xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision a223f815dd8916462898b9bb302421359bcae957)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/FunctionLoweringInfo.h"
41 #include "llvm/CodeGen/GCMetadata.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/MachineValueType.h"
54 #include "llvm/CodeGen/RuntimeLibcalls.h"
55 #include "llvm/CodeGen/SelectionDAG.h"
56 #include "llvm/CodeGen/SelectionDAGNodes.h"
57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
58 #include "llvm/CodeGen/StackMaps.h"
59 #include "llvm/CodeGen/TargetFrameLowering.h"
60 #include "llvm/CodeGen/TargetInstrInfo.h"
61 #include "llvm/CodeGen/TargetLowering.h"
62 #include "llvm/CodeGen/TargetOpcodes.h"
63 #include "llvm/CodeGen/TargetRegisterInfo.h"
64 #include "llvm/CodeGen/TargetSubtargetInfo.h"
65 #include "llvm/CodeGen/ValueTypes.h"
66 #include "llvm/CodeGen/WinEHFuncInfo.h"
67 #include "llvm/IR/Argument.h"
68 #include "llvm/IR/Attributes.h"
69 #include "llvm/IR/BasicBlock.h"
70 #include "llvm/IR/CFG.h"
71 #include "llvm/IR/CallSite.h"
72 #include "llvm/IR/CallingConv.h"
73 #include "llvm/IR/Constant.h"
74 #include "llvm/IR/ConstantRange.h"
75 #include "llvm/IR/Constants.h"
76 #include "llvm/IR/DataLayout.h"
77 #include "llvm/IR/DebugInfoMetadata.h"
78 #include "llvm/IR/DebugLoc.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GetElementPtrTypeIterator.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstrTypes.h"
84 #include "llvm/IR/Instruction.h"
85 #include "llvm/IR/Instructions.h"
86 #include "llvm/IR/IntrinsicInst.h"
87 #include "llvm/IR/Intrinsics.h"
88 #include "llvm/IR/LLVMContext.h"
89 #include "llvm/IR/Metadata.h"
90 #include "llvm/IR/Module.h"
91 #include "llvm/IR/Operator.h"
92 #include "llvm/IR/Statepoint.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/MC/MCContext.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/Support/AtomicOrdering.h"
99 #include "llvm/Support/BranchProbability.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CodeGen.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstring>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
122 
123 using namespace llvm;
124 
125 #define DEBUG_TYPE "isel"
126 
127 /// LimitFloatPrecision - Generate low-precision inline sequences for
128 /// some float libcalls (6, 8 or 12 bits).
129 static unsigned LimitFloatPrecision;
130 
131 static cl::opt<unsigned, true>
132     LimitFPPrecision("limit-float-precision",
133                      cl::desc("Generate low-precision inline sequences "
134                               "for some float libcalls"),
135                      cl::location(LimitFloatPrecision), cl::Hidden,
136                      cl::init(0));
137 
138 static cl::opt<unsigned> SwitchPeelThreshold(
139     "switch-peel-threshold", cl::Hidden, cl::init(66),
140     cl::desc("Set the case probability threshold for peeling the case from a "
141              "switch statement. A value greater than 100 will void this "
142              "optimization"));
143 
144 // Limit the width of DAG chains. This is important in general to prevent
145 // DAG-based analysis from blowing up. For example, alias analysis and
146 // load clustering may not complete in reasonable time. It is difficult to
147 // recognize and avoid this situation within each individual analysis, and
148 // future analyses are likely to have the same behavior. Limiting DAG width is
149 // the safe approach and will be especially important with global DAGs.
150 //
151 // MaxParallelChains default is arbitrarily high to avoid affecting
152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
153 // sequence over this should have been converted to llvm.memcpy by the
154 // frontend. It is easy to induce this behavior with .ll code such as:
155 // %buffer = alloca [4096 x i8]
156 // %data = load [4096 x i8]* %argPtr
157 // store [4096 x i8] %data, [4096 x i8]* %buffer
158 static const unsigned MaxParallelChains = 64;
159 
160 // True if the Value passed requires ABI mangling as it is a parameter to a
161 // function or a return value from a function which is not an intrinsic.
162 static bool isABIRegCopy(const Value *V) {
163   const bool IsRetInst = V && isa<ReturnInst>(V);
164   const bool IsCallInst = V && isa<CallInst>(V);
165   const bool IsInLineAsm =
166       IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm();
167   const bool IsIndirectFunctionCall =
168       IsCallInst && !IsInLineAsm &&
169       !static_cast<const CallInst *>(V)->getCalledFunction();
170   // It is possible that the call instruction is an inline asm statement or an
171   // indirect function call in which case the return value of
172   // getCalledFunction() would be nullptr.
173   const bool IsInstrinsicCall =
174       IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall &&
175       static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() !=
176           Intrinsic::not_intrinsic;
177 
178   return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall));
179 }
180 
181 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
182                                       const SDValue *Parts, unsigned NumParts,
183                                       MVT PartVT, EVT ValueVT, const Value *V,
184                                       bool IsABIRegCopy);
185 
186 /// getCopyFromParts - Create a value that contains the specified legal parts
187 /// combined into the value they represent.  If the parts combine to a type
188 /// larger than ValueVT then AssertOp can be used to specify whether the extra
189 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
190 /// (ISD::AssertSext).
191 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
192                                 const SDValue *Parts, unsigned NumParts,
193                                 MVT PartVT, EVT ValueVT, const Value *V,
194                                 Optional<ISD::NodeType> AssertOp = None,
195                                 bool IsABIRegCopy = false) {
196   if (ValueVT.isVector())
197     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
198                                   PartVT, ValueVT, V, IsABIRegCopy);
199 
200   assert(NumParts > 0 && "No parts to assemble!");
201   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
202   SDValue Val = Parts[0];
203 
204   if (NumParts > 1) {
205     // Assemble the value from multiple parts.
206     if (ValueVT.isInteger()) {
207       unsigned PartBits = PartVT.getSizeInBits();
208       unsigned ValueBits = ValueVT.getSizeInBits();
209 
210       // Assemble the power of 2 part.
211       unsigned RoundParts = NumParts & (NumParts - 1) ?
212         1 << Log2_32(NumParts) : NumParts;
213       unsigned RoundBits = PartBits * RoundParts;
214       EVT RoundVT = RoundBits == ValueBits ?
215         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
216       SDValue Lo, Hi;
217 
218       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
219 
220       if (RoundParts > 2) {
221         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
222                               PartVT, HalfVT, V);
223         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
224                               RoundParts / 2, PartVT, HalfVT, V);
225       } else {
226         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
227         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
228       }
229 
230       if (DAG.getDataLayout().isBigEndian())
231         std::swap(Lo, Hi);
232 
233       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
234 
235       if (RoundParts < NumParts) {
236         // Assemble the trailing non-power-of-2 part.
237         unsigned OddParts = NumParts - RoundParts;
238         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
239         Hi = getCopyFromParts(DAG, DL,
240                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
241 
242         // Combine the round and odd parts.
243         Lo = Val;
244         if (DAG.getDataLayout().isBigEndian())
245           std::swap(Lo, Hi);
246         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
247         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
248         Hi =
249             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
250                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
251                                         TLI.getPointerTy(DAG.getDataLayout())));
252         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
253         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
254       }
255     } else if (PartVT.isFloatingPoint()) {
256       // FP split into multiple FP parts (for ppcf128)
257       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
258              "Unexpected split");
259       SDValue Lo, Hi;
260       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
261       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
262       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
263         std::swap(Lo, Hi);
264       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
265     } else {
266       // FP split into integer parts (soft fp)
267       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
268              !PartVT.isVector() && "Unexpected split");
269       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
270       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
271     }
272   }
273 
274   // There is now one part, held in Val.  Correct it to match ValueVT.
275   // PartEVT is the type of the register class that holds the value.
276   // ValueVT is the type of the inline asm operation.
277   EVT PartEVT = Val.getValueType();
278 
279   if (PartEVT == ValueVT)
280     return Val;
281 
282   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
283       ValueVT.bitsLT(PartEVT)) {
284     // For an FP value in an integer part, we need to truncate to the right
285     // width first.
286     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
287     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
288   }
289 
290   // Handle types that have the same size.
291   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
292     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
293 
294   // Handle types with different sizes.
295   if (PartEVT.isInteger() && ValueVT.isInteger()) {
296     if (ValueVT.bitsLT(PartEVT)) {
297       // For a truncate, see if we have any information to
298       // indicate whether the truncated bits will always be
299       // zero or sign-extension.
300       if (AssertOp.hasValue())
301         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
302                           DAG.getValueType(ValueVT));
303       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
304     }
305     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
306   }
307 
308   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
309     // FP_ROUND's are always exact here.
310     if (ValueVT.bitsLT(Val.getValueType()))
311       return DAG.getNode(
312           ISD::FP_ROUND, DL, ValueVT, Val,
313           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
314 
315     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
316   }
317 
318   llvm_unreachable("Unknown mismatch!");
319 }
320 
321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
322                                               const Twine &ErrMsg) {
323   const Instruction *I = dyn_cast_or_null<Instruction>(V);
324   if (!V)
325     return Ctx.emitError(ErrMsg);
326 
327   const char *AsmError = ", possible invalid constraint for vector type";
328   if (const CallInst *CI = dyn_cast<CallInst>(I))
329     if (isa<InlineAsm>(CI->getCalledValue()))
330       return Ctx.emitError(I, ErrMsg + AsmError);
331 
332   return Ctx.emitError(I, ErrMsg);
333 }
334 
335 /// getCopyFromPartsVector - Create a value that contains the specified legal
336 /// parts combined into the value they represent.  If the parts combine to a
337 /// type larger than ValueVT then AssertOp can be used to specify whether the
338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
339 /// ValueVT (ISD::AssertSext).
340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
341                                       const SDValue *Parts, unsigned NumParts,
342                                       MVT PartVT, EVT ValueVT, const Value *V,
343                                       bool IsABIRegCopy) {
344   assert(ValueVT.isVector() && "Not a vector value");
345   assert(NumParts > 0 && "No parts to assemble!");
346   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
347   SDValue Val = Parts[0];
348 
349   // Handle a multi-element vector.
350   if (NumParts > 1) {
351     EVT IntermediateVT;
352     MVT RegisterVT;
353     unsigned NumIntermediates;
354     unsigned NumRegs;
355 
356     if (IsABIRegCopy) {
357       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
358           *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
359           RegisterVT);
360     } else {
361       NumRegs =
362           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
363                                      NumIntermediates, RegisterVT);
364     }
365 
366     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
367     NumParts = NumRegs; // Silence a compiler warning.
368     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
369     assert(RegisterVT.getSizeInBits() ==
370            Parts[0].getSimpleValueType().getSizeInBits() &&
371            "Part type sizes don't match!");
372 
373     // Assemble the parts into intermediate operands.
374     SmallVector<SDValue, 8> Ops(NumIntermediates);
375     if (NumIntermediates == NumParts) {
376       // If the register was not expanded, truncate or copy the value,
377       // as appropriate.
378       for (unsigned i = 0; i != NumParts; ++i)
379         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
380                                   PartVT, IntermediateVT, V);
381     } else if (NumParts > 0) {
382       // If the intermediate type was expanded, build the intermediate
383       // operands from the parts.
384       assert(NumParts % NumIntermediates == 0 &&
385              "Must expand into a divisible number of parts!");
386       unsigned Factor = NumParts / NumIntermediates;
387       for (unsigned i = 0; i != NumIntermediates; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
389                                   PartVT, IntermediateVT, V);
390     }
391 
392     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
393     // intermediate operands.
394     EVT BuiltVectorTy =
395         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
396                          (IntermediateVT.isVector()
397                               ? IntermediateVT.getVectorNumElements() * NumParts
398                               : NumIntermediates));
399     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
400                                                 : ISD::BUILD_VECTOR,
401                       DL, BuiltVectorTy, Ops);
402   }
403 
404   // There is now one part, held in Val.  Correct it to match ValueVT.
405   EVT PartEVT = Val.getValueType();
406 
407   if (PartEVT == ValueVT)
408     return Val;
409 
410   if (PartEVT.isVector()) {
411     // If the element type of the source/dest vectors are the same, but the
412     // parts vector has more elements than the value vector, then we have a
413     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
414     // elements we want.
415     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
416       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
417              "Cannot narrow, it would be a lossy transformation");
418       return DAG.getNode(
419           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
420           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
421     }
422 
423     // Vector/Vector bitcast.
424     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
425       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
426 
427     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
428       "Cannot handle this kind of promotion");
429     // Promoted vector extract
430     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
431 
432   }
433 
434   // Trivial bitcast if the types are the same size and the destination
435   // vector type is legal.
436   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
437       TLI.isTypeLegal(ValueVT))
438     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
439 
440   if (ValueVT.getVectorNumElements() != 1) {
441      // Certain ABIs require that vectors are passed as integers. For vectors
442      // are the same size, this is an obvious bitcast.
443      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
444        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
445      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
446        // Bitcast Val back the original type and extract the corresponding
447        // vector we want.
448        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
449        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
450                                            ValueVT.getVectorElementType(), Elts);
451        Val = DAG.getBitcast(WiderVecType, Val);
452        return DAG.getNode(
453            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
454            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
455      }
456 
457      diagnosePossiblyInvalidConstraint(
458          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
459      return DAG.getUNDEF(ValueVT);
460   }
461 
462   // Handle cases such as i8 -> <1 x i1>
463   EVT ValueSVT = ValueVT.getVectorElementType();
464   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
465     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
466                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
467 
468   return DAG.getBuildVector(ValueVT, DL, Val);
469 }
470 
471 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
472                                  SDValue Val, SDValue *Parts, unsigned NumParts,
473                                  MVT PartVT, const Value *V, bool IsABIRegCopy);
474 
475 /// getCopyToParts - Create a series of nodes that contain the specified value
476 /// split into legal parts.  If the parts contain more bits than Val, then, for
477 /// integers, ExtendKind can be used to specify how to generate the extra bits.
478 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
479                            SDValue *Parts, unsigned NumParts, MVT PartVT,
480                            const Value *V,
481                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND,
482                            bool IsABIRegCopy = false) {
483   EVT ValueVT = Val.getValueType();
484 
485   // Handle the vector case separately.
486   if (ValueVT.isVector())
487     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
488                                 IsABIRegCopy);
489 
490   unsigned PartBits = PartVT.getSizeInBits();
491   unsigned OrigNumParts = NumParts;
492   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
493          "Copying to an illegal type!");
494 
495   if (NumParts == 0)
496     return;
497 
498   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
499   EVT PartEVT = PartVT;
500   if (PartEVT == ValueVT) {
501     assert(NumParts == 1 && "No-op copy with multiple parts!");
502     Parts[0] = Val;
503     return;
504   }
505 
506   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
507     // If the parts cover more bits than the value has, promote the value.
508     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
509       assert(NumParts == 1 && "Do not know what to promote to!");
510       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
511     } else {
512       if (ValueVT.isFloatingPoint()) {
513         // FP values need to be bitcast, then extended if they are being put
514         // into a larger container.
515         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
516         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
517       }
518       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
519              ValueVT.isInteger() &&
520              "Unknown mismatch!");
521       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
522       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
523       if (PartVT == MVT::x86mmx)
524         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
525     }
526   } else if (PartBits == ValueVT.getSizeInBits()) {
527     // Different types of the same size.
528     assert(NumParts == 1 && PartEVT != ValueVT);
529     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
530   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
531     // If the parts cover less bits than value has, truncate the value.
532     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
533            ValueVT.isInteger() &&
534            "Unknown mismatch!");
535     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
536     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
537     if (PartVT == MVT::x86mmx)
538       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   }
540 
541   // The value may have changed - recompute ValueVT.
542   ValueVT = Val.getValueType();
543   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
544          "Failed to tile the value with PartVT!");
545 
546   if (NumParts == 1) {
547     if (PartEVT != ValueVT) {
548       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
549                                         "scalar-to-vector conversion failed");
550       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
551     }
552 
553     Parts[0] = Val;
554     return;
555   }
556 
557   // Expand the value into multiple parts.
558   if (NumParts & (NumParts - 1)) {
559     // The number of parts is not a power of 2.  Split off and copy the tail.
560     assert(PartVT.isInteger() && ValueVT.isInteger() &&
561            "Do not know what to expand to!");
562     unsigned RoundParts = 1 << Log2_32(NumParts);
563     unsigned RoundBits = RoundParts * PartBits;
564     unsigned OddParts = NumParts - RoundParts;
565     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
566                                  DAG.getIntPtrConstant(RoundBits, DL));
567     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
568 
569     if (DAG.getDataLayout().isBigEndian())
570       // The odd parts were reversed by getCopyToParts - unreverse them.
571       std::reverse(Parts + RoundParts, Parts + NumParts);
572 
573     NumParts = RoundParts;
574     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
575     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
576   }
577 
578   // The number of parts is a power of 2.  Repeatedly bisect the value using
579   // EXTRACT_ELEMENT.
580   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
581                          EVT::getIntegerVT(*DAG.getContext(),
582                                            ValueVT.getSizeInBits()),
583                          Val);
584 
585   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
586     for (unsigned i = 0; i < NumParts; i += StepSize) {
587       unsigned ThisBits = StepSize * PartBits / 2;
588       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
589       SDValue &Part0 = Parts[i];
590       SDValue &Part1 = Parts[i+StepSize/2];
591 
592       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
593                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
594       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
595                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
596 
597       if (ThisBits == PartBits && ThisVT != PartVT) {
598         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
599         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
600       }
601     }
602   }
603 
604   if (DAG.getDataLayout().isBigEndian())
605     std::reverse(Parts, Parts + OrigNumParts);
606 }
607 
608 
609 /// getCopyToPartsVector - Create a series of nodes that contain the specified
610 /// value split into legal parts.
611 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
612                                  SDValue Val, SDValue *Parts, unsigned NumParts,
613                                  MVT PartVT, const Value *V,
614                                  bool IsABIRegCopy) {
615   EVT ValueVT = Val.getValueType();
616   assert(ValueVT.isVector() && "Not a vector");
617   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
618 
619   if (NumParts == 1) {
620     EVT PartEVT = PartVT;
621     if (PartEVT == ValueVT) {
622       // Nothing to do.
623     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
624       // Bitconvert vector->vector case.
625       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
626     } else if (PartVT.isVector() &&
627                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
628                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
629       EVT ElementVT = PartVT.getVectorElementType();
630       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
631       // undef elements.
632       SmallVector<SDValue, 16> Ops;
633       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
634         Ops.push_back(DAG.getNode(
635             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
636             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
637 
638       for (unsigned i = ValueVT.getVectorNumElements(),
639            e = PartVT.getVectorNumElements(); i != e; ++i)
640         Ops.push_back(DAG.getUNDEF(ElementVT));
641 
642       Val = DAG.getBuildVector(PartVT, DL, Ops);
643 
644       // FIXME: Use CONCAT for 2x -> 4x.
645 
646       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
647       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
648     } else if (PartVT.isVector() &&
649                PartEVT.getVectorElementType().bitsGE(
650                  ValueVT.getVectorElementType()) &&
651                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
652 
653       // Promoted vector extract
654       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
655     } else {
656       if (ValueVT.getVectorNumElements() == 1) {
657         Val = DAG.getNode(
658             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
659             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
660       } else {
661         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
662                "lossy conversion of vector to scalar type");
663         EVT IntermediateType =
664             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
665         Val = DAG.getBitcast(IntermediateType, Val);
666         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
667       }
668     }
669 
670     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
671     Parts[0] = Val;
672     return;
673   }
674 
675   // Handle a multi-element vector.
676   EVT IntermediateVT;
677   MVT RegisterVT;
678   unsigned NumIntermediates;
679   unsigned NumRegs;
680   if (IsABIRegCopy) {
681     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
682         *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
683         RegisterVT);
684   } else {
685     NumRegs =
686         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
687                                    NumIntermediates, RegisterVT);
688   }
689   unsigned NumElements = ValueVT.getVectorNumElements();
690 
691   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
692   NumParts = NumRegs; // Silence a compiler warning.
693   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
694 
695   // Convert the vector to the appropiate type if necessary.
696   unsigned DestVectorNoElts =
697       NumIntermediates *
698       (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1);
699   EVT BuiltVectorTy = EVT::getVectorVT(
700       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
701   if (Val.getValueType() != BuiltVectorTy)
702     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
703 
704   // Split the vector into intermediate operands.
705   SmallVector<SDValue, 8> Ops(NumIntermediates);
706   for (unsigned i = 0; i != NumIntermediates; ++i) {
707     if (IntermediateVT.isVector())
708       Ops[i] =
709           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
710                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
711                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
712     else
713       Ops[i] = DAG.getNode(
714           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
715           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
716   }
717 
718   // Split the intermediate operands into legal parts.
719   if (NumParts == NumIntermediates) {
720     // If the register was not expanded, promote or copy the value,
721     // as appropriate.
722     for (unsigned i = 0; i != NumParts; ++i)
723       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
724   } else if (NumParts > 0) {
725     // If the intermediate type was expanded, split each the value into
726     // legal parts.
727     assert(NumIntermediates != 0 && "division by zero");
728     assert(NumParts % NumIntermediates == 0 &&
729            "Must expand into a divisible number of parts!");
730     unsigned Factor = NumParts / NumIntermediates;
731     for (unsigned i = 0; i != NumIntermediates; ++i)
732       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
733   }
734 }
735 
736 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
737                            EVT valuevt, bool IsABIMangledValue)
738     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
739       RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {}
740 
741 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
742                            const DataLayout &DL, unsigned Reg, Type *Ty,
743                            bool IsABIMangledValue) {
744   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
745 
746   IsABIMangled = IsABIMangledValue;
747 
748   for (EVT ValueVT : ValueVTs) {
749     unsigned NumRegs = IsABIMangledValue
750                            ? TLI.getNumRegistersForCallingConv(Context, ValueVT)
751                            : TLI.getNumRegisters(Context, ValueVT);
752     MVT RegisterVT = IsABIMangledValue
753                          ? TLI.getRegisterTypeForCallingConv(Context, ValueVT)
754                          : TLI.getRegisterType(Context, ValueVT);
755     for (unsigned i = 0; i != NumRegs; ++i)
756       Regs.push_back(Reg + i);
757     RegVTs.push_back(RegisterVT);
758     RegCount.push_back(NumRegs);
759     Reg += NumRegs;
760   }
761 }
762 
763 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
764                                       FunctionLoweringInfo &FuncInfo,
765                                       const SDLoc &dl, SDValue &Chain,
766                                       SDValue *Flag, const Value *V) const {
767   // A Value with type {} or [0 x %t] needs no registers.
768   if (ValueVTs.empty())
769     return SDValue();
770 
771   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
772 
773   // Assemble the legal parts into the final values.
774   SmallVector<SDValue, 4> Values(ValueVTs.size());
775   SmallVector<SDValue, 8> Parts;
776   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
777     // Copy the legal parts from the registers.
778     EVT ValueVT = ValueVTs[Value];
779     unsigned NumRegs = RegCount[Value];
780     MVT RegisterVT = IsABIMangled
781                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
782                          : RegVTs[Value];
783 
784     Parts.resize(NumRegs);
785     for (unsigned i = 0; i != NumRegs; ++i) {
786       SDValue P;
787       if (!Flag) {
788         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
789       } else {
790         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
791         *Flag = P.getValue(2);
792       }
793 
794       Chain = P.getValue(1);
795       Parts[i] = P;
796 
797       // If the source register was virtual and if we know something about it,
798       // add an assert node.
799       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
800           !RegisterVT.isInteger() || RegisterVT.isVector())
801         continue;
802 
803       const FunctionLoweringInfo::LiveOutInfo *LOI =
804         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
805       if (!LOI)
806         continue;
807 
808       unsigned RegSize = RegisterVT.getSizeInBits();
809       unsigned NumSignBits = LOI->NumSignBits;
810       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
811 
812       if (NumZeroBits == RegSize) {
813         // The current value is a zero.
814         // Explicitly express that as it would be easier for
815         // optimizations to kick in.
816         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
817         continue;
818       }
819 
820       // FIXME: We capture more information than the dag can represent.  For
821       // now, just use the tightest assertzext/assertsext possible.
822       bool isSExt = true;
823       EVT FromVT(MVT::Other);
824       if (NumSignBits == RegSize) {
825         isSExt = true;   // ASSERT SEXT 1
826         FromVT = MVT::i1;
827       } else if (NumZeroBits >= RegSize - 1) {
828         isSExt = false;  // ASSERT ZEXT 1
829         FromVT = MVT::i1;
830       } else if (NumSignBits > RegSize - 8) {
831         isSExt = true;   // ASSERT SEXT 8
832         FromVT = MVT::i8;
833       } else if (NumZeroBits >= RegSize - 8) {
834         isSExt = false;  // ASSERT ZEXT 8
835         FromVT = MVT::i8;
836       } else if (NumSignBits > RegSize - 16) {
837         isSExt = true;   // ASSERT SEXT 16
838         FromVT = MVT::i16;
839       } else if (NumZeroBits >= RegSize - 16) {
840         isSExt = false;  // ASSERT ZEXT 16
841         FromVT = MVT::i16;
842       } else if (NumSignBits > RegSize - 32) {
843         isSExt = true;   // ASSERT SEXT 32
844         FromVT = MVT::i32;
845       } else if (NumZeroBits >= RegSize - 32) {
846         isSExt = false;  // ASSERT ZEXT 32
847         FromVT = MVT::i32;
848       } else {
849         continue;
850       }
851       // Add an assertion node.
852       assert(FromVT != MVT::Other);
853       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
854                              RegisterVT, P, DAG.getValueType(FromVT));
855     }
856 
857     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
858                                      NumRegs, RegisterVT, ValueVT, V);
859     Part += NumRegs;
860     Parts.clear();
861   }
862 
863   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
864 }
865 
866 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
867                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
868                                  const Value *V,
869                                  ISD::NodeType PreferredExtendType) const {
870   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
871   ISD::NodeType ExtendKind = PreferredExtendType;
872 
873   // Get the list of the values's legal parts.
874   unsigned NumRegs = Regs.size();
875   SmallVector<SDValue, 8> Parts(NumRegs);
876   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
877     unsigned NumParts = RegCount[Value];
878 
879     MVT RegisterVT = IsABIMangled
880                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
881                          : RegVTs[Value];
882 
883     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
884       ExtendKind = ISD::ZERO_EXTEND;
885 
886     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
887                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
888     Part += NumParts;
889   }
890 
891   // Copy the parts into the registers.
892   SmallVector<SDValue, 8> Chains(NumRegs);
893   for (unsigned i = 0; i != NumRegs; ++i) {
894     SDValue Part;
895     if (!Flag) {
896       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
897     } else {
898       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
899       *Flag = Part.getValue(1);
900     }
901 
902     Chains[i] = Part.getValue(0);
903   }
904 
905   if (NumRegs == 1 || Flag)
906     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
907     // flagged to it. That is the CopyToReg nodes and the user are considered
908     // a single scheduling unit. If we create a TokenFactor and return it as
909     // chain, then the TokenFactor is both a predecessor (operand) of the
910     // user as well as a successor (the TF operands are flagged to the user).
911     // c1, f1 = CopyToReg
912     // c2, f2 = CopyToReg
913     // c3     = TokenFactor c1, c2
914     // ...
915     //        = op c3, ..., f2
916     Chain = Chains[NumRegs-1];
917   else
918     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
919 }
920 
921 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
922                                         unsigned MatchingIdx, const SDLoc &dl,
923                                         SelectionDAG &DAG,
924                                         std::vector<SDValue> &Ops) const {
925   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
926 
927   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
928   if (HasMatching)
929     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
930   else if (!Regs.empty() &&
931            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
932     // Put the register class of the virtual registers in the flag word.  That
933     // way, later passes can recompute register class constraints for inline
934     // assembly as well as normal instructions.
935     // Don't do this for tied operands that can use the regclass information
936     // from the def.
937     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
938     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
939     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
940   }
941 
942   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
943   Ops.push_back(Res);
944 
945   if (Code == InlineAsm::Kind_Clobber) {
946     // Clobbers should always have a 1:1 mapping with registers, and may
947     // reference registers that have illegal (e.g. vector) types. Hence, we
948     // shouldn't try to apply any sort of splitting logic to them.
949     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
950            "No 1:1 mapping from clobbers to regs?");
951     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
952     (void)SP;
953     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
954       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
955       assert(
956           (Regs[I] != SP ||
957            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
958           "If we clobbered the stack pointer, MFI should know about it.");
959     }
960     return;
961   }
962 
963   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
964     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
965     MVT RegisterVT = RegVTs[Value];
966     for (unsigned i = 0; i != NumRegs; ++i) {
967       assert(Reg < Regs.size() && "Mismatch in # registers expected");
968       unsigned TheReg = Regs[Reg++];
969       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
970     }
971   }
972 }
973 
974 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
975                                const TargetLibraryInfo *li) {
976   AA = aa;
977   GFI = gfi;
978   LibInfo = li;
979   DL = &DAG.getDataLayout();
980   Context = DAG.getContext();
981   LPadToCallSiteMap.clear();
982 }
983 
984 void SelectionDAGBuilder::clear() {
985   NodeMap.clear();
986   UnusedArgNodeMap.clear();
987   PendingLoads.clear();
988   PendingExports.clear();
989   CurInst = nullptr;
990   HasTailCall = false;
991   SDNodeOrder = LowestSDNodeOrder;
992   StatepointLowering.clear();
993 }
994 
995 void SelectionDAGBuilder::clearDanglingDebugInfo() {
996   DanglingDebugInfoMap.clear();
997 }
998 
999 SDValue SelectionDAGBuilder::getRoot() {
1000   if (PendingLoads.empty())
1001     return DAG.getRoot();
1002 
1003   if (PendingLoads.size() == 1) {
1004     SDValue Root = PendingLoads[0];
1005     DAG.setRoot(Root);
1006     PendingLoads.clear();
1007     return Root;
1008   }
1009 
1010   // Otherwise, we have to make a token factor node.
1011   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1012                              PendingLoads);
1013   PendingLoads.clear();
1014   DAG.setRoot(Root);
1015   return Root;
1016 }
1017 
1018 SDValue SelectionDAGBuilder::getControlRoot() {
1019   SDValue Root = DAG.getRoot();
1020 
1021   if (PendingExports.empty())
1022     return Root;
1023 
1024   // Turn all of the CopyToReg chains into one factored node.
1025   if (Root.getOpcode() != ISD::EntryToken) {
1026     unsigned i = 0, e = PendingExports.size();
1027     for (; i != e; ++i) {
1028       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1029       if (PendingExports[i].getNode()->getOperand(0) == Root)
1030         break;  // Don't add the root if we already indirectly depend on it.
1031     }
1032 
1033     if (i == e)
1034       PendingExports.push_back(Root);
1035   }
1036 
1037   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1038                      PendingExports);
1039   PendingExports.clear();
1040   DAG.setRoot(Root);
1041   return Root;
1042 }
1043 
1044 void SelectionDAGBuilder::visit(const Instruction &I) {
1045   // Set up outgoing PHI node register values before emitting the terminator.
1046   if (isa<TerminatorInst>(&I)) {
1047     HandlePHINodesInSuccessorBlocks(I.getParent());
1048   }
1049 
1050   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1051   if (!isa<DbgInfoIntrinsic>(I))
1052     ++SDNodeOrder;
1053 
1054   CurInst = &I;
1055 
1056   visit(I.getOpcode(), I);
1057 
1058   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
1059       !isStatepoint(&I)) // statepoints handle their exports internally
1060     CopyToExportRegsIfNeeded(&I);
1061 
1062   CurInst = nullptr;
1063 }
1064 
1065 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1066   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1067 }
1068 
1069 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1070   // Note: this doesn't use InstVisitor, because it has to work with
1071   // ConstantExpr's in addition to instructions.
1072   switch (Opcode) {
1073   default: llvm_unreachable("Unknown instruction type encountered!");
1074     // Build the switch statement using the Instruction.def file.
1075 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1076     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1077 #include "llvm/IR/Instruction.def"
1078   }
1079 }
1080 
1081 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1082                                                 const DIExpression *Expr) {
1083   SmallVector<const Value *, 4> ToRemove;
1084   for (auto &DMI : DanglingDebugInfoMap) {
1085     DanglingDebugInfo &DDI = DMI.second;
1086     if (DDI.getDI()) {
1087       const DbgValueInst *DI = DDI.getDI();
1088       DIVariable *DanglingVariable = DI->getVariable();
1089       DIExpression *DanglingExpr = DI->getExpression();
1090       if (DanglingVariable == Variable &&
1091           Expr->fragmentsOverlap(DanglingExpr)) {
1092         DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1093         ToRemove.push_back(DMI.first);
1094       }
1095     }
1096   }
1097 
1098   for (auto V : ToRemove)
1099     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1100 }
1101 
1102 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1103 // generate the debug data structures now that we've seen its definition.
1104 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1105                                                    SDValue Val) {
1106   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
1107   if (!DDI.getDI())
1108     return;
1109   const DbgValueInst *DI = DDI.getDI();
1110   DebugLoc dl = DDI.getdl();
1111   unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1112   unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1113   DILocalVariable *Variable = DI->getVariable();
1114   DIExpression *Expr = DI->getExpression();
1115   assert(Variable->isValidLocationForIntrinsic(dl) &&
1116          "Expected inlined-at fields to agree");
1117   SDDbgValue *SDV;
1118   if (Val.getNode()) {
1119     if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1120       DEBUG(dbgs() << "Resolve dangling debug info [order=" << DbgSDNodeOrder
1121             << "] for:\n  " << *DI << "\n");
1122       DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1123       // Increase the SDNodeOrder for the DbgValue here to make sure it is
1124       // inserted after the definition of Val when emitting the instructions
1125       // after ISel. An alternative could be to teach
1126       // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1127       DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder)
1128               dbgs() << "changing SDNodeOrder from " << DbgSDNodeOrder
1129                      << " to " << ValSDNodeOrder << "\n");
1130       SDV = getDbgValue(Val, Variable, Expr, dl,
1131                         std::max(DbgSDNodeOrder, ValSDNodeOrder));
1132       DAG.AddDbgValue(SDV, Val.getNode(), false);
1133     } else
1134       DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1135             << "in EmitFuncArgumentDbgValue\n");
1136   } else
1137     DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1138   DanglingDebugInfoMap[V] = DanglingDebugInfo();
1139 }
1140 
1141 /// getCopyFromRegs - If there was virtual register allocated for the value V
1142 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1143 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1144   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1145   SDValue Result;
1146 
1147   if (It != FuncInfo.ValueMap.end()) {
1148     unsigned InReg = It->second;
1149 
1150     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1151                      DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V));
1152     SDValue Chain = DAG.getEntryNode();
1153     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1154                                  V);
1155     resolveDanglingDebugInfo(V, Result);
1156   }
1157 
1158   return Result;
1159 }
1160 
1161 /// getValue - Return an SDValue for the given Value.
1162 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1163   // If we already have an SDValue for this value, use it. It's important
1164   // to do this first, so that we don't create a CopyFromReg if we already
1165   // have a regular SDValue.
1166   SDValue &N = NodeMap[V];
1167   if (N.getNode()) return N;
1168 
1169   // If there's a virtual register allocated and initialized for this
1170   // value, use it.
1171   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1172     return copyFromReg;
1173 
1174   // Otherwise create a new SDValue and remember it.
1175   SDValue Val = getValueImpl(V);
1176   NodeMap[V] = Val;
1177   resolveDanglingDebugInfo(V, Val);
1178   return Val;
1179 }
1180 
1181 // Return true if SDValue exists for the given Value
1182 bool SelectionDAGBuilder::findValue(const Value *V) const {
1183   return (NodeMap.find(V) != NodeMap.end()) ||
1184     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1185 }
1186 
1187 /// getNonRegisterValue - Return an SDValue for the given Value, but
1188 /// don't look in FuncInfo.ValueMap for a virtual register.
1189 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1190   // If we already have an SDValue for this value, use it.
1191   SDValue &N = NodeMap[V];
1192   if (N.getNode()) {
1193     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1194       // Remove the debug location from the node as the node is about to be used
1195       // in a location which may differ from the original debug location.  This
1196       // is relevant to Constant and ConstantFP nodes because they can appear
1197       // as constant expressions inside PHI nodes.
1198       N->setDebugLoc(DebugLoc());
1199     }
1200     return N;
1201   }
1202 
1203   // Otherwise create a new SDValue and remember it.
1204   SDValue Val = getValueImpl(V);
1205   NodeMap[V] = Val;
1206   resolveDanglingDebugInfo(V, Val);
1207   return Val;
1208 }
1209 
1210 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1211 /// Create an SDValue for the given value.
1212 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1213   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1214 
1215   if (const Constant *C = dyn_cast<Constant>(V)) {
1216     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1217 
1218     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1219       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1220 
1221     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1222       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1223 
1224     if (isa<ConstantPointerNull>(C)) {
1225       unsigned AS = V->getType()->getPointerAddressSpace();
1226       return DAG.getConstant(0, getCurSDLoc(),
1227                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1228     }
1229 
1230     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1231       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1232 
1233     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1234       return DAG.getUNDEF(VT);
1235 
1236     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1237       visit(CE->getOpcode(), *CE);
1238       SDValue N1 = NodeMap[V];
1239       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1240       return N1;
1241     }
1242 
1243     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1244       SmallVector<SDValue, 4> Constants;
1245       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1246            OI != OE; ++OI) {
1247         SDNode *Val = getValue(*OI).getNode();
1248         // If the operand is an empty aggregate, there are no values.
1249         if (!Val) continue;
1250         // Add each leaf value from the operand to the Constants list
1251         // to form a flattened list of all the values.
1252         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1253           Constants.push_back(SDValue(Val, i));
1254       }
1255 
1256       return DAG.getMergeValues(Constants, getCurSDLoc());
1257     }
1258 
1259     if (const ConstantDataSequential *CDS =
1260           dyn_cast<ConstantDataSequential>(C)) {
1261       SmallVector<SDValue, 4> Ops;
1262       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1263         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1264         // Add each leaf value from the operand to the Constants list
1265         // to form a flattened list of all the values.
1266         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1267           Ops.push_back(SDValue(Val, i));
1268       }
1269 
1270       if (isa<ArrayType>(CDS->getType()))
1271         return DAG.getMergeValues(Ops, getCurSDLoc());
1272       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1273     }
1274 
1275     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1276       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1277              "Unknown struct or array constant!");
1278 
1279       SmallVector<EVT, 4> ValueVTs;
1280       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1281       unsigned NumElts = ValueVTs.size();
1282       if (NumElts == 0)
1283         return SDValue(); // empty struct
1284       SmallVector<SDValue, 4> Constants(NumElts);
1285       for (unsigned i = 0; i != NumElts; ++i) {
1286         EVT EltVT = ValueVTs[i];
1287         if (isa<UndefValue>(C))
1288           Constants[i] = DAG.getUNDEF(EltVT);
1289         else if (EltVT.isFloatingPoint())
1290           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1291         else
1292           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1293       }
1294 
1295       return DAG.getMergeValues(Constants, getCurSDLoc());
1296     }
1297 
1298     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1299       return DAG.getBlockAddress(BA, VT);
1300 
1301     VectorType *VecTy = cast<VectorType>(V->getType());
1302     unsigned NumElements = VecTy->getNumElements();
1303 
1304     // Now that we know the number and type of the elements, get that number of
1305     // elements into the Ops array based on what kind of constant it is.
1306     SmallVector<SDValue, 16> Ops;
1307     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1308       for (unsigned i = 0; i != NumElements; ++i)
1309         Ops.push_back(getValue(CV->getOperand(i)));
1310     } else {
1311       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1312       EVT EltVT =
1313           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1314 
1315       SDValue Op;
1316       if (EltVT.isFloatingPoint())
1317         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1318       else
1319         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1320       Ops.assign(NumElements, Op);
1321     }
1322 
1323     // Create a BUILD_VECTOR node.
1324     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1325   }
1326 
1327   // If this is a static alloca, generate it as the frameindex instead of
1328   // computation.
1329   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1330     DenseMap<const AllocaInst*, int>::iterator SI =
1331       FuncInfo.StaticAllocaMap.find(AI);
1332     if (SI != FuncInfo.StaticAllocaMap.end())
1333       return DAG.getFrameIndex(SI->second,
1334                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1335   }
1336 
1337   // If this is an instruction which fast-isel has deferred, select it now.
