1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallingConv.h" 73 #include "llvm/IR/Constant.h" 74 #include "llvm/IR/ConstantRange.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DebugInfoMetadata.h" 78 #include "llvm/IR/DebugLoc.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Function.h" 81 #include "llvm/IR/GetElementPtrTypeIterator.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstrTypes.h" 84 #include "llvm/IR/Instruction.h" 85 #include "llvm/IR/Instructions.h" 86 #include "llvm/IR/IntrinsicInst.h" 87 #include "llvm/IR/Intrinsics.h" 88 #include "llvm/IR/IntrinsicsAArch64.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/Operator.h" 94 #include "llvm/IR/PatternMatch.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/MC/MCContext.h" 100 #include "llvm/MC/MCSymbol.h" 101 #include "llvm/Support/AtomicOrdering.h" 102 #include "llvm/Support/BranchProbability.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CodeGen.h" 105 #include "llvm/Support/CommandLine.h" 106 #include "llvm/Support/Compiler.h" 107 #include "llvm/Support/Debug.h" 108 #include "llvm/Support/ErrorHandling.h" 109 #include "llvm/Support/MachineValueType.h" 110 #include "llvm/Support/MathExtras.h" 111 #include "llvm/Support/raw_ostream.h" 112 #include "llvm/Target/TargetIntrinsicInfo.h" 113 #include "llvm/Target/TargetMachine.h" 114 #include "llvm/Target/TargetOptions.h" 115 #include "llvm/Transforms/Utils/Local.h" 116 #include <algorithm> 117 #include <cassert> 118 #include <cstddef> 119 #include <cstdint> 120 #include <cstring> 121 #include <iterator> 122 #include <limits> 123 #include <numeric> 124 #include <tuple> 125 #include <utility> 126 #include <vector> 127 128 using namespace llvm; 129 using namespace PatternMatch; 130 using namespace SwitchCG; 131 132 #define DEBUG_TYPE "isel" 133 134 /// LimitFloatPrecision - Generate low-precision inline sequences for 135 /// some float libcalls (6, 8 or 12 bits). 136 static unsigned LimitFloatPrecision; 137 138 static cl::opt<unsigned, true> 139 LimitFPPrecision("limit-float-precision", 140 cl::desc("Generate low-precision inline sequences " 141 "for some float libcalls"), 142 cl::location(LimitFloatPrecision), cl::Hidden, 143 cl::init(0)); 144 145 static cl::opt<unsigned> SwitchPeelThreshold( 146 "switch-peel-threshold", cl::Hidden, cl::init(66), 147 cl::desc("Set the case probability threshold for peeling the case from a " 148 "switch statement. A value greater than 100 will void this " 149 "optimization")); 150 151 // Limit the width of DAG chains. This is important in general to prevent 152 // DAG-based analysis from blowing up. For example, alias analysis and 153 // load clustering may not complete in reasonable time. It is difficult to 154 // recognize and avoid this situation within each individual analysis, and 155 // future analyses are likely to have the same behavior. Limiting DAG width is 156 // the safe approach and will be especially important with global DAGs. 157 // 158 // MaxParallelChains default is arbitrarily high to avoid affecting 159 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 160 // sequence over this should have been converted to llvm.memcpy by the 161 // frontend. It is easy to induce this behavior with .ll code such as: 162 // %buffer = alloca [4096 x i8] 163 // %data = load [4096 x i8]* %argPtr 164 // store [4096 x i8] %data, [4096 x i8]* %buffer 165 static const unsigned MaxParallelChains = 64; 166 167 // Return the calling convention if the Value passed requires ABI mangling as it 168 // is a parameter to a function or a return value from a function which is not 169 // an intrinsic. 170 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 171 if (auto *R = dyn_cast<ReturnInst>(V)) 172 return R->getParent()->getParent()->getCallingConv(); 173 174 if (auto *CI = dyn_cast<CallInst>(V)) { 175 const bool IsInlineAsm = CI->isInlineAsm(); 176 const bool IsIndirectFunctionCall = 177 !IsInlineAsm && !CI->getCalledFunction(); 178 179 // It is possible that the call instruction is an inline asm statement or an 180 // indirect function call in which case the return value of 181 // getCalledFunction() would be nullptr. 182 const bool IsInstrinsicCall = 183 !IsInlineAsm && !IsIndirectFunctionCall && 184 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 185 186 if (!IsInlineAsm && !IsInstrinsicCall) 187 return CI->getCallingConv(); 188 } 189 190 return None; 191 } 192 193 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 194 const SDValue *Parts, unsigned NumParts, 195 MVT PartVT, EVT ValueVT, const Value *V, 196 Optional<CallingConv::ID> CC); 197 198 /// getCopyFromParts - Create a value that contains the specified legal parts 199 /// combined into the value they represent. If the parts combine to a type 200 /// larger than ValueVT then AssertOp can be used to specify whether the extra 201 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 202 /// (ISD::AssertSext). 203 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 204 const SDValue *Parts, unsigned NumParts, 205 MVT PartVT, EVT ValueVT, const Value *V, 206 Optional<CallingConv::ID> CC = None, 207 Optional<ISD::NodeType> AssertOp = None) { 208 // Let the target assemble the parts if it wants to 209 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 210 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 211 PartVT, ValueVT, CC)) 212 return Val; 213 214 if (ValueVT.isVector()) 215 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 216 CC); 217 218 assert(NumParts > 0 && "No parts to assemble!"); 219 SDValue Val = Parts[0]; 220 221 if (NumParts > 1) { 222 // Assemble the value from multiple parts. 223 if (ValueVT.isInteger()) { 224 unsigned PartBits = PartVT.getSizeInBits(); 225 unsigned ValueBits = ValueVT.getSizeInBits(); 226 227 // Assemble the power of 2 part. 228 unsigned RoundParts = 229 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 230 unsigned RoundBits = PartBits * RoundParts; 231 EVT RoundVT = RoundBits == ValueBits ? 232 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 233 SDValue Lo, Hi; 234 235 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 236 237 if (RoundParts > 2) { 238 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 239 PartVT, HalfVT, V); 240 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 241 RoundParts / 2, PartVT, HalfVT, V); 242 } else { 243 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 244 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 245 } 246 247 if (DAG.getDataLayout().isBigEndian()) 248 std::swap(Lo, Hi); 249 250 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 251 252 if (RoundParts < NumParts) { 253 // Assemble the trailing non-power-of-2 part. 254 unsigned OddParts = NumParts - RoundParts; 255 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 256 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 257 OddVT, V, CC); 258 259 // Combine the round and odd parts. 260 Lo = Val; 261 if (DAG.getDataLayout().isBigEndian()) 262 std::swap(Lo, Hi); 263 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 264 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 265 Hi = 266 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 267 DAG.getConstant(Lo.getValueSizeInBits(), DL, 268 TLI.getPointerTy(DAG.getDataLayout()))); 269 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 270 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 271 } 272 } else if (PartVT.isFloatingPoint()) { 273 // FP split into multiple FP parts (for ppcf128) 274 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 275 "Unexpected split"); 276 SDValue Lo, Hi; 277 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 278 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 279 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 280 std::swap(Lo, Hi); 281 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 282 } else { 283 // FP split into integer parts (soft fp) 284 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 285 !PartVT.isVector() && "Unexpected split"); 286 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 287 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 288 } 289 } 290 291 // There is now one part, held in Val. Correct it to match ValueVT. 292 // PartEVT is the type of the register class that holds the value. 293 // ValueVT is the type of the inline asm operation. 294 EVT PartEVT = Val.getValueType(); 295 296 if (PartEVT == ValueVT) 297 return Val; 298 299 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 300 ValueVT.bitsLT(PartEVT)) { 301 // For an FP value in an integer part, we need to truncate to the right 302 // width first. 303 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 304 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 305 } 306 307 // Handle types that have the same size. 308 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 309 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 310 311 // Handle types with different sizes. 312 if (PartEVT.isInteger() && ValueVT.isInteger()) { 313 if (ValueVT.bitsLT(PartEVT)) { 314 // For a truncate, see if we have any information to 315 // indicate whether the truncated bits will always be 316 // zero or sign-extension. 317 if (AssertOp.hasValue()) 318 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 319 DAG.getValueType(ValueVT)); 320 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 321 } 322 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 323 } 324 325 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 326 // FP_ROUND's are always exact here. 327 if (ValueVT.bitsLT(Val.getValueType())) 328 return DAG.getNode( 329 ISD::FP_ROUND, DL, ValueVT, Val, 330 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 331 332 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 333 } 334 335 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 336 // then truncating. 337 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 338 ValueVT.bitsLT(PartEVT)) { 339 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 340 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 341 } 342 343 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 344 } 345 346 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 347 const Twine &ErrMsg) { 348 const Instruction *I = dyn_cast_or_null<Instruction>(V); 349 if (!V) 350 return Ctx.emitError(ErrMsg); 351 352 const char *AsmError = ", possible invalid constraint for vector type"; 353 if (const CallInst *CI = dyn_cast<CallInst>(I)) 354 if (CI->isInlineAsm()) 355 return Ctx.emitError(I, ErrMsg + AsmError); 356 357 return Ctx.emitError(I, ErrMsg); 358 } 359 360 /// getCopyFromPartsVector - Create a value that contains the specified legal 361 /// parts combined into the value they represent. If the parts combine to a 362 /// type larger than ValueVT then AssertOp can be used to specify whether the 363 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 364 /// ValueVT (ISD::AssertSext). 365 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 366 const SDValue *Parts, unsigned NumParts, 367 MVT PartVT, EVT ValueVT, const Value *V, 368 Optional<CallingConv::ID> CallConv) { 369 assert(ValueVT.isVector() && "Not a vector value"); 370 assert(NumParts > 0 && "No parts to assemble!"); 371 const bool IsABIRegCopy = CallConv.hasValue(); 372 373 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 374 SDValue Val = Parts[0]; 375 376 // Handle a multi-element vector. 377 if (NumParts > 1) { 378 EVT IntermediateVT; 379 MVT RegisterVT; 380 unsigned NumIntermediates; 381 unsigned NumRegs; 382 383 if (IsABIRegCopy) { 384 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 385 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 386 NumIntermediates, RegisterVT); 387 } else { 388 NumRegs = 389 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 390 NumIntermediates, RegisterVT); 391 } 392 393 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 394 NumParts = NumRegs; // Silence a compiler warning. 395 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 396 assert(RegisterVT.getSizeInBits() == 397 Parts[0].getSimpleValueType().getSizeInBits() && 398 "Part type sizes don't match!"); 399 400 // Assemble the parts into intermediate operands. 401 SmallVector<SDValue, 8> Ops(NumIntermediates); 402 if (NumIntermediates == NumParts) { 403 // If the register was not expanded, truncate or copy the value, 404 // as appropriate. 405 for (unsigned i = 0; i != NumParts; ++i) 406 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 407 PartVT, IntermediateVT, V); 408 } else if (NumParts > 0) { 409 // If the intermediate type was expanded, build the intermediate 410 // operands from the parts. 411 assert(NumParts % NumIntermediates == 0 && 412 "Must expand into a divisible number of parts!"); 413 unsigned Factor = NumParts / NumIntermediates; 414 for (unsigned i = 0; i != NumIntermediates; ++i) 415 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 416 PartVT, IntermediateVT, V); 417 } 418 419 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 420 // intermediate operands. 421 EVT BuiltVectorTy = 422 IntermediateVT.isVector() 423 ? EVT::getVectorVT( 424 *DAG.getContext(), IntermediateVT.getScalarType(), 425 IntermediateVT.getVectorElementCount() * NumParts) 426 : EVT::getVectorVT(*DAG.getContext(), 427 IntermediateVT.getScalarType(), 428 NumIntermediates); 429 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 430 : ISD::BUILD_VECTOR, 431 DL, BuiltVectorTy, Ops); 432 } 433 434 // There is now one part, held in Val. Correct it to match ValueVT. 435 EVT PartEVT = Val.getValueType(); 436 437 if (PartEVT == ValueVT) 438 return Val; 439 440 if (PartEVT.isVector()) { 441 // If the element type of the source/dest vectors are the same, but the 442 // parts vector has more elements than the value vector, then we have a 443 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 444 // elements we want. 445 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 446 assert((PartEVT.getVectorElementCount().Min > 447 ValueVT.getVectorElementCount().Min) && 448 (PartEVT.getVectorElementCount().Scalable == 449 ValueVT.getVectorElementCount().Scalable) && 450 "Cannot narrow, it would be a lossy transformation"); 451 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 452 DAG.getVectorIdxConstant(0, DL)); 453 } 454 455 // Vector/Vector bitcast. 456 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 457 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 458 459 assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() && 460 "Cannot handle this kind of promotion"); 461 // Promoted vector extract 462 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 463 464 } 465 466 // Trivial bitcast if the types are the same size and the destination 467 // vector type is legal. 468 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 469 TLI.isTypeLegal(ValueVT)) 470 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 471 472 if (ValueVT.getVectorNumElements() != 1) { 473 // Certain ABIs require that vectors are passed as integers. For vectors 474 // are the same size, this is an obvious bitcast. 475 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 476 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 477 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 478 // Bitcast Val back the original type and extract the corresponding 479 // vector we want. 480 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 481 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 482 ValueVT.getVectorElementType(), Elts); 483 Val = DAG.getBitcast(WiderVecType, Val); 484 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 485 DAG.getVectorIdxConstant(0, DL)); 486 } 487 488 diagnosePossiblyInvalidConstraint( 489 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 490 return DAG.getUNDEF(ValueVT); 491 } 492 493 // Handle cases such as i8 -> <1 x i1> 494 EVT ValueSVT = ValueVT.getVectorElementType(); 495 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 496 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 497 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 498 else 499 Val = ValueVT.isFloatingPoint() 500 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 501 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 502 } 503 504 return DAG.getBuildVector(ValueVT, DL, Val); 505 } 506 507 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 508 SDValue Val, SDValue *Parts, unsigned NumParts, 509 MVT PartVT, const Value *V, 510 Optional<CallingConv::ID> CallConv); 511 512 /// getCopyToParts - Create a series of nodes that contain the specified value 513 /// split into legal parts. If the parts contain more bits than Val, then, for 514 /// integers, ExtendKind can be used to specify how to generate the extra bits. 515 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 516 SDValue *Parts, unsigned NumParts, MVT PartVT, 517 const Value *V, 518 Optional<CallingConv::ID> CallConv = None, 519 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 520 // Let the target split the parts if it wants to 521 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 522 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 523 CallConv)) 524 return; 525 EVT ValueVT = Val.getValueType(); 526 527 // Handle the vector case separately. 528 if (ValueVT.isVector()) 529 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 530 CallConv); 531 532 unsigned PartBits = PartVT.getSizeInBits(); 533 unsigned OrigNumParts = NumParts; 534 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 535 "Copying to an illegal type!"); 536 537 if (NumParts == 0) 538 return; 539 540 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 541 EVT PartEVT = PartVT; 542 if (PartEVT == ValueVT) { 543 assert(NumParts == 1 && "No-op copy with multiple parts!"); 544 Parts[0] = Val; 545 return; 546 } 547 548 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 549 // If the parts cover more bits than the value has, promote the value. 550 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 551 assert(NumParts == 1 && "Do not know what to promote to!"); 552 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 553 } else { 554 if (ValueVT.isFloatingPoint()) { 555 // FP values need to be bitcast, then extended if they are being put 556 // into a larger container. 557 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 558 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 559 } 560 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 561 ValueVT.isInteger() && 562 "Unknown mismatch!"); 563 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 564 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 565 if (PartVT == MVT::x86mmx) 566 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 567 } 568 } else if (PartBits == ValueVT.getSizeInBits()) { 569 // Different types of the same size. 570 assert(NumParts == 1 && PartEVT != ValueVT); 571 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 572 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 573 // If the parts cover less bits than value has, truncate the value. 574 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 575 ValueVT.isInteger() && 576 "Unknown mismatch!"); 577 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 578 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 579 if (PartVT == MVT::x86mmx) 580 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 581 } 582 583 // The value may have changed - recompute ValueVT. 584 ValueVT = Val.getValueType(); 585 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 586 "Failed to tile the value with PartVT!"); 587 588 if (NumParts == 1) { 589 if (PartEVT != ValueVT) { 590 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 591 "scalar-to-vector conversion failed"); 592 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 593 } 594 595 Parts[0] = Val; 596 return; 597 } 598 599 // Expand the value into multiple parts. 600 if (NumParts & (NumParts - 1)) { 601 // The number of parts is not a power of 2. Split off and copy the tail. 602 assert(PartVT.isInteger() && ValueVT.isInteger() && 603 "Do not know what to expand to!"); 604 unsigned RoundParts = 1 << Log2_32(NumParts); 605 unsigned RoundBits = RoundParts * PartBits; 606 unsigned OddParts = NumParts - RoundParts; 607 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 608 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 609 610 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 611 CallConv); 612 613 if (DAG.getDataLayout().isBigEndian()) 614 // The odd parts were reversed by getCopyToParts - unreverse them. 615 std::reverse(Parts + RoundParts, Parts + NumParts); 616 617 NumParts = RoundParts; 618 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 619 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 620 } 621 622 // The number of parts is a power of 2. Repeatedly bisect the value using 623 // EXTRACT_ELEMENT. 624 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 625 EVT::getIntegerVT(*DAG.getContext(), 626 ValueVT.getSizeInBits()), 627 Val); 628 629 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 630 for (unsigned i = 0; i < NumParts; i += StepSize) { 631 unsigned ThisBits = StepSize * PartBits / 2; 632 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 633 SDValue &Part0 = Parts[i]; 634 SDValue &Part1 = Parts[i+StepSize/2]; 635 636 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 637 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 638 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 639 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 640 641 if (ThisBits == PartBits && ThisVT != PartVT) { 642 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 643 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 644 } 645 } 646 } 647 648 if (DAG.getDataLayout().isBigEndian()) 649 std::reverse(Parts, Parts + OrigNumParts); 650 } 651 652 static SDValue widenVectorToPartType(SelectionDAG &DAG, 653 SDValue Val, const SDLoc &DL, EVT PartVT) { 654 if (!PartVT.isVector()) 655 return SDValue(); 656 657 EVT ValueVT = Val.getValueType(); 658 unsigned PartNumElts = PartVT.getVectorNumElements(); 659 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 660 if (PartNumElts > ValueNumElts && 661 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 662 EVT ElementVT = PartVT.getVectorElementType(); 663 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 664 // undef elements. 665 SmallVector<SDValue, 16> Ops; 666 DAG.ExtractVectorElements(Val, Ops); 667 SDValue EltUndef = DAG.getUNDEF(ElementVT); 668 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 669 Ops.push_back(EltUndef); 670 671 // FIXME: Use CONCAT for 2x -> 4x. 672 return DAG.getBuildVector(PartVT, DL, Ops); 673 } 674 675 return SDValue(); 676 } 677 678 /// getCopyToPartsVector - Create a series of nodes that contain the specified 679 /// value split into legal parts. 680 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 681 SDValue Val, SDValue *Parts, unsigned NumParts, 682 MVT PartVT, const Value *V, 683 Optional<CallingConv::ID> CallConv) { 684 EVT ValueVT = Val.getValueType(); 685 assert(ValueVT.isVector() && "Not a vector"); 686 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 687 const bool IsABIRegCopy = CallConv.hasValue(); 688 689 if (NumParts == 1) { 690 EVT PartEVT = PartVT; 691 if (PartEVT == ValueVT) { 692 // Nothing to do. 693 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 694 // Bitconvert vector->vector case. 695 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 696 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 697 Val = Widened; 698 } else if (PartVT.isVector() && 699 PartEVT.getVectorElementType().bitsGE( 700 ValueVT.getVectorElementType()) && 701 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 702 703 // Promoted vector extract 704 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 705 } else { 706 if (ValueVT.getVectorNumElements() == 1) { 707 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 708 DAG.getVectorIdxConstant(0, DL)); 709 } else { 710 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 711 "lossy conversion of vector to scalar type"); 712 EVT IntermediateType = 713 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 714 Val = DAG.getBitcast(IntermediateType, Val); 715 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 716 } 717 } 718 719 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 720 Parts[0] = Val; 721 return; 722 } 723 724 // Handle a multi-element vector. 725 EVT IntermediateVT; 726 MVT RegisterVT; 727 unsigned NumIntermediates; 728 unsigned NumRegs; 729 if (IsABIRegCopy) { 730 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 731 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 732 NumIntermediates, RegisterVT); 733 } else { 734 NumRegs = 735 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 736 NumIntermediates, RegisterVT); 737 } 738 739 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 740 NumParts = NumRegs; // Silence a compiler warning. 741 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 742 743 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 744 IntermediateVT.getVectorNumElements() : 1; 745 746 // Convert the vector to the appropriate type if necessary. 747 auto DestEltCnt = ElementCount(NumIntermediates * IntermediateNumElts, 748 ValueVT.isScalableVector()); 749 EVT BuiltVectorTy = EVT::getVectorVT( 750 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt); 751 if (ValueVT != BuiltVectorTy) { 752 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 753 Val = Widened; 754 755 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 756 } 757 758 // Split the vector into intermediate operands. 759 SmallVector<SDValue, 8> Ops(NumIntermediates); 760 for (unsigned i = 0; i != NumIntermediates; ++i) { 761 if (IntermediateVT.isVector()) { 762 Ops[i] = 763 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 764 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 765 } else { 766 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 767 DAG.getVectorIdxConstant(i, DL)); 768 } 769 } 770 771 // Split the intermediate operands into legal parts. 772 if (NumParts == NumIntermediates) { 773 // If the register was not expanded, promote or copy the value, 774 // as appropriate. 775 for (unsigned i = 0; i != NumParts; ++i) 776 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 777 } else if (NumParts > 0) { 778 // If the intermediate type was expanded, split each the value into 779 // legal parts. 780 assert(NumIntermediates != 0 && "division by zero"); 781 assert(NumParts % NumIntermediates == 0 && 782 "Must expand into a divisible number of parts!"); 783 unsigned Factor = NumParts / NumIntermediates; 784 for (unsigned i = 0; i != NumIntermediates; ++i) 785 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 786 CallConv); 787 } 788 } 789 790 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 791 EVT valuevt, Optional<CallingConv::ID> CC) 792 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 793 RegCount(1, regs.size()), CallConv(CC) {} 794 795 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 796 const DataLayout &DL, unsigned Reg, Type *Ty, 797 Optional<CallingConv::ID> CC) { 798 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 799 800 CallConv = CC; 801 802 for (EVT ValueVT : ValueVTs) { 803 unsigned NumRegs = 804 isABIMangled() 805 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 806 : TLI.getNumRegisters(Context, ValueVT); 807 MVT RegisterVT = 808 isABIMangled() 809 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 810 : TLI.getRegisterType(Context, ValueVT); 811 for (unsigned i = 0; i != NumRegs; ++i) 812 Regs.push_back(Reg + i); 813 RegVTs.push_back(RegisterVT); 814 RegCount.push_back(NumRegs); 815 Reg += NumRegs; 816 } 817 } 818 819 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 820 FunctionLoweringInfo &FuncInfo, 821 const SDLoc &dl, SDValue &Chain, 822 SDValue *Flag, const Value *V) const { 823 // A Value with type {} or [0 x %t] needs no registers. 824 if (ValueVTs.empty()) 825 return SDValue(); 826 827 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 828 829 // Assemble the legal parts into the final values. 830 SmallVector<SDValue, 4> Values(ValueVTs.size()); 831 SmallVector<SDValue, 8> Parts; 832 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 833 // Copy the legal parts from the registers. 834 EVT ValueVT = ValueVTs[Value]; 835 unsigned NumRegs = RegCount[Value]; 836 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 837 *DAG.getContext(), 838 CallConv.getValue(), RegVTs[Value]) 839 : RegVTs[Value]; 840 841 Parts.resize(NumRegs); 842 for (unsigned i = 0; i != NumRegs; ++i) { 843 SDValue P; 844 if (!Flag) { 845 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 846 } else { 847 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 848 *Flag = P.getValue(2); 849 } 850 851 Chain = P.getValue(1); 852 Parts[i] = P; 853 854 // If the source register was virtual and if we know something about it, 855 // add an assert node. 856 if (!Register::isVirtualRegister(Regs[Part + i]) || 857 !RegisterVT.isInteger()) 858 continue; 859 860 const FunctionLoweringInfo::LiveOutInfo *LOI = 861 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 862 if (!LOI) 863 continue; 864 865 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 866 unsigned NumSignBits = LOI->NumSignBits; 867 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 868 869 if (NumZeroBits == RegSize) { 870 // The current value is a zero. 871 // Explicitly express that as it would be easier for 872 // optimizations to kick in. 873 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 874 continue; 875 } 876 877 // FIXME: We capture more information than the dag can represent. For 878 // now, just use the tightest assertzext/assertsext possible. 879 bool isSExt; 880 EVT FromVT(MVT::Other); 881 if (NumZeroBits) { 882 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 883 isSExt = false; 884 } else if (NumSignBits > 1) { 885 FromVT = 886 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 887 isSExt = true; 888 } else { 889 continue; 890 } 891 // Add an assertion node. 892 assert(FromVT != MVT::Other); 893 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 894 RegisterVT, P, DAG.getValueType(FromVT)); 895 } 896 897 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 898 RegisterVT, ValueVT, V, CallConv); 899 Part += NumRegs; 900 Parts.clear(); 901 } 902 903 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 904 } 905 906 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 907 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 908 const Value *V, 909 ISD::NodeType PreferredExtendType) const { 910 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 911 ISD::NodeType ExtendKind = PreferredExtendType; 912 913 // Get the list of the values's legal parts. 914 unsigned NumRegs = Regs.size(); 915 SmallVector<SDValue, 8> Parts(NumRegs); 916 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 917 unsigned NumParts = RegCount[Value]; 918 919 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 920 *DAG.getContext(), 921 CallConv.getValue(), RegVTs[Value]) 922 : RegVTs[Value]; 923 924 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 925 ExtendKind = ISD::ZERO_EXTEND; 926 927 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 928 NumParts, RegisterVT, V, CallConv, ExtendKind); 929 Part += NumParts; 930 } 931 932 // Copy the parts into the registers. 933 SmallVector<SDValue, 8> Chains(NumRegs); 934 for (unsigned i = 0; i != NumRegs; ++i) { 935 SDValue Part; 936 if (!Flag) { 937 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 938 } else { 939 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 940 *Flag = Part.getValue(1); 941 } 942 943 Chains[i] = Part.getValue(0); 944 } 945 946 if (NumRegs == 1 || Flag) 947 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 948 // flagged to it. That is the CopyToReg nodes and the user are considered 949 // a single scheduling unit. If we create a TokenFactor and return it as 950 // chain, then the TokenFactor is both a predecessor (operand) of the 951 // user as well as a successor (the TF operands are flagged to the user). 952 // c1, f1 = CopyToReg 953 // c2, f2 = CopyToReg 954 // c3 = TokenFactor c1, c2 955 // ... 956 // = op c3, ..., f2 957 Chain = Chains[NumRegs-1]; 958 else 959 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 960 } 961 962 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 963 unsigned MatchingIdx, const SDLoc &dl, 964 SelectionDAG &DAG, 965 std::vector<SDValue> &Ops) const { 966 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 967 968 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 969 if (HasMatching) 970 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 971 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 972 // Put the register class of the virtual registers in the flag word. That 973 // way, later passes can recompute register class constraints for inline 974 // assembly as well as normal instructions. 975 // Don't do this for tied operands that can use the regclass information 976 // from the def. 977 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 978 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 979 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 980 } 981 982 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 983 Ops.push_back(Res); 984 985 if (Code == InlineAsm::Kind_Clobber) { 986 // Clobbers should always have a 1:1 mapping with registers, and may 987 // reference registers that have illegal (e.g. vector) types. Hence, we 988 // shouldn't try to apply any sort of splitting logic to them. 989 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 990 "No 1:1 mapping from clobbers to regs?"); 991 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 992 (void)SP; 993 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 994 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 995 assert( 996 (Regs[I] != SP || 997 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 998 "If we clobbered the stack pointer, MFI should know about it."); 999 } 1000 return; 1001 } 1002 1003 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1004 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 1005 MVT RegisterVT = RegVTs[Value]; 1006 for (unsigned i = 0; i != NumRegs; ++i) { 1007 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1008 unsigned TheReg = Regs[Reg++]; 1009 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1010 } 1011 } 1012 } 1013 1014 SmallVector<std::pair<unsigned, unsigned>, 4> 1015 RegsForValue::getRegsAndSizes() const { 1016 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1017 unsigned I = 0; 1018 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1019 unsigned RegCount = std::get<0>(CountAndVT); 1020 MVT RegisterVT = std::get<1>(CountAndVT); 1021 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1022 for (unsigned E = I + RegCount; I != E; ++I) 1023 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1024 } 1025 return OutVec; 1026 } 1027 1028 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1029 const TargetLibraryInfo *li) { 1030 AA = aa; 1031 GFI = gfi; 1032 LibInfo = li; 1033 DL = &DAG.getDataLayout(); 1034 Context = DAG.getContext(); 1035 LPadToCallSiteMap.clear(); 1036 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1037 } 1038 1039 void SelectionDAGBuilder::clear() { 1040 NodeMap.clear(); 1041 UnusedArgNodeMap.clear(); 1042 PendingLoads.clear(); 1043 PendingExports.clear(); 1044 PendingConstrainedFP.clear(); 1045 PendingConstrainedFPStrict.clear(); 1046 CurInst = nullptr; 1047 HasTailCall = false; 1048 SDNodeOrder = LowestSDNodeOrder; 1049 StatepointLowering.clear(); 1050 } 1051 1052 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1053 DanglingDebugInfoMap.clear(); 1054 } 1055 1056 // Update DAG root to include dependencies on Pending chains. 1057 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1058 SDValue Root = DAG.getRoot(); 1059 1060 if (Pending.empty()) 1061 return Root; 1062 1063 // Add current root to PendingChains, unless we already indirectly 1064 // depend on it. 1065 if (Root.getOpcode() != ISD::EntryToken) { 1066 unsigned i = 0, e = Pending.size(); 1067 for (; i != e; ++i) { 1068 assert(Pending[i].getNode()->getNumOperands() > 1); 1069 if (Pending[i].getNode()->getOperand(0) == Root) 1070 break; // Don't add the root if we already indirectly depend on it. 1071 } 1072 1073 if (i == e) 1074 Pending.push_back(Root); 1075 } 1076 1077 if (Pending.size() == 1) 1078 Root = Pending[0]; 1079 else 1080 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1081 1082 DAG.setRoot(Root); 1083 Pending.clear(); 1084 return Root; 1085 } 1086 1087 SDValue SelectionDAGBuilder::getMemoryRoot() { 1088 return updateRoot(PendingLoads); 1089 } 1090 1091 SDValue SelectionDAGBuilder::getRoot() { 1092 // Chain up all pending constrained intrinsics together with all 1093 // pending loads, by simply appending them to PendingLoads and 1094 // then calling getMemoryRoot(). 1095 PendingLoads.reserve(PendingLoads.size() + 1096 PendingConstrainedFP.size() + 1097 PendingConstrainedFPStrict.size()); 1098 PendingLoads.append(PendingConstrainedFP.begin(), 1099 PendingConstrainedFP.end()); 1100 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1101 PendingConstrainedFPStrict.end()); 1102 PendingConstrainedFP.clear(); 1103 PendingConstrainedFPStrict.clear(); 1104 return getMemoryRoot(); 1105 } 1106 1107 SDValue SelectionDAGBuilder::getControlRoot() { 1108 // We need to emit pending fpexcept.strict constrained intrinsics, 1109 // so append them to the PendingExports list. 1110 PendingExports.append(PendingConstrainedFPStrict.begin(), 1111 PendingConstrainedFPStrict.end()); 1112 PendingConstrainedFPStrict.clear(); 1113 return updateRoot(PendingExports); 1114 } 1115 1116 void SelectionDAGBuilder::visit(const Instruction &I) { 1117 // Set up outgoing PHI node register values before emitting the terminator. 1118 if (I.isTerminator()) { 1119 HandlePHINodesInSuccessorBlocks(I.getParent()); 1120 } 1121 1122 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1123 if (!isa<DbgInfoIntrinsic>(I)) 1124 ++SDNodeOrder; 1125 1126 CurInst = &I; 1127 1128 visit(I.getOpcode(), I); 1129 1130 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1131 // ConstrainedFPIntrinsics handle their own FMF. 1132 if (!isa<ConstrainedFPIntrinsic>(&I)) { 1133 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1134 // maps to this instruction. 1135 // TODO: We could handle all flags (nsw, etc) here. 1136 // TODO: If an IR instruction maps to >1 node, only the final node will have 1137 // flags set. 1138 if (SDNode *Node = getNodeForIRValue(&I)) { 1139 SDNodeFlags IncomingFlags; 1140 IncomingFlags.copyFMF(*FPMO); 1141 if (!Node->getFlags().isDefined()) 1142 Node->setFlags(IncomingFlags); 1143 else 1144 Node->intersectFlagsWith(IncomingFlags); 1145 } 1146 } 1147 } 1148 1149 if (!I.isTerminator() && !HasTailCall && 1150 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1151 CopyToExportRegsIfNeeded(&I); 1152 1153 CurInst = nullptr; 1154 } 1155 1156 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1157 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1158 } 1159 1160 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1161 // Note: this doesn't use InstVisitor, because it has to work with 1162 // ConstantExpr's in addition to instructions. 1163 switch (Opcode) { 1164 default: llvm_unreachable("Unknown instruction type encountered!"); 1165 // Build the switch statement using the Instruction.def file. 1166 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1167 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1168 #include "llvm/IR/Instruction.def" 1169 } 1170 } 1171 1172 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1173 const DIExpression *Expr) { 1174 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1175 const DbgValueInst *DI = DDI.getDI(); 1176 DIVariable *DanglingVariable = DI->getVariable(); 1177 DIExpression *DanglingExpr = DI->getExpression(); 1178 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1179 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1180 return true; 1181 } 1182 return false; 1183 }; 1184 1185 for (auto &DDIMI : DanglingDebugInfoMap) { 1186 DanglingDebugInfoVector &DDIV = DDIMI.second; 1187 1188 // If debug info is to be dropped, run it through final checks to see 1189 // whether it can be salvaged. 1190 for (auto &DDI : DDIV) 1191 if (isMatchingDbgValue(DDI)) 1192 salvageUnresolvedDbgValue(DDI); 1193 1194 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1195 } 1196 } 1197 1198 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1199 // generate the debug data structures now that we've seen its definition. 1200 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1201 SDValue Val) { 1202 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1203 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1204 return; 1205 1206 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1207 for (auto &DDI : DDIV) { 1208 const DbgValueInst *DI = DDI.getDI(); 1209 assert(DI && "Ill-formed DanglingDebugInfo"); 1210 DebugLoc dl = DDI.getdl(); 1211 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1212 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1213 DILocalVariable *Variable = DI->getVariable(); 1214 DIExpression *Expr = DI->getExpression(); 1215 assert(Variable->isValidLocationForIntrinsic(dl) && 1216 "Expected inlined-at fields to agree"); 1217 SDDbgValue *SDV; 1218 if (Val.getNode()) { 1219 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1220 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1221 // we couldn't resolve it directly when examining the DbgValue intrinsic 1222 // in the first place we should not be more successful here). Unless we 1223 // have some test case that prove this to be correct we should avoid 1224 // calling EmitFuncArgumentDbgValue here. 1225 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1226 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1227 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1228 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1229 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1230 // inserted after the definition of Val when emitting the instructions 1231 // after ISel. An alternative could be to teach 1232 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1233 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1234 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1235 << ValSDNodeOrder << "\n"); 1236 SDV = getDbgValue(Val, Variable, Expr, dl, 1237 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1238 DAG.AddDbgValue(SDV, Val.getNode(), false); 1239 } else 1240 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1241 << "in EmitFuncArgumentDbgValue\n"); 1242 } else { 1243 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1244 auto Undef = 1245 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1246 auto SDV = 1247 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1248 DAG.AddDbgValue(SDV, nullptr, false); 1249 } 1250 } 1251 DDIV.clear(); 1252 } 1253 1254 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1255 Value *V = DDI.getDI()->getValue(); 1256 DILocalVariable *Var = DDI.getDI()->getVariable(); 1257 DIExpression *Expr = DDI.getDI()->getExpression(); 1258 DebugLoc DL = DDI.getdl(); 1259 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1260 unsigned SDOrder = DDI.getSDNodeOrder(); 1261 1262 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1263 // that DW_OP_stack_value is desired. 1264 assert(isa<DbgValueInst>(DDI.getDI())); 1265 bool StackValue = true; 1266 1267 // Can this Value can be encoded without any further work? 1268 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1269 return; 1270 1271 // Attempt to salvage back through as many instructions as possible. Bail if 1272 // a non-instruction is seen, such as a constant expression or global 1273 // variable. FIXME: Further work could recover those too. 1274 while (isa<Instruction>(V)) { 1275 Instruction &VAsInst = *cast<Instruction>(V); 1276 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1277 1278 // If we cannot salvage any further, and haven't yet found a suitable debug 1279 // expression, bail out. 1280 if (!NewExpr) 1281 break; 1282 1283 // New value and expr now represent this debuginfo. 1284 V = VAsInst.getOperand(0); 1285 Expr = NewExpr; 1286 1287 // Some kind of simplification occurred: check whether the operand of the 1288 // salvaged debug expression can be encoded in this DAG. 1289 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1290 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1291 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1292 return; 1293 } 1294 } 1295 1296 // This was the final opportunity to salvage this debug information, and it 1297 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1298 // any earlier variable location. 1299 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1300 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1301 DAG.AddDbgValue(SDV, nullptr, false); 1302 1303 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1304 << "\n"); 1305 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1306 << "\n"); 1307 } 1308 1309 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1310 DIExpression *Expr, DebugLoc dl, 1311 DebugLoc InstDL, unsigned Order) { 1312 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1313 SDDbgValue *SDV; 1314 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1315 isa<ConstantPointerNull>(V)) { 1316 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1317 DAG.AddDbgValue(SDV, nullptr, false); 1318 return true; 1319 } 1320 1321 // If the Value is a frame index, we can create a FrameIndex debug value 1322 // without relying on the DAG at all. 1323 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1324 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1325 if (SI != FuncInfo.StaticAllocaMap.end()) { 1326 auto SDV = 1327 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1328 /*IsIndirect*/ false, dl, SDNodeOrder); 1329 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1330 // is still available even if the SDNode gets optimized out. 1331 DAG.AddDbgValue(SDV, nullptr, false); 1332 return true; 1333 } 1334 } 1335 1336 // Do not use getValue() in here; we don't want to generate code at 1337 // this point if it hasn't been done yet. 1338 SDValue N = NodeMap[V]; 1339 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1340 N = UnusedArgNodeMap[V]; 1341 if (N.getNode()) { 1342 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1343 return true; 1344 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1345 DAG.AddDbgValue(SDV, N.getNode(), false); 1346 return true; 1347 } 1348 1349 // Special rules apply for the first dbg.values of parameter variables in a 1350 // function. Identify them by the fact they reference Argument Values, that 1351 // they're parameters, and they are parameters of the current function. We 1352 // need to let them dangle until they get an SDNode. 1353 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1354 !InstDL.getInlinedAt(); 1355 if (!IsParamOfFunc) { 1356 // The value is not used in this block yet (or it would have an SDNode). 1357 // We still want the value to appear for the user if possible -- if it has 1358 // an associated VReg, we can refer to that instead. 1359 auto VMI = FuncInfo.ValueMap.find(V); 1360 if (VMI != FuncInfo.ValueMap.end()) { 1361 unsigned Reg = VMI->second; 1362 // If this is a PHI node, it may be split up into several MI PHI nodes 1363 // (in FunctionLoweringInfo::set). 1364 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1365 V->getType(), None); 1366 if (RFV.occupiesMultipleRegs()) { 1367 unsigned Offset = 0; 1368 unsigned BitsToDescribe = 0; 1369 if (auto VarSize = Var->getSizeInBits()) 1370 BitsToDescribe = *VarSize; 1371 if (auto Fragment = Expr->getFragmentInfo()) 1372 BitsToDescribe = Fragment->SizeInBits; 1373 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1374 unsigned RegisterSize = RegAndSize.second; 1375 // Bail out if all bits are described already. 1376 if (Offset >= BitsToDescribe) 1377 break; 1378 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1379 ? BitsToDescribe - Offset 1380 : RegisterSize; 1381 auto FragmentExpr = DIExpression::createFragmentExpression( 1382 Expr, Offset, FragmentSize); 1383 if (!FragmentExpr) 1384 continue; 1385 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1386 false, dl, SDNodeOrder); 1387 DAG.AddDbgValue(SDV, nullptr, false); 1388 Offset += RegisterSize; 1389 } 1390 } else { 1391 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1392 DAG.AddDbgValue(SDV, nullptr, false); 1393 } 1394 return true; 1395 } 1396 } 1397 1398 return false; 1399 } 1400 1401 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1402 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1403 for (auto &Pair : DanglingDebugInfoMap) 1404 for (auto &DDI : Pair.second) 1405 salvageUnresolvedDbgValue(DDI); 1406 clearDanglingDebugInfo(); 1407 } 1408 1409 /// getCopyFromRegs - If there was virtual register allocated for the value V 1410 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1411 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1412 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1413 SDValue Result; 1414 1415 if (It != FuncInfo.ValueMap.end()) { 1416 Register InReg = It->second; 1417 1418 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1419 DAG.getDataLayout(), InReg, Ty, 1420 None); // This is not an ABI copy. 1421 SDValue Chain = DAG.getEntryNode(); 1422 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1423 V); 1424 resolveDanglingDebugInfo(V, Result); 1425 } 1426 1427 return Result; 1428 } 1429 1430 /// getValue - Return an SDValue for the given Value. 