xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision a1f6973adeeb43df20c2d20fe870890b2eb57f52)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/CodeGen/WinEHFuncInfo.h"
65 #include "llvm/IR/Argument.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallSite.h"
70 #include "llvm/IR/CallingConv.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfoMetadata.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstrTypes.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicInst.h"
85 #include "llvm/IR/Intrinsics.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Metadata.h"
88 #include "llvm/IR/Module.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstring>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
122 
123 using namespace llvm;
124 using namespace PatternMatch;
125 
126 #define DEBUG_TYPE "isel"
127 
128 /// LimitFloatPrecision - Generate low-precision inline sequences for
129 /// some float libcalls (6, 8 or 12 bits).
130 static unsigned LimitFloatPrecision;
131 
132 static cl::opt<unsigned, true>
133     LimitFPPrecision("limit-float-precision",
134                      cl::desc("Generate low-precision inline sequences "
135                               "for some float libcalls"),
136                      cl::location(LimitFloatPrecision), cl::Hidden,
137                      cl::init(0));
138 
139 static cl::opt<unsigned> SwitchPeelThreshold(
140     "switch-peel-threshold", cl::Hidden, cl::init(66),
141     cl::desc("Set the case probability threshold for peeling the case from a "
142              "switch statement. A value greater than 100 will void this "
143              "optimization"));
144 
145 // Limit the width of DAG chains. This is important in general to prevent
146 // DAG-based analysis from blowing up. For example, alias analysis and
147 // load clustering may not complete in reasonable time. It is difficult to
148 // recognize and avoid this situation within each individual analysis, and
149 // future analyses are likely to have the same behavior. Limiting DAG width is
150 // the safe approach and will be especially important with global DAGs.
151 //
152 // MaxParallelChains default is arbitrarily high to avoid affecting
153 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
154 // sequence over this should have been converted to llvm.memcpy by the
155 // frontend. It is easy to induce this behavior with .ll code such as:
156 // %buffer = alloca [4096 x i8]
157 // %data = load [4096 x i8]* %argPtr
158 // store [4096 x i8] %data, [4096 x i8]* %buffer
159 static const unsigned MaxParallelChains = 64;
160 
161 // Return the calling convention if the Value passed requires ABI mangling as it
162 // is a parameter to a function or a return value from a function which is not
163 // an intrinsic.
164 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
165   if (auto *R = dyn_cast<ReturnInst>(V))
166     return R->getParent()->getParent()->getCallingConv();
167 
168   if (auto *CI = dyn_cast<CallInst>(V)) {
169     const bool IsInlineAsm = CI->isInlineAsm();
170     const bool IsIndirectFunctionCall =
171         !IsInlineAsm && !CI->getCalledFunction();
172 
173     // It is possible that the call instruction is an inline asm statement or an
174     // indirect function call in which case the return value of
175     // getCalledFunction() would be nullptr.
176     const bool IsInstrinsicCall =
177         !IsInlineAsm && !IsIndirectFunctionCall &&
178         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
179 
180     if (!IsInlineAsm && !IsInstrinsicCall)
181       return CI->getCallingConv();
182   }
183 
184   return None;
185 }
186 
187 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
188                                       const SDValue *Parts, unsigned NumParts,
189                                       MVT PartVT, EVT ValueVT, const Value *V,
190                                       Optional<CallingConv::ID> CC);
191 
192 /// getCopyFromParts - Create a value that contains the specified legal parts
193 /// combined into the value they represent.  If the parts combine to a type
194 /// larger than ValueVT then AssertOp can be used to specify whether the extra
195 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
196 /// (ISD::AssertSext).
197 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
198                                 const SDValue *Parts, unsigned NumParts,
199                                 MVT PartVT, EVT ValueVT, const Value *V,
200                                 Optional<CallingConv::ID> CC = None,
201                                 Optional<ISD::NodeType> AssertOp = None) {
202   if (ValueVT.isVector())
203     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
204                                   CC);
205 
206   assert(NumParts > 0 && "No parts to assemble!");
207   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
208   SDValue Val = Parts[0];
209 
210   if (NumParts > 1) {
211     // Assemble the value from multiple parts.
212     if (ValueVT.isInteger()) {
213       unsigned PartBits = PartVT.getSizeInBits();
214       unsigned ValueBits = ValueVT.getSizeInBits();
215 
216       // Assemble the power of 2 part.
217       unsigned RoundParts = NumParts & (NumParts - 1) ?
218         1 << Log2_32(NumParts) : NumParts;
219       unsigned RoundBits = PartBits * RoundParts;
220       EVT RoundVT = RoundBits == ValueBits ?
221         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
222       SDValue Lo, Hi;
223 
224       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
225 
226       if (RoundParts > 2) {
227         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
228                               PartVT, HalfVT, V);
229         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
230                               RoundParts / 2, PartVT, HalfVT, V);
231       } else {
232         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
233         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
234       }
235 
236       if (DAG.getDataLayout().isBigEndian())
237         std::swap(Lo, Hi);
238 
239       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
240 
241       if (RoundParts < NumParts) {
242         // Assemble the trailing non-power-of-2 part.
243         unsigned OddParts = NumParts - RoundParts;
244         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
245         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
246                               OddVT, V, CC);
247 
248         // Combine the round and odd parts.
249         Lo = Val;
250         if (DAG.getDataLayout().isBigEndian())
251           std::swap(Lo, Hi);
252         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
253         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
254         Hi =
255             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
256                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
257                                         TLI.getPointerTy(DAG.getDataLayout())));
258         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
259         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
260       }
261     } else if (PartVT.isFloatingPoint()) {
262       // FP split into multiple FP parts (for ppcf128)
263       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
264              "Unexpected split");
265       SDValue Lo, Hi;
266       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
267       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
268       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
269         std::swap(Lo, Hi);
270       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
271     } else {
272       // FP split into integer parts (soft fp)
273       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
274              !PartVT.isVector() && "Unexpected split");
275       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
276       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
277     }
278   }
279 
280   // There is now one part, held in Val.  Correct it to match ValueVT.
281   // PartEVT is the type of the register class that holds the value.
282   // ValueVT is the type of the inline asm operation.
283   EVT PartEVT = Val.getValueType();
284 
285   if (PartEVT == ValueVT)
286     return Val;
287 
288   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
289       ValueVT.bitsLT(PartEVT)) {
290     // For an FP value in an integer part, we need to truncate to the right
291     // width first.
292     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
293     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
294   }
295 
296   // Handle types that have the same size.
297   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
298     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
299 
300   // Handle types with different sizes.
301   if (PartEVT.isInteger() && ValueVT.isInteger()) {
302     if (ValueVT.bitsLT(PartEVT)) {
303       // For a truncate, see if we have any information to
304       // indicate whether the truncated bits will always be
305       // zero or sign-extension.
306       if (AssertOp.hasValue())
307         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
308                           DAG.getValueType(ValueVT));
309       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
310     }
311     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
312   }
313 
314   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
315     // FP_ROUND's are always exact here.
316     if (ValueVT.bitsLT(Val.getValueType()))
317       return DAG.getNode(
318           ISD::FP_ROUND, DL, ValueVT, Val,
319           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
320 
321     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
322   }
323 
324   llvm_unreachable("Unknown mismatch!");
325 }
326 
327 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
328                                               const Twine &ErrMsg) {
329   const Instruction *I = dyn_cast_or_null<Instruction>(V);
330   if (!V)
331     return Ctx.emitError(ErrMsg);
332 
333   const char *AsmError = ", possible invalid constraint for vector type";
334   if (const CallInst *CI = dyn_cast<CallInst>(I))
335     if (isa<InlineAsm>(CI->getCalledValue()))
336       return Ctx.emitError(I, ErrMsg + AsmError);
337 
338   return Ctx.emitError(I, ErrMsg);
339 }
340 
341 /// getCopyFromPartsVector - Create a value that contains the specified legal
342 /// parts combined into the value they represent.  If the parts combine to a
343 /// type larger than ValueVT then AssertOp can be used to specify whether the
344 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
345 /// ValueVT (ISD::AssertSext).
346 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
347                                       const SDValue *Parts, unsigned NumParts,
348                                       MVT PartVT, EVT ValueVT, const Value *V,
349                                       Optional<CallingConv::ID> CallConv) {
350   assert(ValueVT.isVector() && "Not a vector value");
351   assert(NumParts > 0 && "No parts to assemble!");
352   const bool IsABIRegCopy = CallConv.hasValue();
353 
354   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
355   SDValue Val = Parts[0];
356 
357   // Handle a multi-element vector.
358   if (NumParts > 1) {
359     EVT IntermediateVT;
360     MVT RegisterVT;
361     unsigned NumIntermediates;
362     unsigned NumRegs;
363 
364     if (IsABIRegCopy) {
365       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
366           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
367           NumIntermediates, RegisterVT);
368     } else {
369       NumRegs =
370           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
371                                      NumIntermediates, RegisterVT);
372     }
373 
374     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
375     NumParts = NumRegs; // Silence a compiler warning.
376     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
377     assert(RegisterVT.getSizeInBits() ==
378            Parts[0].getSimpleValueType().getSizeInBits() &&
379            "Part type sizes don't match!");
380 
381     // Assemble the parts into intermediate operands.
382     SmallVector<SDValue, 8> Ops(NumIntermediates);
383     if (NumIntermediates == NumParts) {
384       // If the register was not expanded, truncate or copy the value,
385       // as appropriate.
386       for (unsigned i = 0; i != NumParts; ++i)
387         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
388                                   PartVT, IntermediateVT, V);
389     } else if (NumParts > 0) {
390       // If the intermediate type was expanded, build the intermediate
391       // operands from the parts.
392       assert(NumParts % NumIntermediates == 0 &&
393              "Must expand into a divisible number of parts!");
394       unsigned Factor = NumParts / NumIntermediates;
395       for (unsigned i = 0; i != NumIntermediates; ++i)
396         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
397                                   PartVT, IntermediateVT, V);
398     }
399 
400     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
401     // intermediate operands.