1338   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1339     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1340 
1341     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1342                      Inst->getType(), isABIRegCopy(V));
1343     SDValue Chain = DAG.getEntryNode();
1344     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1345   }
1346 
1347   llvm_unreachable("Can't get register for value!");
1348 }
1349 
1350 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1351   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1352   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1353   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1354   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1355   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1356   if (IsMSVCCXX || IsCoreCLR)
1357     CatchPadMBB->setIsEHFuncletEntry();
1358 
1359   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1360 }
1361 
1362 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1363   // Update machine-CFG edge.
1364   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1365   FuncInfo.MBB->addSuccessor(TargetMBB);
1366 
1367   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1368   bool IsSEH = isAsynchronousEHPersonality(Pers);
1369   if (IsSEH) {
1370     // If this is not a fall-through branch or optimizations are switched off,
1371     // emit the branch.
1372     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1373         TM.getOptLevel() == CodeGenOpt::None)
1374       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1375                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1376     return;
1377   }
1378 
1379   // Figure out the funclet membership for the catchret's successor.
1380   // This will be used by the FuncletLayout pass to determine how to order the
1381   // BB's.
1382   // A 'catchret' returns to the outer scope's color.
1383   Value *ParentPad = I.getCatchSwitchParentPad();
1384   const BasicBlock *SuccessorColor;
1385   if (isa<ConstantTokenNone>(ParentPad))
1386     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1387   else
1388     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1389   assert(SuccessorColor && "No parent funclet for catchret!");
1390   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1391   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1392 
1393   // Create the terminator node.
1394   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1395                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1396                             DAG.getBasicBlock(SuccessorColorMBB));
1397   DAG.setRoot(Ret);
1398 }
1399 
1400 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1401   // Don't emit any special code for the cleanuppad instruction. It just marks
1402   // the start of a funclet.
1403   FuncInfo.MBB->setIsEHFuncletEntry();
1404   FuncInfo.MBB->setIsCleanupFuncletEntry();
1405 }
1406 
1407 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1408 /// many places it could ultimately go. In the IR, we have a single unwind
1409 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1410 /// This function skips over imaginary basic blocks that hold catchswitch
1411 /// instructions, and finds all the "real" machine
1412 /// basic block destinations. As those destinations may not be successors of
1413 /// EHPadBB, here we also calculate the edge probability to those destinations.
1414 /// The passed-in Prob is the edge probability to EHPadBB.
1415 static void findUnwindDestinations(
1416     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1417     BranchProbability Prob,
1418     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1419         &UnwindDests) {
1420   EHPersonality Personality =
1421     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1422   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1423   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1424 
1425   while (EHPadBB) {
1426     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1427     BasicBlock *NewEHPadBB = nullptr;
1428     if (isa<LandingPadInst>(Pad)) {
1429       // Stop on landingpads. They are not funclets.
1430       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1431       break;
1432     } else if (isa<CleanupPadInst>(Pad)) {
1433       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1434       // personalities.
1435       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1436       UnwindDests.back().first->setIsEHFuncletEntry();
1437       break;
1438     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1439       // Add the catchpad handlers to the possible destinations.
1440       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1441         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1442         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1443         if (IsMSVCCXX || IsCoreCLR)
1444           UnwindDests.back().first->setIsEHFuncletEntry();
1445       }
1446       NewEHPadBB = CatchSwitch->getUnwindDest();
1447     } else {
1448       continue;
1449     }
1450 
1451     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1452     if (BPI && NewEHPadBB)
1453       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1454     EHPadBB = NewEHPadBB;
1455   }
1456 }
1457 
1458 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1459   // Update successor info.
1460   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1461   auto UnwindDest = I.getUnwindDest();
1462   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1463   BranchProbability UnwindDestProb =
1464       (BPI && UnwindDest)
1465           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1466           : BranchProbability::getZero();
1467   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1468   for (auto &UnwindDest : UnwindDests) {
1469     UnwindDest.first->setIsEHPad();
1470     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1471   }
1472   FuncInfo.MBB->normalizeSuccProbs();
1473 
1474   // Create the terminator node.
1475   SDValue Ret =
1476       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1477   DAG.setRoot(Ret);
1478 }
1479 
1480 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1481   report_fatal_error("visitCatchSwitch not yet implemented!");
1482 }
1483 
1484 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1485   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1486   auto &DL = DAG.getDataLayout();
1487   SDValue Chain = getControlRoot();
1488   SmallVector<ISD::OutputArg, 8> Outs;
1489   SmallVector<SDValue, 8> OutVals;
1490 
1491   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1492   // lower
1493   //
1494   //   %val = call <ty> @llvm.experimental.deoptimize()
1495   //   ret <ty> %val
1496   //
1497   // differently.
1498   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1499     LowerDeoptimizingReturn();
1500     return;
1501   }
1502 
1503   if (!FuncInfo.CanLowerReturn) {
1504     unsigned DemoteReg = FuncInfo.DemoteRegister;
1505     const Function *F = I.getParent()->getParent();
1506 
1507     // Emit a store of the return value through the virtual register.
1508     // Leave Outs empty so that LowerReturn won't try to load return
1509     // registers the usual way.
1510     SmallVector<EVT, 1> PtrValueVTs;
1511     ComputeValueVTs(TLI, DL,
1512                     F->getReturnType()->getPointerTo(
1513                         DAG.getDataLayout().getAllocaAddrSpace()),
1514                     PtrValueVTs);
1515 
1516     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1517                                         DemoteReg, PtrValueVTs[0]);
1518     SDValue RetOp = getValue(I.getOperand(0));
1519 
1520     SmallVector<EVT, 4> ValueVTs;
1521     SmallVector<uint64_t, 4> Offsets;
1522     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1523     unsigned NumValues = ValueVTs.size();
1524 
1525     SmallVector<SDValue, 4> Chains(NumValues);
1526     for (unsigned i = 0; i != NumValues; ++i) {
1527       // An aggregate return value cannot wrap around the address space, so
1528       // offsets to its parts don't wrap either.
1529       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1530       Chains[i] = DAG.getStore(
1531           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1532           // FIXME: better loc info would be nice.
1533           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1534     }
1535 
1536     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1537                         MVT::Other, Chains);
1538   } else if (I.getNumOperands() != 0) {
1539     SmallVector<EVT, 4> ValueVTs;
1540     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1541     unsigned NumValues = ValueVTs.size();
1542     if (NumValues) {
1543       SDValue RetOp = getValue(I.getOperand(0));
1544 
1545       const Function *F = I.getParent()->getParent();
1546 
1547       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1548       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1549                                           Attribute::SExt))
1550         ExtendKind = ISD::SIGN_EXTEND;
1551       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1552                                                Attribute::ZExt))
1553         ExtendKind = ISD::ZERO_EXTEND;
1554 
1555       LLVMContext &Context = F->getContext();
1556       bool RetInReg = F->getAttributes().hasAttribute(
1557           AttributeList::ReturnIndex, Attribute::InReg);
1558 
1559       for (unsigned j = 0; j != NumValues; ++j) {
1560         EVT VT = ValueVTs[j];
1561 
1562         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1563           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1564 
1565         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT);
1566         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT);
1567         SmallVector<SDValue, 4> Parts(NumParts);
1568         getCopyToParts(DAG, getCurSDLoc(),
1569                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1570                        &Parts[0], NumParts, PartVT, &I, ExtendKind, true);
1571 
1572         // 'inreg' on function refers to return value
1573         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1574         if (RetInReg)
1575           Flags.setInReg();
1576 
1577         // Propagate extension type if any
1578         if (ExtendKind == ISD::SIGN_EXTEND)
1579           Flags.setSExt();
1580         else if (ExtendKind == ISD::ZERO_EXTEND)
1581           Flags.setZExt();
1582 
1583         for (unsigned i = 0; i < NumParts; ++i) {
1584           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1585                                         VT, /*isfixed=*/true, 0, 0));
1586           OutVals.push_back(Parts[i]);
1587         }
1588       }
1589     }
1590   }
1591 
1592   // Push in swifterror virtual register as the last element of Outs. This makes
1593   // sure swifterror virtual register will be returned in the swifterror
1594   // physical register.
1595   const Function *F = I.getParent()->getParent();
1596   if (TLI.supportSwiftError() &&
1597       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1598     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1599     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1600     Flags.setSwiftError();
1601     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1602                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1603                                   true /*isfixed*/, 1 /*origidx*/,
1604                                   0 /*partOffs*/));
1605     // Create SDNode for the swifterror virtual register.
1606     OutVals.push_back(
1607         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1608                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1609                         EVT(TLI.getPointerTy(DL))));
1610   }
1611 
1612   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1613   CallingConv::ID CallConv =
1614     DAG.getMachineFunction().getFunction().getCallingConv();
1615   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1616       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1617 
1618   // Verify that the target's LowerReturn behaved as expected.
1619   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1620          "LowerReturn didn't return a valid chain!");
1621 
1622   // Update the DAG with the new chain value resulting from return lowering.
1623   DAG.setRoot(Chain);
1624 }
1625 
1626 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1627 /// created for it, emit nodes to copy the value into the virtual
1628 /// registers.
1629 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1630   // Skip empty types
1631   if (V->getType()->isEmptyTy())
1632     return;
1633 
1634   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1635   if (VMI != FuncInfo.ValueMap.end()) {
1636     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1637     CopyValueToVirtualRegister(V, VMI->second);
1638   }
1639 }
1640 
1641 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1642 /// the current basic block, add it to ValueMap now so that we'll get a
1643 /// CopyTo/FromReg.
1644 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1645   // No need to export constants.
1646   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1647 
1648   // Already exported?
1649   if (FuncInfo.isExportedInst(V)) return;
1650 
1651   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1652   CopyValueToVirtualRegister(V, Reg);
1653 }
1654 
1655 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1656                                                      const BasicBlock *FromBB) {
1657   // The operands of the setcc have to be in this block.  We don't know
1658   // how to export them from some other block.
1659   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1660     // Can export from current BB.
1661     if (VI->getParent() == FromBB)
1662       return true;
1663 
1664     // Is already exported, noop.
1665     return FuncInfo.isExportedInst(V);
1666   }
1667 
1668   // If this is an argument, we can export it if the BB is the entry block or
1669   // if it is already exported.
1670   if (isa<Argument>(V)) {
1671     if (FromBB == &FromBB->getParent()->getEntryBlock())
1672       return true;
1673 
1674     // Otherwise, can only export this if it is already exported.
1675     return FuncInfo.isExportedInst(V);
1676   }
1677 
1678   // Otherwise, constants can always be exported.
1679   return true;
1680 }
1681 
1682 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1683 BranchProbability
1684 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1685                                         const MachineBasicBlock *Dst) const {
1686   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1687   const BasicBlock *SrcBB = Src->getBasicBlock();
1688   const BasicBlock *DstBB = Dst->getBasicBlock();
1689   if (!BPI) {
1690     // If BPI is not available, set the default probability as 1 / N, where N is
1691     // the number of successors.
1692     auto SuccSize = std::max<uint32_t>(
1693         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1694     return BranchProbability(1, SuccSize);
1695   }
1696   return BPI->getEdgeProbability(SrcBB, DstBB);
1697 }
1698 
1699 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1700                                                MachineBasicBlock *Dst,
1701                                                BranchProbability Prob) {
1702   if (!FuncInfo.BPI)
1703     Src->addSuccessorWithoutProb(Dst);
1704   else {
1705     if (Prob.isUnknown())
1706       Prob = getEdgeProbability(Src, Dst);
1707     Src->addSuccessor(Dst, Prob);
1708   }
1709 }
1710 
1711 static bool InBlock(const Value *V, const BasicBlock *BB) {
1712   if (const Instruction *I = dyn_cast<Instruction>(V))
1713     return I->getParent() == BB;
1714   return true;
1715 }
1716 
1717 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1718 /// This function emits a branch and is used at the leaves of an OR or an
1719 /// AND operator tree.
1720 void
1721 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1722                                                   MachineBasicBlock *TBB,
1723                                                   MachineBasicBlock *FBB,
1724                                                   MachineBasicBlock *CurBB,
1725                                                   MachineBasicBlock *SwitchBB,
1726                                                   BranchProbability TProb,
1727                                                   BranchProbability FProb,
1728                                                   bool InvertCond) {
1729   const BasicBlock *BB = CurBB->getBasicBlock();
1730 
1731   // If the leaf of the tree is a comparison, merge the condition into
1732   // the caseblock.
1733   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1734     // The operands of the cmp have to be in this block.  We don't know
1735     // how to export them from some other block.  If this is the first block
1736     // of the sequence, no exporting is needed.
1737     if (CurBB == SwitchBB ||
1738         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1739          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1740       ISD::CondCode Condition;
1741       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1742         ICmpInst::Predicate Pred =
1743             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1744         Condition = getICmpCondCode(Pred);
1745       } else {
1746         const FCmpInst *FC = cast<FCmpInst>(Cond);
1747         FCmpInst::Predicate Pred =
1748             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1749         Condition = getFCmpCondCode(Pred);
1750         if (TM.Options.NoNaNsFPMath)
1751           Condition = getFCmpCodeWithoutNaN(Condition);
1752       }
1753 
1754       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1755                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1756       SwitchCases.push_back(CB);
1757       return;
1758     }
1759   }
1760 
1761   // Create a CaseBlock record representing this branch.
1762   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1763   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1764                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1765   SwitchCases.push_back(CB);
1766 }
1767 
1768 /// FindMergedConditions - If Cond is an expression like
1769 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1770                                                MachineBasicBlock *TBB,
1771                                                MachineBasicBlock *FBB,
1772                                                MachineBasicBlock *CurBB,
1773                                                MachineBasicBlock *SwitchBB,
1774                                                Instruction::BinaryOps Opc,
1775                                                BranchProbability TProb,
1776                                                BranchProbability FProb,
1777                                                bool InvertCond) {
1778   // Skip over not part of the tree and remember to invert op and operands at
1779   // next level.
1780   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1781     const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1782     if (InBlock(CondOp, CurBB->getBasicBlock())) {
1783       FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1784                            !InvertCond);
1785       return;
1786     }
1787   }
1788 
1789   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1790   // Compute the effective opcode for Cond, taking into account whether it needs
1791   // to be inverted, e.g.
1792   //   and (not (or A, B)), C
1793   // gets lowered as
1794   //   and (and (not A, not B), C)
1795   unsigned BOpc = 0;
1796   if (BOp) {
1797     BOpc = BOp->getOpcode();
1798     if (InvertCond) {
1799       if (BOpc == Instruction::And)
1800         BOpc = Instruction::Or;
1801       else if (BOpc == Instruction::Or)
1802         BOpc = Instruction::And;
1803     }
1804   }
1805 
1806   // If this node is not part of the or/and tree, emit it as a branch.
1807   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1808       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
1809       BOp->getParent() != CurBB->getBasicBlock() ||
1810       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1811       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1812     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1813                                  TProb, FProb, InvertCond);
1814     return;
1815   }
1816 
1817   //  Create TmpBB after CurBB.
1818   MachineFunction::iterator BBI(CurBB);
1819   MachineFunction &MF = DAG.getMachineFunction();
1820   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1821   CurBB->getParent()->insert(++BBI, TmpBB);
1822 
1823   if (Opc == Instruction::Or) {
1824     // Codegen X | Y as:
1825     // BB1:
1826     //   jmp_if_X TBB
1827     //   jmp TmpBB
1828     // TmpBB:
1829     //   jmp_if_Y TBB
1830     //   jmp FBB
1831     //
1832 
1833     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1834     // The requirement is that
1835     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1836     //     = TrueProb for original BB.
1837     // Assuming the original probabilities are A and B, one choice is to set
1838     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1839     // A/(1+B) and 2B/(1+B). This choice assumes that
1840     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1841     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1842     // TmpBB, but the math is more complicated.
1843 
1844     auto NewTrueProb = TProb / 2;
1845     auto NewFalseProb = TProb / 2 + FProb;
1846     // Emit the LHS condition.
1847     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1848                          NewTrueProb, NewFalseProb, InvertCond);
1849 
1850     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1851     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1852     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1853     // Emit the RHS condition into TmpBB.
1854     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1855                          Probs[0], Probs[1], InvertCond);
1856   } else {
1857     assert(Opc == Instruction::And && "Unknown merge op!");
1858     // Codegen X & Y as:
1859     // BB1:
1860     //   jmp_if_X TmpBB
1861     //   jmp FBB
1862     // TmpBB:
1863     //   jmp_if_Y TBB
1864     //   jmp FBB
1865     //
1866     //  This requires creation of TmpBB after CurBB.
1867 
1868     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1869     // The requirement is that
1870     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1871     //     = FalseProb for original BB.
1872     // Assuming the original probabilities are A and B, one choice is to set
1873     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1874     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1875     // TrueProb for BB1 * FalseProb for TmpBB.
1876 
1877     auto NewTrueProb = TProb + FProb / 2;
1878     auto NewFalseProb = FProb / 2;
1879     // Emit the LHS condition.
1880     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1881                          NewTrueProb, NewFalseProb, InvertCond);
1882 
1883     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1884     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1885     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1886     // Emit the RHS condition into TmpBB.
1887     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1888                          Probs[0], Probs[1], InvertCond);
1889   }
1890 }
1891 
1892 /// If the set of cases should be emitted as a series of branches, return true.
1893 /// If we should emit this as a bunch of and/or'd together conditions, return
1894 /// false.
1895 bool
1896 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1897   if (Cases.size() != 2) return true;
1898 
1899   // If this is two comparisons of the same values or'd or and'd together, they
1900   // will get folded into a single comparison, so don't emit two blocks.
1901   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1902        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1903       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1904        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1905     return false;
1906   }
1907 
1908   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1909   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1910   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1911       Cases[0].CC == Cases[1].CC &&
1912       isa<Constant>(Cases[0].CmpRHS) &&
1913       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1914     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1915       return false;
1916     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1917       return false;
1918   }
1919 
1920   return true;
1921 }
1922 
1923 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1924   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1925 
1926   // Update machine-CFG edges.
1927   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1928 
1929   if (I.isUnconditional()) {
1930     // Update machine-CFG edges.
1931     BrMBB->addSuccessor(Succ0MBB);
1932 
1933     // If this is not a fall-through branch or optimizations are switched off,
1934     // emit the branch.
1935     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1936       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1937                               MVT::Other, getControlRoot(),
1938                               DAG.getBasicBlock(Succ0MBB)));
1939 
1940     return;
1941   }
1942 
1943   // If this condition is one of the special cases we handle, do special stuff
1944   // now.
1945   const Value *CondVal = I.getCondition();
1946   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1947 
1948   // If this is a series of conditions that are or'd or and'd together, emit
1949   // this as a sequence of branches instead of setcc's with and/or operations.
1950   // As long as jumps are not expensive, this should improve performance.
1951   // For example, instead of something like:
1952   //     cmp A, B
1953   //     C = seteq
1954   //     cmp D, E
1955   //     F = setle
1956   //     or C, F
1957   //     jnz foo
1958   // Emit:
1959   //     cmp A, B
1960   //     je foo
1961   //     cmp D, E
1962   //     jle foo
1963   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1964     Instruction::BinaryOps Opcode = BOp->getOpcode();
1965     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1966         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1967         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1968       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1969                            Opcode,
1970                            getEdgeProbability(BrMBB, Succ0MBB),
1971                            getEdgeProbability(BrMBB, Succ1MBB),
1972                            /*InvertCond=*/false);
1973       // If the compares in later blocks need to use values not currently
1974       // exported from this block, export them now.  This block should always
1975       // be the first entry.
1976       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1977 
1978       // Allow some cases to be rejected.
1979       if (ShouldEmitAsBranches(SwitchCases)) {
1980         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1981           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1982           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1983         }
1984 
1985         // Emit the branch for this block.
1986         visitSwitchCase(SwitchCases[0], BrMBB);
1987         SwitchCases.erase(SwitchCases.begin());
1988         return;
1989       }
1990 
1991       // Okay, we decided not to do this, remove any inserted MBB's and clear
1992       // SwitchCases.
1993       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1994         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1995 
1996       SwitchCases.clear();
1997     }
1998   }
1999 
2000   // Create a CaseBlock record representing this branch.
2001   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2002                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2003 
2004   // Use visitSwitchCase to actually insert the fast branch sequence for this
2005   // cond branch.
2006   visitSwitchCase(CB, BrMBB);
2007 }
2008 
2009 /// visitSwitchCase - Emits the necessary code to represent a single node in
2010 /// the binary search tree resulting from lowering a switch instruction.
2011 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2012                                           MachineBasicBlock *SwitchBB) {
2013   SDValue Cond;
2014   SDValue CondLHS = getValue(CB.CmpLHS);
2015   SDLoc dl = CB.DL;
2016 
2017   // Build the setcc now.
2018   if (!CB.CmpMHS) {
2019     // Fold "(X == true)" to X and "(X == false)" to !X to
2020     // handle common cases produced by branch lowering.
2021     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2022         CB.CC == ISD::SETEQ)
2023       Cond = CondLHS;
2024     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2025              CB.CC == ISD::SETEQ) {
2026       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2027       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2028     } else
2029       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2030   } else {
2031     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2032 
2033     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2034     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2035 
2036     SDValue CmpOp = getValue(CB.CmpMHS);
2037     EVT VT = CmpOp.getValueType();
2038 
2039     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2040       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2041                           ISD::SETLE);
2042     } else {
2043       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2044                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2045       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2046                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2047     }
2048   }
2049 
2050   // Update successor info
2051   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2052   // TrueBB and FalseBB are always different unless the incoming IR is
2053   // degenerate. This only happens when running llc on weird IR.
2054   if (CB.TrueBB != CB.FalseBB)
2055     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2056   SwitchBB->normalizeSuccProbs();
2057 
2058   // If the lhs block is the next block, invert the condition so that we can
2059   // fall through to the lhs instead of the rhs block.
2060   if (CB.TrueBB == NextBlock(SwitchBB)) {
2061     std::swap(CB.TrueBB, CB.FalseBB);
2062     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2063     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2064   }
2065 
2066   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2067                                MVT::Other, getControlRoot(), Cond,
2068                                DAG.getBasicBlock(CB.TrueBB));
2069 
2070   // Insert the false branch. Do this even if it's a fall through branch,
2071   // this makes it easier to do DAG optimizations which require inverting
2072   // the branch condition.
2073   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2074                        DAG.getBasicBlock(CB.FalseBB));
2075 
2076   DAG.setRoot(BrCond);
2077 }
2078 
2079 /// visitJumpTable - Emit JumpTable node in the current MBB
2080 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2081   // Emit the code for the jump table
2082   assert(JT.Reg != -1U && "Should lower JT Header first!");
2083   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2084   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2085                                      JT.Reg, PTy);
2086   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2087   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2088                                     MVT::Other, Index.getValue(1),
2089                                     Table, Index);
2090   DAG.setRoot(BrJumpTable);
2091 }
2092 
2093 /// visitJumpTableHeader - This function emits necessary code to produce index
2094 /// in the JumpTable from switch case.
2095 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2096                                                JumpTableHeader &JTH,
2097                                                MachineBasicBlock *SwitchBB) {
2098   SDLoc dl = getCurSDLoc();
2099 
2100   // Subtract the lowest switch case value from the value being switched on and
2101   // conditional branch to default mbb if the result is greater than the
2102   // difference between smallest and largest cases.
2103   SDValue SwitchOp = getValue(JTH.SValue);
2104   EVT VT = SwitchOp.getValueType();
2105   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2106                             DAG.getConstant(JTH.First, dl, VT));
2107 
2108   // The SDNode we just created, which holds the value being switched on minus
2109   // the smallest case value, needs to be copied to a virtual register so it
2110   // can be used as an index into the jump table in a subsequent basic block.
2111   // This value may be smaller or larger than the target's pointer type, and
2112   // therefore require extension or truncating.
2113   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2114   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2115 
2116   unsigned JumpTableReg =
2117       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2118   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2119                                     JumpTableReg, SwitchOp);
2120   JT.Reg = JumpTableReg;
2121 
2122   // Emit the range check for the jump table, and branch to the default block
2123   // for the switch statement if the value being switched on exceeds the largest
2124   // case in the switch.
2125   SDValue CMP = DAG.getSetCC(
2126       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2127                                  Sub.getValueType()),
2128       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2129 
2130   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2131                                MVT::Other, CopyTo, CMP,
2132                                DAG.getBasicBlock(JT.Default));
2133 
2134   // Avoid emitting unnecessary branches to the next block.
2135   if (JT.MBB != NextBlock(SwitchBB))
2136     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2137                          DAG.getBasicBlock(JT.MBB));
2138 
2139   DAG.setRoot(BrCond);
2140 }
2141 
2142 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2143 /// variable if there exists one.
2144 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2145                                  SDValue &Chain) {
2146   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2147   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2148   MachineFunction &MF = DAG.getMachineFunction();
2149   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2150   MachineSDNode *Node =
2151       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2152   if (Global) {
2153     MachinePointerInfo MPInfo(Global);
2154     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2155     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2156                  MachineMemOperand::MODereferenceable;
2157     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2158                                        DAG.getEVTAlignment(PtrTy));
2159     Node->setMemRefs(MemRefs, MemRefs + 1);
2160   }
2161   return SDValue(Node, 0);
2162 }
2163 
2164 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2165 /// tail spliced into a stack protector check success bb.
2166 ///
2167 /// For a high level explanation of how this fits into the stack protector
2168 /// generation see the comment on the declaration of class
2169 /// StackProtectorDescriptor.
2170 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2171                                                   MachineBasicBlock *ParentBB) {
2172 
2173   // First create the loads to the guard/stack slot for the comparison.
2174   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2175   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2176 
2177   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2178   int FI = MFI.getStackProtectorIndex();
2179 
2180   SDValue Guard;
2181   SDLoc dl = getCurSDLoc();
2182   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2183   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2184   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2185 
2186   // Generate code to load the content of the guard slot.
2187   SDValue GuardVal = DAG.getLoad(
2188       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2189       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2190       MachineMemOperand::MOVolatile);
2191 
2192   if (TLI.useStackGuardXorFP())
2193     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2194 
2195   // Retrieve guard check function, nullptr if instrumentation is inlined.
2196   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2197     // The target provides a guard check function to validate the guard value.
2198     // Generate a call to that function with the content of the guard slot as
2199     // argument.
2200     auto *Fn = cast<Function>(GuardCheck);
2201     FunctionType *FnTy = Fn->getFunctionType();
2202     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2203 
2204     TargetLowering::ArgListTy Args;
2205     TargetLowering::ArgListEntry Entry;
2206     Entry.Node = GuardVal;
2207     Entry.Ty = FnTy->getParamType(0);
2208     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2209       Entry.IsInReg = true;
2210     Args.push_back(Entry);
2211 
2212     TargetLowering::CallLoweringInfo CLI(DAG);
2213     CLI.setDebugLoc(getCurSDLoc())
2214       .setChain(DAG.getEntryNode())
2215       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2216                  getValue(GuardCheck), std::move(Args));
2217 
2218     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2219     DAG.setRoot(Result.second);
2220     return;
2221   }
2222 
2223   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2224   // Otherwise, emit a volatile load to retrieve the stack guard value.
2225   SDValue Chain = DAG.getEntryNode();
2226   if (TLI.useLoadStackGuardNode()) {
2227     Guard = getLoadStackGuard(DAG, dl, Chain);
2228   } else {
2229     const Value *IRGuard = TLI.getSDagStackGuard(M);
2230     SDValue GuardPtr = getValue(IRGuard);
2231 
2232     Guard =
2233         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2234                     Align, MachineMemOperand::MOVolatile);
2235   }
2236 
2237   // Perform the comparison via a subtract/getsetcc.
2238   EVT VT = Guard.getValueType();
2239   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2240 
2241   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2242                                                         *DAG.getContext(),
2243                                                         Sub.getValueType()),
2244                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2245 
2246   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2247   // branch to failure MBB.
2248   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2249                                MVT::Other, GuardVal.getOperand(0),
2250                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2251   // Otherwise branch to success MBB.
2252   SDValue Br = DAG.getNode(ISD::BR, dl,
2253                            MVT::Other, BrCond,
2254                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2255 
2256   DAG.setRoot(Br);
2257 }
2258 
2259 /// Codegen the failure basic block for a stack protector check.
2260 ///
2261 /// A failure stack protector machine basic block consists simply of a call to
2262 /// __stack_chk_fail().
2263 ///
2264 /// For a high level explanation of how this fits into the stack protector
2265 /// generation see the comment on the declaration of class
2266 /// StackProtectorDescriptor.
2267 void
2268 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2269   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2270   SDValue Chain =
2271       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2272                       None, false, getCurSDLoc(), false, false).second;
2273   DAG.setRoot(Chain);
2274 }
2275 
2276 /// visitBitTestHeader - This function emits necessary code to produce value
2277 /// suitable for "bit tests"
2278 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2279                                              MachineBasicBlock *SwitchBB) {
2280   SDLoc dl = getCurSDLoc();
2281 
2282   // Subtract the minimum value
2283   SDValue SwitchOp = getValue(B.SValue);
2284   EVT VT = SwitchOp.getValueType();
2285   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2286                             DAG.getConstant(B.First, dl, VT));
2287 
2288   // Check range
2289   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2290   SDValue RangeCmp = DAG.getSetCC(
2291       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2292                                  Sub.getValueType()),
2293       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2294 
2295   // Determine the type of the test operands.
2296   bool UsePtrType = false;
2297   if (!TLI.isTypeLegal(VT))
2298     UsePtrType = true;
2299   else {
2300     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2301       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2302         // Switch table case range are encoded into series of masks.
2303         // Just use pointer type, it's guaranteed to fit.
2304         UsePtrType = true;
2305         break;
2306       }
2307   }
2308   if (UsePtrType) {
2309     VT = TLI.getPointerTy(DAG.getDataLayout());
2310     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2311   }
2312 
2313   B.RegVT = VT.getSimpleVT();
2314   B.Reg = FuncInfo.CreateReg(B.RegVT);
2315   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2316 
2317   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2318 
2319   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2320   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2321   SwitchBB->normalizeSuccProbs();
2322 
2323   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2324                                 MVT::Other, CopyTo, RangeCmp,
2325                                 DAG.getBasicBlock(B.Default));
2326 
2327   // Avoid emitting unnecessary branches to the next block.
2328   if (MBB != NextBlock(SwitchBB))
2329     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2330                           DAG.getBasicBlock(MBB));
2331 
2332   DAG.setRoot(BrRange);
2333 }
2334 
2335 /// visitBitTestCase - this function produces one "bit test"
2336 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2337                                            MachineBasicBlock* NextMBB,
2338                                            BranchProbability BranchProbToNext,
2339                                            unsigned Reg,
2340                                            BitTestCase &B,
2341                                            MachineBasicBlock *SwitchBB) {
2342   SDLoc dl = getCurSDLoc();
2343   MVT VT = BB.RegVT;
2344   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2345   SDValue Cmp;
2346   unsigned PopCount = countPopulation(B.Mask);
2347   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2348   if (PopCount == 1) {
2349     // Testing for a single bit; just compare the shift count with what it
2350     // would need to be to shift a 1 bit in that position.
2351     Cmp = DAG.getSetCC(
2352         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2353         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2354         ISD::SETEQ);
2355   } else if (PopCount == BB.Range) {
2356     // There is only one zero bit in the range, test for it directly.
2357     Cmp = DAG.getSetCC(
2358         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2359         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2360         ISD::SETNE);
2361   } else {
2362     // Make desired shift
2363     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2364                                     DAG.getConstant(1, dl, VT), ShiftOp);
2365 
2366     // Emit bit tests and jumps
2367     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2368                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2369     Cmp = DAG.getSetCC(
2370         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2371         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2372   }
2373 
2374   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2375   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2376   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2377   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2378   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2379   // one as they are relative probabilities (and thus work more like weights),
2380   // and hence we need to normalize them to let the sum of them become one.
2381   SwitchBB->normalizeSuccProbs();
2382 
2383   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2384                               MVT::Other, getControlRoot(),
2385                               Cmp, DAG.getBasicBlock(B.TargetBB));
2386 
2387   // Avoid emitting unnecessary branches to the next block.
2388   if (NextMBB != NextBlock(SwitchBB))
2389     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2390                         DAG.getBasicBlock(NextMBB));
2391 
2392   DAG.setRoot(BrAnd);
2393 }
2394 
2395 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2396   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2397 
2398   // Retrieve successors. Look through artificial IR level blocks like
2399   // catchswitch for successors.
2400   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2401   const BasicBlock *EHPadBB = I.getSuccessor(1);
2402 
2403   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2404   // have to do anything here to lower funclet bundles.
2405   assert(!I.hasOperandBundlesOtherThan(
2406              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2407          "Cannot lower invokes with arbitrary operand bundles yet!");
2408 
2409   const Value *Callee(I.getCalledValue());
2410   const Function *Fn = dyn_cast<Function>(Callee);
2411   if (isa<InlineAsm>(Callee))
2412     visitInlineAsm(&I);
2413   else if (Fn && Fn->isIntrinsic()) {
2414     switch (Fn->getIntrinsicID()) {
2415     default:
2416       llvm_unreachable("Cannot invoke this intrinsic");
2417     case Intrinsic::donothing:
2418       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2419       break;
2420     case Intrinsic::experimental_patchpoint_void:
2421     case Intrinsic::experimental_patchpoint_i64:
2422       visitPatchpoint(&I, EHPadBB);
2423       break;
2424     case Intrinsic::experimental_gc_statepoint:
2425       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2426       break;
2427     }
2428   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2429     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2430     // Eventually we will support lowering the @llvm.experimental.deoptimize
2431     // intrinsic, and right now there are no plans to support other intrinsics
2432     // with deopt state.
2433     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2434   } else {
2435     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2436   }
2437 
2438   // If the value of the invoke is used outside of its defining block, make it
2439   // available as a virtual register.
2440   // We already took care of the exported value for the statepoint instruction
2441   // during call to the LowerStatepoint.
2442   if (!isStatepoint(I)) {
2443     CopyToExportRegsIfNeeded(&I);
2444   }
2445 
2446   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2447   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2448   BranchProbability EHPadBBProb =
2449       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2450           : BranchProbability::getZero();
2451   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2452 
2453   // Update successor info.
2454   addSuccessorWithProb(InvokeMBB, Return);
2455   for (auto &UnwindDest : UnwindDests) {
2456     UnwindDest.first->setIsEHPad();
2457     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2458   }
2459   InvokeMBB->normalizeSuccProbs();
2460 
2461   // Drop into normal successor.
2462   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2463                           MVT::Other, getControlRoot(),
2464                           DAG.getBasicBlock(Return)));
2465 }
2466 
2467 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2468   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2469 }
2470 
2471 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2472   assert(FuncInfo.MBB->isEHPad() &&
2473          "Call to landingpad not in landing pad!");
2474 
2475   MachineBasicBlock *MBB = FuncInfo.MBB;
2476   addLandingPadInfo(LP, *MBB);
2477 
2478   // If there aren't registers to copy the values into (e.g., during SjLj
2479   // exceptions), then don't bother to create these DAG nodes.
2480   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2481   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2482   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2483       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2484     return;
2485 
2486   // If landingpad's return type is token type, we don't create DAG nodes
2487   // for its exception pointer and selector value. The extraction of exception
2488   // pointer or selector value from token type landingpads is not currently
2489   // supported.
2490   if (LP.getType()->isTokenTy())
2491     return;
2492 
2493   SmallVector<EVT, 2> ValueVTs;
2494   SDLoc dl = getCurSDLoc();
2495   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2496   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2497 
2498   // Get the two live-in registers as SDValues. The physregs have already been
2499   // copied into virtual registers.
2500   SDValue Ops[2];
2501   if (FuncInfo.ExceptionPointerVirtReg) {
2502     Ops[0] = DAG.getZExtOrTrunc(
2503         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2504                            FuncInfo.ExceptionPointerVirtReg,
2505                            TLI.getPointerTy(DAG.getDataLayout())),
2506         dl, ValueVTs[0]);
2507   } else {
2508     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2509   }
2510   Ops[1] = DAG.getZExtOrTrunc(
2511       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2512                          FuncInfo.ExceptionSelectorVirtReg,
2513                          TLI.getPointerTy(DAG.getDataLayout())),
2514       dl, ValueVTs[1]);
2515 
2516   // Merge into one.
2517   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2518                             DAG.getVTList(ValueVTs), Ops);
2519   setValue(&LP, Res);
2520 }
2521 
2522 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2523 #ifndef NDEBUG
2524   for (const CaseCluster &CC : Clusters)
2525     assert(CC.Low == CC.High && "Input clusters must be single-case");
2526 #endif
2527 
2528   std::sort(Clusters.begin(), Clusters.end(),
2529             [](const CaseCluster &a, const CaseCluster &b) {
2530     return a.Low->getValue().slt(b.Low->getValue());
2531   });
2532 
2533   // Merge adjacent clusters with the same destination.
2534   const unsigned N = Clusters.size();
2535   unsigned DstIndex = 0;
2536   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2537     CaseCluster &CC = Clusters[SrcIndex];
2538     const ConstantInt *CaseVal = CC.Low;
2539     MachineBasicBlock *Succ = CC.MBB;
2540 
2541     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2542         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2543       // If this case has the same successor and is a neighbour, merge it into
2544       // the previous cluster.
2545       Clusters[DstIndex - 1].High = CaseVal;
2546       Clusters[DstIndex - 1].Prob += CC.Prob;
2547     } else {
2548       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2549                    sizeof(Clusters[SrcIndex]));
2550     }
2551   }
2552   Clusters.resize(DstIndex);
2553 }
2554 
2555 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2556                                            MachineBasicBlock *Last) {
2557   // Update JTCases.
2558   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2559     if (JTCases[i].first.HeaderBB == First)
2560       JTCases[i].first.HeaderBB = Last;
2561 
2562   // Update BitTestCases.
2563   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2564     if (BitTestCases[i].Parent == First)
2565       BitTestCases[i].Parent = Last;
2566 }
2567 
2568 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2569   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2570 
2571   // Update machine-CFG edges with unique successors.
2572   SmallSet<BasicBlock*, 32> Done;
2573   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2574     BasicBlock *BB = I.getSuccessor(i);
2575     bool Inserted = Done.insert(BB).second;
2576     if (!Inserted)
2577         continue;
2578 
2579     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2580     addSuccessorWithProb(IndirectBrMBB, Succ);
2581   }
2582   IndirectBrMBB->normalizeSuccProbs();
2583 
2584   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2585                           MVT::Other, getControlRoot(),
2586                           getValue(I.getAddress())));
2587 }
2588 
2589 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2590   if (DAG.getTarget().Options.TrapUnreachable)
2591     DAG.setRoot(
2592         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2593 }
2594 
2595 void SelectionDAGBuilder::visitFSub(const User &I) {
2596   // -0.0 - X --> fneg
2597   Type *Ty = I.getType();
2598   if (isa<Constant>(I.getOperand(0)) &&
2599       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2600     SDValue Op2 = getValue(I.getOperand(1));
2601     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2602                              Op2.getValueType(), Op2));
2603     return;
2604   }
2605 
2606   visitBinary(I, ISD::FSUB);
2607 }
2608 
2609 /// Checks if the given instruction performs a vector reduction, in which case
2610 /// we have the freedom to alter the elements in the result as long as the
2611 /// reduction of them stays unchanged.
2612 static bool isVectorReductionOp(const User *I) {
2613   const Instruction *Inst = dyn_cast<Instruction>(I);
2614   if (!Inst || !Inst->getType()->isVectorTy())
2615     return false;
2616 
2617   auto OpCode = Inst->getOpcode();
2618   switch (OpCode) {
2619   case Instruction::Add:
2620   case Instruction::Mul:
2621   case Instruction::And:
2622   case Instruction::Or:
2623   case Instruction::Xor:
2624     break;
2625   case Instruction::FAdd:
2626   case Instruction::FMul:
2627     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2628       if (FPOp->getFastMathFlags().isFast())
2629         break;
2630     LLVM_FALLTHROUGH;
2631   default:
2632     return false;
2633   }
2634 
2635   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2636   unsigned ElemNumToReduce = ElemNum;
2637 
2638   // Do DFS search on the def-use chain from the given instruction. We only
2639   // allow four kinds of operations during the search until we reach the
2640   // instruction that extracts the first element from the vector:
2641   //
2642   //   1. The reduction operation of the same opcode as the given instruction.