1431 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1432 // If we already have an SDValue for this value, use it. It's important 1433 // to do this first, so that we don't create a CopyFromReg if we already 1434 // have a regular SDValue. 1435 SDValue &N = NodeMap[V]; 1436 if (N.getNode()) return N; 1437 1438 // If there's a virtual register allocated and initialized for this 1439 // value, use it. 1440 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1441 return copyFromReg; 1442 1443 // Otherwise create a new SDValue and remember it. 1444 SDValue Val = getValueImpl(V); 1445 NodeMap[V] = Val; 1446 resolveDanglingDebugInfo(V, Val); 1447 return Val; 1448 } 1449 1450 /// getNonRegisterValue - Return an SDValue for the given Value, but 1451 /// don't look in FuncInfo.ValueMap for a virtual register. 1452 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1453 // If we already have an SDValue for this value, use it. 1454 SDValue &N = NodeMap[V]; 1455 if (N.getNode()) { 1456 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1457 // Remove the debug location from the node as the node is about to be used 1458 // in a location which may differ from the original debug location. This 1459 // is relevant to Constant and ConstantFP nodes because they can appear 1460 // as constant expressions inside PHI nodes. 1461 N->setDebugLoc(DebugLoc()); 1462 } 1463 return N; 1464 } 1465 1466 // Otherwise create a new SDValue and remember it. 1467 SDValue Val = getValueImpl(V); 1468 NodeMap[V] = Val; 1469 resolveDanglingDebugInfo(V, Val); 1470 return Val; 1471 } 1472 1473 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1474 /// Create an SDValue for the given value. 1475 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1477 1478 if (const Constant *C = dyn_cast<Constant>(V)) { 1479 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1480 1481 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1482 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1483 1484 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1485 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1486 1487 if (isa<ConstantPointerNull>(C)) { 1488 unsigned AS = V->getType()->getPointerAddressSpace(); 1489 return DAG.getConstant(0, getCurSDLoc(), 1490 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1491 } 1492 1493 if (match(C, m_VScale(DAG.getDataLayout()))) 1494 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1495 1496 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1497 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1498 1499 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1500 return DAG.getUNDEF(VT); 1501 1502 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1503 visit(CE->getOpcode(), *CE); 1504 SDValue N1 = NodeMap[V]; 1505 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1506 return N1; 1507 } 1508 1509 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1510 SmallVector<SDValue, 4> Constants; 1511 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1512 OI != OE; ++OI) { 1513 SDNode *Val = getValue(*OI).getNode(); 1514 // If the operand is an empty aggregate, there are no values. 1515 if (!Val) continue; 1516 // Add each leaf value from the operand to the Constants list 1517 // to form a flattened list of all the values. 1518 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1519 Constants.push_back(SDValue(Val, i)); 1520 } 1521 1522 return DAG.getMergeValues(Constants, getCurSDLoc()); 1523 } 1524 1525 if (const ConstantDataSequential *CDS = 1526 dyn_cast<ConstantDataSequential>(C)) { 1527 SmallVector<SDValue, 4> Ops; 1528 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1529 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1530 // Add each leaf value from the operand to the Constants list 1531 // to form a flattened list of all the values. 1532 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1533 Ops.push_back(SDValue(Val, i)); 1534 } 1535 1536 if (isa<ArrayType>(CDS->getType())) 1537 return DAG.getMergeValues(Ops, getCurSDLoc()); 1538 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1539 } 1540 1541 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1542 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1543 "Unknown struct or array constant!"); 1544 1545 SmallVector<EVT, 4> ValueVTs; 1546 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1547 unsigned NumElts = ValueVTs.size(); 1548 if (NumElts == 0) 1549 return SDValue(); // empty struct 1550 SmallVector<SDValue, 4> Constants(NumElts); 1551 for (unsigned i = 0; i != NumElts; ++i) { 1552 EVT EltVT = ValueVTs[i]; 1553 if (isa<UndefValue>(C)) 1554 Constants[i] = DAG.getUNDEF(EltVT); 1555 else if (EltVT.isFloatingPoint()) 1556 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1557 else 1558 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1559 } 1560 1561 return DAG.getMergeValues(Constants, getCurSDLoc()); 1562 } 1563 1564 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1565 return DAG.getBlockAddress(BA, VT); 1566 1567 VectorType *VecTy = cast<VectorType>(V->getType()); 1568 1569 // Now that we know the number and type of the elements, get that number of 1570 // elements into the Ops array based on what kind of constant it is. 1571 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1572 SmallVector<SDValue, 16> Ops; 1573 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1574 for (unsigned i = 0; i != NumElements; ++i) 1575 Ops.push_back(getValue(CV->getOperand(i))); 1576 1577 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1578 } else if (isa<ConstantAggregateZero>(C)) { 1579 EVT EltVT = 1580 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1581 1582 SDValue Op; 1583 if (EltVT.isFloatingPoint()) 1584 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1585 else 1586 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1587 1588 if (isa<ScalableVectorType>(VecTy)) 1589 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1590 else { 1591 SmallVector<SDValue, 16> Ops; 1592 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1593 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1594 } 1595 } 1596 llvm_unreachable("Unknown vector constant"); 1597 } 1598 1599 // If this is a static alloca, generate it as the frameindex instead of 1600 // computation. 1601 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1602 DenseMap<const AllocaInst*, int>::iterator SI = 1603 FuncInfo.StaticAllocaMap.find(AI); 1604 if (SI != FuncInfo.StaticAllocaMap.end()) 1605 return DAG.getFrameIndex(SI->second, 1606 TLI.getFrameIndexTy(DAG.getDataLayout())); 1607 } 1608 1609 // If this is an instruction which fast-isel has deferred, select it now. 1610 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1611 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1612 1613 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1614 Inst->getType(), getABIRegCopyCC(V)); 1615 SDValue Chain = DAG.getEntryNode(); 1616 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1617 } 1618 1619 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1620 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1621 } 1622 llvm_unreachable("Can't get register for value!"); 1623 } 1624 1625 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1626 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1627 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1628 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1629 bool IsSEH = isAsynchronousEHPersonality(Pers); 1630 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1631 if (!IsSEH) 1632 CatchPadMBB->setIsEHScopeEntry(); 1633 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1634 if (IsMSVCCXX || IsCoreCLR) 1635 CatchPadMBB->setIsEHFuncletEntry(); 1636 } 1637 1638 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1639 // Update machine-CFG edge. 1640 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1641 FuncInfo.MBB->addSuccessor(TargetMBB); 1642 1643 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1644 bool IsSEH = isAsynchronousEHPersonality(Pers); 1645 if (IsSEH) { 1646 // If this is not a fall-through branch or optimizations are switched off, 1647 // emit the branch. 1648 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1649 TM.getOptLevel() == CodeGenOpt::None) 1650 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1651 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1652 return; 1653 } 1654 1655 // Figure out the funclet membership for the catchret's successor. 1656 // This will be used by the FuncletLayout pass to determine how to order the 1657 // BB's. 1658 // A 'catchret' returns to the outer scope's color. 1659 Value *ParentPad = I.getCatchSwitchParentPad(); 1660 const BasicBlock *SuccessorColor; 1661 if (isa<ConstantTokenNone>(ParentPad)) 1662 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1663 else 1664 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1665 assert(SuccessorColor && "No parent funclet for catchret!"); 1666 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1667 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1668 1669 // Create the terminator node. 1670 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1671 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1672 DAG.getBasicBlock(SuccessorColorMBB)); 1673 DAG.setRoot(Ret); 1674 } 1675 1676 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1677 // Don't emit any special code for the cleanuppad instruction. It just marks 1678 // the start of an EH scope/funclet. 1679 FuncInfo.MBB->setIsEHScopeEntry(); 1680 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1681 if (Pers != EHPersonality::Wasm_CXX) { 1682 FuncInfo.MBB->setIsEHFuncletEntry(); 1683 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1684 } 1685 } 1686 1687 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1688 // the control flow always stops at the single catch pad, as it does for a 1689 // cleanup pad. In case the exception caught is not of the types the catch pad 1690 // catches, it will be rethrown by a rethrow. 1691 static void findWasmUnwindDestinations( 1692 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1693 BranchProbability Prob, 1694 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1695 &UnwindDests) { 1696 while (EHPadBB) { 1697 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1698 if (isa<CleanupPadInst>(Pad)) { 1699 // Stop on cleanup pads. 1700 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1701 UnwindDests.back().first->setIsEHScopeEntry(); 1702 break; 1703 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1704 // Add the catchpad handlers to the possible destinations. We don't 1705 // continue to the unwind destination of the catchswitch for wasm. 1706 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1707 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1708 UnwindDests.back().first->setIsEHScopeEntry(); 1709 } 1710 break; 1711 } else { 1712 continue; 1713 } 1714 } 1715 } 1716 1717 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1718 /// many places it could ultimately go. In the IR, we have a single unwind 1719 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1720 /// This function skips over imaginary basic blocks that hold catchswitch 1721 /// instructions, and finds all the "real" machine 1722 /// basic block destinations. As those destinations may not be successors of 1723 /// EHPadBB, here we also calculate the edge probability to those destinations. 1724 /// The passed-in Prob is the edge probability to EHPadBB. 1725 static void findUnwindDestinations( 1726 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1727 BranchProbability Prob, 1728 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1729 &UnwindDests) { 1730 EHPersonality Personality = 1731 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1732 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1733 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1734 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1735 bool IsSEH = isAsynchronousEHPersonality(Personality); 1736 1737 if (IsWasmCXX) { 1738 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1739 assert(UnwindDests.size() <= 1 && 1740 "There should be at most one unwind destination for wasm"); 1741 return; 1742 } 1743 1744 while (EHPadBB) { 1745 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1746 BasicBlock *NewEHPadBB = nullptr; 1747 if (isa<LandingPadInst>(Pad)) { 1748 // Stop on landingpads. They are not funclets. 1749 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1750 break; 1751 } else if (isa<CleanupPadInst>(Pad)) { 1752 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1753 // personalities. 1754 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1755 UnwindDests.back().first->setIsEHScopeEntry(); 1756 UnwindDests.back().first->setIsEHFuncletEntry(); 1757 break; 1758 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1759 // Add the catchpad handlers to the possible destinations. 1760 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1761 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1762 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1763 if (IsMSVCCXX || IsCoreCLR) 1764 UnwindDests.back().first->setIsEHFuncletEntry(); 1765 if (!IsSEH) 1766 UnwindDests.back().first->setIsEHScopeEntry(); 1767 } 1768 NewEHPadBB = CatchSwitch->getUnwindDest(); 1769 } else { 1770 continue; 1771 } 1772 1773 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1774 if (BPI && NewEHPadBB) 1775 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1776 EHPadBB = NewEHPadBB; 1777 } 1778 } 1779 1780 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1781 // Update successor info. 1782 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1783 auto UnwindDest = I.getUnwindDest(); 1784 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1785 BranchProbability UnwindDestProb = 1786 (BPI && UnwindDest) 1787 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1788 : BranchProbability::getZero(); 1789 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1790 for (auto &UnwindDest : UnwindDests) { 1791 UnwindDest.first->setIsEHPad(); 1792 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1793 } 1794 FuncInfo.MBB->normalizeSuccProbs(); 1795 1796 // Create the terminator node. 1797 SDValue Ret = 1798 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1799 DAG.setRoot(Ret); 1800 } 1801 1802 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1803 report_fatal_error("visitCatchSwitch not yet implemented!"); 1804 } 1805 1806 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1807 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1808 auto &DL = DAG.getDataLayout(); 1809 SDValue Chain = getControlRoot(); 1810 SmallVector<ISD::OutputArg, 8> Outs; 1811 SmallVector<SDValue, 8> OutVals; 1812 1813 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1814 // lower 1815 // 1816 // %val = call <ty> @llvm.experimental.deoptimize() 1817 // ret <ty> %val 1818 // 1819 // differently. 1820 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1821 LowerDeoptimizingReturn(); 1822 return; 1823 } 1824 1825 if (!FuncInfo.CanLowerReturn) { 1826 unsigned DemoteReg = FuncInfo.DemoteRegister; 1827 const Function *F = I.getParent()->getParent(); 1828 1829 // Emit a store of the return value through the virtual register. 1830 // Leave Outs empty so that LowerReturn won't try to load return 1831 // registers the usual way. 1832 SmallVector<EVT, 1> PtrValueVTs; 1833 ComputeValueVTs(TLI, DL, 1834 F->getReturnType()->getPointerTo( 1835 DAG.getDataLayout().getAllocaAddrSpace()), 1836 PtrValueVTs); 1837 1838 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1839 DemoteReg, PtrValueVTs[0]); 1840 SDValue RetOp = getValue(I.getOperand(0)); 1841 1842 SmallVector<EVT, 4> ValueVTs, MemVTs; 1843 SmallVector<uint64_t, 4> Offsets; 1844 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1845 &Offsets); 1846 unsigned NumValues = ValueVTs.size(); 1847 1848 SmallVector<SDValue, 4> Chains(NumValues); 1849 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1850 for (unsigned i = 0; i != NumValues; ++i) { 1851 // An aggregate return value cannot wrap around the address space, so 1852 // offsets to its parts don't wrap either. 1853 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1854 1855 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1856 if (MemVTs[i] != ValueVTs[i]) 1857 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1858 Chains[i] = DAG.getStore( 1859 Chain, getCurSDLoc(), Val, 1860 // FIXME: better loc info would be nice. 1861 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1862 commonAlignment(BaseAlign, Offsets[i])); 1863 } 1864 1865 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1866 MVT::Other, Chains); 1867 } else if (I.getNumOperands() != 0) { 1868 SmallVector<EVT, 4> ValueVTs; 1869 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1870 unsigned NumValues = ValueVTs.size(); 1871 if (NumValues) { 1872 SDValue RetOp = getValue(I.getOperand(0)); 1873 1874 const Function *F = I.getParent()->getParent(); 1875 1876 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1877 I.getOperand(0)->getType(), F->getCallingConv(), 1878 /*IsVarArg*/ false); 1879 1880 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1881 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1882 Attribute::SExt)) 1883 ExtendKind = ISD::SIGN_EXTEND; 1884 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1885 Attribute::ZExt)) 1886 ExtendKind = ISD::ZERO_EXTEND; 1887 1888 LLVMContext &Context = F->getContext(); 1889 bool RetInReg = F->getAttributes().hasAttribute( 1890 AttributeList::ReturnIndex, Attribute::InReg); 1891 1892 for (unsigned j = 0; j != NumValues; ++j) { 1893 EVT VT = ValueVTs[j]; 1894 1895 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1896 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1897 1898 CallingConv::ID CC = F->getCallingConv(); 1899 1900 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1901 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1902 SmallVector<SDValue, 4> Parts(NumParts); 1903 getCopyToParts(DAG, getCurSDLoc(), 1904 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1905 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1906 1907 // 'inreg' on function refers to return value 1908 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1909 if (RetInReg) 1910 Flags.setInReg(); 1911 1912 if (I.getOperand(0)->getType()->isPointerTy()) { 1913 Flags.setPointer(); 1914 Flags.setPointerAddrSpace( 1915 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1916 } 1917 1918 if (NeedsRegBlock) { 1919 Flags.setInConsecutiveRegs(); 1920 if (j == NumValues - 1) 1921 Flags.setInConsecutiveRegsLast(); 1922 } 1923 1924 // Propagate extension type if any 1925 if (ExtendKind == ISD::SIGN_EXTEND) 1926 Flags.setSExt(); 1927 else if (ExtendKind == ISD::ZERO_EXTEND) 1928 Flags.setZExt(); 1929 1930 for (unsigned i = 0; i < NumParts; ++i) { 1931 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1932 VT, /*isfixed=*/true, 0, 0)); 1933 OutVals.push_back(Parts[i]); 1934 } 1935 } 1936 } 1937 } 1938 1939 // Push in swifterror virtual register as the last element of Outs. This makes 1940 // sure swifterror virtual register will be returned in the swifterror 1941 // physical register. 1942 const Function *F = I.getParent()->getParent(); 1943 if (TLI.supportSwiftError() && 1944 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1945 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1946 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1947 Flags.setSwiftError(); 1948 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1949 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1950 true /*isfixed*/, 1 /*origidx*/, 1951 0 /*partOffs*/)); 1952 // Create SDNode for the swifterror virtual register. 1953 OutVals.push_back( 1954 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1955 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1956 EVT(TLI.getPointerTy(DL)))); 1957 } 1958 1959 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1960 CallingConv::ID CallConv = 1961 DAG.getMachineFunction().getFunction().getCallingConv(); 1962 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1963 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1964 1965 // Verify that the target's LowerReturn behaved as expected. 1966 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1967 "LowerReturn didn't return a valid chain!"); 1968 1969 // Update the DAG with the new chain value resulting from return lowering. 1970 DAG.setRoot(Chain); 1971 } 1972 1973 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1974 /// created for it, emit nodes to copy the value into the virtual 1975 /// registers. 1976 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1977 // Skip empty types 1978 if (V->getType()->isEmptyTy()) 1979 return; 1980 1981 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 1982 if (VMI != FuncInfo.ValueMap.end()) { 1983 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1984 CopyValueToVirtualRegister(V, VMI->second); 1985 } 1986 } 1987 1988 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1989 /// the current basic block, add it to ValueMap now so that we'll get a 1990 /// CopyTo/FromReg. 1991 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1992 // No need to export constants. 1993 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1994 1995 // Already exported? 1996 if (FuncInfo.isExportedInst(V)) return; 1997 1998 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1999 CopyValueToVirtualRegister(V, Reg); 2000 } 2001 2002 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2003 const BasicBlock *FromBB) { 2004 // The operands of the setcc have to be in this block. We don't know 2005 // how to export them from some other block. 2006 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2007 // Can export from current BB. 2008 if (VI->getParent() == FromBB) 2009 return true; 2010 2011 // Is already exported, noop. 2012 return FuncInfo.isExportedInst(V); 2013 } 2014 2015 // If this is an argument, we can export it if the BB is the entry block or 2016 // if it is already exported. 2017 if (isa<Argument>(V)) { 2018 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2019 return true; 2020 2021 // Otherwise, can only export this if it is already exported. 2022 return FuncInfo.isExportedInst(V); 2023 } 2024 2025 // Otherwise, constants can always be exported. 2026 return true; 2027 } 2028 2029 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2030 BranchProbability 2031 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2032 const MachineBasicBlock *Dst) const { 2033 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2034 const BasicBlock *SrcBB = Src->getBasicBlock(); 2035 const BasicBlock *DstBB = Dst->getBasicBlock(); 2036 if (!BPI) { 2037 // If BPI is not available, set the default probability as 1 / N, where N is 2038 // the number of successors. 2039 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2040 return BranchProbability(1, SuccSize); 2041 } 2042 return BPI->getEdgeProbability(SrcBB, DstBB); 2043 } 2044 2045 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2046 MachineBasicBlock *Dst, 2047 BranchProbability Prob) { 2048 if (!FuncInfo.BPI) 2049 Src->addSuccessorWithoutProb(Dst); 2050 else { 2051 if (Prob.isUnknown()) 2052 Prob = getEdgeProbability(Src, Dst); 2053 Src->addSuccessor(Dst, Prob); 2054 } 2055 } 2056 2057 static bool InBlock(const Value *V, const BasicBlock *BB) { 2058 if (const Instruction *I = dyn_cast<Instruction>(V)) 2059 return I->getParent() == BB; 2060 return true; 2061 } 2062 2063 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2064 /// This function emits a branch and is used at the leaves of an OR or an 2065 /// AND operator tree. 2066 void 2067 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2068 MachineBasicBlock *TBB, 2069 MachineBasicBlock *FBB, 2070 MachineBasicBlock *CurBB, 2071 MachineBasicBlock *SwitchBB, 2072 BranchProbability TProb, 2073 BranchProbability FProb, 2074 bool InvertCond) { 2075 const BasicBlock *BB = CurBB->getBasicBlock(); 2076 2077 // If the leaf of the tree is a comparison, merge the condition into 2078 // the caseblock. 2079 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2080 // The operands of the cmp have to be in this block. We don't know 2081 // how to export them from some other block. If this is the first block 2082 // of the sequence, no exporting is needed. 2083 if (CurBB == SwitchBB || 2084 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2085 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2086 ISD::CondCode Condition; 2087 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2088 ICmpInst::Predicate Pred = 2089 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2090 Condition = getICmpCondCode(Pred); 2091 } else { 2092 const FCmpInst *FC = cast<FCmpInst>(Cond); 2093 FCmpInst::Predicate Pred = 2094 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2095 Condition = getFCmpCondCode(Pred); 2096 if (TM.Options.NoNaNsFPMath) 2097 Condition = getFCmpCodeWithoutNaN(Condition); 2098 } 2099 2100 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2101 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2102 SL->SwitchCases.push_back(CB); 2103 return; 2104 } 2105 } 2106 2107 // Create a CaseBlock record representing this branch. 2108 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2109 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2110 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2111 SL->SwitchCases.push_back(CB); 2112 } 2113 2114 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2115 MachineBasicBlock *TBB, 2116 MachineBasicBlock *FBB, 2117 MachineBasicBlock *CurBB, 2118 MachineBasicBlock *SwitchBB, 2119 Instruction::BinaryOps Opc, 2120 BranchProbability TProb, 2121 BranchProbability FProb, 2122 bool InvertCond) { 2123 // Skip over not part of the tree and remember to invert op and operands at 2124 // next level. 2125 Value *NotCond; 2126 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2127 InBlock(NotCond, CurBB->getBasicBlock())) { 2128 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2129 !InvertCond); 2130 return; 2131 } 2132 2133 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2134 // Compute the effective opcode for Cond, taking into account whether it needs 2135 // to be inverted, e.g. 2136 // and (not (or A, B)), C 2137 // gets lowered as 2138 // and (and (not A, not B), C) 2139 unsigned BOpc = 0; 2140 if (BOp) { 2141 BOpc = BOp->getOpcode(); 2142 if (InvertCond) { 2143 if (BOpc == Instruction::And) 2144 BOpc = Instruction::Or; 2145 else if (BOpc == Instruction::Or) 2146 BOpc = Instruction::And; 2147 } 2148 } 2149 2150 // If this node is not part of the or/and tree, emit it as a branch. 2151 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2152 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2153 BOp->getParent() != CurBB->getBasicBlock() || 2154 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2155 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2156 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2157 TProb, FProb, InvertCond); 2158 return; 2159 } 2160 2161 // Create TmpBB after CurBB. 2162 MachineFunction::iterator BBI(CurBB); 2163 MachineFunction &MF = DAG.getMachineFunction(); 2164 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2165 CurBB->getParent()->insert(++BBI, TmpBB); 2166 2167 if (Opc == Instruction::Or) { 2168 // Codegen X | Y as: 2169 // BB1: 2170 // jmp_if_X TBB 2171 // jmp TmpBB 2172 // TmpBB: 2173 // jmp_if_Y TBB 2174 // jmp FBB 2175 // 2176 2177 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2178 // The requirement is that 2179 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2180 // = TrueProb for original BB. 2181 // Assuming the original probabilities are A and B, one choice is to set 2182 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2183 // A/(1+B) and 2B/(1+B). This choice assumes that 2184 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2185 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2186 // TmpBB, but the math is more complicated. 2187 2188 auto NewTrueProb = TProb / 2; 2189 auto NewFalseProb = TProb / 2 + FProb; 2190 // Emit the LHS condition. 2191 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2192 NewTrueProb, NewFalseProb, InvertCond); 2193 2194 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2195 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2196 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2197 // Emit the RHS condition into TmpBB. 2198 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2199 Probs[0], Probs[1], InvertCond); 2200 } else { 2201 assert(Opc == Instruction::And && "Unknown merge op!"); 2202 // Codegen X & Y as: 2203 // BB1: 2204 // jmp_if_X TmpBB 2205 // jmp FBB 2206 // TmpBB: 2207 // jmp_if_Y TBB 2208 // jmp FBB 2209 // 2210 // This requires creation of TmpBB after CurBB. 2211 2212 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2213 // The requirement is that 2214 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2215 // = FalseProb for original BB. 2216 // Assuming the original probabilities are A and B, one choice is to set 2217 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2218 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2219 // TrueProb for BB1 * FalseProb for TmpBB. 2220 2221 auto NewTrueProb = TProb + FProb / 2; 2222 auto NewFalseProb = FProb / 2; 2223 // Emit the LHS condition. 2224 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2225 NewTrueProb, NewFalseProb, InvertCond); 2226 2227 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2228 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2229 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2230 // Emit the RHS condition into TmpBB. 2231 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2232 Probs[0], Probs[1], InvertCond); 2233 } 2234 } 2235 2236 /// If the set of cases should be emitted as a series of branches, return true. 2237 /// If we should emit this as a bunch of and/or'd together conditions, return 2238 /// false. 2239 bool 2240 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2241 if (Cases.size() != 2) return true; 2242 2243 // If this is two comparisons of the same values or'd or and'd together, they 2244 // will get folded into a single comparison, so don't emit two blocks. 2245 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2246 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2247 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2248 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2249 return false; 2250 } 2251 2252 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2253 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2254 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2255 Cases[0].CC == Cases[1].CC && 2256 isa<Constant>(Cases[0].CmpRHS) && 2257 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2258 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2259 return false; 2260 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2261 return false; 2262 } 2263 2264 return true; 2265 } 2266 2267 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2268 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2269 2270 // Update machine-CFG edges. 2271 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2272 2273 if (I.isUnconditional()) { 2274 // Update machine-CFG edges. 2275 BrMBB->addSuccessor(Succ0MBB); 2276 2277 // If this is not a fall-through branch or optimizations are switched off, 2278 // emit the branch. 2279 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2280 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2281 MVT::Other, getControlRoot(), 2282 DAG.getBasicBlock(Succ0MBB))); 2283 2284 return; 2285 } 2286 2287 // If this condition is one of the special cases we handle, do special stuff 2288 // now. 2289 const Value *CondVal = I.getCondition(); 2290 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2291 2292 // If this is a series of conditions that are or'd or and'd together, emit 2293 // this as a sequence of branches instead of setcc's with and/or operations. 2294 // As long as jumps are not expensive, this should improve performance. 2295 // For example, instead of something like: 2296 // cmp A, B 2297 // C = seteq 2298 // cmp D, E 2299 // F = setle 2300 // or C, F 2301 // jnz foo 2302 // Emit: 2303 // cmp A, B 2304 // je foo 2305 // cmp D, E 2306 // jle foo 2307 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2308 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2309 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2310 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2311 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2312 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2313 Opcode, 2314 getEdgeProbability(BrMBB, Succ0MBB), 2315 getEdgeProbability(BrMBB, Succ1MBB), 2316 /*InvertCond=*/false); 2317 // If the compares in later blocks need to use values not currently 2318 // exported from this block, export them now. This block should always 2319 // be the first entry. 2320 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2321 2322 // Allow some cases to be rejected. 2323 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2324 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2325 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2326 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2327 } 2328 2329 // Emit the branch for this block. 2330 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2331 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2332 return; 2333 } 2334 2335 // Okay, we decided not to do this, remove any inserted MBB's and clear 2336 // SwitchCases. 2337 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2338 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2339 2340 SL->SwitchCases.clear(); 2341 } 2342 } 2343 2344 // Create a CaseBlock record representing this branch. 2345 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2346 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2347 2348 // Use visitSwitchCase to actually insert the fast branch sequence for this 2349 // cond branch. 2350 visitSwitchCase(CB, BrMBB); 2351 } 2352 2353 /// visitSwitchCase - Emits the necessary code to represent a single node in 2354 /// the binary search tree resulting from lowering a switch instruction. 2355 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2356 MachineBasicBlock *SwitchBB) { 2357 SDValue Cond; 2358 SDValue CondLHS = getValue(CB.CmpLHS); 2359 SDLoc dl = CB.DL; 2360 2361 if (CB.CC == ISD::SETTRUE) { 2362 // Branch or fall through to TrueBB. 2363 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2364 SwitchBB->normalizeSuccProbs(); 2365 if (CB.TrueBB != NextBlock(SwitchBB)) { 2366 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2367 DAG.getBasicBlock(CB.TrueBB))); 2368 } 2369 return; 2370 } 2371 2372 auto &TLI = DAG.getTargetLoweringInfo(); 2373 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2374 2375 // Build the setcc now. 2376 if (!CB.CmpMHS) { 2377 // Fold "(X == true)" to X and "(X == false)" to !X to 2378 // handle common cases produced by branch lowering. 2379 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2380 CB.CC == ISD::SETEQ) 2381 Cond = CondLHS; 2382 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2383 CB.CC == ISD::SETEQ) { 2384 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2385 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2386 } else { 2387 SDValue CondRHS = getValue(CB.CmpRHS); 2388 2389 // If a pointer's DAG type is larger than its memory type then the DAG 2390 // values are zero-extended. This breaks signed comparisons so truncate 2391 // back to the underlying type before doing the compare. 2392 if (CondLHS.getValueType() != MemVT) { 2393 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2394 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2395 } 2396 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2397 } 2398 } else { 2399 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2400 2401 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2402 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2403 2404 SDValue CmpOp = getValue(CB.CmpMHS); 2405 EVT VT = CmpOp.getValueType(); 2406 2407 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2408 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2409 ISD::SETLE); 2410 } else { 2411 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2412 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2413 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2414 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2415 } 2416 } 2417 2418 // Update successor info 2419 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2420 // TrueBB and FalseBB are always different unless the incoming IR is 2421 // degenerate. This only happens when running llc on weird IR. 2422 if (CB.TrueBB != CB.FalseBB) 2423 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2424 SwitchBB->normalizeSuccProbs(); 2425 2426 // If the lhs block is the next block, invert the condition so that we can 2427 // fall through to the lhs instead of the rhs block. 2428 if (CB.TrueBB == NextBlock(SwitchBB)) { 2429 std::swap(CB.TrueBB, CB.FalseBB); 2430 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2431 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2432 } 2433 2434 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2435 MVT::Other, getControlRoot(), Cond, 2436 DAG.getBasicBlock(CB.TrueBB)); 2437 2438 // Insert the false branch. Do this even if it's a fall through branch, 2439 // this makes it easier to do DAG optimizations which require inverting 2440 // the branch condition. 2441 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2442 DAG.getBasicBlock(CB.FalseBB)); 2443 2444 DAG.setRoot(BrCond); 2445 } 2446 2447 /// visitJumpTable - Emit JumpTable node in the current MBB 2448 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2449 // Emit the code for the jump table 2450 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2451 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2452 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2453 JT.Reg, PTy); 2454 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2455 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2456 MVT::Other, Index.getValue(1), 2457 Table, Index); 2458 DAG.setRoot(BrJumpTable); 2459 } 2460 2461 /// visitJumpTableHeader - This function emits necessary code to produce index 2462 /// in the JumpTable from switch case. 2463 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2464 JumpTableHeader &JTH, 2465 MachineBasicBlock *SwitchBB) { 2466 SDLoc dl = getCurSDLoc(); 2467 2468 // Subtract the lowest switch case value from the value being switched on. 2469 SDValue SwitchOp = getValue(JTH.SValue); 2470 EVT VT = SwitchOp.getValueType(); 2471 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2472 DAG.getConstant(JTH.First, dl, VT)); 2473 2474 // The SDNode we just created, which holds the value being switched on minus 2475 // the smallest case value, needs to be copied to a virtual register so it 2476 // can be used as an index into the jump table in a subsequent basic block. 2477 // This value may be smaller or larger than the target's pointer type, and 2478 // therefore require extension or truncating. 2479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2480 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2481 2482 unsigned JumpTableReg = 2483 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2484 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2485 JumpTableReg, SwitchOp); 2486 JT.Reg = JumpTableReg; 2487 2488 if (!JTH.OmitRangeCheck) { 2489 // Emit the range check for the jump table, and branch to the default block 2490 // for the switch statement if the value being switched on exceeds the 2491 // largest case in the switch. 2492 SDValue CMP = DAG.getSetCC( 2493 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2494 Sub.getValueType()), 2495 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2496 2497 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2498 MVT::Other, CopyTo, CMP, 2499 DAG.getBasicBlock(JT.Default)); 2500 2501 // Avoid emitting unnecessary branches to the next block. 2502 if (JT.MBB != NextBlock(SwitchBB)) 2503 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2504 DAG.getBasicBlock(JT.MBB)); 2505 2506 DAG.setRoot(BrCond); 2507 } else { 2508 // Avoid emitting unnecessary branches to the next block. 2509 if (JT.MBB != NextBlock(SwitchBB)) 2510 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2511 DAG.getBasicBlock(JT.MBB))); 2512 else 2513 DAG.setRoot(CopyTo); 2514 } 2515 } 2516 2517 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2518 /// variable if there exists one. 2519 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2520 SDValue &Chain) { 2521 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2522 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2523 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2524 MachineFunction &MF = DAG.getMachineFunction(); 2525 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2526 MachineSDNode *Node = 2527 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2528 if (Global) { 2529 MachinePointerInfo MPInfo(Global); 2530 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2531 MachineMemOperand::MODereferenceable; 2532 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2533 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2534 DAG.setNodeMemRefs(Node, {MemRef}); 2535 } 2536 if (PtrTy != PtrMemTy) 2537 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2538 return SDValue(Node, 0); 2539 } 2540 2541 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2542 /// tail spliced into a stack protector check success bb. 2543 /// 2544 /// For a high level explanation of how this fits into the stack protector 2545 /// generation see the comment on the declaration of class 2546 /// StackProtectorDescriptor. 2547 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2548 MachineBasicBlock *ParentBB) { 2549 2550 // First create the loads to the guard/stack slot for the comparison. 2551 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2552 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2553 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2554 2555 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2556 int FI = MFI.getStackProtectorIndex(); 2557 2558 SDValue Guard; 2559 SDLoc dl = getCurSDLoc(); 2560 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2561 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2562 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2563 2564 // Generate code to load the content of the guard slot. 2565 SDValue GuardVal = DAG.getLoad( 2566 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2567 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2568 MachineMemOperand::MOVolatile); 2569 2570 if (TLI.useStackGuardXorFP()) 2571 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2572 2573 // Retrieve guard check function, nullptr if instrumentation is inlined. 2574 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2575 // The target provides a guard check function to validate the guard value. 2576 // Generate a call to that function with the content of the guard slot as 2577 // argument. 2578 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2579 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2580 2581 TargetLowering::ArgListTy Args; 2582 TargetLowering::ArgListEntry Entry; 2583 Entry.Node = GuardVal; 2584 Entry.Ty = FnTy->getParamType(0); 2585 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2586 Entry.IsInReg = true; 2587 Args.push_back(Entry); 2588 2589 TargetLowering::CallLoweringInfo CLI(DAG); 2590 CLI.setDebugLoc(getCurSDLoc()) 2591 .setChain(DAG.getEntryNode()) 2592 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2593 getValue(GuardCheckFn), std::move(Args)); 2594 2595 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2596 DAG.setRoot(Result.second); 2597 return; 2598 } 2599 2600 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2601 // Otherwise, emit a volatile load to retrieve the stack guard value. 2602 SDValue Chain = DAG.getEntryNode(); 2603 if (TLI.useLoadStackGuardNode()) { 2604 Guard = getLoadStackGuard(DAG, dl, Chain); 2605 } else { 2606 const Value *IRGuard = TLI.getSDagStackGuard(M); 2607 SDValue GuardPtr = getValue(IRGuard); 2608 2609 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2610 MachinePointerInfo(IRGuard, 0), Align, 2611 MachineMemOperand::MOVolatile); 2612 } 2613 2614 // Perform the comparison via a getsetcc. 2615 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2616 *DAG.getContext(), 2617 Guard.getValueType()), 2618 Guard, GuardVal, ISD::SETNE); 2619 2620 // If the guard/stackslot do not equal, branch to failure MBB. 2621 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2622 MVT::Other, GuardVal.getOperand(0), 2623 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2624 // Otherwise branch to success MBB. 2625 SDValue Br = DAG.getNode(ISD::BR, dl, 2626 MVT::Other, BrCond, 2627 DAG.getBasicBlock(SPD.getSuccessMBB())); 2628 2629 DAG.setRoot(Br); 2630 } 2631 2632 /// Codegen the failure basic block for a stack protector check. 2633 /// 2634 /// A failure stack protector machine basic block consists simply of a call to 2635 /// __stack_chk_fail(). 2636 /// 2637 /// For a high level explanation of how this fits into the stack protector 2638 /// generation see the comment on the declaration of class 2639 /// StackProtectorDescriptor. 2640 void 2641 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2642 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2643 TargetLowering::MakeLibCallOptions CallOptions; 2644 CallOptions.setDiscardResult(true); 2645 SDValue Chain = 2646 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2647 None, CallOptions, getCurSDLoc()).second; 2648 // On PS4, the "return address" must still be within the calling function, 2649 // even if it's at the very end, so emit an explicit TRAP here. 2650 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2651 if (TM.getTargetTriple().isPS4CPU()) 2652 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2653 2654 DAG.setRoot(Chain); 2655 } 2656 2657 /// visitBitTestHeader - This function emits necessary code to produce value 2658 /// suitable for "bit tests" 2659 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2660 MachineBasicBlock *SwitchBB) { 2661 SDLoc dl = getCurSDLoc(); 2662 2663 // Subtract the minimum value. 2664 SDValue SwitchOp = getValue(B.SValue); 2665 EVT VT = SwitchOp.getValueType(); 2666 SDValue RangeSub = 2667 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2668 2669 // Determine the type of the test operands. 2670 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2671 bool UsePtrType = false; 2672 if (!TLI.isTypeLegal(VT)) { 2673 UsePtrType = true; 2674 } else { 2675 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2676 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2677 // Switch table case range are encoded into series of masks. 2678 // Just use pointer type, it's guaranteed to fit. 2679 UsePtrType = true; 2680 break; 2681 } 2682 } 2683 SDValue Sub = RangeSub; 2684 if (UsePtrType) { 2685 VT = TLI.getPointerTy(DAG.getDataLayout()); 2686 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2687 } 2688 2689 B.RegVT = VT.getSimpleVT(); 2690 B.Reg = FuncInfo.CreateReg(B.RegVT); 2691 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2692 2693 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2694 2695 if (!B.OmitRangeCheck) 2696 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2697 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2698 SwitchBB->normalizeSuccProbs(); 2699 2700 SDValue Root = CopyTo; 2701 if (!B.OmitRangeCheck) { 2702 // Conditional branch to the default block. 2703 SDValue RangeCmp = DAG.getSetCC(dl, 2704 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2705 RangeSub.getValueType()), 2706 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2707 ISD::SETUGT); 2708 2709 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2710 DAG.getBasicBlock(B.Default)); 2711 } 2712 2713 // Avoid emitting unnecessary branches to the next block. 2714 if (MBB != NextBlock(SwitchBB)) 2715 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2716 2717 DAG.setRoot(Root); 2718 } 2719 2720 /// visitBitTestCase - this function produces one "bit test" 2721 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2722 MachineBasicBlock* NextMBB, 2723 BranchProbability BranchProbToNext, 2724 unsigned Reg, 2725 BitTestCase &B, 2726 MachineBasicBlock *SwitchBB) { 2727 SDLoc dl = getCurSDLoc(); 2728 MVT VT = BB.RegVT; 2729 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2730 SDValue Cmp; 2731 unsigned PopCount = countPopulation(B.Mask); 2732 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2733 if (PopCount == 1) { 2734 // Testing for a single bit; just compare the shift count with what it 2735 // would need to be to shift a 1 bit in that position. 