 ? Src1 : Src2;
3964         if (StartIdx[Input] < 0)
3965           Src = DAG.getUNDEF(VT);
3966         else {
3967           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3968                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3969         }
3970       }
3971 
3972       // Calculate new mask.
3973       SmallVector<int, 8> MappedOps(Mask);
3974       for (int &Idx : MappedOps) {
3975         if (Idx >= (int)SrcNumElts)
3976           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3977         else if (Idx >= 0)
3978           Idx -= StartIdx[0];
3979       }
3980 
3981       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3982       return;
3983     }
3984   }
3985 
3986   // We can't use either concat vectors or extract subvectors so fall back to
3987   // replacing the shuffle with extract and build vector.
3988   // to insert and build vector.
3989   EVT EltVT = VT.getVectorElementType();
3990   SmallVector<SDValue,8> Ops;
3991   for (int Idx : Mask) {
3992     SDValue Res;
3993 
3994     if (Idx < 0) {
3995       Res = DAG.getUNDEF(EltVT);
3996     } else {
3997       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3998       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3999 
4000       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4001                         DAG.getVectorIdxConstant(Idx, DL));
4002     }
4003 
4004     Ops.push_back(Res);
4005   }
4006 
4007   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4008 }
4009 
4010 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4011   ArrayRef<unsigned> Indices = I.getIndices();
4012   const Value *Op0 = I.getOperand(0);
4013   const Value *Op1 = I.getOperand(1);
4014   Type *AggTy = I.getType();
4015   Type *ValTy = Op1->getType();
4016   bool IntoUndef = isa<UndefValue>(Op0);
4017   bool FromUndef = isa<UndefValue>(Op1);
4018 
4019   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4020 
4021   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4022   SmallVector<EVT, 4> AggValueVTs;
4023   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4024   SmallVector<EVT, 4> ValValueVTs;
4025   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4026 
4027   unsigned NumAggValues = AggValueVTs.size();
4028   unsigned NumValValues = ValValueVTs.size();
4029   SmallVector<SDValue, 4> Values(NumAggValues);
4030 
4031   // Ignore an insertvalue that produces an empty object
4032   if (!NumAggValues) {
4033     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4034     return;
4035   }
4036 
4037   SDValue Agg = getValue(Op0);
4038   unsigned i = 0;
4039   // Copy the beginning value(s) from the original aggregate.
4040   for (; i != LinearIndex; ++i)
4041     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4042                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4043   // Copy values from the inserted value(s).
4044   if (NumValValues) {
4045     SDValue Val = getValue(Op1);
4046     for (; i != LinearIndex + NumValValues; ++i)
4047       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4048                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4049   }
4050   // Copy remaining value(s) from the original aggregate.
4051   for (; i != NumAggValues; ++i)
4052     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4053                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4054 
4055   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4056                            DAG.getVTList(AggValueVTs), Values));
4057 }
4058 
4059 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4060   ArrayRef<unsigned> Indices = I.getIndices();
4061   const Value *Op0 = I.getOperand(0);
4062   Type *AggTy = Op0->getType();
4063   Type *ValTy = I.getType();
4064   bool OutOfUndef = isa<UndefValue>(Op0);
4065 
4066   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4067 
4068   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4069   SmallVector<EVT, 4> ValValueVTs;
4070   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4071 
4072   unsigned NumValValues = ValValueVTs.size();
4073 
4074   // Ignore a extractvalue that produces an empty object
4075   if (!NumValValues) {
4076     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4077     return;
4078   }
4079 
4080   SmallVector<SDValue, 4> Values(NumValValues);
4081 
4082   SDValue Agg = getValue(Op0);
4083   // Copy out the selected value(s).
4084   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4085     Values[i - LinearIndex] =
4086       OutOfUndef ?
4087         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4088         SDValue(Agg.getNode(), Agg.getResNo() + i);
4089 
4090   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4091                            DAG.getVTList(ValValueVTs), Values));
4092 }
4093 
4094 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4095   Value *Op0 = I.getOperand(0);
4096   // Note that the pointer operand may be a vector of pointers. Take the scalar
4097   // element which holds a pointer.
4098   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4099   SDValue N = getValue(Op0);
4100   SDLoc dl = getCurSDLoc();
4101   auto &TLI = DAG.getTargetLoweringInfo();
4102 
4103   // Normalize Vector GEP - all scalar operands should be converted to the
4104   // splat vector.
4105   bool IsVectorGEP = I.getType()->isVectorTy();
4106   ElementCount VectorElementCount =
4107       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4108                   : ElementCount::getFixed(0);
4109 
4110   if (IsVectorGEP && !N.getValueType().isVector()) {
4111     LLVMContext &Context = *DAG.getContext();
4112     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4113     N = DAG.getSplat(VT, dl, N);
4114   }
4115 
4116   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4117        GTI != E; ++GTI) {
4118     const Value *Idx = GTI.getOperand();
4119     if (StructType *StTy = GTI.getStructTypeOrNull()) {
4120       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4121       if (Field) {
4122         // N = N + Offset
4123         uint64_t Offset =
4124             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4125 
4126         // In an inbounds GEP with an offset that is nonnegative even when
4127         // interpreted as signed, assume there is no unsigned overflow.
4128         SDNodeFlags Flags;
4129         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
4130           Flags.setNoUnsignedWrap(true);
4131 
4132         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4133                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4134       }
4135     } else {
4136       // IdxSize is the width of the arithmetic according to IR semantics.
4137       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4138       // (and fix up the result later).
4139       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4140       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4141       TypeSize ElementSize =
4142           GTI.getSequentialElementStride(DAG.getDataLayout());
4143       // We intentionally mask away the high bits here; ElementSize may not
4144       // fit in IdxTy.
4145       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4146       bool ElementScalable = ElementSize.isScalable();
4147 
4148       // If this is a scalar constant or a splat vector of constants,
4149       // handle it quickly.
4150       const auto *C = dyn_cast<Constant>(Idx);
4151       if (C && isa<VectorType>(C->getType()))
4152         C = C->getSplatValue();
4153 
4154       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4155       if (CI && CI->isZero())
4156         continue;
4157       if (CI && !ElementScalable) {
4158         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4159         LLVMContext &Context = *DAG.getContext();
4160         SDValue OffsVal;
4161         if (IsVectorGEP)
4162           OffsVal = DAG.getConstant(
4163               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4164         else
4165           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4166 
4167         // In an inbounds GEP with an offset that is nonnegative even when
4168         // interpreted as signed, assume there is no unsigned overflow.
4169         SDNodeFlags Flags;
4170         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4171           Flags.setNoUnsignedWrap(true);
4172 
4173         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4174 
4175         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4176         continue;
4177       }
4178 
4179       // N = N + Idx * ElementMul;
4180       SDValue IdxN = getValue(Idx);
4181 
4182       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4183         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4184                                   VectorElementCount);
4185         IdxN = DAG.getSplat(VT, dl, IdxN);
4186       }
4187 
4188       // If the index is smaller or larger than intptr_t, truncate or extend
4189       // it.
4190       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4191 
4192       if (ElementScalable) {
4193         EVT VScaleTy = N.getValueType().getScalarType();
4194         SDValue VScale = DAG.getNode(
4195             ISD::VSCALE, dl, VScaleTy,
4196             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4197         if (IsVectorGEP)
4198           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4199         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4200       } else {
4201         // If this is a multiply by a power of two, turn it into a shl
4202         // immediately.  This is a very common case.
4203         if (ElementMul != 1) {
4204           if (ElementMul.isPowerOf2()) {
4205             unsigned Amt = ElementMul.logBase2();
4206             IdxN = DAG.getNode(ISD::SHL, dl,
4207                                N.getValueType(), IdxN,
4208                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4209           } else {
4210             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4211                                             IdxN.getValueType());
4212             IdxN = DAG.getNode(ISD::MUL, dl,
4213                                N.getValueType(), IdxN, Scale);
4214           }
4215         }
4216       }
4217 
4218       N = DAG.getNode(ISD::ADD, dl,
4219                       N.getValueType(), N, IdxN);
4220     }
4221   }
4222 
4223   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4224   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4225   if (IsVectorGEP) {
4226     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4227     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4228   }
4229 
4230   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4231     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4232 
4233   setValue(&I, N);
4234 }
4235 
4236 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4237   // If this is a fixed sized alloca in the entry block of the function,
4238   // allocate it statically on the stack.
4239   if (FuncInfo.StaticAllocaMap.count(&I))
4240     return;   // getValue will auto-populate this.
4241 
4242   SDLoc dl = getCurSDLoc();
4243   Type *Ty = I.getAllocatedType();
4244   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4245   auto &DL = DAG.getDataLayout();
4246   TypeSize TySize = DL.getTypeAllocSize(Ty);
4247   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4248 
4249   SDValue AllocSize = getValue(I.getArraySize());
4250 
4251   EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4252   if (AllocSize.getValueType() != IntPtr)
4253     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4254 
4255   if (TySize.isScalable())
4256     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4257                             DAG.getVScale(dl, IntPtr,
4258                                           APInt(IntPtr.getScalarSizeInBits(),
4259                                                 TySize.getKnownMinValue())));
4260   else {
4261     SDValue TySizeValue =
4262         DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4263     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4264                             DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4265   }
4266 
4267   // Handle alignment.  If the requested alignment is less than or equal to
4268   // the stack alignment, ignore it.  If the size is greater than or equal to
4269   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4270   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4271   if (*Alignment <= StackAlign)
4272     Alignment = std::nullopt;
4273 
4274   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4275   // Round the size of the allocation up to the stack alignment size
4276   // by add SA-1 to the size. This doesn't overflow because we're computing
4277   // an address inside an alloca.
4278   SDNodeFlags Flags;
4279   Flags.setNoUnsignedWrap(true);
4280   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4281                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4282 
4283   // Mask out the low bits for alignment purposes.
4284   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4285                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4286 
4287   SDValue Ops[] = {
4288       getRoot(), AllocSize,
4289       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4290   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4291   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4292   setValue(&I, DSA);
4293   DAG.setRoot(DSA.getValue(1));
4294 
4295   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4296 }
4297 
4298 static const MDNode *getRangeMetadata(const Instruction &I) {
4299   // If !noundef is not present, then !range violation results in a poison
4300   // value rather than immediate undefined behavior. In theory, transferring
4301   // these annotations to SDAG is fine, but in practice there are key SDAG
4302   // transforms that are known not to be poison-safe, such as folding logical
4303   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4304   // also present.
4305   if (!I.hasMetadata(LLVMContext::MD_noundef))
4306     return nullptr;
4307   return I.getMetadata(LLVMContext::MD_range);
4308 }
4309 
4310 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4311   if (I.isAtomic())
4312     return visitAtomicLoad(I);
4313 
4314   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4315   const Value *SV = I.getOperand(0);
4316   if (TLI.supportSwiftError()) {
4317     // Swifterror values can come from either a function parameter with
4318     // swifterror attribute or an alloca with swifterror attribute.
4319     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4320       if (Arg->hasSwiftErrorAttr())
4321         return visitLoadFromSwiftError(I);
4322     }
4323 
4324     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4325       if (Alloca->isSwiftError())
4326         return visitLoadFromSwiftError(I);
4327     }
4328   }
4329 
4330   SDValue Ptr = getValue(SV);
4331 
4332   Type *Ty = I.getType();
4333   SmallVector<EVT, 4> ValueVTs, MemVTs;
4334   SmallVector<TypeSize, 4> Offsets;
4335   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0);
4336   unsigned NumValues = ValueVTs.size();
4337   if (NumValues == 0)
4338     return;
4339 
4340   Align Alignment = I.getAlign();
4341   AAMDNodes AAInfo = I.getAAMetadata();
4342   const MDNode *Ranges = getRangeMetadata(I);
4343   bool isVolatile = I.isVolatile();
4344   MachineMemOperand::Flags MMOFlags =
4345       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4346 
4347   SDValue Root;
4348   bool ConstantMemory = false;
4349   if (isVolatile)
4350     // Serialize volatile loads with other side effects.
4351     Root = getRoot();
4352   else if (NumValues > MaxParallelChains)
4353     Root = getMemoryRoot();
4354   else if (AA &&
4355            AA->pointsToConstantMemory(MemoryLocation(
4356                SV,
4357                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4358                AAInfo))) {
4359     // Do not serialize (non-volatile) loads of constant memory with anything.
4360     Root = DAG.getEntryNode();
4361     ConstantMemory = true;
4362     MMOFlags |= MachineMemOperand::MOInvariant;
4363   } else {
4364     // Do not serialize non-volatile loads against each other.
4365     Root = DAG.getRoot();
4366   }
4367 
4368   SDLoc dl = getCurSDLoc();
4369 
4370   if (isVolatile)
4371     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4372 
4373   SmallVector<SDValue, 4> Values(NumValues);
4374   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4375 
4376   unsigned ChainI = 0;
4377   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4378     // Serializing loads here may result in excessive register pressure, and
4379     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4380     // could recover a bit by hoisting nodes upward in the chain by recognizing
4381     // they are side-effect free or do not alias. The optimizer should really
4382     // avoid this case by converting large object/array copies to llvm.memcpy
4383     // (MaxParallelChains should always remain as failsafe).
4384     if (ChainI == MaxParallelChains) {
4385       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4386       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4387                                   ArrayRef(Chains.data(), ChainI));
4388       Root = Chain;
4389       ChainI = 0;
4390     }
4391 
4392     // TODO: MachinePointerInfo only supports a fixed length offset.
4393     MachinePointerInfo PtrInfo =
4394         !Offsets[i].isScalable() || Offsets[i].isZero()
4395             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4396             : MachinePointerInfo();
4397 
4398     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4399     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4400                             MMOFlags, AAInfo, Ranges);
4401     Chains[ChainI] = L.getValue(1);
4402 
4403     if (MemVTs[i] != ValueVTs[i])
4404       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4405 
4406     Values[i] = L;
4407   }
4408 
4409   if (!ConstantMemory) {
4410     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4411                                 ArrayRef(Chains.data(), ChainI));
4412     if (isVolatile)
4413       DAG.setRoot(Chain);
4414     else
4415       PendingLoads.push_back(Chain);
4416   }
4417 
4418   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4419                            DAG.getVTList(ValueVTs), Values));
4420 }
4421 
4422 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4423   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4424          "call visitStoreToSwiftError when backend supports swifterror");
4425 
4426   SmallVector<EVT, 4> ValueVTs;
4427   SmallVector<uint64_t, 4> Offsets;
4428   const Value *SrcV = I.getOperand(0);
4429   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4430                   SrcV->getType(), ValueVTs, &Offsets, 0);
4431   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4432          "expect a single EVT for swifterror");
4433 
4434   SDValue Src = getValue(SrcV);
4435   // Create a virtual register, then update the virtual register.
4436   Register VReg =
4437       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4438   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4439   // Chain can be getRoot or getControlRoot.
4440   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4441                                       SDValue(Src.getNode(), Src.getResNo()));
4442   DAG.setRoot(CopyNode);
4443 }
4444 
4445 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4446   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4447          "call visitLoadFromSwiftError when backend supports swifterror");
4448 
4449   assert(!I.isVolatile() &&
4450          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4451          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4452          "Support volatile, non temporal, invariant for load_from_swift_error");
4453 
4454   const Value *SV = I.getOperand(0);
4455   Type *Ty = I.getType();
4456   assert(
4457       (!AA ||
4458        !AA->pointsToConstantMemory(MemoryLocation(
4459            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4460            I.getAAMetadata()))) &&
4461       "load_from_swift_error should not be constant memory");
4462 
4463   SmallVector<EVT, 4> ValueVTs;
4464   SmallVector<uint64_t, 4> Offsets;
4465   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4466                   ValueVTs, &Offsets, 0);
4467   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4468          "expect a single EVT for swifterror");
4469 
4470   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4471   SDValue L = DAG.getCopyFromReg(
4472       getRoot(), getCurSDLoc(),
4473       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4474 
4475   setValue(&I, L);
4476 }
4477 
4478 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4479   if (I.isAtomic())
4480     return visitAtomicStore(I);
4481 
4482   const Value *SrcV = I.getOperand(0);
4483   const Value *PtrV = I.getOperand(1);
4484 
4485   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4486   if (TLI.supportSwiftError()) {
4487     // Swifterror values can come from either a function parameter with
4488     // swifterror attribute or an alloca with swifterror attribute.
4489     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4490       if (Arg->hasSwiftErrorAttr())
4491         return visitStoreToSwiftError(I);
4492     }
4493 
4494     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4495       if (Alloca->isSwiftError())
4496         return visitStoreToSwiftError(I);
4497     }
4498   }
4499 
4500   SmallVector<EVT, 4> ValueVTs, MemVTs;
4501   SmallVector<TypeSize, 4> Offsets;
4502   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4503                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0);
4504   unsigned NumValues = ValueVTs.size();
4505   if (NumValues == 0)
4506     return;
4507 
4508   // Get the lowered operands. Note that we do this after
4509   // checking if NumResults is zero, because with zero results
4510   // the operands won't have values in the map.
4511   SDValue Src = getValue(SrcV);
4512   SDValue Ptr = getValue(PtrV);
4513 
4514   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4515   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4516   SDLoc dl = getCurSDLoc();
4517   Align Alignment = I.getAlign();
4518   AAMDNodes AAInfo = I.getAAMetadata();
4519 
4520   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4521 
4522   unsigned ChainI = 0;
4523   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4524     // See visitLoad comments.
4525     if (ChainI == MaxParallelChains) {
4526       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4527                                   ArrayRef(Chains.data(), ChainI));
4528       Root = Chain;
4529       ChainI = 0;
4530     }
4531 
4532     // TODO: MachinePointerInfo only supports a fixed length offset.
4533     MachinePointerInfo PtrInfo =
4534         !Offsets[i].isScalable() || Offsets[i].isZero()
4535             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4536             : MachinePointerInfo();
4537 
4538     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4539     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4540     if (MemVTs[i] != ValueVTs[i])
4541       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4542     SDValue St =
4543         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4544     Chains[ChainI] = St;
4545   }
4546 
4547   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4548                                   ArrayRef(Chains.data(), ChainI));
4549   setValue(&I, StoreNode);
4550   DAG.setRoot(StoreNode);
4551 }
4552 
4553 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4554                                            bool IsCompressing) {
4555   SDLoc sdl = getCurSDLoc();
4556 
4557   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4558                                MaybeAlign &Alignment) {
4559     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4560     Src0 = I.getArgOperand(0);
4561     Ptr = I.getArgOperand(1);
4562     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4563     Mask = I.getArgOperand(3);
4564   };
4565   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4566                                     MaybeAlign &Alignment) {
4567     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4568     Src0 = I.getArgOperand(0);
4569     Ptr = I.getArgOperand(1);
4570     Mask = I.getArgOperand(2);
4571     Alignment = std::nullopt;
4572   };
4573 
4574   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4575   MaybeAlign Alignment;
4576   if (IsCompressing)
4577     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4578   else
4579     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4580 
4581   SDValue Ptr = getValue(PtrOperand);
4582   SDValue Src0 = getValue(Src0Operand);
4583   SDValue Mask = getValue(MaskOperand);
4584   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4585 
4586   EVT VT = Src0.getValueType();
4587   if (!Alignment)
4588     Alignment = DAG.getEVTAlign(VT);
4589 
4590   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4591       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4592       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4593   SDValue StoreNode =
4594       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4595                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4596   DAG.setRoot(StoreNode);
4597   setValue(&I, StoreNode);
4598 }
4599 
4600 // Get a uniform base for the Gather/Scatter intrinsic.
4601 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4602 // We try to represent it as a base pointer + vector of indices.
4603 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4604 // The first operand of the GEP may be a single pointer or a vector of pointers
4605 // Example:
4606 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4607 //  or
4608 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4609 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4610 //
4611 // When the first GEP operand is a single pointer - it is the uniform base we
4612 // are looking for. If first operand of the GEP is a splat vector - we
4613 // extract the splat value and use it as a uniform base.
4614 // In all other cases the function returns 'false'.
4615 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4616                            ISD::MemIndexType &IndexType, SDValue &Scale,
4617                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4618                            uint64_t ElemSize) {
4619   SelectionDAG& DAG = SDB->DAG;
4620   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4621   const DataLayout &DL = DAG.getDataLayout();
4622 
4623   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4624 
4625   // Handle splat constant pointer.
4626   if (auto *C = dyn_cast<Constant>(Ptr)) {
4627     C = C->getSplatValue();
4628     if (!C)
4629       return false;
4630 
4631     Base = SDB->getValue(C);
4632 
4633     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4634     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4635     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4636     IndexType = ISD::SIGNED_SCALED;
4637     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4638     return true;
4639   }
4640 
4641   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4642   if (!GEP || GEP->getParent() != CurBB)
4643     return false;
4644 
4645   if (GEP->getNumOperands() != 2)
4646     return false;
4647 
4648   const Value *BasePtr = GEP->getPointerOperand();
4649   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4650 
4651   // Make sure the base is scalar and the index is a vector.
4652   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4653     return false;
4654 
4655   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4656   if (ScaleVal.isScalable())
4657     return false;
4658 
4659   // Target may not support the required addressing mode.
4660   if (ScaleVal != 1 &&
4661       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4662     return false;
4663 
4664   Base = SDB->getValue(BasePtr);
4665   Index = SDB->getValue(IndexVal);
4666   IndexType = ISD::SIGNED_SCALED;
4667 
4668   Scale =
4669       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4670   return true;
4671 }
4672 
4673 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4674   SDLoc sdl = getCurSDLoc();
4675 
4676   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4677   const Value *Ptr = I.getArgOperand(1);
4678   SDValue Src0 = getValue(I.getArgOperand(0));
4679   SDValue Mask = getValue(I.getArgOperand(3));
4680   EVT VT = Src0.getValueType();
4681   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4682                         ->getMaybeAlignValue()
4683                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4684   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4685 
4686   SDValue Base;
4687   SDValue Index;
4688   ISD::MemIndexType IndexType;
4689   SDValue Scale;
4690   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4691                                     I.getParent(), VT.getScalarStoreSize());
4692 
4693   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4694   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4695       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4696       // TODO: Make MachineMemOperands aware of scalable
4697       // vectors.
4698       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4699   if (!UniformBase) {
4700     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4701     Index = getValue(Ptr);
4702     IndexType = ISD::SIGNED_SCALED;
4703     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4704   }
4705 
4706   EVT IdxVT = Index.getValueType();
4707   EVT EltTy = IdxVT.getVectorElementType();
4708   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4709     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4710     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4711   }
4712 
4713   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4714   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4715                                          Ops, MMO, IndexType, false);
4716   DAG.setRoot(Scatter);
4717   setValue(&I, Scatter);
4718 }
4719 
4720 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4721   SDLoc sdl = getCurSDLoc();
4722 
4723   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4724                               MaybeAlign &Alignment) {
4725     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4726     Ptr = I.getArgOperand(0);
4727     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4728     Mask = I.getArgOperand(2);
4729     Src0 = I.getArgOperand(3);
4730   };
4731   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4732                                  MaybeAlign &Alignment) {
4733     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4734     Ptr = I.getArgOperand(0);
4735     Alignment = std::nullopt;
4736     Mask = I.getArgOperand(1);
4737     Src0 = I.getArgOperand(2);
4738   };
4739 
4740   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4741   MaybeAlign Alignment;
4742   if (IsExpanding)
4743     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4744   else
4745     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4746 
4747   SDValue Ptr = getValue(PtrOperand);
4748   SDValue Src0 = getValue(Src0Operand);
4749   SDValue Mask = getValue(MaskOperand);
4750   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4751 
4752   EVT VT = Src0.getValueType();
4753   if (!Alignment)
4754     Alignment = DAG.getEVTAlign(VT);
4755 
4756   AAMDNodes AAInfo = I.getAAMetadata();
4757   const MDNode *Ranges = getRangeMetadata(I);
4758 
4759   // Do not serialize masked loads of constant memory with anything.
4760   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4761   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4762 
4763   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4764 
4765   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4766       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4767       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4768 
4769   SDValue Load =
4770       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4771                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4772   if (AddToChain)
4773     PendingLoads.push_back(Load.getValue(1));
4774   setValue(&I, Load);
4775 }
4776 
4777 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4778   SDLoc sdl = getCurSDLoc();
4779 
4780   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4781   const Value *Ptr = I.getArgOperand(0);
4782   SDValue Src0 = getValue(I.getArgOperand(3));
4783   SDValue Mask = getValue(I.getArgOperand(2));
4784 
4785   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4786   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4787   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4788                         ->getMaybeAlignValue()
4789                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4790 
4791   const MDNode *Ranges = getRangeMetadata(I);
4792 
4793   SDValue Root = DAG.getRoot();
4794   SDValue Base;
4795   SDValue Index;
4796   ISD::MemIndexType IndexType;
4797   SDValue Scale;
4798   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4799                                     I.getParent(), VT.getScalarStoreSize());
4800   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4801   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4802       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4803       // TODO: Make MachineMemOperands aware of scalable
4804       // vectors.
4805       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4806 
4807   if (!UniformBase) {
4808     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4809     Index = getValue(Ptr);
4810     IndexType = ISD::SIGNED_SCALED;
4811     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4812   }
4813 
4814   EVT IdxVT = Index.getValueType();
4815   EVT EltTy = IdxVT.getVectorElementType();
4816   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4817     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4818     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4819   }
4820 
4821   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4822   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4823                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4824 
4825   PendingLoads.push_back(Gather.getValue(1));
4826   setValue(&I, Gather);
4827 }
4828 
4829 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4830   SDLoc dl = getCurSDLoc();
4831   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4832   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4833   SyncScope::ID SSID = I.getSyncScopeID();
4834 
4835   SDValue InChain = getRoot();
4836 
4837   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4838   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4839 
4840   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4841   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4842 
4843   MachineFunction &MF = DAG.getMachineFunction();
4844   MachineMemOperand *MMO = MF.getMachineMemOperand(
4845       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4846       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4847       FailureOrdering);
4848 
4849   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4850                                    dl, MemVT, VTs, InChain,
4851                                    getValue(I.getPointerOperand()),
4852                                    getValue(I.getCompareOperand()),
4853                                    getValue(I.getNewValOperand()), MMO);
4854 
4855   SDValue OutChain = L.getValue(2);
4856 
4857   setValue(&I, L);
4858   DAG.setRoot(OutChain);
4859 }
4860 
4861 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4862   SDLoc dl = getCurSDLoc();
4863   ISD::NodeType NT;
4864   switch (I.getOperation()) {
4865   default: llvm_unreachable("Unknown atomicrmw operation");
4866   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4867   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4868   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4869   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4870   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4871   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4872   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4873   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4874   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4875   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4876   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4877   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4878   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4879   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4880   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4881   case AtomicRMWInst::UIncWrap:
4882     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
4883     break;
4884   case AtomicRMWInst::UDecWrap:
4885     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
4886     break;
4887   }
4888   AtomicOrdering Ordering = I.getOrdering();
4889   SyncScope::ID SSID = I.getSyncScopeID();
4890 
4891   SDValue InChain = getRoot();
4892 
4893   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4894   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4895   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4896 
4897   MachineFunction &MF = DAG.getMachineFunction();
4898   MachineMemOperand *MMO = MF.getMachineMemOperand(
4899       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4900       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4901 
4902   SDValue L =
4903     DAG.getAtomic(NT, dl, MemVT, InChain,
4904                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4905                   MMO);
4906 
4907   SDValue OutChain = L.getValue(1);
4908 
4909   setValue(&I, L);
4910   DAG.setRoot(OutChain);
4911 }
4912 
4913 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4914   SDLoc dl = getCurSDLoc();
4915   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4916   SDValue Ops[3];
4917   Ops[0] = getRoot();
4918   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4919                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4920   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4921                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4922   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4923   setValue(&I, N);
4924   DAG.setRoot(N);
4925 }
4926 
4927 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4928   SDLoc dl = getCurSDLoc();
4929   AtomicOrdering Order = I.getOrdering();
4930   SyncScope::ID SSID = I.getSyncScopeID();
4931 
4932   SDValue InChain = getRoot();
4933 
4934   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4935   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4936   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4937 
4938   if (!TLI.supportsUnalignedAtomics() &&
4939       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4940     report_fatal_error("Cannot generate unaligned atomic load");
4941 
4942   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4943 
4944   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4945       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4946       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4947 
4948   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4949 
4950   SDValue Ptr = getValue(I.getPointerOperand());
4951   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4952                             Ptr, MMO);
4953 
4954   SDValue OutChain = L.getValue(1);
4955   if (MemVT != VT)
4956     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4957 
4958   setValue(&I, L);
4959   DAG.setRoot(OutChain);
4960 }
4961 
4962 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4963   SDLoc dl = getCurSDLoc();
4964 
4965   AtomicOrdering Ordering = I.getOrdering();
4966   SyncScope::ID SSID = I.getSyncScopeID();
4967 
4968   SDValue InChain = getRoot();
4969 
4970   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4971   EVT MemVT =
4972       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4973 
4974   if (!TLI.supportsUnalignedAtomics() &&
4975       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4976     report_fatal_error("Cannot generate unaligned atomic store");
4977 
4978   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4979 
4980   MachineFunction &MF = DAG.getMachineFunction();
4981   MachineMemOperand *MMO = MF.getMachineMemOperand(
4982       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4983       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4984 
4985   SDValue Val = getValue(I.getValueOperand());
4986   if (Val.getValueType() != MemVT)
4987     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4988   SDValue Ptr = getValue(I.getPointerOperand());
4989 
4990   SDValue OutChain =
4991       DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
4992 
4993   setValue(&I, OutChain);
4994   DAG.setRoot(OutChain);
4995 }
4996 
4997 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4998 /// node.
4999 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5000                                                unsigned Intrinsic) {
5001   // Ignore the callsite's attributes. A specific call site may be marked with
5002   // readnone, but the lowering code will expect the chain based on the
5003   // definition.
5004   const Function *F = I.getCalledFunction();
5005   bool HasChain = !F->doesNotAccessMemory();
5006   bool OnlyLoad = HasChain && F->onlyReadsMemory();
5007 
5008   // Build the operand list.
5009   SmallVector<SDValue, 8> Ops;
5010   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
5011     if (OnlyLoad) {
5012       // We don't need to serialize loads against other loads.
5013       Ops.push_back(DAG.getRoot());
5014     } else {
5015       Ops.push_back(getRoot());
5016     }
5017   }
5018 
5019   // Info is set by getTgtMemIntrinsic
5020   TargetLowering::IntrinsicInfo Info;
5021   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5022   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
5023                                                DAG.getMachineFunction(),
5024                                                Intrinsic);
5025 
5026   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5027   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5028       Info.opc == ISD::INTRINSIC_W_CHAIN)
5029     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5030                                         TLI.getPointerTy(DAG.getDataLayout())));
5031 
5032   // Add all operands of the call to the operand list.
5033   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5034     const Value *Arg = I.getArgOperand(i);
5035     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5036       Ops.push_back(getValue(Arg));
5037       continue;
5038     }
5039 
5040     // Use TargetConstant instead of a regular constant for immarg.
5041     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5042     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5043       assert(CI->getBitWidth() <= 64 &&
5044              "large intrinsic immediates not handled");
5045       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5046     } else {
5047       Ops.push_back(
5048           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5049     }
5050   }
5051 
5052   SmallVector<EVT, 4> ValueVTs;
5053   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5054 
5055   if (HasChain)
5056     ValueVTs.push_back(MVT::Other);
5057 
5058   SDVTList VTs = DAG.getVTList(ValueVTs);
5059 
5060   // Propagate fast-math-flags from IR to node(s).
5061   SDNodeFlags Flags;
5062   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5063     Flags.copyFMF(*FPMO);
5064   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5065 
5066   // Create the node.
5067   SDValue Result;
5068   // In some cases, custom collection of operands from CallInst I may be needed.
5069   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5070   if (IsTgtIntrinsic) {
5071     // This is target intrinsic that touches memory
5072     //
5073     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5074     //       didn't yield anything useful.
5075     MachinePointerInfo MPI;
5076     if (Info.ptrVal)
5077       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5078     else if (Info.fallbackAddressSpace)
5079       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5080     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5081                                      Info.memVT, MPI, Info.align, Info.flags,
5082                                      Info.size, I.getAAMetadata());
5083   } else if (!HasChain) {
5084     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5085   } else if (!I.getType()->isVoidTy()) {
5086     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5087   } else {
5088     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5089   }
5090 
5091   if (HasChain) {
5092     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5093     if (OnlyLoad)
5094       PendingLoads.push_back(Chain);
5095     else
5096       DAG.setRoot(Chain);
5097   }
5098 
5099   if (!I.getType()->isVoidTy()) {
5100     if (!isa<VectorType>(I.getType()))
5101       Result = lowerRangeToAssertZExt(DAG, I, Result);
5102 
5103     MaybeAlign Alignment = I.getRetAlign();
5104 
5105     // Insert `assertalign` node if there's an alignment.