2643   //
2644   //   2. PHI node.
2645   //
2646   //   3. ShuffleVector instruction together with a reduction operation that
2647   //      does a partial reduction.
2648   //
2649   //   4. ExtractElement that extracts the first element from the vector, and we
2650   //      stop searching the def-use chain here.
2651   //
2652   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2653   // from 1-3 to the stack to continue the DFS. The given instruction is not
2654   // a reduction operation if we meet any other instructions other than those
2655   // listed above.
2656 
2657   SmallVector<const User *, 16> UsersToVisit{Inst};
2658   SmallPtrSet<const User *, 16> Visited;
2659   bool ReduxExtracted = false;
2660 
2661   while (!UsersToVisit.empty()) {
2662     auto User = UsersToVisit.back();
2663     UsersToVisit.pop_back();
2664     if (!Visited.insert(User).second)
2665       continue;
2666 
2667     for (const auto &U : User->users()) {
2668       auto Inst = dyn_cast<Instruction>(U);
2669       if (!Inst)
2670         return false;
2671 
2672       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2673         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2674           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2675             return false;
2676         UsersToVisit.push_back(U);
2677       } else if (const ShuffleVectorInst *ShufInst =
2678                      dyn_cast<ShuffleVectorInst>(U)) {
2679         // Detect the following pattern: A ShuffleVector instruction together
2680         // with a reduction that do partial reduction on the first and second
2681         // ElemNumToReduce / 2 elements, and store the result in
2682         // ElemNumToReduce / 2 elements in another vector.
2683 
2684         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2685         if (ResultElements < ElemNum)
2686           return false;
2687 
2688         if (ElemNumToReduce == 1)
2689           return false;
2690         if (!isa<UndefValue>(U->getOperand(1)))
2691           return false;
2692         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2693           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2694             return false;
2695         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2696           if (ShufInst->getMaskValue(i) != -1)
2697             return false;
2698 
2699         // There is only one user of this ShuffleVector instruction, which
2700         // must be a reduction operation.
2701         if (!U->hasOneUse())
2702           return false;
2703 
2704         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2705         if (!U2 || U2->getOpcode() != OpCode)
2706           return false;
2707 
2708         // Check operands of the reduction operation.
2709         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2710             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2711           UsersToVisit.push_back(U2);
2712           ElemNumToReduce /= 2;
2713         } else
2714           return false;
2715       } else if (isa<ExtractElementInst>(U)) {
2716         // At this moment we should have reduced all elements in the vector.
2717         if (ElemNumToReduce != 1)
2718           return false;
2719 
2720         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2721         if (!Val || Val->getZExtValue() != 0)
2722           return false;
2723 
2724         ReduxExtracted = true;
2725       } else
2726         return false;
2727     }
2728   }
2729   return ReduxExtracted;
2730 }
2731 
2732 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2733   SDValue Op1 = getValue(I.getOperand(0));
2734   SDValue Op2 = getValue(I.getOperand(1));
2735 
2736   bool nuw = false;
2737   bool nsw = false;
2738   bool exact = false;
2739   bool vec_redux = false;
2740   FastMathFlags FMF;
2741 
2742   if (const OverflowingBinaryOperator *OFBinOp =
2743           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2744     nuw = OFBinOp->hasNoUnsignedWrap();
2745     nsw = OFBinOp->hasNoSignedWrap();
2746   }
2747   if (const PossiblyExactOperator *ExactOp =
2748           dyn_cast<const PossiblyExactOperator>(&I))
2749     exact = ExactOp->isExact();
2750   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2751     FMF = FPOp->getFastMathFlags();
2752 
2753   if (isVectorReductionOp(&I)) {
2754     vec_redux = true;
2755     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2756   }
2757 
2758   SDNodeFlags Flags;
2759   Flags.setExact(exact);
2760   Flags.setNoSignedWrap(nsw);
2761   Flags.setNoUnsignedWrap(nuw);
2762   Flags.setVectorReduction(vec_redux);
2763   Flags.setAllowReciprocal(FMF.allowReciprocal());
2764   Flags.setAllowContract(FMF.allowContract());
2765   Flags.setNoInfs(FMF.noInfs());
2766   Flags.setNoNaNs(FMF.noNaNs());
2767   Flags.setNoSignedZeros(FMF.noSignedZeros());
2768   Flags.setUnsafeAlgebra(FMF.isFast());
2769 
2770   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2771                                      Op1, Op2, Flags);
2772   setValue(&I, BinNodeValue);
2773 }
2774 
2775 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2776   SDValue Op1 = getValue(I.getOperand(0));
2777   SDValue Op2 = getValue(I.getOperand(1));
2778 
2779   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2780       Op2.getValueType(), DAG.getDataLayout());
2781 
2782   // Coerce the shift amount to the right type if we can.
2783   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2784     unsigned ShiftSize = ShiftTy.getSizeInBits();
2785     unsigned Op2Size = Op2.getValueSizeInBits();
2786     SDLoc DL = getCurSDLoc();
2787 
2788     // If the operand is smaller than the shift count type, promote it.
2789     if (ShiftSize > Op2Size)
2790       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2791 
2792     // If the operand is larger than the shift count type but the shift
2793     // count type has enough bits to represent any shift value, truncate
2794     // it now. This is a common case and it exposes the truncate to
2795     // optimization early.
2796     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2797       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2798     // Otherwise we'll need to temporarily settle for some other convenient
2799     // type.  Type legalization will make adjustments once the shiftee is split.
2800     else
2801       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2802   }
2803 
2804   bool nuw = false;
2805   bool nsw = false;
2806   bool exact = false;
2807 
2808   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2809 
2810     if (const OverflowingBinaryOperator *OFBinOp =
2811             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2812       nuw = OFBinOp->hasNoUnsignedWrap();
2813       nsw = OFBinOp->hasNoSignedWrap();
2814     }
2815     if (const PossiblyExactOperator *ExactOp =
2816             dyn_cast<const PossiblyExactOperator>(&I))
2817       exact = ExactOp->isExact();
2818   }
2819   SDNodeFlags Flags;
2820   Flags.setExact(exact);
2821   Flags.setNoSignedWrap(nsw);
2822   Flags.setNoUnsignedWrap(nuw);
2823   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2824                             Flags);
2825   setValue(&I, Res);
2826 }
2827 
2828 void SelectionDAGBuilder::visitSDiv(const User &I) {
2829   SDValue Op1 = getValue(I.getOperand(0));
2830   SDValue Op2 = getValue(I.getOperand(1));
2831 
2832   SDNodeFlags Flags;
2833   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2834                  cast<PossiblyExactOperator>(&I)->isExact());
2835   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2836                            Op2, Flags));
2837 }
2838 
2839 void SelectionDAGBuilder::visitICmp(const User &I) {
2840   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2841   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2842     predicate = IC->getPredicate();
2843   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2844     predicate = ICmpInst::Predicate(IC->getPredicate());
2845   SDValue Op1 = getValue(I.getOperand(0));
2846   SDValue Op2 = getValue(I.getOperand(1));
2847   ISD::CondCode Opcode = getICmpCondCode(predicate);
2848 
2849   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2850                                                         I.getType());
2851   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2852 }
2853 
2854 void SelectionDAGBuilder::visitFCmp(const User &I) {
2855   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2856   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2857     predicate = FC->getPredicate();
2858   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2859     predicate = FCmpInst::Predicate(FC->getPredicate());
2860   SDValue Op1 = getValue(I.getOperand(0));
2861   SDValue Op2 = getValue(I.getOperand(1));
2862   ISD::CondCode Condition = getFCmpCondCode(predicate);
2863 
2864   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2865   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2866   // further optimization, but currently FMF is only applicable to binary nodes.
2867   if (TM.Options.NoNaNsFPMath)
2868     Condition = getFCmpCodeWithoutNaN(Condition);
2869   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2870                                                         I.getType());
2871   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2872 }
2873 
2874 // Check if the condition of the select has one use or two users that are both
2875 // selects with the same condition.
2876 static bool hasOnlySelectUsers(const Value *Cond) {
2877   return llvm::all_of(Cond->users(), [](const Value *V) {
2878     return isa<SelectInst>(V);
2879   });
2880 }
2881 
2882 void SelectionDAGBuilder::visitSelect(const User &I) {
2883   SmallVector<EVT, 4> ValueVTs;
2884   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2885                   ValueVTs);
2886   unsigned NumValues = ValueVTs.size();
2887   if (NumValues == 0) return;
2888 
2889   SmallVector<SDValue, 4> Values(NumValues);
2890   SDValue Cond     = getValue(I.getOperand(0));
2891   SDValue LHSVal   = getValue(I.getOperand(1));
2892   SDValue RHSVal   = getValue(I.getOperand(2));
2893   auto BaseOps = {Cond};
2894   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2895     ISD::VSELECT : ISD::SELECT;
2896 
2897   // Min/max matching is only viable if all output VTs are the same.
2898   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2899     EVT VT = ValueVTs[0];
2900     LLVMContext &Ctx = *DAG.getContext();
2901     auto &TLI = DAG.getTargetLoweringInfo();
2902 
2903     // We care about the legality of the operation after it has been type
2904     // legalized.
2905     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2906            VT != TLI.getTypeToTransformTo(Ctx, VT))
2907       VT = TLI.getTypeToTransformTo(Ctx, VT);
2908 
2909     // If the vselect is legal, assume we want to leave this as a vector setcc +
2910     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2911     // min/max is legal on the scalar type.
2912     bool UseScalarMinMax = VT.isVector() &&
2913       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2914 
2915     Value *LHS, *RHS;
2916     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2917     ISD::NodeType Opc = ISD::DELETED_NODE;
2918     switch (SPR.Flavor) {
2919     case SPF_UMAX:    Opc = ISD::UMAX; break;
2920     case SPF_UMIN:    Opc = ISD::UMIN; break;
2921     case SPF_SMAX:    Opc = ISD::SMAX; break;
2922     case SPF_SMIN:    Opc = ISD::SMIN; break;
2923     case SPF_FMINNUM:
2924       switch (SPR.NaNBehavior) {
2925       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2926       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2927       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2928       case SPNB_RETURNS_ANY: {
2929         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2930           Opc = ISD::FMINNUM;
2931         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2932           Opc = ISD::FMINNAN;
2933         else if (UseScalarMinMax)
2934           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2935             ISD::FMINNUM : ISD::FMINNAN;
2936         break;
2937       }
2938       }
2939       break;
2940     case SPF_FMAXNUM:
2941       switch (SPR.NaNBehavior) {
2942       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2943       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2944       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2945       case SPNB_RETURNS_ANY:
2946 
2947         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2948           Opc = ISD::FMAXNUM;
2949         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2950           Opc = ISD::FMAXNAN;
2951         else if (UseScalarMinMax)
2952           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2953             ISD::FMAXNUM : ISD::FMAXNAN;
2954         break;
2955       }
2956       break;
2957     default: break;
2958     }
2959 
2960     if (Opc != ISD::DELETED_NODE &&
2961         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2962          (UseScalarMinMax &&
2963           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2964         // If the underlying comparison instruction is used by any other
2965         // instruction, the consumed instructions won't be destroyed, so it is
2966         // not profitable to convert to a min/max.
2967         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2968       OpCode = Opc;
2969       LHSVal = getValue(LHS);
2970       RHSVal = getValue(RHS);
2971       BaseOps = {};
2972     }
2973   }
2974 
2975   for (unsigned i = 0; i != NumValues; ++i) {
2976     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2977     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2978     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2979     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2980                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2981                             Ops);
2982   }
2983 
2984   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2985                            DAG.getVTList(ValueVTs), Values));
2986 }
2987 
2988 void SelectionDAGBuilder::visitTrunc(const User &I) {
2989   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2990   SDValue N = getValue(I.getOperand(0));
2991   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2992                                                         I.getType());
2993   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2994 }
2995 
2996 void SelectionDAGBuilder::visitZExt(const User &I) {
2997   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2998   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2999   SDValue N = getValue(I.getOperand(0));
3000   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3001                                                         I.getType());
3002   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3003 }
3004 
3005 void SelectionDAGBuilder::visitSExt(const User &I) {
3006   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3007   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3008   SDValue N = getValue(I.getOperand(0));
3009   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3010                                                         I.getType());
3011   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3012 }
3013 
3014 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3015   // FPTrunc is never a no-op cast, no need to check
3016   SDValue N = getValue(I.getOperand(0));
3017   SDLoc dl = getCurSDLoc();
3018   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3019   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3020   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3021                            DAG.getTargetConstant(
3022                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3023 }
3024 
3025 void SelectionDAGBuilder::visitFPExt(const User &I) {
3026   // FPExt is never a no-op cast, no need to check
3027   SDValue N = getValue(I.getOperand(0));
3028   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3029                                                         I.getType());
3030   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3031 }
3032 
3033 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3034   // FPToUI is never a no-op cast, no need to check
3035   SDValue N = getValue(I.getOperand(0));
3036   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3037                                                         I.getType());
3038   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3039 }
3040 
3041 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3042   // FPToSI is never a no-op cast, no need to check
3043   SDValue N = getValue(I.getOperand(0));
3044   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3045                                                         I.getType());
3046   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3047 }
3048 
3049 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3050   // UIToFP is never a no-op cast, no need to check
3051   SDValue N = getValue(I.getOperand(0));
3052   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3053                                                         I.getType());
3054   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3055 }
3056 
3057 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3058   // SIToFP is never a no-op cast, no need to check
3059   SDValue N = getValue(I.getOperand(0));
3060   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3061                                                         I.getType());
3062   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3063 }
3064 
3065 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3066   // What to do depends on the size of the integer and the size of the pointer.
3067   // We can either truncate, zero extend, or no-op, accordingly.
3068   SDValue N = getValue(I.getOperand(0));
3069   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3070                                                         I.getType());
3071   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3072 }
3073 
3074 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3075   // What to do depends on the size of the integer and the size of the pointer.
3076   // We can either truncate, zero extend, or no-op, accordingly.
3077   SDValue N = getValue(I.getOperand(0));
3078   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3079                                                         I.getType());
3080   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3081 }
3082 
3083 void SelectionDAGBuilder::visitBitCast(const User &I) {
3084   SDValue N = getValue(I.getOperand(0));
3085   SDLoc dl = getCurSDLoc();
3086   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3087                                                         I.getType());
3088 
3089   // BitCast assures us that source and destination are the same size so this is
3090   // either a BITCAST or a no-op.
3091   if (DestVT != N.getValueType())
3092     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3093                              DestVT, N)); // convert types.
3094   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3095   // might fold any kind of constant expression to an integer constant and that
3096   // is not what we are looking for. Only recognize a bitcast of a genuine
3097   // constant integer as an opaque constant.
3098   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3099     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3100                                  /*isOpaque*/true));
3101   else
3102     setValue(&I, N);            // noop cast.
3103 }
3104 
3105 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3106   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3107   const Value *SV = I.getOperand(0);
3108   SDValue N = getValue(SV);
3109   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3110 
3111   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3112   unsigned DestAS = I.getType()->getPointerAddressSpace();
3113 
3114   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3115     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3116 
3117   setValue(&I, N);
3118 }
3119 
3120 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3121   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3122   SDValue InVec = getValue(I.getOperand(0));
3123   SDValue InVal = getValue(I.getOperand(1));
3124   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3125                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3126   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3127                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3128                            InVec, InVal, InIdx));
3129 }
3130 
3131 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3132   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3133   SDValue InVec = getValue(I.getOperand(0));
3134   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3135                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3136   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3137                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3138                            InVec, InIdx));
3139 }
3140 
3141 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3142   SDValue Src1 = getValue(I.getOperand(0));
3143   SDValue Src2 = getValue(I.getOperand(1));
3144   SDLoc DL = getCurSDLoc();
3145 
3146   SmallVector<int, 8> Mask;
3147   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3148   unsigned MaskNumElts = Mask.size();
3149 
3150   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3151   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3152   EVT SrcVT = Src1.getValueType();
3153   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3154 
3155   if (SrcNumElts == MaskNumElts) {
3156     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3157     return;
3158   }
3159 
3160   // Normalize the shuffle vector since mask and vector length don't match.
3161   if (SrcNumElts < MaskNumElts) {
3162     // Mask is longer than the source vectors. We can use concatenate vector to
3163     // make the mask and vectors lengths match.
3164 
3165     if (MaskNumElts % SrcNumElts == 0) {
3166       // Mask length is a multiple of the source vector length.
3167       // Check if the shuffle is some kind of concatenation of the input
3168       // vectors.
3169       unsigned NumConcat = MaskNumElts / SrcNumElts;
3170       bool IsConcat = true;
3171       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3172       for (unsigned i = 0; i != MaskNumElts; ++i) {
3173         int Idx = Mask[i];
3174         if (Idx < 0)
3175           continue;
3176         // Ensure the indices in each SrcVT sized piece are sequential and that
3177         // the same source is used for the whole piece.
3178         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3179             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3180              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3181           IsConcat = false;
3182           break;
3183         }
3184         // Remember which source this index came from.
3185         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3186       }
3187 
3188       // The shuffle is concatenating multiple vectors together. Just emit
3189       // a CONCAT_VECTORS operation.
3190       if (IsConcat) {
3191         SmallVector<SDValue, 8> ConcatOps;
3192         for (auto Src : ConcatSrcs) {
3193           if (Src < 0)
3194             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3195           else if (Src == 0)
3196             ConcatOps.push_back(Src1);
3197           else
3198             ConcatOps.push_back(Src2);
3199         }
3200         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3201         return;
3202       }
3203     }
3204 
3205     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3206     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3207     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3208                                     PaddedMaskNumElts);
3209 
3210     // Pad both vectors with undefs to make them the same length as the mask.
3211     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3212 
3213     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3214     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3215     MOps1[0] = Src1;
3216     MOps2[0] = Src2;
3217 
3218     Src1 = Src1.isUndef()
3219                ? DAG.getUNDEF(PaddedVT)
3220                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3221     Src2 = Src2.isUndef()
3222                ? DAG.getUNDEF(PaddedVT)
3223                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3224 
3225     // Readjust mask for new input vector length.
3226     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3227     for (unsigned i = 0; i != MaskNumElts; ++i) {
3228       int Idx = Mask[i];
3229       if (Idx >= (int)SrcNumElts)
3230         Idx -= SrcNumElts - PaddedMaskNumElts;
3231       MappedOps[i] = Idx;
3232     }
3233 
3234     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3235 
3236     // If the concatenated vector was padded, extract a subvector with the
3237     // correct number of elements.
3238     if (MaskNumElts != PaddedMaskNumElts)
3239       Result = DAG.getNode(
3240           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3241           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3242 
3243     setValue(&I, Result);
3244     return;
3245   }
3246 
3247   if (SrcNumElts > MaskNumElts) {
3248     // Analyze the access pattern of the vector to see if we can extract
3249     // two subvectors and do the shuffle.
3250     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3251     bool CanExtract = true;
3252     for (int Idx : Mask) {
3253       unsigned Input = 0;
3254       if (Idx < 0)
3255         continue;
3256 
3257       if (Idx >= (int)SrcNumElts) {
3258         Input = 1;
3259         Idx -= SrcNumElts;
3260       }
3261 
3262       // If all the indices come from the same MaskNumElts sized portion of
3263       // the sources we can use extract. Also make sure the extract wouldn't
3264       // extract past the end of the source.
3265       int NewStartIdx = alignDown(Idx, MaskNumElts);
3266       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3267           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3268         CanExtract = false;
3269       // Make sure we always update StartIdx as we use it to track if all
3270       // elements are undef.
3271       StartIdx[Input] = NewStartIdx;
3272     }
3273 
3274     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3275       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3276       return;
3277     }
3278     if (CanExtract) {
3279       // Extract appropriate subvector and generate a vector shuffle
3280       for (unsigned Input = 0; Input < 2; ++Input) {
3281         SDValue &Src = Input == 0 ? Src1 : Src2;
3282         if (StartIdx[Input] < 0)
3283           Src = DAG.getUNDEF(VT);
3284         else {
3285           Src = DAG.getNode(
3286               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3287               DAG.getConstant(StartIdx[Input], DL,
3288                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3289         }
3290       }
3291 
3292       // Calculate new mask.
3293       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3294       for (int &Idx : MappedOps) {
3295         if (Idx >= (int)SrcNumElts)
3296           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3297         else if (Idx >= 0)
3298           Idx -= StartIdx[0];
3299       }
3300 
3301       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3302       return;
3303     }
3304   }
3305 
3306   // We can't use either concat vectors or extract subvectors so fall back to
3307   // replacing the shuffle with extract and build vector.
3308   // to insert and build vector.
3309   EVT EltVT = VT.getVectorElementType();
3310   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3311   SmallVector<SDValue,8> Ops;
3312   for (int Idx : Mask) {
3313     SDValue Res;
3314 
3315     if (Idx < 0) {
3316       Res = DAG.getUNDEF(EltVT);
3317     } else {
3318       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3319       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3320 
3321       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3322                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3323     }
3324 
3325     Ops.push_back(Res);
3326   }
3327 
3328   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3329 }
3330 
3331 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3332   ArrayRef<unsigned> Indices;
3333   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3334     Indices = IV->getIndices();
3335   else
3336     Indices = cast<ConstantExpr>(&I)->getIndices();
3337 
3338   const Value *Op0 = I.getOperand(0);
3339   const Value *Op1 = I.getOperand(1);
3340   Type *AggTy = I.getType();
3341   Type *ValTy = Op1->getType();
3342   bool IntoUndef = isa<UndefValue>(Op0);
3343   bool FromUndef = isa<UndefValue>(Op1);
3344 
3345   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3346 
3347   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3348   SmallVector<EVT, 4> AggValueVTs;
3349   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3350   SmallVector<EVT, 4> ValValueVTs;
3351   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3352 
3353   unsigned NumAggValues = AggValueVTs.size();
3354   unsigned NumValValues = ValValueVTs.size();
3355   SmallVector<SDValue, 4> Values(NumAggValues);
3356 
3357   // Ignore an insertvalue that produces an empty object
3358   if (!NumAggValues) {
3359     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3360     return;
3361   }
3362 
3363   SDValue Agg = getValue(Op0);
3364   unsigned i = 0;
3365   // Copy the beginning value(s) from the original aggregate.
3366   for (; i != LinearIndex; ++i)
3367     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3368                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3369   // Copy values from the inserted value(s).
3370   if (NumValValues) {
3371     SDValue Val = getValue(Op1);
3372     for (; i != LinearIndex + NumValValues; ++i)
3373       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3374                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3375   }
3376   // Copy remaining value(s) from the original aggregate.
3377   for (; i != NumAggValues; ++i)
3378     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3379                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3380 
3381   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3382                            DAG.getVTList(AggValueVTs), Values));
3383 }
3384 
3385 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3386   ArrayRef<unsigned> Indices;
3387   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3388     Indices = EV->getIndices();
3389   else
3390     Indices = cast<ConstantExpr>(&I)->getIndices();
3391 
3392   const Value *Op0 = I.getOperand(0);
3393   Type *AggTy = Op0->getType();
3394   Type *ValTy = I.getType();
3395   bool OutOfUndef = isa<UndefValue>(Op0);
3396 
3397   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3398 
3399   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3400   SmallVector<EVT, 4> ValValueVTs;
3401   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3402 
3403   unsigned NumValValues = ValValueVTs.size();
3404 
3405   // Ignore a extractvalue that produces an empty object
3406   if (!NumValValues) {
3407     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3408     return;
3409   }
3410 
3411   SmallVector<SDValue, 4> Values(NumValValues);
3412 
3413   SDValue Agg = getValue(Op0);
3414   // Copy out the selected value(s).
3415   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3416     Values[i - LinearIndex] =
3417       OutOfUndef ?
3418         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3419         SDValue(Agg.getNode(), Agg.getResNo() + i);
3420 
3421   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3422                            DAG.getVTList(ValValueVTs), Values));
3423 }
3424 
3425 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3426   Value *Op0 = I.getOperand(0);
3427   // Note that the pointer operand may be a vector of pointers. Take the scalar
3428   // element which holds a pointer.
3429   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3430   SDValue N = getValue(Op0);
3431   SDLoc dl = getCurSDLoc();
3432 
3433   // Normalize Vector GEP - all scalar operands should be converted to the
3434   // splat vector.
3435   unsigned VectorWidth = I.getType()->isVectorTy() ?
3436     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3437 
3438   if (VectorWidth && !N.getValueType().isVector()) {
3439     LLVMContext &Context = *DAG.getContext();
3440     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3441     N = DAG.getSplatBuildVector(VT, dl, N);
3442   }
3443 
3444   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3445        GTI != E; ++GTI) {
3446     const Value *Idx = GTI.getOperand();
3447     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3448       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3449       if (Field) {
3450         // N = N + Offset
3451         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3452 
3453         // In an inbounds GEP with an offset that is nonnegative even when
3454         // interpreted as signed, assume there is no unsigned overflow.
3455         SDNodeFlags Flags;
3456         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3457           Flags.setNoUnsignedWrap(true);
3458 
3459         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3460                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3461       }
3462     } else {
3463       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3464       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3465       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3466 
3467       // If this is a scalar constant or a splat vector of constants,
3468       // handle it quickly.
3469       const auto *CI = dyn_cast<ConstantInt>(Idx);
3470       if (!CI && isa<ConstantDataVector>(Idx) &&
3471           cast<ConstantDataVector>(Idx)->getSplatValue())
3472         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3473 
3474       if (CI) {
3475         if (CI->isZero())
3476           continue;
3477         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3478         LLVMContext &Context = *DAG.getContext();
3479         SDValue OffsVal = VectorWidth ?
3480           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3481           DAG.getConstant(Offs, dl, IdxTy);
3482 
3483         // In an inbouds GEP with an offset that is nonnegative even when
3484         // interpreted as signed, assume there is no unsigned overflow.
3485         SDNodeFlags Flags;
3486         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3487           Flags.setNoUnsignedWrap(true);
3488 
3489         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3490         continue;
3491       }
3492 
3493       // N = N + Idx * ElementSize;
3494       SDValue IdxN = getValue(Idx);
3495 
3496       if (!IdxN.getValueType().isVector() && VectorWidth) {
3497         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3498         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3499       }
3500 
3501       // If the index is smaller or larger than intptr_t, truncate or extend
3502       // it.
3503       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3504 
3505       // If this is a multiply by a power of two, turn it into a shl
3506       // immediately.  This is a very common case.
3507       if (ElementSize != 1) {
3508         if (ElementSize.isPowerOf2()) {
3509           unsigned Amt = ElementSize.logBase2();
3510           IdxN = DAG.getNode(ISD::SHL, dl,
3511                              N.getValueType(), IdxN,
3512                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3513         } else {
3514           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3515           IdxN = DAG.getNode(ISD::MUL, dl,
3516                              N.getValueType(), IdxN, Scale);
3517         }
3518       }
3519 
3520       N = DAG.getNode(ISD::ADD, dl,
3521                       N.getValueType(), N, IdxN);
3522     }
3523   }
3524 
3525   setValue(&I, N);
3526 }
3527 
3528 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3529   // If this is a fixed sized alloca in the entry block of the function,
3530   // allocate it statically on the stack.
3531   if (FuncInfo.StaticAllocaMap.count(&I))
3532     return;   // getValue will auto-populate this.
3533 
3534   SDLoc dl = getCurSDLoc();
3535   Type *Ty = I.getAllocatedType();
3536   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3537   auto &DL = DAG.getDataLayout();
3538   uint64_t TySize = DL.getTypeAllocSize(Ty);
3539   unsigned Align =
3540       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3541 
3542   SDValue AllocSize = getValue(I.getArraySize());
3543 
3544   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3545   if (AllocSize.getValueType() != IntPtr)
3546     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3547 
3548   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3549                           AllocSize,
3550                           DAG.getConstant(TySize, dl, IntPtr));
3551 
3552   // Handle alignment.  If the requested alignment is less than or equal to
3553   // the stack alignment, ignore it.  If the size is greater than or equal to
3554   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3555   unsigned StackAlign =
3556       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3557   if (Align <= StackAlign)
3558     Align = 0;
3559 
3560   // Round the size of the allocation up to the stack alignment size
3561   // by add SA-1 to the size. This doesn't overflow because we're computing
3562   // an address inside an alloca.
3563   SDNodeFlags Flags;
3564   Flags.setNoUnsignedWrap(true);
3565   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3566                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3567 
3568   // Mask out the low bits for alignment purposes.
3569   AllocSize =
3570       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3571                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3572 
3573   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3574   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3575   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3576   setValue(&I, DSA);
3577   DAG.setRoot(DSA.getValue(1));
3578 
3579   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3580 }
3581 
3582 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3583   if (I.isAtomic())
3584     return visitAtomicLoad(I);
3585 
3586   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3587   const Value *SV = I.getOperand(0);
3588   if (TLI.supportSwiftError()) {
3589     // Swifterror values can come from either a function parameter with
3590     // swifterror attribute or an alloca with swifterror attribute.
3591     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3592       if (Arg->hasSwiftErrorAttr())
3593         return visitLoadFromSwiftError(I);
3594     }
3595 
3596     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3597       if (Alloca->isSwiftError())
3598         return visitLoadFromSwiftError(I);
3599     }
3600   }
3601 
3602   SDValue Ptr = getValue(SV);
3603 
3604   Type *Ty = I.getType();
3605 
3606   bool isVolatile = I.isVolatile();
3607   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3608   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3609   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3610   unsigned Alignment = I.getAlignment();
3611 
3612   AAMDNodes AAInfo;
3613   I.getAAMetadata(AAInfo);
3614   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3615 
3616   SmallVector<EVT, 4> ValueVTs;
3617   SmallVector<uint64_t, 4> Offsets;
3618   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3619   unsigned NumValues = ValueVTs.size();
3620   if (NumValues == 0)
3621     return;
3622 
3623   SDValue Root;
3624   bool ConstantMemory = false;
3625   if (isVolatile || NumValues > MaxParallelChains)
3626     // Serialize volatile loads with other side effects.
3627     Root = getRoot();
3628   else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3629                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3630     // Do not serialize (non-volatile) loads of constant memory with anything.
3631     Root = DAG.getEntryNode();
3632     ConstantMemory = true;
3633   } else {
3634     // Do not serialize non-volatile loads against each other.
3635     Root = DAG.getRoot();
3636   }
3637 
3638   SDLoc dl = getCurSDLoc();
3639 
3640   if (isVolatile)
3641     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3642 
3643   // An aggregate load cannot wrap around the address space, so offsets to its
3644   // parts don't wrap either.
3645   SDNodeFlags Flags;
3646   Flags.setNoUnsignedWrap(true);
3647 
3648   SmallVector<SDValue, 4> Values(NumValues);
3649   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3650   EVT PtrVT = Ptr.getValueType();
3651   unsigned ChainI = 0;
3652   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3653     // Serializing loads here may result in excessive register pressure, and
3654     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3655     // could recover a bit by hoisting nodes upward in the chain by recognizing
3656     // they are side-effect free or do not alias. The optimizer should really
3657     // avoid this case by converting large object/array copies to llvm.memcpy
3658     // (MaxParallelChains should always remain as failsafe).
3659     if (ChainI == MaxParallelChains) {
3660       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3661       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3662                                   makeArrayRef(Chains.data(), ChainI));
3663       Root = Chain;
3664       ChainI = 0;
3665     }
3666     SDValue A = DAG.getNode(ISD::ADD, dl,
3667                             PtrVT, Ptr,
3668                             DAG.getConstant(Offsets[i], dl, PtrVT),
3669                             Flags);
3670     auto MMOFlags = MachineMemOperand::MONone;
3671     if (isVolatile)
3672       MMOFlags |= MachineMemOperand::MOVolatile;
3673     if (isNonTemporal)
3674       MMOFlags |= MachineMemOperand::MONonTemporal;
3675     if (isInvariant)
3676       MMOFlags |= MachineMemOperand::MOInvariant;
3677     if (isDereferenceable)
3678       MMOFlags |= MachineMemOperand::MODereferenceable;
3679     MMOFlags |= TLI.getMMOFlags(I);
3680 
3681     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3682                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3683                             MMOFlags, AAInfo, Ranges);
3684 
3685     Values[i] = L;
3686     Chains[ChainI] = L.getValue(1);
3687   }
3688 
3689   if (!ConstantMemory) {
3690     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3691                                 makeArrayRef(Chains.data(), ChainI));
3692     if (isVolatile)
3693       DAG.setRoot(Chain);
3694     else
3695       PendingLoads.push_back(Chain);
3696   }
3697 
3698   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3699                            DAG.getVTList(ValueVTs), Values));
3700 }
3701 
3702 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3703   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3704          "call visitStoreToSwiftError when backend supports swifterror");
3705 
3706   SmallVector<EVT, 4> ValueVTs;
3707   SmallVector<uint64_t, 4> Offsets;
3708   const Value *SrcV = I.getOperand(0);
3709   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3710                   SrcV->getType(), ValueVTs, &Offsets);
3711   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3712          "expect a single EVT for swifterror");
3713 
3714   SDValue Src = getValue(SrcV);
3715   // Create a virtual register, then update the virtual register.
3716   unsigned VReg; bool CreatedVReg;
3717   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3718   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3719   // Chain can be getRoot or getControlRoot.
3720   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3721                                       SDValue(Src.getNode(), Src.getResNo()));
3722   DAG.setRoot(CopyNode);
3723   if (CreatedVReg)
3724     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3725 }
3726 
3727 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3728   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3729          "call visitLoadFromSwiftError when backend supports swifterror");
3730 
3731   assert(!I.isVolatile() &&
3732          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3733          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3734          "Support volatile, non temporal, invariant for load_from_swift_error");
3735 
3736   const Value *SV = I.getOperand(0);
3737   Type *Ty = I.getType();
3738   AAMDNodes AAInfo;
3739   I.getAAMetadata(AAInfo);
3740   assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3741              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3742          "load_from_swift_error should not be constant memory");
3743 
3744   SmallVector<EVT, 4> ValueVTs;
3745   SmallVector<uint64_t, 4> Offsets;
3746   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3747                   ValueVTs, &Offsets);
3748   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3749          "expect a single EVT for swifterror");
3750 
3751   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3752   SDValue L = DAG.getCopyFromReg(
3753       getRoot(), getCurSDLoc(),
3754       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3755       ValueVTs[0]);
3756 
3757   setValue(&I, L);
3758 }
3759 
3760 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3761   if (I.isAtomic())
3762     return visitAtomicStore(I);
3763 
3764   const Value *SrcV = I.getOperand(0);
3765   const Value *PtrV = I.getOperand(1);
3766 
3767   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3768   if (TLI.supportSwiftError()) {
3769     // Swifterror values can come from either a function parameter with
3770     // swifterror attribute or an alloca with swifterror attribute.
3771     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3772       if (Arg->hasSwiftErrorAttr())
3773         return visitStoreToSwiftError(I);
3774     }
3775 
3776     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3777       if (Alloca->isSwiftError())
3778         return visitStoreToSwiftError(I);
3779     }
3780   }
3781 
3782   SmallVector<EVT, 4> ValueVTs;
3783   SmallVector<uint64_t, 4> Offsets;
3784   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3785                   SrcV->getType(), ValueVTs, &Offsets);
3786   unsigned NumValues = ValueVTs.size();
3787   if (NumValues == 0)
3788     return;
3789 
3790   // Get the lowered operands. Note that we do this after
3791   // checking if NumResults is zero, because with zero results
3792   // the operands won't have values in the map.
3793   SDValue Src = getValue(SrcV);
3794   SDValue Ptr = getValue(PtrV);
3795 
3796   SDValue Root = getRoot();
3797   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3798   SDLoc dl = getCurSDLoc();
3799   EVT PtrVT = Ptr.getValueType();
3800   unsigned Alignment = I.getAlignment();
3801   AAMDNodes AAInfo;
3802   I.getAAMetadata(AAInfo);
3803 
3804   auto MMOFlags = MachineMemOperand::MONone;
3805   if (I.isVolatile())
3806     MMOFlags |= MachineMemOperand::MOVolatile;
3807   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3808     MMOFlags |= MachineMemOperand::MONonTemporal;
3809   MMOFlags |= TLI.getMMOFlags(I);
3810 
3811   // An aggregate load cannot wrap around the address space, so offsets to its
3812   // parts don't wrap either.
3813   SDNodeFlags Flags;
3814   Flags.setNoUnsignedWrap(true);
3815 
3816   unsigned ChainI = 0;
3817   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3818     // See visitLoad comments.
3819     if (ChainI == MaxParallelChains) {
3820       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3821                                   makeArrayRef(Chains.data(), ChainI));
3822       Root = Chain;
3823       ChainI = 0;
3824     }
3825     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3826                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3827     SDValue St = DAG.getStore(
3828         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3829         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3830     Chains[ChainI] = St;
3831   }
3832 
3833   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3834                                   makeArrayRef(Chains.data(), ChainI));
3835   DAG.setRoot(StoreNode);
3836 }
3837 
3838 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3839                                            bool IsCompressing) {
3840   SDLoc sdl = getCurSDLoc();
3841 
3842   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3843                            unsigned& Alignment) {
3844     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3845     Src0 = I.getArgOperand(0);
3846     Ptr = I.getArgOperand(1);
3847     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3848     Mask = I.getArgOperand(3);
3849   };
3850   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3851                            unsigned& Alignment) {
3852     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3853     Src0 = I.getArgOperand(0);
3854     Ptr = I.getArgOperand(1);
3855     Mask = I.getArgOperand(2);
3856     Alignment = 0;
3857   };
3858 
3859   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3860   unsigned Alignment;
3861   if (IsCompressing)
3862     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3863   else
3864     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3865 
3866   SDValue Ptr = getValue(PtrOperand);
3867   SDValue Src0 = getValue(Src0Operand);
3868   SDValue Mask = getValue(MaskOperand);
3869 
3870   EVT VT = Src0.getValueType();
3871   if (!Alignment)
3872     Alignment = DAG.getEVTAlignment(VT);
3873 
3874   AAMDNodes AAInfo;
3875   I.getAAMetadata(AAInfo);
3876 
3877   MachineMemOperand *MMO =
3878     DAG.getMachineFunction().
3879     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3880                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3881                           Alignment, AAInfo);
3882   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3883                                          MMO, false /* Truncating */,
3884                                          IsCompressing);
3885   DAG.setRoot(StoreNode);
3886   setValue(&I, StoreNode);
3887 }
3888 
3889 // Get a uniform base for the Gather/Scatter intrinsic.
3890 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3891 // We try to represent it as a base pointer + vector of indices.
3892 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3893 // The first operand of the GEP may be a single pointer or a vector of pointers
3894 // Example:
3895 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3896 //  or
3897 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3898 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3899 //
3900 // When the first GEP operand is a single pointer - it is the uniform base we
3901 // are looking for. If first operand of the GEP is a splat vector - we
3902 // extract the splat value and use it as a uniform base.
3903 // In all other cases the function returns 'false'.
3904 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3905                            SDValue &Scale, SelectionDAGBuilder* SDB) {
3906   SelectionDAG& DAG = SDB->DAG;
3907   LLVMContext &Context = *DAG.getContext();
3908 
3909   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3910   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3911   if (!GEP)
3912     return false;
3913 
3914   const Value *GEPPtr = GEP->getPointerOperand();
3915   if (!GEPPtr->getType()->isVectorTy())
3916     Ptr = GEPPtr;
3917   else if (!(Ptr = getSplatValue(GEPPtr)))
3918     return false;
3919 
3920   unsigned FinalIndex = GEP->getNumOperands() - 1;
3921   Value *IndexVal = GEP->getOperand(FinalIndex);
3922 
3923   // Ensure all the other indices are 0.
3924   for (unsigned i = 1; i < FinalIndex; ++i) {
3925     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
3926     if (!C || !C->isZero())
3927       return false;
3928   }
3929 
3930   // The operands of the GEP may be defined in another basic block.
3931   // In this case we'll not find nodes for the operands.