2736 Cmp = DAG.getSetCC( 2737 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2738 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2739 ISD::SETEQ); 2740 } else if (PopCount == BB.Range) { 2741 // There is only one zero bit in the range, test for it directly. 2742 Cmp = DAG.getSetCC( 2743 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2744 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2745 ISD::SETNE); 2746 } else { 2747 // Make desired shift 2748 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2749 DAG.getConstant(1, dl, VT), ShiftOp); 2750 2751 // Emit bit tests and jumps 2752 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2753 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2754 Cmp = DAG.getSetCC( 2755 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2756 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2757 } 2758 2759 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2760 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2761 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2762 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2763 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2764 // one as they are relative probabilities (and thus work more like weights), 2765 // and hence we need to normalize them to let the sum of them become one. 2766 SwitchBB->normalizeSuccProbs(); 2767 2768 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2769 MVT::Other, getControlRoot(), 2770 Cmp, DAG.getBasicBlock(B.TargetBB)); 2771 2772 // Avoid emitting unnecessary branches to the next block. 2773 if (NextMBB != NextBlock(SwitchBB)) 2774 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2775 DAG.getBasicBlock(NextMBB)); 2776 2777 DAG.setRoot(BrAnd); 2778 } 2779 2780 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2781 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2782 2783 // Retrieve successors. Look through artificial IR level blocks like 2784 // catchswitch for successors. 2785 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2786 const BasicBlock *EHPadBB = I.getSuccessor(1); 2787 2788 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2789 // have to do anything here to lower funclet bundles. 2790 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2791 LLVMContext::OB_gc_transition, 2792 LLVMContext::OB_gc_live, 2793 LLVMContext::OB_funclet, 2794 LLVMContext::OB_cfguardtarget}) && 2795 "Cannot lower invokes with arbitrary operand bundles yet!"); 2796 2797 const Value *Callee(I.getCalledOperand()); 2798 const Function *Fn = dyn_cast<Function>(Callee); 2799 if (isa<InlineAsm>(Callee)) 2800 visitInlineAsm(I); 2801 else if (Fn && Fn->isIntrinsic()) { 2802 switch (Fn->getIntrinsicID()) { 2803 default: 2804 llvm_unreachable("Cannot invoke this intrinsic"); 2805 case Intrinsic::donothing: 2806 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2807 break; 2808 case Intrinsic::experimental_patchpoint_void: 2809 case Intrinsic::experimental_patchpoint_i64: 2810 visitPatchpoint(I, EHPadBB); 2811 break; 2812 case Intrinsic::experimental_gc_statepoint: 2813 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2814 break; 2815 case Intrinsic::wasm_rethrow_in_catch: { 2816 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2817 // special because it can be invoked, so we manually lower it to a DAG 2818 // node here. 2819 SmallVector<SDValue, 8> Ops; 2820 Ops.push_back(getRoot()); // inchain 2821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2822 Ops.push_back( 2823 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2824 TLI.getPointerTy(DAG.getDataLayout()))); 2825 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2826 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2827 break; 2828 } 2829 } 2830 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2831 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2832 // Eventually we will support lowering the @llvm.experimental.deoptimize 2833 // intrinsic, and right now there are no plans to support other intrinsics 2834 // with deopt state. 2835 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2836 } else { 2837 LowerCallTo(I, getValue(Callee), false, EHPadBB); 2838 } 2839 2840 // If the value of the invoke is used outside of its defining block, make it 2841 // available as a virtual register. 2842 // We already took care of the exported value for the statepoint instruction 2843 // during call to the LowerStatepoint. 2844 if (!isa<GCStatepointInst>(I)) { 2845 CopyToExportRegsIfNeeded(&I); 2846 } 2847 2848 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2849 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2850 BranchProbability EHPadBBProb = 2851 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2852 : BranchProbability::getZero(); 2853 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2854 2855 // Update successor info. 2856 addSuccessorWithProb(InvokeMBB, Return); 2857 for (auto &UnwindDest : UnwindDests) { 2858 UnwindDest.first->setIsEHPad(); 2859 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2860 } 2861 InvokeMBB->normalizeSuccProbs(); 2862 2863 // Drop into normal successor. 2864 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2865 DAG.getBasicBlock(Return))); 2866 } 2867 2868 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2869 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2870 2871 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2872 // have to do anything here to lower funclet bundles. 2873 assert(!I.hasOperandBundlesOtherThan( 2874 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2875 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2876 2877 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2878 visitInlineAsm(I); 2879 CopyToExportRegsIfNeeded(&I); 2880 2881 // Retrieve successors. 2882 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2883 Return->setInlineAsmBrDefaultTarget(); 2884 2885 // Update successor info. 2886 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2887 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2888 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2889 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2890 CallBrMBB->addInlineAsmBrIndirectTarget(Target); 2891 } 2892 CallBrMBB->normalizeSuccProbs(); 2893 2894 // Drop into default successor. 2895 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2896 MVT::Other, getControlRoot(), 2897 DAG.getBasicBlock(Return))); 2898 } 2899 2900 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2901 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2902 } 2903 2904 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2905 assert(FuncInfo.MBB->isEHPad() && 2906 "Call to landingpad not in landing pad!"); 2907 2908 // If there aren't registers to copy the values into (e.g., during SjLj 2909 // exceptions), then don't bother to create these DAG nodes. 2910 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2911 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2912 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2913 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2914 return; 2915 2916 // If landingpad's return type is token type, we don't create DAG nodes 2917 // for its exception pointer and selector value. The extraction of exception 2918 // pointer or selector value from token type landingpads is not currently 2919 // supported. 2920 if (LP.getType()->isTokenTy()) 2921 return; 2922 2923 SmallVector<EVT, 2> ValueVTs; 2924 SDLoc dl = getCurSDLoc(); 2925 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2926 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2927 2928 // Get the two live-in registers as SDValues. The physregs have already been 2929 // copied into virtual registers. 2930 SDValue Ops[2]; 2931 if (FuncInfo.ExceptionPointerVirtReg) { 2932 Ops[0] = DAG.getZExtOrTrunc( 2933 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2934 FuncInfo.ExceptionPointerVirtReg, 2935 TLI.getPointerTy(DAG.getDataLayout())), 2936 dl, ValueVTs[0]); 2937 } else { 2938 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2939 } 2940 Ops[1] = DAG.getZExtOrTrunc( 2941 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2942 FuncInfo.ExceptionSelectorVirtReg, 2943 TLI.getPointerTy(DAG.getDataLayout())), 2944 dl, ValueVTs[1]); 2945 2946 // Merge into one. 2947 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2948 DAG.getVTList(ValueVTs), Ops); 2949 setValue(&LP, Res); 2950 } 2951 2952 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2953 MachineBasicBlock *Last) { 2954 // Update JTCases. 2955 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2956 if (SL->JTCases[i].first.HeaderBB == First) 2957 SL->JTCases[i].first.HeaderBB = Last; 2958 2959 // Update BitTestCases. 2960 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2961 if (SL->BitTestCases[i].Parent == First) 2962 SL->BitTestCases[i].Parent = Last; 2963 2964 // SelectionDAGISel::FinishBasicBlock will add PHI operands for the 2965 // successors of the fallthrough block. Here, we add PHI operands for the 2966 // successors of the INLINEASM_BR block itself. 2967 if (First->getFirstTerminator()->getOpcode() == TargetOpcode::INLINEASM_BR) 2968 for (std::pair<MachineInstr *, unsigned> &pair : FuncInfo.PHINodesToUpdate) 2969 if (First->isSuccessor(pair.first->getParent())) 2970 MachineInstrBuilder(*First->getParent(), pair.first) 2971 .addReg(pair.second) 2972 .addMBB(First); 2973 } 2974 2975 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2976 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2977 2978 // Update machine-CFG edges with unique successors. 2979 SmallSet<BasicBlock*, 32> Done; 2980 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2981 BasicBlock *BB = I.getSuccessor(i); 2982 bool Inserted = Done.insert(BB).second; 2983 if (!Inserted) 2984 continue; 2985 2986 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2987 addSuccessorWithProb(IndirectBrMBB, Succ); 2988 } 2989 IndirectBrMBB->normalizeSuccProbs(); 2990 2991 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2992 MVT::Other, getControlRoot(), 2993 getValue(I.getAddress()))); 2994 } 2995 2996 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2997 if (!DAG.getTarget().Options.TrapUnreachable) 2998 return; 2999 3000 // We may be able to ignore unreachable behind a noreturn call. 3001 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3002 const BasicBlock &BB = *I.getParent(); 3003 if (&I != &BB.front()) { 3004 BasicBlock::const_iterator PredI = 3005 std::prev(BasicBlock::const_iterator(&I)); 3006 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3007 if (Call->doesNotReturn()) 3008 return; 3009 } 3010 } 3011 } 3012 3013 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3014 } 3015 3016 void SelectionDAGBuilder::visitFSub(const User &I) { 3017 // -0.0 - X --> fneg 3018 Type *Ty = I.getType(); 3019 if (isa<Constant>(I.getOperand(0)) && 3020 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 3021 SDValue Op2 = getValue(I.getOperand(1)); 3022 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 3023 Op2.getValueType(), Op2)); 3024 return; 3025 } 3026 3027 visitBinary(I, ISD::FSUB); 3028 } 3029 3030 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3031 SDNodeFlags Flags; 3032 3033 SDValue Op = getValue(I.getOperand(0)); 3034 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3035 Op, Flags); 3036 setValue(&I, UnNodeValue); 3037 } 3038 3039 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3040 SDNodeFlags Flags; 3041 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3042 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3043 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3044 } 3045 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3046 Flags.setExact(ExactOp->isExact()); 3047 } 3048 3049 SDValue Op1 = getValue(I.getOperand(0)); 3050 SDValue Op2 = getValue(I.getOperand(1)); 3051 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3052 Op1, Op2, Flags); 3053 setValue(&I, BinNodeValue); 3054 } 3055 3056 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3057 SDValue Op1 = getValue(I.getOperand(0)); 3058 SDValue Op2 = getValue(I.getOperand(1)); 3059 3060 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3061 Op1.getValueType(), DAG.getDataLayout()); 3062 3063 // Coerce the shift amount to the right type if we can. 3064 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3065 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3066 unsigned Op2Size = Op2.getValueSizeInBits(); 3067 SDLoc DL = getCurSDLoc(); 3068 3069 // If the operand is smaller than the shift count type, promote it. 3070 if (ShiftSize > Op2Size) 3071 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3072 3073 // If the operand is larger than the shift count type but the shift 3074 // count type has enough bits to represent any shift value, truncate 3075 // it now. This is a common case and it exposes the truncate to 3076 // optimization early. 3077 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3078 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3079 // Otherwise we'll need to temporarily settle for some other convenient 3080 // type. Type legalization will make adjustments once the shiftee is split. 3081 else 3082 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3083 } 3084 3085 bool nuw = false; 3086 bool nsw = false; 3087 bool exact = false; 3088 3089 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3090 3091 if (const OverflowingBinaryOperator *OFBinOp = 3092 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3093 nuw = OFBinOp->hasNoUnsignedWrap(); 3094 nsw = OFBinOp->hasNoSignedWrap(); 3095 } 3096 if (const PossiblyExactOperator *ExactOp = 3097 dyn_cast<const PossiblyExactOperator>(&I)) 3098 exact = ExactOp->isExact(); 3099 } 3100 SDNodeFlags Flags; 3101 Flags.setExact(exact); 3102 Flags.setNoSignedWrap(nsw); 3103 Flags.setNoUnsignedWrap(nuw); 3104 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3105 Flags); 3106 setValue(&I, Res); 3107 } 3108 3109 void SelectionDAGBuilder::visitSDiv(const User &I) { 3110 SDValue Op1 = getValue(I.getOperand(0)); 3111 SDValue Op2 = getValue(I.getOperand(1)); 3112 3113 SDNodeFlags Flags; 3114 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3115 cast<PossiblyExactOperator>(&I)->isExact()); 3116 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3117 Op2, Flags)); 3118 } 3119 3120 void SelectionDAGBuilder::visitICmp(const User &I) { 3121 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3122 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3123 predicate = IC->getPredicate(); 3124 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3125 predicate = ICmpInst::Predicate(IC->getPredicate()); 3126 SDValue Op1 = getValue(I.getOperand(0)); 3127 SDValue Op2 = getValue(I.getOperand(1)); 3128 ISD::CondCode Opcode = getICmpCondCode(predicate); 3129 3130 auto &TLI = DAG.getTargetLoweringInfo(); 3131 EVT MemVT = 3132 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3133 3134 // If a pointer's DAG type is larger than its memory type then the DAG values 3135 // are zero-extended. This breaks signed comparisons so truncate back to the 3136 // underlying type before doing the compare. 3137 if (Op1.getValueType() != MemVT) { 3138 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3139 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3140 } 3141 3142 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3143 I.getType()); 3144 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3145 } 3146 3147 void SelectionDAGBuilder::visitFCmp(const User &I) { 3148 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3149 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3150 predicate = FC->getPredicate(); 3151 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3152 predicate = FCmpInst::Predicate(FC->getPredicate()); 3153 SDValue Op1 = getValue(I.getOperand(0)); 3154 SDValue Op2 = getValue(I.getOperand(1)); 3155 3156 ISD::CondCode Condition = getFCmpCondCode(predicate); 3157 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3158 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3159 Condition = getFCmpCodeWithoutNaN(Condition); 3160 3161 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3162 I.getType()); 3163 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3164 } 3165 3166 // Check if the condition of the select has one use or two users that are both 3167 // selects with the same condition. 3168 static bool hasOnlySelectUsers(const Value *Cond) { 3169 return llvm::all_of(Cond->users(), [](const Value *V) { 3170 return isa<SelectInst>(V); 3171 }); 3172 } 3173 3174 void SelectionDAGBuilder::visitSelect(const User &I) { 3175 SmallVector<EVT, 4> ValueVTs; 3176 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3177 ValueVTs); 3178 unsigned NumValues = ValueVTs.size(); 3179 if (NumValues == 0) return; 3180 3181 SmallVector<SDValue, 4> Values(NumValues); 3182 SDValue Cond = getValue(I.getOperand(0)); 3183 SDValue LHSVal = getValue(I.getOperand(1)); 3184 SDValue RHSVal = getValue(I.getOperand(2)); 3185 SmallVector<SDValue, 1> BaseOps(1, Cond); 3186 ISD::NodeType OpCode = 3187 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3188 3189 bool IsUnaryAbs = false; 3190 3191 // Min/max matching is only viable if all output VTs are the same. 3192 if (is_splat(ValueVTs)) { 3193 EVT VT = ValueVTs[0]; 3194 LLVMContext &Ctx = *DAG.getContext(); 3195 auto &TLI = DAG.getTargetLoweringInfo(); 3196 3197 // We care about the legality of the operation after it has been type 3198 // legalized. 3199 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3200 VT = TLI.getTypeToTransformTo(Ctx, VT); 3201 3202 // If the vselect is legal, assume we want to leave this as a vector setcc + 3203 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3204 // min/max is legal on the scalar type. 3205 bool UseScalarMinMax = VT.isVector() && 3206 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3207 3208 Value *LHS, *RHS; 3209 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3210 ISD::NodeType Opc = ISD::DELETED_NODE; 3211 switch (SPR.Flavor) { 3212 case SPF_UMAX: Opc = ISD::UMAX; break; 3213 case SPF_UMIN: Opc = ISD::UMIN; break; 3214 case SPF_SMAX: Opc = ISD::SMAX; break; 3215 case SPF_SMIN: Opc = ISD::SMIN; break; 3216 case SPF_FMINNUM: 3217 switch (SPR.NaNBehavior) { 3218 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3219 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3220 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3221 case SPNB_RETURNS_ANY: { 3222 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3223 Opc = ISD::FMINNUM; 3224 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3225 Opc = ISD::FMINIMUM; 3226 else if (UseScalarMinMax) 3227 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3228 ISD::FMINNUM : ISD::FMINIMUM; 3229 break; 3230 } 3231 } 3232 break; 3233 case SPF_FMAXNUM: 3234 switch (SPR.NaNBehavior) { 3235 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3236 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3237 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3238 case SPNB_RETURNS_ANY: 3239 3240 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3241 Opc = ISD::FMAXNUM; 3242 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3243 Opc = ISD::FMAXIMUM; 3244 else if (UseScalarMinMax) 3245 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3246 ISD::FMAXNUM : ISD::FMAXIMUM; 3247 break; 3248 } 3249 break; 3250 case SPF_ABS: 3251 IsUnaryAbs = true; 3252 Opc = ISD::ABS; 3253 break; 3254 case SPF_NABS: 3255 // TODO: we need to produce sub(0, abs(X)). 3256 default: break; 3257 } 3258 3259 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3260 (TLI.isOperationLegalOrCustom(Opc, VT) || 3261 (UseScalarMinMax && 3262 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3263 // If the underlying comparison instruction is used by any other 3264 // instruction, the consumed instructions won't be destroyed, so it is 3265 // not profitable to convert to a min/max. 3266 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3267 OpCode = Opc; 3268 LHSVal = getValue(LHS); 3269 RHSVal = getValue(RHS); 3270 BaseOps.clear(); 3271 } 3272 3273 if (IsUnaryAbs) { 3274 OpCode = Opc; 3275 LHSVal = getValue(LHS); 3276 BaseOps.clear(); 3277 } 3278 } 3279 3280 if (IsUnaryAbs) { 3281 for (unsigned i = 0; i != NumValues; ++i) { 3282 Values[i] = 3283 DAG.getNode(OpCode, getCurSDLoc(), 3284 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3285 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3286 } 3287 } else { 3288 for (unsigned i = 0; i != NumValues; ++i) { 3289 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3290 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3291 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3292 Values[i] = DAG.getNode( 3293 OpCode, getCurSDLoc(), 3294 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3295 } 3296 } 3297 3298 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3299 DAG.getVTList(ValueVTs), Values)); 3300 } 3301 3302 void SelectionDAGBuilder::visitTrunc(const User &I) { 3303 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3304 SDValue N = getValue(I.getOperand(0)); 3305 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3306 I.getType()); 3307 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3308 } 3309 3310 void SelectionDAGBuilder::visitZExt(const User &I) { 3311 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3312 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3313 SDValue N = getValue(I.getOperand(0)); 3314 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3315 I.getType()); 3316 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3317 } 3318 3319 void SelectionDAGBuilder::visitSExt(const User &I) { 3320 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3321 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3322 SDValue N = getValue(I.getOperand(0)); 3323 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3324 I.getType()); 3325 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3326 } 3327 3328 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3329 // FPTrunc is never a no-op cast, no need to check 3330 SDValue N = getValue(I.getOperand(0)); 3331 SDLoc dl = getCurSDLoc(); 3332 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3333 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3334 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3335 DAG.getTargetConstant( 3336 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3337 } 3338 3339 void SelectionDAGBuilder::visitFPExt(const User &I) { 3340 // FPExt is never a no-op cast, no need to check 3341 SDValue N = getValue(I.getOperand(0)); 3342 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3343 I.getType()); 3344 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3345 } 3346 3347 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3348 // FPToUI is never a no-op cast, no need to check 3349 SDValue N = getValue(I.getOperand(0)); 3350 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3351 I.getType()); 3352 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3353 } 3354 3355 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3356 // FPToSI is never a no-op cast, no need to check 3357 SDValue N = getValue(I.getOperand(0)); 3358 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3359 I.getType()); 3360 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3361 } 3362 3363 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3364 // UIToFP is never a no-op cast, no need to check 3365 SDValue N = getValue(I.getOperand(0)); 3366 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3367 I.getType()); 3368 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3369 } 3370 3371 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3372 // SIToFP is never a no-op cast, no need to check 3373 SDValue N = getValue(I.getOperand(0)); 3374 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3375 I.getType()); 3376 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3377 } 3378 3379 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3380 // What to do depends on the size of the integer and the size of the pointer. 3381 // We can either truncate, zero extend, or no-op, accordingly. 3382 SDValue N = getValue(I.getOperand(0)); 3383 auto &TLI = DAG.getTargetLoweringInfo(); 3384 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3385 I.getType()); 3386 EVT PtrMemVT = 3387 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3388 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3389 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3390 setValue(&I, N); 3391 } 3392 3393 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3394 // What to do depends on the size of the integer and the size of the pointer. 3395 // We can either truncate, zero extend, or no-op, accordingly. 3396 SDValue N = getValue(I.getOperand(0)); 3397 auto &TLI = DAG.getTargetLoweringInfo(); 3398 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3399 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3400 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3401 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3402 setValue(&I, N); 3403 } 3404 3405 void SelectionDAGBuilder::visitBitCast(const User &I) { 3406 SDValue N = getValue(I.getOperand(0)); 3407 SDLoc dl = getCurSDLoc(); 3408 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3409 I.getType()); 3410 3411 // BitCast assures us that source and destination are the same size so this is 3412 // either a BITCAST or a no-op. 3413 if (DestVT != N.getValueType()) 3414 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3415 DestVT, N)); // convert types. 3416 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3417 // might fold any kind of constant expression to an integer constant and that 3418 // is not what we are looking for. Only recognize a bitcast of a genuine 3419 // constant integer as an opaque constant. 3420 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3421 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3422 /*isOpaque*/true)); 3423 else 3424 setValue(&I, N); // noop cast. 3425 } 3426 3427 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3428 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3429 const Value *SV = I.getOperand(0); 3430 SDValue N = getValue(SV); 3431 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3432 3433 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3434 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3435 3436 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3437 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3438 3439 setValue(&I, N); 3440 } 3441 3442 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3444 SDValue InVec = getValue(I.getOperand(0)); 3445 SDValue InVal = getValue(I.getOperand(1)); 3446 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3447 TLI.getVectorIdxTy(DAG.getDataLayout())); 3448 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3449 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3450 InVec, InVal, InIdx)); 3451 } 3452 3453 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3454 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3455 SDValue InVec = getValue(I.getOperand(0)); 3456 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3457 TLI.getVectorIdxTy(DAG.getDataLayout())); 3458 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3459 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3460 InVec, InIdx)); 3461 } 3462 3463 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3464 SDValue Src1 = getValue(I.getOperand(0)); 3465 SDValue Src2 = getValue(I.getOperand(1)); 3466 ArrayRef<int> Mask; 3467 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3468 Mask = SVI->getShuffleMask(); 3469 else 3470 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3471 SDLoc DL = getCurSDLoc(); 3472 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3473 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3474 EVT SrcVT = Src1.getValueType(); 3475 3476 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3477 VT.isScalableVector()) { 3478 // Canonical splat form of first element of first input vector. 3479 SDValue FirstElt = 3480 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3481 DAG.getVectorIdxConstant(0, DL)); 3482 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3483 return; 3484 } 3485 3486 // For now, we only handle splats for scalable vectors. 3487 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3488 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3489 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3490 3491 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3492 unsigned MaskNumElts = Mask.size(); 3493 3494 if (SrcNumElts == MaskNumElts) { 3495 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3496 return; 3497 } 3498 3499 // Normalize the shuffle vector since mask and vector length don't match. 3500 if (SrcNumElts < MaskNumElts) { 3501 // Mask is longer than the source vectors. We can use concatenate vector to 3502 // make the mask and vectors lengths match. 3503 3504 if (MaskNumElts % SrcNumElts == 0) { 3505 // Mask length is a multiple of the source vector length. 3506 // Check if the shuffle is some kind of concatenation of the input 3507 // vectors. 3508 unsigned NumConcat = MaskNumElts / SrcNumElts; 3509 bool IsConcat = true; 3510 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3511 for (unsigned i = 0; i != MaskNumElts; ++i) { 3512 int Idx = Mask[i]; 3513 if (Idx < 0) 3514 continue; 3515 // Ensure the indices in each SrcVT sized piece are sequential and that 3516 // the same source is used for the whole piece. 3517 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3518 (ConcatSrcs[i / SrcNumElts] >= 0 && 3519 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3520 IsConcat = false; 3521 break; 3522 } 3523 // Remember which source this index came from. 3524 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3525 } 3526 3527 // The shuffle is concatenating multiple vectors together. Just emit 3528 // a CONCAT_VECTORS operation. 3529 if (IsConcat) { 3530 SmallVector<SDValue, 8> ConcatOps; 3531 for (auto Src : ConcatSrcs) { 3532 if (Src < 0) 3533 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3534 else if (Src == 0) 3535 ConcatOps.push_back(Src1); 3536 else 3537 ConcatOps.push_back(Src2); 3538 } 3539 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3540 return; 3541 } 3542 } 3543 3544 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3545 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3546 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3547 PaddedMaskNumElts); 3548 3549 // Pad both vectors with undefs to make them the same length as the mask. 3550 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3551 3552 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3553 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3554 MOps1[0] = Src1; 3555 MOps2[0] = Src2; 3556 3557 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3558 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3559 3560 // Readjust mask for new input vector length. 3561 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3562 for (unsigned i = 0; i != MaskNumElts; ++i) { 3563 int Idx = Mask[i]; 3564 if (Idx >= (int)SrcNumElts) 3565 Idx -= SrcNumElts - PaddedMaskNumElts; 3566 MappedOps[i] = Idx; 3567 } 3568 3569 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3570 3571 // If the concatenated vector was padded, extract a subvector with the 3572 // correct number of elements. 3573 if (MaskNumElts != PaddedMaskNumElts) 3574 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3575 DAG.getVectorIdxConstant(0, DL)); 3576 3577 setValue(&I, Result); 3578 return; 3579 } 3580 3581 if (SrcNumElts > MaskNumElts) { 3582 // Analyze the access pattern of the vector to see if we can extract 3583 // two subvectors and do the shuffle. 3584 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3585 bool CanExtract = true; 3586 for (int Idx : Mask) { 3587 unsigned Input = 0; 3588 if (Idx < 0) 3589 continue; 3590 3591 if (Idx >= (int)SrcNumElts) { 3592 Input = 1; 3593 Idx -= SrcNumElts; 3594 } 3595 3596 // If all the indices come from the same MaskNumElts sized portion of 3597 // the sources we can use extract. Also make sure the extract wouldn't 3598 // extract past the end of the source. 3599 int NewStartIdx = alignDown(Idx, MaskNumElts); 3600 if (NewStartIdx + MaskNumElts > SrcNumElts || 3601 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3602 CanExtract = false; 3603 // Make sure we always update StartIdx as we use it to track if all 3604 // elements are undef. 3605 StartIdx[Input] = NewStartIdx; 3606 } 3607 3608 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3609 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3610 return; 3611 } 3612 if (CanExtract) { 3613 // Extract appropriate subvector and generate a vector shuffle 3614 for (unsigned Input = 0; Input < 2; ++Input) { 3615 SDValue &Src = Input == 0 ? Src1 : Src2; 3616 if (StartIdx[Input] < 0) 3617 Src = DAG.getUNDEF(VT); 3618 else { 3619 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3620 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3621 } 3622 } 3623 3624 // Calculate new mask. 3625 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3626 for (int &Idx : MappedOps) { 3627 if (Idx >= (int)SrcNumElts) 3628 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3629 else if (Idx >= 0) 3630 Idx -= StartIdx[0]; 3631 } 3632 3633 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3634 return; 3635 } 3636 } 3637 3638 // We can't use either concat vectors or extract subvectors so fall back to 3639 // replacing the shuffle with extract and build vector. 3640 // to insert and build vector. 3641 EVT EltVT = VT.getVectorElementType(); 3642 SmallVector<SDValue,8> Ops; 3643 for (int Idx : Mask) { 3644 SDValue Res; 3645 3646 if (Idx < 0) { 3647 Res = DAG.getUNDEF(EltVT); 3648 } else { 3649 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3650 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3651 3652 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3653 DAG.getVectorIdxConstant(Idx, DL)); 3654 } 3655 3656 Ops.push_back(Res); 3657 } 3658 3659 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3660 } 3661 3662 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3663 ArrayRef<unsigned> Indices; 3664 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3665 Indices = IV->getIndices(); 3666 else 3667 Indices = cast<ConstantExpr>(&I)->getIndices(); 3668 3669 const Value *Op0 = I.getOperand(0); 3670 const Value *Op1 = I.getOperand(1); 3671 Type *AggTy = I.getType(); 3672 Type *ValTy = Op1->getType(); 3673 bool IntoUndef = isa<UndefValue>(Op0); 3674 bool FromUndef = isa<UndefValue>(Op1); 3675 3676 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3677 3678 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3679 SmallVector<EVT, 4> AggValueVTs; 3680 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3681 SmallVector<EVT, 4> ValValueVTs; 3682 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3683 3684 unsigned NumAggValues = AggValueVTs.size(); 3685 unsigned NumValValues = ValValueVTs.size(); 3686 SmallVector<SDValue, 4> Values(NumAggValues); 3687 3688 // Ignore an insertvalue that produces an empty object 3689 if (!NumAggValues) { 3690 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3691 return; 3692 } 3693 3694 SDValue Agg = getValue(Op0); 3695 unsigned i = 0; 3696 // Copy the beginning value(s) from the original aggregate. 3697 for (; i != LinearIndex; ++i) 3698 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3699 SDValue(Agg.getNode(), Agg.getResNo() + i); 3700 // Copy values from the inserted value(s). 3701 if (NumValValues) { 3702 SDValue Val = getValue(Op1); 3703 for (; i != LinearIndex + NumValValues; ++i) 3704 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3705 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3706 } 3707 // Copy remaining value(s) from the original aggregate. 3708 for (; i != NumAggValues; ++i) 3709 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3710 SDValue(Agg.getNode(), Agg.getResNo() + i); 3711 3712 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3713 DAG.getVTList(AggValueVTs), Values)); 3714 } 3715 3716 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3717 ArrayRef<unsigned> Indices; 3718 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3719 Indices = EV->getIndices(); 3720 else 3721 Indices = cast<ConstantExpr>(&I)->getIndices(); 3722 3723 const Value *Op0 = I.getOperand(0); 3724 Type *AggTy = Op0->getType(); 3725 Type *ValTy = I.getType(); 3726 bool OutOfUndef = isa<UndefValue>(Op0); 3727 3728 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3729 3730 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3731 SmallVector<EVT, 4> ValValueVTs; 3732 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3733 3734 unsigned NumValValues = ValValueVTs.size(); 3735 3736 // Ignore a extractvalue that produces an empty object 3737 if (!NumValValues) { 3738 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3739 return; 3740 } 3741 3742 SmallVector<SDValue, 4> Values(NumValValues); 3743 3744 SDValue Agg = getValue(Op0); 3745 // Copy out the selected value(s). 3746 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3747 Values[i - LinearIndex] = 3748 OutOfUndef ? 3749 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3750 SDValue(Agg.getNode(), Agg.getResNo() + i); 3751 3752 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3753 DAG.getVTList(ValValueVTs), Values)); 3754 } 3755 3756 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3757 Value *Op0 = I.getOperand(0); 3758 // Note that the pointer operand may be a vector of pointers. Take the scalar 3759 // element which holds a pointer. 3760 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3761 SDValue N = getValue(Op0); 3762 SDLoc dl = getCurSDLoc(); 3763 auto &TLI = DAG.getTargetLoweringInfo(); 3764 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3765 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3766 3767 // Normalize Vector GEP - all scalar operands should be converted to the 3768 // splat vector. 3769 bool IsVectorGEP = I.getType()->isVectorTy(); 3770 ElementCount VectorElementCount = 3771 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3772 : ElementCount(0, false); 3773 3774 if (IsVectorGEP && !N.getValueType().isVector()) { 3775 LLVMContext &Context = *DAG.getContext(); 3776 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3777 if (VectorElementCount.Scalable) 3778 N = DAG.getSplatVector(VT, dl, N); 3779 else 3780 N = DAG.getSplatBuildVector(VT, dl, N); 3781 } 3782 3783 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3784 GTI != E; ++GTI) { 3785 const Value *Idx = GTI.getOperand(); 3786 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3787 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3788 if (Field) { 3789 // N = N + Offset 3790 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3791 3792 // In an inbounds GEP with an offset that is nonnegative even when 3793 // interpreted as signed, assume there is no unsigned overflow. 3794 SDNodeFlags Flags; 3795 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3796 Flags.setNoUnsignedWrap(true); 3797 3798 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3799 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3800 } 3801 } else { 3802 // IdxSize is the width of the arithmetic according to IR semantics. 3803 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3804 // (and fix up the result later). 3805 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3806 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3807 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3808 // We intentionally mask away the high bits here; ElementSize may not 3809 // fit in IdxTy. 3810 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3811 bool ElementScalable = ElementSize.isScalable(); 3812 3813 // If this is a scalar constant or a splat vector of constants, 3814 // handle it quickly. 3815 const auto *C = dyn_cast<Constant>(Idx); 3816 if (C && isa<VectorType>(C->getType())) 3817 C = C->getSplatValue(); 3818 3819 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3820 if (CI && CI->isZero()) 3821 continue; 3822 if (CI && !ElementScalable) { 3823 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3824 LLVMContext &Context = *DAG.getContext(); 3825 SDValue OffsVal; 3826 if (IsVectorGEP) 3827 OffsVal = DAG.getConstant( 3828 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3829 else 3830 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3831 3832 // In an inbounds GEP with an offset that is nonnegative even when 3833 // interpreted as signed, assume there is no unsigned overflow. 3834 SDNodeFlags Flags; 3835 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3836 Flags.setNoUnsignedWrap(true); 3837 3838 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3839 3840 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3841 continue; 3842 } 3843 3844 // N = N + Idx * ElementMul; 3845 SDValue IdxN = getValue(Idx); 3846 3847 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3848 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3849 VectorElementCount); 3850 if (VectorElementCount.Scalable) 3851 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3852 else 3853 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3854 } 3855 3856 // If the index is smaller or larger than intptr_t, truncate or extend 3857 // it. 3858 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3859 3860 if (ElementScalable) { 3861 EVT VScaleTy = N.getValueType().getScalarType(); 3862 SDValue VScale = DAG.getNode( 3863 ISD::VSCALE, dl, VScaleTy, 3864 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3865 if (IsVectorGEP) 3866 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3867 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3868 } else { 3869 // If this is a multiply by a power of two, turn it into a shl 3870 // immediately. This is a very common case. 3871 if (ElementMul != 1) { 3872 if (ElementMul.isPowerOf2()) { 3873 unsigned Amt = ElementMul.logBase2(); 3874 IdxN = DAG.getNode(ISD::SHL, dl, 3875 N.getValueType(), IdxN, 3876 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3877 } else { 3878 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3879 IdxN.getValueType()); 3880 IdxN = DAG.getNode(ISD::MUL, dl, 3881 N.getValueType(), IdxN, Scale); 3882 } 3883 } 3884 } 3885 3886 N = DAG.getNode(ISD::ADD, dl, 3887 N.getValueType(), N, IdxN); 3888 } 3889 } 3890 3891 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3892 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3893 3894 setValue(&I, N); 3895 } 3896 3897 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3898 // If this is a fixed sized alloca in the entry block of the function, 3899 // allocate it statically on the stack. 3900 if (FuncInfo.StaticAllocaMap.count(&I)) 3901 return; // getValue will auto-populate this. 3902 3903 SDLoc dl = getCurSDLoc(); 3904 Type *Ty = I.getAllocatedType(); 3905 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3906 auto &DL = DAG.getDataLayout(); 3907 uint64_t TySize = DL.getTypeAllocSize(Ty); 3908 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3909 3910 SDValue AllocSize = getValue(I.getArraySize()); 3911 3912 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3913 if (AllocSize.getValueType() != IntPtr) 3914 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3915 3916 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3917 AllocSize, 3918 DAG.getConstant(TySize, dl, IntPtr)); 3919 3920 // Handle alignment. If the requested alignment is less than or equal to 3921 // the stack alignment, ignore it. If the size is greater than or equal to 3922 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3923 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3924 if (*Alignment <= StackAlign) 3925 Alignment = None; 3926 3927 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3928 // Round the size of the allocation up to the stack alignment size 3929 // by add SA-1 to the size. This doesn't overflow because we're computing 3930 // an address inside an alloca. 3931 SDNodeFlags Flags; 3932 Flags.setNoUnsignedWrap(true); 3933 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3934 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3935 3936 // Mask out the low bits for alignment purposes. 3937 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3938 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3939 3940 SDValue Ops[] = { 3941 getRoot(), AllocSize, 3942 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3943 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3944 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3945 setValue(&I, DSA); 3946 DAG.setRoot(DSA.getValue(1)); 3947 3948 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3949 } 3950 3951 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3952 if (I.isAtomic()) 3953 return visitAtomicLoad(I); 3954 3955 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3956 const Value *SV = I.getOperand(0); 3957 if (TLI.supportSwiftError()) { 3958 // Swifterror values can come from either a function parameter with 3959 // swifterror attribute or an alloca with swifterror attribute. 3960 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3961 if (Arg->hasSwiftErrorAttr()) 3962 return visitLoadFromSwiftError(I); 3963 } 3964 3965 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3966 if (Alloca->isSwiftError()) 3967 return visitLoadFromSwiftError(I); 3968 } 3969 } 3970 3971 SDValue Ptr = getValue(SV); 3972 3973 Type *Ty = I.getType(); 3974 Align Alignment = I.getAlign(); 3975 3976 AAMDNodes AAInfo; 3977 I.getAAMetadata(AAInfo); 3978 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3979 3980 SmallVector<EVT, 4> ValueVTs, MemVTs; 3981 SmallVector<uint64_t, 4> Offsets; 3982 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3983 unsigned NumValues = ValueVTs.size(); 3984 if (NumValues == 0) 3985 return; 3986 3987 bool isVolatile = I.isVolatile(); 3988 3989 SDValue Root; 3990 bool ConstantMemory = false; 3991 if (isVolatile) 3992 // Serialize volatile loads with other side effects. 3993 Root = getRoot(); 3994 else if (NumValues > MaxParallelChains) 3995 Root = getMemoryRoot(); 3996 else if (AA && 3997 AA->pointsToConstantMemory(MemoryLocation( 3998 SV, 3999 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4000 AAInfo))) { 4001 // Do not serialize (non-volatile) loads of constant memory with anything. 4002 Root = DAG.getEntryNode(); 4003 ConstantMemory = true; 4004 } else { 4005 // Do not serialize non-volatile loads against each other. 4006 Root = DAG.getRoot(); 4007 } 4008 4009 SDLoc dl = getCurSDLoc(); 4010 4011 if (isVolatile) 4012 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4013 4014 // An aggregate load cannot wrap around the address space, so offsets to its 4015 // parts don't wrap either. 4016 SDNodeFlags Flags; 4017 Flags.setNoUnsignedWrap(true); 4018 4019 SmallVector<SDValue, 4> Values(NumValues); 4020 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4021 EVT PtrVT = Ptr.getValueType(); 4022 4023 MachineMemOperand::Flags MMOFlags 4024 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4025 4026 unsigned ChainI = 0; 4027 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4028 // Serializing loads here may result in excessive register pressure, and 4029 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4030 // could recover a bit by hoisting nodes upward in the chain by recognizing 4031 // they are side-effect free or do not alias. The optimizer should really 4032 // avoid this case by converting large object/array copies to llvm.memcpy 4033 // (MaxParallelChains should always remain as failsafe). 4034 if (ChainI == MaxParallelChains) { 4035 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4036 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4037 makeArrayRef(Chains.data(), ChainI)); 4038 Root = Chain; 4039 ChainI = 0; 4040 } 4041 SDValue A = DAG.getNode(ISD::ADD, dl, 4042 PtrVT, Ptr, 4043 DAG.getConstant(Offsets[i], dl, PtrVT), 4044 Flags); 4045 4046 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4047 MachinePointerInfo(SV, Offsets[i]), Alignment, 4048 MMOFlags, AAInfo, Ranges); 4049 Chains[ChainI] = L.getValue(1); 4050 4051 if (MemVTs[i] != ValueVTs[i]) 4052 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4053 4054 Values[i] = L; 4055 } 4056 4057 if (!ConstantMemory) { 4058 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4059 makeArrayRef(Chains.data(), ChainI)); 4060 if (isVolatile) 4061 DAG.setRoot(Chain); 4062 else 4063 PendingLoads.push_back(Chain); 4064 } 4065 4066 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4067 DAG.getVTList(ValueVTs), Values)); 4068 } 4069 4070 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4071 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4072 "call visitStoreToSwiftError when backend supports swifterror"); 4073 4074 SmallVector<EVT, 4> ValueVTs; 4075 SmallVector<uint64_t, 4> Offsets; 4076 const Value *SrcV = I.getOperand(0); 4077 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4078 SrcV->getType(), ValueVTs, &Offsets); 4079 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4080 "expect a single EVT for swifterror"); 4081 4082 SDValue Src = getValue(SrcV); 4083 // Create a virtual register, then update the virtual register. 