5106     if (InsertAssertAlign && Alignment) {
5107       Result =
5108           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5109     }
5110 
5111     setValue(&I, Result);
5112   }
5113 }
5114 
5115 /// GetSignificand - Get the significand and build it into a floating-point
5116 /// number with exponent of 1:
5117 ///
5118 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5119 ///
5120 /// where Op is the hexadecimal representation of floating point value.
5121 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5122   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5123                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5124   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5125                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5126   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5127 }
5128 
5129 /// GetExponent - Get the exponent:
5130 ///
5131 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5132 ///
5133 /// where Op is the hexadecimal representation of floating point value.
5134 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5135                            const TargetLowering &TLI, const SDLoc &dl) {
5136   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5137                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5138   SDValue t1 = DAG.getNode(
5139       ISD::SRL, dl, MVT::i32, t0,
5140       DAG.getConstant(23, dl,
5141                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5142   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5143                            DAG.getConstant(127, dl, MVT::i32));
5144   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5145 }
5146 
5147 /// getF32Constant - Get 32-bit floating point constant.
5148 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5149                               const SDLoc &dl) {
5150   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5151                            MVT::f32);
5152 }
5153 
5154 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5155                                        SelectionDAG &DAG) {
5156   // TODO: What fast-math-flags should be set on the floating-point nodes?
5157 
5158   //   IntegerPartOfX = ((int32_t)(t0);
5159   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5160 
5161   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5162   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5163   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5164 
5165   //   IntegerPartOfX <<= 23;
5166   IntegerPartOfX =
5167       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5168                   DAG.getConstant(23, dl,
5169                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5170                                       MVT::i32, DAG.getDataLayout())));
5171 
5172   SDValue TwoToFractionalPartOfX;
5173   if (LimitFloatPrecision <= 6) {
5174     // For floating-point precision of 6:
5175     //
5176     //   TwoToFractionalPartOfX =
5177     //     0.997535578f +
5178     //       (0.735607626f + 0.252464424f * x) * x;
5179     //
5180     // error 0.0144103317, which is 6 bits
5181     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5182                              getF32Constant(DAG, 0x3e814304, dl));
5183     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5184                              getF32Constant(DAG, 0x3f3c50c8, dl));
5185     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5186     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5187                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5188   } else if (LimitFloatPrecision <= 12) {
5189     // For floating-point precision of 12:
5190     //
5191     //   TwoToFractionalPartOfX =
5192     //     0.999892986f +
5193     //       (0.696457318f +
5194     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5195     //
5196     // error 0.000107046256, which is 13 to 14 bits
5197     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5198                              getF32Constant(DAG, 0x3da235e3, dl));
5199     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5200                              getF32Constant(DAG, 0x3e65b8f3, dl));
5201     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5202     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5203                              getF32Constant(DAG, 0x3f324b07, dl));
5204     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5205     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5206                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5207   } else { // LimitFloatPrecision <= 18
5208     // For floating-point precision of 18:
5209     //
5210     //   TwoToFractionalPartOfX =
5211     //     0.999999982f +
5212     //       (0.693148872f +
5213     //         (0.240227044f +
5214     //           (0.554906021e-1f +
5215     //             (0.961591928e-2f +
5216     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5217     // error 2.47208000*10^(-7), which is better than 18 bits
5218     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5219                              getF32Constant(DAG, 0x3924b03e, dl));
5220     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5221                              getF32Constant(DAG, 0x3ab24b87, dl));
5222     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5223     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5224                              getF32Constant(DAG, 0x3c1d8c17, dl));
5225     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5226     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5227                              getF32Constant(DAG, 0x3d634a1d, dl));
5228     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5229     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5230                              getF32Constant(DAG, 0x3e75fe14, dl));
5231     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5232     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5233                               getF32Constant(DAG, 0x3f317234, dl));
5234     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5235     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5236                                          getF32Constant(DAG, 0x3f800000, dl));
5237   }
5238 
5239   // Add the exponent into the result in integer domain.
5240   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5241   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5242                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5243 }
5244 
5245 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5246 /// limited-precision mode.
5247 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5248                          const TargetLowering &TLI, SDNodeFlags Flags) {
5249   if (Op.getValueType() == MVT::f32 &&
5250       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5251 
5252     // Put the exponent in the right bit position for later addition to the
5253     // final result:
5254     //
5255     // t0 = Op * log2(e)
5256 
5257     // TODO: What fast-math-flags should be set here?
5258     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5259                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5260     return getLimitedPrecisionExp2(t0, dl, DAG);
5261   }
5262 
5263   // No special expansion.
5264   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5265 }
5266 
5267 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5268 /// limited-precision mode.
5269 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5270                          const TargetLowering &TLI, SDNodeFlags Flags) {
5271   // TODO: What fast-math-flags should be set on the floating-point nodes?
5272 
5273   if (Op.getValueType() == MVT::f32 &&
5274       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5275     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5276 
5277     // Scale the exponent by log(2).
5278     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5279     SDValue LogOfExponent =
5280         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5281                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5282 
5283     // Get the significand and build it into a floating-point number with
5284     // exponent of 1.
5285     SDValue X = GetSignificand(DAG, Op1, dl);
5286 
5287     SDValue LogOfMantissa;
5288     if (LimitFloatPrecision <= 6) {
5289       // For floating-point precision of 6:
5290       //
5291       //   LogofMantissa =
5292       //     -1.1609546f +
5293       //       (1.4034025f - 0.23903021f * x) * x;
5294       //
5295       // error 0.0034276066, which is better than 8 bits
5296       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5297                                getF32Constant(DAG, 0xbe74c456, dl));
5298       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5299                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5300       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5301       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5302                                   getF32Constant(DAG, 0x3f949a29, dl));
5303     } else if (LimitFloatPrecision <= 12) {
5304       // For floating-point precision of 12:
5305       //
5306       //   LogOfMantissa =
5307       //     -1.7417939f +
5308       //       (2.8212026f +
5309       //         (-1.4699568f +
5310       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5311       //
5312       // error 0.000061011436, which is 14 bits
5313       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5314                                getF32Constant(DAG, 0xbd67b6d6, dl));
5315       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5316                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5317       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5318       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5319                                getF32Constant(DAG, 0x3fbc278b, dl));
5320       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5321       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5322                                getF32Constant(DAG, 0x40348e95, dl));
5323       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5324       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5325                                   getF32Constant(DAG, 0x3fdef31a, dl));
5326     } else { // LimitFloatPrecision <= 18
5327       // For floating-point precision of 18:
5328       //
5329       //   LogOfMantissa =
5330       //     -2.1072184f +
5331       //       (4.2372794f +
5332       //         (-3.7029485f +
5333       //           (2.2781945f +
5334       //             (-0.87823314f +
5335       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5336       //
5337       // error 0.0000023660568, which is better than 18 bits
5338       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5339                                getF32Constant(DAG, 0xbc91e5ac, dl));
5340       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5341                                getF32Constant(DAG, 0x3e4350aa, dl));
5342       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5343       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5344                                getF32Constant(DAG, 0x3f60d3e3, dl));
5345       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5346       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5347                                getF32Constant(DAG, 0x4011cdf0, dl));
5348       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5349       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5350                                getF32Constant(DAG, 0x406cfd1c, dl));
5351       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5352       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5353                                getF32Constant(DAG, 0x408797cb, dl));
5354       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5355       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5356                                   getF32Constant(DAG, 0x4006dcab, dl));
5357     }
5358 
5359     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5360   }
5361 
5362   // No special expansion.
5363   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5364 }
5365 
5366 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5367 /// limited-precision mode.
5368 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5369                           const TargetLowering &TLI, SDNodeFlags Flags) {
5370   // TODO: What fast-math-flags should be set on the floating-point nodes?
5371 
5372   if (Op.getValueType() == MVT::f32 &&
5373       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5374     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5375 
5376     // Get the exponent.
5377     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5378 
5379     // Get the significand and build it into a floating-point number with
5380     // exponent of 1.
5381     SDValue X = GetSignificand(DAG, Op1, dl);
5382 
5383     // Different possible minimax approximations of significand in
5384     // floating-point for various degrees of accuracy over [1,2].
5385     SDValue Log2ofMantissa;
5386     if (LimitFloatPrecision <= 6) {
5387       // For floating-point precision of 6:
5388       //
5389       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5390       //
5391       // error 0.0049451742, which is more than 7 bits
5392       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5393                                getF32Constant(DAG, 0xbeb08fe0, dl));
5394       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5395                                getF32Constant(DAG, 0x40019463, dl));
5396       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5397       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5398                                    getF32Constant(DAG, 0x3fd6633d, dl));
5399     } else if (LimitFloatPrecision <= 12) {
5400       // For floating-point precision of 12:
5401       //
5402       //   Log2ofMantissa =
5403       //     -2.51285454f +
5404       //       (4.07009056f +
5405       //         (-2.12067489f +
5406       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5407       //
5408       // error 0.0000876136000, which is better than 13 bits
5409       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5410                                getF32Constant(DAG, 0xbda7262e, dl));
5411       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5412                                getF32Constant(DAG, 0x3f25280b, dl));
5413       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5414       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5415                                getF32Constant(DAG, 0x4007b923, dl));
5416       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5417       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5418                                getF32Constant(DAG, 0x40823e2f, dl));
5419       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5420       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5421                                    getF32Constant(DAG, 0x4020d29c, dl));
5422     } else { // LimitFloatPrecision <= 18
5423       // For floating-point precision of 18:
5424       //
5425       //   Log2ofMantissa =
5426       //     -3.0400495f +
5427       //       (6.1129976f +
5428       //         (-5.3420409f +
5429       //           (3.2865683f +
5430       //             (-1.2669343f +
5431       //               (0.27515199f -
5432       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5433       //
5434       // error 0.0000018516, which is better than 18 bits
5435       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5436                                getF32Constant(DAG, 0xbcd2769e, dl));
5437       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5438                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5439       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5440       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5441                                getF32Constant(DAG, 0x3fa22ae7, dl));
5442       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5443       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5444                                getF32Constant(DAG, 0x40525723, dl));
5445       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5446       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5447                                getF32Constant(DAG, 0x40aaf200, dl));
5448       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5449       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5450                                getF32Constant(DAG, 0x40c39dad, dl));
5451       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5452       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5453                                    getF32Constant(DAG, 0x4042902c, dl));
5454     }
5455 
5456     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5457   }
5458 
5459   // No special expansion.
5460   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5461 }
5462 
5463 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5464 /// limited-precision mode.
5465 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5466                            const TargetLowering &TLI, SDNodeFlags Flags) {
5467   // TODO: What fast-math-flags should be set on the floating-point nodes?
5468 
5469   if (Op.getValueType() == MVT::f32 &&
5470       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5471     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5472 
5473     // Scale the exponent by log10(2) [0.30102999f].
5474     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5475     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5476                                         getF32Constant(DAG, 0x3e9a209a, dl));
5477 
5478     // Get the significand and build it into a floating-point number with
5479     // exponent of 1.
5480     SDValue X = GetSignificand(DAG, Op1, dl);
5481 
5482     SDValue Log10ofMantissa;
5483     if (LimitFloatPrecision <= 6) {
5484       // For floating-point precision of 6:
5485       //
5486       //   Log10ofMantissa =
5487       //     -0.50419619f +
5488       //       (0.60948995f - 0.10380950f * x) * x;
5489       //
5490       // error 0.0014886165, which is 6 bits
5491       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5492                                getF32Constant(DAG, 0xbdd49a13, dl));
5493       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5494                                getF32Constant(DAG, 0x3f1c0789, dl));
5495       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5496       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5497                                     getF32Constant(DAG, 0x3f011300, dl));
5498     } else if (LimitFloatPrecision <= 12) {
5499       // For floating-point precision of 12:
5500       //
5501       //   Log10ofMantissa =
5502       //     -0.64831180f +
5503       //       (0.91751397f +
5504       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5505       //
5506       // error 0.00019228036, which is better than 12 bits
5507       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5508                                getF32Constant(DAG, 0x3d431f31, dl));
5509       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5510                                getF32Constant(DAG, 0x3ea21fb2, dl));
5511       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5512       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5513                                getF32Constant(DAG, 0x3f6ae232, dl));
5514       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5515       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5516                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5517     } else { // LimitFloatPrecision <= 18
5518       // For floating-point precision of 18:
5519       //
5520       //   Log10ofMantissa =
5521       //     -0.84299375f +
5522       //       (1.5327582f +
5523       //         (-1.0688956f +
5524       //           (0.49102474f +
5525       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5526       //
5527       // error 0.0000037995730, which is better than 18 bits
5528       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5529                                getF32Constant(DAG, 0x3c5d51ce, dl));
5530       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5531                                getF32Constant(DAG, 0x3e00685a, dl));
5532       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5533       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5534                                getF32Constant(DAG, 0x3efb6798, dl));
5535       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5536       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5537                                getF32Constant(DAG, 0x3f88d192, dl));
5538       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5539       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5540                                getF32Constant(DAG, 0x3fc4316c, dl));
5541       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5542       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5543                                     getF32Constant(DAG, 0x3f57ce70, dl));
5544     }
5545 
5546     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5547   }
5548 
5549   // No special expansion.
5550   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5551 }
5552 
5553 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5554 /// limited-precision mode.
5555 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5556                           const TargetLowering &TLI, SDNodeFlags Flags) {
5557   if (Op.getValueType() == MVT::f32 &&
5558       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5559     return getLimitedPrecisionExp2(Op, dl, DAG);
5560 
5561   // No special expansion.
5562   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5563 }
5564 
5565 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5566 /// limited-precision mode with x == 10.0f.
5567 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5568                          SelectionDAG &DAG, const TargetLowering &TLI,
5569                          SDNodeFlags Flags) {
5570   bool IsExp10 = false;
5571   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5572       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5573     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5574       APFloat Ten(10.0f);
5575       IsExp10 = LHSC->isExactlyValue(Ten);
5576     }
5577   }
5578 
5579   // TODO: What fast-math-flags should be set on the FMUL node?
5580   if (IsExp10) {
5581     // Put the exponent in the right bit position for later addition to the
5582     // final result:
5583     //
5584     //   #define LOG2OF10 3.3219281f
5585     //   t0 = Op * LOG2OF10;
5586     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5587                              getF32Constant(DAG, 0x40549a78, dl));
5588     return getLimitedPrecisionExp2(t0, dl, DAG);
5589   }
5590 
5591   // No special expansion.
5592   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5593 }
5594 
5595 /// ExpandPowI - Expand a llvm.powi intrinsic.
5596 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5597                           SelectionDAG &DAG) {
5598   // If RHS is a constant, we can expand this out to a multiplication tree if
5599   // it's beneficial on the target, otherwise we end up lowering to a call to
5600   // __powidf2 (for example).
5601   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5602     unsigned Val = RHSC->getSExtValue();
5603 
5604     // powi(x, 0) -> 1.0
5605     if (Val == 0)
5606       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5607 
5608     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5609             Val, DAG.shouldOptForSize())) {
5610       // Get the exponent as a positive value.
5611       if ((int)Val < 0)
5612         Val = -Val;
5613       // We use the simple binary decomposition method to generate the multiply
5614       // sequence.  There are more optimal ways to do this (for example,
5615       // powi(x,15) generates one more multiply than it should), but this has
5616       // the benefit of being both really simple and much better than a libcall.
5617       SDValue Res; // Logically starts equal to 1.0
5618       SDValue CurSquare = LHS;
5619       // TODO: Intrinsics should have fast-math-flags that propagate to these
5620       // nodes.
5621       while (Val) {
5622         if (Val & 1) {
5623           if (Res.getNode())
5624             Res =
5625                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5626           else
5627             Res = CurSquare; // 1.0*CurSquare.
5628         }
5629 
5630         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5631                                 CurSquare, CurSquare);
5632         Val >>= 1;
5633       }
5634 
5635       // If the original was negative, invert the result, producing 1/(x*x*x).
5636       if (RHSC->getSExtValue() < 0)
5637         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5638                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5639       return Res;
5640     }
5641   }
5642 
5643   // Otherwise, expand to a libcall.
5644   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5645 }
5646 
5647 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5648                             SDValue LHS, SDValue RHS, SDValue Scale,
5649                             SelectionDAG &DAG, const TargetLowering &TLI) {
5650   EVT VT = LHS.getValueType();
5651   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5652   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5653   LLVMContext &Ctx = *DAG.getContext();
5654 
5655   // If the type is legal but the operation isn't, this node might survive all
5656   // the way to operation legalization. If we end up there and we do not have
5657   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5658   // node.
5659 
5660   // Coax the legalizer into expanding the node during type legalization instead
5661   // by bumping the size by one bit. This will force it to Promote, enabling the
5662   // early expansion and avoiding the need to expand later.
5663 
5664   // We don't have to do this if Scale is 0; that can always be expanded, unless
5665   // it's a saturating signed operation. Those can experience true integer
5666   // division overflow, a case which we must avoid.
5667 
5668   // FIXME: We wouldn't have to do this (or any of the early
5669   // expansion/promotion) if it was possible to expand a libcall of an
5670   // illegal type during operation legalization. But it's not, so things
5671   // get a bit hacky.
5672   unsigned ScaleInt = Scale->getAsZExtVal();
5673   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5674       (TLI.isTypeLegal(VT) ||
5675        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5676     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5677         Opcode, VT, ScaleInt);
5678     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5679       EVT PromVT;
5680       if (VT.isScalarInteger())
5681         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5682       else if (VT.isVector()) {
5683         PromVT = VT.getVectorElementType();
5684         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5685         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5686       } else
5687         llvm_unreachable("Wrong VT for DIVFIX?");
5688       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5689       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5690       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5691       // For saturating operations, we need to shift up the LHS to get the
5692       // proper saturation width, and then shift down again afterwards.
5693       if (Saturating)
5694         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5695                           DAG.getConstant(1, DL, ShiftTy));
5696       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5697       if (Saturating)
5698         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5699                           DAG.getConstant(1, DL, ShiftTy));
5700       return DAG.getZExtOrTrunc(Res, DL, VT);
5701     }
5702   }
5703 
5704   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5705 }
5706 
5707 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5708 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5709 static void
5710 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5711                      const SDValue &N) {
5712   switch (N.getOpcode()) {
5713   case ISD::CopyFromReg: {
5714     SDValue Op = N.getOperand(1);
5715     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5716                       Op.getValueType().getSizeInBits());
5717     return;
5718   }
5719   case ISD::BITCAST:
5720   case ISD::AssertZext:
5721   case ISD::AssertSext:
5722   case ISD::TRUNCATE:
5723     getUnderlyingArgRegs(Regs, N.getOperand(0));
5724     return;
5725   case ISD::BUILD_PAIR:
5726   case ISD::BUILD_VECTOR:
5727   case ISD::CONCAT_VECTORS:
5728     for (SDValue Op : N->op_values())
5729       getUnderlyingArgRegs(Regs, Op);
5730     return;
5731   default:
5732     return;
5733   }
5734 }
5735 
5736 /// If the DbgValueInst is a dbg_value of a function argument, create the
5737 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5738 /// instruction selection, they will be inserted to the entry BB.
5739 /// We don't currently support this for variadic dbg_values, as they shouldn't
5740 /// appear for function arguments or in the prologue.
5741 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5742     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5743     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5744   const Argument *Arg = dyn_cast<Argument>(V);
5745   if (!Arg)
5746     return false;
5747 
5748   MachineFunction &MF = DAG.getMachineFunction();
5749   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5750 
5751   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5752   // we've been asked to pursue.
5753   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5754                               bool Indirect) {
5755     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5756       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5757       // pointing at the VReg, which will be patched up later.
5758       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5759       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5760           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5761           /* isKill */ false, /* isDead */ false,
5762           /* isUndef */ false, /* isEarlyClobber */ false,
5763           /* SubReg */ 0, /* isDebug */ true)});
5764 
5765       auto *NewDIExpr = FragExpr;
5766       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5767       // the DIExpression.
5768       if (Indirect)
5769         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5770       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5771       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5772       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5773     } else {
5774       // Create a completely standard DBG_VALUE.
5775       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5776       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5777     }
5778   };
5779 
5780   if (Kind == FuncArgumentDbgValueKind::Value) {
5781     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5782     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5783     // the entry block.
5784     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5785     if (!IsInEntryBlock)
5786       return false;
5787 
5788     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5789     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5790     // variable that also is a param.
5791     //
5792     // Although, if we are at the top of the entry block already, we can still
5793     // emit using ArgDbgValue. This might catch some situations when the
5794     // dbg.value refers to an argument that isn't used in the entry block, so
5795     // any CopyToReg node would be optimized out and the only way to express
5796     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5797     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5798     // we should only emit as ArgDbgValue if the Variable is an argument to the
5799     // current function, and the dbg.value intrinsic is found in the entry
5800     // block.
5801     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5802         !DL->getInlinedAt();
5803     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5804     if (!IsInPrologue && !VariableIsFunctionInputArg)
5805       return false;
5806 
5807     // Here we assume that a function argument on IR level only can be used to
5808     // describe one input parameter on source level. If we for example have
5809     // source code like this
5810     //
5811     //    struct A { long x, y; };
5812     //    void foo(struct A a, long b) {
5813     //      ...
5814     //      b = a.x;
5815     //      ...
5816     //    }
5817     //
5818     // and IR like this
5819     //
5820     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5821     //  entry:
5822     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5823     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5824     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5825     //    ...
5826     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5827     //    ...
5828     //
5829     // then the last dbg.value is describing a parameter "b" using a value that
5830     // is an argument. But since we already has used %a1 to describe a parameter
5831     // we should not handle that last dbg.value here (that would result in an
5832     // incorrect hoisting of the DBG_VALUE to the function entry).
5833     // Notice that we allow one dbg.value per IR level argument, to accommodate
5834     // for the situation with fragments above.
5835     if (VariableIsFunctionInputArg) {
5836       unsigned ArgNo = Arg->getArgNo();
5837       if (ArgNo >= FuncInfo.DescribedArgs.size())
5838         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5839       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5840         return false;
5841       FuncInfo.DescribedArgs.set(ArgNo);
5842     }
5843   }
5844 
5845   bool IsIndirect = false;
5846   std::optional<MachineOperand> Op;
5847   // Some arguments' frame index is recorded during argument lowering.
5848   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5849   if (FI != std::numeric_limits<int>::max())
5850     Op = MachineOperand::CreateFI(FI);
5851 
5852   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5853   if (!Op && N.getNode()) {
5854     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5855     Register Reg;
5856     if (ArgRegsAndSizes.size() == 1)
5857       Reg = ArgRegsAndSizes.front().first;
5858 
5859     if (Reg && Reg.isVirtual()) {
5860       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5861       Register PR = RegInfo.getLiveInPhysReg(Reg);
5862       if (PR)
5863         Reg = PR;
5864     }
5865     if (Reg) {
5866       Op = MachineOperand::CreateReg(Reg, false);
5867       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5868     }
5869   }
5870 
5871   if (!Op && N.getNode()) {
5872     // Check if frame index is available.
5873     SDValue LCandidate = peekThroughBitcasts(N);
5874     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5875       if (FrameIndexSDNode *FINode =
5876           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5877         Op = MachineOperand::CreateFI(FINode->getIndex());
5878   }
5879 
5880   if (!Op) {
5881     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5882     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5883                                          SplitRegs) {
5884       unsigned Offset = 0;
5885       for (const auto &RegAndSize : SplitRegs) {
5886         // If the expression is already a fragment, the current register
5887         // offset+size might extend beyond the fragment. In this case, only
5888         // the register bits that are inside the fragment are relevant.
5889         int RegFragmentSizeInBits = RegAndSize.second;
5890         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5891           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5892           // The register is entirely outside the expression fragment,
5893           // so is irrelevant for debug info.
5894           if (Offset >= ExprFragmentSizeInBits)
5895             break;
5896           // The register is partially outside the expression fragment, only
5897           // the low bits within the fragment are relevant for debug info.
5898           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5899             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5900           }
5901         }
5902 
5903         auto FragmentExpr = DIExpression::createFragmentExpression(
5904             Expr, Offset, RegFragmentSizeInBits);
5905         Offset += RegAndSize.second;
5906         // If a valid fragment expression cannot be created, the variable's
5907         // correct value cannot be determined and so it is set as Undef.
5908         if (!FragmentExpr) {
5909           SDDbgValue *SDV = DAG.getConstantDbgValue(
5910               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5911           DAG.AddDbgValue(SDV, false);
5912           continue;
5913         }
5914         MachineInstr *NewMI =
5915             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5916                              Kind != FuncArgumentDbgValueKind::Value);
5917         FuncInfo.ArgDbgValues.push_back(NewMI);
5918       }
5919     };
5920 
5921     // Check if ValueMap has reg number.
5922     DenseMap<const Value *, Register>::const_iterator
5923       VMI = FuncInfo.ValueMap.find(V);
5924     if (VMI != FuncInfo.ValueMap.end()) {
5925       const auto &TLI = DAG.getTargetLoweringInfo();
5926       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5927                        V->getType(), std::nullopt);
5928       if (RFV.occupiesMultipleRegs()) {
5929         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5930         return true;
5931       }
5932 
5933       Op = MachineOperand::CreateReg(VMI->second, false);
5934       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5935     } else if (ArgRegsAndSizes.size() > 1) {
5936       // This was split due to the calling convention, and no virtual register
5937       // mapping exists for the value.
5938       splitMultiRegDbgValue(ArgRegsAndSizes);
5939       return true;
5940     }
5941   }
5942 
5943   if (!Op)
5944     return false;
5945 
5946   assert(Variable->isValidLocationForIntrinsic(DL) &&
5947          "Expected inlined-at fields to agree");
5948   MachineInstr *NewMI = nullptr;
5949 
5950   if (Op->isReg())
5951     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5952   else
5953     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5954                     Variable, Expr);
5955 
5956   // Otherwise, use ArgDbgValues.
5957   FuncInfo.ArgDbgValues.push_back(NewMI);
5958   return true;
5959 }
5960 
5961 /// Return the appropriate SDDbgValue based on N.
5962 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5963                                              DILocalVariable *Variable,
5964                                              DIExpression *Expr,
5965                                              const DebugLoc &dl,
5966                                              unsigned DbgSDNodeOrder) {
5967   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5968     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5969     // stack slot locations.
5970     //
5971     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5972     // debug values here after optimization:
5973     //
5974     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5975     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5976     //
5977     // Both describe the direct values of their associated variables.
5978     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5979                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5980   }
5981   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5982                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5983 }
5984 
5985 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5986   switch (Intrinsic) {
5987   case Intrinsic::smul_fix:
5988     return ISD::SMULFIX;
5989   case Intrinsic::umul_fix:
5990     return ISD::UMULFIX;
5991   case Intrinsic::smul_fix_sat:
5992     return ISD::SMULFIXSAT;
5993   case Intrinsic::umul_fix_sat:
5994     return ISD::UMULFIXSAT;
5995   case Intrinsic::sdiv_fix:
5996     return ISD::SDIVFIX;
5997   case Intrinsic::udiv_fix:
5998     return ISD::UDIVFIX;
5999   case Intrinsic::sdiv_fix_sat:
6000     return ISD::SDIVFIXSAT;
6001   case Intrinsic::udiv_fix_sat:
6002     return ISD::UDIVFIXSAT;
6003   default:
6004     llvm_unreachable("Unhandled fixed point intrinsic");
6005   }
6006 }
6007 
6008 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
6009                                            const char *FunctionName) {
6010   assert(FunctionName && "FunctionName must not be nullptr");
6011   SDValue Callee = DAG.getExternalSymbol(
6012       FunctionName,
6013       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6014   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
6015 }
6016 
6017 /// Given a @llvm.call.preallocated.setup, return the corresponding
6018 /// preallocated call.
6019 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6020   assert(cast<CallBase>(PreallocatedSetup)
6021                  ->getCalledFunction()
6022                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6023          "expected call_preallocated_setup Value");
6024   for (const auto *U : PreallocatedSetup->users()) {
6025     auto *UseCall = cast<CallBase>(U);
6026     const Function *Fn = UseCall->getCalledFunction();
6027     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6028       return UseCall;
6029     }
6030   }
6031   llvm_unreachable("expected corresponding call to preallocated setup/arg");
6032 }
6033 
6034 /// If DI is a debug value with an EntryValue expression, lower it using the
6035 /// corresponding physical register of the associated Argument value
6036 /// (guaranteed to exist by the verifier).
6037 bool SelectionDAGBuilder::visitEntryValueDbgValue(
6038     ArrayRef<const Value *> Values, DILocalVariable *Variable,
6039     DIExpression *Expr, DebugLoc DbgLoc) {
6040   if (!Expr->isEntryValue() || !hasSingleElement(Values))
6041     return false;
6042 
6043   // These properties are guaranteed by the verifier.
6044   const Argument *Arg = cast<Argument>(Values[0]);
6045   assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6046 
6047   auto ArgIt = FuncInfo.ValueMap.find(Arg);
6048   if (ArgIt == FuncInfo.ValueMap.end()) {
6049     LLVM_DEBUG(
6050         dbgs() << "Dropping dbg.value: expression is entry_value but "
6051                   "couldn't find an associated register for the Argument\n");
6052     return true;
6053   }
6054   Register ArgVReg = ArgIt->getSecond();
6055 
6056   for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6057     if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6058       SDDbgValue *SDV = DAG.getVRegDbgValue(
6059           Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6060       DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6061       return true;
6062     }
6063   LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6064                        "couldn't find a physical register\n");
6065   return true;
6066 }
6067 
6068 /// Lower the call to the specified intrinsic function.
6069 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6070                                              unsigned Intrinsic) {
6071   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6072   SDLoc sdl = getCurSDLoc();
6073   DebugLoc dl = getCurDebugLoc();
6074   SDValue Res;
6075 
6076   SDNodeFlags Flags;
6077   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6078     Flags.copyFMF(*FPOp);
6079 
6080   switch (Intrinsic) {
6081   default:
6082     // By default, turn this into a target intrinsic node.
6083     visitTargetIntrinsic(I, Intrinsic);
6084     return;
6085   case Intrinsic::vscale: {
6086     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6087     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6088     return;
6089   }
6090   case Intrinsic::vastart:  visitVAStart(I); return;
6091   case Intrinsic::vaend:    visitVAEnd(I); return;
6092   case Intrinsic::vacopy:   visitVACopy(I); return;
6093   case Intrinsic::returnaddress:
6094     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6095                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6096                              getValue(I.getArgOperand(0))));
6097     return;
6098   case Intrinsic::addressofreturnaddress:
6099     setValue(&I,
6100              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6101                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6102     return;
6103   case Intrinsic::sponentry:
6104     setValue(&I,
6105              DAG.getNode(ISD::SPONENTRY, sdl,
6106                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6107     return;
6108   case Intrinsic::frameaddress:
6109     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6110                              TLI.getFrameIndexTy(DAG.getDataLayout()),
6111                              getValue(I.getArgOperand(0))));
6112     return;
6113   case Intrinsic::read_volatile_register:
6114   case Intrinsic::read_register: {
6115     Value *Reg = I.getArgOperand(0);
6116     SDValue Chain = getRoot();
6117     SDValue RegName =
6118         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6119     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6120     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6121       DAG.getVTList(VT, MVT::Other), Chain, RegName);
6122     setValue(&I, Res);
6123     DAG.setRoot(Res.getValue(1));
6124     return;
6125   }
6126   case Intrinsic::write_register: {
6127     Value *Reg = I.getArgOperand(0);
6128     Value *RegValue = I.getArgOperand(1);
6129     SDValue Chain = getRoot();
6130     SDValue RegName =
6131         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6132     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6133                             RegName, getValue(RegValue)));
6134     return;
6135   }
6136   case Intrinsic::memcpy: {
6137     const auto &MCI = cast<MemCpyInst>(I);
6138     SDValue Op1 = getValue(I.getArgOperand(0));
6139     SDValue Op2 = getValue(I.getArgOperand(1));
6140     SDValue Op3 = getValue(I.getArgOperand(2));
6141     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6142     Align DstAlign = MCI.getDestAlign().valueOrOne();
6143     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6144     Align Alignment = std::min(DstAlign, SrcAlign);
6145     bool isVol = MCI.isVolatile();
6146     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6147     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6148     // node.
6149     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6150     SDValue MC = DAG.getMemcpy(
6151         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6152         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
6153         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6154     updateDAGForMaybeTailCall(MC);
6155     return;
6156   }
6157   case Intrinsic::memcpy_inline: {
6158     const auto &MCI = cast<MemCpyInlineInst>(I);
6159     SDValue Dst = getValue(I.getArgOperand(0));
6160     SDValue Src = getValue(I.getArgOperand(1));
6161     SDValue Size = getValue(I.getArgOperand(2));
6162     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6163     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6164     Align DstAlign = MCI.getDestAlign().valueOrOne();
6165     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6166     Align Alignment = std::min(DstAlign, SrcAlign);
6167     bool isVol = MCI.isVolatile();
6168     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6169     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6170     // node.