3932   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3933     return false;
3934 
3935   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3936   const DataLayout &DL = DAG.getDataLayout();
3937   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
3938                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
3939   Base = SDB->getValue(Ptr);
3940   Index = SDB->getValue(IndexVal);
3941 
3942   if (!Index.getValueType().isVector()) {
3943     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3944     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3945     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3946   }
3947   return true;
3948 }
3949 
3950 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3951   SDLoc sdl = getCurSDLoc();
3952 
3953   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3954   const Value *Ptr = I.getArgOperand(1);
3955   SDValue Src0 = getValue(I.getArgOperand(0));
3956   SDValue Mask = getValue(I.getArgOperand(3));
3957   EVT VT = Src0.getValueType();
3958   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3959   if (!Alignment)
3960     Alignment = DAG.getEVTAlignment(VT);
3961   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3962 
3963   AAMDNodes AAInfo;
3964   I.getAAMetadata(AAInfo);
3965 
3966   SDValue Base;
3967   SDValue Index;
3968   SDValue Scale;
3969   const Value *BasePtr = Ptr;
3970   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
3971 
3972   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3973   MachineMemOperand *MMO = DAG.getMachineFunction().
3974     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3975                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3976                          Alignment, AAInfo);
3977   if (!UniformBase) {
3978     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3979     Index = getValue(Ptr);
3980     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3981   }
3982   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
3983   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3984                                          Ops, MMO);
3985   DAG.setRoot(Scatter);
3986   setValue(&I, Scatter);
3987 }
3988 
3989 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
3990   SDLoc sdl = getCurSDLoc();
3991 
3992   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3993                            unsigned& Alignment) {
3994     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3995     Ptr = I.getArgOperand(0);
3996     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3997     Mask = I.getArgOperand(2);
3998     Src0 = I.getArgOperand(3);
3999   };
4000   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4001                            unsigned& Alignment) {
4002     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4003     Ptr = I.getArgOperand(0);
4004     Alignment = 0;
4005     Mask = I.getArgOperand(1);
4006     Src0 = I.getArgOperand(2);
4007   };
4008 
4009   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4010   unsigned Alignment;
4011   if (IsExpanding)
4012     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4013   else
4014     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4015 
4016   SDValue Ptr = getValue(PtrOperand);
4017   SDValue Src0 = getValue(Src0Operand);
4018   SDValue Mask = getValue(MaskOperand);
4019 
4020   EVT VT = Src0.getValueType();
4021   if (!Alignment)
4022     Alignment = DAG.getEVTAlignment(VT);
4023 
4024   AAMDNodes AAInfo;
4025   I.getAAMetadata(AAInfo);
4026   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4027 
4028   // Do not serialize masked loads of constant memory with anything.
4029   bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
4030       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
4031   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4032 
4033   MachineMemOperand *MMO =
4034     DAG.getMachineFunction().
4035     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4036                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4037                           Alignment, AAInfo, Ranges);
4038 
4039   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4040                                    ISD::NON_EXTLOAD, IsExpanding);
4041   if (AddToChain) {
4042     SDValue OutChain = Load.getValue(1);
4043     DAG.setRoot(OutChain);
4044   }
4045   setValue(&I, Load);
4046 }
4047 
4048 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4049   SDLoc sdl = getCurSDLoc();
4050 
4051   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4052   const Value *Ptr = I.getArgOperand(0);
4053   SDValue Src0 = getValue(I.getArgOperand(3));
4054   SDValue Mask = getValue(I.getArgOperand(2));
4055 
4056   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4057   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4058   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4059   if (!Alignment)
4060     Alignment = DAG.getEVTAlignment(VT);
4061 
4062   AAMDNodes AAInfo;
4063   I.getAAMetadata(AAInfo);
4064   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4065 
4066   SDValue Root = DAG.getRoot();
4067   SDValue Base;
4068   SDValue Index;
4069   SDValue Scale;
4070   const Value *BasePtr = Ptr;
4071   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4072   bool ConstantMemory = false;
4073   if (UniformBase &&
4074       AA && AA->pointsToConstantMemory(MemoryLocation(
4075           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
4076           AAInfo))) {
4077     // Do not serialize (non-volatile) loads of constant memory with anything.
4078     Root = DAG.getEntryNode();
4079     ConstantMemory = true;
4080   }
4081 
4082   MachineMemOperand *MMO =
4083     DAG.getMachineFunction().
4084     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4085                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4086                          Alignment, AAInfo, Ranges);
4087 
4088   if (!UniformBase) {
4089     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4090     Index = getValue(Ptr);
4091     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4092   }
4093   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4094   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4095                                        Ops, MMO);
4096 
4097   SDValue OutChain = Gather.getValue(1);
4098   if (!ConstantMemory)
4099     PendingLoads.push_back(OutChain);
4100   setValue(&I, Gather);
4101 }
4102 
4103 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4104   SDLoc dl = getCurSDLoc();
4105   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4106   AtomicOrdering FailureOrder = I.getFailureOrdering();
4107   SyncScope::ID SSID = I.getSyncScopeID();
4108 
4109   SDValue InChain = getRoot();
4110 
4111   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4112   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4113   SDValue L = DAG.getAtomicCmpSwap(
4114       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4115       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4116       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4117       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4118 
4119   SDValue OutChain = L.getValue(2);
4120 
4121   setValue(&I, L);
4122   DAG.setRoot(OutChain);
4123 }
4124 
4125 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4126   SDLoc dl = getCurSDLoc();
4127   ISD::NodeType NT;
4128   switch (I.getOperation()) {
4129   default: llvm_unreachable("Unknown atomicrmw operation");
4130   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4131   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4132   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4133   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4134   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4135   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4136   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4137   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4138   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4139   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4140   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4141   }
4142   AtomicOrdering Order = I.getOrdering();
4143   SyncScope::ID SSID = I.getSyncScopeID();
4144 
4145   SDValue InChain = getRoot();
4146 
4147   SDValue L =
4148     DAG.getAtomic(NT, dl,
4149                   getValue(I.getValOperand()).getSimpleValueType(),
4150                   InChain,
4151                   getValue(I.getPointerOperand()),
4152                   getValue(I.getValOperand()),
4153                   I.getPointerOperand(),
4154                   /* Alignment=*/ 0, Order, SSID);
4155 
4156   SDValue OutChain = L.getValue(1);
4157 
4158   setValue(&I, L);
4159   DAG.setRoot(OutChain);
4160 }
4161 
4162 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4163   SDLoc dl = getCurSDLoc();
4164   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4165   SDValue Ops[3];
4166   Ops[0] = getRoot();
4167   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4168                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4169   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4170                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4171   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4172 }
4173 
4174 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4175   SDLoc dl = getCurSDLoc();
4176   AtomicOrdering Order = I.getOrdering();
4177   SyncScope::ID SSID = I.getSyncScopeID();
4178 
4179   SDValue InChain = getRoot();
4180 
4181   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4182   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4183 
4184   if (!TLI.supportsUnalignedAtomics() &&
4185       I.getAlignment() < VT.getStoreSize())
4186     report_fatal_error("Cannot generate unaligned atomic load");
4187 
4188   MachineMemOperand *MMO =
4189       DAG.getMachineFunction().
4190       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4191                            MachineMemOperand::MOVolatile |
4192                            MachineMemOperand::MOLoad,
4193                            VT.getStoreSize(),
4194                            I.getAlignment() ? I.getAlignment() :
4195                                               DAG.getEVTAlignment(VT),
4196                            AAMDNodes(), nullptr, SSID, Order);
4197 
4198   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4199   SDValue L =
4200       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4201                     getValue(I.getPointerOperand()), MMO);
4202 
4203   SDValue OutChain = L.getValue(1);
4204 
4205   setValue(&I, L);
4206   DAG.setRoot(OutChain);
4207 }
4208 
4209 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4210   SDLoc dl = getCurSDLoc();
4211 
4212   AtomicOrdering Order = I.getOrdering();
4213   SyncScope::ID SSID = I.getSyncScopeID();
4214 
4215   SDValue InChain = getRoot();
4216 
4217   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4218   EVT VT =
4219       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4220 
4221   if (I.getAlignment() < VT.getStoreSize())
4222     report_fatal_error("Cannot generate unaligned atomic store");
4223 
4224   SDValue OutChain =
4225     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4226                   InChain,
4227                   getValue(I.getPointerOperand()),
4228                   getValue(I.getValueOperand()),
4229                   I.getPointerOperand(), I.getAlignment(),
4230                   Order, SSID);
4231 
4232   DAG.setRoot(OutChain);
4233 }
4234 
4235 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4236 /// node.
4237 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4238                                                unsigned Intrinsic) {
4239   // Ignore the callsite's attributes. A specific call site may be marked with
4240   // readnone, but the lowering code will expect the chain based on the
4241   // definition.
4242   const Function *F = I.getCalledFunction();
4243   bool HasChain = !F->doesNotAccessMemory();
4244   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4245 
4246   // Build the operand list.
4247   SmallVector<SDValue, 8> Ops;
4248   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4249     if (OnlyLoad) {
4250       // We don't need to serialize loads against other loads.
4251       Ops.push_back(DAG.getRoot());
4252     } else {
4253       Ops.push_back(getRoot());
4254     }
4255   }
4256 
4257   // Info is set by getTgtMemInstrinsic
4258   TargetLowering::IntrinsicInfo Info;
4259   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4260   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4261                                                DAG.getMachineFunction(),
4262                                                Intrinsic);
4263 
4264   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4265   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4266       Info.opc == ISD::INTRINSIC_W_CHAIN)
4267     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4268                                         TLI.getPointerTy(DAG.getDataLayout())));
4269 
4270   // Add all operands of the call to the operand list.
4271   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4272     SDValue Op = getValue(I.getArgOperand(i));
4273     Ops.push_back(Op);
4274   }
4275 
4276   SmallVector<EVT, 4> ValueVTs;
4277   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4278 
4279   if (HasChain)
4280     ValueVTs.push_back(MVT::Other);
4281 
4282   SDVTList VTs = DAG.getVTList(ValueVTs);
4283 
4284   // Create the node.
4285   SDValue Result;
4286   if (IsTgtIntrinsic) {
4287     // This is target intrinsic that touches memory
4288     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4289       Ops, Info.memVT,
4290       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4291       Info.flags, Info.size);
4292   } else if (!HasChain) {
4293     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4294   } else if (!I.getType()->isVoidTy()) {
4295     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4296   } else {
4297     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4298   }
4299 
4300   if (HasChain) {
4301     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4302     if (OnlyLoad)
4303       PendingLoads.push_back(Chain);
4304     else
4305       DAG.setRoot(Chain);
4306   }
4307 
4308   if (!I.getType()->isVoidTy()) {
4309     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4310       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4311       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4312     } else
4313       Result = lowerRangeToAssertZExt(DAG, I, Result);
4314 
4315     setValue(&I, Result);
4316   }
4317 }
4318 
4319 /// GetSignificand - Get the significand and build it into a floating-point
4320 /// number with exponent of 1:
4321 ///
4322 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4323 ///
4324 /// where Op is the hexadecimal representation of floating point value.
4325 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4326   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4327                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4328   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4329                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4330   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4331 }
4332 
4333 /// GetExponent - Get the exponent:
4334 ///
4335 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4336 ///
4337 /// where Op is the hexadecimal representation of floating point value.
4338 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4339                            const TargetLowering &TLI, const SDLoc &dl) {
4340   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4341                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4342   SDValue t1 = DAG.getNode(
4343       ISD::SRL, dl, MVT::i32, t0,
4344       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4345   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4346                            DAG.getConstant(127, dl, MVT::i32));
4347   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4348 }
4349 
4350 /// getF32Constant - Get 32-bit floating point constant.
4351 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4352                               const SDLoc &dl) {
4353   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4354                            MVT::f32);
4355 }
4356 
4357 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4358                                        SelectionDAG &DAG) {
4359   // TODO: What fast-math-flags should be set on the floating-point nodes?
4360 
4361   //   IntegerPartOfX = ((int32_t)(t0);
4362   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4363 
4364   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4365   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4366   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4367 
4368   //   IntegerPartOfX <<= 23;
4369   IntegerPartOfX = DAG.getNode(
4370       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4371       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4372                                   DAG.getDataLayout())));
4373 
4374   SDValue TwoToFractionalPartOfX;
4375   if (LimitFloatPrecision <= 6) {
4376     // For floating-point precision of 6:
4377     //
4378     //   TwoToFractionalPartOfX =
4379     //     0.997535578f +
4380     //       (0.735607626f + 0.252464424f * x) * x;
4381     //
4382     // error 0.0144103317, which is 6 bits
4383     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4384                              getF32Constant(DAG, 0x3e814304, dl));
4385     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4386                              getF32Constant(DAG, 0x3f3c50c8, dl));
4387     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4388     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4389                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4390   } else if (LimitFloatPrecision <= 12) {
4391     // For floating-point precision of 12:
4392     //
4393     //   TwoToFractionalPartOfX =
4394     //     0.999892986f +
4395     //       (0.696457318f +
4396     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4397     //
4398     // error 0.000107046256, which is 13 to 14 bits
4399     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4400                              getF32Constant(DAG, 0x3da235e3, dl));
4401     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4402                              getF32Constant(DAG, 0x3e65b8f3, dl));
4403     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4404     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4405                              getF32Constant(DAG, 0x3f324b07, dl));
4406     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4407     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4408                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4409   } else { // LimitFloatPrecision <= 18
4410     // For floating-point precision of 18:
4411     //
4412     //   TwoToFractionalPartOfX =
4413     //     0.999999982f +
4414     //       (0.693148872f +
4415     //         (0.240227044f +
4416     //           (0.554906021e-1f +
4417     //             (0.961591928e-2f +
4418     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4419     // error 2.47208000*10^(-7), which is better than 18 bits
4420     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4421                              getF32Constant(DAG, 0x3924b03e, dl));
4422     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4423                              getF32Constant(DAG, 0x3ab24b87, dl));
4424     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4425     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4426                              getF32Constant(DAG, 0x3c1d8c17, dl));
4427     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4428     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4429                              getF32Constant(DAG, 0x3d634a1d, dl));
4430     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4431     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4432                              getF32Constant(DAG, 0x3e75fe14, dl));
4433     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4434     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4435                               getF32Constant(DAG, 0x3f317234, dl));
4436     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4437     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4438                                          getF32Constant(DAG, 0x3f800000, dl));
4439   }
4440 
4441   // Add the exponent into the result in integer domain.
4442   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4443   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4444                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4445 }
4446 
4447 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4448 /// limited-precision mode.
4449 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4450                          const TargetLowering &TLI) {
4451   if (Op.getValueType() == MVT::f32 &&
4452       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4453 
4454     // Put the exponent in the right bit position for later addition to the
4455     // final result:
4456     //
4457     //   #define LOG2OFe 1.4426950f
4458     //   t0 = Op * LOG2OFe
4459 
4460     // TODO: What fast-math-flags should be set here?
4461     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4462                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4463     return getLimitedPrecisionExp2(t0, dl, DAG);
4464   }
4465 
4466   // No special expansion.
4467   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4468 }
4469 
4470 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4471 /// limited-precision mode.
4472 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4473                          const TargetLowering &TLI) {
4474   // TODO: What fast-math-flags should be set on the floating-point nodes?
4475 
4476   if (Op.getValueType() == MVT::f32 &&
4477       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4478     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4479 
4480     // Scale the exponent by log(2) [0.69314718f].
4481     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4482     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4483                                         getF32Constant(DAG, 0x3f317218, dl));
4484 
4485     // Get the significand and build it into a floating-point number with
4486     // exponent of 1.
4487     SDValue X = GetSignificand(DAG, Op1, dl);
4488 
4489     SDValue LogOfMantissa;
4490     if (LimitFloatPrecision <= 6) {
4491       // For floating-point precision of 6:
4492       //
4493       //   LogofMantissa =
4494       //     -1.1609546f +
4495       //       (1.4034025f - 0.23903021f * x) * x;
4496       //
4497       // error 0.0034276066, which is better than 8 bits
4498       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4499                                getF32Constant(DAG, 0xbe74c456, dl));
4500       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4501                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4502       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4503       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4504                                   getF32Constant(DAG, 0x3f949a29, dl));
4505     } else if (LimitFloatPrecision <= 12) {
4506       // For floating-point precision of 12:
4507       //
4508       //   LogOfMantissa =
4509       //     -1.7417939f +
4510       //       (2.8212026f +
4511       //         (-1.4699568f +
4512       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4513       //
4514       // error 0.000061011436, which is 14 bits
4515       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4516                                getF32Constant(DAG, 0xbd67b6d6, dl));
4517       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4518                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4519       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4520       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4521                                getF32Constant(DAG, 0x3fbc278b, dl));
4522       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4523       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4524                                getF32Constant(DAG, 0x40348e95, dl));
4525       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4526       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4527                                   getF32Constant(DAG, 0x3fdef31a, dl));
4528     } else { // LimitFloatPrecision <= 18
4529       // For floating-point precision of 18:
4530       //
4531       //   LogOfMantissa =
4532       //     -2.1072184f +
4533       //       (4.2372794f +
4534       //         (-3.7029485f +
4535       //           (2.2781945f +
4536       //             (-0.87823314f +
4537       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4538       //
4539       // error 0.0000023660568, which is better than 18 bits
4540       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4541                                getF32Constant(DAG, 0xbc91e5ac, dl));
4542       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4543                                getF32Constant(DAG, 0x3e4350aa, dl));
4544       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4545       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4546                                getF32Constant(DAG, 0x3f60d3e3, dl));
4547       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4548       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4549                                getF32Constant(DAG, 0x4011cdf0, dl));
4550       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4551       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4552                                getF32Constant(DAG, 0x406cfd1c, dl));
4553       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4554       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4555                                getF32Constant(DAG, 0x408797cb, dl));
4556       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4557       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4558                                   getF32Constant(DAG, 0x4006dcab, dl));
4559     }
4560 
4561     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4562   }
4563 
4564   // No special expansion.
4565   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4566 }
4567 
4568 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4569 /// limited-precision mode.
4570 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4571                           const TargetLowering &TLI) {
4572   // TODO: What fast-math-flags should be set on the floating-point nodes?
4573 
4574   if (Op.getValueType() == MVT::f32 &&
4575       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4576     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4577 
4578     // Get the exponent.
4579     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4580 
4581     // Get the significand and build it into a floating-point number with
4582     // exponent of 1.
4583     SDValue X = GetSignificand(DAG, Op1, dl);
4584 
4585     // Different possible minimax approximations of significand in
4586     // floating-point for various degrees of accuracy over [1,2].
4587     SDValue Log2ofMantissa;
4588     if (LimitFloatPrecision <= 6) {
4589       // For floating-point precision of 6:
4590       //
4591       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4592       //
4593       // error 0.0049451742, which is more than 7 bits
4594       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4595                                getF32Constant(DAG, 0xbeb08fe0, dl));
4596       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4597                                getF32Constant(DAG, 0x40019463, dl));
4598       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4599       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4600                                    getF32Constant(DAG, 0x3fd6633d, dl));
4601     } else if (LimitFloatPrecision <= 12) {
4602       // For floating-point precision of 12:
4603       //
4604       //   Log2ofMantissa =
4605       //     -2.51285454f +
4606       //       (4.07009056f +
4607       //         (-2.12067489f +
4608       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4609       //
4610       // error 0.0000876136000, which is better than 13 bits
4611       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4612                                getF32Constant(DAG, 0xbda7262e, dl));
4613       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4614                                getF32Constant(DAG, 0x3f25280b, dl));
4615       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4616       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4617                                getF32Constant(DAG, 0x4007b923, dl));
4618       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4619       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4620                                getF32Constant(DAG, 0x40823e2f, dl));
4621       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4622       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4623                                    getF32Constant(DAG, 0x4020d29c, dl));
4624     } else { // LimitFloatPrecision <= 18
4625       // For floating-point precision of 18:
4626       //
4627       //   Log2ofMantissa =
4628       //     -3.0400495f +
4629       //       (6.1129976f +
4630       //         (-5.3420409f +
4631       //           (3.2865683f +
4632       //             (-1.2669343f +
4633       //               (0.27515199f -
4634       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4635       //
4636       // error 0.0000018516, which is better than 18 bits
4637       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4638                                getF32Constant(DAG, 0xbcd2769e, dl));
4639       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4640                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4641       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4642       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4643                                getF32Constant(DAG, 0x3fa22ae7, dl));
4644       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4645       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4646                                getF32Constant(DAG, 0x40525723, dl));
4647       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4648       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4649                                getF32Constant(DAG, 0x40aaf200, dl));
4650       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4651       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4652                                getF32Constant(DAG, 0x40c39dad, dl));
4653       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4654       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4655                                    getF32Constant(DAG, 0x4042902c, dl));
4656     }
4657 
4658     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4659   }
4660 
4661   // No special expansion.
4662   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4663 }
4664 
4665 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4666 /// limited-precision mode.
4667 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4668                            const TargetLowering &TLI) {
4669   // TODO: What fast-math-flags should be set on the floating-point nodes?
4670 
4671   if (Op.getValueType() == MVT::f32 &&
4672       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4673     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4674 
4675     // Scale the exponent by log10(2) [0.30102999f].
4676     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4677     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4678                                         getF32Constant(DAG, 0x3e9a209a, dl));
4679 
4680     // Get the significand and build it into a floating-point number with
4681     // exponent of 1.
4682     SDValue X = GetSignificand(DAG, Op1, dl);
4683 
4684     SDValue Log10ofMantissa;
4685     if (LimitFloatPrecision <= 6) {
4686       // For floating-point precision of 6:
4687       //
4688       //   Log10ofMantissa =
4689       //     -0.50419619f +
4690       //       (0.60948995f - 0.10380950f * x) * x;
4691       //
4692       // error 0.0014886165, which is 6 bits
4693       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4694                                getF32Constant(DAG, 0xbdd49a13, dl));
4695       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4696                                getF32Constant(DAG, 0x3f1c0789, dl));
4697       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4698       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4699                                     getF32Constant(DAG, 0x3f011300, dl));
4700     } else if (LimitFloatPrecision <= 12) {
4701       // For floating-point precision of 12:
4702       //
4703       //   Log10ofMantissa =
4704       //     -0.64831180f +
4705       //       (0.91751397f +
4706       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4707       //
4708       // error 0.00019228036, which is better than 12 bits
4709       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4710                                getF32Constant(DAG, 0x3d431f31, dl));
4711       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4712                                getF32Constant(DAG, 0x3ea21fb2, dl));
4713       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4714       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4715                                getF32Constant(DAG, 0x3f6ae232, dl));
4716       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4717       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4718                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4719     } else { // LimitFloatPrecision <= 18
4720       // For floating-point precision of 18:
4721       //
4722       //   Log10ofMantissa =
4723       //     -0.84299375f +
4724       //       (1.5327582f +
4725       //         (-1.0688956f +
4726       //           (0.49102474f +
4727       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4728       //
4729       // error 0.0000037995730, which is better than 18 bits
4730       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4731                                getF32Constant(DAG, 0x3c5d51ce, dl));
4732       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4733                                getF32Constant(DAG, 0x3e00685a, dl));
4734       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4735       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4736                                getF32Constant(DAG, 0x3efb6798, dl));
4737       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4738       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4739                                getF32Constant(DAG, 0x3f88d192, dl));
4740       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4741       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4742                                getF32Constant(DAG, 0x3fc4316c, dl));
4743       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4744       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4745                                     getF32Constant(DAG, 0x3f57ce70, dl));
4746     }
4747 
4748     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4749   }
4750 
4751   // No special expansion.
4752   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4753 }
4754 
4755 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4756 /// limited-precision mode.
4757 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4758                           const TargetLowering &TLI) {
4759   if (Op.getValueType() == MVT::f32 &&
4760       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4761     return getLimitedPrecisionExp2(Op, dl, DAG);
4762 
4763   // No special expansion.
4764   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4765 }
4766 
4767 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4768 /// limited-precision mode with x == 10.0f.
4769 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4770                          SelectionDAG &DAG, const TargetLowering &TLI) {
4771   bool IsExp10 = false;
4772   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4773       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4774     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4775       APFloat Ten(10.0f);
4776       IsExp10 = LHSC->isExactlyValue(Ten);
4777     }
4778   }
4779 
4780   // TODO: What fast-math-flags should be set on the FMUL node?
4781   if (IsExp10) {
4782     // Put the exponent in the right bit position for later addition to the
4783     // final result:
4784     //
4785     //   #define LOG2OF10 3.3219281f
4786     //   t0 = Op * LOG2OF10;
4787     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4788                              getF32Constant(DAG, 0x40549a78, dl));
4789     return getLimitedPrecisionExp2(t0, dl, DAG);
4790   }
4791 
4792   // No special expansion.
4793   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4794 }
4795 
4796 /// ExpandPowI - Expand a llvm.powi intrinsic.
4797 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4798                           SelectionDAG &DAG) {
4799   // If RHS is a constant, we can expand this out to a multiplication tree,
4800   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4801   // optimizing for size, we only want to do this if the expansion would produce
4802   // a small number of multiplies, otherwise we do the full expansion.
4803   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4804     // Get the exponent as a positive value.
4805     unsigned Val = RHSC->getSExtValue();
4806     if ((int)Val < 0) Val = -Val;
4807 
4808     // powi(x, 0) -> 1.0
4809     if (Val == 0)
4810       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4811 
4812     const Function &F = DAG.getMachineFunction().getFunction();
4813     if (!F.optForSize() ||
4814         // If optimizing for size, don't insert too many multiplies.
4815         // This inserts up to 5 multiplies.
4816         countPopulation(Val) + Log2_32(Val) < 7) {
4817       // We use the simple binary decomposition method to generate the multiply
4818       // sequence.  There are more optimal ways to do this (for example,
4819       // powi(x,15) generates one more multiply than it should), but this has
4820       // the benefit of being both really simple and much better than a libcall.
4821       SDValue Res;  // Logically starts equal to 1.0
4822       SDValue CurSquare = LHS;
4823       // TODO: Intrinsics should have fast-math-flags that propagate to these
4824       // nodes.
4825       while (Val) {
4826         if (Val & 1) {
4827           if (Res.getNode())
4828             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4829           else
4830             Res = CurSquare;  // 1.0*CurSquare.
4831         }
4832 
4833         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4834                                 CurSquare, CurSquare);
4835         Val >>= 1;
4836       }
4837 
4838       // If the original was negative, invert the result, producing 1/(x*x*x).
4839       if (RHSC->getSExtValue() < 0)
4840         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4841                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4842       return Res;
4843     }
4844   }
4845 
4846   // Otherwise, expand to a libcall.
4847   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4848 }
4849 
4850 // getUnderlyingArgReg - Find underlying register used for a truncated or
4851 // bitcasted argument.
4852 static unsigned getUnderlyingArgReg(const SDValue &N) {
4853   switch (N.getOpcode()) {
4854   case ISD::CopyFromReg:
4855     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4856   case ISD::BITCAST:
4857   case ISD::AssertZext:
4858   case ISD::AssertSext:
4859   case ISD::TRUNCATE:
4860     return getUnderlyingArgReg(N.getOperand(0));
4861   default:
4862     return 0;
4863   }
4864 }
4865 
4866 /// If the DbgValueInst is a dbg_value of a function argument, create the
4867 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4868 /// instruction selection, they will be inserted to the entry BB.
4869 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4870     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4871     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4872   const Argument *Arg = dyn_cast<Argument>(V);
4873   if (!Arg)
4874     return false;
4875 
4876   MachineFunction &MF = DAG.getMachineFunction();
4877   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4878 
4879   bool IsIndirect = false;
4880   Optional<MachineOperand> Op;
4881   // Some arguments' frame index is recorded during argument lowering.
4882   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4883   if (FI != std::numeric_limits<int>::max())
4884     Op = MachineOperand::CreateFI(FI);
4885 
4886   if (!Op && N.getNode()) {
4887     unsigned Reg = getUnderlyingArgReg(N);
4888     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4889       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4890       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4891       if (PR)
4892         Reg = PR;
4893     }
4894     if (Reg) {
4895       Op = MachineOperand::CreateReg(Reg, false);
4896       IsIndirect = IsDbgDeclare;
4897     }
4898   }
4899 
4900   if (!Op && N.getNode())
4901     // Check if frame index is available.
4902     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4903       if (FrameIndexSDNode *FINode =
4904           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4905         Op = MachineOperand::CreateFI(FINode->getIndex());
4906 
4907   if (!Op) {
4908     // Check if ValueMap has reg number.
4909     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4910     if (VMI != FuncInfo.ValueMap.end()) {
4911       const auto &TLI = DAG.getTargetLoweringInfo();
4912       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4913                        V->getType(), isABIRegCopy(V));
4914       unsigned NumRegs =
4915           std::accumulate(RFV.RegCount.begin(), RFV.RegCount.end(), 0);
4916       if (NumRegs > 1) {
4917         unsigned I = 0;
4918         unsigned Offset = 0;
4919         auto RegisterVT = RFV.RegVTs.begin();
4920         for (auto RegCount : RFV.RegCount) {
4921           unsigned RegisterSize = (RegisterVT++)->getSizeInBits();
4922           for (unsigned E = I + RegCount; I != E; ++I) {
4923             // The vregs are guaranteed to be allocated in sequence.
4924             Op = MachineOperand::CreateReg(VMI->second + I, false);
4925             auto FragmentExpr = DIExpression::createFragmentExpression(
4926                 Expr, Offset, RegisterSize);
4927             if (!FragmentExpr)
4928               continue;
4929             FuncInfo.ArgDbgValues.push_back(
4930                 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4931                         Op->getReg(), Variable, *FragmentExpr));
4932             Offset += RegisterSize;
4933           }
4934         }
4935         return true;
4936       }
4937       Op = MachineOperand::CreateReg(VMI->second, false);
4938       IsIndirect = IsDbgDeclare;
4939     }
4940   }
4941 
4942   if (!Op)
4943     return false;
4944 
4945   assert(Variable->isValidLocationForIntrinsic(DL) &&
4946          "Expected inlined-at fields to agree");
4947   if (Op->isReg())
4948     FuncInfo.ArgDbgValues.push_back(
4949         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4950                 Op->getReg(), Variable, Expr));
4951   else
4952     FuncInfo.ArgDbgValues.push_back(
4953         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4954             .add(*Op)
4955             .addImm(0)
4956             .addMetadata(Variable)
4957             .addMetadata(Expr));
4958 
4959   return true;
4960 }
4961 
4962 /// Return the appropriate SDDbgValue based on N.
4963 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4964                                              DILocalVariable *Variable,
4965                                              DIExpression *Expr,
4966                                              const DebugLoc &dl,
4967                                              unsigned DbgSDNodeOrder) {
4968   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
4969     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4970     // stack slot locations as such instead of as indirectly addressed
4971     // locations.
4972     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl,
4973                                      DbgSDNodeOrder);
4974   }
4975   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl,
4976                          DbgSDNodeOrder);
4977 }
4978 
4979 // VisualStudio defines setjmp as _setjmp
4980 #if defined(_MSC_VER) && defined(setjmp) && \
4981                          !defined(setjmp_undefined_for_msvc)
4982 #  pragma push_macro("setjmp")
4983 #  undef setjmp
4984 #  define setjmp_undefined_for_msvc
4985 #endif
4986 
4987 /// Lower the call to the specified intrinsic function. If we want to emit this
4988 /// as a call to a named external function, return the name. Otherwise, lower it
4989 /// and return null.
4990 const char *
4991 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4992   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4993   SDLoc sdl = getCurSDLoc();
4994   DebugLoc dl = getCurDebugLoc();
4995   SDValue Res;
4996 
4997   switch (Intrinsic) {
4998   default:
4999     // By default, turn this into a target intrinsic node.
5000     visitTargetIntrinsic(I, Intrinsic);
5001     return nullptr;
5002   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5003   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5004   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5005   case Intrinsic::returnaddress:
5006     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5007                              TLI.getPointerTy(DAG.getDataLayout()),
5008                              getValue(I.getArgOperand(0))));
5009     return nullptr;
5010   case Intrinsic::addressofreturnaddress:
5011     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5012                              TLI.getPointerTy(DAG.getDataLayout())));
5013     return nullptr;
5014   case Intrinsic::frameaddress:
5015     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5016                              TLI.getPointerTy(DAG.getDataLayout()),
5017                              getValue(I.getArgOperand(0))));
5018     return nullptr;
5019   case Intrinsic::read_register: {
5020     Value *Reg = I.getArgOperand(0);
5021     SDValue Chain = getRoot();
5022     SDValue RegName =
5023         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5024     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5025     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5026       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5027     setValue(&I, Res);
5028     DAG.setRoot(Res.getValue(1));
5029     return nullptr;
5030   }
5031   case Intrinsic::write_register: {
5032     Value *Reg = I.getArgOperand(0);
5033     Value *RegValue = I.getArgOperand(1);
5034     SDValue Chain = getRoot();
5035     SDValue RegName =
5036         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5037     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5038                             RegName, getValue(RegValue)));
5039     return nullptr;
5040   }
5041   case Intrinsic::setjmp:
5042     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5043   case Intrinsic::longjmp:
5044     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5045   case Intrinsic::memcpy: {
5046     const auto &MCI = cast<MemCpyInst>(I);
5047     SDValue Op1 = getValue(I.getArgOperand(0));
5048     SDValue Op2 = getValue(I.getArgOperand(1));
5049     SDValue Op3 = getValue(I.getArgOperand(2));
5050     unsigned Align = MCI.getAlignment();
5051     if (!Align)
5052       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5053     bool isVol = MCI.isVolatile();
5054     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5055     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5056     // node.
5057     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5058                                false, isTC,
5059                                MachinePointerInfo(I.getArgOperand(0)),
5060                                MachinePointerInfo(I.getArgOperand(1)));
5061     updateDAGForMaybeTailCall(MC);
5062     return nullptr;
5063   }
5064   case Intrinsic::memset: {
5065     const auto &MSI = cast<MemSetInst>(I);
5066     SDValue Op1 = getValue(I.getArgOperand(0));
5067     SDValue Op2 = getValue(I.getArgOperand(1));
5068     SDValue Op3 = getValue(I.getArgOperand(2));
5069     unsigned Align = MSI.getAlignment();
5070     if (!Align)
5071       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
5072     bool isVol = MSI.isVolatile();
5073     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5074     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5075                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5076     updateDAGForMaybeTailCall(MS);
5077     return nullptr;
5078   }
5079   case Intrinsic::memmove: {
5080     const auto &MMI = cast<MemMoveInst>(I);
5081     SDValue Op1 = getValue(I.getArgOperand(0));
5082     SDValue Op2 = getValue(I.getArgOperand(1));
5083     SDValue Op3 = getValue(I.getArgOperand(2));
5084     unsigned Align = MMI.getAlignment();
5085     if (!Align)
5086       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
5087     bool isVol = MMI.isVolatile();
5088     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5089     // FIXME: Support passing different dest/src alignments to the memmove DAG
5090     // node.
5091     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5092                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5093                                 MachinePointerInfo(I.getArgOperand(1)));
5094     updateDAGForMaybeTailCall(MM);
5095     return nullptr;
5096   }
5097   case Intrinsic::memcpy_element_unordered_atomic: {
5098     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5099     SDValue Dst = getValue(MI.getRawDest());
5100     SDValue Src = getValue(MI.getRawSource());
5101     SDValue Length = getValue(MI.getLength());
5102 
5103     // Emit a library call.
5104     TargetLowering::ArgListTy Args;
5105     TargetLowering::ArgListEntry Entry;
5106     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
5107     Entry.Node = Dst;
5108     Args.push_back(Entry);
5109 
5110     Entry.Node = Src;
5111     Args.push_back(Entry);
5112 
5113     Entry.Ty = MI.getLength()->getType();
5114     Entry.Node = Length;
5115     Args.push_back(Entry);
5116 
5117     uint64_t ElementSizeConstant = MI.getElementSizeInBytes();
5118     RTLIB::Libcall LibraryCall =
5119         RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant);
5120     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5121       report_fatal_error("Unsupported element size");
5122 
5123     TargetLowering::CallLoweringInfo CLI(DAG);
5124     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5125         TLI.getLibcallCallingConv(LibraryCall),
5126         Type::getVoidTy(*DAG.getContext()),
5127         DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall),
5128                               TLI.getPointerTy(DAG.getDataLayout())),
5129         std::move(Args));
5130 
5131     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
5132     DAG.setRoot(CallResult.second);
5133     return nullptr;
5134   }
5135   case Intrinsic::memmove_element_unordered_atomic: {
5136     auto &MI = cast<AtomicMemMoveInst>(I);
5137     SDValue Dst = getValue(MI.getRawDest());
5138     SDValue Src = getValue(MI.getRawSource());
5139     SDValue Length = getValue(MI.getLength());
5140 
5141     // Emit a library call.
5142     TargetLowering::ArgListTy Args;
5143     TargetLowering::ArgListEntry Entry;
5144     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
5145     Entry.Node = Dst;
5146     Args.push_back(Entry);
5147 
5148     Entry.Node = Src;
5149     Args.push_back(Entry);
5150 
5151     Entry.Ty = MI.getLength()->getType();
5152     Entry.Node = Length;
5153     Args.push_back(Entry);
5154 
5155     uint64_t ElementSizeConstant = MI.getElementSizeInBytes();
5156     RTLIB::Libcall LibraryCall =
5157         RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant);
5158     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5159       report_fatal_error("Unsupported element size");
5160 
5161     TargetLowering::CallLoweringInfo CLI(DAG);
5162     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5163         TLI.getLibcallCallingConv(LibraryCall),
5164         Type::getVoidTy(*DAG.getContext()),
5165         DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall),
5166                               TLI.getPointerTy(DAG.getDataLayout())),
5167         std::move(Args));
5168 
5169     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
5170     DAG.setRoot(CallResult.second);
5171     return nullptr;
5172   }
5173   case Intrinsic::memset_element_unordered_atomic: {
5174     auto &MI = cast<AtomicMemSetInst>(I);
5175     SDValue Dst = getValue(MI.getRawDest());
5176     SDValue Val = getValue(MI.getValue());
5177     SDValue Length = getValue(MI.getLength());
5178 
5179     // Emit a library call.
5180     TargetLowering::ArgListTy Args;
5181     TargetLowering::ArgListEntry Entry;
5182     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
5183     Entry.Node = Dst;
5184     Args.push_back(Entry);
5185 
5186     Entry.Ty = Type::getInt8Ty(*DAG.getContext());
5187     Entry.Node = Val;
5188     Args.push_back(Entry);
5189 
5190     Entry.Ty = MI.getLength()->getType();
5191     Entry.Node = Length;
5192     Args.push_back(Entry);
5193 
5194     uint64_t ElementSizeConstant = MI.getElementSizeInBytes();
5195     RTLIB::Libcall LibraryCall =
5196         RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant);
5197     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5198       report_fatal_error("Unsupported element size");
5199 
5200     TargetLowering::CallLoweringInfo CLI(DAG);
5201     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5202         TLI.getLibcallCallingConv(LibraryCall),
5203         Type::getVoidTy(*DAG.getContext()),
5204         DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall),
5205                               TLI.getPointerTy(DAG.getDataLayout())),
5206         std::move(Args));
5207 
5208     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
5209     DAG.setRoot(CallResult.second);
5210     return nullptr;
5211   }
5212   case Intrinsic::dbg_addr:
5213   case Intrinsic::dbg_declare: {
5214     const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I);
5215     DILocalVariable *Variable = DI.getVariable();
5216     DIExpression *Expression = DI.getExpression();
5217     dropDanglingDebugInfo(Variable, Expression);
5218     assert(Variable && "Missing variable");
5219 
5220     // Check if address has undef value.
5221     const Value *Address = DI.getVariableLocation();
5222     if (!Address || isa<UndefValue>(Address) ||
5223         (Address->use_empty() && !isa<Argument>(Address))) {
5224       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5225       return nullptr;
5226     }
5227 
5228     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5229 
5230     // Check if this variable can be described by a frame index, typically
5231     // either as a static alloca or a byval parameter.
5232     int FI = std::numeric_limits<int>::max();
5233     if (const auto *AI =
5234             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5235       if (AI->isStaticAlloca()) {
5236         auto I = FuncInfo.StaticAllocaMap.find(AI);
5237         if (I != FuncInfo.StaticAllocaMap.end())
5238           FI = I->second;
5239       }
5240     } else if (const auto *Arg = dyn_cast<Argument>(
5241                    Address->stripInBoundsConstantOffsets())) {
5242       FI = FuncInfo.getArgumentFrameIndex(Arg);
5243     }
5244 
5245     // llvm.dbg.addr is control dependent and always generates indirect
5246     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5247     // the MachineFunction variable table.