4084 Register VReg = 4085 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4086 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4087 // Chain can be getRoot or getControlRoot. 4088 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4089 SDValue(Src.getNode(), Src.getResNo())); 4090 DAG.setRoot(CopyNode); 4091 } 4092 4093 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4094 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4095 "call visitLoadFromSwiftError when backend supports swifterror"); 4096 4097 assert(!I.isVolatile() && 4098 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4099 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4100 "Support volatile, non temporal, invariant for load_from_swift_error"); 4101 4102 const Value *SV = I.getOperand(0); 4103 Type *Ty = I.getType(); 4104 AAMDNodes AAInfo; 4105 I.getAAMetadata(AAInfo); 4106 assert( 4107 (!AA || 4108 !AA->pointsToConstantMemory(MemoryLocation( 4109 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4110 AAInfo))) && 4111 "load_from_swift_error should not be constant memory"); 4112 4113 SmallVector<EVT, 4> ValueVTs; 4114 SmallVector<uint64_t, 4> Offsets; 4115 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4116 ValueVTs, &Offsets); 4117 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4118 "expect a single EVT for swifterror"); 4119 4120 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4121 SDValue L = DAG.getCopyFromReg( 4122 getRoot(), getCurSDLoc(), 4123 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4124 4125 setValue(&I, L); 4126 } 4127 4128 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4129 if (I.isAtomic()) 4130 return visitAtomicStore(I); 4131 4132 const Value *SrcV = I.getOperand(0); 4133 const Value *PtrV = I.getOperand(1); 4134 4135 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4136 if (TLI.supportSwiftError()) { 4137 // Swifterror values can come from either a function parameter with 4138 // swifterror attribute or an alloca with swifterror attribute. 4139 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4140 if (Arg->hasSwiftErrorAttr()) 4141 return visitStoreToSwiftError(I); 4142 } 4143 4144 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4145 if (Alloca->isSwiftError()) 4146 return visitStoreToSwiftError(I); 4147 } 4148 } 4149 4150 SmallVector<EVT, 4> ValueVTs, MemVTs; 4151 SmallVector<uint64_t, 4> Offsets; 4152 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4153 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4154 unsigned NumValues = ValueVTs.size(); 4155 if (NumValues == 0) 4156 return; 4157 4158 // Get the lowered operands. Note that we do this after 4159 // checking if NumResults is zero, because with zero results 4160 // the operands won't have values in the map. 4161 SDValue Src = getValue(SrcV); 4162 SDValue Ptr = getValue(PtrV); 4163 4164 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4165 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4166 SDLoc dl = getCurSDLoc(); 4167 Align Alignment = I.getAlign(); 4168 AAMDNodes AAInfo; 4169 I.getAAMetadata(AAInfo); 4170 4171 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4172 4173 // An aggregate load cannot wrap around the address space, so offsets to its 4174 // parts don't wrap either. 4175 SDNodeFlags Flags; 4176 Flags.setNoUnsignedWrap(true); 4177 4178 unsigned ChainI = 0; 4179 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4180 // See visitLoad comments. 4181 if (ChainI == MaxParallelChains) { 4182 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4183 makeArrayRef(Chains.data(), ChainI)); 4184 Root = Chain; 4185 ChainI = 0; 4186 } 4187 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4188 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4189 if (MemVTs[i] != ValueVTs[i]) 4190 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4191 SDValue St = 4192 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4193 Alignment, MMOFlags, AAInfo); 4194 Chains[ChainI] = St; 4195 } 4196 4197 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4198 makeArrayRef(Chains.data(), ChainI)); 4199 DAG.setRoot(StoreNode); 4200 } 4201 4202 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4203 bool IsCompressing) { 4204 SDLoc sdl = getCurSDLoc(); 4205 4206 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4207 MaybeAlign &Alignment) { 4208 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4209 Src0 = I.getArgOperand(0); 4210 Ptr = I.getArgOperand(1); 4211 Alignment = 4212 MaybeAlign(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4213 Mask = I.getArgOperand(3); 4214 }; 4215 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4216 MaybeAlign &Alignment) { 4217 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4218 Src0 = I.getArgOperand(0); 4219 Ptr = I.getArgOperand(1); 4220 Mask = I.getArgOperand(2); 4221 Alignment = None; 4222 }; 4223 4224 Value *PtrOperand, *MaskOperand, *Src0Operand; 4225 MaybeAlign Alignment; 4226 if (IsCompressing) 4227 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4228 else 4229 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4230 4231 SDValue Ptr = getValue(PtrOperand); 4232 SDValue Src0 = getValue(Src0Operand); 4233 SDValue Mask = getValue(MaskOperand); 4234 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4235 4236 EVT VT = Src0.getValueType(); 4237 if (!Alignment) 4238 Alignment = DAG.getEVTAlign(VT); 4239 4240 AAMDNodes AAInfo; 4241 I.getAAMetadata(AAInfo); 4242 4243 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4244 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4245 // TODO: Make MachineMemOperands aware of scalable 4246 // vectors. 4247 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4248 SDValue StoreNode = 4249 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4250 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4251 DAG.setRoot(StoreNode); 4252 setValue(&I, StoreNode); 4253 } 4254 4255 // Get a uniform base for the Gather/Scatter intrinsic. 4256 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4257 // We try to represent it as a base pointer + vector of indices. 4258 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4259 // The first operand of the GEP may be a single pointer or a vector of pointers 4260 // Example: 4261 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4262 // or 4263 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4264 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4265 // 4266 // When the first GEP operand is a single pointer - it is the uniform base we 4267 // are looking for. If first operand of the GEP is a splat vector - we 4268 // extract the splat value and use it as a uniform base. 4269 // In all other cases the function returns 'false'. 4270 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4271 ISD::MemIndexType &IndexType, SDValue &Scale, 4272 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4273 SelectionDAG& DAG = SDB->DAG; 4274 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4275 const DataLayout &DL = DAG.getDataLayout(); 4276 4277 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4278 4279 // Handle splat constant pointer. 4280 if (auto *C = dyn_cast<Constant>(Ptr)) { 4281 C = C->getSplatValue(); 4282 if (!C) 4283 return false; 4284 4285 Base = SDB->getValue(C); 4286 4287 unsigned NumElts = cast<VectorType>(Ptr->getType())->getNumElements(); 4288 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4289 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4290 IndexType = ISD::SIGNED_SCALED; 4291 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4292 return true; 4293 } 4294 4295 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4296 if (!GEP || GEP->getParent() != CurBB) 4297 return false; 4298 4299 if (GEP->getNumOperands() != 2) 4300 return false; 4301 4302 const Value *BasePtr = GEP->getPointerOperand(); 4303 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4304 4305 // Make sure the base is scalar and the index is a vector. 4306 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4307 return false; 4308 4309 Base = SDB->getValue(BasePtr); 4310 Index = SDB->getValue(IndexVal); 4311 IndexType = ISD::SIGNED_SCALED; 4312 Scale = DAG.getTargetConstant( 4313 DL.getTypeAllocSize(GEP->getResultElementType()), 4314 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4315 return true; 4316 } 4317 4318 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4319 SDLoc sdl = getCurSDLoc(); 4320 4321 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4322 const Value *Ptr = I.getArgOperand(1); 4323 SDValue Src0 = getValue(I.getArgOperand(0)); 4324 SDValue Mask = getValue(I.getArgOperand(3)); 4325 EVT VT = Src0.getValueType(); 4326 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4327 if (!Alignment) 4328 Alignment = DAG.getEVTAlign(VT); 4329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4330 4331 AAMDNodes AAInfo; 4332 I.getAAMetadata(AAInfo); 4333 4334 SDValue Base; 4335 SDValue Index; 4336 ISD::MemIndexType IndexType; 4337 SDValue Scale; 4338 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4339 I.getParent()); 4340 4341 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4342 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4343 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4344 // TODO: Make MachineMemOperands aware of scalable 4345 // vectors. 4346 MemoryLocation::UnknownSize, *Alignment, AAInfo); 4347 if (!UniformBase) { 4348 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4349 Index = getValue(Ptr); 4350 IndexType = ISD::SIGNED_SCALED; 4351 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4352 } 4353 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4354 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4355 Ops, MMO, IndexType); 4356 DAG.setRoot(Scatter); 4357 setValue(&I, Scatter); 4358 } 4359 4360 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4361 SDLoc sdl = getCurSDLoc(); 4362 4363 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4364 MaybeAlign &Alignment) { 4365 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4366 Ptr = I.getArgOperand(0); 4367 Alignment = 4368 MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4369 Mask = I.getArgOperand(2); 4370 Src0 = I.getArgOperand(3); 4371 }; 4372 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4373 MaybeAlign &Alignment) { 4374 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4375 Ptr = I.getArgOperand(0); 4376 Alignment = None; 4377 Mask = I.getArgOperand(1); 4378 Src0 = I.getArgOperand(2); 4379 }; 4380 4381 Value *PtrOperand, *MaskOperand, *Src0Operand; 4382 MaybeAlign Alignment; 4383 if (IsExpanding) 4384 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4385 else 4386 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4387 4388 SDValue Ptr = getValue(PtrOperand); 4389 SDValue Src0 = getValue(Src0Operand); 4390 SDValue Mask = getValue(MaskOperand); 4391 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4392 4393 EVT VT = Src0.getValueType(); 4394 if (!Alignment) 4395 Alignment = DAG.getEVTAlign(VT); 4396 4397 AAMDNodes AAInfo; 4398 I.getAAMetadata(AAInfo); 4399 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4400 4401 // Do not serialize masked loads of constant memory with anything. 4402 MemoryLocation ML; 4403 if (VT.isScalableVector()) 4404 ML = MemoryLocation(PtrOperand); 4405 else 4406 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4407 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4408 AAInfo); 4409 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4410 4411 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4412 4413 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4414 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4415 // TODO: Make MachineMemOperands aware of scalable 4416 // vectors. 4417 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4418 4419 SDValue Load = 4420 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4421 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4422 if (AddToChain) 4423 PendingLoads.push_back(Load.getValue(1)); 4424 setValue(&I, Load); 4425 } 4426 4427 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4428 SDLoc sdl = getCurSDLoc(); 4429 4430 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4431 const Value *Ptr = I.getArgOperand(0); 4432 SDValue Src0 = getValue(I.getArgOperand(3)); 4433 SDValue Mask = getValue(I.getArgOperand(2)); 4434 4435 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4436 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4437 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4438 if (!Alignment) 4439 Alignment = DAG.getEVTAlign(VT); 4440 4441 AAMDNodes AAInfo; 4442 I.getAAMetadata(AAInfo); 4443 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4444 4445 SDValue Root = DAG.getRoot(); 4446 SDValue Base; 4447 SDValue Index; 4448 ISD::MemIndexType IndexType; 4449 SDValue Scale; 4450 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4451 I.getParent()); 4452 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4453 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4454 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4455 // TODO: Make MachineMemOperands aware of scalable 4456 // vectors. 4457 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4458 4459 if (!UniformBase) { 4460 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4461 Index = getValue(Ptr); 4462 IndexType = ISD::SIGNED_SCALED; 4463 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4464 } 4465 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4466 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4467 Ops, MMO, IndexType); 4468 4469 PendingLoads.push_back(Gather.getValue(1)); 4470 setValue(&I, Gather); 4471 } 4472 4473 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4474 SDLoc dl = getCurSDLoc(); 4475 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4476 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4477 SyncScope::ID SSID = I.getSyncScopeID(); 4478 4479 SDValue InChain = getRoot(); 4480 4481 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4482 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4483 4484 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4485 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4486 4487 MachineFunction &MF = DAG.getMachineFunction(); 4488 MachineMemOperand *MMO = MF.getMachineMemOperand( 4489 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4490 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4491 FailureOrdering); 4492 4493 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4494 dl, MemVT, VTs, InChain, 4495 getValue(I.getPointerOperand()), 4496 getValue(I.getCompareOperand()), 4497 getValue(I.getNewValOperand()), MMO); 4498 4499 SDValue OutChain = L.getValue(2); 4500 4501 setValue(&I, L); 4502 DAG.setRoot(OutChain); 4503 } 4504 4505 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4506 SDLoc dl = getCurSDLoc(); 4507 ISD::NodeType NT; 4508 switch (I.getOperation()) { 4509 default: llvm_unreachable("Unknown atomicrmw operation"); 4510 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4511 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4512 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4513 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4514 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4515 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4516 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4517 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4518 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4519 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4520 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4521 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4522 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4523 } 4524 AtomicOrdering Ordering = I.getOrdering(); 4525 SyncScope::ID SSID = I.getSyncScopeID(); 4526 4527 SDValue InChain = getRoot(); 4528 4529 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4530 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4531 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4532 4533 MachineFunction &MF = DAG.getMachineFunction(); 4534 MachineMemOperand *MMO = MF.getMachineMemOperand( 4535 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4536 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4537 4538 SDValue L = 4539 DAG.getAtomic(NT, dl, MemVT, InChain, 4540 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4541 MMO); 4542 4543 SDValue OutChain = L.getValue(1); 4544 4545 setValue(&I, L); 4546 DAG.setRoot(OutChain); 4547 } 4548 4549 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4550 SDLoc dl = getCurSDLoc(); 4551 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4552 SDValue Ops[3]; 4553 Ops[0] = getRoot(); 4554 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4555 TLI.getFenceOperandTy(DAG.getDataLayout())); 4556 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4557 TLI.getFenceOperandTy(DAG.getDataLayout())); 4558 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4559 } 4560 4561 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4562 SDLoc dl = getCurSDLoc(); 4563 AtomicOrdering Order = I.getOrdering(); 4564 SyncScope::ID SSID = I.getSyncScopeID(); 4565 4566 SDValue InChain = getRoot(); 4567 4568 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4569 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4570 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4571 4572 if (!TLI.supportsUnalignedAtomics() && 4573 I.getAlignment() < MemVT.getSizeInBits() / 8) 4574 report_fatal_error("Cannot generate unaligned atomic load"); 4575 4576 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4577 4578 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4579 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4580 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4581 4582 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4583 4584 SDValue Ptr = getValue(I.getPointerOperand()); 4585 4586 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4587 // TODO: Once this is better exercised by tests, it should be merged with 4588 // the normal path for loads to prevent future divergence. 4589 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4590 if (MemVT != VT) 4591 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4592 4593 setValue(&I, L); 4594 SDValue OutChain = L.getValue(1); 4595 if (!I.isUnordered()) 4596 DAG.setRoot(OutChain); 4597 else 4598 PendingLoads.push_back(OutChain); 4599 return; 4600 } 4601 4602 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4603 Ptr, MMO); 4604 4605 SDValue OutChain = L.getValue(1); 4606 if (MemVT != VT) 4607 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4608 4609 setValue(&I, L); 4610 DAG.setRoot(OutChain); 4611 } 4612 4613 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4614 SDLoc dl = getCurSDLoc(); 4615 4616 AtomicOrdering Ordering = I.getOrdering(); 4617 SyncScope::ID SSID = I.getSyncScopeID(); 4618 4619 SDValue InChain = getRoot(); 4620 4621 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4622 EVT MemVT = 4623 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4624 4625 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4626 report_fatal_error("Cannot generate unaligned atomic store"); 4627 4628 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4629 4630 MachineFunction &MF = DAG.getMachineFunction(); 4631 MachineMemOperand *MMO = MF.getMachineMemOperand( 4632 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4633 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4634 4635 SDValue Val = getValue(I.getValueOperand()); 4636 if (Val.getValueType() != MemVT) 4637 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4638 SDValue Ptr = getValue(I.getPointerOperand()); 4639 4640 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4641 // TODO: Once this is better exercised by tests, it should be merged with 4642 // the normal path for stores to prevent future divergence. 4643 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4644 DAG.setRoot(S); 4645 return; 4646 } 4647 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4648 Ptr, Val, MMO); 4649 4650 4651 DAG.setRoot(OutChain); 4652 } 4653 4654 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4655 /// node. 4656 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4657 unsigned Intrinsic) { 4658 // Ignore the callsite's attributes. A specific call site may be marked with 4659 // readnone, but the lowering code will expect the chain based on the 4660 // definition. 4661 const Function *F = I.getCalledFunction(); 4662 bool HasChain = !F->doesNotAccessMemory(); 4663 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4664 4665 // Build the operand list. 4666 SmallVector<SDValue, 8> Ops; 4667 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4668 if (OnlyLoad) { 4669 // We don't need to serialize loads against other loads. 4670 Ops.push_back(DAG.getRoot()); 4671 } else { 4672 Ops.push_back(getRoot()); 4673 } 4674 } 4675 4676 // Info is set by getTgtMemInstrinsic 4677 TargetLowering::IntrinsicInfo Info; 4678 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4679 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4680 DAG.getMachineFunction(), 4681 Intrinsic); 4682 4683 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4684 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4685 Info.opc == ISD::INTRINSIC_W_CHAIN) 4686 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4687 TLI.getPointerTy(DAG.getDataLayout()))); 4688 4689 // Add all operands of the call to the operand list. 4690 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4691 const Value *Arg = I.getArgOperand(i); 4692 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4693 Ops.push_back(getValue(Arg)); 4694 continue; 4695 } 4696 4697 // Use TargetConstant instead of a regular constant for immarg. 4698 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4699 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4700 assert(CI->getBitWidth() <= 64 && 4701 "large intrinsic immediates not handled"); 4702 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4703 } else { 4704 Ops.push_back( 4705 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4706 } 4707 } 4708 4709 SmallVector<EVT, 4> ValueVTs; 4710 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4711 4712 if (HasChain) 4713 ValueVTs.push_back(MVT::Other); 4714 4715 SDVTList VTs = DAG.getVTList(ValueVTs); 4716 4717 // Create the node. 4718 SDValue Result; 4719 if (IsTgtIntrinsic) { 4720 // This is target intrinsic that touches memory 4721 AAMDNodes AAInfo; 4722 I.getAAMetadata(AAInfo); 4723 Result = 4724 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4725 MachinePointerInfo(Info.ptrVal, Info.offset), 4726 Info.align, Info.flags, Info.size, AAInfo); 4727 } else if (!HasChain) { 4728 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4729 } else if (!I.getType()->isVoidTy()) { 4730 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4731 } else { 4732 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4733 } 4734 4735 if (HasChain) { 4736 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4737 if (OnlyLoad) 4738 PendingLoads.push_back(Chain); 4739 else 4740 DAG.setRoot(Chain); 4741 } 4742 4743 if (!I.getType()->isVoidTy()) { 4744 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4745 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4746 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4747 } else 4748 Result = lowerRangeToAssertZExt(DAG, I, Result); 4749 4750 setValue(&I, Result); 4751 } 4752 } 4753 4754 /// GetSignificand - Get the significand and build it into a floating-point 4755 /// number with exponent of 1: 4756 /// 4757 /// Op = (Op & 0x007fffff) | 0x3f800000; 4758 /// 4759 /// where Op is the hexadecimal representation of floating point value. 4760 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4761 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4762 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4763 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4764 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4765 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4766 } 4767 4768 /// GetExponent - Get the exponent: 4769 /// 4770 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4771 /// 4772 /// where Op is the hexadecimal representation of floating point value. 4773 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4774 const TargetLowering &TLI, const SDLoc &dl) { 4775 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4776 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4777 SDValue t1 = DAG.getNode( 4778 ISD::SRL, dl, MVT::i32, t0, 4779 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4780 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4781 DAG.getConstant(127, dl, MVT::i32)); 4782 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4783 } 4784 4785 /// getF32Constant - Get 32-bit floating point constant. 4786 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4787 const SDLoc &dl) { 4788 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4789 MVT::f32); 4790 } 4791 4792 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4793 SelectionDAG &DAG) { 4794 // TODO: What fast-math-flags should be set on the floating-point nodes? 4795 4796 // IntegerPartOfX = ((int32_t)(t0); 4797 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4798 4799 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4800 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4801 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4802 4803 // IntegerPartOfX <<= 23; 4804 IntegerPartOfX = DAG.getNode( 4805 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4806 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4807 DAG.getDataLayout()))); 4808 4809 SDValue TwoToFractionalPartOfX; 4810 if (LimitFloatPrecision <= 6) { 4811 // For floating-point precision of 6: 4812 // 4813 // TwoToFractionalPartOfX = 4814 // 0.997535578f + 4815 // (0.735607626f + 0.252464424f * x) * x; 4816 // 4817 // error 0.0144103317, which is 6 bits 4818 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4819 getF32Constant(DAG, 0x3e814304, dl)); 4820 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4821 getF32Constant(DAG, 0x3f3c50c8, dl)); 4822 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4823 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4824 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4825 } else if (LimitFloatPrecision <= 12) { 4826 // For floating-point precision of 12: 4827 // 4828 // TwoToFractionalPartOfX = 4829 // 0.999892986f + 4830 // (0.696457318f + 4831 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4832 // 4833 // error 0.000107046256, which is 13 to 14 bits 4834 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4835 getF32Constant(DAG, 0x3da235e3, dl)); 4836 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4837 getF32Constant(DAG, 0x3e65b8f3, dl)); 4838 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4839 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4840 getF32Constant(DAG, 0x3f324b07, dl)); 4841 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4842 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4843 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4844 } else { // LimitFloatPrecision <= 18 4845 // For floating-point precision of 18: 4846 // 4847 // TwoToFractionalPartOfX = 4848 // 0.999999982f + 4849 // (0.693148872f + 4850 // (0.240227044f + 4851 // (0.554906021e-1f + 4852 // (0.961591928e-2f + 4853 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4854 // error 2.47208000*10^(-7), which is better than 18 bits 4855 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4856 getF32Constant(DAG, 0x3924b03e, dl)); 4857 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4858 getF32Constant(DAG, 0x3ab24b87, dl)); 4859 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4860 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4861 getF32Constant(DAG, 0x3c1d8c17, dl)); 4862 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4863 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4864 getF32Constant(DAG, 0x3d634a1d, dl)); 4865 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4866 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4867 getF32Constant(DAG, 0x3e75fe14, dl)); 4868 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4869 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4870 getF32Constant(DAG, 0x3f317234, dl)); 4871 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4872 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4873 getF32Constant(DAG, 0x3f800000, dl)); 4874 } 4875 4876 // Add the exponent into the result in integer domain. 4877 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4878 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4879 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4880 } 4881 4882 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4883 /// limited-precision mode. 4884 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4885 const TargetLowering &TLI) { 4886 if (Op.getValueType() == MVT::f32 && 4887 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4888 4889 // Put the exponent in the right bit position for later addition to the 4890 // final result: 4891 // 4892 // t0 = Op * log2(e) 4893 4894 // TODO: What fast-math-flags should be set here? 4895 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4896 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4897 return getLimitedPrecisionExp2(t0, dl, DAG); 4898 } 4899 4900 // No special expansion. 4901 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4902 } 4903 4904 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4905 /// limited-precision mode. 4906 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4907 const TargetLowering &TLI) { 4908 // TODO: What fast-math-flags should be set on the floating-point nodes? 4909 4910 if (Op.getValueType() == MVT::f32 && 4911 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4912 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4913 4914 // Scale the exponent by log(2). 4915 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4916 SDValue LogOfExponent = 4917 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4918 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4919 4920 // Get the significand and build it into a floating-point number with 4921 // exponent of 1. 4922 SDValue X = GetSignificand(DAG, Op1, dl); 4923 4924 SDValue LogOfMantissa; 4925 if (LimitFloatPrecision <= 6) { 4926 // For floating-point precision of 6: 4927 // 4928 // LogofMantissa = 4929 // -1.1609546f + 4930 // (1.4034025f - 0.23903021f * x) * x; 4931 // 4932 // error 0.0034276066, which is better than 8 bits 4933 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4934 getF32Constant(DAG, 0xbe74c456, dl)); 4935 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4936 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4937 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4938 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4939 getF32Constant(DAG, 0x3f949a29, dl)); 4940 } else if (LimitFloatPrecision <= 12) { 4941 // For floating-point precision of 12: 4942 // 4943 // LogOfMantissa = 4944 // -1.7417939f + 4945 // (2.8212026f + 4946 // (-1.4699568f + 4947 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4948 // 4949 // error 0.000061011436, which is 14 bits 4950 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4951 getF32Constant(DAG, 0xbd67b6d6, dl)); 4952 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4953 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4954 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4955 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4956 getF32Constant(DAG, 0x3fbc278b, dl)); 4957 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4958 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4959 getF32Constant(DAG, 0x40348e95, dl)); 4960 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4961 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4962 getF32Constant(DAG, 0x3fdef31a, dl)); 4963 } else { // LimitFloatPrecision <= 18 4964 // For floating-point precision of 18: 4965 // 4966 // LogOfMantissa = 4967 // -2.1072184f + 4968 // (4.2372794f + 4969 // (-3.7029485f + 4970 // (2.2781945f + 4971 // (-0.87823314f + 4972 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4973 // 4974 // error 0.0000023660568, which is better than 18 bits 4975 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4976 getF32Constant(DAG, 0xbc91e5ac, dl)); 4977 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4978 getF32Constant(DAG, 0x3e4350aa, dl)); 4979 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4980 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4981 getF32Constant(DAG, 0x3f60d3e3, dl)); 4982 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4983 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4984 getF32Constant(DAG, 0x4011cdf0, dl)); 4985 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4986 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4987 getF32Constant(DAG, 0x406cfd1c, dl)); 4988 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4989 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4990 getF32Constant(DAG, 0x408797cb, dl)); 4991 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4992 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4993 getF32Constant(DAG, 0x4006dcab, dl)); 4994 } 4995 4996 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4997 } 4998 4999 // No special expansion. 5000 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5001 } 5002 5003 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5004 /// limited-precision mode. 5005 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5006 const TargetLowering &TLI) { 5007 // TODO: What fast-math-flags should be set on the floating-point nodes? 5008 5009 if (Op.getValueType() == MVT::f32 && 5010 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5011 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5012 5013 // Get the exponent. 5014 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5015 5016 // Get the significand and build it into a floating-point number with 5017 // exponent of 1. 5018 SDValue X = GetSignificand(DAG, Op1, dl); 5019 5020 // Different possible minimax approximations of significand in 5021 // floating-point for various degrees of accuracy over [1,2]. 5022 SDValue Log2ofMantissa; 5023 if (LimitFloatPrecision <= 6) { 5024 // For floating-point precision of 6: 5025 // 5026 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5027 // 5028 // error 0.0049451742, which is more than 7 bits 5029 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5030 getF32Constant(DAG, 0xbeb08fe0, dl)); 5031 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5032 getF32Constant(DAG, 0x40019463, dl)); 5033 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5034 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5035 getF32Constant(DAG, 0x3fd6633d, dl)); 5036 } else if (LimitFloatPrecision <= 12) { 5037 // For floating-point precision of 12: 5038 // 5039 // Log2ofMantissa = 5040 // -2.51285454f + 5041 // (4.07009056f + 5042 // (-2.12067489f + 5043 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5044 // 5045 // error 0.0000876136000, which is better than 13 bits 5046 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5047 getF32Constant(DAG, 0xbda7262e, dl)); 5048 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5049 getF32Constant(DAG, 0x3f25280b, dl)); 5050 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5051 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5052 getF32Constant(DAG, 0x4007b923, dl)); 5053 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5054 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5055 getF32Constant(DAG, 0x40823e2f, dl)); 5056 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5057 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5058 getF32Constant(DAG, 0x4020d29c, dl)); 5059 } else { // LimitFloatPrecision <= 18 5060 // For floating-point precision of 18: 5061 // 5062 // Log2ofMantissa = 5063 // -3.0400495f + 5064 // (6.1129976f + 5065 // (-5.3420409f + 5066 // (3.2865683f + 5067 // (-1.2669343f + 5068 // (0.27515199f - 5069 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5070 // 5071 // error 0.0000018516, which is better than 18 bits 5072 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5073 getF32Constant(DAG, 0xbcd2769e, dl)); 5074 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5075 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5076 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5077 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5078 getF32Constant(DAG, 0x3fa22ae7, dl)); 5079 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5080 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5081 getF32Constant(DAG, 0x40525723, dl)); 5082 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5083 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5084 getF32Constant(DAG, 0x40aaf200, dl)); 5085 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5086 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5087 getF32Constant(DAG, 0x40c39dad, dl)); 5088 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5089 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5090 getF32Constant(DAG, 0x4042902c, dl)); 5091 } 5092 5093 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5094 } 5095 5096 // No special expansion. 5097 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5098 } 5099 5100 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5101 /// limited-precision mode. 5102 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5103 const TargetLowering &TLI) { 5104 // TODO: What fast-math-flags should be set on the floating-point nodes? 5105 5106 if (Op.getValueType() == MVT::f32 && 5107 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5108 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5109 5110 // Scale the exponent by log10(2) [0.30102999f]. 5111 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5112 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5113 getF32Constant(DAG, 0x3e9a209a, dl)); 5114 5115 // Get the significand and build it into a floating-point number with 5116 // exponent of 1. 5117 SDValue X = GetSignificand(DAG, Op1, dl); 5118 5119 SDValue Log10ofMantissa; 5120 if (LimitFloatPrecision <= 6) { 5121 // For floating-point precision of 6: 5122 // 5123 // Log10ofMantissa = 5124 // -0.50419619f + 5125 // (0.60948995f - 0.10380950f * x) * x; 5126 // 5127 // error 0.0014886165, which is 6 bits 5128 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5129 getF32Constant(DAG, 0xbdd49a13, dl)); 5130 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5131 getF32Constant(DAG, 0x3f1c0789, dl)); 5132 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5133 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5134 getF32Constant(DAG, 0x3f011300, dl)); 5135 } else if (LimitFloatPrecision <= 12) { 5136 // For floating-point precision of 12: 5137 // 5138 // Log10ofMantissa = 5139 // -0.64831180f + 5140 // (0.91751397f + 5141 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5142 // 5143 // error 0.00019228036, which is better than 12 bits 5144 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5145 getF32Constant(DAG, 0x3d431f31, dl)); 5146 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5147 getF32Constant(DAG, 0x3ea21fb2, dl)); 5148 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5149 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5150 getF32Constant(DAG, 0x3f6ae232, dl)); 5151 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5152 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5153 getF32Constant(DAG, 0x3f25f7c3, dl)); 5154 } else { // LimitFloatPrecision <= 18 5155 // For floating-point precision of 18: 5156 // 5157 // Log10ofMantissa = 5158 // -0.84299375f + 5159 // (1.5327582f + 5160 // (-1.0688956f + 5161 // (0.49102474f + 5162 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5163 // 5164 // error 0.0000037995730, which is better than 18 bits 5165 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5166 getF32Constant(DAG, 0x3c5d51ce, dl)); 5167 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5168 getF32Constant(DAG, 0x3e00685a, dl)); 5169 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5170 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5171 getF32Constant(DAG, 0x3efb6798, dl)); 5172 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5173 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5174 getF32Constant(DAG, 0x3f88d192, dl)); 5175 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5176 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5177 getF32Constant(DAG, 0x3fc4316c, dl)); 5178 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5179 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5180 getF32Constant(DAG, 0x3f57ce70, dl)); 5181 } 5182 5183 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5184 } 5185 5186 // No special expansion. 5187 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5188 } 5189 5190 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5191 /// limited-precision mode. 5192 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5193 const TargetLowering &TLI) { 5194 if (Op.getValueType() == MVT::f32 && 5195 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5196 return getLimitedPrecisionExp2(Op, dl, DAG); 5197 5198 // No special expansion. 5199 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5200 } 5201 5202 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5203 /// limited-precision mode with x == 10.0f. 5204 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5205 SelectionDAG &DAG, const TargetLowering &TLI) { 5206 bool IsExp10 = false; 5207 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5208 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5209 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5210 APFloat Ten(10.0f); 5211 IsExp10 = LHSC->isExactlyValue(Ten); 5212 } 5213 } 5214 5215 // TODO: What fast-math-flags should be set on the FMUL node? 5216 if (IsExp10) { 5217 // Put the exponent in the right bit position for later addition to the 5218 // final result: 5219 // 5220 // #define LOG2OF10 3.3219281f 5221 // t0 = Op * LOG2OF10; 5222 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5223 getF32Constant(DAG, 0x40549a78, dl)); 5224 return getLimitedPrecisionExp2(t0, dl, DAG); 5225 } 5226 5227 // No special expansion. 5228 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5229 } 5230 5231 /// ExpandPowI - Expand a llvm.powi intrinsic. 5232 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5233 SelectionDAG &DAG) { 5234 // If RHS is a constant, we can expand this out to a multiplication tree, 5235 // otherwise we end up lowering to a call to __powidf2 (for example). When 5236 // optimizing for size, we only want to do this if the expansion would produce 5237 // a small number of multiplies, otherwise we do the full expansion. 5238 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5239 // Get the exponent as a positive value. 5240 unsigned Val = RHSC->getSExtValue(); 5241 if ((int)Val < 0) Val = -Val; 5242 5243 // powi(x, 0) -> 1.0 5244 if (Val == 0) 5245 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5246 5247 bool OptForSize = DAG.shouldOptForSize(); 5248 if (!OptForSize || 5249 // If optimizing for size, don't insert too many multiplies. 5250 // This inserts up to 5 multiplies. 5251 countPopulation(Val) + Log2_32(Val) < 7) { 5252 // We use the simple binary decomposition method to generate the multiply 5253 // sequence. There are more optimal ways to do this (for example, 5254 // powi(x,15) generates one more multiply than it should), but this has 5255 // the benefit of being both really simple and much better than a libcall. 5256 SDValue Res; // Logically starts equal to 1.0 5257 SDValue CurSquare = LHS; 5258 // TODO: Intrinsics should have fast-math-flags that propagate to these 5259 // nodes. 5260 while (Val) { 5261 if (Val & 1) { 5262 if (Res.getNode()) 5263 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5264 else 5265 Res = CurSquare; // 1.0*CurSquare. 5266 } 5267 5268 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5269 CurSquare, CurSquare); 5270 Val >>= 1; 5271 } 5272 5273 // If the original was negative, invert the result, producing 1/(x*x*x). 5274 if (RHSC->getSExtValue() < 0) 5275 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5276 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5277 return Res; 5278 } 5279 } 5280 5281 // Otherwise, expand to a libcall. 5282 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5283 } 5284 5285 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5286 SDValue LHS, SDValue RHS, SDValue Scale, 5287 SelectionDAG &DAG, const TargetLowering &TLI) { 5288 EVT VT = LHS.getValueType(); 5289 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5290 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5291 LLVMContext &Ctx = *DAG.getContext(); 5292 5293 // If the type is legal but the operation isn't, this node might survive all 5294 // the way to operation legalization. If we end up there and we do not have 5295 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5296 // node. 5297 5298 // Coax the legalizer into expanding the node during type legalization instead 5299 // by bumping the size by one bit. This will force it to Promote, enabling the 5300 // early expansion and avoiding the need to expand later. 5301 5302 // We don't have to do this if Scale is 0; that can always be expanded, unless 5303 // it's a saturating signed operation. Those can experience true integer 5304 // division overflow, a case which we must avoid. 5305 5306 // FIXME: We wouldn't have to do this (or any of the early 5307 // expansion/promotion) if it was possible to expand a libcall of an 5308 // illegal type during operation legalization. But it's not, so things 5309 // get a bit hacky. 5310 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5311 if ((ScaleInt > 0 || (Saturating && Signed)) && 5312 (TLI.isTypeLegal(VT) || 5313 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5314 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5315 Opcode, VT, ScaleInt); 5316 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5317 EVT PromVT; 5318 if (VT.isScalarInteger()) 5319 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5320 else if (VT.isVector()) { 5321 PromVT = VT.getVectorElementType(); 5322 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5323 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5324 } else 5325 llvm_unreachable("Wrong VT for DIVFIX?"); 5326 if (Signed) { 5327 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5328 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5329 } else { 5330 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5331 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5332 } 5333 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5334 // For saturating operations, we need to shift up the LHS to get the 5335 // proper saturation width, and then shift down again afterwards. 5336 if (Saturating) 5337 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5338 DAG.getConstant(1, DL, ShiftTy)); 5339 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5340 if (Saturating) 5341 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5342 DAG.getConstant(1, DL, ShiftTy)); 5343 return DAG.getZExtOrTrunc(Res, DL, VT); 5344 } 5345 } 5346 5347 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5348 } 5349 5350 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5351 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5352 static void 5353 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5354 const SDValue &N) { 5355 switch (N.getOpcode()) { 5356 case ISD::CopyFromReg: { 5357 SDValue Op = N.getOperand(1); 5358 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5359 Op.getValueType().getSizeInBits()); 5360 return; 5361 } 5362 case ISD::BITCAST: 5363 case ISD::AssertZext: 5364 case ISD::AssertSext: 5365 case ISD::TRUNCATE: 5366 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5367 return; 5368 case ISD::BUILD_PAIR: 5369 case ISD::BUILD_VECTOR: 5370 case ISD::CONCAT_VECTORS: 5371 for (SDValue Op : N->op_values()) 5372 getUnderlyingArgRegs(Regs, Op); 5373 return; 5374 default: 5375 return; 5376 } 5377 } 5378 5379 /// If the DbgValueInst is a dbg_value of a function argument, create the 5380 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5381 /// instruction selection, they will be inserted to the entry BB. 5382 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5383 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5384 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5385 const Argument *Arg = dyn_cast<Argument>(V); 5386 if (!Arg) 5387 return false; 5388 5389 if (!IsDbgDeclare) { 5390 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5391 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5392 // the entry block. 