402     EVT BuiltVectorTy =
403         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
404                          (IntermediateVT.isVector()
405                               ? IntermediateVT.getVectorNumElements() * NumParts
406                               : NumIntermediates));
407     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
408                                                 : ISD::BUILD_VECTOR,
409                       DL, BuiltVectorTy, Ops);
410   }
411 
412   // There is now one part, held in Val.  Correct it to match ValueVT.
413   EVT PartEVT = Val.getValueType();
414 
415   if (PartEVT == ValueVT)
416     return Val;
417 
418   if (PartEVT.isVector()) {
419     // If the element type of the source/dest vectors are the same, but the
420     // parts vector has more elements than the value vector, then we have a
421     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
422     // elements we want.
423     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
424       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
425              "Cannot narrow, it would be a lossy transformation");
426       return DAG.getNode(
427           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
428           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
429     }
430 
431     // Vector/Vector bitcast.
432     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
433       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
434 
435     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
436       "Cannot handle this kind of promotion");
437     // Promoted vector extract
438     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
439 
440   }
441 
442   // Trivial bitcast if the types are the same size and the destination
443   // vector type is legal.
444   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
445       TLI.isTypeLegal(ValueVT))
446     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
447 
448   if (ValueVT.getVectorNumElements() != 1) {
449      // Certain ABIs require that vectors are passed as integers. For vectors
450      // are the same size, this is an obvious bitcast.
451      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
452        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
453      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
454        // Bitcast Val back the original type and extract the corresponding
455        // vector we want.
456        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
457        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
458                                            ValueVT.getVectorElementType(), Elts);
459        Val = DAG.getBitcast(WiderVecType, Val);
460        return DAG.getNode(
461            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
462            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
463      }
464 
465      diagnosePossiblyInvalidConstraint(
466          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
467      return DAG.getUNDEF(ValueVT);
468   }
469 
470   // Handle cases such as i8 -> <1 x i1>
471   EVT ValueSVT = ValueVT.getVectorElementType();
472   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
473     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
474                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
475 
476   return DAG.getBuildVector(ValueVT, DL, Val);
477 }
478 
479 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
480                                  SDValue Val, SDValue *Parts, unsigned NumParts,
481                                  MVT PartVT, const Value *V,
482                                  Optional<CallingConv::ID> CallConv);
483 
484 /// getCopyToParts - Create a series of nodes that contain the specified value
485 /// split into legal parts.  If the parts contain more bits than Val, then, for
486 /// integers, ExtendKind can be used to specify how to generate the extra bits.
487 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
488                            SDValue *Parts, unsigned NumParts, MVT PartVT,
489                            const Value *V,
490                            Optional<CallingConv::ID> CallConv = None,
491                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
492   EVT ValueVT = Val.getValueType();
493 
494   // Handle the vector case separately.
495   if (ValueVT.isVector())
496     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
497                                 CallConv);
498 
499   unsigned PartBits = PartVT.getSizeInBits();
500   unsigned OrigNumParts = NumParts;
501   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
502          "Copying to an illegal type!");
503 
504   if (NumParts == 0)
505     return;
506 
507   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
508   EVT PartEVT = PartVT;
509   if (PartEVT == ValueVT) {
510     assert(NumParts == 1 && "No-op copy with multiple parts!");
511     Parts[0] = Val;
512     return;
513   }
514 
515   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
516     // If the parts cover more bits than the value has, promote the value.
517     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
518       assert(NumParts == 1 && "Do not know what to promote to!");
519       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
520     } else {
521       if (ValueVT.isFloatingPoint()) {
522         // FP values need to be bitcast, then extended if they are being put
523         // into a larger container.
524         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
525         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
526       }
527       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
528              ValueVT.isInteger() &&
529              "Unknown mismatch!");
530       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
531       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
532       if (PartVT == MVT::x86mmx)
533         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
534     }
535   } else if (PartBits == ValueVT.getSizeInBits()) {
536     // Different types of the same size.
537     assert(NumParts == 1 && PartEVT != ValueVT);
538     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
540     // If the parts cover less bits than value has, truncate the value.
541     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
542            ValueVT.isInteger() &&
543            "Unknown mismatch!");
544     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
545     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
546     if (PartVT == MVT::x86mmx)
547       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
548   }
549 
550   // The value may have changed - recompute ValueVT.
551   ValueVT = Val.getValueType();
552   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
553          "Failed to tile the value with PartVT!");
554 
555   if (NumParts == 1) {
556     if (PartEVT != ValueVT) {
557       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
558                                         "scalar-to-vector conversion failed");
559       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
560     }
561 
562     Parts[0] = Val;
563     return;
564   }
565 
566   // Expand the value into multiple parts.
567   if (NumParts & (NumParts - 1)) {
568     // The number of parts is not a power of 2.  Split off and copy the tail.
569     assert(PartVT.isInteger() && ValueVT.isInteger() &&
570            "Do not know what to expand to!");
571     unsigned RoundParts = 1 << Log2_32(NumParts);
572     unsigned RoundBits = RoundParts * PartBits;
573     unsigned OddParts = NumParts - RoundParts;
574     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
575                                  DAG.getIntPtrConstant(RoundBits, DL));
576     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
577                    CallConv);
578 
579     if (DAG.getDataLayout().isBigEndian())
580       // The odd parts were reversed by getCopyToParts - unreverse them.
581       std::reverse(Parts + RoundParts, Parts + NumParts);
582 
583     NumParts = RoundParts;
584     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
585     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
586   }
587 
588   // The number of parts is a power of 2.  Repeatedly bisect the value using
589   // EXTRACT_ELEMENT.
590   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
591                          EVT::getIntegerVT(*DAG.getContext(),
592                                            ValueVT.getSizeInBits()),
593                          Val);
594 
595   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
596     for (unsigned i = 0; i < NumParts; i += StepSize) {
597       unsigned ThisBits = StepSize * PartBits / 2;
598       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
599       SDValue &Part0 = Parts[i];
600       SDValue &Part1 = Parts[i+StepSize/2];
601 
602       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
603                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
604       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
605                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
606 
607       if (ThisBits == PartBits && ThisVT != PartVT) {
608         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
609         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
610       }
611     }
612   }
613 
614   if (DAG.getDataLayout().isBigEndian())
615     std::reverse(Parts, Parts + OrigNumParts);
616 }
617 
618 static SDValue widenVectorToPartType(SelectionDAG &DAG,
619                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
620   if (!PartVT.isVector())
621     return SDValue();
622 
623   EVT ValueVT = Val.getValueType();
624   unsigned PartNumElts = PartVT.getVectorNumElements();
625   unsigned ValueNumElts = ValueVT.getVectorNumElements();
626   if (PartNumElts > ValueNumElts &&
627       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
628     EVT ElementVT = PartVT.getVectorElementType();
629     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
630     // undef elements.
631     SmallVector<SDValue, 16> Ops;
632     DAG.ExtractVectorElements(Val, Ops);
633     SDValue EltUndef = DAG.getUNDEF(ElementVT);
634     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
635       Ops.push_back(EltUndef);
636 
637     // FIXME: Use CONCAT for 2x -> 4x.
638     return DAG.getBuildVector(PartVT, DL, Ops);
639   }
640 
641   return SDValue();
642 }
643 
644 /// getCopyToPartsVector - Create a series of nodes that contain the specified
645 /// value split into legal parts.
646 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
647                                  SDValue Val, SDValue *Parts, unsigned NumParts,
648                                  MVT PartVT, const Value *V,
649                                  Optional<CallingConv::ID> CallConv) {
650   EVT ValueVT = Val.getValueType();
651   assert(ValueVT.isVector() && "Not a vector");
652   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
653   const bool IsABIRegCopy = CallConv.hasValue();
654 
655   if (NumParts == 1) {
656     EVT PartEVT = PartVT;
657     if (PartEVT == ValueVT) {
658       // Nothing to do.
659     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
660       // Bitconvert vector->vector case.
661       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
662     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
663       Val = Widened;
664     } else if (PartVT.isVector() &&
665                PartEVT.getVectorElementType().bitsGE(
666                  ValueVT.getVectorElementType()) &&
667                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
668 
669       // Promoted vector extract
670       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
671     } else {
672       if (ValueVT.getVectorNumElements() == 1) {
673         Val = DAG.getNode(
674             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
675             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
676       } else {
677         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
678                "lossy conversion of vector to scalar type");
679         EVT IntermediateType =
680             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
681         Val = DAG.getBitcast(IntermediateType, Val);
682         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
683       }
684     }
685 
686     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
687     Parts[0] = Val;
688     return;
689   }
690 
691   // Handle a multi-element vector.
692   EVT IntermediateVT;
693   MVT RegisterVT;
694   unsigned NumIntermediates;
695   unsigned NumRegs;
696   if (IsABIRegCopy) {
697     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
698         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
699         NumIntermediates, RegisterVT);
700   } else {
701     NumRegs =
702         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
703                                    NumIntermediates, RegisterVT);
704   }
705 
706   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
707   NumParts = NumRegs; // Silence a compiler warning.
708   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
709 
710   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
711     IntermediateVT.getVectorNumElements() : 1;
712 
713   // Convert the vector to the appropiate type if necessary.
714   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
715 
716   EVT BuiltVectorTy = EVT::getVectorVT(
717       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
718   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
719   if (ValueVT != BuiltVectorTy) {
720     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
721       Val = Widened;
722 
723     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
724   }
725 
726   // Split the vector into intermediate operands.
727   SmallVector<SDValue, 8> Ops(NumIntermediates);
728   for (unsigned i = 0; i != NumIntermediates; ++i) {
729     if (IntermediateVT.isVector()) {
730       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
731                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
732     } else {
733       Ops[i] = DAG.getNode(
734           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
735           DAG.getConstant(i, DL, IdxVT));
736     }
737   }
738 
739   // Split the intermediate operands into legal parts.
740   if (NumParts == NumIntermediates) {
741     // If the register was not expanded, promote or copy the value,
742     // as appropriate.
743     for (unsigned i = 0; i != NumParts; ++i)
744       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
745   } else if (NumParts > 0) {
746     // If the intermediate type was expanded, split each the value into
747     // legal parts.