6171     SDValue MC = DAG.getMemcpy(
6172         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6173         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
6174         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6175     updateDAGForMaybeTailCall(MC);
6176     return;
6177   }
6178   case Intrinsic::memset: {
6179     const auto &MSI = cast<MemSetInst>(I);
6180     SDValue Op1 = getValue(I.getArgOperand(0));
6181     SDValue Op2 = getValue(I.getArgOperand(1));
6182     SDValue Op3 = getValue(I.getArgOperand(2));
6183     // @llvm.memset defines 0 and 1 to both mean no alignment.
6184     Align Alignment = MSI.getDestAlign().valueOrOne();
6185     bool isVol = MSI.isVolatile();
6186     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6187     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6188     SDValue MS = DAG.getMemset(
6189         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6190         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6191     updateDAGForMaybeTailCall(MS);
6192     return;
6193   }
6194   case Intrinsic::memset_inline: {
6195     const auto &MSII = cast<MemSetInlineInst>(I);
6196     SDValue Dst = getValue(I.getArgOperand(0));
6197     SDValue Value = getValue(I.getArgOperand(1));
6198     SDValue Size = getValue(I.getArgOperand(2));
6199     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6200     // @llvm.memset defines 0 and 1 to both mean no alignment.
6201     Align DstAlign = MSII.getDestAlign().valueOrOne();
6202     bool isVol = MSII.isVolatile();
6203     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6204     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6205     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6206                                /* AlwaysInline */ true, isTC,
6207                                MachinePointerInfo(I.getArgOperand(0)),
6208                                I.getAAMetadata());
6209     updateDAGForMaybeTailCall(MC);
6210     return;
6211   }
6212   case Intrinsic::memmove: {
6213     const auto &MMI = cast<MemMoveInst>(I);
6214     SDValue Op1 = getValue(I.getArgOperand(0));
6215     SDValue Op2 = getValue(I.getArgOperand(1));
6216     SDValue Op3 = getValue(I.getArgOperand(2));
6217     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6218     Align DstAlign = MMI.getDestAlign().valueOrOne();
6219     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6220     Align Alignment = std::min(DstAlign, SrcAlign);
6221     bool isVol = MMI.isVolatile();
6222     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6223     // FIXME: Support passing different dest/src alignments to the memmove DAG
6224     // node.
6225     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6226     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6227                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6228                                 MachinePointerInfo(I.getArgOperand(1)),
6229                                 I.getAAMetadata(), AA);
6230     updateDAGForMaybeTailCall(MM);
6231     return;
6232   }
6233   case Intrinsic::memcpy_element_unordered_atomic: {
6234     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6235     SDValue Dst = getValue(MI.getRawDest());
6236     SDValue Src = getValue(MI.getRawSource());
6237     SDValue Length = getValue(MI.getLength());
6238 
6239     Type *LengthTy = MI.getLength()->getType();
6240     unsigned ElemSz = MI.getElementSizeInBytes();
6241     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6242     SDValue MC =
6243         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6244                             isTC, MachinePointerInfo(MI.getRawDest()),
6245                             MachinePointerInfo(MI.getRawSource()));
6246     updateDAGForMaybeTailCall(MC);
6247     return;
6248   }
6249   case Intrinsic::memmove_element_unordered_atomic: {
6250     auto &MI = cast<AtomicMemMoveInst>(I);
6251     SDValue Dst = getValue(MI.getRawDest());
6252     SDValue Src = getValue(MI.getRawSource());
6253     SDValue Length = getValue(MI.getLength());
6254 
6255     Type *LengthTy = MI.getLength()->getType();
6256     unsigned ElemSz = MI.getElementSizeInBytes();
6257     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6258     SDValue MC =
6259         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6260                              isTC, MachinePointerInfo(MI.getRawDest()),
6261                              MachinePointerInfo(MI.getRawSource()));
6262     updateDAGForMaybeTailCall(MC);
6263     return;
6264   }
6265   case Intrinsic::memset_element_unordered_atomic: {
6266     auto &MI = cast<AtomicMemSetInst>(I);
6267     SDValue Dst = getValue(MI.getRawDest());
6268     SDValue Val = getValue(MI.getValue());
6269     SDValue Length = getValue(MI.getLength());
6270 
6271     Type *LengthTy = MI.getLength()->getType();
6272     unsigned ElemSz = MI.getElementSizeInBytes();
6273     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6274     SDValue MC =
6275         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6276                             isTC, MachinePointerInfo(MI.getRawDest()));
6277     updateDAGForMaybeTailCall(MC);
6278     return;
6279   }
6280   case Intrinsic::call_preallocated_setup: {
6281     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6282     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6283     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6284                               getRoot(), SrcValue);
6285     setValue(&I, Res);
6286     DAG.setRoot(Res);
6287     return;
6288   }
6289   case Intrinsic::call_preallocated_arg: {
6290     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6291     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6292     SDValue Ops[3];
6293     Ops[0] = getRoot();
6294     Ops[1] = SrcValue;
6295     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6296                                    MVT::i32); // arg index
6297     SDValue Res = DAG.getNode(
6298         ISD::PREALLOCATED_ARG, sdl,
6299         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6300     setValue(&I, Res);
6301     DAG.setRoot(Res.getValue(1));
6302     return;
6303   }
6304   case Intrinsic::dbg_declare: {
6305     const auto &DI = cast<DbgDeclareInst>(I);
6306     // Debug intrinsics are handled separately in assignment tracking mode.
6307     // Some intrinsics are handled right after Argument lowering.
6308     if (AssignmentTrackingEnabled ||
6309         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6310       return;
6311     LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6312     DILocalVariable *Variable = DI.getVariable();
6313     DIExpression *Expression = DI.getExpression();
6314     dropDanglingDebugInfo(Variable, Expression);
6315     // Assume dbg.declare can not currently use DIArgList, i.e.
6316     // it is non-variadic.
6317     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6318     handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6319                        DI.getDebugLoc());
6320     return;
6321   }
6322   case Intrinsic::dbg_label: {
6323     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6324     DILabel *Label = DI.getLabel();
6325     assert(Label && "Missing label");
6326 
6327     SDDbgLabel *SDV;
6328     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6329     DAG.AddDbgLabel(SDV);
6330     return;
6331   }
6332   case Intrinsic::dbg_assign: {
6333     // Debug intrinsics are handled seperately in assignment tracking mode.
6334     if (AssignmentTrackingEnabled)
6335       return;
6336     // If assignment tracking hasn't been enabled then fall through and treat
6337     // the dbg.assign as a dbg.value.
6338     [[fallthrough]];
6339   }
6340   case Intrinsic::dbg_value: {
6341     // Debug intrinsics are handled seperately in assignment tracking mode.
6342     if (AssignmentTrackingEnabled)
6343       return;
6344     const DbgValueInst &DI = cast<DbgValueInst>(I);
6345     assert(DI.getVariable() && "Missing variable");
6346 
6347     DILocalVariable *Variable = DI.getVariable();
6348     DIExpression *Expression = DI.getExpression();
6349     dropDanglingDebugInfo(Variable, Expression);
6350 
6351     if (DI.isKillLocation()) {
6352       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6353       return;
6354     }
6355 
6356     SmallVector<Value *, 4> Values(DI.getValues());
6357     if (Values.empty())
6358       return;
6359 
6360     bool IsVariadic = DI.hasArgList();
6361     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6362                           SDNodeOrder, IsVariadic))
6363       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6364                            DI.getDebugLoc(), SDNodeOrder);
6365     return;
6366   }
6367 
6368   case Intrinsic::eh_typeid_for: {
6369     // Find the type id for the given typeinfo.
6370     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6371     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6372     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6373     setValue(&I, Res);
6374     return;
6375   }
6376 
6377   case Intrinsic::eh_return_i32:
6378   case Intrinsic::eh_return_i64:
6379     DAG.getMachineFunction().setCallsEHReturn(true);
6380     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6381                             MVT::Other,
6382                             getControlRoot(),
6383                             getValue(I.getArgOperand(0)),
6384                             getValue(I.getArgOperand(1))));
6385     return;
6386   case Intrinsic::eh_unwind_init:
6387     DAG.getMachineFunction().setCallsUnwindInit(true);
6388     return;
6389   case Intrinsic::eh_dwarf_cfa:
6390     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6391                              TLI.getPointerTy(DAG.getDataLayout()),
6392                              getValue(I.getArgOperand(0))));
6393     return;
6394   case Intrinsic::eh_sjlj_callsite: {
6395     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6396     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6397     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6398 
6399     MMI.setCurrentCallSite(CI->getZExtValue());
6400     return;
6401   }
6402   case Intrinsic::eh_sjlj_functioncontext: {
6403     // Get and store the index of the function context.
6404     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6405     AllocaInst *FnCtx =
6406       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6407     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6408     MFI.setFunctionContextIndex(FI);
6409     return;
6410   }
6411   case Intrinsic::eh_sjlj_setjmp: {
6412     SDValue Ops[2];
6413     Ops[0] = getRoot();
6414     Ops[1] = getValue(I.getArgOperand(0));
6415     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6416                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6417     setValue(&I, Op.getValue(0));
6418     DAG.setRoot(Op.getValue(1));
6419     return;
6420   }
6421   case Intrinsic::eh_sjlj_longjmp:
6422     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6423                             getRoot(), getValue(I.getArgOperand(0))));
6424     return;
6425   case Intrinsic::eh_sjlj_setup_dispatch:
6426     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6427                             getRoot()));
6428     return;
6429   case Intrinsic::masked_gather:
6430     visitMaskedGather(I);
6431     return;
6432   case Intrinsic::masked_load:
6433     visitMaskedLoad(I);
6434     return;
6435   case Intrinsic::masked_scatter:
6436     visitMaskedScatter(I);
6437     return;
6438   case Intrinsic::masked_store:
6439     visitMaskedStore(I);
6440     return;
6441   case Intrinsic::masked_expandload:
6442     visitMaskedLoad(I, true /* IsExpanding */);
6443     return;
6444   case Intrinsic::masked_compressstore:
6445     visitMaskedStore(I, true /* IsCompressing */);
6446     return;
6447   case Intrinsic::powi:
6448     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6449                             getValue(I.getArgOperand(1)), DAG));
6450     return;
6451   case Intrinsic::log:
6452     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6453     return;
6454   case Intrinsic::log2:
6455     setValue(&I,
6456              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6457     return;
6458   case Intrinsic::log10:
6459     setValue(&I,
6460              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6461     return;
6462   case Intrinsic::exp:
6463     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6464     return;
6465   case Intrinsic::exp2:
6466     setValue(&I,
6467              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6468     return;
6469   case Intrinsic::pow:
6470     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6471                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6472     return;
6473   case Intrinsic::sqrt:
6474   case Intrinsic::fabs:
6475   case Intrinsic::sin:
6476   case Intrinsic::cos:
6477   case Intrinsic::exp10:
6478   case Intrinsic::floor:
6479   case Intrinsic::ceil:
6480   case Intrinsic::trunc:
6481   case Intrinsic::rint:
6482   case Intrinsic::nearbyint:
6483   case Intrinsic::round:
6484   case Intrinsic::roundeven:
6485   case Intrinsic::canonicalize: {
6486     unsigned Opcode;
6487     switch (Intrinsic) {
6488     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6489     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6490     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6491     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6492     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6493     case Intrinsic::exp10:     Opcode = ISD::FEXP10;     break;
6494     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6495     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6496     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6497     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6498     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6499     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6500     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6501     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6502     }
6503 
6504     setValue(&I, DAG.getNode(Opcode, sdl,
6505                              getValue(I.getArgOperand(0)).getValueType(),
6506                              getValue(I.getArgOperand(0)), Flags));
6507     return;
6508   }
6509   case Intrinsic::lround:
6510   case Intrinsic::llround:
6511   case Intrinsic::lrint:
6512   case Intrinsic::llrint: {
6513     unsigned Opcode;
6514     switch (Intrinsic) {
6515     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6516     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6517     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6518     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6519     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6520     }
6521 
6522     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6523     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6524                              getValue(I.getArgOperand(0))));
6525     return;
6526   }
6527   case Intrinsic::minnum:
6528     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6529                              getValue(I.getArgOperand(0)).getValueType(),
6530                              getValue(I.getArgOperand(0)),
6531                              getValue(I.getArgOperand(1)), Flags));
6532     return;
6533   case Intrinsic::maxnum:
6534     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6535                              getValue(I.getArgOperand(0)).getValueType(),
6536                              getValue(I.getArgOperand(0)),
6537                              getValue(I.getArgOperand(1)), Flags));
6538     return;
6539   case Intrinsic::minimum:
6540     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6541                              getValue(I.getArgOperand(0)).getValueType(),
6542                              getValue(I.getArgOperand(0)),
6543                              getValue(I.getArgOperand(1)), Flags));
6544     return;
6545   case Intrinsic::maximum:
6546     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6547                              getValue(I.getArgOperand(0)).getValueType(),
6548                              getValue(I.getArgOperand(0)),
6549                              getValue(I.getArgOperand(1)), Flags));
6550     return;
6551   case Intrinsic::copysign:
6552     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6553                              getValue(I.getArgOperand(0)).getValueType(),
6554                              getValue(I.getArgOperand(0)),
6555                              getValue(I.getArgOperand(1)), Flags));
6556     return;
6557   case Intrinsic::ldexp:
6558     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6559                              getValue(I.getArgOperand(0)).getValueType(),
6560                              getValue(I.getArgOperand(0)),
6561                              getValue(I.getArgOperand(1)), Flags));
6562     return;
6563   case Intrinsic::frexp: {
6564     SmallVector<EVT, 2> ValueVTs;
6565     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6566     SDVTList VTs = DAG.getVTList(ValueVTs);
6567     setValue(&I,
6568              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6569     return;
6570   }
6571   case Intrinsic::arithmetic_fence: {
6572     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6573                              getValue(I.getArgOperand(0)).getValueType(),
6574                              getValue(I.getArgOperand(0)), Flags));
6575     return;
6576   }
6577   case Intrinsic::fma:
6578     setValue(&I, DAG.getNode(
6579                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6580                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6581                      getValue(I.getArgOperand(2)), Flags));
6582     return;
6583 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6584   case Intrinsic::INTRINSIC:
6585 #include "llvm/IR/ConstrainedOps.def"
6586     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6587     return;
6588 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6589 #include "llvm/IR/VPIntrinsics.def"
6590     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6591     return;
6592   case Intrinsic::fptrunc_round: {
6593     // Get the last argument, the metadata and convert it to an integer in the
6594     // call
6595     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6596     std::optional<RoundingMode> RoundMode =
6597         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6598 
6599     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6600 
6601     // Propagate fast-math-flags from IR to node(s).
6602     SDNodeFlags Flags;
6603     Flags.copyFMF(*cast<FPMathOperator>(&I));
6604     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6605 
6606     SDValue Result;
6607     Result = DAG.getNode(
6608         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6609         DAG.getTargetConstant((int)*RoundMode, sdl,
6610                               TLI.getPointerTy(DAG.getDataLayout())));
6611     setValue(&I, Result);
6612 
6613     return;
6614   }
6615   case Intrinsic::fmuladd: {
6616     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6617     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6618         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6619       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6620                                getValue(I.getArgOperand(0)).getValueType(),
6621                                getValue(I.getArgOperand(0)),
6622                                getValue(I.getArgOperand(1)),
6623                                getValue(I.getArgOperand(2)), Flags));
6624     } else {
6625       // TODO: Intrinsic calls should have fast-math-flags.
6626       SDValue Mul = DAG.getNode(
6627           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6628           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6629       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6630                                 getValue(I.getArgOperand(0)).getValueType(),
6631                                 Mul, getValue(I.getArgOperand(2)), Flags);
6632       setValue(&I, Add);
6633     }
6634     return;
6635   }
6636   case Intrinsic::convert_to_fp16:
6637     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6638                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6639                                          getValue(I.getArgOperand(0)),
6640                                          DAG.getTargetConstant(0, sdl,
6641                                                                MVT::i32))));
6642     return;
6643   case Intrinsic::convert_from_fp16:
6644     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6645                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6646                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6647                                          getValue(I.getArgOperand(0)))));
6648     return;
6649   case Intrinsic::fptosi_sat: {
6650     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6651     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6652                              getValue(I.getArgOperand(0)),
6653                              DAG.getValueType(VT.getScalarType())));
6654     return;
6655   }
6656   case Intrinsic::fptoui_sat: {
6657     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6658     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6659                              getValue(I.getArgOperand(0)),
6660                              DAG.getValueType(VT.getScalarType())));
6661     return;
6662   }
6663   case Intrinsic::set_rounding:
6664     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6665                       {getRoot(), getValue(I.getArgOperand(0))});
6666     setValue(&I, Res);
6667     DAG.setRoot(Res.getValue(0));
6668     return;
6669   case Intrinsic::is_fpclass: {
6670     const DataLayout DLayout = DAG.getDataLayout();
6671     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6672     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6673     FPClassTest Test = static_cast<FPClassTest>(
6674         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6675     MachineFunction &MF = DAG.getMachineFunction();
6676     const Function &F = MF.getFunction();
6677     SDValue Op = getValue(I.getArgOperand(0));
6678     SDNodeFlags Flags;
6679     Flags.setNoFPExcept(
6680         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6681     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6682     // expansion can use illegal types. Making expansion early allows
6683     // legalizing these types prior to selection.
6684     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6685       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6686       setValue(&I, Result);
6687       return;
6688     }
6689 
6690     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6691     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6692     setValue(&I, V);
6693     return;
6694   }
6695   case Intrinsic::get_fpenv: {
6696     const DataLayout DLayout = DAG.getDataLayout();
6697     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
6698     Align TempAlign = DAG.getEVTAlign(EnvVT);
6699     SDValue Chain = getRoot();
6700     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
6701     // and temporary storage in stack.
6702     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
6703       Res = DAG.getNode(
6704           ISD::GET_FPENV, sdl,
6705           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6706                         MVT::Other),
6707           Chain);
6708     } else {
6709       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6710       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6711       auto MPI =
6712           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6713       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6714           MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize,
6715           TempAlign);
6716       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6717       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
6718     }
6719     setValue(&I, Res);
6720     DAG.setRoot(Res.getValue(1));
6721     return;
6722   }
6723   case Intrinsic::set_fpenv: {
6724     const DataLayout DLayout = DAG.getDataLayout();
6725     SDValue Env = getValue(I.getArgOperand(0));
6726     EVT EnvVT = Env.getValueType();
6727     Align TempAlign = DAG.getEVTAlign(EnvVT);
6728     SDValue Chain = getRoot();
6729     // If SET_FPENV is custom or legal, use it. Otherwise use loading
6730     // environment from memory.
6731     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
6732       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
6733     } else {
6734       // Allocate space in stack, copy environment bits into it and use this
6735       // memory in SET_FPENV_MEM.
6736       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6737       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6738       auto MPI =
6739           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6740       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
6741                            MachineMemOperand::MOStore);
6742       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6743           MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize,
6744           TempAlign);
6745       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6746     }
6747     DAG.setRoot(Chain);
6748     return;
6749   }
6750   case Intrinsic::reset_fpenv:
6751     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
6752     return;
6753   case Intrinsic::get_fpmode:
6754     Res = DAG.getNode(
6755         ISD::GET_FPMODE, sdl,
6756         DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6757                       MVT::Other),
6758         DAG.getRoot());
6759     setValue(&I, Res);
6760     DAG.setRoot(Res.getValue(1));
6761     return;
6762   case Intrinsic::set_fpmode:
6763     Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
6764                       getValue(I.getArgOperand(0)));
6765     DAG.setRoot(Res);
6766     return;
6767   case Intrinsic::reset_fpmode: {
6768     Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
6769     DAG.setRoot(Res);
6770     return;
6771   }
6772   case Intrinsic::pcmarker: {
6773     SDValue Tmp = getValue(I.getArgOperand(0));
6774     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6775     return;
6776   }
6777   case Intrinsic::readcyclecounter: {
6778     SDValue Op = getRoot();
6779     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6780                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6781     setValue(&I, Res);
6782     DAG.setRoot(Res.getValue(1));
6783     return;
6784   }
6785   case Intrinsic::readsteadycounter: {
6786     SDValue Op = getRoot();
6787     Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
6788                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6789     setValue(&I, Res);
6790     DAG.setRoot(Res.getValue(1));
6791     return;
6792   }
6793   case Intrinsic::bitreverse:
6794     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6795                              getValue(I.getArgOperand(0)).getValueType(),
6796                              getValue(I.getArgOperand(0))));
6797     return;
6798   case Intrinsic::bswap:
6799     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6800                              getValue(I.getArgOperand(0)).getValueType(),
6801                              getValue(I.getArgOperand(0))));
6802     return;
6803   case Intrinsic::cttz: {
6804     SDValue Arg = getValue(I.getArgOperand(0));
6805     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6806     EVT Ty = Arg.getValueType();
6807     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6808                              sdl, Ty, Arg));
6809     return;
6810   }
6811   case Intrinsic::ctlz: {
6812     SDValue Arg = getValue(I.getArgOperand(0));
6813     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6814     EVT Ty = Arg.getValueType();
6815     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6816                              sdl, Ty, Arg));
6817     return;
6818   }
6819   case Intrinsic::ctpop: {
6820     SDValue Arg = getValue(I.getArgOperand(0));
6821     EVT Ty = Arg.getValueType();
6822     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6823     return;
6824   }
6825   case Intrinsic::fshl:
6826   case Intrinsic::fshr: {
6827     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6828     SDValue X = getValue(I.getArgOperand(0));
6829     SDValue Y = getValue(I.getArgOperand(1));
6830     SDValue Z = getValue(I.getArgOperand(2));
6831     EVT VT = X.getValueType();
6832 
6833     if (X == Y) {
6834       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6835       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6836     } else {
6837       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6838       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6839     }
6840     return;
6841   }
6842   case Intrinsic::sadd_sat: {
6843     SDValue Op1 = getValue(I.getArgOperand(0));
6844     SDValue Op2 = getValue(I.getArgOperand(1));
6845     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6846     return;
6847   }
6848   case Intrinsic::uadd_sat: {
6849     SDValue Op1 = getValue(I.getArgOperand(0));
6850     SDValue Op2 = getValue(I.getArgOperand(1));
6851     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6852     return;
6853   }
6854   case Intrinsic::ssub_sat: {
6855     SDValue Op1 = getValue(I.getArgOperand(0));
6856     SDValue Op2 = getValue(I.getArgOperand(1));
6857     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6858     return;
6859   }
6860   case Intrinsic::usub_sat: {
6861     SDValue Op1 = getValue(I.getArgOperand(0));
6862     SDValue Op2 = getValue(I.getArgOperand(1));
6863     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6864     return;
6865   }
6866   case Intrinsic::sshl_sat: {
6867     SDValue Op1 = getValue(I.getArgOperand(0));
6868     SDValue Op2 = getValue(I.getArgOperand(1));
6869     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6870     return;
6871   }
6872   case Intrinsic::ushl_sat: {
6873     SDValue Op1 = getValue(I.getArgOperand(0));
6874     SDValue Op2 = getValue(I.getArgOperand(1));
6875     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6876     return;
6877   }
6878   case Intrinsic::smul_fix:
6879   case Intrinsic::umul_fix:
6880   case Intrinsic::smul_fix_sat:
6881   case Intrinsic::umul_fix_sat: {
6882     SDValue Op1 = getValue(I.getArgOperand(0));
6883     SDValue Op2 = getValue(I.getArgOperand(1));
6884     SDValue Op3 = getValue(I.getArgOperand(2));
6885     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6886                              Op1.getValueType(), Op1, Op2, Op3));
6887     return;
6888   }
6889   case Intrinsic::sdiv_fix:
6890   case Intrinsic::udiv_fix:
6891   case Intrinsic::sdiv_fix_sat:
6892   case Intrinsic::udiv_fix_sat: {
6893     SDValue Op1 = getValue(I.getArgOperand(0));
6894     SDValue Op2 = getValue(I.getArgOperand(1));
6895     SDValue Op3 = getValue(I.getArgOperand(2));
6896     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6897                               Op1, Op2, Op3, DAG, TLI));
6898     return;
6899   }
6900   case Intrinsic::smax: {
6901     SDValue Op1 = getValue(I.getArgOperand(0));
6902     SDValue Op2 = getValue(I.getArgOperand(1));
6903     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6904     return;
6905   }
6906   case Intrinsic::smin: {
6907     SDValue Op1 = getValue(I.getArgOperand(0));
6908     SDValue Op2 = getValue(I.getArgOperand(1));
6909     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6910     return;
6911   }
6912   case Intrinsic::umax: {
6913     SDValue Op1 = getValue(I.getArgOperand(0));
6914     SDValue Op2 = getValue(I.getArgOperand(1));
6915     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6916     return;
6917   }
6918   case Intrinsic::umin: {
6919     SDValue Op1 = getValue(I.getArgOperand(0));
6920     SDValue Op2 = getValue(I.getArgOperand(1));
6921     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6922     return;
6923   }
6924   case Intrinsic::abs: {
6925     // TODO: Preserve "int min is poison" arg in SDAG?
6926     SDValue Op1 = getValue(I.getArgOperand(0));
6927     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6928     return;
6929   }
6930   case Intrinsic::stacksave: {
6931     SDValue Op = getRoot();
6932     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6933     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6934     setValue(&I, Res);
6935     DAG.setRoot(Res.getValue(1));
6936     return;
6937   }
6938   case Intrinsic::stackrestore:
6939     Res = getValue(I.getArgOperand(0));
6940     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6941     return;
6942   case Intrinsic::get_dynamic_area_offset: {
6943     SDValue Op = getRoot();
6944     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6945     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6946     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6947     // target.
6948     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6949       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6950                          " intrinsic!");
6951     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6952                       Op);
6953     DAG.setRoot(Op);
6954     setValue(&I, Res);
6955     return;
6956   }
6957   case Intrinsic::stackguard: {
6958     MachineFunction &MF = DAG.getMachineFunction();
6959     const Module &M = *MF.getFunction().getParent();
6960     EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6961     SDValue Chain = getRoot();
6962     if (TLI.useLoadStackGuardNode()) {
6963       Res = getLoadStackGuard(DAG, sdl, Chain);
6964       Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
6965     } else {
6966       const Value *Global = TLI.getSDagStackGuard(M);
6967       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6968       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6969                         MachinePointerInfo(Global, 0), Align,
6970                         MachineMemOperand::MOVolatile);
6971     }
6972     if (TLI.useStackGuardXorFP())
6973       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6974     DAG.setRoot(Chain);
6975     setValue(&I, Res);
6976     return;
6977   }
6978   case Intrinsic::stackprotector: {
6979     // Emit code into the DAG to store the stack guard onto the stack.
6980     MachineFunction &MF = DAG.getMachineFunction();
6981     MachineFrameInfo &MFI = MF.getFrameInfo();
6982     SDValue Src, Chain = getRoot();
6983 
6984     if (TLI.useLoadStackGuardNode())
6985       Src = getLoadStackGuard(DAG, sdl, Chain);
6986     else
6987       Src = getValue(I.getArgOperand(0));   // The guard's value.
6988 
6989     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6990 
6991     int FI = FuncInfo.StaticAllocaMap[Slot];
6992     MFI.setStackProtectorIndex(FI);
6993     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6994 
6995     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6996 
6997     // Store the stack protector onto the stack.
6998     Res = DAG.getStore(
6999         Chain, sdl, Src, FIN,
7000         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7001         MaybeAlign(), MachineMemOperand::MOVolatile);
7002     setValue(&I, Res);
7003     DAG.setRoot(Res);
7004     return;
7005   }
7006   case Intrinsic::objectsize:
7007     llvm_unreachable("llvm.objectsize.* should have been lowered already");
7008 
7009   case Intrinsic::is_constant:
7010     llvm_unreachable("llvm.is.constant.* should have been lowered already");
7011 
7012   case Intrinsic::annotation:
7013   case Intrinsic::ptr_annotation:
7014   case Intrinsic::launder_invariant_group:
7015   case Intrinsic::strip_invariant_group:
7016     // Drop the intrinsic, but forward the value
7017     setValue(&I, getValue(I.getOperand(0)));
7018     return;
7019 
7020   case Intrinsic::assume:
7021   case Intrinsic::experimental_noalias_scope_decl:
7022   case Intrinsic::var_annotation:
7023   case Intrinsic::sideeffect:
7024     // Discard annotate attributes, noalias scope declarations, assumptions, and
7025     // artificial side-effects.
7026     return;
7027 
7028   case Intrinsic::codeview_annotation: {
7029     // Emit a label associated with this metadata.
7030     MachineFunction &MF = DAG.getMachineFunction();
7031     MCSymbol *Label =
7032         MF.getMMI().getContext().createTempSymbol("annotation", true);
7033     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7034     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7035     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7036     DAG.setRoot(Res);
7037     return;
7038   }
7039 
7040   case Intrinsic::init_trampoline: {
7041     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7042 
7043     SDValue Ops[6];
7044     Ops[0] = getRoot();
7045     Ops[1] = getValue(I.getArgOperand(0));
7046     Ops[2] = getValue(I.getArgOperand(1));
7047     Ops[3] = getValue(I.getArgOperand(2));
7048     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7049     Ops[5] = DAG.getSrcValue(F);
7050 
7051     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7052 
7053     DAG.setRoot(Res);
7054     return;
7055   }
7056   case Intrinsic::adjust_trampoline:
7057     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7058                              TLI.getPointerTy(DAG.getDataLayout()),
7059                              getValue(I.getArgOperand(0))));
7060     return;
7061   case Intrinsic::gcroot: {
7062     assert(DAG.getMachineFunction().getFunction().hasGC() &&
7063            "only valid in functions with gc specified, enforced by Verifier");
7064     assert(GFI && "implied by previous");
7065     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7066     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7067 
7068     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7069     GFI->addStackRoot(FI->getIndex(), TypeMap);
7070     return;
7071   }
7072   case Intrinsic::gcread:
7073   case Intrinsic::gcwrite:
7074     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7075   case Intrinsic::get_rounding:
7076     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7077     setValue(&I, Res);
7078     DAG.setRoot(Res.getValue(1));
7079     return;
7080 
7081   case Intrinsic::expect:
7082     // Just replace __builtin_expect(exp, c) with EXP.
7083     setValue(&I, getValue(I.getArgOperand(0)));
7084     return;
7085 
7086   case Intrinsic::ubsantrap:
7087   case Intrinsic::debugtrap:
7088   case Intrinsic::trap: {
7089     StringRef TrapFuncName =
7090         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7091     if (TrapFuncName.empty()) {
7092       switch (Intrinsic) {
7093       case Intrinsic::trap:
7094         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7095         break;
7096       case Intrinsic::debugtrap:
7097         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7098         break;
7099       case Intrinsic::ubsantrap:
7100         DAG.setRoot(DAG.getNode(
7101             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7102             DAG.getTargetConstant(
7103                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7104                 MVT::i32)));
7105         break;
7106       default: llvm_unreachable("unknown trap intrinsic");
7107       }
7108       return;
7109     }
7110     TargetLowering::ArgListTy Args;
7111     if (Intrinsic == Intrinsic::ubsantrap) {
7112       Args.push_back(TargetLoweringBase::ArgListEntry());
7113       Args[0].Val = I.getArgOperand(0);
7114       Args[0].Node = getValue(Args[0].Val);
7115       Args[0].Ty = Args[0].Val->getType();
7116     }
7117 
7118     TargetLowering::CallLoweringInfo CLI(DAG);
7119     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7120         CallingConv::C, I.getType(),
7121         DAG.getExternalSymbol(TrapFuncName.data(),
7122                               TLI.getPointerTy(DAG.getDataLayout())),
7123         std::move(Args));
7124 
7125     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7126     DAG.setRoot(Result.second);
7127     return;
7128   }
7129 
7130   case Intrinsic::uadd_with_overflow:
7131   case Intrinsic::sadd_with_overflow:
7132   case Intrinsic::usub_with_overflow:
7133   case Intrinsic::ssub_with_overflow:
7134   case Intrinsic::umul_with_overflow:
7135   case Intrinsic::smul_with_overflow: {
7136     ISD::NodeType Op;
7137     switch (Intrinsic) {
7138     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7139     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7140     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7141     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7142     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7143     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7144     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7145     }
7146     SDValue Op1 = getValue(I.getArgOperand(0));
7147     SDValue Op2 = getValue(I.getArgOperand(1));
7148 
7149     EVT ResultVT = Op1.getValueType();
7150     EVT OverflowVT = MVT::i1;
7151     if (ResultVT.isVector())
7152       OverflowVT = EVT::getVectorVT(
7153           *Context, OverflowVT, ResultVT.getVectorElementCount());
7154 
7155     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7156     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7157     return;
7158   }
7159   case Intrinsic::prefetch: {
7160     SDValue Ops[5];
7161     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7162     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7163     Ops[0] = DAG.getRoot();
7164     Ops[1] = getValue(I.getArgOperand(0));
7165     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7166                                    MVT::i32);
7167     Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7168                                    MVT::i32);
7169     Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7170                                    MVT::i32);
7171     SDValue Result = DAG.getMemIntrinsicNode(
7172         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7173         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7174         /* align */ std::nullopt, Flags);
7175 
7176     // Chain the prefetch in parallel with any pending loads, to stay out of
7177     // the way of later optimizations.