5393 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5394 if (!IsInEntryBlock) 5395 return false; 5396 5397 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5398 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5399 // variable that also is a param. 5400 // 5401 // Although, if we are at the top of the entry block already, we can still 5402 // emit using ArgDbgValue. This might catch some situations when the 5403 // dbg.value refers to an argument that isn't used in the entry block, so 5404 // any CopyToReg node would be optimized out and the only way to express 5405 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5406 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5407 // we should only emit as ArgDbgValue if the Variable is an argument to the 5408 // current function, and the dbg.value intrinsic is found in the entry 5409 // block. 5410 bool VariableIsFunctionInputArg = Variable->isParameter() && 5411 !DL->getInlinedAt(); 5412 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5413 if (!IsInPrologue && !VariableIsFunctionInputArg) 5414 return false; 5415 5416 // Here we assume that a function argument on IR level only can be used to 5417 // describe one input parameter on source level. If we for example have 5418 // source code like this 5419 // 5420 // struct A { long x, y; }; 5421 // void foo(struct A a, long b) { 5422 // ... 5423 // b = a.x; 5424 // ... 5425 // } 5426 // 5427 // and IR like this 5428 // 5429 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5430 // entry: 5431 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5432 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5433 // call void @llvm.dbg.value(metadata i32 %b, "b", 5434 // ... 5435 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5436 // ... 5437 // 5438 // then the last dbg.value is describing a parameter "b" using a value that 5439 // is an argument. But since we already has used %a1 to describe a parameter 5440 // we should not handle that last dbg.value here (that would result in an 5441 // incorrect hoisting of the DBG_VALUE to the function entry). 5442 // Notice that we allow one dbg.value per IR level argument, to accommodate 5443 // for the situation with fragments above. 5444 if (VariableIsFunctionInputArg) { 5445 unsigned ArgNo = Arg->getArgNo(); 5446 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5447 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5448 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5449 return false; 5450 FuncInfo.DescribedArgs.set(ArgNo); 5451 } 5452 } 5453 5454 MachineFunction &MF = DAG.getMachineFunction(); 5455 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5456 5457 bool IsIndirect = false; 5458 Optional<MachineOperand> Op; 5459 // Some arguments' frame index is recorded during argument lowering. 5460 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5461 if (FI != std::numeric_limits<int>::max()) 5462 Op = MachineOperand::CreateFI(FI); 5463 5464 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5465 if (!Op && N.getNode()) { 5466 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5467 Register Reg; 5468 if (ArgRegsAndSizes.size() == 1) 5469 Reg = ArgRegsAndSizes.front().first; 5470 5471 if (Reg && Reg.isVirtual()) { 5472 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5473 Register PR = RegInfo.getLiveInPhysReg(Reg); 5474 if (PR) 5475 Reg = PR; 5476 } 5477 if (Reg) { 5478 Op = MachineOperand::CreateReg(Reg, false); 5479 IsIndirect = IsDbgDeclare; 5480 } 5481 } 5482 5483 if (!Op && N.getNode()) { 5484 // Check if frame index is available. 5485 SDValue LCandidate = peekThroughBitcasts(N); 5486 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5487 if (FrameIndexSDNode *FINode = 5488 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5489 Op = MachineOperand::CreateFI(FINode->getIndex()); 5490 } 5491 5492 if (!Op) { 5493 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5494 auto splitMultiRegDbgValue 5495 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5496 unsigned Offset = 0; 5497 for (auto RegAndSize : SplitRegs) { 5498 // If the expression is already a fragment, the current register 5499 // offset+size might extend beyond the fragment. In this case, only 5500 // the register bits that are inside the fragment are relevant. 5501 int RegFragmentSizeInBits = RegAndSize.second; 5502 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5503 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5504 // The register is entirely outside the expression fragment, 5505 // so is irrelevant for debug info. 5506 if (Offset >= ExprFragmentSizeInBits) 5507 break; 5508 // The register is partially outside the expression fragment, only 5509 // the low bits within the fragment are relevant for debug info. 5510 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5511 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5512 } 5513 } 5514 5515 auto FragmentExpr = DIExpression::createFragmentExpression( 5516 Expr, Offset, RegFragmentSizeInBits); 5517 Offset += RegAndSize.second; 5518 // If a valid fragment expression cannot be created, the variable's 5519 // correct value cannot be determined and so it is set as Undef. 5520 if (!FragmentExpr) { 5521 SDDbgValue *SDV = DAG.getConstantDbgValue( 5522 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5523 DAG.AddDbgValue(SDV, nullptr, false); 5524 continue; 5525 } 5526 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5527 FuncInfo.ArgDbgValues.push_back( 5528 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5529 RegAndSize.first, Variable, *FragmentExpr)); 5530 } 5531 }; 5532 5533 // Check if ValueMap has reg number. 5534 DenseMap<const Value *, Register>::const_iterator 5535 VMI = FuncInfo.ValueMap.find(V); 5536 if (VMI != FuncInfo.ValueMap.end()) { 5537 const auto &TLI = DAG.getTargetLoweringInfo(); 5538 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5539 V->getType(), getABIRegCopyCC(V)); 5540 if (RFV.occupiesMultipleRegs()) { 5541 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5542 return true; 5543 } 5544 5545 Op = MachineOperand::CreateReg(VMI->second, false); 5546 IsIndirect = IsDbgDeclare; 5547 } else if (ArgRegsAndSizes.size() > 1) { 5548 // This was split due to the calling convention, and no virtual register 5549 // mapping exists for the value. 5550 splitMultiRegDbgValue(ArgRegsAndSizes); 5551 return true; 5552 } 5553 } 5554 5555 if (!Op) 5556 return false; 5557 5558 assert(Variable->isValidLocationForIntrinsic(DL) && 5559 "Expected inlined-at fields to agree"); 5560 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5561 FuncInfo.ArgDbgValues.push_back( 5562 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5563 *Op, Variable, Expr)); 5564 5565 return true; 5566 } 5567 5568 /// Return the appropriate SDDbgValue based on N. 5569 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5570 DILocalVariable *Variable, 5571 DIExpression *Expr, 5572 const DebugLoc &dl, 5573 unsigned DbgSDNodeOrder) { 5574 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5575 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5576 // stack slot locations. 5577 // 5578 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5579 // debug values here after optimization: 5580 // 5581 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5582 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5583 // 5584 // Both describe the direct values of their associated variables. 5585 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5586 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5587 } 5588 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5589 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5590 } 5591 5592 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5593 switch (Intrinsic) { 5594 case Intrinsic::smul_fix: 5595 return ISD::SMULFIX; 5596 case Intrinsic::umul_fix: 5597 return ISD::UMULFIX; 5598 case Intrinsic::smul_fix_sat: 5599 return ISD::SMULFIXSAT; 5600 case Intrinsic::umul_fix_sat: 5601 return ISD::UMULFIXSAT; 5602 case Intrinsic::sdiv_fix: 5603 return ISD::SDIVFIX; 5604 case Intrinsic::udiv_fix: 5605 return ISD::UDIVFIX; 5606 case Intrinsic::sdiv_fix_sat: 5607 return ISD::SDIVFIXSAT; 5608 case Intrinsic::udiv_fix_sat: 5609 return ISD::UDIVFIXSAT; 5610 default: 5611 llvm_unreachable("Unhandled fixed point intrinsic"); 5612 } 5613 } 5614 5615 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5616 const char *FunctionName) { 5617 assert(FunctionName && "FunctionName must not be nullptr"); 5618 SDValue Callee = DAG.getExternalSymbol( 5619 FunctionName, 5620 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5621 LowerCallTo(I, Callee, I.isTailCall()); 5622 } 5623 5624 /// Given a @llvm.call.preallocated.setup, return the corresponding 5625 /// preallocated call. 5626 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5627 assert(cast<CallBase>(PreallocatedSetup) 5628 ->getCalledFunction() 5629 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5630 "expected call_preallocated_setup Value"); 5631 for (auto *U : PreallocatedSetup->users()) { 5632 auto *UseCall = cast<CallBase>(U); 5633 const Function *Fn = UseCall->getCalledFunction(); 5634 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5635 return UseCall; 5636 } 5637 } 5638 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5639 } 5640 5641 /// Lower the call to the specified intrinsic function. 5642 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5643 unsigned Intrinsic) { 5644 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5645 SDLoc sdl = getCurSDLoc(); 5646 DebugLoc dl = getCurDebugLoc(); 5647 SDValue Res; 5648 5649 switch (Intrinsic) { 5650 default: 5651 // By default, turn this into a target intrinsic node. 5652 visitTargetIntrinsic(I, Intrinsic); 5653 return; 5654 case Intrinsic::vscale: { 5655 match(&I, m_VScale(DAG.getDataLayout())); 5656 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5657 setValue(&I, 5658 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5659 return; 5660 } 5661 case Intrinsic::vastart: visitVAStart(I); return; 5662 case Intrinsic::vaend: visitVAEnd(I); return; 5663 case Intrinsic::vacopy: visitVACopy(I); return; 5664 case Intrinsic::returnaddress: 5665 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5666 TLI.getPointerTy(DAG.getDataLayout()), 5667 getValue(I.getArgOperand(0)))); 5668 return; 5669 case Intrinsic::addressofreturnaddress: 5670 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5671 TLI.getPointerTy(DAG.getDataLayout()))); 5672 return; 5673 case Intrinsic::sponentry: 5674 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5675 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5676 return; 5677 case Intrinsic::frameaddress: 5678 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5679 TLI.getFrameIndexTy(DAG.getDataLayout()), 5680 getValue(I.getArgOperand(0)))); 5681 return; 5682 case Intrinsic::read_register: { 5683 Value *Reg = I.getArgOperand(0); 5684 SDValue Chain = getRoot(); 5685 SDValue RegName = 5686 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5687 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5688 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5689 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5690 setValue(&I, Res); 5691 DAG.setRoot(Res.getValue(1)); 5692 return; 5693 } 5694 case Intrinsic::write_register: { 5695 Value *Reg = I.getArgOperand(0); 5696 Value *RegValue = I.getArgOperand(1); 5697 SDValue Chain = getRoot(); 5698 SDValue RegName = 5699 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5700 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5701 RegName, getValue(RegValue))); 5702 return; 5703 } 5704 case Intrinsic::memcpy: { 5705 const auto &MCI = cast<MemCpyInst>(I); 5706 SDValue Op1 = getValue(I.getArgOperand(0)); 5707 SDValue Op2 = getValue(I.getArgOperand(1)); 5708 SDValue Op3 = getValue(I.getArgOperand(2)); 5709 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5710 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5711 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5712 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5713 bool isVol = MCI.isVolatile(); 5714 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5715 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5716 // node. 5717 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5718 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5719 /* AlwaysInline */ false, isTC, 5720 MachinePointerInfo(I.getArgOperand(0)), 5721 MachinePointerInfo(I.getArgOperand(1))); 5722 updateDAGForMaybeTailCall(MC); 5723 return; 5724 } 5725 case Intrinsic::memcpy_inline: { 5726 const auto &MCI = cast<MemCpyInlineInst>(I); 5727 SDValue Dst = getValue(I.getArgOperand(0)); 5728 SDValue Src = getValue(I.getArgOperand(1)); 5729 SDValue Size = getValue(I.getArgOperand(2)); 5730 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5731 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5732 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5733 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5734 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5735 bool isVol = MCI.isVolatile(); 5736 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5737 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5738 // node. 5739 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5740 /* AlwaysInline */ true, isTC, 5741 MachinePointerInfo(I.getArgOperand(0)), 5742 MachinePointerInfo(I.getArgOperand(1))); 5743 updateDAGForMaybeTailCall(MC); 5744 return; 5745 } 5746 case Intrinsic::memset: { 5747 const auto &MSI = cast<MemSetInst>(I); 5748 SDValue Op1 = getValue(I.getArgOperand(0)); 5749 SDValue Op2 = getValue(I.getArgOperand(1)); 5750 SDValue Op3 = getValue(I.getArgOperand(2)); 5751 // @llvm.memset defines 0 and 1 to both mean no alignment. 5752 Align Alignment = MSI.getDestAlign().valueOrOne(); 5753 bool isVol = MSI.isVolatile(); 5754 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5755 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5756 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5757 MachinePointerInfo(I.getArgOperand(0))); 5758 updateDAGForMaybeTailCall(MS); 5759 return; 5760 } 5761 case Intrinsic::memmove: { 5762 const auto &MMI = cast<MemMoveInst>(I); 5763 SDValue Op1 = getValue(I.getArgOperand(0)); 5764 SDValue Op2 = getValue(I.getArgOperand(1)); 5765 SDValue Op3 = getValue(I.getArgOperand(2)); 5766 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5767 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5768 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5769 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5770 bool isVol = MMI.isVolatile(); 5771 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5772 // FIXME: Support passing different dest/src alignments to the memmove DAG 5773 // node. 5774 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5775 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5776 isTC, MachinePointerInfo(I.getArgOperand(0)), 5777 MachinePointerInfo(I.getArgOperand(1))); 5778 updateDAGForMaybeTailCall(MM); 5779 return; 5780 } 5781 case Intrinsic::memcpy_element_unordered_atomic: { 5782 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5783 SDValue Dst = getValue(MI.getRawDest()); 5784 SDValue Src = getValue(MI.getRawSource()); 5785 SDValue Length = getValue(MI.getLength()); 5786 5787 unsigned DstAlign = MI.getDestAlignment(); 5788 unsigned SrcAlign = MI.getSourceAlignment(); 5789 Type *LengthTy = MI.getLength()->getType(); 5790 unsigned ElemSz = MI.getElementSizeInBytes(); 5791 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5792 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5793 SrcAlign, Length, LengthTy, ElemSz, isTC, 5794 MachinePointerInfo(MI.getRawDest()), 5795 MachinePointerInfo(MI.getRawSource())); 5796 updateDAGForMaybeTailCall(MC); 5797 return; 5798 } 5799 case Intrinsic::memmove_element_unordered_atomic: { 5800 auto &MI = cast<AtomicMemMoveInst>(I); 5801 SDValue Dst = getValue(MI.getRawDest()); 5802 SDValue Src = getValue(MI.getRawSource()); 5803 SDValue Length = getValue(MI.getLength()); 5804 5805 unsigned DstAlign = MI.getDestAlignment(); 5806 unsigned SrcAlign = MI.getSourceAlignment(); 5807 Type *LengthTy = MI.getLength()->getType(); 5808 unsigned ElemSz = MI.getElementSizeInBytes(); 5809 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5810 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5811 SrcAlign, Length, LengthTy, ElemSz, isTC, 5812 MachinePointerInfo(MI.getRawDest()), 5813 MachinePointerInfo(MI.getRawSource())); 5814 updateDAGForMaybeTailCall(MC); 5815 return; 5816 } 5817 case Intrinsic::memset_element_unordered_atomic: { 5818 auto &MI = cast<AtomicMemSetInst>(I); 5819 SDValue Dst = getValue(MI.getRawDest()); 5820 SDValue Val = getValue(MI.getValue()); 5821 SDValue Length = getValue(MI.getLength()); 5822 5823 unsigned DstAlign = MI.getDestAlignment(); 5824 Type *LengthTy = MI.getLength()->getType(); 5825 unsigned ElemSz = MI.getElementSizeInBytes(); 5826 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5827 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5828 LengthTy, ElemSz, isTC, 5829 MachinePointerInfo(MI.getRawDest())); 5830 updateDAGForMaybeTailCall(MC); 5831 return; 5832 } 5833 case Intrinsic::call_preallocated_setup: { 5834 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5835 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5836 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5837 getRoot(), SrcValue); 5838 setValue(&I, Res); 5839 DAG.setRoot(Res); 5840 return; 5841 } 5842 case Intrinsic::call_preallocated_arg: { 5843 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5844 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5845 SDValue Ops[3]; 5846 Ops[0] = getRoot(); 5847 Ops[1] = SrcValue; 5848 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5849 MVT::i32); // arg index 5850 SDValue Res = DAG.getNode( 5851 ISD::PREALLOCATED_ARG, sdl, 5852 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 5853 setValue(&I, Res); 5854 DAG.setRoot(Res.getValue(1)); 5855 return; 5856 } 5857 case Intrinsic::dbg_addr: 5858 case Intrinsic::dbg_declare: { 5859 const auto &DI = cast<DbgVariableIntrinsic>(I); 5860 DILocalVariable *Variable = DI.getVariable(); 5861 DIExpression *Expression = DI.getExpression(); 5862 dropDanglingDebugInfo(Variable, Expression); 5863 assert(Variable && "Missing variable"); 5864 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5865 << "\n"); 5866 // Check if address has undef value. 5867 const Value *Address = DI.getVariableLocation(); 5868 if (!Address || isa<UndefValue>(Address) || 5869 (Address->use_empty() && !isa<Argument>(Address))) { 5870 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5871 << " (bad/undef/unused-arg address)\n"); 5872 return; 5873 } 5874 5875 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5876 5877 // Check if this variable can be described by a frame index, typically 5878 // either as a static alloca or a byval parameter. 5879 int FI = std::numeric_limits<int>::max(); 5880 if (const auto *AI = 5881 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5882 if (AI->isStaticAlloca()) { 5883 auto I = FuncInfo.StaticAllocaMap.find(AI); 5884 if (I != FuncInfo.StaticAllocaMap.end()) 5885 FI = I->second; 5886 } 5887 } else if (const auto *Arg = dyn_cast<Argument>( 5888 Address->stripInBoundsConstantOffsets())) { 5889 FI = FuncInfo.getArgumentFrameIndex(Arg); 5890 } 5891 5892 // llvm.dbg.addr is control dependent and always generates indirect 5893 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5894 // the MachineFunction variable table. 5895 if (FI != std::numeric_limits<int>::max()) { 5896 if (Intrinsic == Intrinsic::dbg_addr) { 5897 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5898 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5899 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5900 } else { 5901 LLVM_DEBUG(dbgs() << "Skipping " << DI 5902 << " (variable info stashed in MF side table)\n"); 5903 } 5904 return; 5905 } 5906 5907 SDValue &N = NodeMap[Address]; 5908 if (!N.getNode() && isa<Argument>(Address)) 5909 // Check unused arguments map. 5910 N = UnusedArgNodeMap[Address]; 5911 SDDbgValue *SDV; 5912 if (N.getNode()) { 5913 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5914 Address = BCI->getOperand(0); 5915 // Parameters are handled specially. 5916 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5917 if (isParameter && FINode) { 5918 // Byval parameter. We have a frame index at this point. 5919 SDV = 5920 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5921 /*IsIndirect*/ true, dl, SDNodeOrder); 5922 } else if (isa<Argument>(Address)) { 5923 // Address is an argument, so try to emit its dbg value using 5924 // virtual register info from the FuncInfo.ValueMap. 5925 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5926 return; 5927 } else { 5928 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5929 true, dl, SDNodeOrder); 5930 } 5931 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5932 } else { 5933 // If Address is an argument then try to emit its dbg value using 5934 // virtual register info from the FuncInfo.ValueMap. 5935 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5936 N)) { 5937 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5938 << " (could not emit func-arg dbg_value)\n"); 5939 } 5940 } 5941 return; 5942 } 5943 case Intrinsic::dbg_label: { 5944 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5945 DILabel *Label = DI.getLabel(); 5946 assert(Label && "Missing label"); 5947 5948 SDDbgLabel *SDV; 5949 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5950 DAG.AddDbgLabel(SDV); 5951 return; 5952 } 5953 case Intrinsic::dbg_value: { 5954 const DbgValueInst &DI = cast<DbgValueInst>(I); 5955 assert(DI.getVariable() && "Missing variable"); 5956 5957 DILocalVariable *Variable = DI.getVariable(); 5958 DIExpression *Expression = DI.getExpression(); 5959 dropDanglingDebugInfo(Variable, Expression); 5960 const Value *V = DI.getValue(); 5961 if (!V) 5962 return; 5963 5964 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5965 SDNodeOrder)) 5966 return; 5967 5968 // TODO: Dangling debug info will eventually either be resolved or produce 5969 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5970 // between the original dbg.value location and its resolved DBG_VALUE, which 5971 // we should ideally fill with an extra Undef DBG_VALUE. 5972 5973 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5974 return; 5975 } 5976 5977 case Intrinsic::eh_typeid_for: { 5978 // Find the type id for the given typeinfo. 5979 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5980 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5981 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5982 setValue(&I, Res); 5983 return; 5984 } 5985 5986 case Intrinsic::eh_return_i32: 5987 case Intrinsic::eh_return_i64: 5988 DAG.getMachineFunction().setCallsEHReturn(true); 5989 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5990 MVT::Other, 5991 getControlRoot(), 5992 getValue(I.getArgOperand(0)), 5993 getValue(I.getArgOperand(1)))); 5994 return; 5995 case Intrinsic::eh_unwind_init: 5996 DAG.getMachineFunction().setCallsUnwindInit(true); 5997 return; 5998 case Intrinsic::eh_dwarf_cfa: 5999 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6000 TLI.getPointerTy(DAG.getDataLayout()), 6001 getValue(I.getArgOperand(0)))); 6002 return; 6003 case Intrinsic::eh_sjlj_callsite: { 6004 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6005 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6006 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6007 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6008 6009 MMI.setCurrentCallSite(CI->getZExtValue()); 6010 return; 6011 } 6012 case Intrinsic::eh_sjlj_functioncontext: { 6013 // Get and store the index of the function context. 6014 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6015 AllocaInst *FnCtx = 6016 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6017 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6018 MFI.setFunctionContextIndex(FI); 6019 return; 6020 } 6021 case Intrinsic::eh_sjlj_setjmp: { 6022 SDValue Ops[2]; 6023 Ops[0] = getRoot(); 6024 Ops[1] = getValue(I.getArgOperand(0)); 6025 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6026 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6027 setValue(&I, Op.getValue(0)); 6028 DAG.setRoot(Op.getValue(1)); 6029 return; 6030 } 6031 case Intrinsic::eh_sjlj_longjmp: 6032 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6033 getRoot(), getValue(I.getArgOperand(0)))); 6034 return; 6035 case Intrinsic::eh_sjlj_setup_dispatch: 6036 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6037 getRoot())); 6038 return; 6039 case Intrinsic::masked_gather: 6040 visitMaskedGather(I); 6041 return; 6042 case Intrinsic::masked_load: 6043 visitMaskedLoad(I); 6044 return; 6045 case Intrinsic::masked_scatter: 6046 visitMaskedScatter(I); 6047 return; 6048 case Intrinsic::masked_store: 6049 visitMaskedStore(I); 6050 return; 6051 case Intrinsic::masked_expandload: 6052 visitMaskedLoad(I, true /* IsExpanding */); 6053 return; 6054 case Intrinsic::masked_compressstore: 6055 visitMaskedStore(I, true /* IsCompressing */); 6056 return; 6057 case Intrinsic::powi: 6058 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6059 getValue(I.getArgOperand(1)), DAG)); 6060 return; 6061 case Intrinsic::log: 6062 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6063 return; 6064 case Intrinsic::log2: 6065 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6066 return; 6067 case Intrinsic::log10: 6068 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6069 return; 6070 case Intrinsic::exp: 6071 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6072 return; 6073 case Intrinsic::exp2: 6074 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6075 return; 6076 case Intrinsic::pow: 6077 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6078 getValue(I.getArgOperand(1)), DAG, TLI)); 6079 return; 6080 case Intrinsic::sqrt: 6081 case Intrinsic::fabs: 6082 case Intrinsic::sin: 6083 case Intrinsic::cos: 6084 case Intrinsic::floor: 6085 case Intrinsic::ceil: 6086 case Intrinsic::trunc: 6087 case Intrinsic::rint: 6088 case Intrinsic::nearbyint: 6089 case Intrinsic::round: 6090 case Intrinsic::roundeven: 6091 case Intrinsic::canonicalize: { 6092 unsigned Opcode; 6093 switch (Intrinsic) { 6094 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6095 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6096 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6097 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6098 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6099 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6100 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6101 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6102 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6103 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6104 case Intrinsic::round: Opcode = ISD::FROUND; break; 6105 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6106 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6107 } 6108 6109 setValue(&I, DAG.getNode(Opcode, sdl, 6110 getValue(I.getArgOperand(0)).getValueType(), 6111 getValue(I.getArgOperand(0)))); 6112 return; 6113 } 6114 case Intrinsic::lround: 6115 case Intrinsic::llround: 6116 case Intrinsic::lrint: 6117 case Intrinsic::llrint: { 6118 unsigned Opcode; 6119 switch (Intrinsic) { 6120 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6121 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6122 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6123 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6124 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6125 } 6126 6127 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6128 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6129 getValue(I.getArgOperand(0)))); 6130 return; 6131 } 6132 case Intrinsic::minnum: 6133 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6134 getValue(I.getArgOperand(0)).getValueType(), 6135 getValue(I.getArgOperand(0)), 6136 getValue(I.getArgOperand(1)))); 6137 return; 6138 case Intrinsic::maxnum: 6139 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6140 getValue(I.getArgOperand(0)).getValueType(), 6141 getValue(I.getArgOperand(0)), 6142 getValue(I.getArgOperand(1)))); 6143 return; 6144 case Intrinsic::minimum: 6145 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6146 getValue(I.getArgOperand(0)).getValueType(), 6147 getValue(I.getArgOperand(0)), 6148 getValue(I.getArgOperand(1)))); 6149 return; 6150 case Intrinsic::maximum: 6151 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6152 getValue(I.getArgOperand(0)).getValueType(), 6153 getValue(I.getArgOperand(0)), 6154 getValue(I.getArgOperand(1)))); 6155 return; 6156 case Intrinsic::copysign: 6157 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6158 getValue(I.getArgOperand(0)).getValueType(), 6159 getValue(I.getArgOperand(0)), 6160 getValue(I.getArgOperand(1)))); 6161 return; 6162 case Intrinsic::fma: 6163 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6164 getValue(I.getArgOperand(0)).getValueType(), 6165 getValue(I.getArgOperand(0)), 6166 getValue(I.getArgOperand(1)), 6167 getValue(I.getArgOperand(2)))); 6168 return; 6169 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6170 case Intrinsic::INTRINSIC: 6171 #include "llvm/IR/ConstrainedOps.def" 6172 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6173 return; 6174 case Intrinsic::fmuladd: { 6175 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6176 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6177 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6178 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6179 getValue(I.getArgOperand(0)).getValueType(), 6180 getValue(I.getArgOperand(0)), 6181 getValue(I.getArgOperand(1)), 6182 getValue(I.getArgOperand(2)))); 6183 } else { 6184 // TODO: Intrinsic calls should have fast-math-flags. 6185 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6186 getValue(I.getArgOperand(0)).getValueType(), 6187 getValue(I.getArgOperand(0)), 6188 getValue(I.getArgOperand(1))); 6189 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6190 getValue(I.getArgOperand(0)).getValueType(), 6191 Mul, 6192 getValue(I.getArgOperand(2))); 6193 setValue(&I, Add); 6194 } 6195 return; 6196 } 6197 case Intrinsic::convert_to_fp16: 6198 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6199 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6200 getValue(I.getArgOperand(0)), 6201 DAG.getTargetConstant(0, sdl, 6202 MVT::i32)))); 6203 return; 6204 case Intrinsic::convert_from_fp16: 6205 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6206 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6207 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6208 getValue(I.getArgOperand(0))))); 6209 return; 6210 case Intrinsic::pcmarker: { 6211 SDValue Tmp = getValue(I.getArgOperand(0)); 6212 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6213 return; 6214 } 6215 case Intrinsic::readcyclecounter: { 6216 SDValue Op = getRoot(); 6217 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6218 DAG.getVTList(MVT::i64, MVT::Other), Op); 6219 setValue(&I, Res); 6220 DAG.setRoot(Res.getValue(1)); 6221 return; 6222 } 6223 case Intrinsic::bitreverse: 6224 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6225 getValue(I.getArgOperand(0)).getValueType(), 6226 getValue(I.getArgOperand(0)))); 6227 return; 6228 case Intrinsic::bswap: 6229 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6230 getValue(I.getArgOperand(0)).getValueType(), 6231 getValue(I.getArgOperand(0)))); 6232 return; 6233 case Intrinsic::cttz: { 6234 SDValue Arg = getValue(I.getArgOperand(0)); 6235 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6236 EVT Ty = Arg.getValueType(); 6237 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6238 sdl, Ty, Arg)); 6239 return; 6240 } 6241 case Intrinsic::ctlz: { 6242 SDValue Arg = getValue(I.getArgOperand(0)); 6243 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6244 EVT Ty = Arg.getValueType(); 6245 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6246 sdl, Ty, Arg)); 6247 return; 6248 } 6249 case Intrinsic::ctpop: { 6250 SDValue Arg = getValue(I.getArgOperand(0)); 6251 EVT Ty = Arg.getValueType(); 6252 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6253 return; 6254 } 6255 case Intrinsic::fshl: 6256 case Intrinsic::fshr: { 6257 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6258 SDValue X = getValue(I.getArgOperand(0)); 6259 SDValue Y = getValue(I.getArgOperand(1)); 6260 SDValue Z = getValue(I.getArgOperand(2)); 6261 EVT VT = X.getValueType(); 6262 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6263 SDValue Zero = DAG.getConstant(0, sdl, VT); 6264 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6265 6266 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6267 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6268 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6269 return; 6270 } 6271 6272 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6273 // avoid the select that is necessary in the general case to filter out 6274 // the 0-shift possibility that leads to UB. 6275 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6276 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6277 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6278 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6279 return; 6280 } 6281 6282 // Some targets only rotate one way. Try the opposite direction. 6283 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6284 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6285 // Negate the shift amount because it is safe to ignore the high bits. 6286 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6287 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6288 return; 6289 } 6290 6291 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6292 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6293 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6294 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6295 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6296 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6297 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6298 return; 6299 } 6300 6301 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6302 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6303 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6304 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6305 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6306 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6307 6308 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6309 // and that is undefined. We must compare and select to avoid UB. 6310 EVT CCVT = MVT::i1; 6311 if (VT.isVector()) 6312 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6313 6314 // For fshl, 0-shift returns the 1st arg (X). 6315 // For fshr, 0-shift returns the 2nd arg (Y). 6316 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6317 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6318 return; 6319 } 6320 case Intrinsic::sadd_sat: { 6321 SDValue Op1 = getValue(I.getArgOperand(0)); 6322 SDValue Op2 = getValue(I.getArgOperand(1)); 6323 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6324 return; 6325 } 6326 case Intrinsic::uadd_sat: { 6327 SDValue Op1 = getValue(I.getArgOperand(0)); 6328 SDValue Op2 = getValue(I.getArgOperand(1)); 6329 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6330 return; 6331 } 6332 case Intrinsic::ssub_sat: { 6333 SDValue Op1 = getValue(I.getArgOperand(0)); 6334 SDValue Op2 = getValue(I.getArgOperand(1)); 6335 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6336 return; 6337 } 6338 case Intrinsic::usub_sat: { 6339 SDValue Op1 = getValue(I.getArgOperand(0)); 6340 SDValue Op2 = getValue(I.getArgOperand(1)); 6341 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6342 return; 6343 } 6344 case Intrinsic::smul_fix: 6345 case Intrinsic::umul_fix: 6346 case Intrinsic::smul_fix_sat: 6347 case Intrinsic::umul_fix_sat: { 6348 SDValue Op1 = getValue(I.getArgOperand(0)); 6349 SDValue Op2 = getValue(I.getArgOperand(1)); 6350 SDValue Op3 = getValue(I.getArgOperand(2)); 6351 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6352 Op1.getValueType(), Op1, Op2, Op3)); 6353 return; 6354 } 6355 case Intrinsic::sdiv_fix: 6356 case Intrinsic::udiv_fix: 6357 case Intrinsic::sdiv_fix_sat: 6358 case Intrinsic::udiv_fix_sat: { 6359 SDValue Op1 = getValue(I.getArgOperand(0)); 6360 SDValue Op2 = getValue(I.getArgOperand(1)); 6361 SDValue Op3 = getValue(I.getArgOperand(2)); 6362 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6363 Op1, Op2, Op3, DAG, TLI)); 6364 return; 6365 } 6366 case Intrinsic::stacksave: { 6367 SDValue Op = getRoot(); 6368 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6369 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6370 setValue(&I, Res); 6371 DAG.setRoot(Res.getValue(1)); 6372 return; 6373 } 6374 case Intrinsic::stackrestore: 6375 Res = getValue(I.getArgOperand(0)); 6376 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6377 return; 6378 case Intrinsic::get_dynamic_area_offset: { 6379 SDValue Op = getRoot(); 6380 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6381 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6382 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6383 // target. 6384 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6385 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6386 " intrinsic!"); 6387 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6388 Op); 6389 DAG.setRoot(Op); 6390 setValue(&I, Res); 6391 return; 6392 } 6393 case Intrinsic::stackguard: { 6394 MachineFunction &MF = DAG.getMachineFunction(); 6395 const Module &M = *MF.getFunction().getParent(); 6396 SDValue Chain = getRoot(); 6397 if (TLI.useLoadStackGuardNode()) { 6398 Res = getLoadStackGuard(DAG, sdl, Chain); 6399 } else { 6400 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6401 const Value *Global = TLI.getSDagStackGuard(M); 6402 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6403 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6404 MachinePointerInfo(Global, 0), Align, 6405 MachineMemOperand::MOVolatile); 6406 } 6407 if (TLI.useStackGuardXorFP()) 6408 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6409 DAG.setRoot(Chain); 6410 setValue(&I, Res); 6411 return; 6412 } 6413 case Intrinsic::stackprotector: { 6414 // Emit code into the DAG to store the stack guard onto the stack. 6415 MachineFunction &MF = DAG.getMachineFunction(); 6416 MachineFrameInfo &MFI = MF.getFrameInfo(); 6417 SDValue Src, Chain = getRoot(); 6418 6419 if (TLI.useLoadStackGuardNode()) 6420 Src = getLoadStackGuard(DAG, sdl, Chain); 6421 else 6422 Src = getValue(I.getArgOperand(0)); // The guard's value. 6423 6424 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6425 6426 int FI = FuncInfo.StaticAllocaMap[Slot]; 6427 MFI.setStackProtectorIndex(FI); 6428 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6429 6430 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6431 6432 // Store the stack protector onto the stack. 6433 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6434 DAG.getMachineFunction(), FI), 6435 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6436 setValue(&I, Res); 6437 DAG.setRoot(Res); 6438 return; 6439 } 6440 case Intrinsic::objectsize: 6441 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6442 6443 case Intrinsic::is_constant: 6444 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6445 6446 case Intrinsic::annotation: 6447 case Intrinsic::ptr_annotation: 6448 case Intrinsic::launder_invariant_group: 6449 case Intrinsic::strip_invariant_group: 6450 // Drop the intrinsic, but forward the value 6451 setValue(&I, getValue(I.getOperand(0))); 6452 return; 6453 case Intrinsic::assume: 6454 case Intrinsic::var_annotation: 6455 case Intrinsic::sideeffect: 6456 // Discard annotate attributes, assumptions, and artificial side-effects. 6457 return; 6458 6459 case Intrinsic::codeview_annotation: { 6460 // Emit a label associated with this metadata. 6461 MachineFunction &MF = DAG.getMachineFunction(); 6462 MCSymbol *Label = 6463 MF.getMMI().getContext().createTempSymbol("annotation", true); 6464 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6465 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6466 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6467 DAG.setRoot(Res); 6468 return; 6469 } 6470 6471 case Intrinsic::init_trampoline: { 6472 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6473 6474 SDValue Ops[6]; 6475 Ops[0] = getRoot(); 6476 Ops[1] = getValue(I.getArgOperand(0)); 6477 Ops[2] = getValue(I.getArgOperand(1)); 6478 Ops[3] = getValue(I.getArgOperand(2)); 6479 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6480 Ops[5] = DAG.getSrcValue(F); 6481 6482 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6483 6484 DAG.setRoot(Res); 6485 return; 6486 } 6487 case Intrinsic::adjust_trampoline: 6488 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6489 TLI.getPointerTy(DAG.getDataLayout()), 6490 getValue(I.getArgOperand(0)))); 6491 return; 6492 case Intrinsic::gcroot: { 6493 assert(DAG.getMachineFunction().getFunction().hasGC() && 6494 "only valid in functions with gc specified, enforced by Verifier"); 6495 assert(GFI && "implied by previous"); 6496 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6497 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6498 6499 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6500 GFI->addStackRoot(FI->getIndex(), TypeMap); 6501 return; 6502 } 6503 case Intrinsic::gcread: 6504 case Intrinsic::gcwrite: 6505 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6506 case Intrinsic::flt_rounds: 6507 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6508 setValue(&I, Res); 6509 DAG.setRoot(Res.getValue(1)); 6510 return; 6511 6512 case Intrinsic::expect: 6513 // Just replace __builtin_expect(exp, c) with EXP. 6514 setValue(&I, getValue(I.getArgOperand(0))); 6515 return; 6516 6517 case Intrinsic::debugtrap: 6518 case Intrinsic::trap: { 6519 StringRef TrapFuncName = 6520 I.getAttributes() 6521 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6522 .getValueAsString(); 6523 if (TrapFuncName.empty()) { 6524 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6525 ISD::TRAP : ISD::DEBUGTRAP; 6526 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6527 return; 6528 } 6529 TargetLowering::ArgListTy Args; 6530 6531 TargetLowering::CallLoweringInfo CLI(DAG); 6532 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6533 CallingConv::C, I.getType(), 6534 DAG.getExternalSymbol(TrapFuncName.data(), 6535 TLI.getPointerTy(DAG.getDataLayout())), 6536 std::move(Args)); 6537 6538 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6539 DAG.setRoot(Result.second); 6540 return; 6541 } 6542 6543 case Intrinsic::uadd_with_overflow: 6544 case Intrinsic::sadd_with_overflow: 6545 case Intrinsic::usub_with_overflow: 6546 case Intrinsic::ssub_with_overflow: 6547 case Intrinsic::umul_with_overflow: 6548 case Intrinsic::smul_with_overflow: { 6549 ISD::NodeType Op; 6550 switch (Intrinsic) { 6551 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6552 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6553 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6554 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6555 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6556 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6557 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6558 } 6559 SDValue Op1 = getValue(I.getArgOperand(0)); 6560 SDValue Op2 = getValue(I.getArgOperand(1)); 6561 6562 EVT ResultVT = Op1.getValueType(); 6563 EVT OverflowVT = MVT::i1; 6564 if (ResultVT.isVector()) 6565 OverflowVT = EVT::getVectorVT( 6566 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6567 6568 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6569 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6570 return; 6571 } 6572 case Intrinsic::prefetch: { 6573 SDValue Ops[5]; 6574 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6575 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6576 Ops[0] = DAG.getRoot(); 6577 Ops[1] = getValue(I.getArgOperand(0)); 6578 Ops[2] = getValue(I.getArgOperand(1)); 6579 Ops[3] = getValue(I.getArgOperand(2)); 6580 Ops[4] = getValue(I.getArgOperand(3)); 6581 SDValue Result = DAG.getMemIntrinsicNode( 6582 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6583 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6584 /* align */ None, Flags); 6585 6586 // Chain the prefetch in parallell with any pending loads, to stay out of 6587 // the way of later optimizations. 6588 PendingLoads.push_back(Result); 6589 Result = getRoot(); 6590 DAG.setRoot(Result); 6591 return; 6592 } 6593 case Intrinsic::lifetime_start: 6594 case Intrinsic::lifetime_end: { 6595 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6596 // Stack coloring is not enabled in O0, discard region information. 6597 if (TM.getOptLevel() == CodeGenOpt::None) 6598 return; 6599 6600 const int64_t ObjectSize = 6601 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6602 Value *const ObjectPtr = I.getArgOperand(1); 6603 SmallVector<const Value *, 4> Allocas; 6604 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6605 6606 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6607 E = Allocas.end(); Object != E; ++Object) { 6608 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6609 6610 // Could not find an Alloca. 6611 if (!LifetimeObject) 6612 continue; 6613 6614 // First check that the Alloca is static, otherwise it won't have a 6615 // valid frame index. 6616 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6617 if (SI == FuncInfo.StaticAllocaMap.end()) 6618 return; 6619 6620 const int FrameIndex = SI->second; 6621 int64_t Offset; 6622 if (GetPointerBaseWithConstantOffset( 6623 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6624 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6625 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6626 Offset); 6627 DAG.setRoot(Res); 6628 } 6629 return; 6630 } 6631 case Intrinsic::invariant_start: 6632 // Discard region information. 6633 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6634 return; 6635 case Intrinsic::invariant_end: 6636 // Discard region information. 6637 return; 6638 case Intrinsic::clear_cache: 6639 /// FunctionName may be null. 6640 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6641 lowerCallToExternalSymbol(I, FunctionName); 6642 return; 6643 case Intrinsic::donothing: 6644 // ignore 6645 return; 6646 case Intrinsic::experimental_stackmap: 6647 visitStackmap(I); 6648 return; 6649 case Intrinsic::experimental_patchpoint_void: 6650 case Intrinsic::experimental_patchpoint_i64: 6651 visitPatchpoint(I); 6652 return; 6653 case Intrinsic::experimental_gc_statepoint: 6654 LowerStatepoint(cast<GCStatepointInst>(I)); 6655 return; 6656 case Intrinsic::experimental_gc_result: 6657 visitGCResult(cast<GCResultInst>(I)); 6658 return; 6659 case Intrinsic::experimental_gc_relocate: 6660 visitGCRelocate(cast<GCRelocateInst>(I)); 6661 return; 6662 case Intrinsic::instrprof_increment: 6663 llvm_unreachable("instrprof failed to lower an increment"); 6664 case Intrinsic::instrprof_value_profile: 6665 llvm_unreachable("instrprof failed to lower a value profiling call"); 6666 case Intrinsic::localescape: { 6667 MachineFunction &MF = DAG.getMachineFunction(); 6668 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6669 6670 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6671 // is the same on all targets. 6672 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6673 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6674 if (isa<ConstantPointerNull>(Arg)) 6675 continue; // Skip null pointers. They represent a hole in index space. 6676 AllocaInst *Slot = cast<AllocaInst>(Arg); 6677 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6678 "can only escape static allocas"); 6679 int FI = FuncInfo.StaticAllocaMap[Slot]; 6680 MCSymbol *FrameAllocSym = 6681 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6682 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6683 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6684 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6685 .addSym(FrameAllocSym) 6686 .addFrameIndex(FI); 6687 } 6688 6689 return; 6690 } 6691 6692 case Intrinsic::localrecover: { 6693 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6694 MachineFunction &MF = DAG.getMachineFunction(); 6695 6696 // Get the symbol that defines the frame offset. 