748     assert(NumIntermediates != 0 && "division by zero");
749     assert(NumParts % NumIntermediates == 0 &&
750            "Must expand into a divisible number of parts!");
751     unsigned Factor = NumParts / NumIntermediates;
752     for (unsigned i = 0; i != NumIntermediates; ++i)
753       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
754                      CallConv);
755   }
756 }
757 
758 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
759                            EVT valuevt, Optional<CallingConv::ID> CC)
760     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
761       RegCount(1, regs.size()), CallConv(CC) {}
762 
763 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
764                            const DataLayout &DL, unsigned Reg, Type *Ty,
765                            Optional<CallingConv::ID> CC) {
766   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
767 
768   CallConv = CC;
769 
770   for (EVT ValueVT : ValueVTs) {
771     unsigned NumRegs =
772         isABIMangled()
773             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
774             : TLI.getNumRegisters(Context, ValueVT);
775     MVT RegisterVT =
776         isABIMangled()
777             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
778             : TLI.getRegisterType(Context, ValueVT);
779     for (unsigned i = 0; i != NumRegs; ++i)
780       Regs.push_back(Reg + i);
781     RegVTs.push_back(RegisterVT);
782     RegCount.push_back(NumRegs);
783     Reg += NumRegs;
784   }
785 }
786 
787 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
788                                       FunctionLoweringInfo &FuncInfo,
789                                       const SDLoc &dl, SDValue &Chain,
790                                       SDValue *Flag, const Value *V) const {
791   // A Value with type {} or [0 x %t] needs no registers.
792   if (ValueVTs.empty())
793     return SDValue();
794 
795   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
796 
797   // Assemble the legal parts into the final values.
798   SmallVector<SDValue, 4> Values(ValueVTs.size());
799   SmallVector<SDValue, 8> Parts;
800   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
801     // Copy the legal parts from the registers.
802     EVT ValueVT = ValueVTs[Value];
803     unsigned NumRegs = RegCount[Value];
804     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
805                                           *DAG.getContext(),
806                                           CallConv.getValue(), RegVTs[Value])
807                                     : RegVTs[Value];
808 
809     Parts.resize(NumRegs);
810     for (unsigned i = 0; i != NumRegs; ++i) {
811       SDValue P;
812       if (!Flag) {
813         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
814       } else {
815         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
816         *Flag = P.getValue(2);
817       }
818 
819       Chain = P.getValue(1);
820       Parts[i] = P;
821 
822       // If the source register was virtual and if we know something about it,
823       // add an assert node.
824       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
825           !RegisterVT.isInteger())
826         continue;
827 
828       const FunctionLoweringInfo::LiveOutInfo *LOI =
829         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
830       if (!LOI)
831         continue;
832 
833       unsigned RegSize = RegisterVT.getScalarSizeInBits();
834       unsigned NumSignBits = LOI->NumSignBits;
835       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
836 
837       if (NumZeroBits == RegSize) {
838         // The current value is a zero.
839         // Explicitly express that as it would be easier for
840         // optimizations to kick in.
841         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
842         continue;
843       }
844 
845       // FIXME: We capture more information than the dag can represent.  For
846       // now, just use the tightest assertzext/assertsext possible.
847       bool isSExt;
848       EVT FromVT(MVT::Other);
849       if (NumZeroBits) {
850         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
851         isSExt = false;
852       } else if (NumSignBits > 1) {
853         FromVT =
854             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
855         isSExt = true;
856       } else {
857         continue;
858       }
859       // Add an assertion node.
860       assert(FromVT != MVT::Other);
861       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
862                              RegisterVT, P, DAG.getValueType(FromVT));
863     }
864 
865     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
866                                      RegisterVT, ValueVT, V, CallConv);
867     Part += NumRegs;
868     Parts.clear();
869   }
870 
871   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
872 }
873 
874 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
875                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
876                                  const Value *V,
877                                  ISD::NodeType PreferredExtendType) const {
878   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
879   ISD::NodeType ExtendKind = PreferredExtendType;
880 
881   // Get the list of the values's legal parts.
882   unsigned NumRegs = Regs.size();
883   SmallVector<SDValue, 8> Parts(NumRegs);
884   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
885     unsigned NumParts = RegCount[Value];
886 
887     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
888                                           *DAG.getContext(),
889                                           CallConv.getValue(), RegVTs[Value])
890                                     : RegVTs[Value];
891 
892     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
893       ExtendKind = ISD::ZERO_EXTEND;
894 
895     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
896                    NumParts, RegisterVT, V, CallConv, ExtendKind);
897     Part += NumParts;
898   }
899 
900   // Copy the parts into the registers.
901   SmallVector<SDValue, 8> Chains(NumRegs);
902   for (unsigned i = 0; i != NumRegs; ++i) {
903     SDValue Part;
904     if (!Flag) {
905       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
906     } else {
907       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
908       *Flag = Part.getValue(1);
909     }
910 
911     Chains[i] = Part.getValue(0);
912   }
913 
914   if (NumRegs == 1 || Flag)
915     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
916     // flagged to it. That is the CopyToReg nodes and the user are considered
917     // a single scheduling unit. If we create a TokenFactor and return it as
918     // chain, then the TokenFactor is both a predecessor (operand) of the
919     // user as well as a successor (the TF operands are flagged to the user).
920     // c1, f1 = CopyToReg
921     // c2, f2 = CopyToReg
922     // c3     = TokenFactor c1, c2
923     // ...
924     //        = op c3, ..., f2
925     Chain = Chains[NumRegs-1];
926   else
927     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
928 }
929 
930 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
931                                         unsigned MatchingIdx, const SDLoc &dl,
932                                         SelectionDAG &DAG,
933                                         std::vector<SDValue> &Ops) const {
934   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
935 
936   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
937   if (HasMatching)
938     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
939   else if (!Regs.empty() &&
940            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
941     // Put the register class of the virtual registers in the flag word.  That
942     // way, later passes can recompute register class constraints for inline
943     // assembly as well as normal instructions.
944     // Don't do this for tied operands that can use the regclass information
945     // from the def.
946     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
947     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
948     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
949   }
950 
951   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
952   Ops.push_back(Res);
953 
954   if (Code == InlineAsm::Kind_Clobber) {
955     // Clobbers should always have a 1:1 mapping with registers, and may
956     // reference registers that have illegal (e.g. vector) types. Hence, we
957     // shouldn't try to apply any sort of splitting logic to them.
958     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
959            "No 1:1 mapping from clobbers to regs?");
960     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
961     (void)SP;
962     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
963       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
964       assert(
965           (Regs[I] != SP ||
966            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
967           "If we clobbered the stack pointer, MFI should know about it.");
968     }
969     return;
970   }
971 
972   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
973     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
974     MVT RegisterVT = RegVTs[Value];
975     for (unsigned i = 0; i != NumRegs; ++i) {
976       assert(Reg < Regs.size() && "Mismatch in # registers expected");
977       unsigned TheReg = Regs[Reg++];
978       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
979     }
980   }
981 }
982 
983 SmallVector<std::pair<unsigned, unsigned>, 4>
984 RegsForValue::getRegsAndSizes() const {
985   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
986   unsigned I = 0;
987   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
988     unsigned RegCount = std::get<0>(CountAndVT);
989     MVT RegisterVT = std::get<1>(CountAndVT);
990     unsigned RegisterSize = RegisterVT.getSizeInBits();
991     for (unsigned E = I + RegCount; I != E; ++I)
992       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
993   }
994   return OutVec;
995 }
996 
997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
998                                const TargetLibraryInfo *li) {
999   AA = aa;
1000   GFI = gfi;
1001   LibInfo = li;
1002   DL = &DAG.getDataLayout();
1003   Context = DAG.getContext();
1004   LPadToCallSiteMap.clear();
1005 }
1006 
1007 void SelectionDAGBuilder::clear() {
1008   NodeMap.clear();
1009   UnusedArgNodeMap.clear();
1010   PendingLoads.clear();
1011   PendingExports.clear();
1012   CurInst = nullptr;
1013   HasTailCall = false;
1014   SDNodeOrder = LowestSDNodeOrder;
1015   StatepointLowering.clear();
1016 }
1017 
1018 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1019   DanglingDebugInfoMap.clear();
1020 }
1021 
1022 SDValue SelectionDAGBuilder::getRoot() {
1023   if (PendingLoads.empty())
1024     return DAG.getRoot();
1025 
1026   if (PendingLoads.size() == 1) {
1027     SDValue Root = PendingLoads[0];
1028     DAG.setRoot(Root);
1029     PendingLoads.clear();
1030     return Root;
1031   }
1032 
1033   // Otherwise, we have to make a token factor node.
1034   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1035   PendingLoads.clear();
1036   DAG.setRoot(Root);
1037   return Root;
1038 }
1039 
1040 SDValue SelectionDAGBuilder::getControlRoot() {
1041   SDValue Root = DAG.getRoot();
1042 
1043   if (PendingExports.empty())
1044     return Root;
1045 
1046   // Turn all of the CopyToReg chains into one factored node.
1047   if (Root.getOpcode() != ISD::EntryToken) {
1048     unsigned i = 0, e = PendingExports.size();
1049     for (; i != e; ++i) {
1050       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1051       if (PendingExports[i].getNode()->getOperand(0) == Root)
1052         break;  // Don't add the root if we already indirectly depend on it.
1053     }
1054 
1055     if (i == e)
1056       PendingExports.push_back(Root);
1057   }
1058 
1059   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1060                      PendingExports);
1061   PendingExports.clear();
1062   DAG.setRoot(Root);
1063   return Root;
1064 }
1065 
1066 void SelectionDAGBuilder::visit(const Instruction &I) {
1067   // Set up outgoing PHI node register values before emitting the terminator.
1068   if (I.isTerminator()) {
1069     HandlePHINodesInSuccessorBlocks(I.getParent());
1070   }
1071 
1072   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1073   if (!isa<DbgInfoIntrinsic>(I))
1074     ++SDNodeOrder;
1075 
1076   CurInst = &I;
1077 
1078   visit(I.getOpcode(), I);
1079 
1080   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1081     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1082     // maps to this instruction.