7178     PendingLoads.push_back(Result);
7179     Result = getRoot();
7180     DAG.setRoot(Result);
7181     return;
7182   }
7183   case Intrinsic::lifetime_start:
7184   case Intrinsic::lifetime_end: {
7185     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7186     // Stack coloring is not enabled in O0, discard region information.
7187     if (TM.getOptLevel() == CodeGenOptLevel::None)
7188       return;
7189 
7190     const int64_t ObjectSize =
7191         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7192     Value *const ObjectPtr = I.getArgOperand(1);
7193     SmallVector<const Value *, 4> Allocas;
7194     getUnderlyingObjects(ObjectPtr, Allocas);
7195 
7196     for (const Value *Alloca : Allocas) {
7197       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7198 
7199       // Could not find an Alloca.
7200       if (!LifetimeObject)
7201         continue;
7202 
7203       // First check that the Alloca is static, otherwise it won't have a
7204       // valid frame index.
7205       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7206       if (SI == FuncInfo.StaticAllocaMap.end())
7207         return;
7208 
7209       const int FrameIndex = SI->second;
7210       int64_t Offset;
7211       if (GetPointerBaseWithConstantOffset(
7212               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7213         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7214       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7215                                 Offset);
7216       DAG.setRoot(Res);
7217     }
7218     return;
7219   }
7220   case Intrinsic::pseudoprobe: {
7221     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7222     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7223     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7224     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7225     DAG.setRoot(Res);
7226     return;
7227   }
7228   case Intrinsic::invariant_start:
7229     // Discard region information.
7230     setValue(&I,
7231              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7232     return;
7233   case Intrinsic::invariant_end:
7234     // Discard region information.
7235     return;
7236   case Intrinsic::clear_cache:
7237     /// FunctionName may be null.
7238     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
7239       lowerCallToExternalSymbol(I, FunctionName);
7240     return;
7241   case Intrinsic::donothing:
7242   case Intrinsic::seh_try_begin:
7243   case Intrinsic::seh_scope_begin:
7244   case Intrinsic::seh_try_end:
7245   case Intrinsic::seh_scope_end:
7246     // ignore
7247     return;
7248   case Intrinsic::experimental_stackmap:
7249     visitStackmap(I);
7250     return;
7251   case Intrinsic::experimental_patchpoint_void:
7252   case Intrinsic::experimental_patchpoint_i64:
7253     visitPatchpoint(I);
7254     return;
7255   case Intrinsic::experimental_gc_statepoint:
7256     LowerStatepoint(cast<GCStatepointInst>(I));
7257     return;
7258   case Intrinsic::experimental_gc_result:
7259     visitGCResult(cast<GCResultInst>(I));
7260     return;
7261   case Intrinsic::experimental_gc_relocate:
7262     visitGCRelocate(cast<GCRelocateInst>(I));
7263     return;
7264   case Intrinsic::instrprof_cover:
7265     llvm_unreachable("instrprof failed to lower a cover");
7266   case Intrinsic::instrprof_increment:
7267     llvm_unreachable("instrprof failed to lower an increment");
7268   case Intrinsic::instrprof_timestamp:
7269     llvm_unreachable("instrprof failed to lower a timestamp");
7270   case Intrinsic::instrprof_value_profile:
7271     llvm_unreachable("instrprof failed to lower a value profiling call");
7272   case Intrinsic::instrprof_mcdc_parameters:
7273     llvm_unreachable("instrprof failed to lower mcdc parameters");
7274   case Intrinsic::instrprof_mcdc_tvbitmap_update:
7275     llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7276   case Intrinsic::instrprof_mcdc_condbitmap_update:
7277     llvm_unreachable("instrprof failed to lower an mcdc condbitmap update");
7278   case Intrinsic::localescape: {
7279     MachineFunction &MF = DAG.getMachineFunction();
7280     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7281 
7282     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7283     // is the same on all targets.
7284     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7285       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7286       if (isa<ConstantPointerNull>(Arg))
7287         continue; // Skip null pointers. They represent a hole in index space.
7288       AllocaInst *Slot = cast<AllocaInst>(Arg);
7289       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7290              "can only escape static allocas");
7291       int FI = FuncInfo.StaticAllocaMap[Slot];
7292       MCSymbol *FrameAllocSym =
7293           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7294               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7295       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7296               TII->get(TargetOpcode::LOCAL_ESCAPE))
7297           .addSym(FrameAllocSym)
7298           .addFrameIndex(FI);
7299     }
7300 
7301     return;
7302   }
7303 
7304   case Intrinsic::localrecover: {
7305     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7306     MachineFunction &MF = DAG.getMachineFunction();
7307 
7308     // Get the symbol that defines the frame offset.
7309     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7310     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7311     unsigned IdxVal =
7312         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7313     MCSymbol *FrameAllocSym =
7314         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7315             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7316 
7317     Value *FP = I.getArgOperand(1);
7318     SDValue FPVal = getValue(FP);
7319     EVT PtrVT = FPVal.getValueType();
7320 
7321     // Create a MCSymbol for the label to avoid any target lowering
7322     // that would make this PC relative.
7323     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7324     SDValue OffsetVal =
7325         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7326 
7327     // Add the offset to the FP.
7328     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7329     setValue(&I, Add);
7330 
7331     return;
7332   }
7333 
7334   case Intrinsic::eh_exceptionpointer:
7335   case Intrinsic::eh_exceptioncode: {
7336     // Get the exception pointer vreg, copy from it, and resize it to fit.
7337     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7338     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7339     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7340     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7341     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7342     if (Intrinsic == Intrinsic::eh_exceptioncode)
7343       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7344     setValue(&I, N);
7345     return;
7346   }
7347   case Intrinsic::xray_customevent: {
7348     // Here we want to make sure that the intrinsic behaves as if it has a
7349     // specific calling convention.
7350     const auto &Triple = DAG.getTarget().getTargetTriple();
7351     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7352       return;
7353 
7354     SmallVector<SDValue, 8> Ops;
7355 
7356     // We want to say that we always want the arguments in registers.
7357     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7358     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7359     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7360     SDValue Chain = getRoot();
7361     Ops.push_back(LogEntryVal);
7362     Ops.push_back(StrSizeVal);
7363     Ops.push_back(Chain);
7364 
7365     // We need to enforce the calling convention for the callsite, so that
7366     // argument ordering is enforced correctly, and that register allocation can
7367     // see that some registers may be assumed clobbered and have to preserve
7368     // them across calls to the intrinsic.
7369     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7370                                            sdl, NodeTys, Ops);
7371     SDValue patchableNode = SDValue(MN, 0);
7372     DAG.setRoot(patchableNode);
7373     setValue(&I, patchableNode);
7374     return;
7375   }
7376   case Intrinsic::xray_typedevent: {
7377     // Here we want to make sure that the intrinsic behaves as if it has a
7378     // specific calling convention.
7379     const auto &Triple = DAG.getTarget().getTargetTriple();
7380     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7381       return;
7382 
7383     SmallVector<SDValue, 8> Ops;
7384 
7385     // We want to say that we always want the arguments in registers.
7386     // It's unclear to me how manipulating the selection DAG here forces callers
7387     // to provide arguments in registers instead of on the stack.
7388     SDValue LogTypeId = getValue(I.getArgOperand(0));
7389     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7390     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7391     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7392     SDValue Chain = getRoot();
7393     Ops.push_back(LogTypeId);
7394     Ops.push_back(LogEntryVal);
7395     Ops.push_back(StrSizeVal);
7396     Ops.push_back(Chain);
7397 
7398     // We need to enforce the calling convention for the callsite, so that
7399     // argument ordering is enforced correctly, and that register allocation can
7400     // see that some registers may be assumed clobbered and have to preserve
7401     // them across calls to the intrinsic.
7402     MachineSDNode *MN = DAG.getMachineNode(
7403         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7404     SDValue patchableNode = SDValue(MN, 0);
7405     DAG.setRoot(patchableNode);
7406     setValue(&I, patchableNode);
7407     return;
7408   }
7409   case Intrinsic::experimental_deoptimize:
7410     LowerDeoptimizeCall(&I);
7411     return;
7412   case Intrinsic::experimental_stepvector:
7413     visitStepVector(I);
7414     return;
7415   case Intrinsic::vector_reduce_fadd:
7416   case Intrinsic::vector_reduce_fmul:
7417   case Intrinsic::vector_reduce_add:
7418   case Intrinsic::vector_reduce_mul:
7419   case Intrinsic::vector_reduce_and:
7420   case Intrinsic::vector_reduce_or:
7421   case Intrinsic::vector_reduce_xor:
7422   case Intrinsic::vector_reduce_smax:
7423   case Intrinsic::vector_reduce_smin:
7424   case Intrinsic::vector_reduce_umax:
7425   case Intrinsic::vector_reduce_umin:
7426   case Intrinsic::vector_reduce_fmax:
7427   case Intrinsic::vector_reduce_fmin:
7428   case Intrinsic::vector_reduce_fmaximum:
7429   case Intrinsic::vector_reduce_fminimum:
7430     visitVectorReduce(I, Intrinsic);
7431     return;
7432 
7433   case Intrinsic::icall_branch_funnel: {
7434     SmallVector<SDValue, 16> Ops;
7435     Ops.push_back(getValue(I.getArgOperand(0)));
7436 
7437     int64_t Offset;
7438     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7439         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7440     if (!Base)
7441       report_fatal_error(
7442           "llvm.icall.branch.funnel operand must be a GlobalValue");
7443     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7444 
7445     struct BranchFunnelTarget {
7446       int64_t Offset;
7447       SDValue Target;
7448     };
7449     SmallVector<BranchFunnelTarget, 8> Targets;
7450 
7451     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7452       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7453           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7454       if (ElemBase != Base)
7455         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7456                            "to the same GlobalValue");
7457 
7458       SDValue Val = getValue(I.getArgOperand(Op + 1));
7459       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7460       if (!GA)
7461         report_fatal_error(
7462             "llvm.icall.branch.funnel operand must be a GlobalValue");
7463       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7464                                      GA->getGlobal(), sdl, Val.getValueType(),
7465                                      GA->getOffset())});
7466     }
7467     llvm::sort(Targets,
7468                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7469                  return T1.Offset < T2.Offset;
7470                });
7471 
7472     for (auto &T : Targets) {
7473       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7474       Ops.push_back(T.Target);
7475     }
7476 
7477     Ops.push_back(DAG.getRoot()); // Chain
7478     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7479                                  MVT::Other, Ops),
7480               0);
7481     DAG.setRoot(N);
7482     setValue(&I, N);
7483     HasTailCall = true;
7484     return;
7485   }
7486 
7487   case Intrinsic::wasm_landingpad_index:
7488     // Information this intrinsic contained has been transferred to
7489     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7490     // delete it now.
7491     return;
7492 
7493   case Intrinsic::aarch64_settag:
7494   case Intrinsic::aarch64_settag_zero: {
7495     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7496     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7497     SDValue Val = TSI.EmitTargetCodeForSetTag(
7498         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7499         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7500         ZeroMemory);
7501     DAG.setRoot(Val);
7502     setValue(&I, Val);
7503     return;
7504   }
7505   case Intrinsic::amdgcn_cs_chain: {
7506     assert(I.arg_size() == 5 && "Additional args not supported yet");
7507     assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7508            "Non-zero flags not supported yet");
7509 
7510     // At this point we don't care if it's amdgpu_cs_chain or
7511     // amdgpu_cs_chain_preserve.
7512     CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7513 
7514     Type *RetTy = I.getType();
7515     assert(RetTy->isVoidTy() && "Should not return");
7516 
7517     SDValue Callee = getValue(I.getOperand(0));
7518 
7519     // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7520     // We'll also tack the value of the EXEC mask at the end.
7521     TargetLowering::ArgListTy Args;
7522     Args.reserve(3);
7523 
7524     for (unsigned Idx : {2, 3, 1}) {
7525       TargetLowering::ArgListEntry Arg;
7526       Arg.Node = getValue(I.getOperand(Idx));
7527       Arg.Ty = I.getOperand(Idx)->getType();
7528       Arg.setAttributes(&I, Idx);
7529       Args.push_back(Arg);
7530     }
7531 
7532     assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7533     assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7534     Args[2].IsInReg = true; // EXEC should be inreg
7535 
7536     TargetLowering::CallLoweringInfo CLI(DAG);
7537     CLI.setDebugLoc(getCurSDLoc())
7538         .setChain(getRoot())
7539         .setCallee(CC, RetTy, Callee, std::move(Args))
7540         .setNoReturn(true)
7541         .setTailCall(true)
7542         .setConvergent(I.isConvergent());
7543     CLI.CB = &I;
7544     std::pair<SDValue, SDValue> Result =
7545         lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7546     (void)Result;
7547     assert(!Result.first.getNode() && !Result.second.getNode() &&
7548            "Should've lowered as tail call");
7549 
7550     HasTailCall = true;
7551     return;
7552   }
7553   case Intrinsic::ptrmask: {
7554     SDValue Ptr = getValue(I.getOperand(0));
7555     SDValue Mask = getValue(I.getOperand(1));
7556 
7557     EVT PtrVT = Ptr.getValueType();
7558     assert(PtrVT == Mask.getValueType() &&
7559            "Pointers with different index type are not supported by SDAG");
7560     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
7561     return;
7562   }
7563   case Intrinsic::threadlocal_address: {
7564     setValue(&I, getValue(I.getOperand(0)));
7565     return;
7566   }
7567   case Intrinsic::get_active_lane_mask: {
7568     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7569     SDValue Index = getValue(I.getOperand(0));
7570     EVT ElementVT = Index.getValueType();
7571 
7572     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7573       visitTargetIntrinsic(I, Intrinsic);
7574       return;
7575     }
7576 
7577     SDValue TripCount = getValue(I.getOperand(1));
7578     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7579                                  CCVT.getVectorElementCount());
7580 
7581     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7582     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7583     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7584     SDValue VectorInduction = DAG.getNode(
7585         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7586     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7587                                  VectorTripCount, ISD::CondCode::SETULT);
7588     setValue(&I, SetCC);
7589     return;
7590   }
7591   case Intrinsic::experimental_get_vector_length: {
7592     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7593            "Expected positive VF");
7594     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7595     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7596 
7597     SDValue Count = getValue(I.getOperand(0));
7598     EVT CountVT = Count.getValueType();
7599 
7600     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7601       visitTargetIntrinsic(I, Intrinsic);
7602       return;
7603     }
7604 
7605     // Expand to a umin between the trip count and the maximum elements the type
7606     // can hold.
7607     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7608 
7609     // Extend the trip count to at least the result VT.
7610     if (CountVT.bitsLT(VT)) {
7611       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7612       CountVT = VT;
7613     }
7614 
7615     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7616                                          ElementCount::get(VF, IsScalable));
7617 
7618     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7619     // Clip to the result type if needed.
7620     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7621 
7622     setValue(&I, Trunc);
7623     return;
7624   }
7625   case Intrinsic::experimental_cttz_elts: {
7626     auto DL = getCurSDLoc();
7627     SDValue Op = getValue(I.getOperand(0));
7628     EVT OpVT = Op.getValueType();
7629 
7630     if (!TLI.shouldExpandCttzElements(OpVT)) {
7631       visitTargetIntrinsic(I, Intrinsic);
7632       return;
7633     }
7634 
7635     if (OpVT.getScalarType() != MVT::i1) {
7636       // Compare the input vector elements to zero & use to count trailing zeros
7637       SDValue AllZero = DAG.getConstant(0, DL, OpVT);
7638       OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
7639                               OpVT.getVectorElementCount());
7640       Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
7641     }
7642 
7643     // Find the smallest "sensible" element type to use for the expansion.
7644     ConstantRange CR(
7645         APInt(64, OpVT.getVectorElementCount().getKnownMinValue()));
7646     if (OpVT.isScalableVT())
7647       CR = CR.umul_sat(getVScaleRange(I.getCaller(), 64));
7648 
7649     // If the zero-is-poison flag is set, we can assume the upper limit
7650     // of the result is VF-1.
7651     if (!cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero())
7652       CR = CR.subtract(APInt(64, 1));
7653 
7654     unsigned EltWidth = I.getType()->getScalarSizeInBits();
7655     EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits());
7656     EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
7657 
7658     MVT NewEltTy = MVT::getIntegerVT(EltWidth);
7659 
7660     // Create the new vector type & get the vector length
7661     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
7662                                  OpVT.getVectorElementCount());
7663 
7664     SDValue VL =
7665         DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
7666 
7667     SDValue StepVec = DAG.getStepVector(DL, NewVT);
7668     SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
7669     SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
7670     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
7671     SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
7672     SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
7673     SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
7674 
7675     EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7676     SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
7677 
7678     setValue(&I, Ret);
7679     return;
7680   }
7681   case Intrinsic::vector_insert: {
7682     SDValue Vec = getValue(I.getOperand(0));
7683     SDValue SubVec = getValue(I.getOperand(1));
7684     SDValue Index = getValue(I.getOperand(2));
7685 
7686     // The intrinsic's index type is i64, but the SDNode requires an index type
7687     // suitable for the target. Convert the index as required.
7688     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7689     if (Index.getValueType() != VectorIdxTy)
7690       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7691 
7692     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7693     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7694                              Index));
7695     return;
7696   }
7697   case Intrinsic::vector_extract: {
7698     SDValue Vec = getValue(I.getOperand(0));
7699     SDValue Index = getValue(I.getOperand(1));
7700     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7701 
7702     // The intrinsic's index type is i64, but the SDNode requires an index type
7703     // suitable for the target. Convert the index as required.
7704     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7705     if (Index.getValueType() != VectorIdxTy)
7706       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7707 
7708     setValue(&I,
7709              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7710     return;
7711   }
7712   case Intrinsic::experimental_vector_reverse:
7713     visitVectorReverse(I);
7714     return;
7715   case Intrinsic::experimental_vector_splice:
7716     visitVectorSplice(I);
7717     return;
7718   case Intrinsic::callbr_landingpad:
7719     visitCallBrLandingPad(I);
7720     return;
7721   case Intrinsic::experimental_vector_interleave2:
7722     visitVectorInterleave(I);
7723     return;
7724   case Intrinsic::experimental_vector_deinterleave2:
7725     visitVectorDeinterleave(I);
7726     return;
7727   }
7728 }
7729 
7730 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7731     const ConstrainedFPIntrinsic &FPI) {
7732   SDLoc sdl = getCurSDLoc();
7733 
7734   // We do not need to serialize constrained FP intrinsics against
7735   // each other or against (nonvolatile) loads, so they can be
7736   // chained like loads.
7737   SDValue Chain = DAG.getRoot();
7738   SmallVector<SDValue, 4> Opers;
7739   Opers.push_back(Chain);
7740   if (FPI.isUnaryOp()) {
7741     Opers.push_back(getValue(FPI.getArgOperand(0)));
7742   } else if (FPI.isTernaryOp()) {
7743     Opers.push_back(getValue(FPI.getArgOperand(0)));
7744     Opers.push_back(getValue(FPI.getArgOperand(1)));
7745     Opers.push_back(getValue(FPI.getArgOperand(2)));
7746   } else {
7747     Opers.push_back(getValue(FPI.getArgOperand(0)));
7748     Opers.push_back(getValue(FPI.getArgOperand(1)));
7749   }
7750 
7751   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7752     assert(Result.getNode()->getNumValues() == 2);
7753 
7754     // Push node to the appropriate list so that future instructions can be
7755     // chained up correctly.
7756     SDValue OutChain = Result.getValue(1);
7757     switch (EB) {
7758     case fp::ExceptionBehavior::ebIgnore:
7759       // The only reason why ebIgnore nodes still need to be chained is that
7760       // they might depend on the current rounding mode, and therefore must
7761       // not be moved across instruction that may change that mode.
7762       [[fallthrough]];
7763     case fp::ExceptionBehavior::ebMayTrap:
7764       // These must not be moved across calls or instructions that may change
7765       // floating-point exception masks.
7766       PendingConstrainedFP.push_back(OutChain);
7767       break;
7768     case fp::ExceptionBehavior::ebStrict:
7769       // These must not be moved across calls or instructions that may change
7770       // floating-point exception masks or read floating-point exception flags.
7771       // In addition, they cannot be optimized out even if unused.
7772       PendingConstrainedFPStrict.push_back(OutChain);
7773       break;
7774     }
7775   };
7776 
7777   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7778   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7779   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7780   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7781 
7782   SDNodeFlags Flags;
7783   if (EB == fp::ExceptionBehavior::ebIgnore)
7784     Flags.setNoFPExcept(true);
7785 
7786   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7787     Flags.copyFMF(*FPOp);
7788 
7789   unsigned Opcode;
7790   switch (FPI.getIntrinsicID()) {
7791   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7792 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7793   case Intrinsic::INTRINSIC:                                                   \
7794     Opcode = ISD::STRICT_##DAGN;                                               \
7795     break;
7796 #include "llvm/IR/ConstrainedOps.def"
7797   case Intrinsic::experimental_constrained_fmuladd: {
7798     Opcode = ISD::STRICT_FMA;
7799     // Break fmuladd into fmul and fadd.
7800     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7801         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7802       Opers.pop_back();
7803       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7804       pushOutChain(Mul, EB);
7805       Opcode = ISD::STRICT_FADD;
7806       Opers.clear();
7807       Opers.push_back(Mul.getValue(1));
7808       Opers.push_back(Mul.getValue(0));
7809       Opers.push_back(getValue(FPI.getArgOperand(2)));
7810     }
7811     break;
7812   }
7813   }
7814 
7815   // A few strict DAG nodes carry additional operands that are not
7816   // set up by the default code above.
7817   switch (Opcode) {
7818   default: break;
7819   case ISD::STRICT_FP_ROUND:
7820     Opers.push_back(
7821         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7822     break;
7823   case ISD::STRICT_FSETCC:
7824   case ISD::STRICT_FSETCCS: {
7825     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7826     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7827     if (TM.Options.NoNaNsFPMath)
7828       Condition = getFCmpCodeWithoutNaN(Condition);
7829     Opers.push_back(DAG.getCondCode(Condition));
7830     break;
7831   }
7832   }
7833 
7834   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7835   pushOutChain(Result, EB);
7836 
7837   SDValue FPResult = Result.getValue(0);
7838   setValue(&FPI, FPResult);
7839 }
7840 
7841 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7842   std::optional<unsigned> ResOPC;
7843   switch (VPIntrin.getIntrinsicID()) {
7844   case Intrinsic::vp_ctlz: {
7845     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7846     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7847     break;
7848   }
7849   case Intrinsic::vp_cttz: {
7850     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7851     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7852     break;
7853   }
7854 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7855   case Intrinsic::VPID:                                                        \
7856     ResOPC = ISD::VPSD;                                                        \
7857     break;
7858 #include "llvm/IR/VPIntrinsics.def"
7859   }
7860 
7861   if (!ResOPC)
7862     llvm_unreachable(
7863         "Inconsistency: no SDNode available for this VPIntrinsic!");
7864 
7865   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7866       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7867     if (VPIntrin.getFastMathFlags().allowReassoc())
7868       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7869                                                 : ISD::VP_REDUCE_FMUL;
7870   }
7871 
7872   return *ResOPC;
7873 }
7874 
7875 void SelectionDAGBuilder::visitVPLoad(
7876     const VPIntrinsic &VPIntrin, EVT VT,
7877     const SmallVectorImpl<SDValue> &OpValues) {
7878   SDLoc DL = getCurSDLoc();
7879   Value *PtrOperand = VPIntrin.getArgOperand(0);
7880   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7881   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7882   const MDNode *Ranges = getRangeMetadata(VPIntrin);
7883   SDValue LD;
7884   // Do not serialize variable-length loads of constant memory with
7885   // anything.
7886   if (!Alignment)
7887     Alignment = DAG.getEVTAlign(VT);
7888   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7889   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7890   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7891   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7892       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7893       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7894   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7895                      MMO, false /*IsExpanding */);
7896   if (AddToChain)
7897     PendingLoads.push_back(LD.getValue(1));
7898   setValue(&VPIntrin, LD);
7899 }
7900 
7901 void SelectionDAGBuilder::visitVPGather(
7902     const VPIntrinsic &VPIntrin, EVT VT,
7903     const SmallVectorImpl<SDValue> &OpValues) {
7904   SDLoc DL = getCurSDLoc();
7905   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7906   Value *PtrOperand = VPIntrin.getArgOperand(0);
7907   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7908   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7909   const MDNode *Ranges = getRangeMetadata(VPIntrin);
7910   SDValue LD;
7911   if (!Alignment)
7912     Alignment = DAG.getEVTAlign(VT.getScalarType());
7913   unsigned AS =
7914     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7915   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7916      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7917      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7918   SDValue Base, Index, Scale;
7919   ISD::MemIndexType IndexType;
7920   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7921                                     this, VPIntrin.getParent(),
7922                                     VT.getScalarStoreSize());
7923   if (!UniformBase) {
7924     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7925     Index = getValue(PtrOperand);
7926     IndexType = ISD::SIGNED_SCALED;
7927     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7928   }
7929   EVT IdxVT = Index.getValueType();
7930   EVT EltTy = IdxVT.getVectorElementType();
7931   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7932     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7933     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7934   }
7935   LD = DAG.getGatherVP(
7936       DAG.getVTList(VT, MVT::Other), VT, DL,
7937       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7938       IndexType);
7939   PendingLoads.push_back(LD.getValue(1));
7940   setValue(&VPIntrin, LD);
7941 }
7942 
7943 void SelectionDAGBuilder::visitVPStore(
7944     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7945   SDLoc DL = getCurSDLoc();
7946   Value *PtrOperand = VPIntrin.getArgOperand(1);
7947   EVT VT = OpValues[0].getValueType();
7948   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7949   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7950   SDValue ST;
7951   if (!Alignment)
7952     Alignment = DAG.getEVTAlign(VT);
7953   SDValue Ptr = OpValues[1];
7954   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7955   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7956       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7957       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7958   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7959                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7960                       /* IsTruncating */ false, /*IsCompressing*/ false);
7961   DAG.setRoot(ST);
7962   setValue(&VPIntrin, ST);
7963 }
7964 
7965 void SelectionDAGBuilder::visitVPScatter(
7966     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7967   SDLoc DL = getCurSDLoc();
7968   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7969   Value *PtrOperand = VPIntrin.getArgOperand(1);
7970   EVT VT = OpValues[0].getValueType();
7971   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7972   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7973   SDValue ST;
7974   if (!Alignment)
7975     Alignment = DAG.getEVTAlign(VT.getScalarType());
7976   unsigned AS =
7977       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7978   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7979       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7980       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7981   SDValue Base, Index, Scale;
7982   ISD::MemIndexType IndexType;
7983   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7984                                     this, VPIntrin.getParent(),
7985                                     VT.getScalarStoreSize());
7986   if (!UniformBase) {
7987     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7988     Index = getValue(PtrOperand);
7989     IndexType = ISD::SIGNED_SCALED;
7990     Scale =
7991       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7992   }
7993   EVT IdxVT = Index.getValueType();
7994   EVT EltTy = IdxVT.getVectorElementType();
7995   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7996     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7997     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7998   }
7999   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8000                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8001                          OpValues[2], OpValues[3]},
8002                         MMO, IndexType);
8003   DAG.setRoot(ST);
8004   setValue(&VPIntrin, ST);
8005 }
8006 
8007 void SelectionDAGBuilder::visitVPStridedLoad(
8008     const VPIntrinsic &VPIntrin, EVT VT,
8009     const SmallVectorImpl<SDValue> &OpValues) {
8010   SDLoc DL = getCurSDLoc();
8011   Value *PtrOperand = VPIntrin.getArgOperand(0);
8012   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8013   if (!Alignment)
8014     Alignment = DAG.getEVTAlign(VT.getScalarType());
8015   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8016   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8017   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8018   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8019   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8020   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8021       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8022       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
8023 
8024   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8025                                     OpValues[2], OpValues[3], MMO,
8026                                     false /*IsExpanding*/);
8027 
8028   if (AddToChain)
8029     PendingLoads.push_back(LD.getValue(1));
8030   setValue(&VPIntrin, LD);
8031 }
8032 
8033 void SelectionDAGBuilder::visitVPStridedStore(
8034     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8035   SDLoc DL = getCurSDLoc();
8036   Value *PtrOperand = VPIntrin.getArgOperand(1);
8037   EVT VT = OpValues[0].getValueType();
8038   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8039   if (!Alignment)
8040     Alignment = DAG.getEVTAlign(VT.getScalarType());
8041   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8042   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8043       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8044       MemoryLocation::UnknownSize, *Alignment, AAInfo);
8045 
8046   SDValue ST = DAG.getStridedStoreVP(
8047       getMemoryRoot(), DL, OpValues[0], OpValues[1],
8048       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8049       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8050       /*IsCompressing*/ false);
8051 
8052   DAG.setRoot(ST);
8053   setValue(&VPIntrin, ST);
8054 }
8055 
8056 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8057   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8058   SDLoc DL = getCurSDLoc();
8059 
8060   ISD::CondCode Condition;
8061   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8062   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8063   if (IsFP) {
8064     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8065     // flags, but calls that don't return floating-point types can't be
8066     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8067     Condition = getFCmpCondCode(CondCode);
8068     if (TM.Options.NoNaNsFPMath)
8069       Condition = getFCmpCodeWithoutNaN(Condition);
8070   } else {
8071     Condition = getICmpCondCode(CondCode);
8072   }
8073 
8074   SDValue Op1 = getValue(VPIntrin.getOperand(0));
8075   SDValue Op2 = getValue(VPIntrin.getOperand(1));
8076   // #2 is the condition code
8077   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8078   SDValue EVL = getValue(VPIntrin.getOperand(4));
8079   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8080   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8081          "Unexpected target EVL type");
8082   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8083 
8084   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8085                                                         VPIntrin.getType());
8086   setValue(&VPIntrin,
8087            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8088 }
8089 
8090 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8091     const VPIntrinsic &VPIntrin) {
8092   SDLoc DL = getCurSDLoc();
8093   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8094 
8095   auto IID = VPIntrin.getIntrinsicID();
8096 
8097   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8098     return visitVPCmp(*CmpI);
8099 
8100   SmallVector<EVT, 4> ValueVTs;
8101   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8102   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8103   SDVTList VTs = DAG.getVTList(ValueVTs);
8104 
8105   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8106 
8107   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8108   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8109          "Unexpected target EVL type");
8110 
8111   // Request operands.
8112   SmallVector<SDValue, 7> OpValues;
8113   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8114     auto Op = getValue(VPIntrin.getArgOperand(I));
8115     if (I == EVLParamPos)
8116       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8117     OpValues.push_back(Op);
8118   }
8119 
8120   switch (Opcode) {
8121   default: {
8122     SDNodeFlags SDFlags;
8123     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8124       SDFlags.copyFMF(*FPMO);
8125     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8126     setValue(&VPIntrin, Result);
8127     break;
8128   }
8129   case ISD::VP_LOAD:
8130     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8131     break;
8132   case ISD::VP_GATHER:
8133     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8134     break;
8135   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8136     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8137     break;
8138   case ISD::VP_STORE:
8139     visitVPStore(VPIntrin, OpValues);
8140     break;
8141   case ISD::VP_SCATTER:
8142     visitVPScatter(VPIntrin, OpValues);
8143     break;
8144   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8145     visitVPStridedStore(VPIntrin, OpValues);
8146     break;
8147   case ISD::VP_FMULADD: {
8148     assert(OpValues.size() == 5 && "Unexpected number of operands");
8149     SDNodeFlags SDFlags;
8150     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8151       SDFlags.copyFMF(*FPMO);
8152     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8153         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8154       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8155     } else {
8156       SDValue Mul = DAG.getNode(
8157           ISD::VP_FMUL, DL, VTs,
8158           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8159       SDValue Add =
8160           DAG.getNode(ISD::VP_FADD, DL, VTs,
8161                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8162       setValue(&VPIntrin, Add);
8163     }
8164     break;
8165   }
8166   case ISD::VP_IS_FPCLASS: {
8167     const DataLayout DLayout = DAG.getDataLayout();
8168     EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8169     auto Constant = OpValues[1]->getAsZExtVal();
8170     SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8171     SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8172                             {OpValues[0], Check, OpValues[2], OpValues[3]});
8173     setValue(&VPIntrin, V);
8174     return;
8175   }
8176   case ISD::VP_INTTOPTR: {
8177     SDValue N = OpValues[0];
8178     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8179     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8180     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8181                                OpValues[2]);
8182     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8183                              OpValues[2]);
8184     setValue(&VPIntrin, N);
8185     break;
8186   }
8187   case ISD::VP_PTRTOINT: {
8188     SDValue N = OpValues[0];
8189     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8190                                                           VPIntrin.getType());
8191     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8192                                        VPIntrin.getOperand(0)->getType());
8193     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8194                                OpValues[2]);
8195     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8196                              OpValues[2]);
8197     setValue(&VPIntrin, N);
8198     break;
8199   }
8200   case ISD::VP_ABS:
8201   case ISD::VP_CTLZ:
8202   case ISD::VP_CTLZ_ZERO_UNDEF:
8203   case ISD::VP_CTTZ:
8204   case ISD::VP_CTTZ_ZERO_UNDEF: {
8205     SDValue Result =
8206         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8207     setValue(&VPIntrin, Result);
8208     break;
8209   }
8210   }
8211 }
8212 
8213 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8214                                           const BasicBlock *EHPadBB,
8215                                           MCSymbol *&BeginLabel) {
8216   MachineFunction &MF = DAG.getMachineFunction();
8217   MachineModuleInfo &MMI = MF.getMMI();
8218 
8219   // Insert a label before the invoke call to mark the try range.  This can be
8220   // used to detect deletion of the invoke via the MachineModuleInfo.