6697 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6698 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6699 unsigned IdxVal = 6700 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6701 MCSymbol *FrameAllocSym = 6702 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6703 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6704 6705 Value *FP = I.getArgOperand(1); 6706 SDValue FPVal = getValue(FP); 6707 EVT PtrVT = FPVal.getValueType(); 6708 6709 // Create a MCSymbol for the label to avoid any target lowering 6710 // that would make this PC relative. 6711 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6712 SDValue OffsetVal = 6713 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6714 6715 // Add the offset to the FP. 6716 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6717 setValue(&I, Add); 6718 6719 return; 6720 } 6721 6722 case Intrinsic::eh_exceptionpointer: 6723 case Intrinsic::eh_exceptioncode: { 6724 // Get the exception pointer vreg, copy from it, and resize it to fit. 6725 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6726 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6727 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6728 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6729 SDValue N = 6730 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6731 if (Intrinsic == Intrinsic::eh_exceptioncode) 6732 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6733 setValue(&I, N); 6734 return; 6735 } 6736 case Intrinsic::xray_customevent: { 6737 // Here we want to make sure that the intrinsic behaves as if it has a 6738 // specific calling convention, and only for x86_64. 6739 // FIXME: Support other platforms later. 6740 const auto &Triple = DAG.getTarget().getTargetTriple(); 6741 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6742 return; 6743 6744 SDLoc DL = getCurSDLoc(); 6745 SmallVector<SDValue, 8> Ops; 6746 6747 // We want to say that we always want the arguments in registers. 6748 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6749 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6750 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6751 SDValue Chain = getRoot(); 6752 Ops.push_back(LogEntryVal); 6753 Ops.push_back(StrSizeVal); 6754 Ops.push_back(Chain); 6755 6756 // We need to enforce the calling convention for the callsite, so that 6757 // argument ordering is enforced correctly, and that register allocation can 6758 // see that some registers may be assumed clobbered and have to preserve 6759 // them across calls to the intrinsic. 6760 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6761 DL, NodeTys, Ops); 6762 SDValue patchableNode = SDValue(MN, 0); 6763 DAG.setRoot(patchableNode); 6764 setValue(&I, patchableNode); 6765 return; 6766 } 6767 case Intrinsic::xray_typedevent: { 6768 // Here we want to make sure that the intrinsic behaves as if it has a 6769 // specific calling convention, and only for x86_64. 6770 // FIXME: Support other platforms later. 6771 const auto &Triple = DAG.getTarget().getTargetTriple(); 6772 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6773 return; 6774 6775 SDLoc DL = getCurSDLoc(); 6776 SmallVector<SDValue, 8> Ops; 6777 6778 // We want to say that we always want the arguments in registers. 6779 // It's unclear to me how manipulating the selection DAG here forces callers 6780 // to provide arguments in registers instead of on the stack. 6781 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6782 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6783 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6784 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6785 SDValue Chain = getRoot(); 6786 Ops.push_back(LogTypeId); 6787 Ops.push_back(LogEntryVal); 6788 Ops.push_back(StrSizeVal); 6789 Ops.push_back(Chain); 6790 6791 // We need to enforce the calling convention for the callsite, so that 6792 // argument ordering is enforced correctly, and that register allocation can 6793 // see that some registers may be assumed clobbered and have to preserve 6794 // them across calls to the intrinsic. 6795 MachineSDNode *MN = DAG.getMachineNode( 6796 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6797 SDValue patchableNode = SDValue(MN, 0); 6798 DAG.setRoot(patchableNode); 6799 setValue(&I, patchableNode); 6800 return; 6801 } 6802 case Intrinsic::experimental_deoptimize: 6803 LowerDeoptimizeCall(&I); 6804 return; 6805 6806 case Intrinsic::experimental_vector_reduce_v2_fadd: 6807 case Intrinsic::experimental_vector_reduce_v2_fmul: 6808 case Intrinsic::experimental_vector_reduce_add: 6809 case Intrinsic::experimental_vector_reduce_mul: 6810 case Intrinsic::experimental_vector_reduce_and: 6811 case Intrinsic::experimental_vector_reduce_or: 6812 case Intrinsic::experimental_vector_reduce_xor: 6813 case Intrinsic::experimental_vector_reduce_smax: 6814 case Intrinsic::experimental_vector_reduce_smin: 6815 case Intrinsic::experimental_vector_reduce_umax: 6816 case Intrinsic::experimental_vector_reduce_umin: 6817 case Intrinsic::experimental_vector_reduce_fmax: 6818 case Intrinsic::experimental_vector_reduce_fmin: 6819 visitVectorReduce(I, Intrinsic); 6820 return; 6821 6822 case Intrinsic::icall_branch_funnel: { 6823 SmallVector<SDValue, 16> Ops; 6824 Ops.push_back(getValue(I.getArgOperand(0))); 6825 6826 int64_t Offset; 6827 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6828 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6829 if (!Base) 6830 report_fatal_error( 6831 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6832 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6833 6834 struct BranchFunnelTarget { 6835 int64_t Offset; 6836 SDValue Target; 6837 }; 6838 SmallVector<BranchFunnelTarget, 8> Targets; 6839 6840 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6841 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6842 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6843 if (ElemBase != Base) 6844 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6845 "to the same GlobalValue"); 6846 6847 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6848 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6849 if (!GA) 6850 report_fatal_error( 6851 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6852 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6853 GA->getGlobal(), getCurSDLoc(), 6854 Val.getValueType(), GA->getOffset())}); 6855 } 6856 llvm::sort(Targets, 6857 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6858 return T1.Offset < T2.Offset; 6859 }); 6860 6861 for (auto &T : Targets) { 6862 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6863 Ops.push_back(T.Target); 6864 } 6865 6866 Ops.push_back(DAG.getRoot()); // Chain 6867 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6868 getCurSDLoc(), MVT::Other, Ops), 6869 0); 6870 DAG.setRoot(N); 6871 setValue(&I, N); 6872 HasTailCall = true; 6873 return; 6874 } 6875 6876 case Intrinsic::wasm_landingpad_index: 6877 // Information this intrinsic contained has been transferred to 6878 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6879 // delete it now. 6880 return; 6881 6882 case Intrinsic::aarch64_settag: 6883 case Intrinsic::aarch64_settag_zero: { 6884 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6885 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6886 SDValue Val = TSI.EmitTargetCodeForSetTag( 6887 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6888 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6889 ZeroMemory); 6890 DAG.setRoot(Val); 6891 setValue(&I, Val); 6892 return; 6893 } 6894 case Intrinsic::ptrmask: { 6895 SDValue Ptr = getValue(I.getOperand(0)); 6896 SDValue Const = getValue(I.getOperand(1)); 6897 6898 EVT PtrVT = Ptr.getValueType(); 6899 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 6900 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 6901 return; 6902 } 6903 } 6904 } 6905 6906 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6907 const ConstrainedFPIntrinsic &FPI) { 6908 SDLoc sdl = getCurSDLoc(); 6909 6910 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6911 SmallVector<EVT, 4> ValueVTs; 6912 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6913 ValueVTs.push_back(MVT::Other); // Out chain 6914 6915 // We do not need to serialize constrained FP intrinsics against 6916 // each other or against (nonvolatile) loads, so they can be 6917 // chained like loads. 6918 SDValue Chain = DAG.getRoot(); 6919 SmallVector<SDValue, 4> Opers; 6920 Opers.push_back(Chain); 6921 if (FPI.isUnaryOp()) { 6922 Opers.push_back(getValue(FPI.getArgOperand(0))); 6923 } else if (FPI.isTernaryOp()) { 6924 Opers.push_back(getValue(FPI.getArgOperand(0))); 6925 Opers.push_back(getValue(FPI.getArgOperand(1))); 6926 Opers.push_back(getValue(FPI.getArgOperand(2))); 6927 } else { 6928 Opers.push_back(getValue(FPI.getArgOperand(0))); 6929 Opers.push_back(getValue(FPI.getArgOperand(1))); 6930 } 6931 6932 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 6933 assert(Result.getNode()->getNumValues() == 2); 6934 6935 // Push node to the appropriate list so that future instructions can be 6936 // chained up correctly. 6937 SDValue OutChain = Result.getValue(1); 6938 switch (EB) { 6939 case fp::ExceptionBehavior::ebIgnore: 6940 // The only reason why ebIgnore nodes still need to be chained is that 6941 // they might depend on the current rounding mode, and therefore must 6942 // not be moved across instruction that may change that mode. 6943 LLVM_FALLTHROUGH; 6944 case fp::ExceptionBehavior::ebMayTrap: 6945 // These must not be moved across calls or instructions that may change 6946 // floating-point exception masks. 6947 PendingConstrainedFP.push_back(OutChain); 6948 break; 6949 case fp::ExceptionBehavior::ebStrict: 6950 // These must not be moved across calls or instructions that may change 6951 // floating-point exception masks or read floating-point exception flags. 6952 // In addition, they cannot be optimized out even if unused. 6953 PendingConstrainedFPStrict.push_back(OutChain); 6954 break; 6955 } 6956 }; 6957 6958 SDVTList VTs = DAG.getVTList(ValueVTs); 6959 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 6960 6961 SDNodeFlags Flags; 6962 if (EB == fp::ExceptionBehavior::ebIgnore) 6963 Flags.setNoFPExcept(true); 6964 6965 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 6966 Flags.copyFMF(*FPOp); 6967 6968 unsigned Opcode; 6969 switch (FPI.getIntrinsicID()) { 6970 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6971 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6972 case Intrinsic::INTRINSIC: \ 6973 Opcode = ISD::STRICT_##DAGN; \ 6974 break; 6975 #include "llvm/IR/ConstrainedOps.def" 6976 case Intrinsic::experimental_constrained_fmuladd: { 6977 Opcode = ISD::STRICT_FMA; 6978 // Break fmuladd into fmul and fadd. 6979 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 6980 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 6981 ValueVTs[0])) { 6982 Opers.pop_back(); 6983 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 6984 pushOutChain(Mul, EB); 6985 Opcode = ISD::STRICT_FADD; 6986 Opers.clear(); 6987 Opers.push_back(Mul.getValue(1)); 6988 Opers.push_back(Mul.getValue(0)); 6989 Opers.push_back(getValue(FPI.getArgOperand(2))); 6990 } 6991 break; 6992 } 6993 } 6994 6995 // A few strict DAG nodes carry additional operands that are not 6996 // set up by the default code above. 6997 switch (Opcode) { 6998 default: break; 6999 case ISD::STRICT_FP_ROUND: 7000 Opers.push_back( 7001 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7002 break; 7003 case ISD::STRICT_FSETCC: 7004 case ISD::STRICT_FSETCCS: { 7005 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7006 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 7007 break; 7008 } 7009 } 7010 7011 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7012 pushOutChain(Result, EB); 7013 7014 SDValue FPResult = Result.getValue(0); 7015 setValue(&FPI, FPResult); 7016 } 7017 7018 std::pair<SDValue, SDValue> 7019 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7020 const BasicBlock *EHPadBB) { 7021 MachineFunction &MF = DAG.getMachineFunction(); 7022 MachineModuleInfo &MMI = MF.getMMI(); 7023 MCSymbol *BeginLabel = nullptr; 7024 7025 if (EHPadBB) { 7026 // Insert a label before the invoke call to mark the try range. This can be 7027 // used to detect deletion of the invoke via the MachineModuleInfo. 7028 BeginLabel = MMI.getContext().createTempSymbol(); 7029 7030 // For SjLj, keep track of which landing pads go with which invokes 7031 // so as to maintain the ordering of pads in the LSDA. 7032 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7033 if (CallSiteIndex) { 7034 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7035 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7036 7037 // Now that the call site is handled, stop tracking it. 7038 MMI.setCurrentCallSite(0); 7039 } 7040 7041 // Both PendingLoads and PendingExports must be flushed here; 7042 // this call might not return. 7043 (void)getRoot(); 7044 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7045 7046 CLI.setChain(getRoot()); 7047 } 7048 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7049 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7050 7051 assert((CLI.IsTailCall || Result.second.getNode()) && 7052 "Non-null chain expected with non-tail call!"); 7053 assert((Result.second.getNode() || !Result.first.getNode()) && 7054 "Null value expected with tail call!"); 7055 7056 if (!Result.second.getNode()) { 7057 // As a special case, a null chain means that a tail call has been emitted 7058 // and the DAG root is already updated. 7059 HasTailCall = true; 7060 7061 // Since there's no actual continuation from this block, nothing can be 7062 // relying on us setting vregs for them. 7063 PendingExports.clear(); 7064 } else { 7065 DAG.setRoot(Result.second); 7066 } 7067 7068 if (EHPadBB) { 7069 // Insert a label at the end of the invoke call to mark the try range. This 7070 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7071 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7072 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7073 7074 // Inform MachineModuleInfo of range. 7075 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7076 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7077 // actually use outlined funclets and their LSDA info style. 7078 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7079 assert(CLI.CB); 7080 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7081 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel); 7082 } else if (!isScopedEHPersonality(Pers)) { 7083 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7084 } 7085 } 7086 7087 return Result; 7088 } 7089 7090 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7091 bool isTailCall, 7092 const BasicBlock *EHPadBB) { 7093 auto &DL = DAG.getDataLayout(); 7094 FunctionType *FTy = CB.getFunctionType(); 7095 Type *RetTy = CB.getType(); 7096 7097 TargetLowering::ArgListTy Args; 7098 Args.reserve(CB.arg_size()); 7099 7100 const Value *SwiftErrorVal = nullptr; 7101 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7102 7103 if (isTailCall) { 7104 // Avoid emitting tail calls in functions with the disable-tail-calls 7105 // attribute. 7106 auto *Caller = CB.getParent()->getParent(); 7107 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7108 "true") 7109 isTailCall = false; 7110 7111 // We can't tail call inside a function with a swifterror argument. Lowering 7112 // does not support this yet. It would have to move into the swifterror 7113 // register before the call. 7114 if (TLI.supportSwiftError() && 7115 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7116 isTailCall = false; 7117 } 7118 7119 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7120 TargetLowering::ArgListEntry Entry; 7121 const Value *V = *I; 7122 7123 // Skip empty types 7124 if (V->getType()->isEmptyTy()) 7125 continue; 7126 7127 SDValue ArgNode = getValue(V); 7128 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7129 7130 Entry.setAttributes(&CB, I - CB.arg_begin()); 7131 7132 // Use swifterror virtual register as input to the call. 7133 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7134 SwiftErrorVal = V; 7135 // We find the virtual register for the actual swifterror argument. 7136 // Instead of using the Value, we use the virtual register instead. 7137 Entry.Node = 7138 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7139 EVT(TLI.getPointerTy(DL))); 7140 } 7141 7142 Args.push_back(Entry); 7143 7144 // If we have an explicit sret argument that is an Instruction, (i.e., it 7145 // might point to function-local memory), we can't meaningfully tail-call. 7146 if (Entry.IsSRet && isa<Instruction>(V)) 7147 isTailCall = false; 7148 } 7149 7150 // If call site has a cfguardtarget operand bundle, create and add an 7151 // additional ArgListEntry. 7152 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7153 TargetLowering::ArgListEntry Entry; 7154 Value *V = Bundle->Inputs[0]; 7155 SDValue ArgNode = getValue(V); 7156 Entry.Node = ArgNode; 7157 Entry.Ty = V->getType(); 7158 Entry.IsCFGuardTarget = true; 7159 Args.push_back(Entry); 7160 } 7161 7162 // Check if target-independent constraints permit a tail call here. 7163 // Target-dependent constraints are checked within TLI->LowerCallTo. 7164 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7165 isTailCall = false; 7166 7167 // Disable tail calls if there is an swifterror argument. Targets have not 7168 // been updated to support tail calls. 7169 if (TLI.supportSwiftError() && SwiftErrorVal) 7170 isTailCall = false; 7171 7172 TargetLowering::CallLoweringInfo CLI(DAG); 7173 CLI.setDebugLoc(getCurSDLoc()) 7174 .setChain(getRoot()) 7175 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7176 .setTailCall(isTailCall) 7177 .setConvergent(CB.isConvergent()) 7178 .setIsPreallocated( 7179 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7180 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7181 7182 if (Result.first.getNode()) { 7183 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7184 setValue(&CB, Result.first); 7185 } 7186 7187 // The last element of CLI.InVals has the SDValue for swifterror return. 7188 // Here we copy it to a virtual register and update SwiftErrorMap for 7189 // book-keeping. 7190 if (SwiftErrorVal && TLI.supportSwiftError()) { 7191 // Get the last element of InVals. 7192 SDValue Src = CLI.InVals.back(); 7193 Register VReg = 7194 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7195 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7196 DAG.setRoot(CopyNode); 7197 } 7198 } 7199 7200 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7201 SelectionDAGBuilder &Builder) { 7202 // Check to see if this load can be trivially constant folded, e.g. if the 7203 // input is from a string literal. 7204 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7205 // Cast pointer to the type we really want to load. 7206 Type *LoadTy = 7207 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7208 if (LoadVT.isVector()) 7209 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7210 7211 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7212 PointerType::getUnqual(LoadTy)); 7213 7214 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7215 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7216 return Builder.getValue(LoadCst); 7217 } 7218 7219 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7220 // still constant memory, the input chain can be the entry node. 7221 SDValue Root; 7222 bool ConstantMemory = false; 7223 7224 // Do not serialize (non-volatile) loads of constant memory with anything. 7225 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7226 Root = Builder.DAG.getEntryNode(); 7227 ConstantMemory = true; 7228 } else { 7229 // Do not serialize non-volatile loads against each other. 7230 Root = Builder.DAG.getRoot(); 7231 } 7232 7233 SDValue Ptr = Builder.getValue(PtrVal); 7234 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7235 Ptr, MachinePointerInfo(PtrVal), 7236 /* Alignment = */ 1); 7237 7238 if (!ConstantMemory) 7239 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7240 return LoadVal; 7241 } 7242 7243 /// Record the value for an instruction that produces an integer result, 7244 /// converting the type where necessary. 7245 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7246 SDValue Value, 7247 bool IsSigned) { 7248 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7249 I.getType(), true); 7250 if (IsSigned) 7251 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7252 else 7253 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7254 setValue(&I, Value); 7255 } 7256 7257 /// See if we can lower a memcmp call into an optimized form. If so, return 7258 /// true and lower it. Otherwise return false, and it will be lowered like a 7259 /// normal call. 7260 /// The caller already checked that \p I calls the appropriate LibFunc with a 7261 /// correct prototype. 7262 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7263 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7264 const Value *Size = I.getArgOperand(2); 7265 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7266 if (CSize && CSize->getZExtValue() == 0) { 7267 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7268 I.getType(), true); 7269 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7270 return true; 7271 } 7272 7273 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7274 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7275 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7276 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7277 if (Res.first.getNode()) { 7278 processIntegerCallValue(I, Res.first, true); 7279 PendingLoads.push_back(Res.second); 7280 return true; 7281 } 7282 7283 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7284 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7285 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7286 return false; 7287 7288 // If the target has a fast compare for the given size, it will return a 7289 // preferred load type for that size. Require that the load VT is legal and 7290 // that the target supports unaligned loads of that type. Otherwise, return 7291 // INVALID. 7292 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7293 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7294 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7295 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7296 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7297 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7298 // TODO: Check alignment of src and dest ptrs. 7299 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7300 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7301 if (!TLI.isTypeLegal(LVT) || 7302 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7303 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7304 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7305 } 7306 7307 return LVT; 7308 }; 7309 7310 // This turns into unaligned loads. We only do this if the target natively 7311 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7312 // we'll only produce a small number of byte loads. 7313 MVT LoadVT; 7314 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7315 switch (NumBitsToCompare) { 7316 default: 7317 return false; 7318 case 16: 7319 LoadVT = MVT::i16; 7320 break; 7321 case 32: 7322 LoadVT = MVT::i32; 7323 break; 7324 case 64: 7325 case 128: 7326 case 256: 7327 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7328 break; 7329 } 7330 7331 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7332 return false; 7333 7334 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7335 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7336 7337 // Bitcast to a wide integer type if the loads are vectors. 7338 if (LoadVT.isVector()) { 7339 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7340 LoadL = DAG.getBitcast(CmpVT, LoadL); 7341 LoadR = DAG.getBitcast(CmpVT, LoadR); 7342 } 7343 7344 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7345 processIntegerCallValue(I, Cmp, false); 7346 return true; 7347 } 7348 7349 /// See if we can lower a memchr call into an optimized form. If so, return 7350 /// true and lower it. Otherwise return false, and it will be lowered like a 7351 /// normal call. 7352 /// The caller already checked that \p I calls the appropriate LibFunc with a 7353 /// correct prototype. 7354 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7355 const Value *Src = I.getArgOperand(0); 7356 const Value *Char = I.getArgOperand(1); 7357 const Value *Length = I.getArgOperand(2); 7358 7359 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7360 std::pair<SDValue, SDValue> Res = 7361 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7362 getValue(Src), getValue(Char), getValue(Length), 7363 MachinePointerInfo(Src)); 7364 if (Res.first.getNode()) { 7365 setValue(&I, Res.first); 7366 PendingLoads.push_back(Res.second); 7367 return true; 7368 } 7369 7370 return false; 7371 } 7372 7373 /// See if we can lower a mempcpy call into an optimized form. If so, return 7374 /// true and lower it. Otherwise return false, and it will be lowered like a 7375 /// normal call. 7376 /// The caller already checked that \p I calls the appropriate LibFunc with a 7377 /// correct prototype. 7378 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7379 SDValue Dst = getValue(I.getArgOperand(0)); 7380 SDValue Src = getValue(I.getArgOperand(1)); 7381 SDValue Size = getValue(I.getArgOperand(2)); 7382 7383 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7384 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7385 // DAG::getMemcpy needs Alignment to be defined. 7386 Align Alignment = std::min(DstAlign, SrcAlign); 7387 7388 bool isVol = false; 7389 SDLoc sdl = getCurSDLoc(); 7390 7391 // In the mempcpy context we need to pass in a false value for isTailCall 7392 // because the return pointer needs to be adjusted by the size of 7393 // the copied memory. 7394 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7395 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7396 /*isTailCall=*/false, 7397 MachinePointerInfo(I.getArgOperand(0)), 7398 MachinePointerInfo(I.getArgOperand(1))); 7399 assert(MC.getNode() != nullptr && 7400 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7401 DAG.setRoot(MC); 7402 7403 // Check if Size needs to be truncated or extended. 7404 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7405 7406 // Adjust return pointer to point just past the last dst byte. 7407 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7408 Dst, Size); 7409 setValue(&I, DstPlusSize); 7410 return true; 7411 } 7412 7413 /// See if we can lower a strcpy call into an optimized form. If so, return 7414 /// true and lower it, otherwise return false and it will be lowered like a 7415 /// normal call. 7416 /// The caller already checked that \p I calls the appropriate LibFunc with a 7417 /// correct prototype. 7418 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7419 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7420 7421 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7422 std::pair<SDValue, SDValue> Res = 7423 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7424 getValue(Arg0), getValue(Arg1), 7425 MachinePointerInfo(Arg0), 7426 MachinePointerInfo(Arg1), isStpcpy); 7427 if (Res.first.getNode()) { 7428 setValue(&I, Res.first); 7429 DAG.setRoot(Res.second); 7430 return true; 7431 } 7432 7433 return false; 7434 } 7435 7436 /// See if we can lower a strcmp call into an optimized form. If so, return 7437 /// true and lower it, otherwise return false and it will be lowered like a 7438 /// normal call. 7439 /// The caller already checked that \p I calls the appropriate LibFunc with a 7440 /// correct prototype. 7441 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7442 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7443 7444 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7445 std::pair<SDValue, SDValue> Res = 7446 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7447 getValue(Arg0), getValue(Arg1), 7448 MachinePointerInfo(Arg0), 7449 MachinePointerInfo(Arg1)); 7450 if (Res.first.getNode()) { 7451 processIntegerCallValue(I, Res.first, true); 7452 PendingLoads.push_back(Res.second); 7453 return true; 7454 } 7455 7456 return false; 7457 } 7458 7459 /// See if we can lower a strlen call into an optimized form. If so, return 7460 /// true and lower it, otherwise return false and it will be lowered like a 7461 /// normal call. 7462 /// The caller already checked that \p I calls the appropriate LibFunc with a 7463 /// correct prototype. 7464 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7465 const Value *Arg0 = I.getArgOperand(0); 7466 7467 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7468 std::pair<SDValue, SDValue> Res = 7469 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7470 getValue(Arg0), MachinePointerInfo(Arg0)); 7471 if (Res.first.getNode()) { 7472 processIntegerCallValue(I, Res.first, false); 7473 PendingLoads.push_back(Res.second); 7474 return true; 7475 } 7476 7477 return false; 7478 } 7479 7480 /// See if we can lower a strnlen call into an optimized form. If so, return 7481 /// true and lower it, otherwise return false and it will be lowered like a 7482 /// normal call. 7483 /// The caller already checked that \p I calls the appropriate LibFunc with a 7484 /// correct prototype. 7485 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7486 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7487 7488 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7489 std::pair<SDValue, SDValue> Res = 7490 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7491 getValue(Arg0), getValue(Arg1), 7492 MachinePointerInfo(Arg0)); 7493 if (Res.first.getNode()) { 7494 processIntegerCallValue(I, Res.first, false); 7495 PendingLoads.push_back(Res.second); 7496 return true; 7497 } 7498 7499 return false; 7500 } 7501 7502 /// See if we can lower a unary floating-point operation into an SDNode with 7503 /// the specified Opcode. If so, return true and lower it, otherwise return 7504 /// false and it will be lowered like a normal call. 7505 /// The caller already checked that \p I calls the appropriate LibFunc with a 7506 /// correct prototype. 7507 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7508 unsigned Opcode) { 7509 // We already checked this call's prototype; verify it doesn't modify errno. 7510 if (!I.onlyReadsMemory()) 7511 return false; 7512 7513 SDValue Tmp = getValue(I.getArgOperand(0)); 7514 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7515 return true; 7516 } 7517 7518 /// See if we can lower a binary floating-point operation into an SDNode with 7519 /// the specified Opcode. If so, return true and lower it. Otherwise return 7520 /// false, and it will be lowered like a normal call. 7521 /// The caller already checked that \p I calls the appropriate LibFunc with a 7522 /// correct prototype. 7523 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7524 unsigned Opcode) { 7525 // We already checked this call's prototype; verify it doesn't modify errno. 7526 if (!I.onlyReadsMemory()) 7527 return false; 7528 7529 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7530 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7531 EVT VT = Tmp0.getValueType(); 7532 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7533 return true; 7534 } 7535 7536 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7537 // Handle inline assembly differently. 7538 if (I.isInlineAsm()) { 7539 visitInlineAsm(I); 7540 return; 7541 } 7542 7543 if (Function *F = I.getCalledFunction()) { 7544 if (F->isDeclaration()) { 7545 // Is this an LLVM intrinsic or a target-specific intrinsic? 7546 unsigned IID = F->getIntrinsicID(); 7547 if (!IID) 7548 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7549 IID = II->getIntrinsicID(F); 7550 7551 if (IID) { 7552 visitIntrinsicCall(I, IID); 7553 return; 7554 } 7555 } 7556 7557 // Check for well-known libc/libm calls. If the function is internal, it 7558 // can't be a library call. Don't do the check if marked as nobuiltin for 7559 // some reason or the call site requires strict floating point semantics. 7560 LibFunc Func; 7561 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7562 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7563 LibInfo->hasOptimizedCodeGen(Func)) { 7564 switch (Func) { 7565 default: break; 7566 case LibFunc_copysign: 7567 case LibFunc_copysignf: 7568 case LibFunc_copysignl: 7569 // We already checked this call's prototype; verify it doesn't modify 7570 // errno. 7571 if (I.onlyReadsMemory()) { 7572 SDValue LHS = getValue(I.getArgOperand(0)); 7573 SDValue RHS = getValue(I.getArgOperand(1)); 7574 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7575 LHS.getValueType(), LHS, RHS)); 7576 return; 7577 } 7578 break; 7579 case LibFunc_fabs: 7580 case LibFunc_fabsf: 7581 case LibFunc_fabsl: 7582 if (visitUnaryFloatCall(I, ISD::FABS)) 7583 return; 7584 break; 7585 case LibFunc_fmin: 7586 case LibFunc_fminf: 7587 case LibFunc_fminl: 7588 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7589 return; 7590 break; 7591 case LibFunc_fmax: 7592 case LibFunc_fmaxf: 7593 case LibFunc_fmaxl: 7594 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7595 return; 7596 break; 7597 case LibFunc_sin: 7598 case LibFunc_sinf: 7599 case LibFunc_sinl: 7600 if (visitUnaryFloatCall(I, ISD::FSIN)) 7601 return; 7602 break; 7603 case LibFunc_cos: 7604 case LibFunc_cosf: 7605 case LibFunc_cosl: 7606 if (visitUnaryFloatCall(I, ISD::FCOS)) 7607 return; 7608 break; 7609 case LibFunc_sqrt: 7610 case LibFunc_sqrtf: 7611 case LibFunc_sqrtl: 7612 case LibFunc_sqrt_finite: 7613 case LibFunc_sqrtf_finite: 7614 case LibFunc_sqrtl_finite: 7615 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7616 return; 7617 break; 7618 case LibFunc_floor: 7619 case LibFunc_floorf: 7620 case LibFunc_floorl: 7621 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7622 return; 7623 break; 7624 case LibFunc_nearbyint: 7625 case LibFunc_nearbyintf: 7626 case LibFunc_nearbyintl: 7627 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7628 return; 7629 break; 7630 case LibFunc_ceil: 7631 case LibFunc_ceilf: 7632 case LibFunc_ceill: 7633 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7634 return; 7635 break; 7636 case LibFunc_rint: 7637 case LibFunc_rintf: 7638 case LibFunc_rintl: 7639 if (visitUnaryFloatCall(I, ISD::FRINT)) 7640 return; 7641 break; 7642 case LibFunc_round: 7643 case LibFunc_roundf: 7644 case LibFunc_roundl: 7645 if (visitUnaryFloatCall(I, ISD::FROUND)) 7646 return; 7647 break; 7648 case LibFunc_trunc: 7649 case LibFunc_truncf: 7650 case LibFunc_truncl: 7651 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7652 return; 7653 break; 7654 case LibFunc_log2: 7655 case LibFunc_log2f: 7656 case LibFunc_log2l: 7657 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7658 return; 7659 break; 7660 case LibFunc_exp2: 7661 case LibFunc_exp2f: 7662 case LibFunc_exp2l: 7663 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7664 return; 7665 break; 7666 case LibFunc_memcmp: 7667 if (visitMemCmpCall(I)) 7668 return; 7669 break; 7670 case LibFunc_mempcpy: 7671 if (visitMemPCpyCall(I)) 7672 return; 7673 break; 7674 case LibFunc_memchr: 7675 if (visitMemChrCall(I)) 7676 return; 7677 break; 7678 case LibFunc_strcpy: 7679 if (visitStrCpyCall(I, false)) 7680 return; 7681 break; 7682 case LibFunc_stpcpy: 7683 if (visitStrCpyCall(I, true)) 7684 return; 7685 break; 7686 case LibFunc_strcmp: 7687 if (visitStrCmpCall(I)) 7688 return; 7689 break; 7690 case LibFunc_strlen: 7691 if (visitStrLenCall(I)) 7692 return; 7693 break; 7694 case LibFunc_strnlen: 7695 if (visitStrNLenCall(I)) 7696 return; 7697 break; 7698 } 7699 } 7700 } 7701 7702 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7703 // have to do anything here to lower funclet bundles. 7704 // CFGuardTarget bundles are lowered in LowerCallTo. 7705 assert(!I.hasOperandBundlesOtherThan( 7706 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 7707 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) && 7708 "Cannot lower calls with arbitrary operand bundles!"); 7709 7710 SDValue Callee = getValue(I.getCalledOperand()); 7711 7712 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7713 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7714 else 7715 // Check if we can potentially perform a tail call. More detailed checking 7716 // is be done within LowerCallTo, after more information about the call is 7717 // known. 7718 LowerCallTo(I, Callee, I.isTailCall()); 7719 } 7720 7721 namespace { 7722 7723 /// AsmOperandInfo - This contains information for each constraint that we are 7724 /// lowering. 7725 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7726 public: 7727 /// CallOperand - If this is the result output operand or a clobber 7728 /// this is null, otherwise it is the incoming operand to the CallInst. 7729 /// This gets modified as the asm is processed. 7730 SDValue CallOperand; 7731 7732 /// AssignedRegs - If this is a register or register class operand, this 7733 /// contains the set of register corresponding to the operand. 7734 RegsForValue AssignedRegs; 7735 7736 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7737 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7738 } 7739 7740 /// Whether or not this operand accesses memory 7741 bool hasMemory(const TargetLowering &TLI) const { 7742 // Indirect operand accesses access memory. 7743 if (isIndirect) 7744 return true; 7745 7746 for (const auto &Code : Codes) 7747 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7748 return true; 7749 7750 return false; 7751 } 7752 7753 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7754 /// corresponds to. If there is no Value* for this operand, it returns 7755 /// MVT::Other. 7756 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7757 const DataLayout &DL) const { 7758 if (!CallOperandVal) return MVT::Other; 7759 7760 if (isa<BasicBlock>(CallOperandVal)) 7761 return TLI.getProgramPointerTy(DL); 7762 7763 llvm::Type *OpTy = CallOperandVal->getType(); 7764 7765 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7766 // If this is an indirect operand, the operand is a pointer to the 7767 // accessed type. 7768 if (isIndirect) { 7769 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7770 if (!PtrTy) 7771 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7772 OpTy = PtrTy->getElementType(); 7773 } 7774 7775 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7776 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7777 if (STy->getNumElements() == 1) 7778 OpTy = STy->getElementType(0); 7779 7780 // If OpTy is not a single value, it may be a struct/union that we 7781 // can tile with integers. 7782 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7783 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7784 switch (BitSize) { 7785 default: break; 7786 case 1: 7787 case 8: 7788 case 16: 7789 case 32: 7790 case 64: 7791 case 128: 7792 OpTy = IntegerType::get(Context, BitSize); 7793 break; 7794 } 7795 } 7796 7797 return TLI.getValueType(DL, OpTy, true); 7798 } 7799 }; 7800 7801 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7802 7803 } // end anonymous namespace 7804 7805 /// Make sure that the output operand \p OpInfo and its corresponding input 7806 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7807 /// out). 7808 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7809 SDISelAsmOperandInfo &MatchingOpInfo, 7810 SelectionDAG &DAG) { 7811 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7812 return; 7813 7814 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7815 const auto &TLI = DAG.getTargetLoweringInfo(); 7816 7817 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7818 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7819 OpInfo.ConstraintVT); 7820 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7821 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7822 MatchingOpInfo.ConstraintVT); 7823 if ((OpInfo.ConstraintVT.isInteger() != 7824 MatchingOpInfo.ConstraintVT.isInteger()) || 7825 (MatchRC.second != InputRC.second)) { 7826 // FIXME: error out in a more elegant fashion 7827 report_fatal_error("Unsupported asm: input constraint" 7828 " with a matching output constraint of" 7829 " incompatible type!"); 7830 } 7831 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7832 } 7833 7834 /// Get a direct memory input to behave well as an indirect operand. 7835 /// This may introduce stores, hence the need for a \p Chain. 7836 /// \return The (possibly updated) chain. 7837 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7838 SDISelAsmOperandInfo &OpInfo, 7839 SelectionDAG &DAG) { 7840 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7841 7842 // If we don't have an indirect input, put it in the constpool if we can, 7843 // otherwise spill it to a stack slot. 7844 // TODO: This isn't quite right. We need to handle these according to 7845 // the addressing mode that the constraint wants. Also, this may take 7846 // an additional register for the computation and we don't want that 7847 // either. 7848 7849 // If the operand is a float, integer, or vector constant, spill to a 7850 // constant pool entry to get its address. 7851 const Value *OpVal = OpInfo.CallOperandVal; 7852 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7853 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7854 OpInfo.CallOperand = DAG.getConstantPool( 7855 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7856 return Chain; 7857 } 7858 7859 // Otherwise, create a stack slot and emit a store to it before the asm. 7860 Type *Ty = OpVal->getType(); 7861 auto &DL = DAG.getDataLayout(); 7862 uint64_t TySize = DL.getTypeAllocSize(Ty); 7863 unsigned Align = DL.getPrefTypeAlignment(Ty); 7864 MachineFunction &MF = DAG.getMachineFunction(); 7865 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7866 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7867 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7868 MachinePointerInfo::getFixedStack(MF, SSFI), 7869 TLI.getMemValueType(DL, Ty)); 7870 OpInfo.CallOperand = StackSlot; 7871 7872 return Chain; 7873 } 7874 7875 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7876 /// specified operand. We prefer to assign virtual registers, to allow the 7877 /// register allocator to handle the assignment process. However, if the asm 7878 /// uses features that we can't model on machineinstrs, we have SDISel do the 7879 /// allocation. This produces generally horrible, but correct, code. 7880 /// 7881 /// OpInfo describes the operand 7882 /// RefOpInfo describes the matching operand if any, the operand otherwise 7883 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7884 SDISelAsmOperandInfo &OpInfo, 7885 SDISelAsmOperandInfo &RefOpInfo) { 7886 LLVMContext &Context = *DAG.getContext(); 7887 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7888 7889 MachineFunction &MF = DAG.getMachineFunction(); 7890 SmallVector<unsigned, 4> Regs; 7891 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7892 7893 // No work to do for memory operations. 7894 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7895 return; 7896 7897 // If this is a constraint for a single physreg, or a constraint for a 7898 // register class, find it. 7899 unsigned AssignedReg; 7900 const TargetRegisterClass *RC; 7901 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7902 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7903 // RC is unset only on failure. Return immediately. 7904 if (!RC) 7905 return; 7906 7907 // Get the actual register value type. This is important, because the user 7908 // may have asked for (e.g.) the AX register in i32 type. We need to 7909 // remember that AX is actually i16 to get the right extension. 7910 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7911 7912 if (OpInfo.ConstraintVT != MVT::Other) { 7913 // If this is an FP operand in an integer register (or visa versa), or more 7914 // generally if the operand value disagrees with the register class we plan 7915 // to stick it in, fix the operand type. 7916 // 7917 // If this is an input value, the bitcast to the new type is done now. 7918 // Bitcast for output value is done at the end of visitInlineAsm(). 7919 if ((OpInfo.Type == InlineAsm::isOutput || 7920 OpInfo.Type == InlineAsm::isInput) && 7921 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7922 // Try to convert to the first EVT that the reg class contains. If the 7923 // types are identical size, use a bitcast to convert (e.g. two differing 7924 // vector types). Note: output bitcast is done at the end of 7925 // visitInlineAsm(). 7926 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7927 // Exclude indirect inputs while they are unsupported because the code 7928 // to perform the load is missing and thus OpInfo.CallOperand still 7929 // refers to the input address rather than the pointed-to value. 7930 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7931 OpInfo.CallOperand = 7932 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7933 OpInfo.ConstraintVT = RegVT; 7934 // If the operand is an FP value and we want it in integer registers, 7935 // use the corresponding integer type. This turns an f64 value into 7936 // i64, which can be passed with two i32 values on a 32-bit machine. 7937 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7938 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7939 if (OpInfo.Type == InlineAsm::isInput) 7940 OpInfo.CallOperand = 7941 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7942 OpInfo.ConstraintVT = VT; 7943 } 7944 } 7945 } 7946 7947 // No need to allocate a matching input constraint since the constraint it's 7948 // matching to has already been allocated. 7949 if (OpInfo.isMatchingInputConstraint()) 7950 return; 7951 7952 EVT ValueVT = OpInfo.ConstraintVT; 7953 if (OpInfo.ConstraintVT == MVT::Other) 7954 ValueVT = RegVT; 7955 7956 // Initialize NumRegs. 7957 unsigned NumRegs = 1; 7958 if (OpInfo.ConstraintVT != MVT::Other) 7959 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7960 7961 // If this is a constraint for a specific physical register, like {r17}, 7962 // assign it now. 7963 7964 // If this associated to a specific register, initialize iterator to correct 7965 // place. If virtual, make sure we have enough registers 7966 7967 // Initialize iterator if necessary 7968 TargetRegisterClass::iterator I = RC->begin(); 7969 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7970 7971 // Do not check for single registers. 7972 if (AssignedReg) { 7973 for (; *I != AssignedReg; ++I) 7974 assert(I != RC->end() && "AssignedReg should be member of RC"); 7975 } 7976 7977 for (; NumRegs; --NumRegs, ++I) { 7978 assert(I != RC->end() && "Ran out of registers to allocate!"); 7979 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7980 Regs.push_back(R); 7981 } 7982 7983 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7984 } 7985 7986 static unsigned 7987 findMatchingInlineAsmOperand(unsigned OperandNo, 7988 const std::vector<SDValue> &AsmNodeOperands) { 7989 // Scan until we find the definition we already emitted of this operand. 7990 unsigned CurOp = InlineAsm::Op_FirstOperand; 7991 for (; OperandNo; --OperandNo) { 7992 // Advance to the next operand. 7993 unsigned OpFlag = 7994 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7995 assert((InlineAsm::isRegDefKind(OpFlag) || 7996 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7997 InlineAsm::isMemKind(OpFlag)) && 7998 "Skipped past definitions?"); 7999 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8000 } 8001 return CurOp; 8002 } 8003 8004 namespace { 8005 8006 class ExtraFlags { 8007 unsigned Flags = 0; 8008 8009 public: 8010 explicit ExtraFlags(const CallBase &Call) { 8011 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8012 if (IA->hasSideEffects()) 8013 Flags |= InlineAsm::Extra_HasSideEffects; 8014 if (IA->isAlignStack()) 8015 Flags |= InlineAsm::Extra_IsAlignStack; 8016 if (Call.isConvergent()) 8017 Flags |= InlineAsm::Extra_IsConvergent; 8018 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8019 } 8020 8021 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8022 // Ideally, we would only check against memory constraints. However, the 8023 // meaning of an Other constraint can be target-specific and we can't easily 8024 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8025 // for Other constraints as well. 8026 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8027 OpInfo.ConstraintType == TargetLowering::C_Other) { 8028 if (OpInfo.Type == InlineAsm::isInput) 8029 Flags |= InlineAsm::Extra_MayLoad; 8030 else if (OpInfo.Type == InlineAsm::isOutput) 8031 Flags |= InlineAsm::Extra_MayStore; 8032 else if (OpInfo.Type == InlineAsm::isClobber) 8033 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8034 } 8035 } 8036 8037 unsigned get() const { return Flags; } 8038 }; 8039 8040 } // end anonymous namespace 8041 8042 /// visitInlineAsm - Handle a call to an InlineAsm object. 8043 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) { 8044 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8045 8046 /// ConstraintOperands - Information about all of the constraints. 