1083     // TODO: We could handle all flags (nsw, etc) here.
1084     // TODO: If an IR instruction maps to >1 node, only the final node will have
1085     //       flags set.
1086     if (SDNode *Node = getNodeForIRValue(&I)) {
1087       SDNodeFlags IncomingFlags;
1088       IncomingFlags.copyFMF(*FPMO);
1089       if (!Node->getFlags().isDefined())
1090         Node->setFlags(IncomingFlags);
1091       else
1092         Node->intersectFlagsWith(IncomingFlags);
1093     }
1094   }
1095 
1096   if (!I.isTerminator() && !HasTailCall &&
1097       !isStatepoint(&I)) // statepoints handle their exports internally
1098     CopyToExportRegsIfNeeded(&I);
1099 
1100   CurInst = nullptr;
1101 }
1102 
1103 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1104   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1105 }
1106 
1107 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1108   // Note: this doesn't use InstVisitor, because it has to work with
1109   // ConstantExpr's in addition to instructions.
1110   switch (Opcode) {
1111   default: llvm_unreachable("Unknown instruction type encountered!");
1112     // Build the switch statement using the Instruction.def file.
1113 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1114     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1115 #include "llvm/IR/Instruction.def"
1116   }
1117 }
1118 
1119 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1120                                                 const DIExpression *Expr) {
1121   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1122     const DbgValueInst *DI = DDI.getDI();
1123     DIVariable *DanglingVariable = DI->getVariable();
1124     DIExpression *DanglingExpr = DI->getExpression();
1125     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1126       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1127       return true;
1128     }
1129     return false;
1130   };
1131 
1132   for (auto &DDIMI : DanglingDebugInfoMap) {
1133     DanglingDebugInfoVector &DDIV = DDIMI.second;
1134     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1135   }
1136 }
1137 
1138 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1139 // generate the debug data structures now that we've seen its definition.
1140 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1141                                                    SDValue Val) {
1142   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1143   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1144     return;
1145 
1146   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1147   for (auto &DDI : DDIV) {
1148     const DbgValueInst *DI = DDI.getDI();
1149     assert(DI && "Ill-formed DanglingDebugInfo");
1150     DebugLoc dl = DDI.getdl();
1151     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1152     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1153     DILocalVariable *Variable = DI->getVariable();
1154     DIExpression *Expr = DI->getExpression();
1155     assert(Variable->isValidLocationForIntrinsic(dl) &&
1156            "Expected inlined-at fields to agree");
1157     SDDbgValue *SDV;
1158     if (Val.getNode()) {
1159       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1160         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1161                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1162         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1163         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1164         // inserted after the definition of Val when emitting the instructions
1165         // after ISel. An alternative could be to teach
1166         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1167         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1168                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1169                    << ValSDNodeOrder << "\n");
1170         SDV = getDbgValue(Val, Variable, Expr, dl,
1171                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1172         DAG.AddDbgValue(SDV, Val.getNode(), false);
1173       } else
1174         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1175                           << "in EmitFuncArgumentDbgValue\n");
1176     } else
1177       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1178   }
1179   DDIV.clear();
1180 }
1181 
1182 /// getCopyFromRegs - If there was virtual register allocated for the value V
1183 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1184 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1185   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1186   SDValue Result;
1187 
1188   if (It != FuncInfo.ValueMap.end()) {
1189     unsigned InReg = It->second;
1190 
1191     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1192                      DAG.getDataLayout(), InReg, Ty,
1193                      None); // This is not an ABI copy.
1194     SDValue Chain = DAG.getEntryNode();
1195     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1196                                  V);
1197     resolveDanglingDebugInfo(V, Result);
1198   }
1199 
1200   return Result;
1201 }
1202 
1203 /// getValue - Return an SDValue for the given Value.
1204 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1205   // If we already have an SDValue for this value, use it. It's important
1206   // to do this first, so that we don't create a CopyFromReg if we already
1207   // have a regular SDValue.
1208   SDValue &N = NodeMap[V];
1209   if (N.getNode()) return N;
1210 
1211   // If there's a virtual register allocated and initialized for this
1212   // value, use it.
1213   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1214     return copyFromReg;
1215 
1216   // Otherwise create a new SDValue and remember it.
1217   SDValue Val = getValueImpl(V);
1218   NodeMap[V] = Val;
1219   resolveDanglingDebugInfo(V, Val);
1220   return Val;
1221 }
1222 
1223 // Return true if SDValue exists for the given Value
1224 bool SelectionDAGBuilder::findValue(const Value *V) const {
1225   return (NodeMap.find(V) != NodeMap.end()) ||
1226     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1227 }
1228 
1229 /// getNonRegisterValue - Return an SDValue for the given Value, but
1230 /// don't look in FuncInfo.ValueMap for a virtual register.
1231 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1232   // If we already have an SDValue for this value, use it.
1233   SDValue &N = NodeMap[V];
1234   if (N.getNode()) {
1235     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1236       // Remove the debug location from the node as the node is about to be used
1237       // in a location which may differ from the original debug location.  This
1238       // is relevant to Constant and ConstantFP nodes because they can appear
1239       // as constant expressions inside PHI nodes.
1240       N->setDebugLoc(DebugLoc());
1241     }
1242     return N;
1243   }
1244 
1245   // Otherwise create a new SDValue and remember it.
1246   SDValue Val = getValueImpl(V);
1247   NodeMap[V] = Val;
1248   resolveDanglingDebugInfo(V, Val);
1249   return Val;
1250 }
1251 
1252 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1253 /// Create an SDValue for the given value.
1254 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1255   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1256 
1257   if (const Constant *C = dyn_cast<Constant>(V)) {
1258     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1259 
1260     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1261       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1262 
1263     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1264       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1265 
1266     if (isa<ConstantPointerNull>(C)) {
1267       unsigned AS = V->getType()->getPointerAddressSpace();
1268       return DAG.getConstant(0, getCurSDLoc(),
1269                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1270     }
1271 
1272     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1273       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1274 
1275     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1276       return DAG.getUNDEF(VT);
1277 
1278     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1279       visit(CE->getOpcode(), *CE);
1280       SDValue N1 = NodeMap[V];
1281       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1282       return N1;
1283     }
1284 
1285     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1286       SmallVector<SDValue, 4> Constants;
1287       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1288            OI != OE; ++OI) {
1289         SDNode *Val = getValue(*OI).getNode();
1290         // If the operand is an empty aggregate, there are no values.
1291         if (!Val) continue;
1292         // Add each leaf value from the operand to the Constants list
1293         // to form a flattened list of all the values.
1294         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1295           Constants.push_back(SDValue(Val, i));
1296       }
1297 
1298       return DAG.getMergeValues(Constants, getCurSDLoc());
1299     }
1300 
1301     if (const ConstantDataSequential *CDS =
1302           dyn_cast<ConstantDataSequential>(C)) {
1303       SmallVector<SDValue, 4> Ops;
1304       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1305         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1306         // Add each leaf value from the operand to the Constants list
1307         // to form a flattened list of all the values.
1308         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1309           Ops.push_back(SDValue(Val, i));
1310       }
1311 
1312       if (isa<ArrayType>(CDS->getType()))
1313         return DAG.getMergeValues(Ops, getCurSDLoc());
1314       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1315     }
1316 
1317     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1318       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1319              "Unknown struct or array constant!");
1320 
1321       SmallVector<EVT, 4> ValueVTs;
1322       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1323       unsigned NumElts = ValueVTs.size();
1324       if (NumElts == 0)
1325         return SDValue(); // empty struct
1326       SmallVector<SDValue, 4> Constants(NumElts);
1327       for (unsigned i = 0; i != NumElts; ++i) {
1328         EVT EltVT = ValueVTs[i];
1329         if (isa<UndefValue>(C))
1330           Constants[i] = DAG.getUNDEF(EltVT);
1331         else if (EltVT.isFloatingPoint())
1332           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1333         else
1334           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1335       }
1336 
1337       return DAG.getMergeValues(Constants, getCurSDLoc());
1338     }
1339 
1340     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1341       return DAG.getBlockAddress(BA, VT);
1342 
1343     VectorType *VecTy = cast<VectorType>(V->getType());
1344     unsigned NumElements = VecTy->getNumElements();
1345 
1346     // Now that we know the number and type of the elements, get that number of
1347     // elements into the Ops array based on what kind of constant it is.
1348     SmallVector<SDValue, 16> Ops;
1349     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1350       for (unsigned i = 0; i != NumElements; ++i)
1351         Ops.push_back(getValue(CV->getOperand(i)));
1352     } else {
1353       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1354       EVT EltVT =
1355           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1356 
1357       SDValue Op;
1358       if (EltVT.isFloatingPoint())
1359         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1360       else
1361         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1362       Ops.assign(NumElements, Op);
1363     }
1364 
1365     // Create a BUILD_VECTOR node.
1366     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1367   }
1368 
1369   // If this is a static alloca, generate it as the frameindex instead of
1370   // computation.
1371   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1372     DenseMap<const AllocaInst*, int>::iterator SI =
1373       FuncInfo.StaticAllocaMap.find(AI);
1374     if (SI != FuncInfo.StaticAllocaMap.end())
1375       return DAG.getFrameIndex(SI->second,
1376                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1377   }
1378 
1379   // If this is an instruction which fast-isel has deferred, select it now.
1380   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1381     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1382 
1383     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1384                      Inst->getType(), getABIRegCopyCC(V));
1385     SDValue Chain = DAG.getEntryNode();
1386     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1387   }
1388 
1389   llvm_unreachable("Can't get register for value!");
1390 }
1391 
1392 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1393   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1394   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1395   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1396   bool IsSEH = isAsynchronousEHPersonality(Pers);
1397   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1398   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1399   if (!IsSEH)
1400     CatchPadMBB->setIsEHScopeEntry();
1401   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1402   if (IsMSVCCXX || IsCoreCLR)
1403     CatchPadMBB->setIsEHFuncletEntry();
1404   // Wasm does not need catchpads anymore
1405   if (!IsWasmCXX)
1406     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1407                             getControlRoot()));
1408 }
1409 
1410 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1411   // Update machine-CFG edge.