8221   BeginLabel = MMI.getContext().createTempSymbol();
8222 
8223   // For SjLj, keep track of which landing pads go with which invokes
8224   // so as to maintain the ordering of pads in the LSDA.
8225   unsigned CallSiteIndex = MMI.getCurrentCallSite();
8226   if (CallSiteIndex) {
8227     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8228     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
8229 
8230     // Now that the call site is handled, stop tracking it.
8231     MMI.setCurrentCallSite(0);
8232   }
8233 
8234   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8235 }
8236 
8237 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8238                                         const BasicBlock *EHPadBB,
8239                                         MCSymbol *BeginLabel) {
8240   assert(BeginLabel && "BeginLabel should've been set");
8241 
8242   MachineFunction &MF = DAG.getMachineFunction();
8243   MachineModuleInfo &MMI = MF.getMMI();
8244 
8245   // Insert a label at the end of the invoke call to mark the try range.  This
8246   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8247   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
8248   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8249 
8250   // Inform MachineModuleInfo of range.
8251   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8252   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8253   // actually use outlined funclets and their LSDA info style.
8254   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8255     assert(II && "II should've been set");
8256     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8257     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8258   } else if (!isScopedEHPersonality(Pers)) {
8259     assert(EHPadBB);
8260     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8261   }
8262 
8263   return Chain;
8264 }
8265 
8266 std::pair<SDValue, SDValue>
8267 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8268                                     const BasicBlock *EHPadBB) {
8269   MCSymbol *BeginLabel = nullptr;
8270 
8271   if (EHPadBB) {
8272     // Both PendingLoads and PendingExports must be flushed here;
8273     // this call might not return.
8274     (void)getRoot();
8275     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8276     CLI.setChain(getRoot());
8277   }
8278 
8279   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8280   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8281 
8282   assert((CLI.IsTailCall || Result.second.getNode()) &&
8283          "Non-null chain expected with non-tail call!");
8284   assert((Result.second.getNode() || !Result.first.getNode()) &&
8285          "Null value expected with tail call!");
8286 
8287   if (!Result.second.getNode()) {
8288     // As a special case, a null chain means that a tail call has been emitted
8289     // and the DAG root is already updated.
8290     HasTailCall = true;
8291 
8292     // Since there's no actual continuation from this block, nothing can be
8293     // relying on us setting vregs for them.
8294     PendingExports.clear();
8295   } else {
8296     DAG.setRoot(Result.second);
8297   }
8298 
8299   if (EHPadBB) {
8300     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8301                            BeginLabel));
8302   }
8303 
8304   return Result;
8305 }
8306 
8307 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8308                                       bool isTailCall,
8309                                       bool isMustTailCall,
8310                                       const BasicBlock *EHPadBB) {
8311   auto &DL = DAG.getDataLayout();
8312   FunctionType *FTy = CB.getFunctionType();
8313   Type *RetTy = CB.getType();
8314 
8315   TargetLowering::ArgListTy Args;
8316   Args.reserve(CB.arg_size());
8317 
8318   const Value *SwiftErrorVal = nullptr;
8319   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8320 
8321   if (isTailCall) {
8322     // Avoid emitting tail calls in functions with the disable-tail-calls
8323     // attribute.
8324     auto *Caller = CB.getParent()->getParent();
8325     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8326         "true" && !isMustTailCall)
8327       isTailCall = false;
8328 
8329     // We can't tail call inside a function with a swifterror argument. Lowering
8330     // does not support this yet. It would have to move into the swifterror
8331     // register before the call.
8332     if (TLI.supportSwiftError() &&
8333         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8334       isTailCall = false;
8335   }
8336 
8337   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8338     TargetLowering::ArgListEntry Entry;
8339     const Value *V = *I;
8340 
8341     // Skip empty types
8342     if (V->getType()->isEmptyTy())
8343       continue;
8344 
8345     SDValue ArgNode = getValue(V);
8346     Entry.Node = ArgNode; Entry.Ty = V->getType();
8347 
8348     Entry.setAttributes(&CB, I - CB.arg_begin());
8349 
8350     // Use swifterror virtual register as input to the call.
8351     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8352       SwiftErrorVal = V;
8353       // We find the virtual register for the actual swifterror argument.
8354       // Instead of using the Value, we use the virtual register instead.
8355       Entry.Node =
8356           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8357                           EVT(TLI.getPointerTy(DL)));
8358     }
8359 
8360     Args.push_back(Entry);
8361 
8362     // If we have an explicit sret argument that is an Instruction, (i.e., it
8363     // might point to function-local memory), we can't meaningfully tail-call.
8364     if (Entry.IsSRet && isa<Instruction>(V))
8365       isTailCall = false;
8366   }
8367 
8368   // If call site has a cfguardtarget operand bundle, create and add an
8369   // additional ArgListEntry.
8370   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8371     TargetLowering::ArgListEntry Entry;
8372     Value *V = Bundle->Inputs[0];
8373     SDValue ArgNode = getValue(V);
8374     Entry.Node = ArgNode;
8375     Entry.Ty = V->getType();
8376     Entry.IsCFGuardTarget = true;
8377     Args.push_back(Entry);
8378   }
8379 
8380   // Check if target-independent constraints permit a tail call here.
8381   // Target-dependent constraints are checked within TLI->LowerCallTo.
8382   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8383     isTailCall = false;
8384 
8385   // Disable tail calls if there is an swifterror argument. Targets have not
8386   // been updated to support tail calls.
8387   if (TLI.supportSwiftError() && SwiftErrorVal)
8388     isTailCall = false;
8389 
8390   ConstantInt *CFIType = nullptr;
8391   if (CB.isIndirectCall()) {
8392     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8393       if (!TLI.supportKCFIBundles())
8394         report_fatal_error(
8395             "Target doesn't support calls with kcfi operand bundles.");
8396       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8397       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8398     }
8399   }
8400 
8401   TargetLowering::CallLoweringInfo CLI(DAG);
8402   CLI.setDebugLoc(getCurSDLoc())
8403       .setChain(getRoot())
8404       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8405       .setTailCall(isTailCall)
8406       .setConvergent(CB.isConvergent())
8407       .setIsPreallocated(
8408           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8409       .setCFIType(CFIType);
8410   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8411 
8412   if (Result.first.getNode()) {
8413     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8414     setValue(&CB, Result.first);
8415   }
8416 
8417   // The last element of CLI.InVals has the SDValue for swifterror return.
8418   // Here we copy it to a virtual register and update SwiftErrorMap for
8419   // book-keeping.
8420   if (SwiftErrorVal && TLI.supportSwiftError()) {
8421     // Get the last element of InVals.
8422     SDValue Src = CLI.InVals.back();
8423     Register VReg =
8424         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8425     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8426     DAG.setRoot(CopyNode);
8427   }
8428 }
8429 
8430 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8431                              SelectionDAGBuilder &Builder) {
8432   // Check to see if this load can be trivially constant folded, e.g. if the
8433   // input is from a string literal.
8434   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8435     // Cast pointer to the type we really want to load.
8436     Type *LoadTy =
8437         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8438     if (LoadVT.isVector())
8439       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8440 
8441     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8442                                          PointerType::getUnqual(LoadTy));
8443 
8444     if (const Constant *LoadCst =
8445             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8446                                          LoadTy, Builder.DAG.getDataLayout()))
8447       return Builder.getValue(LoadCst);
8448   }
8449 
8450   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8451   // still constant memory, the input chain can be the entry node.
8452   SDValue Root;
8453   bool ConstantMemory = false;
8454 
8455   // Do not serialize (non-volatile) loads of constant memory with anything.
8456   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8457     Root = Builder.DAG.getEntryNode();
8458     ConstantMemory = true;
8459   } else {
8460     // Do not serialize non-volatile loads against each other.
8461     Root = Builder.DAG.getRoot();
8462   }
8463 
8464   SDValue Ptr = Builder.getValue(PtrVal);
8465   SDValue LoadVal =
8466       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8467                           MachinePointerInfo(PtrVal), Align(1));
8468 
8469   if (!ConstantMemory)
8470     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8471   return LoadVal;
8472 }
8473 
8474 /// Record the value for an instruction that produces an integer result,
8475 /// converting the type where necessary.
8476 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8477                                                   SDValue Value,
8478                                                   bool IsSigned) {
8479   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8480                                                     I.getType(), true);
8481   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8482   setValue(&I, Value);
8483 }
8484 
8485 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8486 /// true and lower it. Otherwise return false, and it will be lowered like a
8487 /// normal call.
8488 /// The caller already checked that \p I calls the appropriate LibFunc with a
8489 /// correct prototype.
8490 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8491   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8492   const Value *Size = I.getArgOperand(2);
8493   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8494   if (CSize && CSize->getZExtValue() == 0) {
8495     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8496                                                           I.getType(), true);
8497     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8498     return true;
8499   }
8500 
8501   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8502   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8503       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8504       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8505   if (Res.first.getNode()) {
8506     processIntegerCallValue(I, Res.first, true);
8507     PendingLoads.push_back(Res.second);
8508     return true;
8509   }
8510 
8511   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8512   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8513   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8514     return false;
8515 
8516   // If the target has a fast compare for the given size, it will return a
8517   // preferred load type for that size. Require that the load VT is legal and
8518   // that the target supports unaligned loads of that type. Otherwise, return
8519   // INVALID.
8520   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8521     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8522     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8523     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8524       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8525       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8526       // TODO: Check alignment of src and dest ptrs.
8527       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8528       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8529       if (!TLI.isTypeLegal(LVT) ||
8530           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8531           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8532         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8533     }
8534 
8535     return LVT;
8536   };
8537 
8538   // This turns into unaligned loads. We only do this if the target natively
8539   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8540   // we'll only produce a small number of byte loads.
8541   MVT LoadVT;
8542   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8543   switch (NumBitsToCompare) {
8544   default:
8545     return false;
8546   case 16:
8547     LoadVT = MVT::i16;
8548     break;
8549   case 32:
8550     LoadVT = MVT::i32;
8551     break;
8552   case 64:
8553   case 128:
8554   case 256:
8555     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8556     break;
8557   }
8558 
8559   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8560     return false;
8561 
8562   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8563   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8564 
8565   // Bitcast to a wide integer type if the loads are vectors.
8566   if (LoadVT.isVector()) {
8567     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8568     LoadL = DAG.getBitcast(CmpVT, LoadL);
8569     LoadR = DAG.getBitcast(CmpVT, LoadR);
8570   }
8571 
8572   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8573   processIntegerCallValue(I, Cmp, false);
8574   return true;
8575 }
8576 
8577 /// See if we can lower a memchr call into an optimized form. If so, return
8578 /// true and lower it. Otherwise return false, and it will be lowered like a
8579 /// normal call.
8580 /// The caller already checked that \p I calls the appropriate LibFunc with a
8581 /// correct prototype.
8582 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8583   const Value *Src = I.getArgOperand(0);
8584   const Value *Char = I.getArgOperand(1);
8585   const Value *Length = I.getArgOperand(2);
8586 
8587   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8588   std::pair<SDValue, SDValue> Res =
8589     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8590                                 getValue(Src), getValue(Char), getValue(Length),
8591                                 MachinePointerInfo(Src));
8592   if (Res.first.getNode()) {
8593     setValue(&I, Res.first);
8594     PendingLoads.push_back(Res.second);
8595     return true;
8596   }
8597 
8598   return false;
8599 }
8600 
8601 /// See if we can lower a mempcpy call into an optimized form. If so, return
8602 /// true and lower it. Otherwise return false, and it will be lowered like a
8603 /// normal call.
8604 /// The caller already checked that \p I calls the appropriate LibFunc with a
8605 /// correct prototype.
8606 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8607   SDValue Dst = getValue(I.getArgOperand(0));
8608   SDValue Src = getValue(I.getArgOperand(1));
8609   SDValue Size = getValue(I.getArgOperand(2));
8610 
8611   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8612   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8613   // DAG::getMemcpy needs Alignment to be defined.
8614   Align Alignment = std::min(DstAlign, SrcAlign);
8615 
8616   SDLoc sdl = getCurSDLoc();
8617 
8618   // In the mempcpy context we need to pass in a false value for isTailCall
8619   // because the return pointer needs to be adjusted by the size of
8620   // the copied memory.
8621   SDValue Root = getMemoryRoot();
8622   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false,
8623                              /*isTailCall=*/false,
8624                              MachinePointerInfo(I.getArgOperand(0)),
8625                              MachinePointerInfo(I.getArgOperand(1)),
8626                              I.getAAMetadata());
8627   assert(MC.getNode() != nullptr &&
8628          "** memcpy should not be lowered as TailCall in mempcpy context **");
8629   DAG.setRoot(MC);
8630 
8631   // Check if Size needs to be truncated or extended.
8632   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8633 
8634   // Adjust return pointer to point just past the last dst byte.
8635   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8636                                     Dst, Size);
8637   setValue(&I, DstPlusSize);
8638   return true;
8639 }
8640 
8641 /// See if we can lower a strcpy call into an optimized form.  If so, return
8642 /// true and lower it, otherwise return false and it will be lowered like a
8643 /// normal call.
8644 /// The caller already checked that \p I calls the appropriate LibFunc with a
8645 /// correct prototype.
8646 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8647   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8648 
8649   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8650   std::pair<SDValue, SDValue> Res =
8651     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8652                                 getValue(Arg0), getValue(Arg1),
8653                                 MachinePointerInfo(Arg0),
8654                                 MachinePointerInfo(Arg1), isStpcpy);
8655   if (Res.first.getNode()) {
8656     setValue(&I, Res.first);
8657     DAG.setRoot(Res.second);
8658     return true;
8659   }
8660 
8661   return false;
8662 }
8663 
8664 /// See if we can lower a strcmp call into an optimized form.  If so, return
8665 /// true and lower it, otherwise return false and it will be lowered like a
8666 /// normal call.
8667 /// The caller already checked that \p I calls the appropriate LibFunc with a
8668 /// correct prototype.
8669 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8670   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8671 
8672   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8673   std::pair<SDValue, SDValue> Res =
8674     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8675                                 getValue(Arg0), getValue(Arg1),
8676                                 MachinePointerInfo(Arg0),
8677                                 MachinePointerInfo(Arg1));
8678   if (Res.first.getNode()) {
8679     processIntegerCallValue(I, Res.first, true);
8680     PendingLoads.push_back(Res.second);
8681     return true;
8682   }
8683 
8684   return false;
8685 }
8686 
8687 /// See if we can lower a strlen call into an optimized form.  If so, return
8688 /// true and lower it, otherwise return false and it will be lowered like a
8689 /// normal call.
8690 /// The caller already checked that \p I calls the appropriate LibFunc with a
8691 /// correct prototype.
8692 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8693   const Value *Arg0 = I.getArgOperand(0);
8694 
8695   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8696   std::pair<SDValue, SDValue> Res =
8697     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8698                                 getValue(Arg0), MachinePointerInfo(Arg0));
8699   if (Res.first.getNode()) {
8700     processIntegerCallValue(I, Res.first, false);
8701     PendingLoads.push_back(Res.second);
8702     return true;
8703   }
8704 
8705   return false;
8706 }
8707 
8708 /// See if we can lower a strnlen call into an optimized form.  If so, return
8709 /// true and lower it, otherwise return false and it will be lowered like a
8710 /// normal call.
8711 /// The caller already checked that \p I calls the appropriate LibFunc with a
8712 /// correct prototype.
8713 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8714   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8715 
8716   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8717   std::pair<SDValue, SDValue> Res =
8718     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8719                                  getValue(Arg0), getValue(Arg1),
8720                                  MachinePointerInfo(Arg0));
8721   if (Res.first.getNode()) {
8722     processIntegerCallValue(I, Res.first, false);
8723     PendingLoads.push_back(Res.second);
8724     return true;
8725   }
8726 
8727   return false;
8728 }
8729 
8730 /// See if we can lower a unary floating-point operation into an SDNode with
8731 /// the specified Opcode.  If so, return true and lower it, otherwise return
8732 /// false and it will be lowered like a normal call.
8733 /// The caller already checked that \p I calls the appropriate LibFunc with a
8734 /// correct prototype.
8735 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8736                                               unsigned Opcode) {
8737   // We already checked this call's prototype; verify it doesn't modify errno.
8738   if (!I.onlyReadsMemory())
8739     return false;
8740 
8741   SDNodeFlags Flags;
8742   Flags.copyFMF(cast<FPMathOperator>(I));
8743 
8744   SDValue Tmp = getValue(I.getArgOperand(0));
8745   setValue(&I,
8746            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8747   return true;
8748 }
8749 
8750 /// See if we can lower a binary floating-point operation into an SDNode with
8751 /// the specified Opcode. If so, return true and lower it. Otherwise return
8752 /// false, and it will be lowered like a normal call.
8753 /// The caller already checked that \p I calls the appropriate LibFunc with a
8754 /// correct prototype.
8755 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8756                                                unsigned Opcode) {
8757   // We already checked this call's prototype; verify it doesn't modify errno.
8758   if (!I.onlyReadsMemory())
8759     return false;
8760 
8761   SDNodeFlags Flags;
8762   Flags.copyFMF(cast<FPMathOperator>(I));
8763 
8764   SDValue Tmp0 = getValue(I.getArgOperand(0));
8765   SDValue Tmp1 = getValue(I.getArgOperand(1));
8766   EVT VT = Tmp0.getValueType();
8767   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8768   return true;
8769 }
8770 
8771 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8772   // Handle inline assembly differently.
8773   if (I.isInlineAsm()) {
8774     visitInlineAsm(I);
8775     return;
8776   }
8777 
8778   diagnoseDontCall(I);
8779 
8780   if (Function *F = I.getCalledFunction()) {
8781     if (F->isDeclaration()) {
8782       // Is this an LLVM intrinsic or a target-specific intrinsic?
8783       unsigned IID = F->getIntrinsicID();
8784       if (!IID)
8785         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8786           IID = II->getIntrinsicID(F);
8787 
8788       if (IID) {
8789         visitIntrinsicCall(I, IID);
8790         return;
8791       }
8792     }
8793 
8794     // Check for well-known libc/libm calls.  If the function is internal, it
8795     // can't be a library call.  Don't do the check if marked as nobuiltin for
8796     // some reason or the call site requires strict floating point semantics.
8797     LibFunc Func;
8798     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8799         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8800         LibInfo->hasOptimizedCodeGen(Func)) {
8801       switch (Func) {
8802       default: break;
8803       case LibFunc_bcmp:
8804         if (visitMemCmpBCmpCall(I))
8805           return;
8806         break;
8807       case LibFunc_copysign:
8808       case LibFunc_copysignf:
8809       case LibFunc_copysignl:
8810         // We already checked this call's prototype; verify it doesn't modify
8811         // errno.
8812         if (I.onlyReadsMemory()) {
8813           SDValue LHS = getValue(I.getArgOperand(0));
8814           SDValue RHS = getValue(I.getArgOperand(1));
8815           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8816                                    LHS.getValueType(), LHS, RHS));
8817           return;
8818         }
8819         break;
8820       case LibFunc_fabs:
8821       case LibFunc_fabsf:
8822       case LibFunc_fabsl:
8823         if (visitUnaryFloatCall(I, ISD::FABS))
8824           return;
8825         break;
8826       case LibFunc_fmin:
8827       case LibFunc_fminf:
8828       case LibFunc_fminl:
8829         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8830           return;
8831         break;
8832       case LibFunc_fmax:
8833       case LibFunc_fmaxf:
8834       case LibFunc_fmaxl:
8835         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8836           return;
8837         break;
8838       case LibFunc_sin:
8839       case LibFunc_sinf:
8840       case LibFunc_sinl:
8841         if (visitUnaryFloatCall(I, ISD::FSIN))
8842           return;
8843         break;
8844       case LibFunc_cos:
8845       case LibFunc_cosf:
8846       case LibFunc_cosl:
8847         if (visitUnaryFloatCall(I, ISD::FCOS))
8848           return;
8849         break;
8850       case LibFunc_sqrt:
8851       case LibFunc_sqrtf:
8852       case LibFunc_sqrtl:
8853       case LibFunc_sqrt_finite:
8854       case LibFunc_sqrtf_finite:
8855       case LibFunc_sqrtl_finite:
8856         if (visitUnaryFloatCall(I, ISD::FSQRT))
8857           return;
8858         break;
8859       case LibFunc_floor:
8860       case LibFunc_floorf:
8861       case LibFunc_floorl:
8862         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8863           return;
8864         break;
8865       case LibFunc_nearbyint:
8866       case LibFunc_nearbyintf:
8867       case LibFunc_nearbyintl:
8868         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8869           return;
8870         break;
8871       case LibFunc_ceil:
8872       case LibFunc_ceilf:
8873       case LibFunc_ceill:
8874         if (visitUnaryFloatCall(I, ISD::FCEIL))
8875           return;
8876         break;
8877       case LibFunc_rint:
8878       case LibFunc_rintf:
8879       case LibFunc_rintl:
8880         if (visitUnaryFloatCall(I, ISD::FRINT))
8881           return;
8882         break;
8883       case LibFunc_round:
8884       case LibFunc_roundf:
8885       case LibFunc_roundl:
8886         if (visitUnaryFloatCall(I, ISD::FROUND))
8887           return;
8888         break;
8889       case LibFunc_trunc:
8890       case LibFunc_truncf:
8891       case LibFunc_truncl:
8892         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8893           return;
8894         break;
8895       case LibFunc_log2:
8896       case LibFunc_log2f:
8897       case LibFunc_log2l:
8898         if (visitUnaryFloatCall(I, ISD::FLOG2))
8899           return;
8900         break;
8901       case LibFunc_exp2:
8902       case LibFunc_exp2f:
8903       case LibFunc_exp2l:
8904         if (visitUnaryFloatCall(I, ISD::FEXP2))
8905           return;
8906         break;
8907       case LibFunc_exp10:
8908       case LibFunc_exp10f:
8909       case LibFunc_exp10l:
8910         if (visitUnaryFloatCall(I, ISD::FEXP10))
8911           return;
8912         break;
8913       case LibFunc_ldexp:
8914       case LibFunc_ldexpf:
8915       case LibFunc_ldexpl:
8916         if (visitBinaryFloatCall(I, ISD::FLDEXP))
8917           return;
8918         break;
8919       case LibFunc_memcmp:
8920         if (visitMemCmpBCmpCall(I))
8921           return;
8922         break;
8923       case LibFunc_mempcpy:
8924         if (visitMemPCpyCall(I))
8925           return;
8926         break;
8927       case LibFunc_memchr:
8928         if (visitMemChrCall(I))
8929           return;
8930         break;
8931       case LibFunc_strcpy:
8932         if (visitStrCpyCall(I, false))
8933           return;
8934         break;
8935       case LibFunc_stpcpy:
8936         if (visitStrCpyCall(I, true))
8937           return;
8938         break;
8939       case LibFunc_strcmp:
8940         if (visitStrCmpCall(I))
8941           return;
8942         break;
8943       case LibFunc_strlen:
8944         if (visitStrLenCall(I))
8945           return;
8946         break;
8947       case LibFunc_strnlen:
8948         if (visitStrNLenCall(I))
8949           return;
8950         break;
8951       }
8952     }
8953   }
8954 
8955   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8956   // have to do anything here to lower funclet bundles.
8957   // CFGuardTarget bundles are lowered in LowerCallTo.
8958   assert(!I.hasOperandBundlesOtherThan(
8959              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8960               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8961               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8962          "Cannot lower calls with arbitrary operand bundles!");
8963 
8964   SDValue Callee = getValue(I.getCalledOperand());
8965 
8966   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8967     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8968   else
8969     // Check if we can potentially perform a tail call. More detailed checking
8970     // is be done within LowerCallTo, after more information about the call is
8971     // known.
8972     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8973 }
8974 
8975 namespace {
8976 
8977 /// AsmOperandInfo - This contains information for each constraint that we are
8978 /// lowering.
8979 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8980 public:
8981   /// CallOperand - If this is the result output operand or a clobber
8982   /// this is null, otherwise it is the incoming operand to the CallInst.
8983   /// This gets modified as the asm is processed.
8984   SDValue CallOperand;
8985 
8986   /// AssignedRegs - If this is a register or register class operand, this
8987   /// contains the set of register corresponding to the operand.
8988   RegsForValue AssignedRegs;
8989 
8990   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8991     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8992   }
8993 
8994   /// Whether or not this operand accesses memory
8995   bool hasMemory(const TargetLowering &TLI) const {
8996     // Indirect operand accesses access memory.
8997     if (isIndirect)
8998       return true;
8999 
9000     for (const auto &Code : Codes)
9001       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
9002         return true;
9003 
9004     return false;
9005   }
9006 };
9007 
9008 
9009 } // end anonymous namespace
9010 
9011 /// Make sure that the output operand \p OpInfo and its corresponding input
9012 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9013 /// out).
9014 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9015                                SDISelAsmOperandInfo &MatchingOpInfo,
9016                                SelectionDAG &DAG) {
9017   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9018     return;
9019 
9020   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
9021   const auto &TLI = DAG.getTargetLoweringInfo();
9022 
9023   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9024       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9025                                        OpInfo.ConstraintVT);
9026   std::pair<unsigned, const TargetRegisterClass *> InputRC =
9027       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9028                                        MatchingOpInfo.ConstraintVT);
9029   if ((OpInfo.ConstraintVT.isInteger() !=
9030        MatchingOpInfo.ConstraintVT.isInteger()) ||
9031       (MatchRC.second != InputRC.second)) {
9032     // FIXME: error out in a more elegant fashion
9033     report_fatal_error("Unsupported asm: input constraint"
9034                        " with a matching output constraint of"
9035                        " incompatible type!");
9036   }
9037   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9038 }
9039 
9040 /// Get a direct memory input to behave well as an indirect operand.
9041 /// This may introduce stores, hence the need for a \p Chain.
9042 /// \return The (possibly updated) chain.
9043 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9044                                         SDISelAsmOperandInfo &OpInfo,
9045                                         SelectionDAG &DAG) {
9046   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9047 
9048   // If we don't have an indirect input, put it in the constpool if we can,
9049   // otherwise spill it to a stack slot.
9050   // TODO: This isn't quite right. We need to handle these according to
9051   // the addressing mode that the constraint wants. Also, this may take
9052   // an additional register for the computation and we don't want that
9053   // either.
9054 
9055   // If the operand is a float, integer, or vector constant, spill to a
9056   // constant pool entry to get its address.
9057   const Value *OpVal = OpInfo.CallOperandVal;
9058   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9059       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9060     OpInfo.CallOperand = DAG.getConstantPool(
9061         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9062     return Chain;
9063   }
9064 
9065   // Otherwise, create a stack slot and emit a store to it before the asm.
9066   Type *Ty = OpVal->getType();
9067   auto &DL = DAG.getDataLayout();
9068   uint64_t TySize = DL.getTypeAllocSize(Ty);
9069   MachineFunction &MF = DAG.getMachineFunction();
9070   int SSFI = MF.getFrameInfo().CreateStackObject(
9071       TySize, DL.getPrefTypeAlign(Ty), false);
9072   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9073   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9074                             MachinePointerInfo::getFixedStack(MF, SSFI),
9075                             TLI.getMemValueType(DL, Ty));
9076   OpInfo.CallOperand = StackSlot;
9077 
9078   return Chain;
9079 }
9080 
9081 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9082 /// specified operand.  We prefer to assign virtual registers, to allow the
9083 /// register allocator to handle the assignment process.  However, if the asm
9084 /// uses features that we can't model on machineinstrs, we have SDISel do the
9085 /// allocation.  This produces generally horrible, but correct, code.
9086 ///
9087 ///   OpInfo describes the operand
9088 ///   RefOpInfo describes the matching operand if any, the operand otherwise
9089 static std::optional<unsigned>
9090 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9091                      SDISelAsmOperandInfo &OpInfo,
9092                      SDISelAsmOperandInfo &RefOpInfo) {
9093   LLVMContext &Context = *DAG.getContext();
9094   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9095 
9096   MachineFunction &MF = DAG.getMachineFunction();
9097   SmallVector<unsigned, 4> Regs;
9098   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9099 
9100   // No work to do for memory/address operands.
9101   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9102       OpInfo.ConstraintType == TargetLowering::C_Address)
9103     return std::nullopt;
9104 
9105   // If this is a constraint for a single physreg, or a constraint for a
9106   // register class, find it.
9107   unsigned AssignedReg;
9108   const TargetRegisterClass *RC;
9109   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9110       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9111   // RC is unset only on failure. Return immediately.
9112   if (!RC)
9113     return std::nullopt;
9114 
9115   // Get the actual register value type.  This is important, because the user
9116   // may have asked for (e.g.) the AX register in i32 type.  We need to
9117   // remember that AX is actually i16 to get the right extension.
9118   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9119 
9120   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9121     // If this is an FP operand in an integer register (or visa versa), or more
9122     // generally if the operand value disagrees with the register class we plan
9123     // to stick it in, fix the operand type.
9124     //
9125     // If this is an input value, the bitcast to the new type is done now.
9126     // Bitcast for output value is done at the end of visitInlineAsm().
9127     if ((OpInfo.Type == InlineAsm::isOutput ||
9128          OpInfo.Type == InlineAsm::isInput) &&
9129         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9130       // Try to convert to the first EVT that the reg class contains.  If the
9131       // types are identical size, use a bitcast to convert (e.g. two differing
9132       // vector types).  Note: output bitcast is done at the end of
9133       // visitInlineAsm().
9134       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9135         // Exclude indirect inputs while they are unsupported because the code
9136         // to perform the load is missing and thus OpInfo.CallOperand still
9137         // refers to the input address rather than the pointed-to value.
9138         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9139           OpInfo.CallOperand =
9140               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9141         OpInfo.ConstraintVT = RegVT;
9142         // If the operand is an FP value and we want it in integer registers,
9143         // use the corresponding integer type. This turns an f64 value into
9144         // i64, which can be passed with two i32 values on a 32-bit machine.
9145       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9146         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9147         if (OpInfo.Type == InlineAsm::isInput)
9148           OpInfo.CallOperand =
9149               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9150         OpInfo.ConstraintVT = VT;
9151       }
9152     }
9153   }
9154 
9155   // No need to allocate a matching input constraint since the constraint it's
9156   // matching to has already been allocated.
9157   if (OpInfo.isMatchingInputConstraint())
9158     return std::nullopt;
9159 
9160   EVT ValueVT = OpInfo.ConstraintVT;
9161   if (OpInfo.ConstraintVT == MVT::Other)
9162     ValueVT = RegVT;
9163 
9164   // Initialize NumRegs.
9165   unsigned NumRegs = 1;
9166   if (OpInfo.ConstraintVT != MVT::Other)
9167     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9168 
9169   // If this is a constraint for a specific physical register, like {r17},
9170   // assign it now.
9171 
9172   // If this associated to a specific register, initialize iterator to correct
9173   // place. If virtual, make sure we have enough registers
9174 
9175   // Initialize iterator if necessary
9176   TargetRegisterClass::iterator I = RC->begin();
9177   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9178 
9179   // Do not check for single registers.
9180   if (AssignedReg) {
9181     I = std::find(I, RC->end(), AssignedReg);
9182     if (I == RC->end()) {
9183       // RC does not contain the selected register, which indicates a
9184       // mismatch between the register and the required type/bitwidth.