8047 SDISelAsmOperandInfoVector ConstraintOperands; 8048 8049 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8050 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8051 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8052 8053 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8054 // AsmDialect, MayLoad, MayStore). 8055 bool HasSideEffect = IA->hasSideEffects(); 8056 ExtraFlags ExtraInfo(Call); 8057 8058 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8059 unsigned ResNo = 0; // ResNo - The result number of the next output. 8060 unsigned NumMatchingOps = 0; 8061 for (auto &T : TargetConstraints) { 8062 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8063 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8064 8065 // Compute the value type for each operand. 8066 if (OpInfo.Type == InlineAsm::isInput || 8067 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8068 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8069 8070 // Process the call argument. BasicBlocks are labels, currently appearing 8071 // only in asm's. 8072 if (isa<CallBrInst>(Call) && 8073 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8074 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8075 NumMatchingOps) && 8076 (NumMatchingOps == 0 || 8077 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8078 NumMatchingOps))) { 8079 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8080 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8081 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8082 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8083 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8084 } else { 8085 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8086 } 8087 8088 OpInfo.ConstraintVT = 8089 OpInfo 8090 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8091 .getSimpleVT(); 8092 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8093 // The return value of the call is this value. As such, there is no 8094 // corresponding argument. 8095 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8096 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8097 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8098 DAG.getDataLayout(), STy->getElementType(ResNo)); 8099 } else { 8100 assert(ResNo == 0 && "Asm only has one result!"); 8101 OpInfo.ConstraintVT = 8102 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8103 } 8104 ++ResNo; 8105 } else { 8106 OpInfo.ConstraintVT = MVT::Other; 8107 } 8108 8109 if (OpInfo.hasMatchingInput()) 8110 ++NumMatchingOps; 8111 8112 if (!HasSideEffect) 8113 HasSideEffect = OpInfo.hasMemory(TLI); 8114 8115 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8116 // FIXME: Could we compute this on OpInfo rather than T? 8117 8118 // Compute the constraint code and ConstraintType to use. 8119 TLI.ComputeConstraintToUse(T, SDValue()); 8120 8121 if (T.ConstraintType == TargetLowering::C_Immediate && 8122 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8123 // We've delayed emitting a diagnostic like the "n" constraint because 8124 // inlining could cause an integer showing up. 8125 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8126 "' expects an integer constant " 8127 "expression"); 8128 8129 ExtraInfo.update(T); 8130 } 8131 8132 8133 // We won't need to flush pending loads if this asm doesn't touch 8134 // memory and is nonvolatile. 8135 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8136 8137 bool IsCallBr = isa<CallBrInst>(Call); 8138 if (IsCallBr) { 8139 // If this is a callbr we need to flush pending exports since inlineasm_br 8140 // is a terminator. We need to do this before nodes are glued to 8141 // the inlineasm_br node. 8142 Chain = getControlRoot(); 8143 } 8144 8145 // Second pass over the constraints: compute which constraint option to use. 8146 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8147 // If this is an output operand with a matching input operand, look up the 8148 // matching input. If their types mismatch, e.g. one is an integer, the 8149 // other is floating point, or their sizes are different, flag it as an 8150 // error. 8151 if (OpInfo.hasMatchingInput()) { 8152 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8153 patchMatchingInput(OpInfo, Input, DAG); 8154 } 8155 8156 // Compute the constraint code and ConstraintType to use. 8157 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8158 8159 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8160 OpInfo.Type == InlineAsm::isClobber) 8161 continue; 8162 8163 // If this is a memory input, and if the operand is not indirect, do what we 8164 // need to provide an address for the memory input. 8165 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8166 !OpInfo.isIndirect) { 8167 assert((OpInfo.isMultipleAlternative || 8168 (OpInfo.Type == InlineAsm::isInput)) && 8169 "Can only indirectify direct input operands!"); 8170 8171 // Memory operands really want the address of the value. 8172 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8173 8174 // There is no longer a Value* corresponding to this operand. 8175 OpInfo.CallOperandVal = nullptr; 8176 8177 // It is now an indirect operand. 8178 OpInfo.isIndirect = true; 8179 } 8180 8181 } 8182 8183 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8184 std::vector<SDValue> AsmNodeOperands; 8185 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8186 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8187 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8188 8189 // If we have a !srcloc metadata node associated with it, we want to attach 8190 // this to the ultimately generated inline asm machineinstr. To do this, we 8191 // pass in the third operand as this (potentially null) inline asm MDNode. 8192 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8193 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8194 8195 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8196 // bits as operand 3. 8197 AsmNodeOperands.push_back(DAG.getTargetConstant( 8198 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8199 8200 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8201 // this, assign virtual and physical registers for inputs and otput. 8202 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8203 // Assign Registers. 8204 SDISelAsmOperandInfo &RefOpInfo = 8205 OpInfo.isMatchingInputConstraint() 8206 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8207 : OpInfo; 8208 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8209 8210 auto DetectWriteToReservedRegister = [&]() { 8211 const MachineFunction &MF = DAG.getMachineFunction(); 8212 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8213 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8214 if (Register::isPhysicalRegister(Reg) && 8215 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8216 const char *RegName = TRI.getName(Reg); 8217 emitInlineAsmError(Call, "write to reserved register '" + 8218 Twine(RegName) + "'"); 8219 return true; 8220 } 8221 } 8222 return false; 8223 }; 8224 8225 switch (OpInfo.Type) { 8226 case InlineAsm::isOutput: 8227 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8228 unsigned ConstraintID = 8229 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8230 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8231 "Failed to convert memory constraint code to constraint id."); 8232 8233 // Add information to the INLINEASM node to know about this output. 8234 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8235 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8236 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8237 MVT::i32)); 8238 AsmNodeOperands.push_back(OpInfo.CallOperand); 8239 } else { 8240 // Otherwise, this outputs to a register (directly for C_Register / 8241 // C_RegisterClass, and a target-defined fashion for 8242 // C_Immediate/C_Other). Find a register that we can use. 8243 if (OpInfo.AssignedRegs.Regs.empty()) { 8244 emitInlineAsmError( 8245 Call, "couldn't allocate output register for constraint '" + 8246 Twine(OpInfo.ConstraintCode) + "'"); 8247 return; 8248 } 8249 8250 if (DetectWriteToReservedRegister()) 8251 return; 8252 8253 // Add information to the INLINEASM node to know that this register is 8254 // set. 8255 OpInfo.AssignedRegs.AddInlineAsmOperands( 8256 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8257 : InlineAsm::Kind_RegDef, 8258 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8259 } 8260 break; 8261 8262 case InlineAsm::isInput: { 8263 SDValue InOperandVal = OpInfo.CallOperand; 8264 8265 if (OpInfo.isMatchingInputConstraint()) { 8266 // If this is required to match an output register we have already set, 8267 // just use its register. 8268 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8269 AsmNodeOperands); 8270 unsigned OpFlag = 8271 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8272 if (InlineAsm::isRegDefKind(OpFlag) || 8273 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8274 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8275 if (OpInfo.isIndirect) { 8276 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8277 emitInlineAsmError(Call, "inline asm not supported yet: " 8278 "don't know how to handle tied " 8279 "indirect register inputs"); 8280 return; 8281 } 8282 8283 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8284 SmallVector<unsigned, 4> Regs; 8285 8286 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8287 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8288 MachineRegisterInfo &RegInfo = 8289 DAG.getMachineFunction().getRegInfo(); 8290 for (unsigned i = 0; i != NumRegs; ++i) 8291 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8292 } else { 8293 emitInlineAsmError(Call, 8294 "inline asm error: This value type register " 8295 "class is not natively supported!"); 8296 return; 8297 } 8298 8299 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8300 8301 SDLoc dl = getCurSDLoc(); 8302 // Use the produced MatchedRegs object to 8303 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8304 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8305 true, OpInfo.getMatchedOperand(), dl, 8306 DAG, AsmNodeOperands); 8307 break; 8308 } 8309 8310 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8311 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8312 "Unexpected number of operands"); 8313 // Add information to the INLINEASM node to know about this input. 8314 // See InlineAsm.h isUseOperandTiedToDef. 8315 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8316 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8317 OpInfo.getMatchedOperand()); 8318 AsmNodeOperands.push_back(DAG.getTargetConstant( 8319 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8320 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8321 break; 8322 } 8323 8324 // Treat indirect 'X' constraint as memory. 8325 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8326 OpInfo.isIndirect) 8327 OpInfo.ConstraintType = TargetLowering::C_Memory; 8328 8329 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8330 OpInfo.ConstraintType == TargetLowering::C_Other) { 8331 std::vector<SDValue> Ops; 8332 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8333 Ops, DAG); 8334 if (Ops.empty()) { 8335 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8336 if (isa<ConstantSDNode>(InOperandVal)) { 8337 emitInlineAsmError(Call, "value out of range for constraint '" + 8338 Twine(OpInfo.ConstraintCode) + "'"); 8339 return; 8340 } 8341 8342 emitInlineAsmError(Call, 8343 "invalid operand for inline asm constraint '" + 8344 Twine(OpInfo.ConstraintCode) + "'"); 8345 return; 8346 } 8347 8348 // Add information to the INLINEASM node to know about this input. 8349 unsigned ResOpType = 8350 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8351 AsmNodeOperands.push_back(DAG.getTargetConstant( 8352 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8353 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8354 break; 8355 } 8356 8357 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8358 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8359 assert(InOperandVal.getValueType() == 8360 TLI.getPointerTy(DAG.getDataLayout()) && 8361 "Memory operands expect pointer values"); 8362 8363 unsigned ConstraintID = 8364 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8365 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8366 "Failed to convert memory constraint code to constraint id."); 8367 8368 // Add information to the INLINEASM node to know about this input. 8369 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8370 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8371 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8372 getCurSDLoc(), 8373 MVT::i32)); 8374 AsmNodeOperands.push_back(InOperandVal); 8375 break; 8376 } 8377 8378 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8379 OpInfo.ConstraintType == TargetLowering::C_Register) && 8380 "Unknown constraint type!"); 8381 8382 // TODO: Support this. 8383 if (OpInfo.isIndirect) { 8384 emitInlineAsmError( 8385 Call, "Don't know how to handle indirect register inputs yet " 8386 "for constraint '" + 8387 Twine(OpInfo.ConstraintCode) + "'"); 8388 return; 8389 } 8390 8391 // Copy the input into the appropriate registers. 8392 if (OpInfo.AssignedRegs.Regs.empty()) { 8393 emitInlineAsmError(Call, 8394 "couldn't allocate input reg for constraint '" + 8395 Twine(OpInfo.ConstraintCode) + "'"); 8396 return; 8397 } 8398 8399 if (DetectWriteToReservedRegister()) 8400 return; 8401 8402 SDLoc dl = getCurSDLoc(); 8403 8404 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8405 &Call); 8406 8407 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8408 dl, DAG, AsmNodeOperands); 8409 break; 8410 } 8411 case InlineAsm::isClobber: 8412 // Add the clobbered value to the operand list, so that the register 8413 // allocator is aware that the physreg got clobbered. 8414 if (!OpInfo.AssignedRegs.Regs.empty()) 8415 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8416 false, 0, getCurSDLoc(), DAG, 8417 AsmNodeOperands); 8418 break; 8419 } 8420 } 8421 8422 // Finish up input operands. Set the input chain and add the flag last. 8423 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8424 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8425 8426 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8427 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8428 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8429 Flag = Chain.getValue(1); 8430 8431 // Do additional work to generate outputs. 8432 8433 SmallVector<EVT, 1> ResultVTs; 8434 SmallVector<SDValue, 1> ResultValues; 8435 SmallVector<SDValue, 8> OutChains; 8436 8437 llvm::Type *CallResultType = Call.getType(); 8438 ArrayRef<Type *> ResultTypes; 8439 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8440 ResultTypes = StructResult->elements(); 8441 else if (!CallResultType->isVoidTy()) 8442 ResultTypes = makeArrayRef(CallResultType); 8443 8444 auto CurResultType = ResultTypes.begin(); 8445 auto handleRegAssign = [&](SDValue V) { 8446 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8447 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8448 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8449 ++CurResultType; 8450 // If the type of the inline asm call site return value is different but has 8451 // same size as the type of the asm output bitcast it. One example of this 8452 // is for vectors with different width / number of elements. This can 8453 // happen for register classes that can contain multiple different value 8454 // types. The preg or vreg allocated may not have the same VT as was 8455 // expected. 8456 // 8457 // This can also happen for a return value that disagrees with the register 8458 // class it is put in, eg. a double in a general-purpose register on a 8459 // 32-bit machine. 8460 if (ResultVT != V.getValueType() && 8461 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8462 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8463 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8464 V.getValueType().isInteger()) { 8465 // If a result value was tied to an input value, the computed result 8466 // may have a wider width than the expected result. Extract the 8467 // relevant portion. 8468 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8469 } 8470 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8471 ResultVTs.push_back(ResultVT); 8472 ResultValues.push_back(V); 8473 }; 8474 8475 // Deal with output operands. 8476 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8477 if (OpInfo.Type == InlineAsm::isOutput) { 8478 SDValue Val; 8479 // Skip trivial output operands. 8480 if (OpInfo.AssignedRegs.Regs.empty()) 8481 continue; 8482 8483 switch (OpInfo.ConstraintType) { 8484 case TargetLowering::C_Register: 8485 case TargetLowering::C_RegisterClass: 8486 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8487 Chain, &Flag, &Call); 8488 break; 8489 case TargetLowering::C_Immediate: 8490 case TargetLowering::C_Other: 8491 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8492 OpInfo, DAG); 8493 break; 8494 case TargetLowering::C_Memory: 8495 break; // Already handled. 8496 case TargetLowering::C_Unknown: 8497 assert(false && "Unexpected unknown constraint"); 8498 } 8499 8500 // Indirect output manifest as stores. Record output chains. 8501 if (OpInfo.isIndirect) { 8502 const Value *Ptr = OpInfo.CallOperandVal; 8503 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8504 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8505 MachinePointerInfo(Ptr)); 8506 OutChains.push_back(Store); 8507 } else { 8508 // generate CopyFromRegs to associated registers. 8509 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8510 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8511 for (const SDValue &V : Val->op_values()) 8512 handleRegAssign(V); 8513 } else 8514 handleRegAssign(Val); 8515 } 8516 } 8517 } 8518 8519 // Set results. 8520 if (!ResultValues.empty()) { 8521 assert(CurResultType == ResultTypes.end() && 8522 "Mismatch in number of ResultTypes"); 8523 assert(ResultValues.size() == ResultTypes.size() && 8524 "Mismatch in number of output operands in asm result"); 8525 8526 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8527 DAG.getVTList(ResultVTs), ResultValues); 8528 setValue(&Call, V); 8529 } 8530 8531 // Collect store chains. 8532 if (!OutChains.empty()) 8533 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8534 8535 // Only Update Root if inline assembly has a memory effect. 8536 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8537 DAG.setRoot(Chain); 8538 } 8539 8540 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8541 const Twine &Message) { 8542 LLVMContext &Ctx = *DAG.getContext(); 8543 Ctx.emitError(&Call, Message); 8544 8545 // Make sure we leave the DAG in a valid state 8546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8547 SmallVector<EVT, 1> ValueVTs; 8548 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8549 8550 if (ValueVTs.empty()) 8551 return; 8552 8553 SmallVector<SDValue, 1> Ops; 8554 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8555 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8556 8557 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8558 } 8559 8560 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8561 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8562 MVT::Other, getRoot(), 8563 getValue(I.getArgOperand(0)), 8564 DAG.getSrcValue(I.getArgOperand(0)))); 8565 } 8566 8567 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8568 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8569 const DataLayout &DL = DAG.getDataLayout(); 8570 SDValue V = DAG.getVAArg( 8571 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8572 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8573 DL.getABITypeAlignment(I.getType())); 8574 DAG.setRoot(V.getValue(1)); 8575 8576 if (I.getType()->isPointerTy()) 8577 V = DAG.getPtrExtOrTrunc( 8578 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8579 setValue(&I, V); 8580 } 8581 8582 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8583 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8584 MVT::Other, getRoot(), 8585 getValue(I.getArgOperand(0)), 8586 DAG.getSrcValue(I.getArgOperand(0)))); 8587 } 8588 8589 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8590 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8591 MVT::Other, getRoot(), 8592 getValue(I.getArgOperand(0)), 8593 getValue(I.getArgOperand(1)), 8594 DAG.getSrcValue(I.getArgOperand(0)), 8595 DAG.getSrcValue(I.getArgOperand(1)))); 8596 } 8597 8598 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8599 const Instruction &I, 8600 SDValue Op) { 8601 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8602 if (!Range) 8603 return Op; 8604 8605 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8606 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8607 return Op; 8608 8609 APInt Lo = CR.getUnsignedMin(); 8610 if (!Lo.isMinValue()) 8611 return Op; 8612 8613 APInt Hi = CR.getUnsignedMax(); 8614 unsigned Bits = std::max(Hi.getActiveBits(), 8615 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8616 8617 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8618 8619 SDLoc SL = getCurSDLoc(); 8620 8621 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8622 DAG.getValueType(SmallVT)); 8623 unsigned NumVals = Op.getNode()->getNumValues(); 8624 if (NumVals == 1) 8625 return ZExt; 8626 8627 SmallVector<SDValue, 4> Ops; 8628 8629 Ops.push_back(ZExt); 8630 for (unsigned I = 1; I != NumVals; ++I) 8631 Ops.push_back(Op.getValue(I)); 8632 8633 return DAG.getMergeValues(Ops, SL); 8634 } 8635 8636 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8637 /// the call being lowered. 8638 /// 8639 /// This is a helper for lowering intrinsics that follow a target calling 8640 /// convention or require stack pointer adjustment. Only a subset of the 8641 /// intrinsic's operands need to participate in the calling convention. 8642 void SelectionDAGBuilder::populateCallLoweringInfo( 8643 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8644 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8645 bool IsPatchPoint) { 8646 TargetLowering::ArgListTy Args; 8647 Args.reserve(NumArgs); 8648 8649 // Populate the argument list. 8650 // Attributes for args start at offset 1, after the return attribute. 8651 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8652 ArgI != ArgE; ++ArgI) { 8653 const Value *V = Call->getOperand(ArgI); 8654 8655 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8656 8657 TargetLowering::ArgListEntry Entry; 8658 Entry.Node = getValue(V); 8659 Entry.Ty = V->getType(); 8660 Entry.setAttributes(Call, ArgI); 8661 Args.push_back(Entry); 8662 } 8663 8664 CLI.setDebugLoc(getCurSDLoc()) 8665 .setChain(getRoot()) 8666 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8667 .setDiscardResult(Call->use_empty()) 8668 .setIsPatchPoint(IsPatchPoint) 8669 .setIsPreallocated( 8670 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 8671 } 8672 8673 /// Add a stack map intrinsic call's live variable operands to a stackmap 8674 /// or patchpoint target node's operand list. 8675 /// 8676 /// Constants are converted to TargetConstants purely as an optimization to 8677 /// avoid constant materialization and register allocation. 8678 /// 8679 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8680 /// generate addess computation nodes, and so FinalizeISel can convert the 8681 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8682 /// address materialization and register allocation, but may also be required 8683 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8684 /// alloca in the entry block, then the runtime may assume that the alloca's 8685 /// StackMap location can be read immediately after compilation and that the 8686 /// location is valid at any point during execution (this is similar to the 8687 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8688 /// only available in a register, then the runtime would need to trap when 8689 /// execution reaches the StackMap in order to read the alloca's location. 8690 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 8691 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8692 SelectionDAGBuilder &Builder) { 8693 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 8694 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 8695 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8696 Ops.push_back( 8697 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8698 Ops.push_back( 8699 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8700 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8701 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8702 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8703 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8704 } else 8705 Ops.push_back(OpVal); 8706 } 8707 } 8708 8709 /// Lower llvm.experimental.stackmap directly to its target opcode. 8710 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8711 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8712 // [live variables...]) 8713 8714 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8715 8716 SDValue Chain, InFlag, Callee, NullPtr; 8717 SmallVector<SDValue, 32> Ops; 8718 8719 SDLoc DL = getCurSDLoc(); 8720 Callee = getValue(CI.getCalledOperand()); 8721 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8722 8723 // The stackmap intrinsic only records the live variables (the arguments 8724 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8725 // intrinsic, this won't be lowered to a function call. This means we don't 8726 // have to worry about calling conventions and target specific lowering code. 8727 // Instead we perform the call lowering right here. 8728 // 8729 // chain, flag = CALLSEQ_START(chain, 0, 0) 8730 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8731 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8732 // 8733 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8734 InFlag = Chain.getValue(1); 8735 8736 // Add the <id> and <numBytes> constants. 8737 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8738 Ops.push_back(DAG.getTargetConstant( 8739 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8740 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8741 Ops.push_back(DAG.getTargetConstant( 8742 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8743 MVT::i32)); 8744 8745 // Push live variables for the stack map. 8746 addStackMapLiveVars(CI, 2, DL, Ops, *this); 8747 8748 // We are not pushing any register mask info here on the operands list, 8749 // because the stackmap doesn't clobber anything. 8750 8751 // Push the chain and the glue flag. 8752 Ops.push_back(Chain); 8753 Ops.push_back(InFlag); 8754 8755 // Create the STACKMAP node. 8756 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8757 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8758 Chain = SDValue(SM, 0); 8759 InFlag = Chain.getValue(1); 8760 8761 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8762 8763 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8764 8765 // Set the root to the target-lowered call chain. 8766 DAG.setRoot(Chain); 8767 8768 // Inform the Frame Information that we have a stackmap in this function. 8769 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8770 } 8771 8772 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8773 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 8774 const BasicBlock *EHPadBB) { 8775 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8776 // i32 <numBytes>, 8777 // i8* <target>, 8778 // i32 <numArgs>, 8779 // [Args...], 8780 // [live variables...]) 8781 8782 CallingConv::ID CC = CB.getCallingConv(); 8783 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8784 bool HasDef = !CB.getType()->isVoidTy(); 8785 SDLoc dl = getCurSDLoc(); 8786 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 8787 8788 // Handle immediate and symbolic callees. 8789 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8790 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8791 /*isTarget=*/true); 8792 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8793 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8794 SDLoc(SymbolicCallee), 8795 SymbolicCallee->getValueType(0)); 8796 8797 // Get the real number of arguments participating in the call <numArgs> 8798 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 8799 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8800 8801 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8802 // Intrinsics include all meta-operands up to but not including CC. 8803 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8804 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 8805 "Not enough arguments provided to the patchpoint intrinsic"); 8806 8807 // For AnyRegCC the arguments are lowered later on manually. 8808 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8809 Type *ReturnTy = 8810 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 8811 8812 TargetLowering::CallLoweringInfo CLI(DAG); 8813 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 8814 ReturnTy, true); 8815 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8816 8817 SDNode *CallEnd = Result.second.getNode(); 8818 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8819 CallEnd = CallEnd->getOperand(0).getNode(); 8820 8821 /// Get a call instruction from the call sequence chain. 8822 /// Tail calls are not allowed. 8823 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8824 "Expected a callseq node."); 8825 SDNode *Call = CallEnd->getOperand(0).getNode(); 8826 bool HasGlue = Call->getGluedNode(); 8827 8828 // Replace the target specific call node with the patchable intrinsic. 8829 SmallVector<SDValue, 8> Ops; 8830 8831 // Add the <id> and <numBytes> constants. 8832 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 8833 Ops.push_back(DAG.getTargetConstant( 8834 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8835 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 8836 Ops.push_back(DAG.getTargetConstant( 8837 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8838 MVT::i32)); 8839 8840 // Add the callee. 8841 Ops.push_back(Callee); 8842 8843 // Adjust <numArgs> to account for any arguments that have been passed on the 8844 // stack instead. 8845 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8846 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8847 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8848 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8849 8850 // Add the calling convention 8851 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8852 8853 // Add the arguments we omitted previously. The register allocator should 8854 // place these in any free register. 8855 if (IsAnyRegCC) 8856 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8857 Ops.push_back(getValue(CB.getArgOperand(i))); 8858 8859 // Push the arguments from the call instruction up to the register mask. 8860 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8861 Ops.append(Call->op_begin() + 2, e); 8862 8863 // Push live variables for the stack map. 8864 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 8865 8866 // Push the register mask info. 8867 if (HasGlue) 8868 Ops.push_back(*(Call->op_end()-2)); 8869 else 8870 Ops.push_back(*(Call->op_end()-1)); 8871 8872 // Push the chain (this is originally the first operand of the call, but 8873 // becomes now the last or second to last operand). 8874 Ops.push_back(*(Call->op_begin())); 8875 8876 // Push the glue flag (last operand). 8877 if (HasGlue) 8878 Ops.push_back(*(Call->op_end()-1)); 8879 8880 SDVTList NodeTys; 8881 if (IsAnyRegCC && HasDef) { 8882 // Create the return types based on the intrinsic definition 8883 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8884 SmallVector<EVT, 3> ValueVTs; 8885 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 8886 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8887 8888 // There is always a chain and a glue type at the end 8889 ValueVTs.push_back(MVT::Other); 8890 ValueVTs.push_back(MVT::Glue); 8891 NodeTys = DAG.getVTList(ValueVTs); 8892 } else 8893 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8894 8895 // Replace the target specific call node with a PATCHPOINT node. 8896 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8897 dl, NodeTys, Ops); 8898 8899 // Update the NodeMap. 8900 if (HasDef) { 8901 if (IsAnyRegCC) 8902 setValue(&CB, SDValue(MN, 0)); 8903 else 8904 setValue(&CB, Result.first); 8905 } 8906 8907 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8908 // call sequence. Furthermore the location of the chain and glue can change 8909 // when the AnyReg calling convention is used and the intrinsic returns a 8910 // value. 8911 if (IsAnyRegCC && HasDef) { 8912 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8913 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8914 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8915 } else 8916 DAG.ReplaceAllUsesWith(Call, MN); 8917 DAG.DeleteNode(Call); 8918 8919 // Inform the Frame Information that we have a patchpoint in this function. 8920 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8921 } 8922 8923 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8924 unsigned Intrinsic) { 8925 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8926 SDValue Op1 = getValue(I.getArgOperand(0)); 8927 SDValue Op2; 8928 if (I.getNumArgOperands() > 1) 8929 Op2 = getValue(I.getArgOperand(1)); 8930 SDLoc dl = getCurSDLoc(); 8931 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8932 SDValue Res; 8933 FastMathFlags FMF; 8934 if (isa<FPMathOperator>(I)) 8935 FMF = I.getFastMathFlags(); 8936 8937 switch (Intrinsic) { 8938 case Intrinsic::experimental_vector_reduce_v2_fadd: 8939 if (FMF.allowReassoc()) 8940 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8941 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8942 else 8943 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8944 break; 8945 case Intrinsic::experimental_vector_reduce_v2_fmul: 8946 if (FMF.allowReassoc()) 8947 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8948 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8949 else 8950 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8951 break; 8952 case Intrinsic::experimental_vector_reduce_add: 8953 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8954 break; 8955 case Intrinsic::experimental_vector_reduce_mul: 8956 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8957 break; 8958 case Intrinsic::experimental_vector_reduce_and: 8959 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8960 break; 8961 case Intrinsic::experimental_vector_reduce_or: 8962 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8963 break; 8964 case Intrinsic::experimental_vector_reduce_xor: 8965 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8966 break; 8967 case Intrinsic::experimental_vector_reduce_smax: 8968 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8969 break; 8970 case Intrinsic::experimental_vector_reduce_smin: 8971 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8972 break; 8973 case Intrinsic::experimental_vector_reduce_umax: 8974 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8975 break; 8976 case Intrinsic::experimental_vector_reduce_umin: 8977 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8978 break; 8979 case Intrinsic::experimental_vector_reduce_fmax: 8980 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8981 break; 8982 case Intrinsic::experimental_vector_reduce_fmin: 8983 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8984 break; 8985 default: 8986 llvm_unreachable("Unhandled vector reduce intrinsic"); 8987 } 8988 setValue(&I, Res); 8989 } 8990 8991 /// Returns an AttributeList representing the attributes applied to the return 8992 /// value of the given call. 8993 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8994 SmallVector<Attribute::AttrKind, 2> Attrs; 8995 if (CLI.RetSExt) 8996 Attrs.push_back(Attribute::SExt); 8997 if (CLI.RetZExt) 8998 Attrs.push_back(Attribute::ZExt); 8999 if (CLI.IsInReg) 9000 Attrs.push_back(Attribute::InReg); 9001 9002 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9003 Attrs); 9004 } 9005 9006 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9007 /// implementation, which just calls LowerCall. 9008 /// FIXME: When all targets are 9009 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9010 std::pair<SDValue, SDValue> 9011 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9012 // Handle the incoming return values from the call. 9013 CLI.Ins.clear(); 9014 Type *OrigRetTy = CLI.RetTy; 9015 SmallVector<EVT, 4> RetTys; 9016 SmallVector<uint64_t, 4> Offsets; 9017 auto &DL = CLI.DAG.getDataLayout(); 9018 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9019 9020 if (CLI.IsPostTypeLegalization) { 9021 // If we are lowering a libcall after legalization, split the return type. 9022 SmallVector<EVT, 4> OldRetTys; 9023 SmallVector<uint64_t, 4> OldOffsets; 9024 RetTys.swap(OldRetTys); 9025 Offsets.swap(OldOffsets); 9026 9027 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9028 EVT RetVT = OldRetTys[i]; 9029 uint64_t Offset = OldOffsets[i]; 9030 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9031 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9032 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9033 RetTys.append(NumRegs, RegisterVT); 9034 for (unsigned j = 0; j != NumRegs; ++j) 9035 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9036 } 9037 } 9038 9039 SmallVector<ISD::OutputArg, 4> Outs; 9040 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9041 9042 bool CanLowerReturn = 9043 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9044 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9045 9046 SDValue DemoteStackSlot; 9047 int DemoteStackIdx = -100; 9048 if (!CanLowerReturn) { 9049 // FIXME: equivalent assert? 9050 // assert(!CS.hasInAllocaArgument() && 9051 // "sret demotion is incompatible with inalloca"); 9052 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9053 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9054 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9055 DemoteStackIdx = 9056 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9057 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9058 DL.getAllocaAddrSpace()); 9059 9060 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9061 ArgListEntry Entry; 9062 Entry.Node = DemoteStackSlot; 9063 Entry.Ty = StackSlotPtrType; 9064 Entry.IsSExt = false; 9065 Entry.IsZExt = false; 9066 Entry.IsInReg = false; 9067 Entry.IsSRet = true; 9068 Entry.IsNest = false; 9069 Entry.IsByVal = false; 9070 Entry.IsReturned = false; 9071 Entry.IsSwiftSelf = false; 9072 Entry.IsSwiftError = false; 9073 Entry.IsCFGuardTarget = false; 9074 Entry.Alignment = Alignment; 9075 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9076 CLI.NumFixedArgs += 1; 9077 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9078 9079 // sret demotion isn't compatible with tail-calls, since the sret argument 9080 // points into the callers stack frame. 9081 CLI.IsTailCall = false; 9082 } else { 9083 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9084 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9085 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9086 ISD::ArgFlagsTy Flags; 9087 if (NeedsRegBlock) { 9088 Flags.setInConsecutiveRegs(); 9089 if (I == RetTys.size() - 1) 9090 Flags.setInConsecutiveRegsLast(); 9091 } 9092 EVT VT = RetTys[I]; 9093 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9094 CLI.CallConv, VT); 9095 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9096 CLI.CallConv, VT); 9097 for (unsigned i = 0; i != NumRegs; ++i) { 9098 ISD::InputArg MyFlags; 9099 MyFlags.Flags = Flags; 9100 MyFlags.VT = RegisterVT; 9101 MyFlags.ArgVT = VT; 9102 MyFlags.Used = CLI.IsReturnValueUsed; 9103 if (CLI.RetTy->isPointerTy()) { 9104 MyFlags.Flags.setPointer(); 9105 MyFlags.Flags.setPointerAddrSpace( 9106 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9107 } 9108 if (CLI.RetSExt) 9109 MyFlags.Flags.setSExt(); 9110 if (CLI.RetZExt) 9111 MyFlags.Flags.setZExt(); 9112 if (CLI.IsInReg) 9113 MyFlags.Flags.setInReg(); 9114 CLI.Ins.push_back(MyFlags); 9115 } 9116 } 9117 } 9118 9119 // We push in swifterror return as the last element of CLI.Ins. 9120 ArgListTy &Args = CLI.getArgs(); 9121 if (supportSwiftError()) { 9122 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9123 if (Args[i].IsSwiftError) { 9124 ISD::InputArg MyFlags; 9125 MyFlags.VT = getPointerTy(DL); 9126 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9127 MyFlags.Flags.setSwiftError(); 9128 CLI.Ins.push_back(MyFlags); 9129 } 9130 } 9131 } 9132 9133 // Handle all of the outgoing arguments. 9134 CLI.Outs.clear(); 9135 CLI.OutVals.clear(); 9136 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9137 SmallVector<EVT, 4> ValueVTs; 9138 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9139 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9140 Type *FinalType = Args[i].Ty; 9141 if (Args[i].IsByVal) 9142 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9143 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9144 FinalType, CLI.CallConv, CLI.IsVarArg); 9145 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9146 ++Value) { 9147 EVT VT = ValueVTs[Value]; 9148 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9149 SDValue Op = SDValue(Args[i].Node.getNode(), 9150 Args[i].Node.getResNo() + Value); 9151 ISD::ArgFlagsTy Flags; 9152 9153 // Certain targets (such as MIPS), may have a different ABI alignment 9154 // for a type depending on the context. Give the target a chance to 9155 // specify the alignment it wants. 9156 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9157 9158 if (Args[i].Ty->isPointerTy()) { 9159 Flags.setPointer(); 9160 Flags.setPointerAddrSpace( 9161 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9162 } 9163 if (Args[i].IsZExt) 9164 Flags.setZExt(); 9165 if (Args[i].IsSExt) 9166 Flags.setSExt(); 9167 if (Args[i].IsInReg) { 9168 // If we are using vectorcall calling convention, a structure that is 9169 // passed InReg - is surely an HVA 9170 if (CLI.CallConv == CallingConv::X86_VectorCall && 9171 isa<StructType>(FinalType)) { 9172 // The first value of a structure is marked 9173 if (0 == Value) 9174 Flags.setHvaStart(); 9175 Flags.setHva(); 9176 } 9177 // Set InReg Flag 9178 Flags.setInReg(); 9179 } 9180 if (Args[i].IsSRet) 9181 Flags.setSRet(); 9182 if (Args[i].IsSwiftSelf) 9183 Flags.setSwiftSelf(); 9184 if (Args[i].IsSwiftError) 9185 Flags.setSwiftError(); 9186 if (Args[i].IsCFGuardTarget) 9187 Flags.setCFGuardTarget(); 9188 if (Args[i].IsByVal) 9189 Flags.setByVal(); 9190 if (Args[i].IsPreallocated) { 9191 Flags.setPreallocated(); 9192 // Set the byval flag for CCAssignFn callbacks that don't know about 9193 // preallocated. This way we can know how many bytes we should've 9194 // allocated and how many bytes a callee cleanup function will pop. If 9195 // we port preallocated to more targets, we'll have to add custom 9196 // preallocated handling in the various CC lowering callbacks. 9197 Flags.setByVal(); 9198 } 9199 if (Args[i].IsInAlloca) { 9200 Flags.setInAlloca(); 9201 // Set the byval flag for CCAssignFn callbacks that don't know about 9202 // inalloca. This way we can know how many bytes we should've allocated 9203 // and how many bytes a callee cleanup function will pop. If we port 9204 // inalloca to more targets, we'll have to add custom inalloca handling 9205 // in the various CC lowering callbacks. 9206 Flags.setByVal(); 9207 } 9208 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9209 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9210 Type *ElementTy = Ty->getElementType(); 9211 9212 unsigned FrameSize = DL.getTypeAllocSize( 9213 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9214 Flags.setByValSize(FrameSize); 9215 9216 // info is not there but there are cases it cannot get right. 9217 Align FrameAlign; 9218 if (auto MA = Args[i].Alignment) 9219 FrameAlign = *MA; 9220 else 9221 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9222 Flags.setByValAlign(FrameAlign); 9223 } 9224 if (Args[i].IsNest) 9225 Flags.setNest(); 9226 if (NeedsRegBlock) 9227 Flags.setInConsecutiveRegs(); 9228 Flags.setOrigAlign(OriginalAlignment); 9229 9230 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9231 CLI.CallConv, VT); 9232 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9233 CLI.CallConv, VT); 9234 SmallVector<SDValue, 4> Parts(NumParts); 9235 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9236 9237 if (Args[i].IsSExt) 9238 ExtendKind = ISD::SIGN_EXTEND; 9239 else if (Args[i].IsZExt) 9240 ExtendKind = ISD::ZERO_EXTEND; 9241 9242 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9243 // for now. 9244 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9245 CanLowerReturn) { 9246 assert((CLI.RetTy == Args[i].Ty || 9247 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9248 CLI.RetTy->getPointerAddressSpace() == 9249 Args[i].Ty->getPointerAddressSpace())) && 9250 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9251 // Before passing 'returned' to the target lowering code, ensure that 9252 // either the register MVT and the actual EVT are the same size or that 9253 // the return value and argument are extended in the same way; in these 9254 // cases it's safe to pass the argument register value unchanged as the 9255 // return register value (although it's at the target's option whether 9256 // to do so) 9257 // TODO: allow code generation to take advantage of partially preserved 9258 // registers rather than clobbering the entire register when the 9259 // parameter extension method is not compatible with the return 9260 // extension method 9261 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9262 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9263 CLI.RetZExt == Args[i].IsZExt)) 9264 Flags.setReturned(); 9265 } 9266 9267 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9268 CLI.CallConv, ExtendKind); 9269 9270 for (unsigned j = 0; j != NumParts; ++j) { 9271 // if it isn't first piece, alignment must be 1 9272 // For scalable vectors the scalable part is currently handled 9273 // by individual targets, so we just use the known minimum size here. 9274 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9275 i < CLI.NumFixedArgs, i, 9276 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9277 if (NumParts > 1 && j == 0) 9278 MyFlags.Flags.setSplit(); 9279 else if (j != 0) { 9280 MyFlags.Flags.setOrigAlign(Align(1)); 9281 if (j == NumParts - 1) 9282 MyFlags.Flags.setSplitEnd(); 9283 } 9284 9285 CLI.Outs.push_back(MyFlags); 9286 CLI.OutVals.push_back(Parts[j]); 9287 } 9288 9289 if (NeedsRegBlock && Value == NumValues - 1) 9290 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9291 } 9292 } 9293 9294 SmallVector<SDValue, 4> InVals; 9295 CLI.Chain = LowerCall(CLI, InVals); 9296 9297 // Update CLI.InVals to use outside of this function. 9298 CLI.InVals = InVals; 9299 9300 // Verify that the target's LowerCall behaved as expected. 9301 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9302 "LowerCall didn't return a valid chain!"); 9303 assert((!CLI.IsTailCall || InVals.empty()) && 9304 "LowerCall emitted a return value for a tail call!"); 9305 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9306 "LowerCall didn't emit the correct number of values!"); 9307 9308 // For a tail call, the return value is merely live-out and there aren't 9309 // any nodes in the DAG representing it. Return a special value to 9310 // indicate that a tail call has been emitted and no more Instructions 9311 // should be processed in the current block. 9312 if (CLI.IsTailCall) { 9313 CLI.DAG.setRoot(CLI.Chain); 9314 return std::make_pair(SDValue(), SDValue()); 9315 } 9316 9317 #ifndef NDEBUG 9318 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9319 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9320 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9321 "LowerCall emitted a value with the wrong type!"); 9322 } 9323 #endif 9324 9325 SmallVector<SDValue, 4> ReturnValues; 9326 if (!CanLowerReturn) { 9327 // The instruction result is the result of loading from the 9328 // hidden sret parameter. 9329 SmallVector<EVT, 1> PVTs; 9330 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9331 9332 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9333 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9334 EVT PtrVT = PVTs[0]; 9335 9336 unsigned NumValues = RetTys.size(); 9337 ReturnValues.resize(NumValues); 9338 SmallVector<SDValue, 4> Chains(NumValues); 9339 9340 // An aggregate return value cannot wrap around the address space, so 9341 // offsets to its parts don't wrap either. 9342 SDNodeFlags Flags; 9343 Flags.setNoUnsignedWrap(true); 9344 9345 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9346 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9347 for (unsigned i = 0; i < NumValues; ++i) { 9348 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9349 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9350 PtrVT), Flags); 9351 SDValue L = CLI.DAG.getLoad( 9352 RetTys[i], CLI.DL, CLI.Chain, Add, 9353 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9354 DemoteStackIdx, Offsets[i]), 9355 HiddenSRetAlign); 9356 ReturnValues[i] = L; 9357 Chains[i] = L.getValue(1); 9358 } 9359 9360 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9361 } else { 9362 // Collect the legal value parts into potentially illegal values 9363 // that correspond to the original function's return values. 