1412   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1413   FuncInfo.MBB->addSuccessor(TargetMBB);
1414 
1415   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1416   bool IsSEH = isAsynchronousEHPersonality(Pers);
1417   if (IsSEH) {
1418     // If this is not a fall-through branch or optimizations are switched off,
1419     // emit the branch.
1420     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1421         TM.getOptLevel() == CodeGenOpt::None)
1422       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1423                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1424     return;
1425   }
1426 
1427   // Figure out the funclet membership for the catchret's successor.
1428   // This will be used by the FuncletLayout pass to determine how to order the
1429   // BB's.
1430   // A 'catchret' returns to the outer scope's color.
1431   Value *ParentPad = I.getCatchSwitchParentPad();
1432   const BasicBlock *SuccessorColor;
1433   if (isa<ConstantTokenNone>(ParentPad))
1434     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1435   else
1436     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1437   assert(SuccessorColor && "No parent funclet for catchret!");
1438   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1439   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1440 
1441   // Create the terminator node.
1442   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1443                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1444                             DAG.getBasicBlock(SuccessorColorMBB));
1445   DAG.setRoot(Ret);
1446 }
1447 
1448 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1449   // Don't emit any special code for the cleanuppad instruction. It just marks
1450   // the start of an EH scope/funclet.
1451   FuncInfo.MBB->setIsEHScopeEntry();
1452   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1453   if (Pers != EHPersonality::Wasm_CXX) {
1454     FuncInfo.MBB->setIsEHFuncletEntry();
1455     FuncInfo.MBB->setIsCleanupFuncletEntry();
1456   }
1457 }
1458 
1459 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1460 /// many places it could ultimately go. In the IR, we have a single unwind
1461 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1462 /// This function skips over imaginary basic blocks that hold catchswitch
1463 /// instructions, and finds all the "real" machine
1464 /// basic block destinations. As those destinations may not be successors of
1465 /// EHPadBB, here we also calculate the edge probability to those destinations.
1466 /// The passed-in Prob is the edge probability to EHPadBB.
1467 static void findUnwindDestinations(
1468     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1469     BranchProbability Prob,
1470     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1471         &UnwindDests) {
1472   EHPersonality Personality =
1473     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1474   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1475   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1476   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1477   bool IsSEH = isAsynchronousEHPersonality(Personality);
1478 
1479   while (EHPadBB) {
1480     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1481     BasicBlock *NewEHPadBB = nullptr;
1482     if (isa<LandingPadInst>(Pad)) {
1483       // Stop on landingpads. They are not funclets.
1484       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1485       break;
1486     } else if (isa<CleanupPadInst>(Pad)) {
1487       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1488       // personalities.
1489       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1490       UnwindDests.back().first->setIsEHScopeEntry();
1491       if (!IsWasmCXX)
1492         UnwindDests.back().first->setIsEHFuncletEntry();
1493       break;
1494     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1495       // Add the catchpad handlers to the possible destinations.
1496       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1497         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1498         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1499         if (IsMSVCCXX || IsCoreCLR)
1500           UnwindDests.back().first->setIsEHFuncletEntry();
1501         if (!IsSEH)
1502           UnwindDests.back().first->setIsEHScopeEntry();
1503       }
1504       NewEHPadBB = CatchSwitch->getUnwindDest();
1505     } else {
1506       continue;
1507     }
1508 
1509     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1510     if (BPI && NewEHPadBB)
1511       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1512     EHPadBB = NewEHPadBB;
1513   }
1514 }
1515 
1516 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1517   // Update successor info.
1518   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1519   auto UnwindDest = I.getUnwindDest();
1520   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1521   BranchProbability UnwindDestProb =
1522       (BPI && UnwindDest)
1523           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1524           : BranchProbability::getZero();
1525   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1526   for (auto &UnwindDest : UnwindDests) {
1527     UnwindDest.first->setIsEHPad();
1528     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1529   }
1530   FuncInfo.MBB->normalizeSuccProbs();
1531 
1532   // Create the terminator node.
1533   SDValue Ret =
1534       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1535   DAG.setRoot(Ret);
1536 }
1537 
1538 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1539   report_fatal_error("visitCatchSwitch not yet implemented!");
1540 }
1541 
1542 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1544   auto &DL = DAG.getDataLayout();
1545   SDValue Chain = getControlRoot();
1546   SmallVector<ISD::OutputArg, 8> Outs;
1547   SmallVector<SDValue, 8> OutVals;
1548 
1549   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1550   // lower
1551   //
1552   //   %val = call <ty> @llvm.experimental.deoptimize()
1553   //   ret <ty> %val
1554   //
1555   // differently.
1556   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1557     LowerDeoptimizingReturn();
1558     return;
1559   }
1560 
1561   if (!FuncInfo.CanLowerReturn) {
1562     unsigned DemoteReg = FuncInfo.DemoteRegister;
1563     const Function *F = I.getParent()->getParent();
1564 
1565     // Emit a store of the return value through the virtual register.
1566     // Leave Outs empty so that LowerReturn won't try to load return
1567     // registers the usual way.
1568     SmallVector<EVT, 1> PtrValueVTs;
1569     ComputeValueVTs(TLI, DL,
1570                     F->getReturnType()->getPointerTo(
1571                         DAG.getDataLayout().getAllocaAddrSpace()),
1572                     PtrValueVTs);
1573 
1574     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1575                                         DemoteReg, PtrValueVTs[0]);
1576     SDValue RetOp = getValue(I.getOperand(0));
1577 
1578     SmallVector<EVT, 4> ValueVTs;
1579     SmallVector<uint64_t, 4> Offsets;
1580     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1581     unsigned NumValues = ValueVTs.size();
1582 
1583     SmallVector<SDValue, 4> Chains(NumValues);
1584     for (unsigned i = 0; i != NumValues; ++i) {
1585       // An aggregate return value cannot wrap around the address space, so
1586       // offsets to its parts don't wrap either.
1587       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1588       Chains[i] = DAG.getStore(
1589           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1590           // FIXME: better loc info would be nice.
1591           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1592     }
1593 
1594     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1595                         MVT::Other, Chains);
1596   } else if (I.getNumOperands() != 0) {
1597     SmallVector<EVT, 4> ValueVTs;
1598     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1599     unsigned NumValues = ValueVTs.size();
1600     if (NumValues) {
1601       SDValue RetOp = getValue(I.getOperand(0));
1602 
1603       const Function *F = I.getParent()->getParent();
1604 
1605       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1606       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1607                                           Attribute::SExt))
1608         ExtendKind = ISD::SIGN_EXTEND;
1609       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1610                                                Attribute::ZExt))
1611         ExtendKind = ISD::ZERO_EXTEND;
1612 
1613       LLVMContext &Context = F->getContext();
1614       bool RetInReg = F->getAttributes().hasAttribute(
1615           AttributeList::ReturnIndex, Attribute::InReg);
1616 
1617       for (unsigned j = 0; j != NumValues; ++j) {
1618         EVT VT = ValueVTs[j];
1619 
1620         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1621           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1622 
1623         CallingConv::ID CC = F->getCallingConv();
1624 
1625         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1626         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1627         SmallVector<SDValue, 4> Parts(NumParts);
1628         getCopyToParts(DAG, getCurSDLoc(),
1629                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1630                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1631 
1632         // 'inreg' on function refers to return value
1633         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1634         if (RetInReg)
1635           Flags.setInReg();
1636 
1637         // Propagate extension type if any
1638         if (ExtendKind == ISD::SIGN_EXTEND)
1639           Flags.setSExt();
1640         else if (ExtendKind == ISD::ZERO_EXTEND)
1641           Flags.setZExt();
1642 
1643         for (unsigned i = 0; i < NumParts; ++i) {
1644           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1645                                         VT, /*isfixed=*/true, 0, 0));
1646           OutVals.push_back(Parts[i]);
1647         }
1648       }
1649     }
1650   }
1651 
1652   // Push in swifterror virtual register as the last element of Outs. This makes
1653   // sure swifterror virtual register will be returned in the swifterror
1654   // physical register.
1655   const Function *F = I.getParent()->getParent();
1656   if (TLI.supportSwiftError() &&
1657       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1658     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1659     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1660     Flags.setSwiftError();
1661     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1662                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1663                                   true /*isfixed*/, 1 /*origidx*/,
1664                                   0 /*partOffs*/));
1665     // Create SDNode for the swifterror virtual register.
1666     OutVals.push_back(
1667         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1668                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1669                         EVT(TLI.getPointerTy(DL))));
1670   }
1671 
1672   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1673   CallingConv::ID CallConv =
1674     DAG.getMachineFunction().getFunction().getCallingConv();
1675   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1676       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1677 
1678   // Verify that the target's LowerReturn behaved as expected.
1679   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1680          "LowerReturn didn't return a valid chain!");
1681 
1682   // Update the DAG with the new chain value resulting from return lowering.
1683   DAG.setRoot(Chain);
1684 }
1685 
1686 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1687 /// created for it, emit nodes to copy the value into the virtual
1688 /// registers.
1689 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1690   // Skip empty types
1691   if (V->getType()->isEmptyTy())
1692     return;
1693 
1694   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1695   if (VMI != FuncInfo.ValueMap.end()) {
1696     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1697     CopyValueToVirtualRegister(V, VMI->second);
1698   }
1699 }
1700 
1701 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1702 /// the current basic block, add it to ValueMap now so that we'll get a
1703 /// CopyTo/FromReg.
1704 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1705   // No need to export constants.
1706   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1707 
1708   // Already exported?
1709   if (FuncInfo.isExportedInst(V)) return;
1710 
1711   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1712   CopyValueToVirtualRegister(V, Reg);
1713 }
1714 
1715 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1716                                                      const BasicBlock *FromBB) {
1717   // The operands of the setcc have to be in this block.  We don't know
1718   // how to export them from some other block.
1719   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1720     // Can export from current BB.