9185       return {AssignedReg};
9186     }
9187   }
9188 
9189   for (; NumRegs; --NumRegs, ++I) {
9190     assert(I != RC->end() && "Ran out of registers to allocate!");
9191     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9192     Regs.push_back(R);
9193   }
9194 
9195   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9196   return std::nullopt;
9197 }
9198 
9199 static unsigned
9200 findMatchingInlineAsmOperand(unsigned OperandNo,
9201                              const std::vector<SDValue> &AsmNodeOperands) {
9202   // Scan until we find the definition we already emitted of this operand.
9203   unsigned CurOp = InlineAsm::Op_FirstOperand;
9204   for (; OperandNo; --OperandNo) {
9205     // Advance to the next operand.
9206     unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9207     const InlineAsm::Flag F(OpFlag);
9208     assert(
9209         (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9210         "Skipped past definitions?");
9211     CurOp += F.getNumOperandRegisters() + 1;
9212   }
9213   return CurOp;
9214 }
9215 
9216 namespace {
9217 
9218 class ExtraFlags {
9219   unsigned Flags = 0;
9220 
9221 public:
9222   explicit ExtraFlags(const CallBase &Call) {
9223     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9224     if (IA->hasSideEffects())
9225       Flags |= InlineAsm::Extra_HasSideEffects;
9226     if (IA->isAlignStack())
9227       Flags |= InlineAsm::Extra_IsAlignStack;
9228     if (Call.isConvergent())
9229       Flags |= InlineAsm::Extra_IsConvergent;
9230     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9231   }
9232 
9233   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9234     // Ideally, we would only check against memory constraints.  However, the
9235     // meaning of an Other constraint can be target-specific and we can't easily
9236     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
9237     // for Other constraints as well.
9238     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9239         OpInfo.ConstraintType == TargetLowering::C_Other) {
9240       if (OpInfo.Type == InlineAsm::isInput)
9241         Flags |= InlineAsm::Extra_MayLoad;
9242       else if (OpInfo.Type == InlineAsm::isOutput)
9243         Flags |= InlineAsm::Extra_MayStore;
9244       else if (OpInfo.Type == InlineAsm::isClobber)
9245         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9246     }
9247   }
9248 
9249   unsigned get() const { return Flags; }
9250 };
9251 
9252 } // end anonymous namespace
9253 
9254 static bool isFunction(SDValue Op) {
9255   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9256     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9257       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9258 
9259       // In normal "call dllimport func" instruction (non-inlineasm) it force
9260       // indirect access by specifing call opcode. And usually specially print
9261       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9262       // not do in this way now. (In fact, this is similar with "Data Access"
9263       // action). So here we ignore dllimport function.
9264       if (Fn && !Fn->hasDLLImportStorageClass())
9265         return true;
9266     }
9267   }
9268   return false;
9269 }
9270 
9271 /// visitInlineAsm - Handle a call to an InlineAsm object.
9272 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9273                                          const BasicBlock *EHPadBB) {
9274   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9275 
9276   /// ConstraintOperands - Information about all of the constraints.
9277   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9278 
9279   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9280   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9281       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9282 
9283   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9284   // AsmDialect, MayLoad, MayStore).
9285   bool HasSideEffect = IA->hasSideEffects();
9286   ExtraFlags ExtraInfo(Call);
9287 
9288   for (auto &T : TargetConstraints) {
9289     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9290     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9291 
9292     if (OpInfo.CallOperandVal)
9293       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9294 
9295     if (!HasSideEffect)
9296       HasSideEffect = OpInfo.hasMemory(TLI);
9297 
9298     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9299     // FIXME: Could we compute this on OpInfo rather than T?
9300 
9301     // Compute the constraint code and ConstraintType to use.
9302     TLI.ComputeConstraintToUse(T, SDValue());
9303 
9304     if (T.ConstraintType == TargetLowering::C_Immediate &&
9305         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9306       // We've delayed emitting a diagnostic like the "n" constraint because
9307       // inlining could cause an integer showing up.
9308       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9309                                           "' expects an integer constant "
9310                                           "expression");
9311 
9312     ExtraInfo.update(T);
9313   }
9314 
9315   // We won't need to flush pending loads if this asm doesn't touch
9316   // memory and is nonvolatile.
9317   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9318 
9319   bool EmitEHLabels = isa<InvokeInst>(Call);
9320   if (EmitEHLabels) {
9321     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9322   }
9323   bool IsCallBr = isa<CallBrInst>(Call);
9324 
9325   if (IsCallBr || EmitEHLabels) {
9326     // If this is a callbr or invoke we need to flush pending exports since
9327     // inlineasm_br and invoke are terminators.
9328     // We need to do this before nodes are glued to the inlineasm_br node.
9329     Chain = getControlRoot();
9330   }
9331 
9332   MCSymbol *BeginLabel = nullptr;
9333   if (EmitEHLabels) {
9334     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9335   }
9336 
9337   int OpNo = -1;
9338   SmallVector<StringRef> AsmStrs;
9339   IA->collectAsmStrs(AsmStrs);
9340 
9341   // Second pass over the constraints: compute which constraint option to use.
9342   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9343     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9344       OpNo++;
9345 
9346     // If this is an output operand with a matching input operand, look up the
9347     // matching input. If their types mismatch, e.g. one is an integer, the
9348     // other is floating point, or their sizes are different, flag it as an
9349     // error.
9350     if (OpInfo.hasMatchingInput()) {
9351       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9352       patchMatchingInput(OpInfo, Input, DAG);
9353     }
9354 
9355     // Compute the constraint code and ConstraintType to use.
9356     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9357 
9358     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9359          OpInfo.Type == InlineAsm::isClobber) ||
9360         OpInfo.ConstraintType == TargetLowering::C_Address)
9361       continue;
9362 
9363     // In Linux PIC model, there are 4 cases about value/label addressing:
9364     //
9365     // 1: Function call or Label jmp inside the module.
9366     // 2: Data access (such as global variable, static variable) inside module.
9367     // 3: Function call or Label jmp outside the module.
9368     // 4: Data access (such as global variable) outside the module.
9369     //
9370     // Due to current llvm inline asm architecture designed to not "recognize"
9371     // the asm code, there are quite troubles for us to treat mem addressing
9372     // differently for same value/adress used in different instuctions.
9373     // For example, in pic model, call a func may in plt way or direclty
9374     // pc-related, but lea/mov a function adress may use got.
9375     //
9376     // Here we try to "recognize" function call for the case 1 and case 3 in
9377     // inline asm. And try to adjust the constraint for them.
9378     //
9379     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9380     // label, so here we don't handle jmp function label now, but we need to
9381     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9382     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9383         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9384         TM.getCodeModel() != CodeModel::Large) {
9385       OpInfo.isIndirect = false;
9386       OpInfo.ConstraintType = TargetLowering::C_Address;
9387     }
9388 
9389     // If this is a memory input, and if the operand is not indirect, do what we
9390     // need to provide an address for the memory input.
9391     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9392         !OpInfo.isIndirect) {
9393       assert((OpInfo.isMultipleAlternative ||
9394               (OpInfo.Type == InlineAsm::isInput)) &&
9395              "Can only indirectify direct input operands!");
9396 
9397       // Memory operands really want the address of the value.
9398       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9399 
9400       // There is no longer a Value* corresponding to this operand.
9401       OpInfo.CallOperandVal = nullptr;
9402 
9403       // It is now an indirect operand.
9404       OpInfo.isIndirect = true;
9405     }
9406 
9407   }
9408 
9409   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9410   std::vector<SDValue> AsmNodeOperands;
9411   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9412   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9413       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9414 
9415   // If we have a !srcloc metadata node associated with it, we want to attach
9416   // this to the ultimately generated inline asm machineinstr.  To do this, we
9417   // pass in the third operand as this (potentially null) inline asm MDNode.
9418   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9419   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9420 
9421   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9422   // bits as operand 3.
9423   AsmNodeOperands.push_back(DAG.getTargetConstant(
9424       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9425 
9426   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9427   // this, assign virtual and physical registers for inputs and otput.
9428   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9429     // Assign Registers.
9430     SDISelAsmOperandInfo &RefOpInfo =
9431         OpInfo.isMatchingInputConstraint()
9432             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9433             : OpInfo;
9434     const auto RegError =
9435         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9436     if (RegError) {
9437       const MachineFunction &MF = DAG.getMachineFunction();
9438       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9439       const char *RegName = TRI.getName(*RegError);
9440       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9441                                    "' allocated for constraint '" +
9442                                    Twine(OpInfo.ConstraintCode) +
9443                                    "' does not match required type");
9444       return;
9445     }
9446 
9447     auto DetectWriteToReservedRegister = [&]() {
9448       const MachineFunction &MF = DAG.getMachineFunction();
9449       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9450       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9451         if (Register::isPhysicalRegister(Reg) &&
9452             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9453           const char *RegName = TRI.getName(Reg);
9454           emitInlineAsmError(Call, "write to reserved register '" +
9455                                        Twine(RegName) + "'");
9456           return true;
9457         }
9458       }
9459       return false;
9460     };
9461     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9462             (OpInfo.Type == InlineAsm::isInput &&
9463              !OpInfo.isMatchingInputConstraint())) &&
9464            "Only address as input operand is allowed.");
9465 
9466     switch (OpInfo.Type) {
9467     case InlineAsm::isOutput:
9468       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9469         const InlineAsm::ConstraintCode ConstraintID =
9470             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9471         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9472                "Failed to convert memory constraint code to constraint id.");
9473 
9474         // Add information to the INLINEASM node to know about this output.
9475         InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
9476         OpFlags.setMemConstraint(ConstraintID);
9477         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9478                                                         MVT::i32));
9479         AsmNodeOperands.push_back(OpInfo.CallOperand);
9480       } else {
9481         // Otherwise, this outputs to a register (directly for C_Register /
9482         // C_RegisterClass, and a target-defined fashion for
9483         // C_Immediate/C_Other). Find a register that we can use.
9484         if (OpInfo.AssignedRegs.Regs.empty()) {
9485           emitInlineAsmError(
9486               Call, "couldn't allocate output register for constraint '" +
9487                         Twine(OpInfo.ConstraintCode) + "'");
9488           return;
9489         }
9490 
9491         if (DetectWriteToReservedRegister())
9492           return;
9493 
9494         // Add information to the INLINEASM node to know that this register is
9495         // set.
9496         OpInfo.AssignedRegs.AddInlineAsmOperands(
9497             OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
9498                                   : InlineAsm::Kind::RegDef,
9499             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9500       }
9501       break;
9502 
9503     case InlineAsm::isInput:
9504     case InlineAsm::isLabel: {
9505       SDValue InOperandVal = OpInfo.CallOperand;
9506 
9507       if (OpInfo.isMatchingInputConstraint()) {
9508         // If this is required to match an output register we have already set,
9509         // just use its register.
9510         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9511                                                   AsmNodeOperands);
9512         InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
9513         if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
9514           if (OpInfo.isIndirect) {
9515             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9516             emitInlineAsmError(Call, "inline asm not supported yet: "
9517                                      "don't know how to handle tied "
9518                                      "indirect register inputs");
9519             return;
9520           }
9521 
9522           SmallVector<unsigned, 4> Regs;
9523           MachineFunction &MF = DAG.getMachineFunction();
9524           MachineRegisterInfo &MRI = MF.getRegInfo();
9525           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9526           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9527           Register TiedReg = R->getReg();
9528           MVT RegVT = R->getSimpleValueType(0);
9529           const TargetRegisterClass *RC =
9530               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9531               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9532                                       : TRI.getMinimalPhysRegClass(TiedReg);
9533           for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
9534             Regs.push_back(MRI.createVirtualRegister(RC));
9535 
9536           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9537 
9538           SDLoc dl = getCurSDLoc();
9539           // Use the produced MatchedRegs object to
9540           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9541           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
9542                                            OpInfo.getMatchedOperand(), dl, DAG,
9543                                            AsmNodeOperands);
9544           break;
9545         }
9546 
9547         assert(Flag.isMemKind() && "Unknown matching constraint!");
9548         assert(Flag.getNumOperandRegisters() == 1 &&
9549                "Unexpected number of operands");
9550         // Add information to the INLINEASM node to know about this input.
9551         // See InlineAsm.h isUseOperandTiedToDef.
9552         Flag.clearMemConstraint();
9553         Flag.setMatchingOp(OpInfo.getMatchedOperand());
9554         AsmNodeOperands.push_back(DAG.getTargetConstant(
9555             Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9556         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9557         break;
9558       }
9559 
9560       // Treat indirect 'X' constraint as memory.
9561       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9562           OpInfo.isIndirect)
9563         OpInfo.ConstraintType = TargetLowering::C_Memory;
9564 
9565       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9566           OpInfo.ConstraintType == TargetLowering::C_Other) {
9567         std::vector<SDValue> Ops;
9568         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9569                                           Ops, DAG);
9570         if (Ops.empty()) {
9571           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9572             if (isa<ConstantSDNode>(InOperandVal)) {
9573               emitInlineAsmError(Call, "value out of range for constraint '" +
9574                                            Twine(OpInfo.ConstraintCode) + "'");
9575               return;
9576             }
9577 
9578           emitInlineAsmError(Call,
9579                              "invalid operand for inline asm constraint '" +
9580                                  Twine(OpInfo.ConstraintCode) + "'");
9581           return;
9582         }
9583 
9584         // Add information to the INLINEASM node to know about this input.
9585         InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
9586         AsmNodeOperands.push_back(DAG.getTargetConstant(
9587             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9588         llvm::append_range(AsmNodeOperands, Ops);
9589         break;
9590       }
9591 
9592       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9593         assert((OpInfo.isIndirect ||
9594                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9595                "Operand must be indirect to be a mem!");
9596         assert(InOperandVal.getValueType() ==
9597                    TLI.getPointerTy(DAG.getDataLayout()) &&
9598                "Memory operands expect pointer values");
9599 
9600         const InlineAsm::ConstraintCode ConstraintID =
9601             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9602         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9603                "Failed to convert memory constraint code to constraint id.");
9604 
9605         // Add information to the INLINEASM node to know about this input.
9606         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9607         ResOpType.setMemConstraint(ConstraintID);
9608         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9609                                                         getCurSDLoc(),
9610                                                         MVT::i32));
9611         AsmNodeOperands.push_back(InOperandVal);
9612         break;
9613       }
9614 
9615       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9616         const InlineAsm::ConstraintCode ConstraintID =
9617             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9618         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9619                "Failed to convert memory constraint code to constraint id.");
9620 
9621         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9622 
9623         SDValue AsmOp = InOperandVal;
9624         if (isFunction(InOperandVal)) {
9625           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9626           ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
9627           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9628                                              InOperandVal.getValueType(),
9629                                              GA->getOffset());
9630         }
9631 
9632         // Add information to the INLINEASM node to know about this input.
9633         ResOpType.setMemConstraint(ConstraintID);
9634 
9635         AsmNodeOperands.push_back(
9636             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9637 
9638         AsmNodeOperands.push_back(AsmOp);
9639         break;
9640       }
9641 
9642       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9643               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9644              "Unknown constraint type!");
9645 
9646       // TODO: Support this.
9647       if (OpInfo.isIndirect) {
9648         emitInlineAsmError(
9649             Call, "Don't know how to handle indirect register inputs yet "
9650                   "for constraint '" +
9651                       Twine(OpInfo.ConstraintCode) + "'");
9652         return;
9653       }
9654 
9655       // Copy the input into the appropriate registers.
9656       if (OpInfo.AssignedRegs.Regs.empty()) {
9657         emitInlineAsmError(Call,
9658                            "couldn't allocate input reg for constraint '" +
9659                                Twine(OpInfo.ConstraintCode) + "'");
9660         return;
9661       }
9662 
9663       if (DetectWriteToReservedRegister())
9664         return;
9665 
9666       SDLoc dl = getCurSDLoc();
9667 
9668       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
9669                                         &Call);
9670 
9671       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
9672                                                0, dl, DAG, AsmNodeOperands);
9673       break;
9674     }
9675     case InlineAsm::isClobber:
9676       // Add the clobbered value to the operand list, so that the register
9677       // allocator is aware that the physreg got clobbered.
9678       if (!OpInfo.AssignedRegs.Regs.empty())
9679         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
9680                                                  false, 0, getCurSDLoc(), DAG,
9681                                                  AsmNodeOperands);
9682       break;
9683     }
9684   }
9685 
9686   // Finish up input operands.  Set the input chain and add the flag last.
9687   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9688   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
9689 
9690   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9691   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9692                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9693   Glue = Chain.getValue(1);
9694 
9695   // Do additional work to generate outputs.
9696 
9697   SmallVector<EVT, 1> ResultVTs;
9698   SmallVector<SDValue, 1> ResultValues;
9699   SmallVector<SDValue, 8> OutChains;
9700 
9701   llvm::Type *CallResultType = Call.getType();
9702   ArrayRef<Type *> ResultTypes;
9703   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9704     ResultTypes = StructResult->elements();
9705   else if (!CallResultType->isVoidTy())
9706     ResultTypes = ArrayRef(CallResultType);
9707 
9708   auto CurResultType = ResultTypes.begin();
9709   auto handleRegAssign = [&](SDValue V) {
9710     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9711     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9712     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9713     ++CurResultType;
9714     // If the type of the inline asm call site return value is different but has
9715     // same size as the type of the asm output bitcast it.  One example of this
9716     // is for vectors with different width / number of elements.  This can
9717     // happen for register classes that can contain multiple different value
9718     // types.  The preg or vreg allocated may not have the same VT as was
9719     // expected.
9720     //
9721     // This can also happen for a return value that disagrees with the register
9722     // class it is put in, eg. a double in a general-purpose register on a
9723     // 32-bit machine.
9724     if (ResultVT != V.getValueType() &&
9725         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9726       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9727     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9728              V.getValueType().isInteger()) {
9729       // If a result value was tied to an input value, the computed result
9730       // may have a wider width than the expected result.  Extract the
9731       // relevant portion.
9732       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9733     }
9734     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9735     ResultVTs.push_back(ResultVT);
9736     ResultValues.push_back(V);
9737   };
9738 
9739   // Deal with output operands.
9740   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9741     if (OpInfo.Type == InlineAsm::isOutput) {
9742       SDValue Val;
9743       // Skip trivial output operands.
9744       if (OpInfo.AssignedRegs.Regs.empty())
9745         continue;
9746 
9747       switch (OpInfo.ConstraintType) {
9748       case TargetLowering::C_Register:
9749       case TargetLowering::C_RegisterClass:
9750         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9751                                                   Chain, &Glue, &Call);
9752         break;
9753       case TargetLowering::C_Immediate:
9754       case TargetLowering::C_Other:
9755         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
9756                                               OpInfo, DAG);
9757         break;
9758       case TargetLowering::C_Memory:
9759         break; // Already handled.
9760       case TargetLowering::C_Address:
9761         break; // Silence warning.
9762       case TargetLowering::C_Unknown:
9763         assert(false && "Unexpected unknown constraint");
9764       }
9765 
9766       // Indirect output manifest as stores. Record output chains.
9767       if (OpInfo.isIndirect) {
9768         const Value *Ptr = OpInfo.CallOperandVal;
9769         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9770         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9771                                      MachinePointerInfo(Ptr));
9772         OutChains.push_back(Store);
9773       } else {
9774         // generate CopyFromRegs to associated registers.
9775         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9776         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9777           for (const SDValue &V : Val->op_values())
9778             handleRegAssign(V);
9779         } else
9780           handleRegAssign(Val);
9781       }
9782     }
9783   }
9784 
9785   // Set results.
9786   if (!ResultValues.empty()) {
9787     assert(CurResultType == ResultTypes.end() &&
9788            "Mismatch in number of ResultTypes");
9789     assert(ResultValues.size() == ResultTypes.size() &&
9790            "Mismatch in number of output operands in asm result");
9791 
9792     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9793                             DAG.getVTList(ResultVTs), ResultValues);
9794     setValue(&Call, V);
9795   }
9796 
9797   // Collect store chains.
9798   if (!OutChains.empty())
9799     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9800 
9801   if (EmitEHLabels) {
9802     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9803   }
9804 
9805   // Only Update Root if inline assembly has a memory effect.
9806   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9807       EmitEHLabels)
9808     DAG.setRoot(Chain);
9809 }
9810 
9811 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9812                                              const Twine &Message) {
9813   LLVMContext &Ctx = *DAG.getContext();
9814   Ctx.emitError(&Call, Message);
9815 
9816   // Make sure we leave the DAG in a valid state
9817   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9818   SmallVector<EVT, 1> ValueVTs;
9819   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9820 
9821   if (ValueVTs.empty())
9822     return;
9823 
9824   SmallVector<SDValue, 1> Ops;
9825   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9826     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9827 
9828   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9829 }
9830 
9831 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9832   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9833                           MVT::Other, getRoot(),
9834                           getValue(I.getArgOperand(0)),
9835                           DAG.getSrcValue(I.getArgOperand(0))));
9836 }
9837 
9838 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9839   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9840   const DataLayout &DL = DAG.getDataLayout();
9841   SDValue V = DAG.getVAArg(
9842       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9843       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9844       DL.getABITypeAlign(I.getType()).value());
9845   DAG.setRoot(V.getValue(1));
9846 
9847   if (I.getType()->isPointerTy())
9848     V = DAG.getPtrExtOrTrunc(
9849         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9850   setValue(&I, V);
9851 }
9852 
9853 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9854   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9855                           MVT::Other, getRoot(),
9856                           getValue(I.getArgOperand(0)),
9857                           DAG.getSrcValue(I.getArgOperand(0))));
9858 }
9859 
9860 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9861   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9862                           MVT::Other, getRoot(),
9863                           getValue(I.getArgOperand(0)),
9864                           getValue(I.getArgOperand(1)),
9865                           DAG.getSrcValue(I.getArgOperand(0)),
9866                           DAG.getSrcValue(I.getArgOperand(1))));
9867 }
9868 
9869 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9870                                                     const Instruction &I,
9871                                                     SDValue Op) {
9872   const MDNode *Range = getRangeMetadata(I);
9873   if (!Range)
9874     return Op;
9875 
9876   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9877   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9878     return Op;
9879 
9880   APInt Lo = CR.getUnsignedMin();
9881   if (!Lo.isMinValue())
9882     return Op;
9883 
9884   APInt Hi = CR.getUnsignedMax();
9885   unsigned Bits = std::max(Hi.getActiveBits(),
9886                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9887 
9888   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9889 
9890   SDLoc SL = getCurSDLoc();
9891 
9892   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9893                              DAG.getValueType(SmallVT));
9894   unsigned NumVals = Op.getNode()->getNumValues();
9895   if (NumVals == 1)
9896     return ZExt;
9897 
9898   SmallVector<SDValue, 4> Ops;
9899 
9900   Ops.push_back(ZExt);
9901   for (unsigned I = 1; I != NumVals; ++I)
9902     Ops.push_back(Op.getValue(I));
9903 
9904   return DAG.getMergeValues(Ops, SL);
9905 }
9906 
9907 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9908 /// the call being lowered.
9909 ///
9910 /// This is a helper for lowering intrinsics that follow a target calling
9911 /// convention or require stack pointer adjustment. Only a subset of the
9912 /// intrinsic's operands need to participate in the calling convention.
9913 void SelectionDAGBuilder::populateCallLoweringInfo(
9914     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9915     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9916     AttributeSet RetAttrs, bool IsPatchPoint) {
9917   TargetLowering::ArgListTy Args;
9918   Args.reserve(NumArgs);
9919 
9920   // Populate the argument list.
9921   // Attributes for args start at offset 1, after the return attribute.
9922   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9923        ArgI != ArgE; ++ArgI) {
9924     const Value *V = Call->getOperand(ArgI);
9925 
9926     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9927 
9928     TargetLowering::ArgListEntry Entry;
9929     Entry.Node = getValue(V);
9930     Entry.Ty = V->getType();
9931     Entry.setAttributes(Call, ArgI);
9932     Args.push_back(Entry);
9933   }
9934 
9935   CLI.setDebugLoc(getCurSDLoc())
9936       .setChain(getRoot())
9937       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
9938                  RetAttrs)
9939       .setDiscardResult(Call->use_empty())
9940       .setIsPatchPoint(IsPatchPoint)
9941       .setIsPreallocated(
9942           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9943 }
9944 
9945 /// Add a stack map intrinsic call's live variable operands to a stackmap
9946 /// or patchpoint target node's operand list.
9947 ///
9948 /// Constants are converted to TargetConstants purely as an optimization to
9949 /// avoid constant materialization and register allocation.
9950 ///
9951 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9952 /// generate addess computation nodes, and so FinalizeISel can convert the
9953 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9954 /// address materialization and register allocation, but may also be required
9955 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9956 /// alloca in the entry block, then the runtime may assume that the alloca's
9957 /// StackMap location can be read immediately after compilation and that the
9958 /// location is valid at any point during execution (this is similar to the
9959 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9960 /// only available in a register, then the runtime would need to trap when
9961 /// execution reaches the StackMap in order to read the alloca's location.
9962 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9963                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9964                                 SelectionDAGBuilder &Builder) {
9965   SelectionDAG &DAG = Builder.DAG;
9966   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9967     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9968 
9969     // Things on the stack are pointer-typed, meaning that they are already
9970     // legal and can be emitted directly to target nodes.
9971     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9972       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9973     } else {
9974       // Otherwise emit a target independent node to be legalised.
9975       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9976     }
9977   }
9978 }
9979 
9980 /// Lower llvm.experimental.stackmap.
9981 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9982   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9983   //                                  [live variables...])
9984 
9985   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9986 
9987   SDValue Chain, InGlue, Callee;
9988   SmallVector<SDValue, 32> Ops;
9989 
9990   SDLoc DL = getCurSDLoc();
9991   Callee = getValue(CI.getCalledOperand());
9992 
9993   // The stackmap intrinsic only records the live variables (the arguments
9994   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9995   // intrinsic, this won't be lowered to a function call. This means we don't
9996   // have to worry about calling conventions and target specific lowering code.
9997   // Instead we perform the call lowering right here.
9998   //
9999   // chain, flag = CALLSEQ_START(chain, 0, 0)
10000   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10001   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10002   //
10003   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10004   InGlue = Chain.getValue(1);
10005 
10006   // Add the STACKMAP operands, starting with DAG house-keeping.
10007   Ops.push_back(Chain);
10008   Ops.push_back(InGlue);
10009 
10010   // Add the <id>, <numShadowBytes> operands.
10011   //
10012   // These do not require legalisation, and can be emitted directly to target
10013   // constant nodes.
10014   SDValue ID = getValue(CI.getArgOperand(0));
10015   assert(ID.getValueType() == MVT::i64);
10016   SDValue IDConst =
10017       DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10018   Ops.push_back(IDConst);
10019 
10020   SDValue Shad = getValue(CI.getArgOperand(1));
10021   assert(Shad.getValueType() == MVT::i32);
10022   SDValue ShadConst =
10023       DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10024   Ops.push_back(ShadConst);
10025 
10026   // Add the live variables.
10027   addStackMapLiveVars(CI, 2, DL, Ops, *this);
10028 
10029   // Create the STACKMAP node.
10030   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10031   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10032   InGlue = Chain.getValue(1);
10033 
10034   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10035 
10036   // Stackmaps don't generate values, so nothing goes into the NodeMap.
10037 
10038   // Set the root to the target-lowered call chain.
10039   DAG.setRoot(Chain);
10040 
10041   // Inform the Frame Information that we have a stackmap in this function.
10042   FuncInfo.MF->getFrameInfo().setHasStackMap();
10043 }
10044 
10045 /// Lower llvm.experimental.patchpoint directly to its target opcode.
10046 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10047                                           const BasicBlock *EHPadBB) {
10048   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
10049   //                                                 i32 <numBytes>,
10050   //                                                 i8* <target>,
10051   //                                                 i32 <numArgs>,
10052   //                                                 [Args...],
10053   //                                                 [live variables...])
10054 
10055   CallingConv::ID CC = CB.getCallingConv();
10056   bool IsAnyRegCC = CC == CallingConv::AnyReg;
10057   bool HasDef = !CB.getType()->isVoidTy();
10058   SDLoc dl = getCurSDLoc();
10059   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10060 
10061   // Handle immediate and symbolic callees.
10062   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10063     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10064                                    /*isTarget=*/true);
10065   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10066     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10067                                          SDLoc(SymbolicCallee),
10068                                          SymbolicCallee->getValueType(0));
10069 
10070   // Get the real number of arguments participating in the call <numArgs>
10071   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10072   unsigned NumArgs = NArgVal->getAsZExtVal();
10073 
10074   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10075   // Intrinsics include all meta-operands up to but not including CC.
10076   unsigned NumMetaOpers = PatchPointOpers::CCPos;
10077   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10078          "Not enough arguments provided to the patchpoint intrinsic");
10079 
10080   // For AnyRegCC the arguments are lowered later on manually.
10081   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10082   Type *ReturnTy =
10083       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10084 
10085   TargetLowering::CallLoweringInfo CLI(DAG);
10086   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10087                            ReturnTy, CB.getAttributes().getRetAttrs(), true);
10088   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10089 
10090   SDNode *CallEnd = Result.second.getNode();
10091   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10092     CallEnd = CallEnd->getOperand(0).getNode();
10093 
10094   /// Get a call instruction from the call sequence chain.
10095   /// Tail calls are not allowed.
10096   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10097          "Expected a callseq node.");
10098   SDNode *Call = CallEnd->getOperand(0).getNode();
10099   bool HasGlue = Call->getGluedNode();
10100 
10101   // Replace the target specific call node with the patchable intrinsic.
10102   SmallVector<SDValue, 8> Ops;
10103 
10104   // Push the chain.
10105   Ops.push_back(*(Call->op_begin()));
10106 
10107   // Optionally, push the glue (if any).
10108   if (HasGlue)
10109     Ops.push_back(*(Call->op_end() - 1));
10110 
10111   // Push the register mask info.
10112   if (HasGlue)
10113     Ops.push_back(*(Call->op_end() - 2));
10114   else
10115     Ops.push_back(*(Call->op_end() - 1));
10116 
10117   // Add the <id> and <numBytes> constants.
10118   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10119   Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10120   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10121   Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10122 
10123   // Add the callee.
10124   Ops.push_back(Callee);
10125 
10126   // Adjust <numArgs> to account for any arguments that have been passed on the
10127   // stack instead.
10128   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10129   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10130   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10131   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10132 
10133   // Add the calling convention
10134   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10135 
10136   // Add the arguments we omitted previously. The register allocator should
10137   // place these in any free register.
10138   if (IsAnyRegCC)
10139     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10140       Ops.push_back(getValue(CB.getArgOperand(i)));
10141 
10142   // Push the arguments from the call instruction.
10143   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10144   Ops.append(Call->op_begin() + 2, e);
10145 
10146   // Push live variables for the stack map.
10147   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10148 
10149   SDVTList NodeTys;
10150   if (IsAnyRegCC && HasDef) {
10151     // Create the return types based on the intrinsic definition
10152     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10153     SmallVector<EVT, 3> ValueVTs;
10154     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10155     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10156 
10157     // There is always a chain and a glue type at the end
10158     ValueVTs.push_back(MVT::Other);
10159     ValueVTs.push_back(MVT::Glue);
10160     NodeTys = DAG.getVTList(ValueVTs);
10161   } else
10162     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10163 
10164   // Replace the target specific call node with a PATCHPOINT node.
10165   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10166 
10167   // Update the NodeMap.
10168   if (HasDef) {
10169     if (IsAnyRegCC)
10170       setValue(&CB, SDValue(PPV.getNode(), 0));
10171     else
10172       setValue(&CB, Result.first);
10173   }
10174 
10175   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10176   // call sequence. Furthermore the location of the chain and glue can change
10177   // when the AnyReg calling convention is used and the intrinsic returns a
10178   // value.
10179   if (IsAnyRegCC && HasDef) {
10180     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10181     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10182     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10183   } else
10184     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10185   DAG.DeleteNode(Call);
10186 
10187   // Inform the Frame Information that we have a patchpoint in this function.