5248     if (FI != std::numeric_limits<int>::max()) {
5249       if (Intrinsic == Intrinsic::dbg_addr) {
5250          SDDbgValue *SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5251                                                      FI, dl, SDNodeOrder);
5252          DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5253       }
5254       return nullptr;
5255     }
5256 
5257     SDValue &N = NodeMap[Address];
5258     if (!N.getNode() && isa<Argument>(Address))
5259       // Check unused arguments map.
5260       N = UnusedArgNodeMap[Address];
5261     SDDbgValue *SDV;
5262     if (N.getNode()) {
5263       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5264         Address = BCI->getOperand(0);
5265       // Parameters are handled specially.
5266       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5267       if (isParameter && FINode) {
5268         // Byval parameter. We have a frame index at this point.
5269         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5270                                         FINode->getIndex(), dl, SDNodeOrder);
5271       } else if (isa<Argument>(Address)) {
5272         // Address is an argument, so try to emit its dbg value using
5273         // virtual register info from the FuncInfo.ValueMap.
5274         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5275         return nullptr;
5276       } else {
5277         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5278                               true, dl, SDNodeOrder);
5279       }
5280       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5281     } else {
5282       // If Address is an argument then try to emit its dbg value using
5283       // virtual register info from the FuncInfo.ValueMap.
5284       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5285                                     N)) {
5286         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5287       }
5288     }
5289     return nullptr;
5290   }
5291   case Intrinsic::dbg_value: {
5292     const DbgValueInst &DI = cast<DbgValueInst>(I);
5293     assert(DI.getVariable() && "Missing variable");
5294 
5295     DILocalVariable *Variable = DI.getVariable();
5296     DIExpression *Expression = DI.getExpression();
5297     dropDanglingDebugInfo(Variable, Expression);
5298     const Value *V = DI.getValue();
5299     if (!V)
5300       return nullptr;
5301 
5302     SDDbgValue *SDV;
5303     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5304       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5305       DAG.AddDbgValue(SDV, nullptr, false);
5306       return nullptr;
5307     }
5308 
5309     // Do not use getValue() in here; we don't want to generate code at
5310     // this point if it hasn't been done yet.
5311     SDValue N = NodeMap[V];
5312     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5313       N = UnusedArgNodeMap[V];
5314     if (N.getNode()) {
5315       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5316         return nullptr;
5317       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5318       DAG.AddDbgValue(SDV, N.getNode(), false);
5319       return nullptr;
5320     }
5321 
5322     // TODO: When we get here we will either drop the dbg.value completely, or
5323     // we try to move it forward by letting it dangle for awhile. So we should
5324     // probably add an extra DbgValue to the DAG here, with a reference to
5325     // "noreg", to indicate that we have lost the debug location for the
5326     // variable.
5327 
5328     if (!V->use_empty() ) {
5329       // Do not call getValue(V) yet, as we don't want to generate code.
5330       // Remember it for later.
5331       DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
5332       DanglingDebugInfoMap[V] = DDI;
5333       return nullptr;
5334     }
5335 
5336     DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5337     DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5338     return nullptr;
5339   }
5340 
5341   case Intrinsic::eh_typeid_for: {
5342     // Find the type id for the given typeinfo.
5343     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5344     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5345     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5346     setValue(&I, Res);
5347     return nullptr;
5348   }
5349 
5350   case Intrinsic::eh_return_i32:
5351   case Intrinsic::eh_return_i64:
5352     DAG.getMachineFunction().setCallsEHReturn(true);
5353     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5354                             MVT::Other,
5355                             getControlRoot(),
5356                             getValue(I.getArgOperand(0)),
5357                             getValue(I.getArgOperand(1))));
5358     return nullptr;
5359   case Intrinsic::eh_unwind_init:
5360     DAG.getMachineFunction().setCallsUnwindInit(true);
5361     return nullptr;
5362   case Intrinsic::eh_dwarf_cfa:
5363     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5364                              TLI.getPointerTy(DAG.getDataLayout()),
5365                              getValue(I.getArgOperand(0))));
5366     return nullptr;
5367   case Intrinsic::eh_sjlj_callsite: {
5368     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5369     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5370     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5371     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5372 
5373     MMI.setCurrentCallSite(CI->getZExtValue());
5374     return nullptr;
5375   }
5376   case Intrinsic::eh_sjlj_functioncontext: {
5377     // Get and store the index of the function context.
5378     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5379     AllocaInst *FnCtx =
5380       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5381     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5382     MFI.setFunctionContextIndex(FI);
5383     return nullptr;
5384   }
5385   case Intrinsic::eh_sjlj_setjmp: {
5386     SDValue Ops[2];
5387     Ops[0] = getRoot();
5388     Ops[1] = getValue(I.getArgOperand(0));
5389     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5390                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5391     setValue(&I, Op.getValue(0));
5392     DAG.setRoot(Op.getValue(1));
5393     return nullptr;
5394   }
5395   case Intrinsic::eh_sjlj_longjmp:
5396     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5397                             getRoot(), getValue(I.getArgOperand(0))));
5398     return nullptr;
5399   case Intrinsic::eh_sjlj_setup_dispatch:
5400     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5401                             getRoot()));
5402     return nullptr;
5403   case Intrinsic::masked_gather:
5404     visitMaskedGather(I);
5405     return nullptr;
5406   case Intrinsic::masked_load:
5407     visitMaskedLoad(I);
5408     return nullptr;
5409   case Intrinsic::masked_scatter:
5410     visitMaskedScatter(I);
5411     return nullptr;
5412   case Intrinsic::masked_store:
5413     visitMaskedStore(I);
5414     return nullptr;
5415   case Intrinsic::masked_expandload:
5416     visitMaskedLoad(I, true /* IsExpanding */);
5417     return nullptr;
5418   case Intrinsic::masked_compressstore:
5419     visitMaskedStore(I, true /* IsCompressing */);
5420     return nullptr;
5421   case Intrinsic::x86_mmx_pslli_w:
5422   case Intrinsic::x86_mmx_pslli_d:
5423   case Intrinsic::x86_mmx_pslli_q:
5424   case Intrinsic::x86_mmx_psrli_w:
5425   case Intrinsic::x86_mmx_psrli_d:
5426   case Intrinsic::x86_mmx_psrli_q:
5427   case Intrinsic::x86_mmx_psrai_w:
5428   case Intrinsic::x86_mmx_psrai_d: {
5429     SDValue ShAmt = getValue(I.getArgOperand(1));
5430     if (isa<ConstantSDNode>(ShAmt)) {
5431       visitTargetIntrinsic(I, Intrinsic);
5432       return nullptr;
5433     }
5434     unsigned NewIntrinsic = 0;
5435     EVT ShAmtVT = MVT::v2i32;
5436     switch (Intrinsic) {
5437     case Intrinsic::x86_mmx_pslli_w:
5438       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5439       break;
5440     case Intrinsic::x86_mmx_pslli_d:
5441       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5442       break;
5443     case Intrinsic::x86_mmx_pslli_q:
5444       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5445       break;
5446     case Intrinsic::x86_mmx_psrli_w:
5447       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5448       break;
5449     case Intrinsic::x86_mmx_psrli_d:
5450       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5451       break;
5452     case Intrinsic::x86_mmx_psrli_q:
5453       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5454       break;
5455     case Intrinsic::x86_mmx_psrai_w:
5456       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5457       break;
5458     case Intrinsic::x86_mmx_psrai_d:
5459       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5460       break;
5461     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5462     }
5463 
5464     // The vector shift intrinsics with scalars uses 32b shift amounts but
5465     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5466     // to be zero.
5467     // We must do this early because v2i32 is not a legal type.
5468     SDValue ShOps[2];
5469     ShOps[0] = ShAmt;
5470     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5471     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5472     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5473     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5474     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5475                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5476                        getValue(I.getArgOperand(0)), ShAmt);
5477     setValue(&I, Res);
5478     return nullptr;
5479   }
5480   case Intrinsic::powi:
5481     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5482                             getValue(I.getArgOperand(1)), DAG));
5483     return nullptr;
5484   case Intrinsic::log:
5485     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5486     return nullptr;
5487   case Intrinsic::log2:
5488     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5489     return nullptr;
5490   case Intrinsic::log10:
5491     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5492     return nullptr;
5493   case Intrinsic::exp:
5494     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5495     return nullptr;
5496   case Intrinsic::exp2:
5497     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5498     return nullptr;
5499   case Intrinsic::pow:
5500     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5501                            getValue(I.getArgOperand(1)), DAG, TLI));
5502     return nullptr;
5503   case Intrinsic::sqrt:
5504   case Intrinsic::fabs:
5505   case Intrinsic::sin:
5506   case Intrinsic::cos:
5507   case Intrinsic::floor:
5508   case Intrinsic::ceil:
5509   case Intrinsic::trunc:
5510   case Intrinsic::rint:
5511   case Intrinsic::nearbyint:
5512   case Intrinsic::round:
5513   case Intrinsic::canonicalize: {
5514     unsigned Opcode;
5515     switch (Intrinsic) {
5516     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5517     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5518     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5519     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5520     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5521     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5522     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5523     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5524     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5525     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5526     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5527     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5528     }
5529 
5530     setValue(&I, DAG.getNode(Opcode, sdl,
5531                              getValue(I.getArgOperand(0)).getValueType(),
5532                              getValue(I.getArgOperand(0))));
5533     return nullptr;
5534   }
5535   case Intrinsic::minnum: {
5536     auto VT = getValue(I.getArgOperand(0)).getValueType();
5537     unsigned Opc =
5538         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5539             ? ISD::FMINNAN
5540             : ISD::FMINNUM;
5541     setValue(&I, DAG.getNode(Opc, sdl, VT,
5542                              getValue(I.getArgOperand(0)),
5543                              getValue(I.getArgOperand(1))));
5544     return nullptr;
5545   }
5546   case Intrinsic::maxnum: {
5547     auto VT = getValue(I.getArgOperand(0)).getValueType();
5548     unsigned Opc =
5549         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5550             ? ISD::FMAXNAN
5551             : ISD::FMAXNUM;
5552     setValue(&I, DAG.getNode(Opc, sdl, VT,
5553                              getValue(I.getArgOperand(0)),
5554                              getValue(I.getArgOperand(1))));
5555     return nullptr;
5556   }
5557   case Intrinsic::copysign:
5558     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5559                              getValue(I.getArgOperand(0)).getValueType(),
5560                              getValue(I.getArgOperand(0)),
5561                              getValue(I.getArgOperand(1))));
5562     return nullptr;
5563   case Intrinsic::fma:
5564     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5565                              getValue(I.getArgOperand(0)).getValueType(),
5566                              getValue(I.getArgOperand(0)),
5567                              getValue(I.getArgOperand(1)),
5568                              getValue(I.getArgOperand(2))));
5569     return nullptr;
5570   case Intrinsic::experimental_constrained_fadd:
5571   case Intrinsic::experimental_constrained_fsub:
5572   case Intrinsic::experimental_constrained_fmul:
5573   case Intrinsic::experimental_constrained_fdiv:
5574   case Intrinsic::experimental_constrained_frem:
5575   case Intrinsic::experimental_constrained_fma:
5576   case Intrinsic::experimental_constrained_sqrt:
5577   case Intrinsic::experimental_constrained_pow:
5578   case Intrinsic::experimental_constrained_powi:
5579   case Intrinsic::experimental_constrained_sin:
5580   case Intrinsic::experimental_constrained_cos:
5581   case Intrinsic::experimental_constrained_exp:
5582   case Intrinsic::experimental_constrained_exp2:
5583   case Intrinsic::experimental_constrained_log:
5584   case Intrinsic::experimental_constrained_log10:
5585   case Intrinsic::experimental_constrained_log2:
5586   case Intrinsic::experimental_constrained_rint:
5587   case Intrinsic::experimental_constrained_nearbyint:
5588     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5589     return nullptr;
5590   case Intrinsic::fmuladd: {
5591     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5592     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5593         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5594       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5595                                getValue(I.getArgOperand(0)).getValueType(),
5596                                getValue(I.getArgOperand(0)),
5597                                getValue(I.getArgOperand(1)),
5598                                getValue(I.getArgOperand(2))));
5599     } else {
5600       // TODO: Intrinsic calls should have fast-math-flags.
5601       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5602                                 getValue(I.getArgOperand(0)).getValueType(),
5603                                 getValue(I.getArgOperand(0)),
5604                                 getValue(I.getArgOperand(1)));
5605       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5606                                 getValue(I.getArgOperand(0)).getValueType(),
5607                                 Mul,
5608                                 getValue(I.getArgOperand(2)));
5609       setValue(&I, Add);
5610     }
5611     return nullptr;
5612   }
5613   case Intrinsic::convert_to_fp16:
5614     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5615                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5616                                          getValue(I.getArgOperand(0)),
5617                                          DAG.getTargetConstant(0, sdl,
5618                                                                MVT::i32))));
5619     return nullptr;
5620   case Intrinsic::convert_from_fp16:
5621     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5622                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5623                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5624                                          getValue(I.getArgOperand(0)))));
5625     return nullptr;
5626   case Intrinsic::pcmarker: {
5627     SDValue Tmp = getValue(I.getArgOperand(0));
5628     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5629     return nullptr;
5630   }
5631   case Intrinsic::readcyclecounter: {
5632     SDValue Op = getRoot();
5633     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5634                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5635     setValue(&I, Res);
5636     DAG.setRoot(Res.getValue(1));
5637     return nullptr;
5638   }
5639   case Intrinsic::bitreverse:
5640     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5641                              getValue(I.getArgOperand(0)).getValueType(),
5642                              getValue(I.getArgOperand(0))));
5643     return nullptr;
5644   case Intrinsic::bswap:
5645     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5646                              getValue(I.getArgOperand(0)).getValueType(),
5647                              getValue(I.getArgOperand(0))));
5648     return nullptr;
5649   case Intrinsic::cttz: {
5650     SDValue Arg = getValue(I.getArgOperand(0));
5651     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5652     EVT Ty = Arg.getValueType();
5653     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5654                              sdl, Ty, Arg));
5655     return nullptr;
5656   }
5657   case Intrinsic::ctlz: {
5658     SDValue Arg = getValue(I.getArgOperand(0));
5659     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5660     EVT Ty = Arg.getValueType();
5661     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5662                              sdl, Ty, Arg));
5663     return nullptr;
5664   }
5665   case Intrinsic::ctpop: {
5666     SDValue Arg = getValue(I.getArgOperand(0));
5667     EVT Ty = Arg.getValueType();
5668     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5669     return nullptr;
5670   }
5671   case Intrinsic::stacksave: {
5672     SDValue Op = getRoot();
5673     Res = DAG.getNode(
5674         ISD::STACKSAVE, sdl,
5675         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5676     setValue(&I, Res);
5677     DAG.setRoot(Res.getValue(1));
5678     return nullptr;
5679   }
5680   case Intrinsic::stackrestore:
5681     Res = getValue(I.getArgOperand(0));
5682     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5683     return nullptr;
5684   case Intrinsic::get_dynamic_area_offset: {
5685     SDValue Op = getRoot();
5686     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5687     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5688     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5689     // target.
5690     if (PtrTy != ResTy)
5691       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5692                          " intrinsic!");
5693     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5694                       Op);
5695     DAG.setRoot(Op);
5696     setValue(&I, Res);
5697     return nullptr;
5698   }
5699   case Intrinsic::stackguard: {
5700     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5701     MachineFunction &MF = DAG.getMachineFunction();
5702     const Module &M = *MF.getFunction().getParent();
5703     SDValue Chain = getRoot();
5704     if (TLI.useLoadStackGuardNode()) {
5705       Res = getLoadStackGuard(DAG, sdl, Chain);
5706     } else {
5707       const Value *Global = TLI.getSDagStackGuard(M);
5708       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5709       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5710                         MachinePointerInfo(Global, 0), Align,
5711                         MachineMemOperand::MOVolatile);
5712     }
5713     if (TLI.useStackGuardXorFP())
5714       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
5715     DAG.setRoot(Chain);
5716     setValue(&I, Res);
5717     return nullptr;
5718   }
5719   case Intrinsic::stackprotector: {
5720     // Emit code into the DAG to store the stack guard onto the stack.
5721     MachineFunction &MF = DAG.getMachineFunction();
5722     MachineFrameInfo &MFI = MF.getFrameInfo();
5723     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5724     SDValue Src, Chain = getRoot();
5725 
5726     if (TLI.useLoadStackGuardNode())
5727       Src = getLoadStackGuard(DAG, sdl, Chain);
5728     else
5729       Src = getValue(I.getArgOperand(0));   // The guard's value.
5730 
5731     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5732 
5733     int FI = FuncInfo.StaticAllocaMap[Slot];
5734     MFI.setStackProtectorIndex(FI);
5735 
5736     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5737 
5738     // Store the stack protector onto the stack.
5739     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5740                                                  DAG.getMachineFunction(), FI),
5741                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5742     setValue(&I, Res);
5743     DAG.setRoot(Res);
5744     return nullptr;
5745   }
5746   case Intrinsic::objectsize: {
5747     // If we don't know by now, we're never going to know.
5748     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5749 
5750     assert(CI && "Non-constant type in __builtin_object_size?");
5751 
5752     SDValue Arg = getValue(I.getCalledValue());
5753     EVT Ty = Arg.getValueType();
5754 
5755     if (CI->isZero())
5756       Res = DAG.getConstant(-1ULL, sdl, Ty);
5757     else
5758       Res = DAG.getConstant(0, sdl, Ty);
5759 
5760     setValue(&I, Res);
5761     return nullptr;
5762   }
5763   case Intrinsic::annotation:
5764   case Intrinsic::ptr_annotation:
5765   case Intrinsic::invariant_group_barrier:
5766     // Drop the intrinsic, but forward the value
5767     setValue(&I, getValue(I.getOperand(0)));
5768     return nullptr;
5769   case Intrinsic::assume:
5770   case Intrinsic::var_annotation:
5771   case Intrinsic::sideeffect:
5772     // Discard annotate attributes, assumptions, and artificial side-effects.
5773     return nullptr;
5774 
5775   case Intrinsic::codeview_annotation: {
5776     // Emit a label associated with this metadata.
5777     MachineFunction &MF = DAG.getMachineFunction();
5778     MCSymbol *Label =
5779         MF.getMMI().getContext().createTempSymbol("annotation", true);
5780     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5781     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5782     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5783     DAG.setRoot(Res);
5784     return nullptr;
5785   }
5786 
5787   case Intrinsic::init_trampoline: {
5788     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5789 
5790     SDValue Ops[6];
5791     Ops[0] = getRoot();
5792     Ops[1] = getValue(I.getArgOperand(0));
5793     Ops[2] = getValue(I.getArgOperand(1));
5794     Ops[3] = getValue(I.getArgOperand(2));
5795     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5796     Ops[5] = DAG.getSrcValue(F);
5797 
5798     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5799 
5800     DAG.setRoot(Res);
5801     return nullptr;
5802   }
5803   case Intrinsic::adjust_trampoline:
5804     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5805                              TLI.getPointerTy(DAG.getDataLayout()),
5806                              getValue(I.getArgOperand(0))));
5807     return nullptr;
5808   case Intrinsic::gcroot: {
5809     assert(DAG.getMachineFunction().getFunction().hasGC() &&
5810            "only valid in functions with gc specified, enforced by Verifier");
5811     assert(GFI && "implied by previous");
5812     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5813     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5814 
5815     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5816     GFI->addStackRoot(FI->getIndex(), TypeMap);
5817     return nullptr;
5818   }
5819   case Intrinsic::gcread:
5820   case Intrinsic::gcwrite:
5821     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5822   case Intrinsic::flt_rounds:
5823     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5824     return nullptr;
5825 
5826   case Intrinsic::expect:
5827     // Just replace __builtin_expect(exp, c) with EXP.
5828     setValue(&I, getValue(I.getArgOperand(0)));
5829     return nullptr;
5830 
5831   case Intrinsic::debugtrap:
5832   case Intrinsic::trap: {
5833     StringRef TrapFuncName =
5834         I.getAttributes()
5835             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5836             .getValueAsString();
5837     if (TrapFuncName.empty()) {
5838       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5839         ISD::TRAP : ISD::DEBUGTRAP;
5840       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5841       return nullptr;
5842     }
5843     TargetLowering::ArgListTy Args;
5844 
5845     TargetLowering::CallLoweringInfo CLI(DAG);
5846     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5847         CallingConv::C, I.getType(),
5848         DAG.getExternalSymbol(TrapFuncName.data(),
5849                               TLI.getPointerTy(DAG.getDataLayout())),
5850         std::move(Args));
5851 
5852     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5853     DAG.setRoot(Result.second);
5854     return nullptr;
5855   }
5856 
5857   case Intrinsic::uadd_with_overflow:
5858   case Intrinsic::sadd_with_overflow:
5859   case Intrinsic::usub_with_overflow:
5860   case Intrinsic::ssub_with_overflow:
5861   case Intrinsic::umul_with_overflow:
5862   case Intrinsic::smul_with_overflow: {
5863     ISD::NodeType Op;
5864     switch (Intrinsic) {
5865     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5866     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5867     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5868     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5869     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5870     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5871     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5872     }
5873     SDValue Op1 = getValue(I.getArgOperand(0));
5874     SDValue Op2 = getValue(I.getArgOperand(1));
5875 
5876     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5877     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5878     return nullptr;
5879   }
5880   case Intrinsic::prefetch: {
5881     SDValue Ops[5];
5882     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5883     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
5884     Ops[0] = DAG.getRoot();
5885     Ops[1] = getValue(I.getArgOperand(0));
5886     Ops[2] = getValue(I.getArgOperand(1));
5887     Ops[3] = getValue(I.getArgOperand(2));
5888     Ops[4] = getValue(I.getArgOperand(3));
5889     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5890                                              DAG.getVTList(MVT::Other), Ops,
5891                                              EVT::getIntegerVT(*Context, 8),
5892                                              MachinePointerInfo(I.getArgOperand(0)),
5893                                              0, /* align */
5894                                              Flags);
5895 
5896     // Chain the prefetch in parallell with any pending loads, to stay out of
5897     // the way of later optimizations.
5898     PendingLoads.push_back(Result);
5899     Result = getRoot();
5900     DAG.setRoot(Result);
5901     return nullptr;
5902   }
5903   case Intrinsic::lifetime_start:
5904   case Intrinsic::lifetime_end: {
5905     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5906     // Stack coloring is not enabled in O0, discard region information.
5907     if (TM.getOptLevel() == CodeGenOpt::None)
5908       return nullptr;
5909 
5910     SmallVector<Value *, 4> Allocas;
5911     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5912 
5913     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5914            E = Allocas.end(); Object != E; ++Object) {
5915       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5916 
5917       // Could not find an Alloca.
5918       if (!LifetimeObject)
5919         continue;
5920 
5921       // First check that the Alloca is static, otherwise it won't have a
5922       // valid frame index.
5923       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5924       if (SI == FuncInfo.StaticAllocaMap.end())
5925         return nullptr;
5926 
5927       int FI = SI->second;
5928 
5929       SDValue Ops[2];
5930       Ops[0] = getRoot();
5931       Ops[1] =
5932           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
5933       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5934 
5935       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5936       DAG.setRoot(Res);
5937     }
5938     return nullptr;
5939   }
5940   case Intrinsic::invariant_start:
5941     // Discard region information.
5942     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5943     return nullptr;
5944   case Intrinsic::invariant_end:
5945     // Discard region information.
5946     return nullptr;
5947   case Intrinsic::clear_cache:
5948     return TLI.getClearCacheBuiltinName();
5949   case Intrinsic::donothing:
5950     // ignore
5951     return nullptr;
5952   case Intrinsic::experimental_stackmap:
5953     visitStackmap(I);
5954     return nullptr;
5955   case Intrinsic::experimental_patchpoint_void:
5956   case Intrinsic::experimental_patchpoint_i64:
5957     visitPatchpoint(&I);
5958     return nullptr;
5959   case Intrinsic::experimental_gc_statepoint:
5960     LowerStatepoint(ImmutableStatepoint(&I));
5961     return nullptr;
5962   case Intrinsic::experimental_gc_result:
5963     visitGCResult(cast<GCResultInst>(I));
5964     return nullptr;
5965   case Intrinsic::experimental_gc_relocate:
5966     visitGCRelocate(cast<GCRelocateInst>(I));
5967     return nullptr;
5968   case Intrinsic::instrprof_increment:
5969     llvm_unreachable("instrprof failed to lower an increment");
5970   case Intrinsic::instrprof_value_profile:
5971     llvm_unreachable("instrprof failed to lower a value profiling call");
5972   case Intrinsic::localescape: {
5973     MachineFunction &MF = DAG.getMachineFunction();
5974     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5975 
5976     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5977     // is the same on all targets.
5978     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5979       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5980       if (isa<ConstantPointerNull>(Arg))
5981         continue; // Skip null pointers. They represent a hole in index space.
5982       AllocaInst *Slot = cast<AllocaInst>(Arg);
5983       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5984              "can only escape static allocas");
5985       int FI = FuncInfo.StaticAllocaMap[Slot];
5986       MCSymbol *FrameAllocSym =
5987           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5988               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
5989       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5990               TII->get(TargetOpcode::LOCAL_ESCAPE))
5991           .addSym(FrameAllocSym)
5992           .addFrameIndex(FI);
5993     }
5994 
5995     return nullptr;
5996   }
5997 
5998   case Intrinsic::localrecover: {
5999     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6000     MachineFunction &MF = DAG.getMachineFunction();
6001     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6002 
6003     // Get the symbol that defines the frame offset.
6004     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6005     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6006     unsigned IdxVal =
6007         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6008     MCSymbol *FrameAllocSym =
6009         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6010             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6011 
6012     // Create a MCSymbol for the label to avoid any target lowering
6013     // that would make this PC relative.
6014     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6015     SDValue OffsetVal =
6016         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6017 
6018     // Add the offset to the FP.
6019     Value *FP = I.getArgOperand(1);
6020     SDValue FPVal = getValue(FP);
6021     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6022     setValue(&I, Add);
6023 
6024     return nullptr;
6025   }
6026 
6027   case Intrinsic::eh_exceptionpointer:
6028   case Intrinsic::eh_exceptioncode: {
6029     // Get the exception pointer vreg, copy from it, and resize it to fit.
6030     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6031     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6032     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6033     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6034     SDValue N =
6035         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6036     if (Intrinsic == Intrinsic::eh_exceptioncode)
6037       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6038     setValue(&I, N);
6039     return nullptr;
6040   }
6041   case Intrinsic::xray_customevent: {
6042     // Here we want to make sure that the intrinsic behaves as if it has a
6043     // specific calling convention, and only for x86_64.
6044     // FIXME: Support other platforms later.
6045     const auto &Triple = DAG.getTarget().getTargetTriple();
6046     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6047       return nullptr;
6048 
6049     SDLoc DL = getCurSDLoc();
6050     SmallVector<SDValue, 8> Ops;
6051 
6052     // We want to say that we always want the arguments in registers.
6053     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6054     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6055     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6056     SDValue Chain = getRoot();
6057     Ops.push_back(LogEntryVal);
6058     Ops.push_back(StrSizeVal);
6059     Ops.push_back(Chain);
6060 
6061     // We need to enforce the calling convention for the callsite, so that
6062     // argument ordering is enforced correctly, and that register allocation can
6063     // see that some registers may be assumed clobbered and have to preserve
6064     // them across calls to the intrinsic.
6065     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6066                                            DL, NodeTys, Ops);
6067     SDValue patchableNode = SDValue(MN, 0);
6068     DAG.setRoot(patchableNode);
6069     setValue(&I, patchableNode);
6070     return nullptr;
6071   }
6072   case Intrinsic::experimental_deoptimize:
6073     LowerDeoptimizeCall(&I);
6074     return nullptr;
6075 
6076   case Intrinsic::experimental_vector_reduce_fadd:
6077   case Intrinsic::experimental_vector_reduce_fmul:
6078   case Intrinsic::experimental_vector_reduce_add:
6079   case Intrinsic::experimental_vector_reduce_mul:
6080   case Intrinsic::experimental_vector_reduce_and:
6081   case Intrinsic::experimental_vector_reduce_or:
6082   case Intrinsic::experimental_vector_reduce_xor:
6083   case Intrinsic::experimental_vector_reduce_smax:
6084   case Intrinsic::experimental_vector_reduce_smin:
6085   case Intrinsic::experimental_vector_reduce_umax:
6086   case Intrinsic::experimental_vector_reduce_umin:
6087   case Intrinsic::experimental_vector_reduce_fmax:
6088   case Intrinsic::experimental_vector_reduce_fmin:
6089     visitVectorReduce(I, Intrinsic);
6090     return nullptr;
6091 
6092   case Intrinsic::icall_branch_funnel: {
6093     SmallVector<SDValue, 16> Ops;
6094     Ops.push_back(DAG.getRoot());
6095     Ops.push_back(getValue(I.getArgOperand(0)));
6096 
6097     int64_t Offset;
6098     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6099         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6100     if (!Base)
6101       report_fatal_error(
6102           "llvm.icall.branch.funnel operand must be a GlobalValue");
6103     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6104 
6105     struct BranchFunnelTarget {
6106       int64_t Offset;
6107       SDValue Target;
6108     };
6109     SmallVector<BranchFunnelTarget, 8> Targets;
6110 
6111     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6112       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6113           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6114       if (ElemBase != Base)
6115         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6116                            "to the same GlobalValue");
6117 
6118       SDValue Val = getValue(I.getArgOperand(Op + 1));
6119       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6120       if (!GA)
6121         report_fatal_error(
6122             "llvm.icall.branch.funnel operand must be a GlobalValue");
6123       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6124                                      GA->getGlobal(), getCurSDLoc(),
6125                                      Val.getValueType(), GA->getOffset())});
6126     }
6127     std::sort(Targets.begin(), Targets.end(),
6128               [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6129                 return T1.Offset < T2.Offset;
6130               });
6131 
6132     for (auto &T : Targets) {
6133       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6134       Ops.push_back(T.Target);
6135     }
6136 
6137     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6138                                  getCurSDLoc(), MVT::Other, Ops),
6139               0);
6140     DAG.setRoot(N);
6141     setValue(&I, N);
6142     HasTailCall = true;
6143     return nullptr;
6144   }
6145   }
6146 }
6147 
6148 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6149     const ConstrainedFPIntrinsic &FPI) {
6150   SDLoc sdl = getCurSDLoc();
6151   unsigned Opcode;
6152   switch (FPI.getIntrinsicID()) {
6153   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6154   case Intrinsic::experimental_constrained_fadd:
6155     Opcode = ISD::STRICT_FADD;
6156     break;
6157   case Intrinsic::experimental_constrained_fsub:
6158     Opcode = ISD::STRICT_FSUB;
6159     break;
6160   case Intrinsic::experimental_constrained_fmul:
6161     Opcode = ISD::STRICT_FMUL;
6162     break;
6163   case Intrinsic::experimental_constrained_fdiv:
6164     Opcode = ISD::STRICT_FDIV;
6165     break;
6166   case Intrinsic::experimental_constrained_frem:
6167     Opcode = ISD::STRICT_FREM;
6168     break;
6169   case Intrinsic::experimental_constrained_fma:
6170     Opcode = ISD::STRICT_FMA;
6171     break;
6172   case Intrinsic::experimental_constrained_sqrt:
6173     Opcode = ISD::STRICT_FSQRT;
6174     break;
6175   case Intrinsic::experimental_constrained_pow:
6176     Opcode = ISD::STRICT_FPOW;
6177     break;
6178   case Intrinsic::experimental_constrained_powi:
6179     Opcode = ISD::STRICT_FPOWI;
6180     break;
6181   case Intrinsic::experimental_constrained_sin:
6182     Opcode = ISD::STRICT_FSIN;
6183     break;
6184   case Intrinsic::experimental_constrained_cos:
6185     Opcode = ISD::STRICT_FCOS;
6186     break;
6187   case Intrinsic::experimental_constrained_exp:
6188     Opcode = ISD::STRICT_FEXP;
6189     break;
6190   case Intrinsic::experimental_constrained_exp2:
6191     Opcode = ISD::STRICT_FEXP2;
6192     break;
6193   case Intrinsic::experimental_constrained_log:
6194     Opcode = ISD::STRICT_FLOG;
6195     break;
6196   case Intrinsic::experimental_constrained_log10:
6197     Opcode = ISD::STRICT_FLOG10;
6198     break;
6199   case Intrinsic::experimental_constrained_log2:
6200     Opcode = ISD::STRICT_FLOG2;
6201     break;
6202   case Intrinsic::experimental_constrained_rint:
6203     Opcode = ISD::STRICT_FRINT;
6204     break;
6205   case Intrinsic::experimental_constrained_nearbyint:
6206     Opcode = ISD::STRICT_FNEARBYINT;
6207     break;
6208   }
6209   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6210   SDValue Chain = getRoot();
6211   SmallVector<EVT, 4> ValueVTs;
6212   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6213   ValueVTs.push_back(MVT::Other); // Out chain
6214 
6215   SDVTList VTs = DAG.getVTList(ValueVTs);
6216   SDValue Result;
6217   if (FPI.isUnaryOp())
6218     Result = DAG.getNode(Opcode, sdl, VTs,
6219                          { Chain, getValue(FPI.getArgOperand(0)) });
6220   else if (FPI.isTernaryOp())
6221     Result = DAG.getNode(Opcode, sdl, VTs,
6222                          { Chain, getValue(FPI.getArgOperand(0)),
6223                                   getValue(FPI.getArgOperand(1)),
6224                                   getValue(FPI.getArgOperand(2)) });
6225   else
6226     Result = DAG.getNode(Opcode, sdl, VTs,
6227                          { Chain, getValue(FPI.getArgOperand(0)),
6228                            getValue(FPI.getArgOperand(1))  });
6229 
6230   assert(Result.getNode()->getNumValues() == 2);
6231   SDValue OutChain = Result.getValue(1);
6232   DAG.setRoot(OutChain);
6233   SDValue FPResult = Result.getValue(0);
6234   setValue(&FPI, FPResult);
6235 }
6236 
6237 std::pair<SDValue, SDValue>
6238 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6239                                     const BasicBlock *EHPadBB) {
6240   MachineFunction &MF = DAG.getMachineFunction();
6241   MachineModuleInfo &MMI = MF.getMMI();
6242   MCSymbol *BeginLabel = nullptr;
6243 
6244   if (EHPadBB) {
6245     // Insert a label before the invoke call to mark the try range.  This can be
6246     // used to detect deletion of the invoke via the MachineModuleInfo.
6247     BeginLabel = MMI.getContext().createTempSymbol();
6248 
6249     // For SjLj, keep track of which landing pads go with which invokes
6250     // so as to maintain the ordering of pads in the LSDA.
6251     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6252     if (CallSiteIndex) {
6253       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6254       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6255 
6256       // Now that the call site is handled, stop tracking it.
6257       MMI.setCurrentCallSite(0);
6258     }
6259 
6260     // Both PendingLoads and PendingExports must be flushed here;
6261     // this call might not return.
6262     (void)getRoot();
6263     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6264 
6265     CLI.setChain(getRoot());
6266   }
6267   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6268   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6269 
6270   assert((CLI.IsTailCall || Result.second.getNode()) &&
6271          "Non-null chain expected with non-tail call!");
6272   assert((Result.second.getNode() || !Result.first.getNode()) &&
6273          "Null value expected with tail call!");
6274 
6275   if (!Result.second.getNode()) {
6276     // As a special case, a null chain means that a tail call has been emitted
6277     // and the DAG root is already updated.
6278     HasTailCall = true;
6279 
6280     // Since there's no actual continuation from this block, nothing can be
6281     // relying on us setting vregs for them.
6282     PendingExports.clear();
6283   } else {
6284     DAG.setRoot(Result.second);
6285   }
6286 
6287   if (EHPadBB) {
6288     // Insert a label at the end of the invoke call to mark the try range.  This
6289     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6290     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6291     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6292 
6293     // Inform MachineModuleInfo of range.
6294     if (MF.hasEHFunclets()) {
6295       assert(CLI.CS);
6296       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6297       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6298                                 BeginLabel, EndLabel);
6299     } else {
6300       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6301     }
6302   }
6303 
6304   return Result;
6305 }
6306 
6307 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6308                                       bool isTailCall,
6309                                       const BasicBlock *EHPadBB) {
6310   auto &DL = DAG.getDataLayout();
6311   FunctionType *FTy = CS.getFunctionType();
6312   Type *RetTy = CS.getType();
6313 
6314   TargetLowering::ArgListTy Args;
6315   Args.reserve(CS.arg_size());
6316 
6317   const Value *SwiftErrorVal = nullptr;
6318   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6319 
6320   // We can't tail call inside a function with a swifterror argument. Lowering
6321   // does not support this yet. It would have to move into the swifterror
6322   // register before the call.
6323   auto *Caller = CS.getInstruction()->getParent()->getParent();
6324   if (TLI.supportSwiftError() &&
6325       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6326     isTailCall = false;
6327 
6328   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6329        i != e; ++i) {
6330     TargetLowering::ArgListEntry Entry;
6331     const Value *V = *i;
6332 
6333     // Skip empty types
6334     if (V->getType()->isEmptyTy())
6335       continue;
6336 
6337     SDValue ArgNode = getValue(V);
6338     Entry.Node = ArgNode; Entry.Ty = V->getType();
6339 
6340     Entry.setAttributes(&CS, i - CS.arg_begin());
6341 
6342     // Use swifterror virtual register as input to the call.
6343     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6344       SwiftErrorVal = V;
6345       // We find the virtual register for the actual swifterror argument.
6346       // Instead of using the Value, we use the virtual register instead.
6347       Entry.Node = DAG.getRegister(FuncInfo
6348                                        .getOrCreateSwiftErrorVRegUseAt(
6349                                            CS.getInstruction(), FuncInfo.MBB, V)
6350                                        .first,
6351                                    EVT(TLI.getPointerTy(DL)));
6352     }
6353 
6354     Args.push_back(Entry);
6355 
6356     // If we have an explicit sret argument that is an Instruction, (i.e., it
6357     // might point to function-local memory), we can't meaningfully tail-call.
6358     if (Entry.IsSRet && isa<Instruction>(V))
6359       isTailCall = false;
6360   }
6361 
6362   // Check if target-independent constraints permit a tail call here.
6363   // Target-dependent constraints are checked within TLI->LowerCallTo.
6364   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6365     isTailCall = false;
6366 
6367   // Disable tail calls if there is an swifterror argument. Targets have not
6368   // been updated to support tail calls.
6369   if (TLI.supportSwiftError() && SwiftErrorVal)
6370     isTailCall = false;
6371 
6372   TargetLowering::CallLoweringInfo CLI(DAG);
6373   CLI.setDebugLoc(getCurSDLoc())
6374       .setChain(getRoot())
6375       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6376       .setTailCall(isTailCall)
6377       .setConvergent(CS.isConvergent());
6378   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6379 
6380   if (Result.first.getNode()) {
6381     const Instruction *Inst = CS.getInstruction();
6382     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6383     setValue(Inst, Result.first);
6384   }
6385 
6386   // The last element of CLI.InVals has the SDValue for swifterror return.
6387   // Here we copy it to a virtual register and update SwiftErrorMap for
6388   // book-keeping.
6389   if (SwiftErrorVal && TLI.supportSwiftError()) {
6390     // Get the last element of InVals.
6391     SDValue Src = CLI.InVals.back();
6392     unsigned VReg; bool CreatedVReg;
6393     std::tie(VReg, CreatedVReg) =
6394         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6395     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6396     // We update the virtual register for the actual swifterror argument.
6397     if (CreatedVReg)
6398       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6399     DAG.setRoot(CopyNode);
6400   }
6401 }
6402 
6403 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6404                              SelectionDAGBuilder &Builder) {
6405   // Check to see if this load can be trivially constant folded, e.g. if the
6406   // input is from a string literal.
6407   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6408     // Cast pointer to the type we really want to load.
6409     Type *LoadTy =
6410         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6411     if (LoadVT.isVector())
6412       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6413 
6414     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6415                                          PointerType::getUnqual(LoadTy));
6416 
6417     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6418             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6419       return Builder.getValue(LoadCst);
6420   }
6421 
6422   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6423   // still constant memory, the input chain can be the entry node.
6424   SDValue Root;
6425   bool ConstantMemory = false;
6426 
6427   // Do not serialize (non-volatile) loads of constant memory with anything.