1721     if (VI->getParent() == FromBB)
1722       return true;
1723 
1724     // Is already exported, noop.
1725     return FuncInfo.isExportedInst(V);
1726   }
1727 
1728   // If this is an argument, we can export it if the BB is the entry block or
1729   // if it is already exported.
1730   if (isa<Argument>(V)) {
1731     if (FromBB == &FromBB->getParent()->getEntryBlock())
1732       return true;
1733 
1734     // Otherwise, can only export this if it is already exported.
1735     return FuncInfo.isExportedInst(V);
1736   }
1737 
1738   // Otherwise, constants can always be exported.
1739   return true;
1740 }
1741 
1742 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1743 BranchProbability
1744 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1745                                         const MachineBasicBlock *Dst) const {
1746   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1747   const BasicBlock *SrcBB = Src->getBasicBlock();
1748   const BasicBlock *DstBB = Dst->getBasicBlock();
1749   if (!BPI) {
1750     // If BPI is not available, set the default probability as 1 / N, where N is
1751     // the number of successors.
1752     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1753     return BranchProbability(1, SuccSize);
1754   }
1755   return BPI->getEdgeProbability(SrcBB, DstBB);
1756 }
1757 
1758 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1759                                                MachineBasicBlock *Dst,
1760                                                BranchProbability Prob) {
1761   if (!FuncInfo.BPI)
1762     Src->addSuccessorWithoutProb(Dst);
1763   else {
1764     if (Prob.isUnknown())
1765       Prob = getEdgeProbability(Src, Dst);
1766     Src->addSuccessor(Dst, Prob);
1767   }
1768 }
1769 
1770 static bool InBlock(const Value *V, const BasicBlock *BB) {
1771   if (const Instruction *I = dyn_cast<Instruction>(V))
1772     return I->getParent() == BB;
1773   return true;
1774 }
1775 
1776 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1777 /// This function emits a branch and is used at the leaves of an OR or an
1778 /// AND operator tree.
1779 void
1780 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1781                                                   MachineBasicBlock *TBB,
1782                                                   MachineBasicBlock *FBB,
1783                                                   MachineBasicBlock *CurBB,
1784                                                   MachineBasicBlock *SwitchBB,
1785                                                   BranchProbability TProb,
1786                                                   BranchProbability FProb,
1787                                                   bool InvertCond) {
1788   const BasicBlock *BB = CurBB->getBasicBlock();
1789 
1790   // If the leaf of the tree is a comparison, merge the condition into
1791   // the caseblock.
1792   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1793     // The operands of the cmp have to be in this block.  We don't know
1794     // how to export them from some other block.  If this is the first block
1795     // of the sequence, no exporting is needed.
1796     if (CurBB == SwitchBB ||
1797         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1798          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1799       ISD::CondCode Condition;
1800       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1801         ICmpInst::Predicate Pred =
1802             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1803         Condition = getICmpCondCode(Pred);
1804       } else {
1805         const FCmpInst *FC = cast<FCmpInst>(Cond);
1806         FCmpInst::Predicate Pred =
1807             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1808         Condition = getFCmpCondCode(Pred);
1809         if (TM.Options.NoNaNsFPMath)
1810           Condition = getFCmpCodeWithoutNaN(Condition);
1811       }
1812 
1813       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1814                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1815       SwitchCases.push_back(CB);
1816       return;
1817     }
1818   }
1819 
1820   // Create a CaseBlock record representing this branch.
1821   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1822   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1823                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1824   SwitchCases.push_back(CB);
1825 }
1826 
1827 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1828                                                MachineBasicBlock *TBB,
1829                                                MachineBasicBlock *FBB,
1830                                                MachineBasicBlock *CurBB,
1831                                                MachineBasicBlock *SwitchBB,
1832                                                Instruction::BinaryOps Opc,
1833                                                BranchProbability TProb,
1834                                                BranchProbability FProb,
1835                                                bool InvertCond) {
1836   // Skip over not part of the tree and remember to invert op and operands at
1837   // next level.
1838   Value *NotCond;
1839   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
1840       InBlock(NotCond, CurBB->getBasicBlock())) {
1841     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1842                          !InvertCond);
1843     return;
1844   }
1845 
1846   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1847   // Compute the effective opcode for Cond, taking into account whether it needs
1848   // to be inverted, e.g.
1849   //   and (not (or A, B)), C
1850   // gets lowered as
1851   //   and (and (not A, not B), C)
1852   unsigned BOpc = 0;
1853   if (BOp) {
1854     BOpc = BOp->getOpcode();
1855     if (InvertCond) {
1856       if (BOpc == Instruction::And)
1857         BOpc = Instruction::Or;
1858       else if (BOpc == Instruction::Or)
1859         BOpc = Instruction::And;
1860     }
1861   }
1862 
1863   // If this node is not part of the or/and tree, emit it as a branch.
1864   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1865       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
1866       BOp->getParent() != CurBB->getBasicBlock() ||
1867       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1868       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1869     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1870                                  TProb, FProb, InvertCond);
1871     return;
1872   }
1873 
1874   //  Create TmpBB after CurBB.
1875   MachineFunction::iterator BBI(CurBB);
1876   MachineFunction &MF = DAG.getMachineFunction();
1877   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1878   CurBB->getParent()->insert(++BBI, TmpBB);
1879 
1880   if (Opc == Instruction::Or) {
1881     // Codegen X | Y as:
1882     // BB1:
1883     //   jmp_if_X TBB
1884     //   jmp TmpBB
1885     // TmpBB:
1886     //   jmp_if_Y TBB
1887     //   jmp FBB
1888     //
1889 
1890     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1891     // The requirement is that
1892     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1893     //     = TrueProb for original BB.
1894     // Assuming the original probabilities are A and B, one choice is to set
1895     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1896     // A/(1+B) and 2B/(1+B). This choice assumes that
1897     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1898     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1899     // TmpBB, but the math is more complicated.
1900 
1901     auto NewTrueProb = TProb / 2;
1902     auto NewFalseProb = TProb / 2 + FProb;
1903     // Emit the LHS condition.
1904     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1905                          NewTrueProb, NewFalseProb, InvertCond);
1906 
1907     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1908     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1909     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1910     // Emit the RHS condition into TmpBB.
1911     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1912                          Probs[0], Probs[1], InvertCond);
1913   } else {
1914     assert(Opc == Instruction::And && "Unknown merge op!");
1915     // Codegen X & Y as:
1916     // BB1:
1917     //   jmp_if_X TmpBB
1918     //   jmp FBB
1919     // TmpBB:
1920     //   jmp_if_Y TBB
1921     //   jmp FBB
1922     //
1923     //  This requires creation of TmpBB after CurBB.
1924 
1925     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1926     // The requirement is that
1927     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1928     //     = FalseProb for original BB.
1929     // Assuming the original probabilities are A and B, one choice is to set
1930     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1931     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1932     // TrueProb for BB1 * FalseProb for TmpBB.
1933 
1934     auto NewTrueProb = TProb + FProb / 2;
1935     auto NewFalseProb = FProb / 2;
1936     // Emit the LHS condition.
1937     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1938                          NewTrueProb, NewFalseProb, InvertCond);
1939 
1940     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1941     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1942     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1943     // Emit the RHS condition into TmpBB.
1944     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1945                          Probs[0], Probs[1], InvertCond);
1946   }
1947 }
1948 
1949 /// If the set of cases should be emitted as a series of branches, return true.
1950 /// If we should emit this as a bunch of and/or'd together conditions, return
1951 /// false.
1952 bool
1953 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1954   if (Cases.size() != 2) return true;
1955 
1956   // If this is two comparisons of the same values or'd or and'd together, they
1957   // will get folded into a single comparison, so don't emit two blocks.
1958   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1959        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1960       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1961        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1962     return false;
1963   }
1964 
1965   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1966   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1967   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1968       Cases[0].CC == Cases[1].CC &&
1969       isa<Constant>(Cases[0].CmpRHS) &&
1970       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1971     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1972       return false;
1973     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1974       return false;
1975   }
1976 
1977   return true;
1978 }
1979 
1980 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1981   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1982 
1983   // Update machine-CFG edges.
1984   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1985 
1986   if (I.isUnconditional()) {
1987     // Update machine-CFG edges.
1988     BrMBB->addSuccessor(Succ0MBB);
1989 
1990     // If this is not a fall-through branch or optimizations are switched off,
1991     // emit the branch.
1992     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1993       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1994                               MVT::Other, getControlRoot(),
1995                               DAG.getBasicBlock(Succ0MBB)));
1996 
1997     return;
1998   }
1999 
2000   // If this condition is one of the special cases we handle, do special stuff
2001   // now.
2002   const Value *CondVal = I.getCondition();
2003   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2004 
2005   // If this is a series of conditions that are or'd or and'd together, emit
2006   // this as a sequence of branches instead of setcc's with and/or operations.
2007   // As long as jumps are not expensive, this should improve performance.
2008   // For example, instead of something like:
2009   //     cmp A, B
2010   //     C = seteq
2011   //     cmp D, E
2012   //     F = setle
2013   //     or C, F
2014   //     jnz foo
2015   // Emit:
2016   //     cmp A, B
2017   //     je foo
2018   //     cmp D, E
2019   //     jle foo
2020   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2021     Instruction::BinaryOps Opcode = BOp->getOpcode();
2022     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2023         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2024         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2025       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2026                            Opcode,
2027                            getEdgeProbability(BrMBB, Succ0MBB),
2028                            getEdgeProbability(BrMBB, Succ1MBB),
2029                            /*InvertCond=*/false);
2030       // If the compares in later blocks need to use values not currently
2031       // exported from this block, export them now.  This block should always
2032       // be the first entry.
2033       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2034 
2035       // Allow some cases to be rejected.
2036       if (ShouldEmitAsBranches(SwitchCases)) {
2037         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2038           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2039           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2040         }
2041 
2042         // Emit the branch for this block.
2043         visitSwitchCase(SwitchCases[0], BrMBB);
2044         SwitchCases.erase(SwitchCases.begin());
2045         return;
2046       }
2047 
2048       // Okay, we decided not to do this, remove any inserted MBB's and clear
2049       // SwitchCases.