10188   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10189 }
10190 
10191 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10192                                             unsigned Intrinsic) {
10193   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10194   SDValue Op1 = getValue(I.getArgOperand(0));
10195   SDValue Op2;
10196   if (I.arg_size() > 1)
10197     Op2 = getValue(I.getArgOperand(1));
10198   SDLoc dl = getCurSDLoc();
10199   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10200   SDValue Res;
10201   SDNodeFlags SDFlags;
10202   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10203     SDFlags.copyFMF(*FPMO);
10204 
10205   switch (Intrinsic) {
10206   case Intrinsic::vector_reduce_fadd:
10207     if (SDFlags.hasAllowReassociation())
10208       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10209                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10210                         SDFlags);
10211     else
10212       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10213     break;
10214   case Intrinsic::vector_reduce_fmul:
10215     if (SDFlags.hasAllowReassociation())
10216       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10217                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10218                         SDFlags);
10219     else
10220       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10221     break;
10222   case Intrinsic::vector_reduce_add:
10223     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10224     break;
10225   case Intrinsic::vector_reduce_mul:
10226     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10227     break;
10228   case Intrinsic::vector_reduce_and:
10229     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10230     break;
10231   case Intrinsic::vector_reduce_or:
10232     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10233     break;
10234   case Intrinsic::vector_reduce_xor:
10235     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10236     break;
10237   case Intrinsic::vector_reduce_smax:
10238     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10239     break;
10240   case Intrinsic::vector_reduce_smin:
10241     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10242     break;
10243   case Intrinsic::vector_reduce_umax:
10244     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10245     break;
10246   case Intrinsic::vector_reduce_umin:
10247     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10248     break;
10249   case Intrinsic::vector_reduce_fmax:
10250     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10251     break;
10252   case Intrinsic::vector_reduce_fmin:
10253     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10254     break;
10255   case Intrinsic::vector_reduce_fmaximum:
10256     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10257     break;
10258   case Intrinsic::vector_reduce_fminimum:
10259     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10260     break;
10261   default:
10262     llvm_unreachable("Unhandled vector reduce intrinsic");
10263   }
10264   setValue(&I, Res);
10265 }
10266 
10267 /// Returns an AttributeList representing the attributes applied to the return
10268 /// value of the given call.
10269 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10270   SmallVector<Attribute::AttrKind, 2> Attrs;
10271   if (CLI.RetSExt)
10272     Attrs.push_back(Attribute::SExt);
10273   if (CLI.RetZExt)
10274     Attrs.push_back(Attribute::ZExt);
10275   if (CLI.IsInReg)
10276     Attrs.push_back(Attribute::InReg);
10277 
10278   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10279                             Attrs);
10280 }
10281 
10282 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10283 /// implementation, which just calls LowerCall.
10284 /// FIXME: When all targets are
10285 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10286 std::pair<SDValue, SDValue>
10287 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10288   // Handle the incoming return values from the call.
10289   CLI.Ins.clear();
10290   Type *OrigRetTy = CLI.RetTy;
10291   SmallVector<EVT, 4> RetTys;
10292   SmallVector<uint64_t, 4> Offsets;
10293   auto &DL = CLI.DAG.getDataLayout();
10294   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0);
10295 
10296   if (CLI.IsPostTypeLegalization) {
10297     // If we are lowering a libcall after legalization, split the return type.
10298     SmallVector<EVT, 4> OldRetTys;
10299     SmallVector<uint64_t, 4> OldOffsets;
10300     RetTys.swap(OldRetTys);
10301     Offsets.swap(OldOffsets);
10302 
10303     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10304       EVT RetVT = OldRetTys[i];
10305       uint64_t Offset = OldOffsets[i];
10306       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10307       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10308       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10309       RetTys.append(NumRegs, RegisterVT);
10310       for (unsigned j = 0; j != NumRegs; ++j)
10311         Offsets.push_back(Offset + j * RegisterVTByteSZ);
10312     }
10313   }
10314 
10315   SmallVector<ISD::OutputArg, 4> Outs;
10316   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10317 
10318   bool CanLowerReturn =
10319       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10320                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10321 
10322   SDValue DemoteStackSlot;
10323   int DemoteStackIdx = -100;
10324   if (!CanLowerReturn) {
10325     // FIXME: equivalent assert?
10326     // assert(!CS.hasInAllocaArgument() &&
10327     //        "sret demotion is incompatible with inalloca");
10328     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10329     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10330     MachineFunction &MF = CLI.DAG.getMachineFunction();
10331     DemoteStackIdx =
10332         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10333     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10334                                               DL.getAllocaAddrSpace());
10335 
10336     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10337     ArgListEntry Entry;
10338     Entry.Node = DemoteStackSlot;
10339     Entry.Ty = StackSlotPtrType;
10340     Entry.IsSExt = false;
10341     Entry.IsZExt = false;
10342     Entry.IsInReg = false;
10343     Entry.IsSRet = true;
10344     Entry.IsNest = false;
10345     Entry.IsByVal = false;
10346     Entry.IsByRef = false;
10347     Entry.IsReturned = false;
10348     Entry.IsSwiftSelf = false;
10349     Entry.IsSwiftAsync = false;
10350     Entry.IsSwiftError = false;
10351     Entry.IsCFGuardTarget = false;
10352     Entry.Alignment = Alignment;
10353     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10354     CLI.NumFixedArgs += 1;
10355     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10356     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10357 
10358     // sret demotion isn't compatible with tail-calls, since the sret argument
10359     // points into the callers stack frame.
10360     CLI.IsTailCall = false;
10361   } else {
10362     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10363         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10364     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10365       ISD::ArgFlagsTy Flags;
10366       if (NeedsRegBlock) {
10367         Flags.setInConsecutiveRegs();
10368         if (I == RetTys.size() - 1)
10369           Flags.setInConsecutiveRegsLast();
10370       }
10371       EVT VT = RetTys[I];
10372       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10373                                                      CLI.CallConv, VT);
10374       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10375                                                        CLI.CallConv, VT);
10376       for (unsigned i = 0; i != NumRegs; ++i) {
10377         ISD::InputArg MyFlags;
10378         MyFlags.Flags = Flags;
10379         MyFlags.VT = RegisterVT;
10380         MyFlags.ArgVT = VT;
10381         MyFlags.Used = CLI.IsReturnValueUsed;
10382         if (CLI.RetTy->isPointerTy()) {
10383           MyFlags.Flags.setPointer();
10384           MyFlags.Flags.setPointerAddrSpace(
10385               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10386         }
10387         if (CLI.RetSExt)
10388           MyFlags.Flags.setSExt();
10389         if (CLI.RetZExt)
10390           MyFlags.Flags.setZExt();
10391         if (CLI.IsInReg)
10392           MyFlags.Flags.setInReg();
10393         CLI.Ins.push_back(MyFlags);
10394       }
10395     }
10396   }
10397 
10398   // We push in swifterror return as the last element of CLI.Ins.
10399   ArgListTy &Args = CLI.getArgs();
10400   if (supportSwiftError()) {
10401     for (const ArgListEntry &Arg : Args) {
10402       if (Arg.IsSwiftError) {
10403         ISD::InputArg MyFlags;
10404         MyFlags.VT = getPointerTy(DL);
10405         MyFlags.ArgVT = EVT(getPointerTy(DL));
10406         MyFlags.Flags.setSwiftError();
10407         CLI.Ins.push_back(MyFlags);
10408       }
10409     }
10410   }
10411 
10412   // Handle all of the outgoing arguments.
10413   CLI.Outs.clear();
10414   CLI.OutVals.clear();
10415   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10416     SmallVector<EVT, 4> ValueVTs;
10417     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10418     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10419     Type *FinalType = Args[i].Ty;
10420     if (Args[i].IsByVal)
10421       FinalType = Args[i].IndirectType;
10422     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10423         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10424     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10425          ++Value) {
10426       EVT VT = ValueVTs[Value];
10427       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10428       SDValue Op = SDValue(Args[i].Node.getNode(),
10429                            Args[i].Node.getResNo() + Value);
10430       ISD::ArgFlagsTy Flags;
10431 
10432       // Certain targets (such as MIPS), may have a different ABI alignment
10433       // for a type depending on the context. Give the target a chance to
10434       // specify the alignment it wants.
10435       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10436       Flags.setOrigAlign(OriginalAlignment);
10437 
10438       if (Args[i].Ty->isPointerTy()) {
10439         Flags.setPointer();
10440         Flags.setPointerAddrSpace(
10441             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10442       }
10443       if (Args[i].IsZExt)
10444         Flags.setZExt();
10445       if (Args[i].IsSExt)
10446         Flags.setSExt();
10447       if (Args[i].IsInReg) {
10448         // If we are using vectorcall calling convention, a structure that is
10449         // passed InReg - is surely an HVA
10450         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10451             isa<StructType>(FinalType)) {
10452           // The first value of a structure is marked
10453           if (0 == Value)
10454             Flags.setHvaStart();
10455           Flags.setHva();
10456         }
10457         // Set InReg Flag
10458         Flags.setInReg();
10459       }
10460       if (Args[i].IsSRet)
10461         Flags.setSRet();
10462       if (Args[i].IsSwiftSelf)
10463         Flags.setSwiftSelf();
10464       if (Args[i].IsSwiftAsync)
10465         Flags.setSwiftAsync();
10466       if (Args[i].IsSwiftError)
10467         Flags.setSwiftError();
10468       if (Args[i].IsCFGuardTarget)
10469         Flags.setCFGuardTarget();
10470       if (Args[i].IsByVal)
10471         Flags.setByVal();
10472       if (Args[i].IsByRef)
10473         Flags.setByRef();
10474       if (Args[i].IsPreallocated) {
10475         Flags.setPreallocated();
10476         // Set the byval flag for CCAssignFn callbacks that don't know about
10477         // preallocated.  This way we can know how many bytes we should've
10478         // allocated and how many bytes a callee cleanup function will pop.  If
10479         // we port preallocated to more targets, we'll have to add custom
10480         // preallocated handling in the various CC lowering callbacks.
10481         Flags.setByVal();
10482       }
10483       if (Args[i].IsInAlloca) {
10484         Flags.setInAlloca();
10485         // Set the byval flag for CCAssignFn callbacks that don't know about
10486         // inalloca.  This way we can know how many bytes we should've allocated
10487         // and how many bytes a callee cleanup function will pop.  If we port
10488         // inalloca to more targets, we'll have to add custom inalloca handling
10489         // in the various CC lowering callbacks.
10490         Flags.setByVal();
10491       }
10492       Align MemAlign;
10493       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10494         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10495         Flags.setByValSize(FrameSize);
10496 
10497         // info is not there but there are cases it cannot get right.
10498         if (auto MA = Args[i].Alignment)
10499           MemAlign = *MA;
10500         else
10501           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10502       } else if (auto MA = Args[i].Alignment) {
10503         MemAlign = *MA;
10504       } else {
10505         MemAlign = OriginalAlignment;
10506       }
10507       Flags.setMemAlign(MemAlign);
10508       if (Args[i].IsNest)
10509         Flags.setNest();
10510       if (NeedsRegBlock)
10511         Flags.setInConsecutiveRegs();
10512 
10513       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10514                                                  CLI.CallConv, VT);
10515       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10516                                                         CLI.CallConv, VT);
10517       SmallVector<SDValue, 4> Parts(NumParts);
10518       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10519 
10520       if (Args[i].IsSExt)
10521         ExtendKind = ISD::SIGN_EXTEND;
10522       else if (Args[i].IsZExt)
10523         ExtendKind = ISD::ZERO_EXTEND;
10524 
10525       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10526       // for now.
10527       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10528           CanLowerReturn) {
10529         assert((CLI.RetTy == Args[i].Ty ||
10530                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10531                  CLI.RetTy->getPointerAddressSpace() ==
10532                      Args[i].Ty->getPointerAddressSpace())) &&
10533                RetTys.size() == NumValues && "unexpected use of 'returned'");
10534         // Before passing 'returned' to the target lowering code, ensure that
10535         // either the register MVT and the actual EVT are the same size or that
10536         // the return value and argument are extended in the same way; in these
10537         // cases it's safe to pass the argument register value unchanged as the
10538         // return register value (although it's at the target's option whether
10539         // to do so)
10540         // TODO: allow code generation to take advantage of partially preserved
10541         // registers rather than clobbering the entire register when the
10542         // parameter extension method is not compatible with the return
10543         // extension method
10544         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10545             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10546              CLI.RetZExt == Args[i].IsZExt))
10547           Flags.setReturned();
10548       }
10549 
10550       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10551                      CLI.CallConv, ExtendKind);
10552 
10553       for (unsigned j = 0; j != NumParts; ++j) {
10554         // if it isn't first piece, alignment must be 1
10555         // For scalable vectors the scalable part is currently handled
10556         // by individual targets, so we just use the known minimum size here.
10557         ISD::OutputArg MyFlags(
10558             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10559             i < CLI.NumFixedArgs, i,
10560             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10561         if (NumParts > 1 && j == 0)
10562           MyFlags.Flags.setSplit();
10563         else if (j != 0) {
10564           MyFlags.Flags.setOrigAlign(Align(1));
10565           if (j == NumParts - 1)
10566             MyFlags.Flags.setSplitEnd();
10567         }
10568 
10569         CLI.Outs.push_back(MyFlags);
10570         CLI.OutVals.push_back(Parts[j]);
10571       }
10572 
10573       if (NeedsRegBlock && Value == NumValues - 1)
10574         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10575     }
10576   }
10577 
10578   SmallVector<SDValue, 4> InVals;
10579   CLI.Chain = LowerCall(CLI, InVals);
10580 
10581   // Update CLI.InVals to use outside of this function.
10582   CLI.InVals = InVals;
10583 
10584   // Verify that the target's LowerCall behaved as expected.
10585   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10586          "LowerCall didn't return a valid chain!");
10587   assert((!CLI.IsTailCall || InVals.empty()) &&
10588          "LowerCall emitted a return value for a tail call!");
10589   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10590          "LowerCall didn't emit the correct number of values!");
10591 
10592   // For a tail call, the return value is merely live-out and there aren't
10593   // any nodes in the DAG representing it. Return a special value to
10594   // indicate that a tail call has been emitted and no more Instructions
10595   // should be processed in the current block.
10596   if (CLI.IsTailCall) {
10597     CLI.DAG.setRoot(CLI.Chain);
10598     return std::make_pair(SDValue(), SDValue());
10599   }
10600 
10601 #ifndef NDEBUG
10602   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10603     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10604     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10605            "LowerCall emitted a value with the wrong type!");
10606   }
10607 #endif
10608 
10609   SmallVector<SDValue, 4> ReturnValues;
10610   if (!CanLowerReturn) {
10611     // The instruction result is the result of loading from the
10612     // hidden sret parameter.
10613     SmallVector<EVT, 1> PVTs;
10614     Type *PtrRetTy =
10615         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
10616 
10617     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10618     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10619     EVT PtrVT = PVTs[0];
10620 
10621     unsigned NumValues = RetTys.size();
10622     ReturnValues.resize(NumValues);
10623     SmallVector<SDValue, 4> Chains(NumValues);
10624 
10625     // An aggregate return value cannot wrap around the address space, so
10626     // offsets to its parts don't wrap either.
10627     SDNodeFlags Flags;
10628     Flags.setNoUnsignedWrap(true);
10629 
10630     MachineFunction &MF = CLI.DAG.getMachineFunction();
10631     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10632     for (unsigned i = 0; i < NumValues; ++i) {
10633       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10634                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10635                                                         PtrVT), Flags);
10636       SDValue L = CLI.DAG.getLoad(
10637           RetTys[i], CLI.DL, CLI.Chain, Add,
10638           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10639                                             DemoteStackIdx, Offsets[i]),
10640           HiddenSRetAlign);
10641       ReturnValues[i] = L;
10642       Chains[i] = L.getValue(1);
10643     }
10644 
10645     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10646   } else {
10647     // Collect the legal value parts into potentially illegal values
10648     // that correspond to the original function's return values.
10649     std::optional<ISD::NodeType> AssertOp;
10650     if (CLI.RetSExt)
10651       AssertOp = ISD::AssertSext;
10652     else if (CLI.RetZExt)
10653       AssertOp = ISD::AssertZext;
10654     unsigned CurReg = 0;
10655     for (EVT VT : RetTys) {
10656       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10657                                                      CLI.CallConv, VT);
10658       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10659                                                        CLI.CallConv, VT);
10660 
10661       ReturnValues.push_back(getCopyFromParts(
10662           CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
10663           CLI.Chain, CLI.CallConv, AssertOp));
10664       CurReg += NumRegs;
10665     }
10666 
10667     // For a function returning void, there is no return value. We can't create
10668     // such a node, so we just return a null return value in that case. In
10669     // that case, nothing will actually look at the value.
10670     if (ReturnValues.empty())
10671       return std::make_pair(SDValue(), CLI.Chain);
10672   }
10673 
10674   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10675                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10676   return std::make_pair(Res, CLI.Chain);
10677 }
10678 
10679 /// Places new result values for the node in Results (their number
10680 /// and types must exactly match those of the original return values of
10681 /// the node), or leaves Results empty, which indicates that the node is not
10682 /// to be custom lowered after all.
10683 void TargetLowering::LowerOperationWrapper(SDNode *N,
10684                                            SmallVectorImpl<SDValue> &Results,
10685                                            SelectionDAG &DAG) const {
10686   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10687 
10688   if (!Res.getNode())
10689     return;
10690 
10691   // If the original node has one result, take the return value from
10692   // LowerOperation as is. It might not be result number 0.
10693   if (N->getNumValues() == 1) {
10694     Results.push_back(Res);
10695     return;
10696   }
10697 
10698   // If the original node has multiple results, then the return node should
10699   // have the same number of results.
10700   assert((N->getNumValues() == Res->getNumValues()) &&
10701       "Lowering returned the wrong number of results!");
10702 
10703   // Places new result values base on N result number.
10704   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10705     Results.push_back(Res.getValue(I));
10706 }
10707 
10708 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10709   llvm_unreachable("LowerOperation not implemented for this target!");
10710 }
10711 
10712 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10713                                                      unsigned Reg,
10714                                                      ISD::NodeType ExtendType) {
10715   SDValue Op = getNonRegisterValue(V);
10716   assert((Op.getOpcode() != ISD::CopyFromReg ||
10717           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10718          "Copy from a reg to the same reg!");
10719   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10720 
10721   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10722   // If this is an InlineAsm we have to match the registers required, not the
10723   // notional registers required by the type.
10724 
10725   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10726                    std::nullopt); // This is not an ABI copy.
10727   SDValue Chain = DAG.getEntryNode();
10728 
10729   if (ExtendType == ISD::ANY_EXTEND) {
10730     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10731     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10732       ExtendType = PreferredExtendIt->second;
10733   }
10734   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10735   PendingExports.push_back(Chain);
10736 }
10737 
10738 #include "llvm/CodeGen/SelectionDAGISel.h"
10739 
10740 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10741 /// entry block, return true.  This includes arguments used by switches, since
10742 /// the switch may expand into multiple basic blocks.
10743 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10744   // With FastISel active, we may be splitting blocks, so force creation
10745   // of virtual registers for all non-dead arguments.
10746   if (FastISel)
10747     return A->use_empty();
10748 
10749   const BasicBlock &Entry = A->getParent()->front();
10750   for (const User *U : A->users())
10751     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10752       return false;  // Use not in entry block.
10753 
10754   return true;
10755 }
10756 
10757 using ArgCopyElisionMapTy =
10758     DenseMap<const Argument *,
10759              std::pair<const AllocaInst *, const StoreInst *>>;
10760 
10761 /// Scan the entry block of the function in FuncInfo for arguments that look
10762 /// like copies into a local alloca. Record any copied arguments in
10763 /// ArgCopyElisionCandidates.
10764 static void
10765 findArgumentCopyElisionCandidates(const DataLayout &DL,
10766                                   FunctionLoweringInfo *FuncInfo,
10767                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10768   // Record the state of every static alloca used in the entry block. Argument
10769   // allocas are all used in the entry block, so we need approximately as many
10770   // entries as we have arguments.
10771   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10772   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10773   unsigned NumArgs = FuncInfo->Fn->arg_size();
10774   StaticAllocas.reserve(NumArgs * 2);
10775 
10776   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10777     if (!V)
10778       return nullptr;
10779     V = V->stripPointerCasts();
10780     const auto *AI = dyn_cast<AllocaInst>(V);
10781     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10782       return nullptr;
10783     auto Iter = StaticAllocas.insert({AI, Unknown});
10784     return &Iter.first->second;
10785   };
10786 
10787   // Look for stores of arguments to static allocas. Look through bitcasts and
10788   // GEPs to handle type coercions, as long as the alloca is fully initialized
10789   // by the store. Any non-store use of an alloca escapes it and any subsequent
10790   // unanalyzed store might write it.
10791   // FIXME: Handle structs initialized with multiple stores.
10792   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10793     // Look for stores, and handle non-store uses conservatively.
10794     const auto *SI = dyn_cast<StoreInst>(&I);
10795     if (!SI) {
10796       // We will look through cast uses, so ignore them completely.
10797       if (I.isCast())
10798         continue;
10799       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10800       // to allocas.
10801       if (I.isDebugOrPseudoInst())
10802         continue;
10803       // This is an unknown instruction. Assume it escapes or writes to all
10804       // static alloca operands.
10805       for (const Use &U : I.operands()) {
10806         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10807           *Info = StaticAllocaInfo::Clobbered;
10808       }
10809       continue;
10810     }
10811 
10812     // If the stored value is a static alloca, mark it as escaped.
10813     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10814       *Info = StaticAllocaInfo::Clobbered;
10815 
10816     // Check if the destination is a static alloca.
10817     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10818     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10819     if (!Info)
10820       continue;
10821     const AllocaInst *AI = cast<AllocaInst>(Dst);
10822 
10823     // Skip allocas that have been initialized or clobbered.
10824     if (*Info != StaticAllocaInfo::Unknown)
10825       continue;
10826 
10827     // Check if the stored value is an argument, and that this store fully
10828     // initializes the alloca.
10829     // If the argument type has padding bits we can't directly forward a pointer
10830     // as the upper bits may contain garbage.
10831     // Don't elide copies from the same argument twice.
10832     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10833     const auto *Arg = dyn_cast<Argument>(Val);
10834     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10835         Arg->getType()->isEmptyTy() ||
10836         DL.getTypeStoreSize(Arg->getType()) !=
10837             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10838         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10839         ArgCopyElisionCandidates.count(Arg)) {
10840       *Info = StaticAllocaInfo::Clobbered;
10841       continue;
10842     }
10843 
10844     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10845                       << '\n');
10846 
10847     // Mark this alloca and store for argument copy elision.
10848     *Info = StaticAllocaInfo::Elidable;
10849     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10850 
10851     // Stop scanning if we've seen all arguments. This will happen early in -O0
10852     // builds, which is useful, because -O0 builds have large entry blocks and
10853     // many allocas.
10854     if (ArgCopyElisionCandidates.size() == NumArgs)
10855       break;
10856   }
10857 }
10858 
10859 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10860 /// ArgVal is a load from a suitable fixed stack object.
10861 static void tryToElideArgumentCopy(
10862     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10863     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10864     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10865     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10866     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
10867   // Check if this is a load from a fixed stack object.
10868   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
10869   if (!LNode)
10870     return;
10871   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10872   if (!FINode)
10873     return;
10874 
10875   // Check that the fixed stack object is the right size and alignment.
10876   // Look at the alignment that the user wrote on the alloca instead of looking
10877   // at the stack object.
10878   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10879   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10880   const AllocaInst *AI = ArgCopyIter->second.first;
10881   int FixedIndex = FINode->getIndex();
10882   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10883   int OldIndex = AllocaIndex;
10884   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10885   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10886     LLVM_DEBUG(
10887         dbgs() << "  argument copy elision failed due to bad fixed stack "
10888                   "object size\n");
10889     return;
10890   }
10891   Align RequiredAlignment = AI->getAlign();
10892   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10893     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10894                          "greater than stack argument alignment ("
10895                       << DebugStr(RequiredAlignment) << " vs "
10896                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10897     return;
10898   }
10899 
10900   // Perform the elision. Delete the old stack object and replace its only use
10901   // in the variable info map. Mark the stack object as mutable.
10902   LLVM_DEBUG({
10903     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10904            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10905            << '\n';
10906   });
10907   MFI.RemoveStackObject(OldIndex);
10908   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10909   AllocaIndex = FixedIndex;
10910   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10911   for (SDValue ArgVal : ArgVals)
10912     Chains.push_back(ArgVal.getValue(1));
10913 
10914   // Avoid emitting code for the store implementing the copy.
10915   const StoreInst *SI = ArgCopyIter->second.second;
10916   ElidedArgCopyInstrs.insert(SI);
10917 
10918   // Check for uses of the argument again so that we can avoid exporting ArgVal
10919   // if it is't used by anything other than the store.
10920   for (const Value *U : Arg.users()) {
10921     if (U != SI) {
10922       ArgHasUses = true;
10923       break;
10924     }
10925   }
10926 }
10927 
10928 void SelectionDAGISel::LowerArguments(const Function &F) {
10929   SelectionDAG &DAG = SDB->DAG;
10930   SDLoc dl = SDB->getCurSDLoc();
10931   const DataLayout &DL = DAG.getDataLayout();
10932   SmallVector<ISD::InputArg, 16> Ins;
10933 
10934   // In Naked functions we aren't going to save any registers.
10935   if (F.hasFnAttribute(Attribute::Naked))
10936     return;
10937 
10938   if (!FuncInfo->CanLowerReturn) {
10939     // Put in an sret pointer parameter before all the other parameters.
10940     SmallVector<EVT, 1> ValueVTs;
10941     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10942                     PointerType::get(F.getContext(),
10943                                      DAG.getDataLayout().getAllocaAddrSpace()),
10944                     ValueVTs);
10945 
10946     // NOTE: Assuming that a pointer will never break down to more than one VT
10947     // or one register.
10948     ISD::ArgFlagsTy Flags;
10949     Flags.setSRet();
10950     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10951     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10952                          ISD::InputArg::NoArgIndex, 0);
10953     Ins.push_back(RetArg);
10954   }
10955 
10956   // Look for stores of arguments to static allocas. Mark such arguments with a
10957   // flag to ask the target to give us the memory location of that argument if
10958   // available.
10959   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10960   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10961                                     ArgCopyElisionCandidates);
10962 
10963   // Set up the incoming argument description vector.
10964   for (const Argument &Arg : F.args()) {
10965     unsigned ArgNo = Arg.getArgNo();
10966     SmallVector<EVT, 4> ValueVTs;
10967     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10968     bool isArgValueUsed = !Arg.use_empty();
10969     unsigned PartBase = 0;
10970     Type *FinalType = Arg.getType();
10971     if (Arg.hasAttribute(Attribute::ByVal))
10972       FinalType = Arg.getParamByValType();
10973     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10974         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10975     for (unsigned Value = 0, NumValues = ValueVTs.size();
10976          Value != NumValues; ++Value) {
10977       EVT VT = ValueVTs[Value];
10978       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10979       ISD::ArgFlagsTy Flags;
10980 
10981 
10982       if (Arg.getType()->isPointerTy()) {
10983         Flags.setPointer();
10984         Flags.setPointerAddrSpace(
10985             cast<PointerType>(Arg.getType())->getAddressSpace());
10986       }
10987       if (Arg.hasAttribute(Attribute::ZExt))
10988         Flags.setZExt();
10989       if (Arg.hasAttribute(Attribute::SExt))
10990         Flags.setSExt();
10991       if (Arg.hasAttribute(Attribute::InReg)) {
10992         // If we are using vectorcall calling convention, a structure that is
10993         // passed InReg - is surely an HVA
10994         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10995             isa<StructType>(Arg.getType())) {
10996           // The first value of a structure is marked
10997           if (0 == Value)
10998             Flags.setHvaStart();
10999           Flags.setHva();
11000         }
11001         // Set InReg Flag
11002         Flags.setInReg();
11003       }
11004       if (Arg.hasAttribute(Attribute::StructRet))
11005         Flags.setSRet();
11006       if (Arg.hasAttribute(Attribute::SwiftSelf))
11007         Flags.setSwiftSelf();
11008       if (Arg.hasAttribute(Attribute::SwiftAsync))
11009         Flags.setSwiftAsync();
11010       if (Arg.hasAttribute(Attribute::SwiftError))
11011         Flags.setSwiftError();
11012       if (Arg.hasAttribute(Attribute::ByVal))
11013         Flags.setByVal();
11014       if (Arg.hasAttribute(Attribute::ByRef))
11015         Flags.setByRef();
11016       if (Arg.hasAttribute(Attribute::InAlloca)) {
11017         Flags.setInAlloca();
11018         // Set the byval flag for CCAssignFn callbacks that don't know about
11019         // inalloca.  This way we can know how many bytes we should've allocated
11020         // and how many bytes a callee cleanup function will pop.  If we port
11021         // inalloca to more targets, we'll have to add custom inalloca handling
11022         // in the various CC lowering callbacks.
11023         Flags.setByVal();
11024       }
11025       if (Arg.hasAttribute(Attribute::Preallocated)) {
11026         Flags.setPreallocated();
11027         // Set the byval flag for CCAssignFn callbacks that don't know about
11028         // preallocated.  This way we can know how many bytes we should've
11029         // allocated and how many bytes a callee cleanup function will pop.  If
11030         // we port preallocated to more targets, we'll have to add custom
11031         // preallocated handling in the various CC lowering callbacks.
11032         Flags.setByVal();
11033       }
11034 
11035       // Certain targets (such as MIPS), may have a different ABI alignment
11036       // for a type depending on the context. Give the target a chance to
11037       // specify the alignment it wants.
11038       const Align OriginalAlignment(
11039           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11040       Flags.setOrigAlign(OriginalAlignment);
11041 
11042       Align MemAlign;
11043       Type *ArgMemTy = nullptr;
11044       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11045           Flags.isByRef()) {
11046         if (!ArgMemTy)
11047           ArgMemTy = Arg.getPointeeInMemoryValueType();
11048 
11049         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11050 
11051         // For in-memory arguments, size and alignment should be passed from FE.
11052         // BE will guess if this info is not there but there are cases it cannot
11053         // get right.
11054         if (auto ParamAlign = Arg.getParamStackAlign())
11055           MemAlign = *ParamAlign;
11056         else if ((ParamAlign = Arg.getParamAlign()))
11057           MemAlign = *ParamAlign;
11058         else
11059           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11060         if (Flags.isByRef())
11061           Flags.setByRefSize(MemSize);
11062         else
11063           Flags.setByValSize(MemSize);
11064       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11065         MemAlign = *ParamAlign;
11066       } else {
11067         MemAlign = OriginalAlignment;
11068       }
11069       Flags.setMemAlign(MemAlign);
11070 
11071       if (Arg.hasAttribute(Attribute::Nest))
11072         Flags.setNest();
11073       if (NeedsRegBlock)
11074         Flags.setInConsecutiveRegs();
11075       if (ArgCopyElisionCandidates.count(&Arg))
11076         Flags.setCopyElisionCandidate();
11077       if (Arg.hasAttribute(Attribute::Returned))
11078         Flags.setReturned();
11079 
11080       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11081           *CurDAG->getContext(), F.getCallingConv(), VT);
11082       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11083           *CurDAG->getContext(), F.getCallingConv(), VT);
11084       for (unsigned i = 0; i != NumRegs; ++i) {
11085         // For scalable vectors, use the minimum size; individual targets
11086         // are responsible for handling scalable vector arguments and
11087         // return values.
11088         ISD::InputArg MyFlags(
11089             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11090             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11091         if (NumRegs > 1 && i == 0)
11092           MyFlags.Flags.setSplit();
11093         // if it isn't first piece, alignment must be 1
11094         else if (i > 0) {
11095           MyFlags.Flags.setOrigAlign(Align(1));
11096           if (i == NumRegs - 1)
11097             MyFlags.Flags.setSplitEnd();
11098         }
11099         Ins.push_back(MyFlags);
11100       }
11101       if (NeedsRegBlock && Value == NumValues - 1)
11102         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11103       PartBase += VT.getStoreSize().getKnownMinValue();
11104     }
11105   }
11106 
11107   // Call the target to set up the argument values.
11108   SmallVector<SDValue, 8> InVals;
11109   SDValue NewRoot = TLI->LowerFormalArguments(
11110       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11111 
11112   // Verify that the target's LowerFormalArguments behaved as expected.
11113   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11114          "LowerFormalArguments didn't return a valid chain!");
11115   assert(InVals.size() == Ins.size() &&
11116          "LowerFormalArguments didn't emit the correct number of values!");
11117   LLVM_DEBUG({
11118     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11119       assert(InVals[i].getNode() &&
11120              "LowerFormalArguments emitted a null value!");
11121       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11122              "LowerFormalArguments emitted a value with the wrong type!");
11123     }
11124   });
11125 
11126   // Update the DAG with the new chain value resulting from argument lowering.
11127   DAG.setRoot(NewRoot);
11128 
11129   // Set up the argument values.
11130   unsigned i = 0;
11131   if (!FuncInfo->CanLowerReturn) {
11132     // Create a virtual register for the sret pointer, and put in a copy
11133     // from the sret argument into it.
11134     SmallVector<EVT, 1> ValueVTs;
11135     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11136                     PointerType::get(F.getContext(),
11137                                      DAG.getDataLayout().getAllocaAddrSpace()),
11138                     ValueVTs);
11139     MVT VT = ValueVTs[0].getSimpleVT();
11140     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11141     std::optional<ISD::NodeType> AssertOp;
11142     SDValue ArgValue =
11143         getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11144                          F.getCallingConv(), AssertOp);
11145 
11146     MachineFunction& MF = SDB->DAG.getMachineFunction();
11147     MachineRegisterInfo& RegInfo = MF.getRegInfo();
11148     Register SRetReg =
11149         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11150     FuncInfo->DemoteRegister = SRetReg;
11151     NewRoot =
11152         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11153     DAG.setRoot(NewRoot);
11154 
11155     // i indexes lowered arguments.  Bump it past the hidden sret argument.