9364 Optional<ISD::NodeType> AssertOp; 9365 if (CLI.RetSExt) 9366 AssertOp = ISD::AssertSext; 9367 else if (CLI.RetZExt) 9368 AssertOp = ISD::AssertZext; 9369 unsigned CurReg = 0; 9370 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9371 EVT VT = RetTys[I]; 9372 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9373 CLI.CallConv, VT); 9374 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9375 CLI.CallConv, VT); 9376 9377 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9378 NumRegs, RegisterVT, VT, nullptr, 9379 CLI.CallConv, AssertOp)); 9380 CurReg += NumRegs; 9381 } 9382 9383 // For a function returning void, there is no return value. We can't create 9384 // such a node, so we just return a null return value in that case. In 9385 // that case, nothing will actually look at the value. 9386 if (ReturnValues.empty()) 9387 return std::make_pair(SDValue(), CLI.Chain); 9388 } 9389 9390 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9391 CLI.DAG.getVTList(RetTys), ReturnValues); 9392 return std::make_pair(Res, CLI.Chain); 9393 } 9394 9395 void TargetLowering::LowerOperationWrapper(SDNode *N, 9396 SmallVectorImpl<SDValue> &Results, 9397 SelectionDAG &DAG) const { 9398 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9399 Results.push_back(Res); 9400 } 9401 9402 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9403 llvm_unreachable("LowerOperation not implemented for this target!"); 9404 } 9405 9406 void 9407 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9408 SDValue Op = getNonRegisterValue(V); 9409 assert((Op.getOpcode() != ISD::CopyFromReg || 9410 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9411 "Copy from a reg to the same reg!"); 9412 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9413 9414 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9415 // If this is an InlineAsm we have to match the registers required, not the 9416 // notional registers required by the type. 9417 9418 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9419 None); // This is not an ABI copy. 9420 SDValue Chain = DAG.getEntryNode(); 9421 9422 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9423 FuncInfo.PreferredExtendType.end()) 9424 ? ISD::ANY_EXTEND 9425 : FuncInfo.PreferredExtendType[V]; 9426 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9427 PendingExports.push_back(Chain); 9428 } 9429 9430 #include "llvm/CodeGen/SelectionDAGISel.h" 9431 9432 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9433 /// entry block, return true. This includes arguments used by switches, since 9434 /// the switch may expand into multiple basic blocks. 9435 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9436 // With FastISel active, we may be splitting blocks, so force creation 9437 // of virtual registers for all non-dead arguments. 9438 if (FastISel) 9439 return A->use_empty(); 9440 9441 const BasicBlock &Entry = A->getParent()->front(); 9442 for (const User *U : A->users()) 9443 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9444 return false; // Use not in entry block. 9445 9446 return true; 9447 } 9448 9449 using ArgCopyElisionMapTy = 9450 DenseMap<const Argument *, 9451 std::pair<const AllocaInst *, const StoreInst *>>; 9452 9453 /// Scan the entry block of the function in FuncInfo for arguments that look 9454 /// like copies into a local alloca. Record any copied arguments in 9455 /// ArgCopyElisionCandidates. 9456 static void 9457 findArgumentCopyElisionCandidates(const DataLayout &DL, 9458 FunctionLoweringInfo *FuncInfo, 9459 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9460 // Record the state of every static alloca used in the entry block. Argument 9461 // allocas are all used in the entry block, so we need approximately as many 9462 // entries as we have arguments. 9463 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9464 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9465 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9466 StaticAllocas.reserve(NumArgs * 2); 9467 9468 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9469 if (!V) 9470 return nullptr; 9471 V = V->stripPointerCasts(); 9472 const auto *AI = dyn_cast<AllocaInst>(V); 9473 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9474 return nullptr; 9475 auto Iter = StaticAllocas.insert({AI, Unknown}); 9476 return &Iter.first->second; 9477 }; 9478 9479 // Look for stores of arguments to static allocas. Look through bitcasts and 9480 // GEPs to handle type coercions, as long as the alloca is fully initialized 9481 // by the store. Any non-store use of an alloca escapes it and any subsequent 9482 // unanalyzed store might write it. 9483 // FIXME: Handle structs initialized with multiple stores. 9484 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9485 // Look for stores, and handle non-store uses conservatively. 9486 const auto *SI = dyn_cast<StoreInst>(&I); 9487 if (!SI) { 9488 // We will look through cast uses, so ignore them completely. 9489 if (I.isCast()) 9490 continue; 9491 // Ignore debug info intrinsics, they don't escape or store to allocas. 9492 if (isa<DbgInfoIntrinsic>(I)) 9493 continue; 9494 // This is an unknown instruction. Assume it escapes or writes to all 9495 // static alloca operands. 9496 for (const Use &U : I.operands()) { 9497 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9498 *Info = StaticAllocaInfo::Clobbered; 9499 } 9500 continue; 9501 } 9502 9503 // If the stored value is a static alloca, mark it as escaped. 9504 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9505 *Info = StaticAllocaInfo::Clobbered; 9506 9507 // Check if the destination is a static alloca. 9508 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9509 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9510 if (!Info) 9511 continue; 9512 const AllocaInst *AI = cast<AllocaInst>(Dst); 9513 9514 // Skip allocas that have been initialized or clobbered. 9515 if (*Info != StaticAllocaInfo::Unknown) 9516 continue; 9517 9518 // Check if the stored value is an argument, and that this store fully 9519 // initializes the alloca. Don't elide copies from the same argument twice. 9520 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9521 const auto *Arg = dyn_cast<Argument>(Val); 9522 if (!Arg || Arg->hasPassPointeeByValueAttr() || 9523 Arg->getType()->isEmptyTy() || 9524 DL.getTypeStoreSize(Arg->getType()) != 9525 DL.getTypeAllocSize(AI->getAllocatedType()) || 9526 ArgCopyElisionCandidates.count(Arg)) { 9527 *Info = StaticAllocaInfo::Clobbered; 9528 continue; 9529 } 9530 9531 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9532 << '\n'); 9533 9534 // Mark this alloca and store for argument copy elision. 9535 *Info = StaticAllocaInfo::Elidable; 9536 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9537 9538 // Stop scanning if we've seen all arguments. This will happen early in -O0 9539 // builds, which is useful, because -O0 builds have large entry blocks and 9540 // many allocas. 9541 if (ArgCopyElisionCandidates.size() == NumArgs) 9542 break; 9543 } 9544 } 9545 9546 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9547 /// ArgVal is a load from a suitable fixed stack object. 9548 static void tryToElideArgumentCopy( 9549 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9550 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9551 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9552 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9553 SDValue ArgVal, bool &ArgHasUses) { 9554 // Check if this is a load from a fixed stack object. 9555 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9556 if (!LNode) 9557 return; 9558 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9559 if (!FINode) 9560 return; 9561 9562 // Check that the fixed stack object is the right size and alignment. 9563 // Look at the alignment that the user wrote on the alloca instead of looking 9564 // at the stack object. 9565 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9566 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9567 const AllocaInst *AI = ArgCopyIter->second.first; 9568 int FixedIndex = FINode->getIndex(); 9569 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9570 int OldIndex = AllocaIndex; 9571 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9572 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9573 LLVM_DEBUG( 9574 dbgs() << " argument copy elision failed due to bad fixed stack " 9575 "object size\n"); 9576 return; 9577 } 9578 Align RequiredAlignment = AI->getAlign(); 9579 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9580 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9581 "greater than stack argument alignment (" 9582 << DebugStr(RequiredAlignment) << " vs " 9583 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9584 return; 9585 } 9586 9587 // Perform the elision. Delete the old stack object and replace its only use 9588 // in the variable info map. Mark the stack object as mutable. 9589 LLVM_DEBUG({ 9590 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9591 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9592 << '\n'; 9593 }); 9594 MFI.RemoveStackObject(OldIndex); 9595 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9596 AllocaIndex = FixedIndex; 9597 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9598 Chains.push_back(ArgVal.getValue(1)); 9599 9600 // Avoid emitting code for the store implementing the copy. 9601 const StoreInst *SI = ArgCopyIter->second.second; 9602 ElidedArgCopyInstrs.insert(SI); 9603 9604 // Check for uses of the argument again so that we can avoid exporting ArgVal 9605 // if it is't used by anything other than the store. 9606 for (const Value *U : Arg.users()) { 9607 if (U != SI) { 9608 ArgHasUses = true; 9609 break; 9610 } 9611 } 9612 } 9613 9614 void SelectionDAGISel::LowerArguments(const Function &F) { 9615 SelectionDAG &DAG = SDB->DAG; 9616 SDLoc dl = SDB->getCurSDLoc(); 9617 const DataLayout &DL = DAG.getDataLayout(); 9618 SmallVector<ISD::InputArg, 16> Ins; 9619 9620 // In Naked functions we aren't going to save any registers. 9621 if (F.hasFnAttribute(Attribute::Naked)) 9622 return; 9623 9624 if (!FuncInfo->CanLowerReturn) { 9625 // Put in an sret pointer parameter before all the other parameters. 9626 SmallVector<EVT, 1> ValueVTs; 9627 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9628 F.getReturnType()->getPointerTo( 9629 DAG.getDataLayout().getAllocaAddrSpace()), 9630 ValueVTs); 9631 9632 // NOTE: Assuming that a pointer will never break down to more than one VT 9633 // or one register. 9634 ISD::ArgFlagsTy Flags; 9635 Flags.setSRet(); 9636 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9637 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9638 ISD::InputArg::NoArgIndex, 0); 9639 Ins.push_back(RetArg); 9640 } 9641 9642 // Look for stores of arguments to static allocas. Mark such arguments with a 9643 // flag to ask the target to give us the memory location of that argument if 9644 // available. 9645 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9646 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9647 ArgCopyElisionCandidates); 9648 9649 // Set up the incoming argument description vector. 9650 for (const Argument &Arg : F.args()) { 9651 unsigned ArgNo = Arg.getArgNo(); 9652 SmallVector<EVT, 4> ValueVTs; 9653 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9654 bool isArgValueUsed = !Arg.use_empty(); 9655 unsigned PartBase = 0; 9656 Type *FinalType = Arg.getType(); 9657 if (Arg.hasAttribute(Attribute::ByVal)) 9658 FinalType = Arg.getParamByValType(); 9659 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9660 FinalType, F.getCallingConv(), F.isVarArg()); 9661 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9662 Value != NumValues; ++Value) { 9663 EVT VT = ValueVTs[Value]; 9664 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9665 ISD::ArgFlagsTy Flags; 9666 9667 // Certain targets (such as MIPS), may have a different ABI alignment 9668 // for a type depending on the context. Give the target a chance to 9669 // specify the alignment it wants. 9670 const Align OriginalAlignment( 9671 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9672 9673 if (Arg.getType()->isPointerTy()) { 9674 Flags.setPointer(); 9675 Flags.setPointerAddrSpace( 9676 cast<PointerType>(Arg.getType())->getAddressSpace()); 9677 } 9678 if (Arg.hasAttribute(Attribute::ZExt)) 9679 Flags.setZExt(); 9680 if (Arg.hasAttribute(Attribute::SExt)) 9681 Flags.setSExt(); 9682 if (Arg.hasAttribute(Attribute::InReg)) { 9683 // If we are using vectorcall calling convention, a structure that is 9684 // passed InReg - is surely an HVA 9685 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9686 isa<StructType>(Arg.getType())) { 9687 // The first value of a structure is marked 9688 if (0 == Value) 9689 Flags.setHvaStart(); 9690 Flags.setHva(); 9691 } 9692 // Set InReg Flag 9693 Flags.setInReg(); 9694 } 9695 if (Arg.hasAttribute(Attribute::StructRet)) 9696 Flags.setSRet(); 9697 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9698 Flags.setSwiftSelf(); 9699 if (Arg.hasAttribute(Attribute::SwiftError)) 9700 Flags.setSwiftError(); 9701 if (Arg.hasAttribute(Attribute::ByVal)) 9702 Flags.setByVal(); 9703 if (Arg.hasAttribute(Attribute::InAlloca)) { 9704 Flags.setInAlloca(); 9705 // Set the byval flag for CCAssignFn callbacks that don't know about 9706 // inalloca. This way we can know how many bytes we should've allocated 9707 // and how many bytes a callee cleanup function will pop. If we port 9708 // inalloca to more targets, we'll have to add custom inalloca handling 9709 // in the various CC lowering callbacks. 9710 Flags.setByVal(); 9711 } 9712 if (Arg.hasAttribute(Attribute::Preallocated)) { 9713 Flags.setPreallocated(); 9714 // Set the byval flag for CCAssignFn callbacks that don't know about 9715 // preallocated. This way we can know how many bytes we should've 9716 // allocated and how many bytes a callee cleanup function will pop. If 9717 // we port preallocated to more targets, we'll have to add custom 9718 // preallocated handling in the various CC lowering callbacks. 9719 Flags.setByVal(); 9720 } 9721 if (F.getCallingConv() == CallingConv::X86_INTR) { 9722 // IA Interrupt passes frame (1st parameter) by value in the stack. 9723 if (ArgNo == 0) 9724 Flags.setByVal(); 9725 } 9726 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 9727 Type *ElementTy = Arg.getParamByValType(); 9728 9729 // For ByVal, size and alignment should be passed from FE. BE will 9730 // guess if this info is not there but there are cases it cannot get 9731 // right. 9732 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9733 Flags.setByValSize(FrameSize); 9734 9735 unsigned FrameAlign; 9736 if (Arg.getParamAlignment()) 9737 FrameAlign = Arg.getParamAlignment(); 9738 else 9739 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9740 Flags.setByValAlign(Align(FrameAlign)); 9741 } 9742 if (Arg.hasAttribute(Attribute::Nest)) 9743 Flags.setNest(); 9744 if (NeedsRegBlock) 9745 Flags.setInConsecutiveRegs(); 9746 Flags.setOrigAlign(OriginalAlignment); 9747 if (ArgCopyElisionCandidates.count(&Arg)) 9748 Flags.setCopyElisionCandidate(); 9749 if (Arg.hasAttribute(Attribute::Returned)) 9750 Flags.setReturned(); 9751 9752 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9753 *CurDAG->getContext(), F.getCallingConv(), VT); 9754 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9755 *CurDAG->getContext(), F.getCallingConv(), VT); 9756 for (unsigned i = 0; i != NumRegs; ++i) { 9757 // For scalable vectors, use the minimum size; individual targets 9758 // are responsible for handling scalable vector arguments and 9759 // return values. 9760 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9761 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9762 if (NumRegs > 1 && i == 0) 9763 MyFlags.Flags.setSplit(); 9764 // if it isn't first piece, alignment must be 1 9765 else if (i > 0) { 9766 MyFlags.Flags.setOrigAlign(Align(1)); 9767 if (i == NumRegs - 1) 9768 MyFlags.Flags.setSplitEnd(); 9769 } 9770 Ins.push_back(MyFlags); 9771 } 9772 if (NeedsRegBlock && Value == NumValues - 1) 9773 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9774 PartBase += VT.getStoreSize().getKnownMinSize(); 9775 } 9776 } 9777 9778 // Call the target to set up the argument values. 9779 SmallVector<SDValue, 8> InVals; 9780 SDValue NewRoot = TLI->LowerFormalArguments( 9781 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9782 9783 // Verify that the target's LowerFormalArguments behaved as expected. 9784 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9785 "LowerFormalArguments didn't return a valid chain!"); 9786 assert(InVals.size() == Ins.size() && 9787 "LowerFormalArguments didn't emit the correct number of values!"); 9788 LLVM_DEBUG({ 9789 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9790 assert(InVals[i].getNode() && 9791 "LowerFormalArguments emitted a null value!"); 9792 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9793 "LowerFormalArguments emitted a value with the wrong type!"); 9794 } 9795 }); 9796 9797 // Update the DAG with the new chain value resulting from argument lowering. 9798 DAG.setRoot(NewRoot); 9799 9800 // Set up the argument values. 9801 unsigned i = 0; 9802 if (!FuncInfo->CanLowerReturn) { 9803 // Create a virtual register for the sret pointer, and put in a copy 9804 // from the sret argument into it. 9805 SmallVector<EVT, 1> ValueVTs; 9806 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9807 F.getReturnType()->getPointerTo( 9808 DAG.getDataLayout().getAllocaAddrSpace()), 9809 ValueVTs); 9810 MVT VT = ValueVTs[0].getSimpleVT(); 9811 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9812 Optional<ISD::NodeType> AssertOp = None; 9813 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9814 nullptr, F.getCallingConv(), AssertOp); 9815 9816 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9817 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9818 Register SRetReg = 9819 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9820 FuncInfo->DemoteRegister = SRetReg; 9821 NewRoot = 9822 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9823 DAG.setRoot(NewRoot); 9824 9825 // i indexes lowered arguments. Bump it past the hidden sret argument. 9826 ++i; 9827 } 9828 9829 SmallVector<SDValue, 4> Chains; 9830 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9831 for (const Argument &Arg : F.args()) { 9832 SmallVector<SDValue, 4> ArgValues; 9833 SmallVector<EVT, 4> ValueVTs; 9834 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9835 unsigned NumValues = ValueVTs.size(); 9836 if (NumValues == 0) 9837 continue; 9838 9839 bool ArgHasUses = !Arg.use_empty(); 9840 9841 // Elide the copying store if the target loaded this argument from a 9842 // suitable fixed stack object. 9843 if (Ins[i].Flags.isCopyElisionCandidate()) { 9844 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9845 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9846 InVals[i], ArgHasUses); 9847 } 9848 9849 // If this argument is unused then remember its value. It is used to generate 9850 // debugging information. 9851 bool isSwiftErrorArg = 9852 TLI->supportSwiftError() && 9853 Arg.hasAttribute(Attribute::SwiftError); 9854 if (!ArgHasUses && !isSwiftErrorArg) { 9855 SDB->setUnusedArgValue(&Arg, InVals[i]); 9856 9857 // Also remember any frame index for use in FastISel. 9858 if (FrameIndexSDNode *FI = 9859 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9860 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9861 } 9862 9863 for (unsigned Val = 0; Val != NumValues; ++Val) { 9864 EVT VT = ValueVTs[Val]; 9865 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9866 F.getCallingConv(), VT); 9867 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9868 *CurDAG->getContext(), F.getCallingConv(), VT); 9869 9870 // Even an apparent 'unused' swifterror argument needs to be returned. So 9871 // we do generate a copy for it that can be used on return from the 9872 // function. 9873 if (ArgHasUses || isSwiftErrorArg) { 9874 Optional<ISD::NodeType> AssertOp; 9875 if (Arg.hasAttribute(Attribute::SExt)) 9876 AssertOp = ISD::AssertSext; 9877 else if (Arg.hasAttribute(Attribute::ZExt)) 9878 AssertOp = ISD::AssertZext; 9879 9880 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9881 PartVT, VT, nullptr, 9882 F.getCallingConv(), AssertOp)); 9883 } 9884 9885 i += NumParts; 9886 } 9887 9888 // We don't need to do anything else for unused arguments. 9889 if (ArgValues.empty()) 9890 continue; 9891 9892 // Note down frame index. 9893 if (FrameIndexSDNode *FI = 9894 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9895 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9896 9897 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9898 SDB->getCurSDLoc()); 9899 9900 SDB->setValue(&Arg, Res); 9901 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9902 // We want to associate the argument with the frame index, among 9903 // involved operands, that correspond to the lowest address. The 9904 // getCopyFromParts function, called earlier, is swapping the order of 9905 // the operands to BUILD_PAIR depending on endianness. The result of 9906 // that swapping is that the least significant bits of the argument will 9907 // be in the first operand of the BUILD_PAIR node, and the most 9908 // significant bits will be in the second operand. 9909 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9910 if (LoadSDNode *LNode = 9911 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9912 if (FrameIndexSDNode *FI = 9913 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9914 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9915 } 9916 9917 // Analyses past this point are naive and don't expect an assertion. 9918 if (Res.getOpcode() == ISD::AssertZext) 9919 Res = Res.getOperand(0); 9920 9921 // Update the SwiftErrorVRegDefMap. 9922 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9923 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9924 if (Register::isVirtualRegister(Reg)) 9925 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9926 Reg); 9927 } 9928 9929 // If this argument is live outside of the entry block, insert a copy from 9930 // wherever we got it to the vreg that other BB's will reference it as. 9931 if (Res.getOpcode() == ISD::CopyFromReg) { 9932 // If we can, though, try to skip creating an unnecessary vreg. 9933 // FIXME: This isn't very clean... it would be nice to make this more 9934 // general. 9935 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9936 if (Register::isVirtualRegister(Reg)) { 9937 FuncInfo->ValueMap[&Arg] = Reg; 9938 continue; 9939 } 9940 } 9941 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9942 FuncInfo->InitializeRegForValue(&Arg); 9943 SDB->CopyToExportRegsIfNeeded(&Arg); 9944 } 9945 } 9946 9947 if (!Chains.empty()) { 9948 Chains.push_back(NewRoot); 9949 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9950 } 9951 9952 DAG.setRoot(NewRoot); 9953 9954 assert(i == InVals.size() && "Argument register count mismatch!"); 9955 9956 // If any argument copy elisions occurred and we have debug info, update the 9957 // stale frame indices used in the dbg.declare variable info table. 9958 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9959 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9960 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9961 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9962 if (I != ArgCopyElisionFrameIndexMap.end()) 9963 VI.Slot = I->second; 9964 } 9965 } 9966 9967 // Finally, if the target has anything special to do, allow it to do so. 9968 emitFunctionEntryCode(); 9969 } 9970 9971 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9972 /// ensure constants are generated when needed. Remember the virtual registers 9973 /// that need to be added to the Machine PHI nodes as input. We cannot just 9974 /// directly add them, because expansion might result in multiple MBB's for one 9975 /// BB. As such, the start of the BB might correspond to a different MBB than 9976 /// the end. 9977 void 9978 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9979 const Instruction *TI = LLVMBB->getTerminator(); 9980 9981 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9982 9983 // Check PHI nodes in successors that expect a value to be available from this 9984 // block. 9985 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9986 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9987 if (!isa<PHINode>(SuccBB->begin())) continue; 9988 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9989 9990 // If this terminator has multiple identical successors (common for 9991 // switches), only handle each succ once. 9992 if (!SuccsHandled.insert(SuccMBB).second) 9993 continue; 9994 9995 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9996 9997 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9998 // nodes and Machine PHI nodes, but the incoming operands have not been 9999 // emitted yet. 10000 for (const PHINode &PN : SuccBB->phis()) { 10001 // Ignore dead phi's. 10002 if (PN.use_empty()) 10003 continue; 10004 10005 // Skip empty types 10006 if (PN.getType()->isEmptyTy()) 10007 continue; 10008 10009 unsigned Reg; 10010 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10011 10012 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10013 unsigned &RegOut = ConstantsOut[C]; 10014 if (RegOut == 0) { 10015 RegOut = FuncInfo.CreateRegs(C); 10016 CopyValueToVirtualRegister(C, RegOut); 10017 } 10018 Reg = RegOut; 10019 } else { 10020 DenseMap<const Value *, Register>::iterator I = 10021 FuncInfo.ValueMap.find(PHIOp); 10022 if (I != FuncInfo.ValueMap.end()) 10023 Reg = I->second; 10024 else { 10025 assert(isa<AllocaInst>(PHIOp) && 10026 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10027 "Didn't codegen value into a register!??"); 10028 Reg = FuncInfo.CreateRegs(PHIOp); 10029 CopyValueToVirtualRegister(PHIOp, Reg); 10030 } 10031 } 10032 10033 // Remember that this register needs to added to the machine PHI node as 10034 // the input for this MBB. 10035 SmallVector<EVT, 4> ValueVTs; 10036 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10037 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10038 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10039 EVT VT = ValueVTs[vti]; 10040 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10041 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10042 FuncInfo.PHINodesToUpdate.push_back( 10043 std::make_pair(&*MBBI++, Reg + i)); 10044 Reg += NumRegisters; 10045 } 10046 } 10047 } 10048 10049 ConstantsOut.clear(); 10050 } 10051 10052 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10053 /// is 0. 10054 MachineBasicBlock * 10055 SelectionDAGBuilder::StackProtectorDescriptor:: 10056 AddSuccessorMBB(const BasicBlock *BB, 10057 MachineBasicBlock *ParentMBB, 10058 bool IsLikely, 10059 MachineBasicBlock *SuccMBB) { 10060 // If SuccBB has not been created yet, create it. 10061 if (!SuccMBB) { 10062 MachineFunction *MF = ParentMBB->getParent(); 10063 MachineFunction::iterator BBI(ParentMBB); 10064 SuccMBB = MF->CreateMachineBasicBlock(BB); 10065 MF->insert(++BBI, SuccMBB); 10066 } 10067 // Add it as a successor of ParentMBB. 10068 ParentMBB->addSuccessor( 10069 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10070 return SuccMBB; 10071 } 10072 10073 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10074 MachineFunction::iterator I(MBB); 10075 if (++I == FuncInfo.MF->end()) 10076 return nullptr; 10077 return &*I; 10078 } 10079 10080 /// During lowering new call nodes can be created (such as memset, etc.). 10081 /// Those will become new roots of the current DAG, but complications arise 10082 /// when they are tail calls. In such cases, the call lowering will update 10083 /// the root, but the builder still needs to know that a tail call has been 10084 /// lowered in order to avoid generating an additional return. 10085 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10086 // If the node is null, we do have a tail call. 10087 if (MaybeTC.getNode() != nullptr) 10088 DAG.setRoot(MaybeTC); 10089 else 10090 HasTailCall = true; 10091 } 10092 10093 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10094 MachineBasicBlock *SwitchMBB, 10095 MachineBasicBlock *DefaultMBB) { 10096 MachineFunction *CurMF = FuncInfo.MF; 10097 MachineBasicBlock *NextMBB = nullptr; 10098 MachineFunction::iterator BBI(W.MBB); 10099 if (++BBI != FuncInfo.MF->end()) 10100 NextMBB = &*BBI; 10101 10102 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10103 10104 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10105 10106 if (Size == 2 && W.MBB == SwitchMBB) { 10107 // If any two of the cases has the same destination, and if one value 10108 // is the same as the other, but has one bit unset that the other has set, 10109 // use bit manipulation to do two compares at once. For example: 10110 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10111 // TODO: This could be extended to merge any 2 cases in switches with 3 10112 // cases. 10113 // TODO: Handle cases where W.CaseBB != SwitchBB. 10114 CaseCluster &Small = *W.FirstCluster; 10115 CaseCluster &Big = *W.LastCluster; 10116 10117 if (Small.Low == Small.High && Big.Low == Big.High && 10118 Small.MBB == Big.MBB) { 10119 const APInt &SmallValue = Small.Low->getValue(); 10120 const APInt &BigValue = Big.Low->getValue(); 10121 10122 // Check that there is only one bit different. 10123 APInt CommonBit = BigValue ^ SmallValue; 10124 if (CommonBit.isPowerOf2()) { 10125 SDValue CondLHS = getValue(Cond); 10126 EVT VT = CondLHS.getValueType(); 10127 SDLoc DL = getCurSDLoc(); 10128 10129 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10130 DAG.getConstant(CommonBit, DL, VT)); 10131 SDValue Cond = DAG.getSetCC( 10132 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10133 ISD::SETEQ); 10134 10135 // Update successor info. 10136 // Both Small and Big will jump to Small.BB, so we sum up the 10137 // probabilities. 10138 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10139 if (BPI) 10140 addSuccessorWithProb( 10141 SwitchMBB, DefaultMBB, 10142 // The default destination is the first successor in IR. 10143 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10144 else 10145 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10146 10147 // Insert the true branch. 10148 SDValue BrCond = 10149 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10150 DAG.getBasicBlock(Small.MBB)); 10151 // Insert the false branch. 10152 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10153 DAG.getBasicBlock(DefaultMBB)); 10154 10155 DAG.setRoot(BrCond); 10156 return; 10157 } 10158 } 10159 } 10160 10161 if (TM.getOptLevel() != CodeGenOpt::None) { 10162 // Here, we order cases by probability so the most likely case will be 10163 // checked first. However, two clusters can have the same probability in 10164 // which case their relative ordering is non-deterministic. So we use Low 10165 // as a tie-breaker as clusters are guaranteed to never overlap. 10166 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10167 [](const CaseCluster &a, const CaseCluster &b) { 10168 return a.Prob != b.Prob ? 10169 a.Prob > b.Prob : 10170 a.Low->getValue().slt(b.Low->getValue()); 10171 }); 10172 10173 // Rearrange the case blocks so that the last one falls through if possible 10174 // without changing the order of probabilities. 10175 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10176 --I; 10177 if (I->Prob > W.LastCluster->Prob) 10178 break; 10179 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10180 std::swap(*I, *W.LastCluster); 10181 break; 10182 } 10183 } 10184 } 10185 10186 // Compute total probability. 10187 BranchProbability DefaultProb = W.DefaultProb; 10188 BranchProbability UnhandledProbs = DefaultProb; 10189 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10190 UnhandledProbs += I->Prob; 10191 10192 MachineBasicBlock *CurMBB = W.MBB; 10193 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10194 bool FallthroughUnreachable = false; 10195 MachineBasicBlock *Fallthrough; 10196 if (I == W.LastCluster) { 10197 // For the last cluster, fall through to the default destination. 10198 Fallthrough = DefaultMBB; 10199 FallthroughUnreachable = isa<UnreachableInst>( 10200 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10201 } else { 10202 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10203 CurMF->insert(BBI, Fallthrough); 10204 // Put Cond in a virtual register to make it available from the new blocks. 10205 ExportFromCurrentBlock(Cond); 10206 } 10207 UnhandledProbs -= I->Prob; 10208 10209 switch (I->Kind) { 10210 case CC_JumpTable: { 10211 // FIXME: Optimize away range check based on pivot comparisons. 10212 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10213 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10214 10215 // The jump block hasn't been inserted yet; insert it here. 10216 MachineBasicBlock *JumpMBB = JT->MBB; 10217 CurMF->insert(BBI, JumpMBB); 10218 10219 auto JumpProb = I->Prob; 10220 auto FallthroughProb = UnhandledProbs; 10221 10222 // If the default statement is a target of the jump table, we evenly 10223 // distribute the default probability to successors of CurMBB. Also 10224 // update the probability on the edge from JumpMBB to Fallthrough. 10225 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10226 SE = JumpMBB->succ_end(); 10227 SI != SE; ++SI) { 10228 if (*SI == DefaultMBB) { 10229 JumpProb += DefaultProb / 2; 10230 FallthroughProb -= DefaultProb / 2; 10231 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10232 JumpMBB->normalizeSuccProbs(); 10233 break; 10234 } 10235 } 10236 10237 if (FallthroughUnreachable) { 10238 // Skip the range check if the fallthrough block is unreachable. 10239 JTH->OmitRangeCheck = true; 10240 } 10241 10242 if (!JTH->OmitRangeCheck) 10243 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10244 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10245 CurMBB->normalizeSuccProbs(); 10246 10247 // The jump table header will be inserted in our current block, do the 10248 // range check, and fall through to our fallthrough block. 10249 JTH->HeaderBB = CurMBB; 10250 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10251 10252 // If we're in the right place, emit the jump table header right now. 10253 if (CurMBB == SwitchMBB) { 10254 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10255 JTH->Emitted = true; 10256 } 10257 break; 10258 } 10259 case CC_BitTests: { 10260 // FIXME: Optimize away range check based on pivot comparisons. 10261 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10262 10263 // The bit test blocks haven't been inserted yet; insert them here. 10264 for (BitTestCase &BTC : BTB->Cases) 10265 CurMF->insert(BBI, BTC.ThisBB); 10266 10267 // Fill in fields of the BitTestBlock. 10268 BTB->Parent = CurMBB; 10269 BTB->Default = Fallthrough; 10270 10271 BTB->DefaultProb = UnhandledProbs; 10272 // If the cases in bit test don't form a contiguous range, we evenly 10273 // distribute the probability on the edge to Fallthrough to two 10274 // successors of CurMBB. 10275 if (!BTB->ContiguousRange) { 10276 BTB->Prob += DefaultProb / 2; 10277 BTB->DefaultProb -= DefaultProb / 2; 10278 } 10279 10280 if (FallthroughUnreachable) { 10281 // Skip the range check if the fallthrough block is unreachable. 10282 BTB->OmitRangeCheck = true; 10283 } 10284 10285 // If we're in the right place, emit the bit test header right now. 10286 if (CurMBB == SwitchMBB) { 10287 visitBitTestHeader(*BTB, SwitchMBB); 10288 BTB->Emitted = true; 10289 } 10290 break; 10291 } 10292 case CC_Range: { 10293 const Value *RHS, *LHS, *MHS; 10294 ISD::CondCode CC; 10295 if (I->Low == I->High) { 10296 // Check Cond == I->Low. 10297 CC = ISD::SETEQ; 10298 LHS = Cond; 10299 RHS=I->Low; 10300 MHS = nullptr; 10301 } else { 10302 // Check I->Low <= Cond <= I->High. 10303 CC = ISD::SETLE; 10304 LHS = I->Low; 10305 MHS = Cond; 10306 RHS = I->High; 10307 } 10308 10309 // If Fallthrough is unreachable, fold away the comparison. 10310 if (FallthroughUnreachable) 10311 CC = ISD::SETTRUE; 10312 10313 // The false probability is the sum of all unhandled cases. 10314 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10315 getCurSDLoc(), I->Prob, UnhandledProbs); 10316 10317 if (CurMBB == SwitchMBB) 10318 visitSwitchCase(CB, SwitchMBB); 10319 else 10320 SL->SwitchCases.push_back(CB); 10321 10322 break; 10323 } 10324 } 10325 CurMBB = Fallthrough; 10326 } 10327 } 10328 10329 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10330 CaseClusterIt First, 10331 CaseClusterIt Last) { 10332 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10333 if (X.Prob != CC.Prob) 10334 return X.Prob > CC.Prob; 10335 10336 // Ties are broken by comparing the case value. 10337 return X.Low->getValue().slt(CC.Low->getValue()); 10338 }); 10339 } 10340 10341 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10342 const SwitchWorkListItem &W, 10343 Value *Cond, 10344 MachineBasicBlock *SwitchMBB) { 10345 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10346 "Clusters not sorted?"); 10347 10348 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10349 10350 // Balance the tree based on branch probabilities to create a near-optimal (in 10351 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10352 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10353 CaseClusterIt LastLeft = W.FirstCluster; 10354 CaseClusterIt FirstRight = W.LastCluster; 10355 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10356 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10357 10358 // Move LastLeft and FirstRight towards each other from opposite directions to 10359 // find a partitioning of the clusters which balances the probability on both 10360 // sides. If LeftProb and RightProb are equal, alternate which side is 10361 // taken to ensure 0-probability nodes are distributed evenly. 10362 unsigned I = 0; 10363 while (LastLeft + 1 < FirstRight) { 10364 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10365 LeftProb += (++LastLeft)->Prob; 10366 else 10367 RightProb += (--FirstRight)->Prob; 10368 I++; 10369 } 10370 10371 while (true) { 10372 // Our binary search tree differs from a typical BST in that ours can have up 10373 // to three values in each leaf. The pivot selection above doesn't take that 10374 // into account, which means the tree might require more nodes and be less 10375 // efficient. We compensate for this here. 10376 10377 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10378 unsigned NumRight = W.LastCluster - FirstRight + 1; 10379 10380 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10381 // If one side has less than 3 clusters, and the other has more than 3, 10382 // consider taking a cluster from the other side. 10383 10384 if (NumLeft < NumRight) { 10385 // Consider moving the first cluster on the right to the left side. 10386 CaseCluster &CC = *FirstRight; 10387 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10388 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10389 if (LeftSideRank <= RightSideRank) { 10390 // Moving the cluster to the left does not demote it. 10391 ++LastLeft; 10392 ++FirstRight; 10393 continue; 10394 } 10395 } else { 10396 assert(NumRight < NumLeft); 10397 // Consider moving the last element on the left to the right side. 10398 CaseCluster &CC = *LastLeft; 10399 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10400 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10401 if (RightSideRank <= LeftSideRank) { 10402 // Moving the cluster to the right does not demot it. 10403 --LastLeft; 10404 --FirstRight; 10405 continue; 10406 } 10407 } 10408 } 10409 break; 10410 } 10411 10412 assert(LastLeft + 1 == FirstRight); 10413 assert(LastLeft >= W.FirstCluster); 10414 assert(FirstRight <= W.LastCluster); 10415 10416 // Use the first element on the right as pivot since we will make less-than 10417 // comparisons against it. 10418 CaseClusterIt PivotCluster = FirstRight; 10419 assert(PivotCluster > W.FirstCluster); 10420 assert(PivotCluster <= W.LastCluster); 10421 10422 CaseClusterIt FirstLeft = W.FirstCluster; 10423 CaseClusterIt LastRight = W.LastCluster; 10424 10425 const ConstantInt *Pivot = PivotCluster->Low; 10426 10427 // New blocks will be inserted immediately after the current one. 10428 MachineFunction::iterator BBI(W.MBB); 10429 ++BBI; 10430 10431 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10432 // we can branch to its destination directly if it's squeezed exactly in 10433 // between the known lower bound and Pivot - 1. 10434 MachineBasicBlock *LeftMBB; 10435 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10436 FirstLeft->Low == W.GE && 10437 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10438 LeftMBB = FirstLeft->MBB; 10439 } else { 10440 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10441 FuncInfo.MF->insert(BBI, LeftMBB); 10442 WorkList.push_back( 10443 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10444 // Put Cond in a virtual register to make it available from the new blocks. 10445 ExportFromCurrentBlock(Cond); 10446 } 10447 10448 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10449 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10450 // directly if RHS.High equals the current upper bound. 10451 MachineBasicBlock *RightMBB; 10452 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10453 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10454 RightMBB = FirstRight->MBB; 10455 } else { 10456 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10457 FuncInfo.MF->insert(BBI, RightMBB); 10458 WorkList.push_back( 10459 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10460 // Put Cond in a virtual register to make it available from the new blocks. 10461 ExportFromCurrentBlock(Cond); 10462 } 10463 10464 // Create the CaseBlock record that will be used to lower the branch. 10465 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10466 getCurSDLoc(), LeftProb, RightProb); 10467 10468 if (W.MBB == SwitchMBB) 10469 visitSwitchCase(CB, SwitchMBB); 10470 else 10471 SL->SwitchCases.push_back(CB); 10472 } 10473 10474 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10475 // from the swith statement. 10476 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10477 BranchProbability PeeledCaseProb) { 10478 if (PeeledCaseProb == BranchProbability::getOne()) 10479 return BranchProbability::getZero(); 10480 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10481 10482 uint32_t Numerator = CaseProb.getNumerator(); 10483 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10484 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10485 } 10486 10487 // Try to peel the top probability case if it exceeds the threshold. 10488 // Return current MachineBasicBlock for the switch statement if the peeling 10489 // does not occur. 10490 // If the peeling is performed, return the newly created MachineBasicBlock 10491 // for the peeled switch statement. Also update Clusters to remove the peeled 10492 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10493 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10494 const SwitchInst &SI, CaseClusterVector &Clusters, 10495 BranchProbability &PeeledCaseProb) { 10496 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10497 // Don't perform if there is only one cluster or optimizing for size. 10498 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10499 TM.getOptLevel() == CodeGenOpt::None || 10500 SwitchMBB->getParent()->getFunction().hasMinSize()) 10501 return SwitchMBB; 10502 10503 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10504 unsigned PeeledCaseIndex = 0; 10505 bool SwitchPeeled = false; 10506 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10507 CaseCluster &CC = Clusters[Index]; 10508 if (CC.Prob < TopCaseProb) 10509 continue; 10510 TopCaseProb = CC.Prob; 10511 PeeledCaseIndex = Index; 10512 SwitchPeeled = true; 10513 } 10514 if (!SwitchPeeled) 10515 return SwitchMBB; 10516 10517 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10518 << TopCaseProb << "\n"); 10519 10520 // Record the MBB for the peeled switch statement. 10521 MachineFunction::iterator BBI(SwitchMBB); 10522 ++BBI; 10523 MachineBasicBlock *PeeledSwitchMBB = 10524 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10525 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10526 10527 ExportFromCurrentBlock(SI.getCondition()); 10528 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10529 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10530 nullptr, nullptr, TopCaseProb.getCompl()}; 10531 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10532 10533 Clusters.erase(PeeledCaseIt); 10534 for (CaseCluster &CC : Clusters) { 10535 LLVM_DEBUG( 10536 dbgs() << "Scale the probablity for one cluster, before scaling: " 10537 << CC.Prob << "\n"); 10538 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10539 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10540 } 10541 PeeledCaseProb = TopCaseProb; 10542 return PeeledSwitchMBB; 10543 } 10544 10545 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10546 // Extract cases from the switch. 10547 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10548 CaseClusterVector Clusters; 10549 Clusters.reserve(SI.getNumCases()); 10550 for (auto I : SI.cases()) { 10551 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10552 const ConstantInt *CaseVal = I.getCaseValue(); 10553 BranchProbability Prob = 10554 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10555 : BranchProbability(1, SI.getNumCases() + 1); 10556 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10557 } 10558 10559 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10560 10561 // Cluster adjacent cases with the same destination. We do this at all 10562 // optimization levels because it's cheap to do and will make codegen faster 10563 // if there are many clusters. 10564 sortAndRangeify(Clusters); 10565 10566 // The branch probablity of the peeled case. 10567 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10568 MachineBasicBlock *PeeledSwitchMBB = 10569 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10570 10571 // If there is only the default destination, jump there directly. 10572 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10573 if (Clusters.empty()) { 10574 assert(PeeledSwitchMBB == SwitchMBB); 10575 SwitchMBB->addSuccessor(DefaultMBB); 10576 if (DefaultMBB != NextBlock(SwitchMBB)) { 10577 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10578 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10579 } 10580 return; 10581 } 10582 10583 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10584 SL->findBitTestClusters(Clusters, &SI); 10585 10586 LLVM_DEBUG({ 10587 dbgs() << "Case clusters: "; 10588 for (const CaseCluster &C : Clusters) { 10589 if (C.Kind == CC_JumpTable) 10590 dbgs() << "JT:"; 10591 if (C.Kind == CC_BitTests) 10592 dbgs() << "BT:"; 10593 10594 C.Low->getValue().print(dbgs(), true); 10595 if (C.Low != C.High) { 10596 dbgs() << '-'; 10597 C.High->getValue().print(dbgs(), true); 10598 } 10599 dbgs() << ' '; 10600 } 10601 dbgs() << '\n'; 10602 }); 10603 10604 assert(!Clusters.empty()); 10605 SwitchWorkList WorkList; 10606 CaseClusterIt First = Clusters.begin(); 10607 CaseClusterIt Last = Clusters.end() - 1; 10608 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10609 // Scale the branchprobability for DefaultMBB if the peel occurs and 10610 // DefaultMBB is not replaced. 10611 if (PeeledCaseProb != BranchProbability::getZero() && 10612 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10613 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10614 WorkList.push_back( 10615 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10616 10617 while (!WorkList.empty()) { 10618 SwitchWorkListItem W = WorkList.back(); 10619 WorkList.pop_back(); 10620 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10621 10622 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10623 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10624 // For optimized builds, lower large range as a balanced binary tree. 10625 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10626 continue; 10627 } 10628 10629 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10630 } 10631 } 10632 10633 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10634 SmallVector<EVT, 4> ValueVTs; 10635 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10636 ValueVTs); 10637 unsigned NumValues = ValueVTs.size(); 10638 if (NumValues == 0) return; 10639 10640 SmallVector<SDValue, 4> Values(NumValues); 10641 SDValue Op = getValue(I.getOperand(0)); 10642 10643 for (unsigned i = 0; i != NumValues; ++i) 10644 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10645 SDValue(Op.getNode(), Op.getResNo() + i)); 10646 10647 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10648 DAG.getVTList(ValueVTs), Values)); 10649 } 10650