2050       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2051         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2052 
2053       SwitchCases.clear();
2054     }
2055   }
2056 
2057   // Create a CaseBlock record representing this branch.
2058   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2059                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2060 
2061   // Use visitSwitchCase to actually insert the fast branch sequence for this
2062   // cond branch.
2063   visitSwitchCase(CB, BrMBB);
2064 }
2065 
2066 /// visitSwitchCase - Emits the necessary code to represent a single node in
2067 /// the binary search tree resulting from lowering a switch instruction.
2068 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2069                                           MachineBasicBlock *SwitchBB) {
2070   SDValue Cond;
2071   SDValue CondLHS = getValue(CB.CmpLHS);
2072   SDLoc dl = CB.DL;
2073 
2074   // Build the setcc now.
2075   if (!CB.CmpMHS) {
2076     // Fold "(X == true)" to X and "(X == false)" to !X to
2077     // handle common cases produced by branch lowering.
2078     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2079         CB.CC == ISD::SETEQ)
2080       Cond = CondLHS;
2081     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2082              CB.CC == ISD::SETEQ) {
2083       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2084       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2085     } else
2086       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2087   } else {
2088     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2089 
2090     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2091     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2092 
2093     SDValue CmpOp = getValue(CB.CmpMHS);
2094     EVT VT = CmpOp.getValueType();
2095 
2096     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2097       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2098                           ISD::SETLE);
2099     } else {
2100       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2101                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2102       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2103                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2104     }
2105   }
2106 
2107   // Update successor info
2108   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2109   // TrueBB and FalseBB are always different unless the incoming IR is
2110   // degenerate. This only happens when running llc on weird IR.
2111   if (CB.TrueBB != CB.FalseBB)
2112     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2113   SwitchBB->normalizeSuccProbs();
2114 
2115   // If the lhs block is the next block, invert the condition so that we can
2116   // fall through to the lhs instead of the rhs block.
2117   if (CB.TrueBB == NextBlock(SwitchBB)) {
2118     std::swap(CB.TrueBB, CB.FalseBB);
2119     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2120     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2121   }
2122 
2123   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2124                                MVT::Other, getControlRoot(), Cond,
2125                                DAG.getBasicBlock(CB.TrueBB));
2126 
2127   // Insert the false branch. Do this even if it's a fall through branch,
2128   // this makes it easier to do DAG optimizations which require inverting
2129   // the branch condition.
2130   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2131                        DAG.getBasicBlock(CB.FalseBB));
2132 
2133   DAG.setRoot(BrCond);
2134 }
2135 
2136 /// visitJumpTable - Emit JumpTable node in the current MBB
2137 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2138   // Emit the code for the jump table
2139   assert(JT.Reg != -1U && "Should lower JT Header first!");
2140   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2141   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2142                                      JT.Reg, PTy);
2143   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2144   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2145                                     MVT::Other, Index.getValue(1),
2146                                     Table, Index);
2147   DAG.setRoot(BrJumpTable);
2148 }
2149 
2150 /// visitJumpTableHeader - This function emits necessary code to produce index
2151 /// in the JumpTable from switch case.
2152 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2153                                                JumpTableHeader &JTH,
2154                                                MachineBasicBlock *SwitchBB) {
2155   SDLoc dl = getCurSDLoc();
2156 
2157   // Subtract the lowest switch case value from the value being switched on and
2158   // conditional branch to default mbb if the result is greater than the
2159   // difference between smallest and largest cases.
2160   SDValue SwitchOp = getValue(JTH.SValue);
2161   EVT VT = SwitchOp.getValueType();
2162   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2163                             DAG.getConstant(JTH.First, dl, VT));
2164 
2165   // The SDNode we just created, which holds the value being switched on minus
2166   // the smallest case value, needs to be copied to a virtual register so it
2167   // can be used as an index into the jump table in a subsequent basic block.
2168   // This value may be smaller or larger than the target's pointer type, and
2169   // therefore require extension or truncating.
2170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2171   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2172 
2173   unsigned JumpTableReg =
2174       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2175   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2176                                     JumpTableReg, SwitchOp);
2177   JT.Reg = JumpTableReg;
2178 
2179   // Emit the range check for the jump table, and branch to the default block
2180   // for the switch statement if the value being switched on exceeds the largest
2181   // case in the switch.
2182   SDValue CMP = DAG.getSetCC(
2183       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2184                                  Sub.getValueType()),
2185       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2186 
2187   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2188                                MVT::Other, CopyTo, CMP,
2189                                DAG.getBasicBlock(JT.Default));
2190 
2191   // Avoid emitting unnecessary branches to the next block.
2192   if (JT.MBB != NextBlock(SwitchBB))
2193     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2194                          DAG.getBasicBlock(JT.MBB));
2195 
2196   DAG.setRoot(BrCond);
2197 }
2198 
2199 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2200 /// variable if there exists one.
2201 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2202                                  SDValue &Chain) {
2203   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2204   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2205   MachineFunction &MF = DAG.getMachineFunction();
2206   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2207   MachineSDNode *Node =
2208       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2209   if (Global) {
2210     MachinePointerInfo MPInfo(Global);
2211     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2212                  MachineMemOperand::MODereferenceable;
2213     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2214         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2215     DAG.setNodeMemRefs(Node, {MemRef});
2216   }
2217   return SDValue(Node, 0);
2218 }
2219 
2220 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2221 /// tail spliced into a stack protector check success bb.
2222 ///
2223 /// For a high level explanation of how this fits into the stack protector
2224 /// generation see the comment on the declaration of class
2225 /// StackProtectorDescriptor.
2226 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2227                                                   MachineBasicBlock *ParentBB) {
2228 
2229   // First create the loads to the guard/stack slot for the comparison.
2230   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2231   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2232 
2233   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2234   int FI = MFI.getStackProtectorIndex();
2235 
2236   SDValue Guard;
2237   SDLoc dl = getCurSDLoc();
2238   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2239   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2240   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2241 
2242   // Generate code to load the content of the guard slot.
2243   SDValue GuardVal = DAG.getLoad(
2244       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2245       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2246       MachineMemOperand::MOVolatile);
2247 
2248   if (TLI.useStackGuardXorFP())
2249     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2250 
2251   // Retrieve guard check function, nullptr if instrumentation is inlined.
2252   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2253     // The target provides a guard check function to validate the guard value.
2254     // Generate a call to that function with the content of the guard slot as
2255     // argument.
2256     auto *Fn = cast<Function>(GuardCheck);
2257     FunctionType *FnTy = Fn->getFunctionType();
2258     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2259 
2260     TargetLowering::ArgListTy Args;
2261     TargetLowering::ArgListEntry Entry;
2262     Entry.Node = GuardVal;
2263     Entry.Ty = FnTy->getParamType(0);
2264     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2265       Entry.IsInReg = true;
2266     Args.push_back(Entry);
2267 
2268     TargetLowering::CallLoweringInfo CLI(DAG);
2269     CLI.setDebugLoc(getCurSDLoc())
2270       .setChain(DAG.getEntryNode())
2271       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2272                  getValue(GuardCheck), std::move(Args));
2273 
2274     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2275     DAG.setRoot(Result.second);
2276     return;
2277   }
2278 
2279   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2280   // Otherwise, emit a volatile load to retrieve the stack guard value.
2281   SDValue Chain = DAG.getEntryNode();
2282   if (TLI.useLoadStackGuardNode()) {
2283     Guard = getLoadStackGuard(DAG, dl, Chain);
2284   } else {
2285     const Value *IRGuard = TLI.getSDagStackGuard(M);
2286     SDValue GuardPtr = getValue(IRGuard);
2287 
2288     Guard =
2289         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2290                     Align, MachineMemOperand::MOVolatile);
2291   }
2292 
2293   // Perform the comparison via a subtract/getsetcc.
2294   EVT VT = Guard.getValueType();
2295   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2296 
2297   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2298                                                         *DAG.getContext(),
2299                                                         Sub.getValueType()),
2300                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2301 
2302   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2303   // branch to failure MBB.
2304   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2305                                MVT::Other, GuardVal.getOperand(0),
2306                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2307   // Otherwise branch to success MBB.
2308   SDValue Br = DAG.getNode(ISD::BR, dl,
2309                            MVT::Other, BrCond,
2310                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2311 
2312   DAG.setRoot(Br);
2313 }
2314 
2315 /// Codegen the failure basic block for a stack protector check.
2316 ///
2317 /// A failure stack protector machine basic block consists simply of a call to
2318 /// __stack_chk_fail().
2319 ///
2320 /// For a high level explanation of how this fits into the stack protector
2321 /// generation see the comment on the declaration of class
2322 /// StackProtectorDescriptor.
2323 void
2324 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2325   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2326   SDValue Chain =
2327       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2328                       None, false, getCurSDLoc(), false, false).second;
2329   DAG.setRoot(Chain);
2330 }
2331 
2332 /// visitBitTestHeader - This function emits necessary code to produce value
2333 /// suitable for "bit tests"
2334 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2335                                              MachineBasicBlock *SwitchBB) {
2336   SDLoc dl = getCurSDLoc();
2337 
2338   // Subtract the minimum value
2339   SDValue SwitchOp = getValue(B.SValue);
2340   EVT VT = SwitchOp.getValueType();
2341   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2342                             DAG.getConstant(B.First, dl, VT));
2343 
2344   // Check range
2345   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2346   SDValue RangeCmp = DAG.getSetCC(
2347       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2348                                  Sub.getValueType()),
2349       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2350 
2351   // Determine the type of the test operands.
2352   bool UsePtrType = false;
2353   if (!TLI.isTypeLegal(VT))
2354     UsePtrType = true;
2355   else {
2356     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2357       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2358         // Switch table case range are encoded into series of masks.
2359         // Just use pointer type, it's guaranteed to fit.