11156     ++i;
11157   }
11158 
11159   SmallVector<SDValue, 4> Chains;
11160   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11161   for (const Argument &Arg : F.args()) {
11162     SmallVector<SDValue, 4> ArgValues;
11163     SmallVector<EVT, 4> ValueVTs;
11164     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11165     unsigned NumValues = ValueVTs.size();
11166     if (NumValues == 0)
11167       continue;
11168 
11169     bool ArgHasUses = !Arg.use_empty();
11170 
11171     // Elide the copying store if the target loaded this argument from a
11172     // suitable fixed stack object.
11173     if (Ins[i].Flags.isCopyElisionCandidate()) {
11174       unsigned NumParts = 0;
11175       for (EVT VT : ValueVTs)
11176         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11177                                                        F.getCallingConv(), VT);
11178 
11179       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11180                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11181                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
11182     }
11183 
11184     // If this argument is unused then remember its value. It is used to generate
11185     // debugging information.
11186     bool isSwiftErrorArg =
11187         TLI->supportSwiftError() &&
11188         Arg.hasAttribute(Attribute::SwiftError);
11189     if (!ArgHasUses && !isSwiftErrorArg) {
11190       SDB->setUnusedArgValue(&Arg, InVals[i]);
11191 
11192       // Also remember any frame index for use in FastISel.
11193       if (FrameIndexSDNode *FI =
11194           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11195         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11196     }
11197 
11198     for (unsigned Val = 0; Val != NumValues; ++Val) {
11199       EVT VT = ValueVTs[Val];
11200       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11201                                                       F.getCallingConv(), VT);
11202       unsigned NumParts = TLI->getNumRegistersForCallingConv(
11203           *CurDAG->getContext(), F.getCallingConv(), VT);
11204 
11205       // Even an apparent 'unused' swifterror argument needs to be returned. So
11206       // we do generate a copy for it that can be used on return from the
11207       // function.
11208       if (ArgHasUses || isSwiftErrorArg) {
11209         std::optional<ISD::NodeType> AssertOp;
11210         if (Arg.hasAttribute(Attribute::SExt))
11211           AssertOp = ISD::AssertSext;
11212         else if (Arg.hasAttribute(Attribute::ZExt))
11213           AssertOp = ISD::AssertZext;
11214 
11215         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11216                                              PartVT, VT, nullptr, NewRoot,
11217                                              F.getCallingConv(), AssertOp));
11218       }
11219 
11220       i += NumParts;
11221     }
11222 
11223     // We don't need to do anything else for unused arguments.
11224     if (ArgValues.empty())
11225       continue;
11226 
11227     // Note down frame index.
11228     if (FrameIndexSDNode *FI =
11229         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11230       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11231 
11232     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11233                                      SDB->getCurSDLoc());
11234 
11235     SDB->setValue(&Arg, Res);
11236     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11237       // We want to associate the argument with the frame index, among
11238       // involved operands, that correspond to the lowest address. The
11239       // getCopyFromParts function, called earlier, is swapping the order of
11240       // the operands to BUILD_PAIR depending on endianness. The result of
11241       // that swapping is that the least significant bits of the argument will
11242       // be in the first operand of the BUILD_PAIR node, and the most
11243       // significant bits will be in the second operand.
11244       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11245       if (LoadSDNode *LNode =
11246           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11247         if (FrameIndexSDNode *FI =
11248             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11249           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11250     }
11251 
11252     // Analyses past this point are naive and don't expect an assertion.
11253     if (Res.getOpcode() == ISD::AssertZext)
11254       Res = Res.getOperand(0);
11255 
11256     // Update the SwiftErrorVRegDefMap.
11257     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11258       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11259       if (Register::isVirtualRegister(Reg))
11260         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11261                                    Reg);
11262     }
11263 
11264     // If this argument is live outside of the entry block, insert a copy from
11265     // wherever we got it to the vreg that other BB's will reference it as.
11266     if (Res.getOpcode() == ISD::CopyFromReg) {
11267       // If we can, though, try to skip creating an unnecessary vreg.
11268       // FIXME: This isn't very clean... it would be nice to make this more
11269       // general.
11270       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11271       if (Register::isVirtualRegister(Reg)) {
11272         FuncInfo->ValueMap[&Arg] = Reg;
11273         continue;
11274       }
11275     }
11276     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11277       FuncInfo->InitializeRegForValue(&Arg);
11278       SDB->CopyToExportRegsIfNeeded(&Arg);
11279     }
11280   }
11281 
11282   if (!Chains.empty()) {
11283     Chains.push_back(NewRoot);
11284     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11285   }
11286 
11287   DAG.setRoot(NewRoot);
11288 
11289   assert(i == InVals.size() && "Argument register count mismatch!");
11290 
11291   // If any argument copy elisions occurred and we have debug info, update the
11292   // stale frame indices used in the dbg.declare variable info table.
11293   if (!ArgCopyElisionFrameIndexMap.empty()) {
11294     for (MachineFunction::VariableDbgInfo &VI :
11295          MF->getInStackSlotVariableDbgInfo()) {
11296       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11297       if (I != ArgCopyElisionFrameIndexMap.end())
11298         VI.updateStackSlot(I->second);
11299     }
11300   }
11301 
11302   // Finally, if the target has anything special to do, allow it to do so.
11303   emitFunctionEntryCode();
11304 }
11305 
11306 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11307 /// ensure constants are generated when needed.  Remember the virtual registers
11308 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11309 /// directly add them, because expansion might result in multiple MBB's for one
11310 /// BB.  As such, the start of the BB might correspond to a different MBB than
11311 /// the end.
11312 void
11313 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11314   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11315 
11316   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11317 
11318   // Check PHI nodes in successors that expect a value to be available from this
11319   // block.
11320   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11321     if (!isa<PHINode>(SuccBB->begin())) continue;
11322     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11323 
11324     // If this terminator has multiple identical successors (common for
11325     // switches), only handle each succ once.
11326     if (!SuccsHandled.insert(SuccMBB).second)
11327       continue;
11328 
11329     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11330 
11331     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11332     // nodes and Machine PHI nodes, but the incoming operands have not been
11333     // emitted yet.
11334     for (const PHINode &PN : SuccBB->phis()) {
11335       // Ignore dead phi's.
11336       if (PN.use_empty())
11337         continue;
11338 
11339       // Skip empty types
11340       if (PN.getType()->isEmptyTy())
11341         continue;
11342 
11343       unsigned Reg;
11344       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11345 
11346       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11347         unsigned &RegOut = ConstantsOut[C];
11348         if (RegOut == 0) {
11349           RegOut = FuncInfo.CreateRegs(C);
11350           // We need to zero/sign extend ConstantInt phi operands to match
11351           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11352           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11353           if (auto *CI = dyn_cast<ConstantInt>(C))
11354             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11355                                                     : ISD::ZERO_EXTEND;
11356           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11357         }
11358         Reg = RegOut;
11359       } else {
11360         DenseMap<const Value *, Register>::iterator I =
11361           FuncInfo.ValueMap.find(PHIOp);
11362         if (I != FuncInfo.ValueMap.end())
11363           Reg = I->second;
11364         else {
11365           assert(isa<AllocaInst>(PHIOp) &&
11366                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11367                  "Didn't codegen value into a register!??");
11368           Reg = FuncInfo.CreateRegs(PHIOp);
11369           CopyValueToVirtualRegister(PHIOp, Reg);
11370         }
11371       }
11372 
11373       // Remember that this register needs to added to the machine PHI node as
11374       // the input for this MBB.
11375       SmallVector<EVT, 4> ValueVTs;
11376       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11377       for (EVT VT : ValueVTs) {
11378         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11379         for (unsigned i = 0; i != NumRegisters; ++i)
11380           FuncInfo.PHINodesToUpdate.push_back(
11381               std::make_pair(&*MBBI++, Reg + i));
11382         Reg += NumRegisters;
11383       }
11384     }
11385   }
11386 
11387   ConstantsOut.clear();
11388 }
11389 
11390 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11391   MachineFunction::iterator I(MBB);
11392   if (++I == FuncInfo.MF->end())
11393     return nullptr;
11394   return &*I;
11395 }
11396 
11397 /// During lowering new call nodes can be created (such as memset, etc.).
11398 /// Those will become new roots of the current DAG, but complications arise
11399 /// when they are tail calls. In such cases, the call lowering will update
11400 /// the root, but the builder still needs to know that a tail call has been
11401 /// lowered in order to avoid generating an additional return.
11402 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11403   // If the node is null, we do have a tail call.
11404   if (MaybeTC.getNode() != nullptr)
11405     DAG.setRoot(MaybeTC);
11406   else
11407     HasTailCall = true;
11408 }
11409 
11410 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11411                                         MachineBasicBlock *SwitchMBB,
11412                                         MachineBasicBlock *DefaultMBB) {
11413   MachineFunction *CurMF = FuncInfo.MF;
11414   MachineBasicBlock *NextMBB = nullptr;
11415   MachineFunction::iterator BBI(W.MBB);
11416   if (++BBI != FuncInfo.MF->end())
11417     NextMBB = &*BBI;
11418 
11419   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11420 
11421   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11422 
11423   if (Size == 2 && W.MBB == SwitchMBB) {
11424     // If any two of the cases has the same destination, and if one value
11425     // is the same as the other, but has one bit unset that the other has set,
11426     // use bit manipulation to do two compares at once.  For example:
11427     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11428     // TODO: This could be extended to merge any 2 cases in switches with 3
11429     // cases.
11430     // TODO: Handle cases where W.CaseBB != SwitchBB.
11431     CaseCluster &Small = *W.FirstCluster;
11432     CaseCluster &Big = *W.LastCluster;
11433 
11434     if (Small.Low == Small.High && Big.Low == Big.High &&
11435         Small.MBB == Big.MBB) {
11436       const APInt &SmallValue = Small.Low->getValue();
11437       const APInt &BigValue = Big.Low->getValue();
11438 
11439       // Check that there is only one bit different.
11440       APInt CommonBit = BigValue ^ SmallValue;
11441       if (CommonBit.isPowerOf2()) {
11442         SDValue CondLHS = getValue(Cond);
11443         EVT VT = CondLHS.getValueType();
11444         SDLoc DL = getCurSDLoc();
11445 
11446         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11447                                  DAG.getConstant(CommonBit, DL, VT));
11448         SDValue Cond = DAG.getSetCC(
11449             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11450             ISD::SETEQ);
11451 
11452         // Update successor info.
11453         // Both Small and Big will jump to Small.BB, so we sum up the
11454         // probabilities.
11455         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11456         if (BPI)
11457           addSuccessorWithProb(
11458               SwitchMBB, DefaultMBB,
11459               // The default destination is the first successor in IR.
11460               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11461         else
11462           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11463 
11464         // Insert the true branch.
11465         SDValue BrCond =
11466             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11467                         DAG.getBasicBlock(Small.MBB));
11468         // Insert the false branch.
11469         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11470                              DAG.getBasicBlock(DefaultMBB));
11471 
11472         DAG.setRoot(BrCond);
11473         return;
11474       }
11475     }
11476   }
11477 
11478   if (TM.getOptLevel() != CodeGenOptLevel::None) {
11479     // Here, we order cases by probability so the most likely case will be
11480     // checked first. However, two clusters can have the same probability in
11481     // which case their relative ordering is non-deterministic. So we use Low
11482     // as a tie-breaker as clusters are guaranteed to never overlap.
11483     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11484                [](const CaseCluster &a, const CaseCluster &b) {
11485       return a.Prob != b.Prob ?
11486              a.Prob > b.Prob :
11487              a.Low->getValue().slt(b.Low->getValue());
11488     });
11489 
11490     // Rearrange the case blocks so that the last one falls through if possible
11491     // without changing the order of probabilities.
11492     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11493       --I;
11494       if (I->Prob > W.LastCluster->Prob)
11495         break;
11496       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11497         std::swap(*I, *W.LastCluster);
11498         break;
11499       }
11500     }
11501   }
11502 
11503   // Compute total probability.
11504   BranchProbability DefaultProb = W.DefaultProb;
11505   BranchProbability UnhandledProbs = DefaultProb;
11506   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11507     UnhandledProbs += I->Prob;
11508 
11509   MachineBasicBlock *CurMBB = W.MBB;
11510   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11511     bool FallthroughUnreachable = false;
11512     MachineBasicBlock *Fallthrough;
11513     if (I == W.LastCluster) {
11514       // For the last cluster, fall through to the default destination.
11515       Fallthrough = DefaultMBB;
11516       FallthroughUnreachable = isa<UnreachableInst>(
11517           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11518     } else {
11519       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11520       CurMF->insert(BBI, Fallthrough);
11521       // Put Cond in a virtual register to make it available from the new blocks.
11522       ExportFromCurrentBlock(Cond);
11523     }
11524     UnhandledProbs -= I->Prob;
11525 
11526     switch (I->Kind) {
11527       case CC_JumpTable: {
11528         // FIXME: Optimize away range check based on pivot comparisons.
11529         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11530         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11531 
11532         // The jump block hasn't been inserted yet; insert it here.
11533         MachineBasicBlock *JumpMBB = JT->MBB;
11534         CurMF->insert(BBI, JumpMBB);
11535 
11536         auto JumpProb = I->Prob;
11537         auto FallthroughProb = UnhandledProbs;
11538 
11539         // If the default statement is a target of the jump table, we evenly
11540         // distribute the default probability to successors of CurMBB. Also
11541         // update the probability on the edge from JumpMBB to Fallthrough.
11542         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11543                                               SE = JumpMBB->succ_end();
11544              SI != SE; ++SI) {
11545           if (*SI == DefaultMBB) {
11546             JumpProb += DefaultProb / 2;
11547             FallthroughProb -= DefaultProb / 2;
11548             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11549             JumpMBB->normalizeSuccProbs();
11550             break;
11551           }
11552         }
11553 
11554         // If the default clause is unreachable, propagate that knowledge into
11555         // JTH->FallthroughUnreachable which will use it to suppress the range
11556         // check.
11557         //
11558         // However, don't do this if we're doing branch target enforcement,
11559         // because a table branch _without_ a range check can be a tempting JOP
11560         // gadget - out-of-bounds inputs that are impossible in correct
11561         // execution become possible again if an attacker can influence the
11562         // control flow. So if an attacker doesn't already have a BTI bypass
11563         // available, we don't want them to be able to get one out of this
11564         // table branch.
11565         if (FallthroughUnreachable) {
11566           Function &CurFunc = CurMF->getFunction();
11567           bool HasBranchTargetEnforcement = false;
11568           if (CurFunc.hasFnAttribute("branch-target-enforcement")) {
11569             HasBranchTargetEnforcement =
11570                 CurFunc.getFnAttribute("branch-target-enforcement")
11571                     .getValueAsBool();
11572           } else {
11573             HasBranchTargetEnforcement =
11574                 CurMF->getMMI().getModule()->getModuleFlag(
11575                     "branch-target-enforcement");
11576           }
11577           if (!HasBranchTargetEnforcement)
11578             JTH->FallthroughUnreachable = true;
11579         }
11580 
11581         if (!JTH->FallthroughUnreachable)
11582           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11583         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11584         CurMBB->normalizeSuccProbs();
11585 
11586         // The jump table header will be inserted in our current block, do the
11587         // range check, and fall through to our fallthrough block.
11588         JTH->HeaderBB = CurMBB;
11589         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11590 
11591         // If we're in the right place, emit the jump table header right now.
11592         if (CurMBB == SwitchMBB) {
11593           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11594           JTH->Emitted = true;
11595         }
11596         break;
11597       }
11598       case CC_BitTests: {
11599         // FIXME: Optimize away range check based on pivot comparisons.
11600         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11601 
11602         // The bit test blocks haven't been inserted yet; insert them here.
11603         for (BitTestCase &BTC : BTB->Cases)
11604           CurMF->insert(BBI, BTC.ThisBB);
11605 
11606         // Fill in fields of the BitTestBlock.
11607         BTB->Parent = CurMBB;
11608         BTB->Default = Fallthrough;
11609 
11610         BTB->DefaultProb = UnhandledProbs;
11611         // If the cases in bit test don't form a contiguous range, we evenly
11612         // distribute the probability on the edge to Fallthrough to two
11613         // successors of CurMBB.
11614         if (!BTB->ContiguousRange) {
11615           BTB->Prob += DefaultProb / 2;
11616           BTB->DefaultProb -= DefaultProb / 2;
11617         }
11618 
11619         if (FallthroughUnreachable)
11620           BTB->FallthroughUnreachable = true;
11621 
11622         // If we're in the right place, emit the bit test header right now.
11623         if (CurMBB == SwitchMBB) {
11624           visitBitTestHeader(*BTB, SwitchMBB);
11625           BTB->Emitted = true;
11626         }
11627         break;
11628       }
11629       case CC_Range: {
11630         const Value *RHS, *LHS, *MHS;
11631         ISD::CondCode CC;
11632         if (I->Low == I->High) {
11633           // Check Cond == I->Low.
11634           CC = ISD::SETEQ;
11635           LHS = Cond;
11636           RHS=I->Low;
11637           MHS = nullptr;
11638         } else {
11639           // Check I->Low <= Cond <= I->High.
11640           CC = ISD::SETLE;
11641           LHS = I->Low;
11642           MHS = Cond;
11643           RHS = I->High;
11644         }
11645 
11646         // If Fallthrough is unreachable, fold away the comparison.
11647         if (FallthroughUnreachable)
11648           CC = ISD::SETTRUE;
11649 
11650         // The false probability is the sum of all unhandled cases.
11651         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11652                      getCurSDLoc(), I->Prob, UnhandledProbs);
11653 
11654         if (CurMBB == SwitchMBB)
11655           visitSwitchCase(CB, SwitchMBB);
11656         else
11657           SL->SwitchCases.push_back(CB);
11658 
11659         break;
11660       }
11661     }
11662     CurMBB = Fallthrough;
11663   }
11664 }
11665 
11666 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11667                                         const SwitchWorkListItem &W,
11668                                         Value *Cond,
11669                                         MachineBasicBlock *SwitchMBB) {
11670   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11671          "Clusters not sorted?");
11672   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11673 
11674   auto [LastLeft, FirstRight, LeftProb, RightProb] =
11675       SL->computeSplitWorkItemInfo(W);
11676 
11677   // Use the first element on the right as pivot since we will make less-than
11678   // comparisons against it.
11679   CaseClusterIt PivotCluster = FirstRight;
11680   assert(PivotCluster > W.FirstCluster);
11681   assert(PivotCluster <= W.LastCluster);
11682 
11683   CaseClusterIt FirstLeft = W.FirstCluster;
11684   CaseClusterIt LastRight = W.LastCluster;
11685 
11686   const ConstantInt *Pivot = PivotCluster->Low;
11687 
11688   // New blocks will be inserted immediately after the current one.
11689   MachineFunction::iterator BBI(W.MBB);
11690   ++BBI;
11691 
11692   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11693   // we can branch to its destination directly if it's squeezed exactly in
11694   // between the known lower bound and Pivot - 1.
11695   MachineBasicBlock *LeftMBB;
11696   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11697       FirstLeft->Low == W.GE &&
11698       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11699     LeftMBB = FirstLeft->MBB;
11700   } else {
11701     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11702     FuncInfo.MF->insert(BBI, LeftMBB);
11703     WorkList.push_back(
11704         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11705     // Put Cond in a virtual register to make it available from the new blocks.
11706     ExportFromCurrentBlock(Cond);
11707   }
11708 
11709   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11710   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11711   // directly if RHS.High equals the current upper bound.
11712   MachineBasicBlock *RightMBB;
11713   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11714       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11715     RightMBB = FirstRight->MBB;
11716   } else {
11717     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11718     FuncInfo.MF->insert(BBI, RightMBB);
11719     WorkList.push_back(
11720         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11721     // Put Cond in a virtual register to make it available from the new blocks.
11722     ExportFromCurrentBlock(Cond);
11723   }
11724 
11725   // Create the CaseBlock record that will be used to lower the branch.
11726   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11727                getCurSDLoc(), LeftProb, RightProb);
11728 
11729   if (W.MBB == SwitchMBB)
11730     visitSwitchCase(CB, SwitchMBB);
11731   else
11732     SL->SwitchCases.push_back(CB);
11733 }
11734 
11735 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11736 // from the swith statement.
11737 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11738                                             BranchProbability PeeledCaseProb) {
11739   if (PeeledCaseProb == BranchProbability::getOne())
11740     return BranchProbability::getZero();
11741   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11742 
11743   uint32_t Numerator = CaseProb.getNumerator();
11744   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11745   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11746 }
11747 
11748 // Try to peel the top probability case if it exceeds the threshold.
11749 // Return current MachineBasicBlock for the switch statement if the peeling
11750 // does not occur.
11751 // If the peeling is performed, return the newly created MachineBasicBlock
11752 // for the peeled switch statement. Also update Clusters to remove the peeled
11753 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11754 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11755     const SwitchInst &SI, CaseClusterVector &Clusters,
11756     BranchProbability &PeeledCaseProb) {
11757   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11758   // Don't perform if there is only one cluster or optimizing for size.
11759   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11760       TM.getOptLevel() == CodeGenOptLevel::None ||
11761       SwitchMBB->getParent()->getFunction().hasMinSize())
11762     return SwitchMBB;
11763 
11764   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11765   unsigned PeeledCaseIndex = 0;
11766   bool SwitchPeeled = false;
11767   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11768     CaseCluster &CC = Clusters[Index];
11769     if (CC.Prob < TopCaseProb)
11770       continue;
11771     TopCaseProb = CC.Prob;
11772     PeeledCaseIndex = Index;
11773     SwitchPeeled = true;
11774   }
11775   if (!SwitchPeeled)
11776     return SwitchMBB;
11777 
11778   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11779                     << TopCaseProb << "\n");
11780 
11781   // Record the MBB for the peeled switch statement.
11782   MachineFunction::iterator BBI(SwitchMBB);
11783   ++BBI;
11784   MachineBasicBlock *PeeledSwitchMBB =
11785       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11786   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11787 
11788   ExportFromCurrentBlock(SI.getCondition());
11789   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11790   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11791                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11792   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11793 
11794   Clusters.erase(PeeledCaseIt);
11795   for (CaseCluster &CC : Clusters) {
11796     LLVM_DEBUG(
11797         dbgs() << "Scale the probablity for one cluster, before scaling: "
11798                << CC.Prob << "\n");
11799     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11800     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11801   }
11802   PeeledCaseProb = TopCaseProb;
11803   return PeeledSwitchMBB;
11804 }
11805 
11806 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11807   // Extract cases from the switch.
11808   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11809   CaseClusterVector Clusters;
11810   Clusters.reserve(SI.getNumCases());
11811   for (auto I : SI.cases()) {
11812     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11813     const ConstantInt *CaseVal = I.getCaseValue();
11814     BranchProbability Prob =
11815         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11816             : BranchProbability(1, SI.getNumCases() + 1);
11817     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11818   }
11819 
11820   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11821 
11822   // Cluster adjacent cases with the same destination. We do this at all
11823   // optimization levels because it's cheap to do and will make codegen faster
11824   // if there are many clusters.
11825   sortAndRangeify(Clusters);
11826 
11827   // The branch probablity of the peeled case.
11828   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11829   MachineBasicBlock *PeeledSwitchMBB =
11830       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11831 
11832   // If there is only the default destination, jump there directly.
11833   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11834   if (Clusters.empty()) {
11835     assert(PeeledSwitchMBB == SwitchMBB);
11836     SwitchMBB->addSuccessor(DefaultMBB);
11837     if (DefaultMBB != NextBlock(SwitchMBB)) {
11838       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11839                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11840     }
11841     return;
11842   }
11843 
11844   SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
11845                      DAG.getBFI());
11846   SL->findBitTestClusters(Clusters, &SI);
11847 
11848   LLVM_DEBUG({
11849     dbgs() << "Case clusters: ";
11850     for (const CaseCluster &C : Clusters) {
11851       if (C.Kind == CC_JumpTable)
11852         dbgs() << "JT:";
11853       if (C.Kind == CC_BitTests)
11854         dbgs() << "BT:";
11855 
11856       C.Low->getValue().print(dbgs(), true);
11857       if (C.Low != C.High) {
11858         dbgs() << '-';
11859         C.High->getValue().print(dbgs(), true);
11860       }
11861       dbgs() << ' ';
11862     }
11863     dbgs() << '\n';
11864   });
11865 
11866   assert(!Clusters.empty());
11867   SwitchWorkList WorkList;
11868   CaseClusterIt First = Clusters.begin();
11869   CaseClusterIt Last = Clusters.end() - 1;
11870   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11871   // Scale the branchprobability for DefaultMBB if the peel occurs and
11872   // DefaultMBB is not replaced.
11873   if (PeeledCaseProb != BranchProbability::getZero() &&
11874       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11875     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11876   WorkList.push_back(
11877       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11878 
11879   while (!WorkList.empty()) {
11880     SwitchWorkListItem W = WorkList.pop_back_val();
11881     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11882 
11883     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
11884         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11885       // For optimized builds, lower large range as a balanced binary tree.
11886       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11887       continue;
11888     }
11889 
11890     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11891   }
11892 }
11893 
11894 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11895   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11896   auto DL = getCurSDLoc();
11897   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11898   setValue(&I, DAG.getStepVector(DL, ResultVT));
11899 }
11900 
11901 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11902   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11903   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11904 
11905   SDLoc DL = getCurSDLoc();
11906   SDValue V = getValue(I.getOperand(0));
11907   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11908 
11909   if (VT.isScalableVector()) {
11910     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11911     return;
11912   }
11913 
11914   // Use VECTOR_SHUFFLE for the fixed-length vector
11915   // to maintain existing behavior.
11916   SmallVector<int, 8> Mask;
11917   unsigned NumElts = VT.getVectorMinNumElements();
11918   for (unsigned i = 0; i != NumElts; ++i)
11919     Mask.push_back(NumElts - 1 - i);
11920 
11921   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11922 }
11923 
11924 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
11925   auto DL = getCurSDLoc();
11926   SDValue InVec = getValue(I.getOperand(0));
11927   EVT OutVT =
11928       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
11929 
11930   unsigned OutNumElts = OutVT.getVectorMinNumElements();
11931 
11932   // ISD Node needs the input vectors split into two equal parts
11933   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11934                            DAG.getVectorIdxConstant(0, DL));
11935   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11936                            DAG.getVectorIdxConstant(OutNumElts, DL));
11937 
11938   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11939   // legalisation and combines.
11940   if (OutVT.isFixedLengthVector()) {
11941     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11942                                         createStrideMask(0, 2, OutNumElts));
11943     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11944                                        createStrideMask(1, 2, OutNumElts));
11945     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
11946     setValue(&I, Res);
11947     return;
11948   }
11949 
11950   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
11951                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
11952   setValue(&I, Res);
11953 }
11954 
11955 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
11956   auto DL = getCurSDLoc();
11957   EVT InVT = getValue(I.getOperand(0)).getValueType();
11958   SDValue InVec0 = getValue(I.getOperand(0));
11959   SDValue InVec1 = getValue(I.getOperand(1));
11960   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11961   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11962 
11963   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11964   // legalisation and combines.
11965   if (OutVT.isFixedLengthVector()) {
11966     unsigned NumElts = InVT.getVectorMinNumElements();
11967     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
11968     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
11969                                       createInterleaveMask(NumElts, 2)));
11970     return;
11971   }
11972 
11973   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
11974                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
11975   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
11976                     Res.getValue(1));
11977   setValue(&I, Res);
11978 }
11979 
11980 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11981   SmallVector<EVT, 4> ValueVTs;
11982   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11983                   ValueVTs);
11984   unsigned NumValues = ValueVTs.size();
11985   if (NumValues == 0) return;
11986 
11987   SmallVector<SDValue, 4> Values(NumValues);
11988   SDValue Op = getValue(I.getOperand(0));
11989 
11990   for (unsigned i = 0; i != NumValues; ++i)
11991     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11992                             SDValue(Op.getNode(), Op.getResNo() + i));
11993 
11994   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11995                            DAG.getVTList(ValueVTs), Values));
11996 }
11997 
11998 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11999   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12000   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12001 
12002   SDLoc DL = getCurSDLoc();
12003   SDValue V1 = getValue(I.getOperand(0));
12004   SDValue V2 = getValue(I.getOperand(1));
12005   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12006 
12007   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12008   if (VT.isScalableVector()) {
12009     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
12010     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12011                              DAG.getConstant(Imm, DL, IdxVT)));
12012     return;
12013   }
12014 
12015   unsigned NumElts = VT.getVectorNumElements();
12016 
12017   uint64_t Idx = (NumElts + Imm) % NumElts;
12018 
12019   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12020   SmallVector<int, 8> Mask;
12021   for (unsigned i = 0; i < NumElts; ++i)
12022     Mask.push_back(Idx + i);
12023   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12024 }
12025 
12026 // Consider the following MIR after SelectionDAG, which produces output in
12027 // phyregs in the first case or virtregs in the second case.
12028 //
12029 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12030 // %5:gr32 = COPY $ebx
12031 // %6:gr32 = COPY $edx
12032 // %1:gr32 = COPY %6:gr32
12033 // %0:gr32 = COPY %5:gr32
12034 //
12035 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12036 // %1:gr32 = COPY %6:gr32
12037 // %0:gr32 = COPY %5:gr32
12038 //
12039 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12040 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12041 //
12042 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12043 // to a single virtreg (such as %0). The remaining outputs monotonically
12044 // increase in virtreg number from there. If a callbr has no outputs, then it
12045 // should not have a corresponding callbr landingpad; in fact, the callbr
12046 // landingpad would not even be able to refer to such a callbr.
12047 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12048   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12049   // There is definitely at least one copy.
12050   assert(MI->getOpcode() == TargetOpcode::COPY &&
12051          "start of copy chain MUST be COPY");
12052   Reg = MI->getOperand(1).getReg();
12053   MI = MRI.def_begin(Reg)->getParent();
12054   // There may be an optional second copy.
12055   if (MI->getOpcode() == TargetOpcode::COPY) {
12056     assert(Reg.isVirtual() && "expected COPY of virtual register");
12057     Reg = MI->getOperand(1).getReg();
12058     assert(Reg.isPhysical() && "expected COPY of physical register");
12059     MI = MRI.def_begin(Reg)->getParent();
12060   }
12061   // The start of the chain must be an INLINEASM_BR.
12062   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12063          "end of copy chain MUST be INLINEASM_BR");
12064   return Reg;
12065 }
12066 
12067 // We must do this walk rather than the simpler
12068 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12069 // otherwise we will end up with copies of virtregs only valid along direct
12070 // edges.
12071 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12072   SmallVector<EVT, 8> ResultVTs;
12073   SmallVector<SDValue, 8> ResultValues;
12074   const auto *CBR =
12075       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12076 
12077   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12078   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12079   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12080 
12081   unsigned InitialDef = FuncInfo.ValueMap[CBR];
12082   SDValue Chain = DAG.getRoot();
12083 
12084   // Re-parse the asm constraints string.
12085   TargetLowering::AsmOperandInfoVector TargetConstraints =
12086       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12087   for (auto &T : TargetConstraints) {
12088     SDISelAsmOperandInfo OpInfo(T);
12089     if (OpInfo.Type != InlineAsm::isOutput)
12090       continue;
12091 
12092     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12093     // individual constraint.
12094     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12095 
12096     switch (OpInfo.ConstraintType) {
12097     case TargetLowering::C_Register:
12098     case TargetLowering::C_RegisterClass: {
12099       // Fill in OpInfo.AssignedRegs.Regs.
12100       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12101 
12102       // getRegistersForValue may produce 1 to many registers based on whether
12103       // the OpInfo.ConstraintVT is legal on the target or not.
12104       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
12105         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12106         if (Register::isPhysicalRegister(OriginalDef))
12107           FuncInfo.MBB->addLiveIn(OriginalDef);
12108         // Update the assigned registers to use the original defs.
12109         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
12110       }
12111 
12112       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12113           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12114       ResultValues.push_back(V);
12115       ResultVTs.push_back(OpInfo.ConstraintVT);
12116       break;
12117     }
12118     case TargetLowering::C_Other: {
12119       SDValue Flag;
12120       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12121                                                   OpInfo, DAG);
12122       ++InitialDef;
12123       ResultValues.push_back(V);
12124       ResultVTs.push_back(OpInfo.ConstraintVT);
12125       break;
12126     }
12127     default:
12128       break;
12129     }
12130   }
12131   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12132                           DAG.getVTList(ResultVTs), ResultValues);
12133   setValue(&I, V);
12134 }
12135