6428   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6429     Root = Builder.DAG.getEntryNode();
6430     ConstantMemory = true;
6431   } else {
6432     // Do not serialize non-volatile loads against each other.
6433     Root = Builder.DAG.getRoot();
6434   }
6435 
6436   SDValue Ptr = Builder.getValue(PtrVal);
6437   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6438                                         Ptr, MachinePointerInfo(PtrVal),
6439                                         /* Alignment = */ 1);
6440 
6441   if (!ConstantMemory)
6442     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6443   return LoadVal;
6444 }
6445 
6446 /// Record the value for an instruction that produces an integer result,
6447 /// converting the type where necessary.
6448 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6449                                                   SDValue Value,
6450                                                   bool IsSigned) {
6451   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6452                                                     I.getType(), true);
6453   if (IsSigned)
6454     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6455   else
6456     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6457   setValue(&I, Value);
6458 }
6459 
6460 /// See if we can lower a memcmp call into an optimized form. If so, return
6461 /// true and lower it. Otherwise return false, and it will be lowered like a
6462 /// normal call.
6463 /// The caller already checked that \p I calls the appropriate LibFunc with a
6464 /// correct prototype.
6465 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6466   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6467   const Value *Size = I.getArgOperand(2);
6468   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6469   if (CSize && CSize->getZExtValue() == 0) {
6470     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6471                                                           I.getType(), true);
6472     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6473     return true;
6474   }
6475 
6476   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6477   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6478       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6479       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6480   if (Res.first.getNode()) {
6481     processIntegerCallValue(I, Res.first, true);
6482     PendingLoads.push_back(Res.second);
6483     return true;
6484   }
6485 
6486   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6487   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6488   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6489     return false;
6490 
6491   // If the target has a fast compare for the given size, it will return a
6492   // preferred load type for that size. Require that the load VT is legal and
6493   // that the target supports unaligned loads of that type. Otherwise, return
6494   // INVALID.
6495   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6496     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6497     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6498     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6499       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6500       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6501       // TODO: Check alignment of src and dest ptrs.
6502       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6503       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6504       if (!TLI.isTypeLegal(LVT) ||
6505           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6506           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6507         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6508     }
6509 
6510     return LVT;
6511   };
6512 
6513   // This turns into unaligned loads. We only do this if the target natively
6514   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6515   // we'll only produce a small number of byte loads.
6516   MVT LoadVT;
6517   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6518   switch (NumBitsToCompare) {
6519   default:
6520     return false;
6521   case 16:
6522     LoadVT = MVT::i16;
6523     break;
6524   case 32:
6525     LoadVT = MVT::i32;
6526     break;
6527   case 64:
6528   case 128:
6529   case 256:
6530     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6531     break;
6532   }
6533 
6534   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6535     return false;
6536 
6537   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6538   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6539 
6540   // Bitcast to a wide integer type if the loads are vectors.
6541   if (LoadVT.isVector()) {
6542     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6543     LoadL = DAG.getBitcast(CmpVT, LoadL);
6544     LoadR = DAG.getBitcast(CmpVT, LoadR);
6545   }
6546 
6547   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6548   processIntegerCallValue(I, Cmp, false);
6549   return true;
6550 }
6551 
6552 /// See if we can lower a memchr call into an optimized form. If so, return
6553 /// true and lower it. Otherwise return false, and it will be lowered like a
6554 /// normal call.
6555 /// The caller already checked that \p I calls the appropriate LibFunc with a
6556 /// correct prototype.
6557 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6558   const Value *Src = I.getArgOperand(0);
6559   const Value *Char = I.getArgOperand(1);
6560   const Value *Length = I.getArgOperand(2);
6561 
6562   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6563   std::pair<SDValue, SDValue> Res =
6564     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6565                                 getValue(Src), getValue(Char), getValue(Length),
6566                                 MachinePointerInfo(Src));
6567   if (Res.first.getNode()) {
6568     setValue(&I, Res.first);
6569     PendingLoads.push_back(Res.second);
6570     return true;
6571   }
6572 
6573   return false;
6574 }
6575 
6576 /// See if we can lower a mempcpy call into an optimized form. If so, return
6577 /// true and lower it. Otherwise return false, and it will be lowered like a
6578 /// normal call.
6579 /// The caller already checked that \p I calls the appropriate LibFunc with a
6580 /// correct prototype.
6581 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6582   SDValue Dst = getValue(I.getArgOperand(0));
6583   SDValue Src = getValue(I.getArgOperand(1));
6584   SDValue Size = getValue(I.getArgOperand(2));
6585 
6586   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6587   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6588   unsigned Align = std::min(DstAlign, SrcAlign);
6589   if (Align == 0) // Alignment of one or both could not be inferred.
6590     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6591 
6592   bool isVol = false;
6593   SDLoc sdl = getCurSDLoc();
6594 
6595   // In the mempcpy context we need to pass in a false value for isTailCall
6596   // because the return pointer needs to be adjusted by the size of
6597   // the copied memory.
6598   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6599                              false, /*isTailCall=*/false,
6600                              MachinePointerInfo(I.getArgOperand(0)),
6601                              MachinePointerInfo(I.getArgOperand(1)));
6602   assert(MC.getNode() != nullptr &&
6603          "** memcpy should not be lowered as TailCall in mempcpy context **");
6604   DAG.setRoot(MC);
6605 
6606   // Check if Size needs to be truncated or extended.
6607   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6608 
6609   // Adjust return pointer to point just past the last dst byte.
6610   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6611                                     Dst, Size);
6612   setValue(&I, DstPlusSize);
6613   return true;
6614 }
6615 
6616 /// See if we can lower a strcpy call into an optimized form.  If so, return
6617 /// true and lower it, otherwise return false and it will be lowered like a
6618 /// normal call.
6619 /// The caller already checked that \p I calls the appropriate LibFunc with a
6620 /// correct prototype.
6621 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6622   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6623 
6624   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6625   std::pair<SDValue, SDValue> Res =
6626     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6627                                 getValue(Arg0), getValue(Arg1),
6628                                 MachinePointerInfo(Arg0),
6629                                 MachinePointerInfo(Arg1), isStpcpy);
6630   if (Res.first.getNode()) {
6631     setValue(&I, Res.first);
6632     DAG.setRoot(Res.second);
6633     return true;
6634   }
6635 
6636   return false;
6637 }
6638 
6639 /// See if we can lower a strcmp call into an optimized form.  If so, return
6640 /// true and lower it, otherwise return false and it will be lowered like a
6641 /// normal call.
6642 /// The caller already checked that \p I calls the appropriate LibFunc with a
6643 /// correct prototype.
6644 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6645   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6646 
6647   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6648   std::pair<SDValue, SDValue> Res =
6649     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6650                                 getValue(Arg0), getValue(Arg1),
6651                                 MachinePointerInfo(Arg0),
6652                                 MachinePointerInfo(Arg1));
6653   if (Res.first.getNode()) {
6654     processIntegerCallValue(I, Res.first, true);
6655     PendingLoads.push_back(Res.second);
6656     return true;
6657   }
6658 
6659   return false;
6660 }
6661 
6662 /// See if we can lower a strlen call into an optimized form.  If so, return
6663 /// true and lower it, otherwise return false and it will be lowered like a
6664 /// normal call.
6665 /// The caller already checked that \p I calls the appropriate LibFunc with a
6666 /// correct prototype.
6667 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6668   const Value *Arg0 = I.getArgOperand(0);
6669 
6670   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6671   std::pair<SDValue, SDValue> Res =
6672     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6673                                 getValue(Arg0), MachinePointerInfo(Arg0));
6674   if (Res.first.getNode()) {
6675     processIntegerCallValue(I, Res.first, false);
6676     PendingLoads.push_back(Res.second);
6677     return true;
6678   }
6679 
6680   return false;
6681 }
6682 
6683 /// See if we can lower a strnlen call into an optimized form.  If so, return
6684 /// true and lower it, otherwise return false and it will be lowered like a
6685 /// normal call.
6686 /// The caller already checked that \p I calls the appropriate LibFunc with a
6687 /// correct prototype.
6688 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6689   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6690 
6691   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6692   std::pair<SDValue, SDValue> Res =
6693     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6694                                  getValue(Arg0), getValue(Arg1),
6695                                  MachinePointerInfo(Arg0));
6696   if (Res.first.getNode()) {
6697     processIntegerCallValue(I, Res.first, false);
6698     PendingLoads.push_back(Res.second);
6699     return true;
6700   }
6701 
6702   return false;
6703 }
6704 
6705 /// See if we can lower a unary floating-point operation into an SDNode with
6706 /// the specified Opcode.  If so, return true and lower it, otherwise return
6707 /// false and it will be lowered like a normal call.
6708 /// The caller already checked that \p I calls the appropriate LibFunc with a
6709 /// correct prototype.
6710 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6711                                               unsigned Opcode) {
6712   // We already checked this call's prototype; verify it doesn't modify errno.
6713   if (!I.onlyReadsMemory())
6714     return false;
6715 
6716   SDValue Tmp = getValue(I.getArgOperand(0));
6717   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6718   return true;
6719 }
6720 
6721 /// See if we can lower a binary floating-point operation into an SDNode with
6722 /// the specified Opcode. If so, return true and lower it. Otherwise return
6723 /// false, and it will be lowered like a normal call.
6724 /// The caller already checked that \p I calls the appropriate LibFunc with a
6725 /// correct prototype.
6726 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6727                                                unsigned Opcode) {
6728   // We already checked this call's prototype; verify it doesn't modify errno.
6729   if (!I.onlyReadsMemory())
6730     return false;
6731 
6732   SDValue Tmp0 = getValue(I.getArgOperand(0));
6733   SDValue Tmp1 = getValue(I.getArgOperand(1));
6734   EVT VT = Tmp0.getValueType();
6735   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6736   return true;
6737 }
6738 
6739 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6740   // Handle inline assembly differently.
6741   if (isa<InlineAsm>(I.getCalledValue())) {
6742     visitInlineAsm(&I);
6743     return;
6744   }
6745 
6746   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6747   computeUsesVAFloatArgument(I, MMI);
6748 
6749   const char *RenameFn = nullptr;
6750   if (Function *F = I.getCalledFunction()) {
6751     if (F->isDeclaration()) {
6752       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6753         if (unsigned IID = II->getIntrinsicID(F)) {
6754           RenameFn = visitIntrinsicCall(I, IID);
6755           if (!RenameFn)
6756             return;
6757         }
6758       }
6759       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6760         RenameFn = visitIntrinsicCall(I, IID);
6761         if (!RenameFn)
6762           return;
6763       }
6764     }
6765 
6766     // Check for well-known libc/libm calls.  If the function is internal, it
6767     // can't be a library call.  Don't do the check if marked as nobuiltin for
6768     // some reason or the call site requires strict floating point semantics.
6769     LibFunc Func;
6770     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
6771         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
6772         LibInfo->hasOptimizedCodeGen(Func)) {
6773       switch (Func) {
6774       default: break;
6775       case LibFunc_copysign:
6776       case LibFunc_copysignf:
6777       case LibFunc_copysignl:
6778         // We already checked this call's prototype; verify it doesn't modify
6779         // errno.
6780         if (I.onlyReadsMemory()) {
6781           SDValue LHS = getValue(I.getArgOperand(0));
6782           SDValue RHS = getValue(I.getArgOperand(1));
6783           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6784                                    LHS.getValueType(), LHS, RHS));
6785           return;
6786         }
6787         break;
6788       case LibFunc_fabs:
6789       case LibFunc_fabsf:
6790       case LibFunc_fabsl:
6791         if (visitUnaryFloatCall(I, ISD::FABS))
6792           return;
6793         break;
6794       case LibFunc_fmin:
6795       case LibFunc_fminf:
6796       case LibFunc_fminl:
6797         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6798           return;
6799         break;
6800       case LibFunc_fmax:
6801       case LibFunc_fmaxf:
6802       case LibFunc_fmaxl:
6803         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6804           return;
6805         break;
6806       case LibFunc_sin:
6807       case LibFunc_sinf:
6808       case LibFunc_sinl:
6809         if (visitUnaryFloatCall(I, ISD::FSIN))
6810           return;
6811         break;
6812       case LibFunc_cos:
6813       case LibFunc_cosf:
6814       case LibFunc_cosl:
6815         if (visitUnaryFloatCall(I, ISD::FCOS))
6816           return;
6817         break;
6818       case LibFunc_sqrt:
6819       case LibFunc_sqrtf:
6820       case LibFunc_sqrtl:
6821       case LibFunc_sqrt_finite:
6822       case LibFunc_sqrtf_finite:
6823       case LibFunc_sqrtl_finite:
6824         if (visitUnaryFloatCall(I, ISD::FSQRT))
6825           return;
6826         break;
6827       case LibFunc_floor:
6828       case LibFunc_floorf:
6829       case LibFunc_floorl:
6830         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6831           return;
6832         break;
6833       case LibFunc_nearbyint:
6834       case LibFunc_nearbyintf:
6835       case LibFunc_nearbyintl:
6836         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6837           return;
6838         break;
6839       case LibFunc_ceil:
6840       case LibFunc_ceilf:
6841       case LibFunc_ceill:
6842         if (visitUnaryFloatCall(I, ISD::FCEIL))
6843           return;
6844         break;
6845       case LibFunc_rint:
6846       case LibFunc_rintf:
6847       case LibFunc_rintl:
6848         if (visitUnaryFloatCall(I, ISD::FRINT))
6849           return;
6850         break;
6851       case LibFunc_round:
6852       case LibFunc_roundf:
6853       case LibFunc_roundl:
6854         if (visitUnaryFloatCall(I, ISD::FROUND))
6855           return;
6856         break;
6857       case LibFunc_trunc:
6858       case LibFunc_truncf:
6859       case LibFunc_truncl:
6860         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6861           return;
6862         break;
6863       case LibFunc_log2:
6864       case LibFunc_log2f:
6865       case LibFunc_log2l:
6866         if (visitUnaryFloatCall(I, ISD::FLOG2))
6867           return;
6868         break;
6869       case LibFunc_exp2:
6870       case LibFunc_exp2f:
6871       case LibFunc_exp2l:
6872         if (visitUnaryFloatCall(I, ISD::FEXP2))
6873           return;
6874         break;
6875       case LibFunc_memcmp:
6876         if (visitMemCmpCall(I))
6877           return;
6878         break;
6879       case LibFunc_mempcpy:
6880         if (visitMemPCpyCall(I))
6881           return;
6882         break;
6883       case LibFunc_memchr:
6884         if (visitMemChrCall(I))
6885           return;
6886         break;
6887       case LibFunc_strcpy:
6888         if (visitStrCpyCall(I, false))
6889           return;
6890         break;
6891       case LibFunc_stpcpy:
6892         if (visitStrCpyCall(I, true))
6893           return;
6894         break;
6895       case LibFunc_strcmp:
6896         if (visitStrCmpCall(I))
6897           return;
6898         break;
6899       case LibFunc_strlen:
6900         if (visitStrLenCall(I))
6901           return;
6902         break;
6903       case LibFunc_strnlen:
6904         if (visitStrNLenCall(I))
6905           return;
6906         break;
6907       }
6908     }
6909   }
6910 
6911   SDValue Callee;
6912   if (!RenameFn)
6913     Callee = getValue(I.getCalledValue());
6914   else
6915     Callee = DAG.getExternalSymbol(
6916         RenameFn,
6917         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6918 
6919   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6920   // have to do anything here to lower funclet bundles.
6921   assert(!I.hasOperandBundlesOtherThan(
6922              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6923          "Cannot lower calls with arbitrary operand bundles!");
6924 
6925   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6926     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6927   else
6928     // Check if we can potentially perform a tail call. More detailed checking
6929     // is be done within LowerCallTo, after more information about the call is
6930     // known.
6931     LowerCallTo(&I, Callee, I.isTailCall());
6932 }
6933 
6934 namespace {
6935 
6936 /// AsmOperandInfo - This contains information for each constraint that we are
6937 /// lowering.
6938 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6939 public:
6940   /// CallOperand - If this is the result output operand or a clobber
6941   /// this is null, otherwise it is the incoming operand to the CallInst.
6942   /// This gets modified as the asm is processed.
6943   SDValue CallOperand;
6944 
6945   /// AssignedRegs - If this is a register or register class operand, this
6946   /// contains the set of register corresponding to the operand.
6947   RegsForValue AssignedRegs;
6948 
6949   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6950     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
6951   }
6952 
6953   /// Whether or not this operand accesses memory
6954   bool hasMemory(const TargetLowering &TLI) const {
6955     // Indirect operand accesses access memory.
6956     if (isIndirect)
6957       return true;
6958 
6959     for (const auto &Code : Codes)
6960       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6961         return true;
6962 
6963     return false;
6964   }
6965 
6966   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6967   /// corresponds to.  If there is no Value* for this operand, it returns
6968   /// MVT::Other.
6969   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6970                            const DataLayout &DL) const {
6971     if (!CallOperandVal) return MVT::Other;
6972 
6973     if (isa<BasicBlock>(CallOperandVal))
6974       return TLI.getPointerTy(DL);
6975 
6976     llvm::Type *OpTy = CallOperandVal->getType();
6977 
6978     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6979     // If this is an indirect operand, the operand is a pointer to the
6980     // accessed type.
6981     if (isIndirect) {
6982       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6983       if (!PtrTy)
6984         report_fatal_error("Indirect operand for inline asm not a pointer!");
6985       OpTy = PtrTy->getElementType();
6986     }
6987 
6988     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6989     if (StructType *STy = dyn_cast<StructType>(OpTy))
6990       if (STy->getNumElements() == 1)
6991         OpTy = STy->getElementType(0);
6992 
6993     // If OpTy is not a single value, it may be a struct/union that we
6994     // can tile with integers.
6995     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6996       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6997       switch (BitSize) {
6998       default: break;
6999       case 1:
7000       case 8:
7001       case 16:
7002       case 32:
7003       case 64:
7004       case 128:
7005         OpTy = IntegerType::get(Context, BitSize);
7006         break;
7007       }
7008     }
7009 
7010     return TLI.getValueType(DL, OpTy, true);
7011   }
7012 };
7013 
7014 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7015 
7016 } // end anonymous namespace
7017 
7018 /// Make sure that the output operand \p OpInfo and its corresponding input
7019 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7020 /// out).
7021 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7022                                SDISelAsmOperandInfo &MatchingOpInfo,
7023                                SelectionDAG &DAG) {
7024   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7025     return;
7026 
7027   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7028   const auto &TLI = DAG.getTargetLoweringInfo();
7029 
7030   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7031       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7032                                        OpInfo.ConstraintVT);
7033   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7034       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7035                                        MatchingOpInfo.ConstraintVT);
7036   if ((OpInfo.ConstraintVT.isInteger() !=
7037        MatchingOpInfo.ConstraintVT.isInteger()) ||
7038       (MatchRC.second != InputRC.second)) {
7039     // FIXME: error out in a more elegant fashion
7040     report_fatal_error("Unsupported asm: input constraint"
7041                        " with a matching output constraint of"
7042                        " incompatible type!");
7043   }
7044   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7045 }
7046 
7047 /// Get a direct memory input to behave well as an indirect operand.
7048 /// This may introduce stores, hence the need for a \p Chain.
7049 /// \return The (possibly updated) chain.
7050 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7051                                         SDISelAsmOperandInfo &OpInfo,
7052                                         SelectionDAG &DAG) {
7053   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7054 
7055   // If we don't have an indirect input, put it in the constpool if we can,
7056   // otherwise spill it to a stack slot.
7057   // TODO: This isn't quite right. We need to handle these according to
7058   // the addressing mode that the constraint wants. Also, this may take
7059   // an additional register for the computation and we don't want that
7060   // either.
7061 
7062   // If the operand is a float, integer, or vector constant, spill to a
7063   // constant pool entry to get its address.
7064   const Value *OpVal = OpInfo.CallOperandVal;
7065   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7066       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7067     OpInfo.CallOperand = DAG.getConstantPool(
7068         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7069     return Chain;
7070   }
7071 
7072   // Otherwise, create a stack slot and emit a store to it before the asm.
7073   Type *Ty = OpVal->getType();
7074   auto &DL = DAG.getDataLayout();
7075   uint64_t TySize = DL.getTypeAllocSize(Ty);
7076   unsigned Align = DL.getPrefTypeAlignment(Ty);
7077   MachineFunction &MF = DAG.getMachineFunction();
7078   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7079   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7080   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7081                        MachinePointerInfo::getFixedStack(MF, SSFI));
7082   OpInfo.CallOperand = StackSlot;
7083 
7084   return Chain;
7085 }
7086 
7087 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7088 /// specified operand.  We prefer to assign virtual registers, to allow the
7089 /// register allocator to handle the assignment process.  However, if the asm
7090 /// uses features that we can't model on machineinstrs, we have SDISel do the
7091 /// allocation.  This produces generally horrible, but correct, code.
7092 ///
7093 ///   OpInfo describes the operand.
7094 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
7095                                  const SDLoc &DL,
7096                                  SDISelAsmOperandInfo &OpInfo) {
7097   LLVMContext &Context = *DAG.getContext();
7098 
7099   MachineFunction &MF = DAG.getMachineFunction();
7100   SmallVector<unsigned, 4> Regs;
7101   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7102 
7103   // If this is a constraint for a single physreg, or a constraint for a
7104   // register class, find it.
7105   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
7106       TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode,
7107                                        OpInfo.ConstraintVT);
7108 
7109   unsigned NumRegs = 1;
7110   if (OpInfo.ConstraintVT != MVT::Other) {
7111     // If this is a FP input in an integer register (or visa versa) insert a bit
7112     // cast of the input value.  More generally, handle any case where the input
7113     // value disagrees with the register class we plan to stick this in.
7114     if (OpInfo.Type == InlineAsm::isInput && PhysReg.second &&
7115         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
7116       // Try to convert to the first EVT that the reg class contains.  If the
7117       // types are identical size, use a bitcast to convert (e.g. two differing
7118       // vector types).
7119       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
7120       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
7121         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7122                                          RegVT, OpInfo.CallOperand);
7123         OpInfo.ConstraintVT = RegVT;
7124       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7125         // If the input is a FP value and we want it in FP registers, do a
7126         // bitcast to the corresponding integer type.  This turns an f64 value
7127         // into i64, which can be passed with two i32 values on a 32-bit
7128         // machine.
7129         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7130         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7131                                          RegVT, OpInfo.CallOperand);
7132         OpInfo.ConstraintVT = RegVT;
7133       }
7134     }
7135 
7136     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7137   }
7138 
7139   MVT RegVT;
7140   EVT ValueVT = OpInfo.ConstraintVT;
7141 
7142   // If this is a constraint for a specific physical register, like {r17},
7143   // assign it now.
7144   if (unsigned AssignedReg = PhysReg.first) {
7145     const TargetRegisterClass *RC = PhysReg.second;
7146     if (OpInfo.ConstraintVT == MVT::Other)
7147       ValueVT = *TRI.legalclasstypes_begin(*RC);
7148 
7149     // Get the actual register value type.  This is important, because the user
7150     // may have asked for (e.g.) the AX register in i32 type.  We need to
7151     // remember that AX is actually i16 to get the right extension.
7152     RegVT = *TRI.legalclasstypes_begin(*RC);
7153 
7154     // This is a explicit reference to a physical register.
7155     Regs.push_back(AssignedReg);
7156 
7157     // If this is an expanded reference, add the rest of the regs to Regs.
7158     if (NumRegs != 1) {
7159       TargetRegisterClass::iterator I = RC->begin();
7160       for (; *I != AssignedReg; ++I)
7161         assert(I != RC->end() && "Didn't find reg!");
7162 
7163       // Already added the first reg.
7164       --NumRegs; ++I;
7165       for (; NumRegs; --NumRegs, ++I) {
7166         assert(I != RC->end() && "Ran out of registers to allocate!");
7167         Regs.push_back(*I);
7168       }
7169     }
7170 
7171     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7172     return;
7173   }
7174 
7175   // Otherwise, if this was a reference to an LLVM register class, create vregs
7176   // for this reference.
7177   if (const TargetRegisterClass *RC = PhysReg.second) {
7178     RegVT = *TRI.legalclasstypes_begin(*RC);
7179     if (OpInfo.ConstraintVT == MVT::Other)
7180       ValueVT = RegVT;
7181 
7182     // Create the appropriate number of virtual registers.
7183     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7184     for (; NumRegs; --NumRegs)
7185       Regs.push_back(RegInfo.createVirtualRegister(RC));
7186 
7187     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7188     return;
7189   }
7190 
7191   // Otherwise, we couldn't allocate enough registers for this.
7192 }
7193 
7194 static unsigned
7195 findMatchingInlineAsmOperand(unsigned OperandNo,
7196                              const std::vector<SDValue> &AsmNodeOperands) {
7197   // Scan until we find the definition we already emitted of this operand.
7198   unsigned CurOp = InlineAsm::Op_FirstOperand;
7199   for (; OperandNo; --OperandNo) {
7200     // Advance to the next operand.
7201     unsigned OpFlag =
7202         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7203     assert((InlineAsm::isRegDefKind(OpFlag) ||
7204             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7205             InlineAsm::isMemKind(OpFlag)) &&
7206            "Skipped past definitions?");
7207     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7208   }
7209   return CurOp;
7210 }
7211 
7212 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
7213 /// \return true if it has succeeded, false otherwise
7214 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
7215                               MVT RegVT, SelectionDAG &DAG) {
7216   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7217   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
7218   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
7219     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
7220       Regs.push_back(RegInfo.createVirtualRegister(RC));
7221     else
7222       return false;
7223   }
7224   return true;
7225 }
7226 
7227 namespace {
7228 
7229 class ExtraFlags {
7230   unsigned Flags = 0;
7231 
7232 public:
7233   explicit ExtraFlags(ImmutableCallSite CS) {
7234     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7235     if (IA->hasSideEffects())
7236       Flags |= InlineAsm::Extra_HasSideEffects;
7237     if (IA->isAlignStack())
7238       Flags |= InlineAsm::Extra_IsAlignStack;
7239     if (CS.isConvergent())
7240       Flags |= InlineAsm::Extra_IsConvergent;
7241     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7242   }
7243 
7244   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7245     // Ideally, we would only check against memory constraints.  However, the
7246     // meaning of an Other constraint can be target-specific and we can't easily
7247     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7248     // for Other constraints as well.
7249     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7250         OpInfo.ConstraintType == TargetLowering::C_Other) {
7251       if (OpInfo.Type == InlineAsm::isInput)
7252         Flags |= InlineAsm::Extra_MayLoad;
7253       else if (OpInfo.Type == InlineAsm::isOutput)
7254         Flags |= InlineAsm::Extra_MayStore;
7255       else if (OpInfo.Type == InlineAsm::isClobber)
7256         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7257     }
7258   }
7259 
7260   unsigned get() const { return Flags; }
7261 };
7262 
7263 } // end anonymous namespace
7264 
7265 /// visitInlineAsm - Handle a call to an InlineAsm object.
7266 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7267   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7268 
7269   /// ConstraintOperands - Information about all of the constraints.
7270   SDISelAsmOperandInfoVector ConstraintOperands;
7271 
7272   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7273   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7274       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7275 
7276   bool hasMemory = false;
7277 
7278   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7279   ExtraFlags ExtraInfo(CS);
7280 
7281   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7282   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7283   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
7284     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
7285     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7286 
7287     MVT OpVT = MVT::Other;
7288 
7289     // Compute the value type for each operand.
7290     if (OpInfo.Type == InlineAsm::isInput ||
7291         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7292       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7293 
7294       // Process the call argument. BasicBlocks are labels, currently appearing
7295       // only in asm's.
7296       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7297         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7298       } else {
7299         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7300       }
7301 
7302       OpVT =
7303           OpInfo
7304               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7305               .getSimpleVT();
7306     }
7307 
7308     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7309       // The return value of the call is this value.  As such, there is no
7310       // corresponding argument.
7311       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7312       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7313         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
7314                                       STy->getElementType(ResNo));
7315       } else {
7316         assert(ResNo == 0 && "Asm only has one result!");
7317         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7318       }
7319       ++ResNo;
7320     }
7321 
7322     OpInfo.ConstraintVT = OpVT;
7323 
7324     if (!hasMemory)
7325       hasMemory = OpInfo.hasMemory(TLI);
7326 
7327     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7328     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7329     auto TargetConstraint = TargetConstraints[i];
7330 
7331     // Compute the constraint code and ConstraintType to use.
7332     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7333 
7334     ExtraInfo.update(TargetConstraint);
7335   }
7336 
7337   SDValue Chain, Flag;
7338 
7339   // We won't need to flush pending loads if this asm doesn't touch
7340   // memory and is nonvolatile.
7341   if (hasMemory || IA->hasSideEffects())
7342     Chain = getRoot();
7343   else
7344     Chain = DAG.getRoot();
7345 
7346   // Second pass over the constraints: compute which constraint option to use
7347   // and assign registers to constraints that want a specific physreg.
7348   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7349     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7350 
7351     // If this is an output operand with a matching input operand, look up the
7352     // matching input. If their types mismatch, e.g. one is an integer, the
7353     // other is floating point, or their sizes are different, flag it as an
7354     // error.
7355     if (OpInfo.hasMatchingInput()) {
7356       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7357       patchMatchingInput(OpInfo, Input, DAG);
7358     }
7359 
7360     // Compute the constraint code and ConstraintType to use.
7361     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7362 
7363     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7364         OpInfo.Type == InlineAsm::isClobber)
7365       continue;
7366 
7367     // If this is a memory input, and if the operand is not indirect, do what we
7368     // need to provide an address for the memory input.
7369     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7370         !OpInfo.isIndirect) {
7371       assert((OpInfo.isMultipleAlternative ||
7372               (OpInfo.Type == InlineAsm::isInput)) &&
7373              "Can only indirectify direct input operands!");
7374 
7375       // Memory operands really want the address of the value.
7376       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7377 
7378       // There is no longer a Value* corresponding to this operand.
7379       OpInfo.CallOperandVal = nullptr;
7380 
7381       // It is now an indirect operand.
7382       OpInfo.isIndirect = true;
7383     }
7384 
7385     // If this constraint is for a specific register, allocate it before
7386     // anything else.
7387     if (OpInfo.ConstraintType == TargetLowering::C_Register)
7388       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7389   }
7390 
7391   // Third pass - Loop over all of the operands, assigning virtual or physregs
7392   // to register class operands.
7393   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7394     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7395 
7396     // C_Register operands have already been allocated, Other/Memory don't need
7397     // to be.
7398     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7399       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7400   }
7401 
7402   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7403   std::vector<SDValue> AsmNodeOperands;
7404   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7405   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7406       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7407 
7408   // If we have a !srcloc metadata node associated with it, we want to attach
7409   // this to the ultimately generated inline asm machineinstr.  To do this, we
7410   // pass in the third operand as this (potentially null) inline asm MDNode.
7411   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7412   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7413 
7414   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7415   // bits as operand 3.
7416   AsmNodeOperands.push_back(DAG.getTargetConstant(
7417       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7418 
7419   // Loop over all of the inputs, copying the operand values into the
7420   // appropriate registers and processing the output regs.
7421   RegsForValue RetValRegs;
7422 
7423   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7424   std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit;
7425 
7426   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7427     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7428 
7429     switch (OpInfo.Type) {
7430     case InlineAsm::isOutput:
7431       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7432           OpInfo.ConstraintType != TargetLowering::C_Register) {
7433         // Memory output, or 'other' output (e.g. 'X' constraint).
7434         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7435 
7436         unsigned ConstraintID =
7437             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7438         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7439                "Failed to convert memory constraint code to constraint id.");
7440 
7441         // Add information to the INLINEASM node to know about this output.
7442         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7443         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7444         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7445                                                         MVT::i32));
7446         AsmNodeOperands.push_back(OpInfo.CallOperand);
7447         break;
7448       }
7449 
7450       // Otherwise, this is a register or register class output.
7451 
7452       // Copy the output from the appropriate register.  Find a register that
7453       // we can use.
7454       if (OpInfo.AssignedRegs.Regs.empty()) {
7455         emitInlineAsmError(
7456             CS, "couldn't allocate output register for constraint '" +
7457                     Twine(OpInfo.ConstraintCode) + "'");
7458         return;
7459       }
7460 
7461       // If this is an indirect operand, store through the pointer after the
7462       // asm.
7463       if (OpInfo.isIndirect) {
7464         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7465                                                       OpInfo.CallOperandVal));
7466       } else {
7467         // This is the result value of the call.
7468         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7469         // Concatenate this output onto the outputs list.
7470         RetValRegs.append(OpInfo.AssignedRegs);
7471       }
7472 
7473       // Add information to the INLINEASM node to know that this register is
7474       // set.
7475       OpInfo.AssignedRegs
7476           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7477                                     ? InlineAsm::Kind_RegDefEarlyClobber
7478                                     : InlineAsm::Kind_RegDef,
7479                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7480       break;
7481 
7482     case InlineAsm::isInput: {
7483       SDValue InOperandVal = OpInfo.CallOperand;
7484 
7485       if (OpInfo.isMatchingInputConstraint()) {
7486         // If this is required to match an output register we have already set,
7487         // just use its register.
7488         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7489                                                   AsmNodeOperands);
7490         unsigned OpFlag =
7491           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7492         if (InlineAsm::isRegDefKind(OpFlag) ||
7493             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7494           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7495           if (OpInfo.isIndirect) {
7496             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7497             emitInlineAsmError(CS, "inline asm not supported yet:"
7498                                    " don't know how to handle tied "
7499                                    "indirect register inputs");
7500             return;
7501           }
7502 
7503           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7504           SmallVector<unsigned, 4> Regs;
7505 
7506           if (!createVirtualRegs(Regs,
7507                                  InlineAsm::getNumOperandRegisters(OpFlag),
7508                                  RegVT, DAG)) {
7509             emitInlineAsmError(CS, "inline asm error: This value type register "
7510                                    "class is not natively supported!");
7511             return;
7512           }
7513 
7514           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7515 
7516           SDLoc dl = getCurSDLoc();
7517           // Use the produced MatchedRegs object to
7518           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7519                                     CS.getInstruction());
7520           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7521                                            true, OpInfo.getMatchedOperand(), dl,
7522                                            DAG, AsmNodeOperands);
7523           break;
7524         }
7525 
7526         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7527         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7528                "Unexpected number of operands");
7529         // Add information to the INLINEASM node to know about this input.
7530         // See InlineAsm.h isUseOperandTiedToDef.
7531         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7532         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7533                                                     OpInfo.getMatchedOperand());
7534         AsmNodeOperands.push_back(DAG.getTargetConstant(
7535             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7536         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7537         break;
7538       }
7539 
7540       // Treat indirect 'X' constraint as memory.
7541       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7542           OpInfo.isIndirect)
7543         OpInfo.ConstraintType = TargetLowering::C_Memory;
7544 
7545       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7546         std::vector<SDValue> Ops;
7547         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7548                                           Ops, DAG);
7549         if (Ops.empty()) {
7550           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7551                                      Twine(OpInfo.ConstraintCode) + "'");
7552           return;
7553         }
7554 
7555         // Add information to the INLINEASM node to know about this input.
7556         unsigned ResOpType =
7557           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7558         AsmNodeOperands.push_back(DAG.getTargetConstant(
7559             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7560         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7561         break;
7562       }
7563 
7564       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7565         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7566         assert(InOperandVal.getValueType() ==
7567                    TLI.getPointerTy(DAG.getDataLayout()) &&
7568                "Memory operands expect pointer values");
7569 
7570         unsigned ConstraintID =
7571             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7572         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7573                "Failed to convert memory constraint code to constraint id.");
7574 
7575         // Add information to the INLINEASM node to know about this input.
7576         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7577         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7578         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7579                                                         getCurSDLoc(),
7580                                                         MVT::i32));
7581         AsmNodeOperands.push_back(InOperandVal);
7582         break;
7583       }
7584 
7585       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7586               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7587              "Unknown constraint type!");
7588 
7589       // TODO: Support this.
7590       if (OpInfo.isIndirect) {
7591         emitInlineAsmError(
7592             CS, "Don't know how to handle indirect register inputs yet "
7593                 "for constraint '" +
7594                     Twine(OpInfo.ConstraintCode) + "'");
7595         return;
7596       }
7597 
7598       // Copy the input into the appropriate registers.
7599       if (OpInfo.AssignedRegs.Regs.empty()) {
7600         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7601                                    Twine(OpInfo.ConstraintCode) + "'");
7602         return;
7603       }
7604 
7605       SDLoc dl = getCurSDLoc();
7606 
7607       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7608                                         Chain, &Flag, CS.getInstruction());
7609 
7610       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7611                                                dl, DAG, AsmNodeOperands);
7612       break;
7613     }
7614     case InlineAsm::isClobber:
7615       // Add the clobbered value to the operand list, so that the register
7616       // allocator is aware that the physreg got clobbered.
7617       if (!OpInfo.AssignedRegs.Regs.empty())
7618         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7619                                                  false, 0, getCurSDLoc(), DAG,
7620                                                  AsmNodeOperands);
7621       break;
7622     }
7623   }
7624 
7625   // Finish up input operands.  Set the input chain and add the flag last.
7626   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7627   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7628 
7629   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7630                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7631   Flag = Chain.getValue(1);
7632 
7633   // If this asm returns a register value, copy the result from that register
7634   // and set it as the value of the call.
7635   if (!RetValRegs.Regs.empty()) {
7636     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7637                                              Chain, &Flag, CS.getInstruction());
7638 
7639     // FIXME: Why don't we do this for inline asms with MRVs?
7640     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7641       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7642 
7643       // If any of the results of the inline asm is a vector, it may have the
7644       // wrong width/num elts.  This can happen for register classes that can
7645       // contain multiple different value types.  The preg or vreg allocated may
7646       // not have the same VT as was expected.  Convert it to the right type
7647       // with bit_convert.
7648       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7649         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7650                           ResultType, Val);
7651 
7652       } else if (ResultType != Val.getValueType() &&
7653                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7654         // If a result value was tied to an input value, the computed result may
7655         // have a wider width than the expected result.  Extract the relevant
7656         // portion.
7657         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7658       }
7659 
7660       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7661     }
7662 
7663     setValue(CS.getInstruction(), Val);
7664     // Don't need to use this as a chain in this case.
7665     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7666       return;
7667   }
7668 
7669   std::vector<std::pair<SDValue, const Value *>> StoresToEmit;
7670 
7671   // Process indirect outputs, first output all of the flagged copies out of
7672   // physregs.
7673   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7674     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7675     const Value *Ptr = IndirectStoresToEmit[i].second;
7676     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7677                                              Chain, &Flag, IA);
7678     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7679   }
7680 
7681   // Emit the non-flagged stores from the physregs.
7682   SmallVector<SDValue, 8> OutChains;
7683   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7684     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7685                                getValue(StoresToEmit[i].second),
7686                                MachinePointerInfo(StoresToEmit[i].second));
7687     OutChains.push_back(Val);
7688   }
7689 
7690   if (!OutChains.empty())
7691     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7692 
7693   DAG.setRoot(Chain);
7694 }
7695 
7696 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7697                                              const Twine &Message) {
7698   LLVMContext &Ctx = *DAG.getContext();
7699   Ctx.emitError(CS.getInstruction(), Message);
7700 
7701   // Make sure we leave the DAG in a valid state
7702   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7703   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7704   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7705 }
7706 
7707 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7708   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7709                           MVT::Other, getRoot(),
7710                           getValue(I.getArgOperand(0)),
7711                           DAG.getSrcValue(I.getArgOperand(0))));
7712 }
7713 
7714 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7715   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7716   const DataLayout &DL = DAG.getDataLayout();
7717   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7718                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7719                            DAG.getSrcValue(I.getOperand(0)),
7720                            DL.getABITypeAlignment(I.getType()));
7721   setValue(&I, V);
7722   DAG.setRoot(V.getValue(1));
7723 }
7724 
7725 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7726   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7727                           MVT::Other, getRoot(),
7728                           getValue(I.getArgOperand(0)),
7729                           DAG.getSrcValue(I.getArgOperand(0))));
7730 }
7731 
7732 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7733   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7734                           MVT::Other, getRoot(),
7735                           getValue(I.getArgOperand(0)),
7736                           getValue(I.getArgOperand(1)),
7737                           DAG.getSrcValue(I.getArgOperand(0)),
7738                           DAG.getSrcValue(I.getArgOperand(1))));
7739 }
7740 
7741 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7742                                                     const Instruction &I,
7743                                                     SDValue Op) {
7744   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7745   if (!Range)
7746     return Op;
7747 
7748   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7749   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7750     return Op;
7751 
7752   APInt Lo = CR.getUnsignedMin();
7753   if (!Lo.isMinValue())
7754     return Op;
7755 
7756   APInt Hi = CR.getUnsignedMax();
7757   unsigned Bits = Hi.getActiveBits();
7758 
7759   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7760 
7761   SDLoc SL = getCurSDLoc();
7762 
7763   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7764                              DAG.getValueType(SmallVT));
7765   unsigned NumVals = Op.getNode()->getNumValues();
7766   if (NumVals == 1)
7767     return ZExt;
7768 
7769   SmallVector<SDValue, 4> Ops;
7770 
7771   Ops.push_back(ZExt);
7772   for (unsigned I = 1; I != NumVals; ++I)
7773     Ops.push_back(Op.getValue(I));
7774 
7775   return DAG.getMergeValues(Ops, SL);
7776 }
7777 
7778 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7779 /// the call being lowered.
7780 ///
7781 /// This is a helper for lowering intrinsics that follow a target calling
7782 /// convention or require stack pointer adjustment. Only a subset of the
7783 /// intrinsic's operands need to participate in the calling convention.
7784 void SelectionDAGBuilder::populateCallLoweringInfo(
7785     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7786     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7787     bool IsPatchPoint) {
7788   TargetLowering::ArgListTy Args;
7789   Args.reserve(NumArgs);
7790 
7791   // Populate the argument list.
7792   // Attributes for args start at offset 1, after the return attribute.
7793   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
7794        ArgI != ArgE; ++ArgI) {
7795     const Value *V = CS->getOperand(ArgI);
7796 
7797     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7798 
7799     TargetLowering::ArgListEntry Entry;
7800     Entry.Node = getValue(V);
7801     Entry.Ty = V->getType();
7802     Entry.setAttributes(&CS, ArgI);
7803     Args.push_back(Entry);
7804   }
7805 
7806   CLI.setDebugLoc(getCurSDLoc())
7807       .setChain(getRoot())
7808       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7809       .setDiscardResult(CS->use_empty())
7810       .setIsPatchPoint(IsPatchPoint);
7811 }
7812 
7813 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7814 /// or patchpoint target node's operand list.
7815 ///
7816 /// Constants are converted to TargetConstants purely as an optimization to
7817 /// avoid constant materialization and register allocation.
7818 ///
7819 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7820 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7821 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7822 /// address materialization and register allocation, but may also be required
7823 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7824 /// alloca in the entry block, then the runtime may assume that the alloca's
7825 /// StackMap location can be read immediately after compilation and that the
7826 /// location is valid at any point during execution (this is similar to the
7827 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7828 /// only available in a register, then the runtime would need to trap when
7829 /// execution reaches the StackMap in order to read the alloca's location.
7830 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7831                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7832                                 SelectionDAGBuilder &Builder) {
7833   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7834     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7835     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7836       Ops.push_back(
7837         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7838       Ops.push_back(
7839         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7840     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7841       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7842       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7843           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
7844     } else
7845       Ops.push_back(OpVal);
7846   }
7847 }
7848 
7849 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7850 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7851   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7852   //                                  [live variables...])
7853 
7854   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7855 
7856   SDValue Chain, InFlag, Callee, NullPtr;
7857   SmallVector<SDValue, 32> Ops;
7858 
7859   SDLoc DL = getCurSDLoc();
7860   Callee = getValue(CI.getCalledValue());
7861   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7862 
7863   // The stackmap intrinsic only records the live variables (the arguemnts
7864   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7865   // intrinsic, this won't be lowered to a function call. This means we don't
7866   // have to worry about calling conventions and target specific lowering code.
7867   // Instead we perform the call lowering right here.
7868   //
7869   // chain, flag = CALLSEQ_START(chain, 0, 0)
7870   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7871   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7872   //
7873   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
7874   InFlag = Chain.getValue(1);
7875 
7876   // Add the <id> and <numBytes> constants.
7877   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7878   Ops.push_back(DAG.getTargetConstant(
7879                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7880   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7881   Ops.push_back(DAG.getTargetConstant(
7882                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7883                   MVT::i32));
7884 
7885   // Push live variables for the stack map.
7886   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7887 
7888   // We are not pushing any register mask info here on the operands list,
7889   // because the stackmap doesn't clobber anything.
7890 
7891   // Push the chain and the glue flag.
7892   Ops.push_back(Chain);
7893   Ops.push_back(InFlag);
7894 
7895   // Create the STACKMAP node.
7896   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7897   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7898   Chain = SDValue(SM, 0);
7899   InFlag = Chain.getValue(1);
7900 
7901   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7902 
7903   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7904 
7905   // Set the root to the target-lowered call chain.
7906   DAG.setRoot(Chain);
7907 
7908   // Inform the Frame Information that we have a stackmap in this function.
7909   FuncInfo.MF->getFrameInfo().setHasStackMap();
7910 }
7911 
7912 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7913 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7914                                           const BasicBlock *EHPadBB) {
7915   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7916   //                                                 i32 <numBytes>,
7917   //                                                 i8* <target>,
7918   //                                                 i32 <numArgs>,
7919   //                                                 [Args...],
7920   //                                                 [live variables...])
7921 
7922   CallingConv::ID CC = CS.getCallingConv();
7923   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7924   bool HasDef = !CS->getType()->isVoidTy();
7925   SDLoc dl = getCurSDLoc();
7926   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7927 
7928   // Handle immediate and symbolic callees.
7929   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7930     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7931                                    /*isTarget=*/true);
7932   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7933     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7934                                          SDLoc(SymbolicCallee),
7935                                          SymbolicCallee->getValueType(0));
7936 
7937   // Get the real number of arguments participating in the call <numArgs>
7938   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7939   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7940 
7941   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7942   // Intrinsics include all meta-operands up to but not including CC.
7943   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7944   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7945          "Not enough arguments provided to the patchpoint intrinsic");
7946 
7947   // For AnyRegCC the arguments are lowered later on manually.
7948   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7949   Type *ReturnTy =
7950     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7951 
7952   TargetLowering::CallLoweringInfo CLI(DAG);
7953   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7954                            true);
7955   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7956 
7957   SDNode *CallEnd = Result.second.getNode();
7958   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7959     CallEnd = CallEnd->getOperand(0).getNode();
7960 
7961   /// Get a call instruction from the call sequence chain.
7962   /// Tail calls are not allowed.
7963   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7964          "Expected a callseq node.");
7965   SDNode *Call = CallEnd->getOperand(0).getNode();
7966   bool HasGlue = Call->getGluedNode();
7967 
7968   // Replace the target specific call node with the patchable intrinsic.
7969   SmallVector<SDValue, 8> Ops;
7970 
7971   // Add the <id> and <numBytes> constants.
7972   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7973   Ops.push_back(DAG.getTargetConstant(
7974                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7975   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7976   Ops.push_back(DAG.getTargetConstant(
7977                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7978                   MVT::i32));
7979 
7980   // Add the callee.
7981   Ops.push_back(Callee);
7982 
7983   // Adjust <numArgs> to account for any arguments that have been passed on the
7984   // stack instead.
7985   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7986   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7987   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7988   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7989 
7990   // Add the calling convention
7991   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7992 
7993   // Add the arguments we omitted previously. The register allocator should
7994   // place these in any free register.
7995   if (IsAnyRegCC)
7996     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7997       Ops.push_back(getValue(CS.getArgument(i)));
7998 
7999   // Push the arguments from the call instruction up to the register mask.
8000   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8001   Ops.append(Call->op_begin() + 2, e);
8002 
8003   // Push live variables for the stack map.
8004   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8005 
8006   // Push the register mask info.
8007   if (HasGlue)
8008     Ops.push_back(*(Call->op_end()-2));
8009   else
8010     Ops.push_back(*(Call->op_end()-1));
8011 
8012   // Push the chain (this is originally the first operand of the call, but
8013   // becomes now the last or second to last operand).
8014   Ops.push_back(*(Call->op_begin()));
8015 
8016   // Push the glue flag (last operand).
8017   if (HasGlue)
8018     Ops.push_back(*(Call->op_end()-1));
8019 
8020   SDVTList NodeTys;
8021   if (IsAnyRegCC && HasDef) {
8022     // Create the return types based on the intrinsic definition
8023     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8024     SmallVector<EVT, 3> ValueVTs;
8025     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8026     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8027 
8028     // There is always a chain and a glue type at the end
8029     ValueVTs.push_back(MVT::Other);
8030     ValueVTs.push_back(MVT::Glue);
8031     NodeTys = DAG.getVTList(ValueVTs);
8032   } else
8033     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8034 
8035   // Replace the target specific call node with a PATCHPOINT node.
8036   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8037                                          dl, NodeTys, Ops);
8038 
8039   // Update the NodeMap.
8040   if (HasDef) {
8041     if (IsAnyRegCC)
8042       setValue(CS.getInstruction(), SDValue(MN, 0));
8043     else
8044       setValue(CS.getInstruction(), Result.first);
8045   }
8046 
8047   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8048   // call sequence. Furthermore the location of the chain and glue can change
8049   // when the AnyReg calling convention is used and the intrinsic returns a
8050   // value.
8051   if (IsAnyRegCC && HasDef) {
8052     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8053     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8054     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8055   } else
8056     DAG.ReplaceAllUsesWith(Call, MN);
8057   DAG.DeleteNode(Call);
8058 
8059   // Inform the Frame Information that we have a patchpoint in this function.
8060   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8061 }
8062 
8063 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8064                                             unsigned Intrinsic) {
8065   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8066   SDValue Op1 = getValue(I.getArgOperand(0));
8067   SDValue Op2;
8068   if (I.getNumArgOperands() > 1)
8069     Op2 = getValue(I.getArgOperand(1));
8070   SDLoc dl = getCurSDLoc();
8071   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8072   SDValue Res;
8073   FastMathFlags FMF;
8074   if (isa<FPMathOperator>(I))
8075     FMF = I.getFastMathFlags();
8076   SDNodeFlags SDFlags;
8077   SDFlags.setNoNaNs(FMF.noNaNs());
8078 
8079   switch (Intrinsic) {
8080   case Intrinsic::experimental_vector_reduce_fadd:
8081     if (FMF.isFast())
8082       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8083     else
8084       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8085     break;
8086   case Intrinsic::experimental_vector_reduce_fmul:
8087     if (FMF.isFast())
8088       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8089     else
8090       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8091     break;
8092   case Intrinsic::experimental_vector_reduce_add:
8093     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8094     break;
8095   case Intrinsic::experimental_vector_reduce_mul:
8096     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8097     break;
8098   case Intrinsic::experimental_vector_reduce_and:
8099     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8100     break;
8101   case Intrinsic::experimental_vector_reduce_or:
8102     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8103     break;
8104   case Intrinsic::experimental_vector_reduce_xor:
8105     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8106     break;
8107   case Intrinsic::experimental_vector_reduce_smax:
8108     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8109     break;
8110   case Intrinsic::experimental_vector_reduce_smin:
8111     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8112     break;
8113   case Intrinsic::experimental_vector_reduce_umax:
8114     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8115     break;
8116   case Intrinsic::experimental_vector_reduce_umin:
8117     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8118     break;
8119   case Intrinsic::experimental_vector_reduce_fmax:
8120     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
8121     break;
8122   case Intrinsic::experimental_vector_reduce_fmin:
8123     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
8124     break;
8125   default:
8126     llvm_unreachable("Unhandled vector reduce intrinsic");
8127   }
8128   setValue(&I, Res);
8129 }
8130 
8131 /// Returns an AttributeList representing the attributes applied to the return
8132 /// value of the given call.
8133 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8134   SmallVector<Attribute::AttrKind, 2> Attrs;
8135   if (CLI.RetSExt)
8136     Attrs.push_back(Attribute::SExt);
8137   if (CLI.RetZExt)
8138     Attrs.push_back(Attribute::ZExt);
8139   if (CLI.IsInReg)
8140     Attrs.push_back(Attribute::InReg);
8141 
8142   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8143                             Attrs);
8144 }
8145 
8146 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8147 /// implementation, which just calls LowerCall.
8148 /// FIXME: When all targets are
8149 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8150 std::pair<SDValue, SDValue>
8151 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8152   // Handle the incoming return values from the call.
8153   CLI.Ins.clear();
8154   Type *OrigRetTy = CLI.RetTy;
8155   SmallVector<EVT, 4> RetTys;
8156   SmallVector<uint64_t, 4> Offsets;
8157   auto &DL = CLI.DAG.getDataLayout();
8158   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8159 
8160   if (CLI.IsPostTypeLegalization) {
8161     // If we are lowering a libcall after legalization, split the return type.
8162     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8163     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8164     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8165       EVT RetVT = OldRetTys[i];
8166       uint64_t Offset = OldOffsets[i];
8167       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8168       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8169       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8170       RetTys.append(NumRegs, RegisterVT);
8171       for (unsigned j = 0; j != NumRegs; ++j)
8172         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8173     }
8174   }
8175 
8176   SmallVector<ISD::OutputArg, 4> Outs;
8177   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8178 
8179   bool CanLowerReturn =
8180       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8181                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8182 
8183   SDValue DemoteStackSlot;
8184   int DemoteStackIdx = -100;
8185   if (!CanLowerReturn) {
8186     // FIXME: equivalent assert?
8187     // assert(!CS.hasInAllocaArgument() &&
8188     //        "sret demotion is incompatible with inalloca");
8189     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8190     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8191     MachineFunction &MF = CLI.DAG.getMachineFunction();
8192     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8193     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
8194 
8195     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8196     ArgListEntry Entry;
8197     Entry.Node = DemoteStackSlot;
8198     Entry.Ty = StackSlotPtrType;
8199     Entry.IsSExt = false;
8200     Entry.IsZExt = false;
8201     Entry.IsInReg = false;
8202     Entry.IsSRet = true;
8203     Entry.IsNest = false;
8204     Entry.IsByVal = false;
8205     Entry.IsReturned = false;
8206     Entry.IsSwiftSelf = false;
8207     Entry.IsSwiftError = false;
8208     Entry.Alignment = Align;
8209     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8210     CLI.NumFixedArgs += 1;
8211     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8212 
8213     // sret demotion isn't compatible with tail-calls, since the sret argument
8214     // points into the callers stack frame.
8215     CLI.IsTailCall = false;
8216   } else {
8217     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8218       EVT VT = RetTys[I];
8219       MVT RegisterVT =
8220           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8221       unsigned NumRegs =
8222           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8223       for (unsigned i = 0; i != NumRegs; ++i) {
8224         ISD::InputArg MyFlags;
8225         MyFlags.VT = RegisterVT;
8226         MyFlags.ArgVT = VT;
8227         MyFlags.Used = CLI.IsReturnValueUsed;
8228         if (CLI.RetSExt)
8229           MyFlags.Flags.setSExt();
8230         if (CLI.RetZExt)
8231           MyFlags.Flags.setZExt();
8232         if (CLI.IsInReg)
8233           MyFlags.Flags.setInReg();
8234         CLI.Ins.push_back(MyFlags);
8235       }
8236     }
8237   }
8238 
8239   // We push in swifterror return as the last element of CLI.Ins.
8240   ArgListTy &Args = CLI.getArgs();
8241   if (supportSwiftError()) {
8242     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8243       if (Args[i].IsSwiftError) {
8244         ISD::InputArg MyFlags;
8245         MyFlags.VT = getPointerTy(DL);
8246         MyFlags.ArgVT = EVT(getPointerTy(DL));
8247         MyFlags.Flags.setSwiftError();
8248         CLI.Ins.push_back(MyFlags);
8249       }
8250     }
8251   }
8252 
8253   // Handle all of the outgoing arguments.
8254   CLI.Outs.clear();
8255   CLI.OutVals.clear();
8256   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8257     SmallVector<EVT, 4> ValueVTs;
8258     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8259     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8260     Type *FinalType = Args[i].Ty;
8261     if (Args[i].IsByVal)
8262       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8263     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8264         FinalType, CLI.CallConv, CLI.IsVarArg);
8265     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8266          ++Value) {
8267       EVT VT = ValueVTs[Value];
8268       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8269       SDValue Op = SDValue(Args[i].Node.getNode(),
8270                            Args[i].Node.getResNo() + Value);
8271       ISD::ArgFlagsTy Flags;
8272 
8273       // Certain targets (such as MIPS), may have a different ABI alignment
8274       // for a type depending on the context. Give the target a chance to
8275       // specify the alignment it wants.
8276       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8277 
8278       if (Args[i].IsZExt)
8279         Flags.setZExt();
8280       if (Args[i].IsSExt)
8281         Flags.setSExt();
8282       if (Args[i].IsInReg) {
8283         // If we are using vectorcall calling convention, a structure that is
8284         // passed InReg - is surely an HVA
8285         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8286             isa<StructType>(FinalType)) {
8287           // The first value of a structure is marked
8288           if (0 == Value)
8289             Flags.setHvaStart();
8290           Flags.setHva();
8291         }
8292         // Set InReg Flag
8293         Flags.setInReg();
8294       }
8295       if (Args[i].IsSRet)
8296         Flags.setSRet();
8297       if (Args[i].IsSwiftSelf)
8298         Flags.setSwiftSelf();
8299       if (Args[i].IsSwiftError)
8300         Flags.setSwiftError();
8301       if (Args[i].IsByVal)
8302         Flags.setByVal();
8303       if (Args[i].IsInAlloca) {
8304         Flags.setInAlloca();
8305         // Set the byval flag for CCAssignFn callbacks that don't know about
8306         // inalloca.  This way we can know how many bytes we should've allocated
8307         // and how many bytes a callee cleanup function will pop.  If we port
8308         // inalloca to more targets, we'll have to add custom inalloca handling
8309         // in the various CC lowering callbacks.
8310         Flags.setByVal();
8311       }
8312       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8313         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8314         Type *ElementTy = Ty->getElementType();
8315         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8316         // For ByVal, alignment should come from FE.  BE will guess if this
8317         // info is not there but there are cases it cannot get right.
8318         unsigned FrameAlign;
8319         if (Args[i].Alignment)
8320           FrameAlign = Args[i].Alignment;
8321         else
8322           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8323         Flags.setByValAlign(FrameAlign);
8324       }
8325       if (Args[i].IsNest)
8326         Flags.setNest();
8327       if (NeedsRegBlock)
8328         Flags.setInConsecutiveRegs();
8329       Flags.setOrigAlign(OriginalAlignment);
8330 
8331       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8332       unsigned NumParts =
8333           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8334       SmallVector<SDValue, 4> Parts(NumParts);
8335       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8336 
8337       if (Args[i].IsSExt)
8338         ExtendKind = ISD::SIGN_EXTEND;
8339       else if (Args[i].IsZExt)
8340         ExtendKind = ISD::ZERO_EXTEND;
8341 
8342       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8343       // for now.
8344       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8345           CanLowerReturn) {
8346         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8347                "unexpected use of 'returned'");
8348         // Before passing 'returned' to the target lowering code, ensure that
8349         // either the register MVT and the actual EVT are the same size or that
8350         // the return value and argument are extended in the same way; in these
8351         // cases it's safe to pass the argument register value unchanged as the
8352         // return register value (although it's at the target's option whether
8353         // to do so)
8354         // TODO: allow code generation to take advantage of partially preserved
8355         // registers rather than clobbering the entire register when the
8356         // parameter extension method is not compatible with the return
8357         // extension method
8358         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8359             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8360              CLI.RetZExt == Args[i].IsZExt))
8361           Flags.setReturned();
8362       }
8363 
8364       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8365                      CLI.CS.getInstruction(), ExtendKind, true);
8366 
8367       for (unsigned j = 0; j != NumParts; ++j) {
8368         // if it isn't first piece, alignment must be 1
8369         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8370                                i < CLI.NumFixedArgs,
8371                                i, j*Parts[j].getValueType().getStoreSize());
8372         if (NumParts > 1 && j == 0)
8373           MyFlags.Flags.setSplit();
8374         else if (j != 0) {
8375           MyFlags.Flags.setOrigAlign(1);
8376           if (j == NumParts - 1)
8377             MyFlags.Flags.setSplitEnd();
8378         }
8379 
8380         CLI.Outs.push_back(MyFlags);
8381         CLI.OutVals.push_back(Parts[j]);
8382       }
8383 
8384       if (NeedsRegBlock && Value == NumValues - 1)
8385         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8386     }
8387   }
8388 
8389   SmallVector<SDValue, 4> InVals;
8390   CLI.Chain = LowerCall(CLI, InVals);
8391 
8392   // Update CLI.InVals to use outside of this function.
8393   CLI.InVals = InVals;
8394 
8395   // Verify that the target's LowerCall behaved as expected.
8396   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8397          "LowerCall didn't return a valid chain!");
8398   assert((!CLI.IsTailCall || InVals.empty()) &&
8399          "LowerCall emitted a return value for a tail call!");
8400   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8401          "LowerCall didn't emit the correct number of values!");
8402 
8403   // For a tail call, the return value is merely live-out and there aren't
8404   // any nodes in the DAG representing it. Return a special value to
8405   // indicate that a tail call has been emitted and no more Instructions
8406   // should be processed in the current block.
8407   if (CLI.IsTailCall) {
8408     CLI.DAG.setRoot(CLI.Chain);
8409     return std::make_pair(SDValue(), SDValue());
8410   }
8411 
8412 #ifndef NDEBUG
8413   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8414     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8415     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8416            "LowerCall emitted a value with the wrong type!");
8417   }
8418 #endif
8419 
8420   SmallVector<SDValue, 4> ReturnValues;
8421   if (!CanLowerReturn) {
8422     // The instruction result is the result of loading from the
8423     // hidden sret parameter.
8424     SmallVector<EVT, 1> PVTs;
8425     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8426 
8427     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8428     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8429     EVT PtrVT = PVTs[0];
8430 
8431     unsigned NumValues = RetTys.size();
8432     ReturnValues.resize(NumValues);
8433     SmallVector<SDValue, 4> Chains(NumValues);
8434 
8435     // An aggregate return value cannot wrap around the address space, so
8436     // offsets to its parts don't wrap either.
8437     SDNodeFlags Flags;
8438     Flags.setNoUnsignedWrap(true);
8439 
8440     for (unsigned i = 0; i < NumValues; ++i) {
8441       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8442                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8443                                                         PtrVT), Flags);
8444       SDValue L = CLI.DAG.getLoad(
8445           RetTys[i], CLI.DL, CLI.Chain, Add,
8446           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8447                                             DemoteStackIdx, Offsets[i]),
8448           /* Alignment = */ 1);
8449       ReturnValues[i] = L;
8450       Chains[i] = L.getValue(1);
8451     }
8452 
8453     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8454   } else {
8455     // Collect the legal value parts into potentially illegal values
8456     // that correspond to the original function's return values.
8457     Optional<ISD::NodeType> AssertOp;
8458     if (CLI.RetSExt)
8459       AssertOp = ISD::AssertSext;
8460     else if (CLI.RetZExt)
8461       AssertOp = ISD::AssertZext;
8462     unsigned CurReg = 0;
8463     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8464       EVT VT = RetTys[I];
8465       MVT RegisterVT =
8466           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8467       unsigned NumRegs =
8468           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8469 
8470       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8471                                               NumRegs, RegisterVT, VT, nullptr,
8472                                               AssertOp, true));
8473       CurReg += NumRegs;
8474     }
8475 
8476     // For a function returning void, there is no return value. We can't create
8477     // such a node, so we just return a null return value in that case. In
8478     // that case, nothing will actually look at the value.
8479     if (ReturnValues.empty())
8480       return std::make_pair(SDValue(), CLI.Chain);
8481   }
8482 
8483   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8484                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8485   return std::make_pair(Res, CLI.Chain);
8486 }
8487 
8488 void TargetLowering::LowerOperationWrapper(SDNode *N,
8489                                            SmallVectorImpl<SDValue> &Results,
8490                                            SelectionDAG &DAG) const {
8491   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8492     Results.push_back(Res);
8493 }
8494 
8495 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8496   llvm_unreachable("LowerOperation not implemented for this target!");
8497 }
8498 
8499 void
8500 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8501   SDValue Op = getNonRegisterValue(V);
8502   assert((Op.getOpcode() != ISD::CopyFromReg ||
8503           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8504          "Copy from a reg to the same reg!");
8505   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8506 
8507   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8508   // If this is an InlineAsm we have to match the registers required, not the
8509   // notional registers required by the type.
8510 
8511   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
8512                    V->getType(), isABIRegCopy(V));
8513   SDValue Chain = DAG.getEntryNode();
8514 
8515   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8516                               FuncInfo.PreferredExtendType.end())
8517                                  ? ISD::ANY_EXTEND
8518                                  : FuncInfo.PreferredExtendType[V];
8519   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8520   PendingExports.push_back(Chain);
8521 }
8522 
8523 #include "llvm/CodeGen/SelectionDAGISel.h"
8524 
8525 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8526 /// entry block, return true.  This includes arguments used by switches, since
8527 /// the switch may expand into multiple basic blocks.
8528 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8529   // With FastISel active, we may be splitting blocks, so force creation
8530   // of virtual registers for all non-dead arguments.
8531   if (FastISel)
8532     return A->use_empty();
8533 
8534   const BasicBlock &Entry = A->getParent()->front();
8535   for (const User *U : A->users())
8536     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8537       return false;  // Use not in entry block.
8538 
8539   return true;
8540 }
8541 
8542 using ArgCopyElisionMapTy =
8543     DenseMap<const Argument *,
8544              std::pair<const AllocaInst *, const StoreInst *>>;
8545 
8546 /// Scan the entry block of the function in FuncInfo for arguments that look
8547 /// like copies into a local alloca. Record any copied arguments in
8548 /// ArgCopyElisionCandidates.
8549 static void
8550 findArgumentCopyElisionCandidates(const DataLayout &DL,
8551                                   FunctionLoweringInfo *FuncInfo,
8552                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8553   // Record the state of every static alloca used in the entry block. Argument
8554   // allocas are all used in the entry block, so we need approximately as many
8555   // entries as we have arguments.
8556   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8557   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8558   unsigned NumArgs = FuncInfo->Fn->arg_size();
8559   StaticAllocas.reserve(NumArgs * 2);
8560 
8561   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8562     if (!V)
8563       return nullptr;
8564     V = V->stripPointerCasts();
8565     const auto *AI = dyn_cast<AllocaInst>(V);
8566     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8567       return nullptr;
8568     auto Iter = StaticAllocas.insert({AI, Unknown});
8569     return &Iter.first->second;
8570   };
8571 
8572   // Look for stores of arguments to static allocas. Look through bitcasts and
8573   // GEPs to handle type coercions, as long as the alloca is fully initialized
8574   // by the store. Any non-store use of an alloca escapes it and any subsequent
8575   // unanalyzed store might write it.
8576   // FIXME: Handle structs initialized with multiple stores.
8577   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8578     // Look for stores, and handle non-store uses conservatively.
8579     const auto *SI = dyn_cast<StoreInst>(&I);
8580     if (!SI) {
8581       // We will look through cast uses, so ignore them completely.
8582       if (I.isCast())
8583         continue;
8584       // Ignore debug info intrinsics, they don't escape or store to allocas.
8585       if (isa<DbgInfoIntrinsic>(I))
8586         continue;
8587       // This is an unknown instruction. Assume it escapes or writes to all
8588       // static alloca operands.
8589       for (const Use &U : I.operands()) {
8590         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8591           *Info = StaticAllocaInfo::Clobbered;
8592       }
8593       continue;
8594     }
8595 
8596     // If the stored value is a static alloca, mark it as escaped.
8597     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8598       *Info = StaticAllocaInfo::Clobbered;
8599 
8600     // Check if the destination is a static alloca.
8601     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8602     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8603     if (!Info)
8604       continue;
8605     const AllocaInst *AI = cast<AllocaInst>(Dst);
8606 
8607     // Skip allocas that have been initialized or clobbered.
8608     if (*Info != StaticAllocaInfo::Unknown)
8609       continue;
8610 
8611     // Check if the stored value is an argument, and that this store fully
8612     // initializes the alloca. Don't elide copies from the same argument twice.
8613     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8614     const auto *Arg = dyn_cast<Argument>(Val);
8615     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8616         Arg->getType()->isEmptyTy() ||
8617         DL.getTypeStoreSize(Arg->getType()) !=
8618             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8619         ArgCopyElisionCandidates.count(Arg)) {
8620       *Info = StaticAllocaInfo::Clobbered;
8621       continue;
8622     }
8623 
8624     DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n');
8625 
8626     // Mark this alloca and store for argument copy elision.
8627     *Info = StaticAllocaInfo::Elidable;
8628     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8629 
8630     // Stop scanning if we've seen all arguments. This will happen early in -O0
8631     // builds, which is useful, because -O0 builds have large entry blocks and
8632     // many allocas.
8633     if (ArgCopyElisionCandidates.size() == NumArgs)
8634       break;
8635   }
8636 }
8637 
8638 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8639 /// ArgVal is a load from a suitable fixed stack object.
8640 static void tryToElideArgumentCopy(
8641     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8642     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8643     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8644     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8645     SDValue ArgVal, bool &ArgHasUses) {
8646   // Check if this is a load from a fixed stack object.
8647   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8648   if (!LNode)
8649     return;
8650   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8651   if (!FINode)
8652     return;
8653 
8654   // Check that the fixed stack object is the right size and alignment.
8655   // Look at the alignment that the user wrote on the alloca instead of looking
8656   // at the stack object.
8657   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8658   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8659   const AllocaInst *AI = ArgCopyIter->second.first;
8660   int FixedIndex = FINode->getIndex();
8661   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8662   int OldIndex = AllocaIndex;
8663   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8664   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8665     DEBUG(dbgs() << "  argument copy elision failed due to bad fixed stack "
8666                     "object size\n");
8667     return;
8668   }
8669   unsigned RequiredAlignment = AI->getAlignment();
8670   if (!RequiredAlignment) {
8671     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8672         AI->getAllocatedType());
8673   }
8674   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8675     DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8676                     "greater than stack argument alignment ("
8677                  << RequiredAlignment << " vs "
8678                  << MFI.getObjectAlignment(FixedIndex) << ")\n");
8679     return;
8680   }
8681 
8682   // Perform the elision. Delete the old stack object and replace its only use
8683   // in the variable info map. Mark the stack object as mutable.
8684   DEBUG({
8685     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8686            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8687            << '\n';
8688   });
8689   MFI.RemoveStackObject(OldIndex);
8690   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8691   AllocaIndex = FixedIndex;
8692   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8693   Chains.push_back(ArgVal.getValue(1));
8694 
8695   // Avoid emitting code for the store implementing the copy.
8696   const StoreInst *SI = ArgCopyIter->second.second;
8697   ElidedArgCopyInstrs.insert(SI);
8698 
8699   // Check for uses of the argument again so that we can avoid exporting ArgVal
8700   // if it is't used by anything other than the store.
8701   for (const Value *U : Arg.users()) {
8702     if (U != SI) {
8703       ArgHasUses = true;
8704       break;
8705     }
8706   }
8707 }
8708 
8709 void SelectionDAGISel::LowerArguments(const Function &F) {
8710   SelectionDAG &DAG = SDB->DAG;
8711   SDLoc dl = SDB->getCurSDLoc();
8712   const DataLayout &DL = DAG.getDataLayout();
8713   SmallVector<ISD::InputArg, 16> Ins;
8714 
8715   if (!FuncInfo->CanLowerReturn) {
8716     // Put in an sret pointer parameter before all the other parameters.
8717     SmallVector<EVT, 1> ValueVTs;
8718     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8719                     F.getReturnType()->getPointerTo(
8720                         DAG.getDataLayout().getAllocaAddrSpace()),
8721                     ValueVTs);
8722 
8723     // NOTE: Assuming that a pointer will never break down to more than one VT
8724     // or one register.
8725     ISD::ArgFlagsTy Flags;
8726     Flags.setSRet();
8727     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8728     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8729                          ISD::InputArg::NoArgIndex, 0);
8730     Ins.push_back(RetArg);
8731   }
8732 
8733   // Look for stores of arguments to static allocas. Mark such arguments with a
8734   // flag to ask the target to give us the memory location of that argument if
8735   // available.
8736   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8737   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8738 
8739   // Set up the incoming argument description vector.
8740   for (const Argument &Arg : F.args()) {
8741     unsigned ArgNo = Arg.getArgNo();
8742     SmallVector<EVT, 4> ValueVTs;
8743     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8744     bool isArgValueUsed = !Arg.use_empty();
8745     unsigned PartBase = 0;
8746     Type *FinalType = Arg.getType();
8747     if (Arg.hasAttribute(Attribute::ByVal))
8748       FinalType = cast<PointerType>(FinalType)->getElementType();
8749     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8750         FinalType, F.getCallingConv(), F.isVarArg());
8751     for (unsigned Value = 0, NumValues = ValueVTs.size();
8752          Value != NumValues; ++Value) {
8753       EVT VT = ValueVTs[Value];
8754       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8755       ISD::ArgFlagsTy Flags;
8756 
8757       // Certain targets (such as MIPS), may have a different ABI alignment
8758       // for a type depending on the context. Give the target a chance to
8759       // specify the alignment it wants.
8760       unsigned OriginalAlignment =
8761           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
8762 
8763       if (Arg.hasAttribute(Attribute::ZExt))
8764         Flags.setZExt();
8765       if (Arg.hasAttribute(Attribute::SExt))
8766         Flags.setSExt();
8767       if (Arg.hasAttribute(Attribute::InReg)) {
8768         // If we are using vectorcall calling convention, a structure that is
8769         // passed InReg - is surely an HVA
8770         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8771             isa<StructType>(Arg.getType())) {
8772           // The first value of a structure is marked
8773           if (0 == Value)
8774             Flags.setHvaStart();
8775           Flags.setHva();
8776         }
8777         // Set InReg Flag
8778         Flags.setInReg();
8779       }
8780       if (Arg.hasAttribute(Attribute::StructRet))
8781         Flags.setSRet();
8782       if (Arg.hasAttribute(Attribute::SwiftSelf))
8783         Flags.setSwiftSelf();
8784       if (Arg.hasAttribute(Attribute::SwiftError))
8785         Flags.setSwiftError();
8786       if (Arg.hasAttribute(Attribute::ByVal))
8787         Flags.setByVal();
8788       if (Arg.hasAttribute(Attribute::InAlloca)) {
8789         Flags.setInAlloca();
8790         // Set the byval flag for CCAssignFn callbacks that don't know about
8791         // inalloca.  This way we can know how many bytes we should've allocated
8792         // and how many bytes a callee cleanup function will pop.  If we port
8793         // inalloca to more targets, we'll have to add custom inalloca handling
8794         // in the various CC lowering callbacks.
8795         Flags.setByVal();
8796       }
8797       if (F.getCallingConv() == CallingConv::X86_INTR) {
8798         // IA Interrupt passes frame (1st parameter) by value in the stack.
8799         if (ArgNo == 0)
8800           Flags.setByVal();
8801       }
8802       if (Flags.isByVal() || Flags.isInAlloca()) {
8803         PointerType *Ty = cast<PointerType>(Arg.getType());
8804         Type *ElementTy = Ty->getElementType();
8805         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8806         // For ByVal, alignment should be passed from FE.  BE will guess if
8807         // this info is not there but there are cases it cannot get right.
8808         unsigned FrameAlign;
8809         if (Arg.getParamAlignment())
8810           FrameAlign = Arg.getParamAlignment();
8811         else
8812           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8813         Flags.setByValAlign(FrameAlign);
8814       }
8815       if (Arg.hasAttribute(Attribute::Nest))
8816         Flags.setNest();
8817       if (NeedsRegBlock)
8818         Flags.setInConsecutiveRegs();
8819       Flags.setOrigAlign(OriginalAlignment);
8820       if (ArgCopyElisionCandidates.count(&Arg))
8821         Flags.setCopyElisionCandidate();
8822 
8823       MVT RegisterVT =
8824           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8825       unsigned NumRegs =
8826           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8827       for (unsigned i = 0; i != NumRegs; ++i) {
8828         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8829                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
8830         if (NumRegs > 1 && i == 0)
8831           MyFlags.Flags.setSplit();
8832         // if it isn't first piece, alignment must be 1
8833         else if (i > 0) {
8834           MyFlags.Flags.setOrigAlign(1);
8835           if (i == NumRegs - 1)
8836             MyFlags.Flags.setSplitEnd();
8837         }
8838         Ins.push_back(MyFlags);
8839       }
8840       if (NeedsRegBlock && Value == NumValues - 1)
8841         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8842       PartBase += VT.getStoreSize();
8843     }
8844   }
8845 
8846   // Call the target to set up the argument values.
8847   SmallVector<SDValue, 8> InVals;
8848   SDValue NewRoot = TLI->LowerFormalArguments(
8849       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8850 
8851   // Verify that the target's LowerFormalArguments behaved as expected.
8852   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8853          "LowerFormalArguments didn't return a valid chain!");
8854   assert(InVals.size() == Ins.size() &&
8855          "LowerFormalArguments didn't emit the correct number of values!");
8856   DEBUG({
8857       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8858         assert(InVals[i].getNode() &&
8859                "LowerFormalArguments emitted a null value!");
8860         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8861                "LowerFormalArguments emitted a value with the wrong type!");
8862       }
8863     });
8864 
8865   // Update the DAG with the new chain value resulting from argument lowering.
8866   DAG.setRoot(NewRoot);
8867 
8868   // Set up the argument values.
8869   unsigned i = 0;
8870   if (!FuncInfo->CanLowerReturn) {
8871     // Create a virtual register for the sret pointer, and put in a copy
8872     // from the sret argument into it.
8873     SmallVector<EVT, 1> ValueVTs;
8874     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8875                     F.getReturnType()->getPointerTo(
8876                         DAG.getDataLayout().getAllocaAddrSpace()),
8877                     ValueVTs);
8878     MVT VT = ValueVTs[0].getSimpleVT();
8879     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8880     Optional<ISD::NodeType> AssertOp = None;
8881     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8882                                         RegVT, VT, nullptr, AssertOp);
8883 
8884     MachineFunction& MF = SDB->DAG.getMachineFunction();
8885     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8886     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8887     FuncInfo->DemoteRegister = SRetReg;
8888     NewRoot =
8889         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8890     DAG.setRoot(NewRoot);
8891 
8892     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8893     ++i;
8894   }
8895 
8896   SmallVector<SDValue, 4> Chains;
8897   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
8898   for (const Argument &Arg : F.args()) {
8899     SmallVector<SDValue, 4> ArgValues;
8900     SmallVector<EVT, 4> ValueVTs;
8901     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8902     unsigned NumValues = ValueVTs.size();
8903     if (NumValues == 0)
8904       continue;
8905 
8906     bool ArgHasUses = !Arg.use_empty();
8907 
8908     // Elide the copying store if the target loaded this argument from a
8909     // suitable fixed stack object.
8910     if (Ins[i].Flags.isCopyElisionCandidate()) {
8911       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
8912                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
8913                              InVals[i], ArgHasUses);
8914     }
8915 
8916     // If this argument is unused then remember its value. It is used to generate
8917     // debugging information.
8918     bool isSwiftErrorArg =
8919         TLI->supportSwiftError() &&
8920         Arg.hasAttribute(Attribute::SwiftError);
8921     if (!ArgHasUses && !isSwiftErrorArg) {
8922       SDB->setUnusedArgValue(&Arg, InVals[i]);
8923 
8924       // Also remember any frame index for use in FastISel.
8925       if (FrameIndexSDNode *FI =
8926           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8927         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8928     }
8929 
8930     for (unsigned Val = 0; Val != NumValues; ++Val) {
8931       EVT VT = ValueVTs[Val];
8932       MVT PartVT =
8933           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8934       unsigned NumParts =
8935           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8936 
8937       // Even an apparant 'unused' swifterror argument needs to be returned. So
8938       // we do generate a copy for it that can be used on return from the
8939       // function.
8940       if (ArgHasUses || isSwiftErrorArg) {
8941         Optional<ISD::NodeType> AssertOp;
8942         if (Arg.hasAttribute(Attribute::SExt))
8943           AssertOp = ISD::AssertSext;
8944         else if (Arg.hasAttribute(Attribute::ZExt))
8945           AssertOp = ISD::AssertZext;
8946 
8947         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
8948                                              PartVT, VT, nullptr, AssertOp,
8949                                              true));
8950       }
8951 
8952       i += NumParts;
8953     }
8954 
8955     // We don't need to do anything else for unused arguments.
8956     if (ArgValues.empty())
8957       continue;
8958 
8959     // Note down frame index.
8960     if (FrameIndexSDNode *FI =
8961         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8962       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8963 
8964     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8965                                      SDB->getCurSDLoc());
8966 
8967     SDB->setValue(&Arg, Res);
8968     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8969       // We want to associate the argument with the frame index, among
8970       // involved operands, that correspond to the lowest address. The
8971       // getCopyFromParts function, called earlier, is swapping the order of
8972       // the operands to BUILD_PAIR depending on endianness. The result of
8973       // that swapping is that the least significant bits of the argument will
8974       // be in the first operand of the BUILD_PAIR node, and the most
8975       // significant bits will be in the second operand.
8976       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8977       if (LoadSDNode *LNode =
8978           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
8979         if (FrameIndexSDNode *FI =
8980             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8981           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8982     }
8983 
8984     // Update the SwiftErrorVRegDefMap.
8985     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
8986       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8987       if (TargetRegisterInfo::isVirtualRegister(Reg))
8988         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
8989                                            FuncInfo->SwiftErrorArg, Reg);
8990     }
8991 
8992     // If this argument is live outside of the entry block, insert a copy from
8993     // wherever we got it to the vreg that other BB's will reference it as.
8994     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8995       // If we can, though, try to skip creating an unnecessary vreg.
8996       // FIXME: This isn't very clean... it would be nice to make this more
8997       // general.  It's also subtly incompatible with the hacks FastISel
8998       // uses with vregs.
8999       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9000       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9001         FuncInfo->ValueMap[&Arg] = Reg;
9002         continue;
9003       }
9004     }
9005     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9006       FuncInfo->InitializeRegForValue(&Arg);
9007       SDB->CopyToExportRegsIfNeeded(&Arg);
9008     }
9009   }
9010 
9011   if (!Chains.empty()) {
9012     Chains.push_back(NewRoot);
9013     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9014   }
9015 
9016   DAG.setRoot(NewRoot);
9017 
9018   assert(i == InVals.size() && "Argument register count mismatch!");
9019 
9020   // If any argument copy elisions occurred and we have debug info, update the
9021   // stale frame indices used in the dbg.declare variable info table.
9022   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9023   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9024     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9025       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9026       if (I != ArgCopyElisionFrameIndexMap.end())
9027         VI.Slot = I->second;
9028     }
9029   }
9030 
9031   // Finally, if the target has anything special to do, allow it to do so.
9032   EmitFunctionEntryCode();
9033 }
9034 
9035 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9036 /// ensure constants are generated when needed.  Remember the virtual registers
9037 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9038 /// directly add them, because expansion might result in multiple MBB's for one
9039 /// BB.  As such, the start of the BB might correspond to a different MBB than
9040 /// the end.
9041 void
9042 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9043   const TerminatorInst *TI = LLVMBB->getTerminator();
9044 
9045   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9046 
9047   // Check PHI nodes in successors that expect a value to be available from this
9048   // block.
9049   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9050     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9051     if (!isa<PHINode>(SuccBB->begin())) continue;
9052     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9053 
9054     // If this terminator has multiple identical successors (common for
9055     // switches), only handle each succ once.
9056     if (!SuccsHandled.insert(SuccMBB).second)
9057       continue;
9058 
9059     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9060 
9061     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9062     // nodes and Machine PHI nodes, but the incoming operands have not been
9063     // emitted yet.
9064     for (const PHINode &PN : SuccBB->phis()) {
9065       // Ignore dead phi's.
9066       if (PN.use_empty())
9067         continue;
9068 
9069       // Skip empty types
9070       if (PN.getType()->isEmptyTy())
9071         continue;
9072 
9073       unsigned Reg;
9074       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9075 
9076       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9077         unsigned &RegOut = ConstantsOut[C];
9078         if (RegOut == 0) {
9079           RegOut = FuncInfo.CreateRegs(C->getType());
9080           CopyValueToVirtualRegister(C, RegOut);
9081         }
9082         Reg = RegOut;
9083       } else {
9084         DenseMap<const Value *, unsigned>::iterator I =
9085           FuncInfo.ValueMap.find(PHIOp);
9086         if (I != FuncInfo.ValueMap.end())
9087           Reg = I->second;
9088         else {
9089           assert(isa<AllocaInst>(PHIOp) &&
9090                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9091                  "Didn't codegen value into a register!??");
9092           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9093           CopyValueToVirtualRegister(PHIOp, Reg);
9094         }
9095       }
9096 
9097       // Remember that this register needs to added to the machine PHI node as
9098       // the input for this MBB.
9099       SmallVector<EVT, 4> ValueVTs;
9100       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9101       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9102       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9103         EVT VT = ValueVTs[vti];
9104         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9105         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9106           FuncInfo.PHINodesToUpdate.push_back(
9107               std::make_pair(&*MBBI++, Reg + i));
9108         Reg += NumRegisters;
9109       }
9110     }
9111   }
9112 
9113   ConstantsOut.clear();
9114 }
9115 
9116 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9117 /// is 0.
9118 MachineBasicBlock *
9119 SelectionDAGBuilder::StackProtectorDescriptor::
9120 AddSuccessorMBB(const BasicBlock *BB,
9121                 MachineBasicBlock *ParentMBB,
9122                 bool IsLikely,
9123                 MachineBasicBlock *SuccMBB) {
9124   // If SuccBB has not been created yet, create it.
9125   if (!SuccMBB) {
9126     MachineFunction *MF = ParentMBB->getParent();
9127     MachineFunction::iterator BBI(ParentMBB);
9128     SuccMBB = MF->CreateMachineBasicBlock(BB);
9129     MF->insert(++BBI, SuccMBB);
9130   }
9131   // Add it as a successor of ParentMBB.
9132   ParentMBB->addSuccessor(
9133       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9134   return SuccMBB;
9135 }
9136 
9137 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9138   MachineFunction::iterator I(MBB);
9139   if (++I == FuncInfo.MF->end())
9140     return nullptr;
9141   return &*I;
9142 }
9143 
9144 /// During lowering new call nodes can be created (such as memset, etc.).
9145 /// Those will become new roots of the current DAG, but complications arise
9146 /// when they are tail calls. In such cases, the call lowering will update
9147 /// the root, but the builder still needs to know that a tail call has been
9148 /// lowered in order to avoid generating an additional return.
9149 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9150   // If the node is null, we do have a tail call.
9151   if (MaybeTC.getNode() != nullptr)
9152     DAG.setRoot(MaybeTC);
9153   else
9154     HasTailCall = true;
9155 }
9156 
9157 uint64_t
9158 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9159                                        unsigned First, unsigned Last) const {
9160   assert(Last >= First);
9161   const APInt &LowCase = Clusters[First].Low->getValue();
9162   const APInt &HighCase = Clusters[Last].High->getValue();
9163   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9164 
9165   // FIXME: A range of consecutive cases has 100% density, but only requires one
9166   // comparison to lower. We should discriminate against such consecutive ranges
9167   // in jump tables.
9168 
9169   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9170 }
9171 
9172 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9173     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9174     unsigned Last) const {
9175   assert(Last >= First);
9176   assert(TotalCases[Last] >= TotalCases[First]);
9177   uint64_t NumCases =
9178       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9179   return NumCases;
9180 }
9181 
9182 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9183                                          unsigned First, unsigned Last,
9184                                          const SwitchInst *SI,
9185                                          MachineBasicBlock *DefaultMBB,
9186                                          CaseCluster &JTCluster) {
9187   assert(First <= Last);
9188 
9189   auto Prob = BranchProbability::getZero();
9190   unsigned NumCmps = 0;
9191   std::vector<MachineBasicBlock*> Table;
9192   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9193 
9194   // Initialize probabilities in JTProbs.
9195   for (unsigned I = First; I <= Last; ++I)
9196     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9197 
9198   for (unsigned I = First; I <= Last; ++I) {
9199     assert(Clusters[I].Kind == CC_Range);
9200     Prob += Clusters[I].Prob;
9201     const APInt &Low = Clusters[I].Low->getValue();
9202     const APInt &High = Clusters[I].High->getValue();
9203     NumCmps += (Low == High) ? 1 : 2;
9204     if (I != First) {
9205       // Fill the gap between this and the previous cluster.
9206       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9207       assert(PreviousHigh.slt(Low));
9208       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9209       for (uint64_t J = 0; J < Gap; J++)
9210         Table.push_back(DefaultMBB);
9211     }
9212     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9213     for (uint64_t J = 0; J < ClusterSize; ++J)
9214       Table.push_back(Clusters[I].MBB);
9215     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9216   }
9217 
9218   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9219   unsigned NumDests = JTProbs.size();
9220   if (TLI.isSuitableForBitTests(
9221           NumDests, NumCmps, Clusters[First].Low->getValue(),
9222           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9223     // Clusters[First..Last] should be lowered as bit tests instead.
9224     return false;
9225   }
9226 
9227   // Create the MBB that will load from and jump through the table.
9228   // Note: We create it here, but it's not inserted into the function yet.
9229   MachineFunction *CurMF = FuncInfo.MF;
9230   MachineBasicBlock *JumpTableMBB =
9231       CurMF->CreateMachineBasicBlock(SI->getParent());
9232 
9233   // Add successors. Note: use table order for determinism.
9234   SmallPtrSet<MachineBasicBlock *, 8> Done;
9235   for (MachineBasicBlock *Succ : Table) {
9236     if (Done.count(Succ))
9237       continue;
9238     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9239     Done.insert(Succ);
9240   }
9241   JumpTableMBB->normalizeSuccProbs();
9242 
9243   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9244                      ->createJumpTableIndex(Table);
9245 
9246   // Set up the jump table info.
9247   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9248   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9249                       Clusters[Last].High->getValue(), SI->getCondition(),
9250                       nullptr, false);
9251   JTCases.emplace_back(std::move(JTH), std::move(JT));
9252 
9253   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9254                                      JTCases.size() - 1, Prob);
9255   return true;
9256 }
9257 
9258 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9259                                          const SwitchInst *SI,
9260                                          MachineBasicBlock *DefaultMBB) {
9261 #ifndef NDEBUG
9262   // Clusters must be non-empty, sorted, and only contain Range clusters.
9263   assert(!Clusters.empty());
9264   for (CaseCluster &C : Clusters)
9265     assert(C.Kind == CC_Range);
9266   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9267     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9268 #endif
9269 
9270   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9271   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9272     return;
9273 
9274   const int64_t N = Clusters.size();
9275   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9276   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9277 
9278   if (N < 2 || N < MinJumpTableEntries)
9279     return;
9280 
9281   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9282   SmallVector<unsigned, 8> TotalCases(N);
9283   for (unsigned i = 0; i < N; ++i) {
9284     const APInt &Hi = Clusters[i].High->getValue();
9285     const APInt &Lo = Clusters[i].Low->getValue();
9286     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9287     if (i != 0)
9288       TotalCases[i] += TotalCases[i - 1];
9289   }
9290 
9291   // Cheap case: the whole range may be suitable for jump table.
9292   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9293   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9294   assert(NumCases < UINT64_MAX / 100);
9295   assert(Range >= NumCases);
9296   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9297     CaseCluster JTCluster;
9298     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9299       Clusters[0] = JTCluster;
9300       Clusters.resize(1);
9301       return;
9302     }
9303   }
9304 
9305   // The algorithm below is not suitable for -O0.
9306   if (TM.getOptLevel() == CodeGenOpt::None)
9307     return;
9308 
9309   // Split Clusters into minimum number of dense partitions. The algorithm uses
9310   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9311   // for the Case Statement'" (1994), but builds the MinPartitions array in
9312   // reverse order to make it easier to reconstruct the partitions in ascending
9313   // order. In the choice between two optimal partitionings, it picks the one
9314   // which yields more jump tables.
9315 
9316   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9317   SmallVector<unsigned, 8> MinPartitions(N);
9318   // LastElement[i] is the last element of the partition starting at i.
9319   SmallVector<unsigned, 8> LastElement(N);
9320   // PartitionsScore[i] is used to break ties when choosing between two
9321   // partitionings resulting in the same number of partitions.
9322   SmallVector<unsigned, 8> PartitionsScore(N);
9323   // For PartitionsScore, a small number of comparisons is considered as good as
9324   // a jump table and a single comparison is considered better than a jump
9325   // table.
9326   enum PartitionScores : unsigned {
9327     NoTable = 0,
9328     Table = 1,
9329     FewCases = 1,
9330     SingleCase = 2
9331   };
9332 
9333   // Base case: There is only one way to partition Clusters[N-1].
9334   MinPartitions[N - 1] = 1;
9335   LastElement[N - 1] = N - 1;
9336   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9337 
9338   // Note: loop indexes are signed to avoid underflow.
9339   for (int64_t i = N - 2; i >= 0; i--) {
9340     // Find optimal partitioning of Clusters[i..N-1].
9341     // Baseline: Put Clusters[i] into a partition on its own.
9342     MinPartitions[i] = MinPartitions[i + 1] + 1;
9343     LastElement[i] = i;
9344     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9345 
9346     // Search for a solution that results in fewer partitions.
9347     for (int64_t j = N - 1; j > i; j--) {
9348       // Try building a partition from Clusters[i..j].
9349       uint64_t Range = getJumpTableRange(Clusters, i, j);
9350       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9351       assert(NumCases < UINT64_MAX / 100);
9352       assert(Range >= NumCases);
9353       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9354         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9355         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9356         int64_t NumEntries = j - i + 1;
9357 
9358         if (NumEntries == 1)
9359           Score += PartitionScores::SingleCase;
9360         else if (NumEntries <= SmallNumberOfEntries)
9361           Score += PartitionScores::FewCases;
9362         else if (NumEntries >= MinJumpTableEntries)
9363           Score += PartitionScores::Table;
9364 
9365         // If this leads to fewer partitions, or to the same number of
9366         // partitions with better score, it is a better partitioning.
9367         if (NumPartitions < MinPartitions[i] ||
9368             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9369           MinPartitions[i] = NumPartitions;
9370           LastElement[i] = j;
9371           PartitionsScore[i] = Score;
9372         }
9373       }
9374     }
9375   }
9376 
9377   // Iterate over the partitions, replacing some with jump tables in-place.
9378   unsigned DstIndex = 0;
9379   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9380     Last = LastElement[First];
9381     assert(Last >= First);
9382     assert(DstIndex <= First);
9383     unsigned NumClusters = Last - First + 1;
9384 
9385     CaseCluster JTCluster;
9386     if (NumClusters >= MinJumpTableEntries &&
9387         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9388       Clusters[DstIndex++] = JTCluster;
9389     } else {
9390       for (unsigned I = First; I <= Last; ++I)
9391         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9392     }
9393   }
9394   Clusters.resize(DstIndex);
9395 }
9396 
9397 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9398                                         unsigned First, unsigned Last,
9399                                         const SwitchInst *SI,
9400                                         CaseCluster &BTCluster) {
9401   assert(First <= Last);
9402   if (First == Last)
9403     return false;
9404 
9405   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9406   unsigned NumCmps = 0;
9407   for (int64_t I = First; I <= Last; ++I) {
9408     assert(Clusters[I].Kind == CC_Range);
9409     Dests.set(Clusters[I].MBB->getNumber());
9410     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9411   }
9412   unsigned NumDests = Dests.count();
9413 
9414   APInt Low = Clusters[First].Low->getValue();
9415   APInt High = Clusters[Last].High->getValue();
9416   assert(Low.slt(High));
9417 
9418   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9419   const DataLayout &DL = DAG.getDataLayout();
9420   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9421     return false;
9422 
9423   APInt LowBound;
9424   APInt CmpRange;
9425 
9426   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9427   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9428          "Case range must fit in bit mask!");
9429 
9430   // Check if the clusters cover a contiguous range such that no value in the
9431   // range will jump to the default statement.
9432   bool ContiguousRange = true;
9433   for (int64_t I = First + 1; I <= Last; ++I) {
9434     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9435       ContiguousRange = false;
9436       break;
9437     }
9438   }
9439 
9440   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9441     // Optimize the case where all the case values fit in a word without having
9442     // to subtract minValue. In this case, we can optimize away the subtraction.
9443     LowBound = APInt::getNullValue(Low.getBitWidth());
9444     CmpRange = High;
9445     ContiguousRange = false;
9446   } else {
9447     LowBound = Low;
9448     CmpRange = High - Low;
9449   }
9450 
9451   CaseBitsVector CBV;
9452   auto TotalProb = BranchProbability::getZero();
9453   for (unsigned i = First; i <= Last; ++i) {
9454     // Find the CaseBits for this destination.
9455     unsigned j;
9456     for (j = 0; j < CBV.size(); ++j)
9457       if (CBV[j].BB == Clusters[i].MBB)
9458         break;
9459     if (j == CBV.size())
9460       CBV.push_back(
9461           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9462     CaseBits *CB = &CBV[j];
9463 
9464     // Update Mask, Bits and ExtraProb.
9465     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9466     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9467     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9468     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9469     CB->Bits += Hi - Lo + 1;
9470     CB->ExtraProb += Clusters[i].Prob;
9471     TotalProb += Clusters[i].Prob;
9472   }
9473 
9474   BitTestInfo BTI;
9475   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
9476     // Sort by probability first, number of bits second, bit mask third.
9477     if (a.ExtraProb != b.ExtraProb)
9478       return a.ExtraProb > b.ExtraProb;
9479     if (a.Bits != b.Bits)
9480       return a.Bits > b.Bits;
9481     return a.Mask < b.Mask;
9482   });
9483 
9484   for (auto &CB : CBV) {
9485     MachineBasicBlock *BitTestBB =
9486         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9487     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9488   }
9489   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9490                             SI->getCondition(), -1U, MVT::Other, false,
9491                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9492                             TotalProb);
9493 
9494   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9495                                     BitTestCases.size() - 1, TotalProb);
9496   return true;
9497 }
9498 
9499 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9500                                               const SwitchInst *SI) {
9501 // Partition Clusters into as few subsets as possible, where each subset has a
9502 // range that fits in a machine word and has <= 3 unique destinations.
9503 
9504 #ifndef NDEBUG
9505   // Clusters must be sorted and contain Range or JumpTable clusters.
9506   assert(!Clusters.empty());
9507   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9508   for (const CaseCluster &C : Clusters)
9509     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9510   for (unsigned i = 1; i < Clusters.size(); ++i)
9511     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9512 #endif
9513 
9514   // The algorithm below is not suitable for -O0.
9515   if (TM.getOptLevel() == CodeGenOpt::None)
9516     return;
9517 
9518   // If target does not have legal shift left, do not emit bit tests at all.
9519   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9520   const DataLayout &DL = DAG.getDataLayout();
9521 
9522   EVT PTy = TLI.getPointerTy(DL);
9523   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9524     return;
9525 
9526   int BitWidth = PTy.getSizeInBits();
9527   const int64_t N = Clusters.size();
9528 
9529   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9530   SmallVector<unsigned, 8> MinPartitions(N);
9531   // LastElement[i] is the last element of the partition starting at i.
9532   SmallVector<unsigned, 8> LastElement(N);
9533 
9534   // FIXME: This might not be the best algorithm for finding bit test clusters.
9535 
9536   // Base case: There is only one way to partition Clusters[N-1].
9537   MinPartitions[N - 1] = 1;
9538   LastElement[N - 1] = N - 1;
9539 
9540   // Note: loop indexes are signed to avoid underflow.
9541   for (int64_t i = N - 2; i >= 0; --i) {
9542     // Find optimal partitioning of Clusters[i..N-1].
9543     // Baseline: Put Clusters[i] into a partition on its own.
9544     MinPartitions[i] = MinPartitions[i + 1] + 1;
9545     LastElement[i] = i;
9546 
9547     // Search for a solution that results in fewer partitions.
9548     // Note: the search is limited by BitWidth, reducing time complexity.
9549     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9550       // Try building a partition from Clusters[i..j].
9551 
9552       // Check the range.
9553       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9554                                Clusters[j].High->getValue(), DL))
9555         continue;
9556 
9557       // Check nbr of destinations and cluster types.
9558       // FIXME: This works, but doesn't seem very efficient.
9559       bool RangesOnly = true;
9560       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9561       for (int64_t k = i; k <= j; k++) {
9562         if (Clusters[k].Kind != CC_Range) {
9563           RangesOnly = false;
9564           break;
9565         }
9566         Dests.set(Clusters[k].MBB->getNumber());
9567       }
9568       if (!RangesOnly || Dests.count() > 3)
9569         break;
9570 
9571       // Check if it's a better partition.
9572       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9573       if (NumPartitions < MinPartitions[i]) {
9574         // Found a better partition.
9575         MinPartitions[i] = NumPartitions;
9576         LastElement[i] = j;
9577       }
9578     }
9579   }
9580 
9581   // Iterate over the partitions, replacing with bit-test clusters in-place.
9582   unsigned DstIndex = 0;
9583   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9584     Last = LastElement[First];
9585     assert(First <= Last);
9586     assert(DstIndex <= First);
9587 
9588     CaseCluster BitTestCluster;
9589     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9590       Clusters[DstIndex++] = BitTestCluster;
9591     } else {
9592       size_t NumClusters = Last - First + 1;
9593       std::memmove(&Clusters[DstIndex], &Clusters[First],
9594                    sizeof(Clusters[0]) * NumClusters);
9595       DstIndex += NumClusters;
9596     }
9597   }
9598   Clusters.resize(DstIndex);
9599 }
9600 
9601 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9602                                         MachineBasicBlock *SwitchMBB,
9603                                         MachineBasicBlock *DefaultMBB) {
9604   MachineFunction *CurMF = FuncInfo.MF;
9605   MachineBasicBlock *NextMBB = nullptr;
9606   MachineFunction::iterator BBI(W.MBB);
9607   if (++BBI != FuncInfo.MF->end())
9608     NextMBB = &*BBI;
9609 
9610   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9611 
9612   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9613 
9614   if (Size == 2 && W.MBB == SwitchMBB) {
9615     // If any two of the cases has the same destination, and if one value
9616     // is the same as the other, but has one bit unset that the other has set,
9617     // use bit manipulation to do two compares at once.  For example:
9618     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9619     // TODO: This could be extended to merge any 2 cases in switches with 3
9620     // cases.
9621     // TODO: Handle cases where W.CaseBB != SwitchBB.
9622     CaseCluster &Small = *W.FirstCluster;
9623     CaseCluster &Big = *W.LastCluster;
9624 
9625     if (Small.Low == Small.High && Big.Low == Big.High &&
9626         Small.MBB == Big.MBB) {
9627       const APInt &SmallValue = Small.Low->getValue();
9628       const APInt &BigValue = Big.Low->getValue();
9629 
9630       // Check that there is only one bit different.
9631       APInt CommonBit = BigValue ^ SmallValue;
9632       if (CommonBit.isPowerOf2()) {
9633         SDValue CondLHS = getValue(Cond);
9634         EVT VT = CondLHS.getValueType();
9635         SDLoc DL = getCurSDLoc();
9636 
9637         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9638                                  DAG.getConstant(CommonBit, DL, VT));
9639         SDValue Cond = DAG.getSetCC(
9640             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9641             ISD::SETEQ);
9642 
9643         // Update successor info.
9644         // Both Small and Big will jump to Small.BB, so we sum up the
9645         // probabilities.
9646         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9647         if (BPI)
9648           addSuccessorWithProb(
9649               SwitchMBB, DefaultMBB,
9650               // The default destination is the first successor in IR.
9651               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9652         else
9653           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9654 
9655         // Insert the true branch.
9656         SDValue BrCond =
9657             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9658                         DAG.getBasicBlock(Small.MBB));
9659         // Insert the false branch.
9660         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9661                              DAG.getBasicBlock(DefaultMBB));
9662 
9663         DAG.setRoot(BrCond);
9664         return;
9665       }
9666     }
9667   }
9668 
9669   if (TM.getOptLevel() != CodeGenOpt::None) {
9670     // Here, we order cases by probability so the most likely case will be
9671     // checked first. However, two clusters can have the same probability in
9672     // which case their relative ordering is non-deterministic. So we use Low
9673     // as a tie-breaker as clusters are guaranteed to never overlap.
9674     std::sort(W.FirstCluster, W.LastCluster + 1,
9675               [](const CaseCluster &a, const CaseCluster &b) {
9676       return a.Prob != b.Prob ?
9677              a.Prob > b.Prob :
9678              a.Low->getValue().slt(b.Low->getValue());
9679     });
9680 
9681     // Rearrange the case blocks so that the last one falls through if possible
9682     // without without changing the order of probabilities.
9683     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9684       --I;
9685       if (I->Prob > W.LastCluster->Prob)
9686         break;
9687       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9688         std::swap(*I, *W.LastCluster);
9689         break;
9690       }
9691     }
9692   }
9693 
9694   // Compute total probability.
9695   BranchProbability DefaultProb = W.DefaultProb;
9696   BranchProbability UnhandledProbs = DefaultProb;
9697   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9698     UnhandledProbs += I->Prob;
9699 
9700   MachineBasicBlock *CurMBB = W.MBB;
9701   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9702     MachineBasicBlock *Fallthrough;
9703     if (I == W.LastCluster) {
9704       // For the last cluster, fall through to the default destination.
9705       Fallthrough = DefaultMBB;
9706     } else {
9707       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9708       CurMF->insert(BBI, Fallthrough);
9709       // Put Cond in a virtual register to make it available from the new blocks.
9710       ExportFromCurrentBlock(Cond);
9711     }
9712     UnhandledProbs -= I->Prob;
9713 
9714     switch (I->Kind) {
9715       case CC_JumpTable: {
9716         // FIXME: Optimize away range check based on pivot comparisons.
9717         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9718         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9719 
9720         // The jump block hasn't been inserted yet; insert it here.
9721         MachineBasicBlock *JumpMBB = JT->MBB;
9722         CurMF->insert(BBI, JumpMBB);
9723 
9724         auto JumpProb = I->Prob;
9725         auto FallthroughProb = UnhandledProbs;
9726 
9727         // If the default statement is a target of the jump table, we evenly
9728         // distribute the default probability to successors of CurMBB. Also
9729         // update the probability on the edge from JumpMBB to Fallthrough.
9730         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9731                                               SE = JumpMBB->succ_end();
9732              SI != SE; ++SI) {
9733           if (*SI == DefaultMBB) {
9734             JumpProb += DefaultProb / 2;
9735             FallthroughProb -= DefaultProb / 2;
9736             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9737             JumpMBB->normalizeSuccProbs();
9738             break;
9739           }
9740         }
9741 
9742         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9743         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9744         CurMBB->normalizeSuccProbs();
9745 
9746         // The jump table header will be inserted in our current block, do the
9747         // range check, and fall through to our fallthrough block.
9748         JTH->HeaderBB = CurMBB;
9749         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9750 
9751         // If we're in the right place, emit the jump table header right now.
9752         if (CurMBB == SwitchMBB) {
9753           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9754           JTH->Emitted = true;
9755         }
9756         break;
9757       }
9758       case CC_BitTests: {
9759         // FIXME: Optimize away range check based on pivot comparisons.
9760         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9761 
9762         // The bit test blocks haven't been inserted yet; insert them here.
9763         for (BitTestCase &BTC : BTB->Cases)
9764           CurMF->insert(BBI, BTC.ThisBB);
9765 
9766         // Fill in fields of the BitTestBlock.
9767         BTB->Parent = CurMBB;
9768         BTB->Default = Fallthrough;
9769 
9770         BTB->DefaultProb = UnhandledProbs;
9771         // If the cases in bit test don't form a contiguous range, we evenly
9772         // distribute the probability on the edge to Fallthrough to two
9773         // successors of CurMBB.
9774         if (!BTB->ContiguousRange) {
9775           BTB->Prob += DefaultProb / 2;
9776           BTB->DefaultProb -= DefaultProb / 2;
9777         }
9778 
9779         // If we're in the right place, emit the bit test header right now.
9780         if (CurMBB == SwitchMBB) {
9781           visitBitTestHeader(*BTB, SwitchMBB);
9782           BTB->Emitted = true;
9783         }
9784         break;
9785       }
9786       case CC_Range: {
9787         const Value *RHS, *LHS, *MHS;
9788         ISD::CondCode CC;
9789         if (I->Low == I->High) {
9790           // Check Cond == I->Low.
9791           CC = ISD::SETEQ;
9792           LHS = Cond;
9793           RHS=I->Low;
9794           MHS = nullptr;
9795         } else {
9796           // Check I->Low <= Cond <= I->High.
9797           CC = ISD::SETLE;
9798           LHS = I->Low;
9799           MHS = Cond;
9800           RHS = I->High;
9801         }
9802 
9803         // The false probability is the sum of all unhandled cases.
9804         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
9805                      getCurSDLoc(), I->Prob, UnhandledProbs);
9806 
9807         if (CurMBB == SwitchMBB)
9808           visitSwitchCase(CB, SwitchMBB);
9809         else
9810           SwitchCases.push_back(CB);
9811 
9812         break;
9813       }
9814     }
9815     CurMBB = Fallthrough;
9816   }
9817 }
9818 
9819 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9820                                               CaseClusterIt First,
9821                                               CaseClusterIt Last) {
9822   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9823     if (X.Prob != CC.Prob)
9824       return X.Prob > CC.Prob;
9825 
9826     // Ties are broken by comparing the case value.
9827     return X.Low->getValue().slt(CC.Low->getValue());
9828   });
9829 }
9830 
9831 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9832                                         const SwitchWorkListItem &W,
9833                                         Value *Cond,
9834                                         MachineBasicBlock *SwitchMBB) {
9835   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9836          "Clusters not sorted?");
9837 
9838   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9839 
9840   // Balance the tree based on branch probabilities to create a near-optimal (in
9841   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9842   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9843   CaseClusterIt LastLeft = W.FirstCluster;
9844   CaseClusterIt FirstRight = W.LastCluster;
9845   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9846   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9847 
9848   // Move LastLeft and FirstRight towards each other from opposite directions to
9849   // find a partitioning of the clusters which balances the probability on both
9850   // sides. If LeftProb and RightProb are equal, alternate which side is
9851   // taken to ensure 0-probability nodes are distributed evenly.
9852   unsigned I = 0;
9853   while (LastLeft + 1 < FirstRight) {
9854     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9855       LeftProb += (++LastLeft)->Prob;
9856     else
9857       RightProb += (--FirstRight)->Prob;
9858     I++;
9859   }
9860 
9861   while (true) {
9862     // Our binary search tree differs from a typical BST in that ours can have up
9863     // to three values in each leaf. The pivot selection above doesn't take that
9864     // into account, which means the tree might require more nodes and be less
9865     // efficient. We compensate for this here.
9866 
9867     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9868     unsigned NumRight = W.LastCluster - FirstRight + 1;
9869 
9870     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9871       // If one side has less than 3 clusters, and the other has more than 3,
9872       // consider taking a cluster from the other side.
9873 
9874       if (NumLeft < NumRight) {
9875         // Consider moving the first cluster on the right to the left side.
9876         CaseCluster &CC = *FirstRight;
9877         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9878         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9879         if (LeftSideRank <= RightSideRank) {
9880           // Moving the cluster to the left does not demote it.
9881           ++LastLeft;
9882           ++FirstRight;
9883           continue;
9884         }
9885       } else {
9886         assert(NumRight < NumLeft);
9887         // Consider moving the last element on the left to the right side.
9888         CaseCluster &CC = *LastLeft;
9889         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9890         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9891         if (RightSideRank <= LeftSideRank) {
9892           // Moving the cluster to the right does not demot it.
9893           --LastLeft;
9894           --FirstRight;
9895           continue;
9896         }
9897       }
9898     }
9899     break;
9900   }
9901 
9902   assert(LastLeft + 1 == FirstRight);
9903   assert(LastLeft >= W.FirstCluster);
9904   assert(FirstRight <= W.LastCluster);
9905 
9906   // Use the first element on the right as pivot since we will make less-than
9907   // comparisons against it.
9908   CaseClusterIt PivotCluster = FirstRight;
9909   assert(PivotCluster > W.FirstCluster);
9910   assert(PivotCluster <= W.LastCluster);
9911 
9912   CaseClusterIt FirstLeft = W.FirstCluster;
9913   CaseClusterIt LastRight = W.LastCluster;
9914 
9915   const ConstantInt *Pivot = PivotCluster->Low;
9916 
9917   // New blocks will be inserted immediately after the current one.
9918   MachineFunction::iterator BBI(W.MBB);
9919   ++BBI;
9920 
9921   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9922   // we can branch to its destination directly if it's squeezed exactly in
9923   // between the known lower bound and Pivot - 1.
9924   MachineBasicBlock *LeftMBB;
9925   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9926       FirstLeft->Low == W.GE &&
9927       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9928     LeftMBB = FirstLeft->MBB;
9929   } else {
9930     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9931     FuncInfo.MF->insert(BBI, LeftMBB);
9932     WorkList.push_back(
9933         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9934     // Put Cond in a virtual register to make it available from the new blocks.
9935     ExportFromCurrentBlock(Cond);
9936   }
9937 
9938   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9939   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9940   // directly if RHS.High equals the current upper bound.
9941   MachineBasicBlock *RightMBB;
9942   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9943       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9944     RightMBB = FirstRight->MBB;
9945   } else {
9946     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9947     FuncInfo.MF->insert(BBI, RightMBB);
9948     WorkList.push_back(
9949         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9950     // Put Cond in a virtual register to make it available from the new blocks.
9951     ExportFromCurrentBlock(Cond);
9952   }
9953 
9954   // Create the CaseBlock record that will be used to lower the branch.
9955   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9956                getCurSDLoc(), LeftProb, RightProb);
9957 
9958   if (W.MBB == SwitchMBB)
9959     visitSwitchCase(CB, SwitchMBB);
9960   else
9961     SwitchCases.push_back(CB);
9962 }
9963 
9964 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
9965 // from the swith statement.
9966 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
9967                                             BranchProbability PeeledCaseProb) {
9968   if (PeeledCaseProb == BranchProbability::getOne())
9969     return BranchProbability::getZero();
9970   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
9971 
9972   uint32_t Numerator = CaseProb.getNumerator();
9973   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
9974   return BranchProbability(Numerator, std::max(Numerator, Denominator));
9975 }
9976 
9977 // Try to peel the top probability case if it exceeds the threshold.
9978 // Return current MachineBasicBlock for the switch statement if the peeling
9979 // does not occur.
9980 // If the peeling is performed, return the newly created MachineBasicBlock
9981 // for the peeled switch statement. Also update Clusters to remove the peeled
9982 // case. PeeledCaseProb is the BranchProbability for the peeled case.
9983 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
9984     const SwitchInst &SI, CaseClusterVector &Clusters,
9985     BranchProbability &PeeledCaseProb) {
9986   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9987   // Don't perform if there is only one cluster or optimizing for size.
9988   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
9989       TM.getOptLevel() == CodeGenOpt::None ||
9990       SwitchMBB->getParent()->getFunction().optForMinSize())
9991     return SwitchMBB;
9992 
9993   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
9994   unsigned PeeledCaseIndex = 0;
9995   bool SwitchPeeled = false;
9996   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
9997     CaseCluster &CC = Clusters[Index];
9998     if (CC.Prob < TopCaseProb)
9999       continue;
10000     TopCaseProb = CC.Prob;
10001     PeeledCaseIndex = Index;
10002     SwitchPeeled = true;
10003   }
10004   if (!SwitchPeeled)
10005     return SwitchMBB;
10006 
10007   DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " << TopCaseProb
10008                << "\n");
10009 
10010   // Record the MBB for the peeled switch statement.
10011   MachineFunction::iterator BBI(SwitchMBB);
10012   ++BBI;
10013   MachineBasicBlock *PeeledSwitchMBB =
10014       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10015   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10016 
10017   ExportFromCurrentBlock(SI.getCondition());
10018   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10019   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10020                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10021   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10022 
10023   Clusters.erase(PeeledCaseIt);
10024   for (CaseCluster &CC : Clusters) {
10025     DEBUG(dbgs() << "Scale the probablity for one cluster, before scaling: "
10026                  << CC.Prob << "\n");
10027     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10028     DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10029   }
10030   PeeledCaseProb = TopCaseProb;
10031   return PeeledSwitchMBB;
10032 }
10033 
10034 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10035   // Extract cases from the switch.
10036   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10037   CaseClusterVector Clusters;
10038   Clusters.reserve(SI.getNumCases());
10039   for (auto I : SI.cases()) {
10040     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10041     const ConstantInt *CaseVal = I.getCaseValue();
10042     BranchProbability Prob =
10043         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10044             : BranchProbability(1, SI.getNumCases() + 1);
10045     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10046   }
10047 
10048   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10049 
10050   // Cluster adjacent cases with the same destination. We do this at all
10051   // optimization levels because it's cheap to do and will make codegen faster
10052   // if there are many clusters.
10053   sortAndRangeify(Clusters);
10054 
10055   if (TM.getOptLevel() != CodeGenOpt::None) {
10056     // Replace an unreachable default with the most popular destination.
10057     // FIXME: Exploit unreachable default more aggressively.
10058     bool UnreachableDefault =
10059         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10060     if (UnreachableDefault && !Clusters.empty()) {
10061       DenseMap<const BasicBlock *, unsigned> Popularity;
10062       unsigned MaxPop = 0;
10063       const BasicBlock *MaxBB = nullptr;
10064       for (auto I : SI.cases()) {
10065         const BasicBlock *BB = I.getCaseSuccessor();
10066         if (++Popularity[BB] > MaxPop) {
10067           MaxPop = Popularity[BB];
10068           MaxBB = BB;
10069         }
10070       }
10071       // Set new default.
10072       assert(MaxPop > 0 && MaxBB);
10073       DefaultMBB = FuncInfo.MBBMap[MaxBB];
10074 
10075       // Remove cases that were pointing to the destination that is now the
10076       // default.
10077       CaseClusterVector New;
10078       New.reserve(Clusters.size());
10079       for (CaseCluster &CC : Clusters) {
10080         if (CC.MBB != DefaultMBB)
10081           New.push_back(CC);
10082       }
10083       Clusters = std::move(New);
10084     }
10085   }
10086 
10087   // The branch probablity of the peeled case.
10088   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10089   MachineBasicBlock *PeeledSwitchMBB =
10090       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10091 
10092   // If there is only the default destination, jump there directly.
10093   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10094   if (Clusters.empty()) {
10095     assert(PeeledSwitchMBB == SwitchMBB);
10096     SwitchMBB->addSuccessor(DefaultMBB);
10097     if (DefaultMBB != NextBlock(SwitchMBB)) {
10098       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10099                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10100     }
10101     return;
10102   }
10103 
10104   findJumpTables(Clusters, &SI, DefaultMBB);
10105   findBitTestClusters(Clusters, &SI);
10106 
10107   DEBUG({
10108     dbgs() << "Case clusters: ";
10109     for (const CaseCluster &C : Clusters) {
10110       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
10111       if (C.Kind == CC_BitTests) dbgs() << "BT:";
10112 
10113       C.Low->getValue().print(dbgs(), true);
10114       if (C.Low != C.High) {
10115         dbgs() << '-';
10116         C.High->getValue().print(dbgs(), true);
10117       }
10118       dbgs() << ' ';
10119     }
10120     dbgs() << '\n';
10121   });
10122 
10123   assert(!Clusters.empty());
10124   SwitchWorkList WorkList;
10125   CaseClusterIt First = Clusters.begin();
10126   CaseClusterIt Last = Clusters.end() - 1;
10127   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10128   // Scale the branchprobability for DefaultMBB if the peel occurs and
10129   // DefaultMBB is not replaced.
10130   if (PeeledCaseProb != BranchProbability::getZero() &&
10131       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10132     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10133   WorkList.push_back(
10134       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10135 
10136   while (!WorkList.empty()) {
10137     SwitchWorkListItem W = WorkList.back();
10138     WorkList.pop_back();
10139     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10140 
10141     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10142         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10143       // For optimized builds, lower large range as a balanced binary tree.
10144       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10145       continue;
10146     }
10147 
10148     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10149   }
10150 }
10151