2360         UsePtrType = true;
2361         break;
2362       }
2363   }
2364   if (UsePtrType) {
2365     VT = TLI.getPointerTy(DAG.getDataLayout());
2366     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2367   }
2368 
2369   B.RegVT = VT.getSimpleVT();
2370   B.Reg = FuncInfo.CreateReg(B.RegVT);
2371   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2372 
2373   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2374 
2375   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2376   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2377   SwitchBB->normalizeSuccProbs();
2378 
2379   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2380                                 MVT::Other, CopyTo, RangeCmp,
2381                                 DAG.getBasicBlock(B.Default));
2382 
2383   // Avoid emitting unnecessary branches to the next block.
2384   if (MBB != NextBlock(SwitchBB))
2385     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2386                           DAG.getBasicBlock(MBB));
2387 
2388   DAG.setRoot(BrRange);
2389 }
2390 
2391 /// visitBitTestCase - this function produces one "bit test"
2392 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2393                                            MachineBasicBlock* NextMBB,
2394                                            BranchProbability BranchProbToNext,
2395                                            unsigned Reg,
2396                                            BitTestCase &B,
2397                                            MachineBasicBlock *SwitchBB) {
2398   SDLoc dl = getCurSDLoc();
2399   MVT VT = BB.RegVT;
2400   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2401   SDValue Cmp;
2402   unsigned PopCount = countPopulation(B.Mask);
2403   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2404   if (PopCount == 1) {
2405     // Testing for a single bit; just compare the shift count with what it
2406     // would need to be to shift a 1 bit in that position.
2407     Cmp = DAG.getSetCC(
2408         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2409         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2410         ISD::SETEQ);
2411   } else if (PopCount == BB.Range) {
2412     // There is only one zero bit in the range, test for it directly.
2413     Cmp = DAG.getSetCC(
2414         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2415         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2416         ISD::SETNE);
2417   } else {
2418     // Make desired shift
2419     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2420                                     DAG.getConstant(1, dl, VT), ShiftOp);
2421 
2422     // Emit bit tests and jumps
2423     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2424                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2425     Cmp = DAG.getSetCC(
2426         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2427         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2428   }
2429 
2430   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2431   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2432   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2433   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2434   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2435   // one as they are relative probabilities (and thus work more like weights),
2436   // and hence we need to normalize them to let the sum of them become one.
2437   SwitchBB->normalizeSuccProbs();
2438 
2439   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2440                               MVT::Other, getControlRoot(),
2441                               Cmp, DAG.getBasicBlock(B.TargetBB));
2442 
2443   // Avoid emitting unnecessary branches to the next block.
2444   if (NextMBB != NextBlock(SwitchBB))
2445     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2446                         DAG.getBasicBlock(NextMBB));
2447 
2448   DAG.setRoot(BrAnd);
2449 }
2450 
2451 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2452   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2453 
2454   // Retrieve successors. Look through artificial IR level blocks like
2455   // catchswitch for successors.
2456   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2457   const BasicBlock *EHPadBB = I.getSuccessor(1);
2458 
2459   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2460   // have to do anything here to lower funclet bundles.
2461   assert(!I.hasOperandBundlesOtherThan(
2462              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2463          "Cannot lower invokes with arbitrary operand bundles yet!");
2464 
2465   const Value *Callee(I.getCalledValue());
2466   const Function *Fn = dyn_cast<Function>(Callee);
2467   if (isa<InlineAsm>(Callee))
2468     visitInlineAsm(&I);
2469   else if (Fn && Fn->isIntrinsic()) {
2470     switch (Fn->getIntrinsicID()) {
2471     default:
2472       llvm_unreachable("Cannot invoke this intrinsic");
2473     case Intrinsic::donothing:
2474       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2475       break;
2476     case Intrinsic::experimental_patchpoint_void:
2477     case Intrinsic::experimental_patchpoint_i64:
2478       visitPatchpoint(&I, EHPadBB);
2479       break;
2480     case Intrinsic::experimental_gc_statepoint:
2481       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2482       break;
2483     }
2484   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2485     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2486     // Eventually we will support lowering the @llvm.experimental.deoptimize
2487     // intrinsic, and right now there are no plans to support other intrinsics
2488     // with deopt state.
2489     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2490   } else {
2491     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2492   }
2493 
2494   // If the value of the invoke is used outside of its defining block, make it
2495   // available as a virtual register.
2496   // We already took care of the exported value for the statepoint instruction
2497   // during call to the LowerStatepoint.
2498   if (!isStatepoint(I)) {
2499     CopyToExportRegsIfNeeded(&I);
2500   }
2501 
2502   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2503   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2504   BranchProbability EHPadBBProb =
2505       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2506           : BranchProbability::getZero();
2507   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2508 
2509   // Update successor info.
2510   addSuccessorWithProb(InvokeMBB, Return);
2511   for (auto &UnwindDest : UnwindDests) {
2512     UnwindDest.first->setIsEHPad();
2513     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2514   }
2515   InvokeMBB->normalizeSuccProbs();
2516 
2517   // Drop into normal successor.
2518   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2519                           MVT::Other, getControlRoot(),
2520                           DAG.getBasicBlock(Return)));
2521 }
2522 
2523 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2524   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2525 }
2526 
2527 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2528   assert(FuncInfo.MBB->isEHPad() &&
2529          "Call to landingpad not in landing pad!");
2530 
2531   // If there aren't registers to copy the values into (e.g., during SjLj
2532   // exceptions), then don't bother to create these DAG nodes.
2533   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2534   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2535   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2536       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2537     return;
2538 
2539   // If landingpad's return type is token type, we don't create DAG nodes
2540   // for its exception pointer and selector value. The extraction of exception
2541   // pointer or selector value from token type landingpads is not currently
2542   // supported.
2543   if (LP.getType()->isTokenTy())
2544     return;
2545 
2546   SmallVector<EVT, 2> ValueVTs;
2547   SDLoc dl = getCurSDLoc();
2548   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2549   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2550 
2551   // Get the two live-in registers as SDValues. The physregs have already been
2552   // copied into virtual registers.
2553   SDValue Ops[2];
2554   if (FuncInfo.ExceptionPointerVirtReg) {
2555     Ops[0] = DAG.getZExtOrTrunc(
2556         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2557                            FuncInfo.ExceptionPointerVirtReg,
2558                            TLI.getPointerTy(DAG.getDataLayout())),
2559         dl, ValueVTs[0]);
2560   } else {
2561     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2562   }
2563   Ops[1] = DAG.getZExtOrTrunc(
2564       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2565                          FuncInfo.ExceptionSelectorVirtReg,
2566                          TLI.getPointerTy(DAG.getDataLayout())),
2567       dl, ValueVTs[1]);
2568 
2569   // Merge into one.
2570   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2571                             DAG.getVTList(ValueVTs), Ops);
2572   setValue(&LP, Res);
2573 }
2574 
2575 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2576 #ifndef NDEBUG
2577   for (const CaseCluster &CC : Clusters)
2578     assert(CC.Low == CC.High && "Input clusters must be single-case");
2579 #endif
2580 
2581   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2582     return a.Low->getValue().slt(b.Low->getValue());
2583   });
2584 
2585   // Merge adjacent clusters with the same destination.
2586   const unsigned N = Clusters.size();
2587   unsigned DstIndex = 0;
2588   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2589     CaseCluster &CC = Clusters[SrcIndex];
2590     const ConstantInt *CaseVal = CC.Low;
2591     MachineBasicBlock *Succ = CC.MBB;
2592 
2593     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2594         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2595       // If this case has the same successor and is a neighbour, merge it into
2596       // the previous cluster.
2597       Clusters[DstIndex - 1].High = CaseVal;
2598       Clusters[DstIndex - 1].Prob += CC.Prob;
2599     } else {
2600       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2601                    sizeof(Clusters[SrcIndex]));
2602     }
2603   }
2604   Clusters.resize(DstIndex);
2605 }
2606 
2607 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2608                                            MachineBasicBlock *Last) {
2609   // Update JTCases.
2610   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2611     if (JTCases[i].first.HeaderBB == First)
2612       JTCases[i].first.HeaderBB = Last;
2613 
2614   // Update BitTestCases.
2615   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2616     if (BitTestCases[i].Parent == First)
2617       BitTestCases[i].Parent = Last;
2618 }
2619 
2620 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2621   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2622 
2623   // Update machine-CFG edges with unique successors.
2624   SmallSet<BasicBlock*, 32> Done;
2625   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2626     BasicBlock *BB = I.getSuccessor(i);
2627     bool Inserted = Done.insert(BB).second;
2628     if (!Inserted)
2629         continue;
2630 
2631     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2632     addSuccessorWithProb(IndirectBrMBB, Succ);
2633   }
2634   IndirectBrMBB->normalizeSuccProbs();
2635 
2636   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2637                           MVT::Other, getControlRoot(),
2638                           getValue(I.getAddress())));
2639 }
2640 
2641 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2642   if (!DAG.getTarget().Options.TrapUnreachable)
2643     return;
2644 
2645   // We may be able to ignore unreachable behind a noreturn call.
2646   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2647     const BasicBlock &BB = *I.getParent();
2648     if (&I != &BB.front()) {
2649       BasicBlock::const_iterator PredI =
2650         std::prev(BasicBlock::const_iterator(&I));
2651       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2652         if (Call->doesNotReturn())
2653           return;
2654       }
2655     }
2656   }
2657 
2658   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2659 }
2660 
2661 void SelectionDAGBuilder::visitFSub(const User &I) {
2662   // -0.0 - X --> fneg
2663   Type *Ty = I.getType();
2664   if (isa<Constant>(I.getOperand(0)) &&
2665       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2666     SDValue Op2 = getValue(I.getOperand(1));
2667     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2668                              Op2.getValueType(), Op2));
2669     return;
2670   }
2671 
2672   visitBinary(I, ISD::FSUB);
2673 }
2674 
2675 /// Checks if the given instruction performs a vector reduction, in which case
2676 /// we have the freedom to alter the elements in the result as long as the
2677 /// reduction of them stays unchanged.
2678 static bool isVectorReductionOp(const User *I) {
2679   const Instruction *Inst = dyn_cast<Instruction>(I);
2680   if (!Inst || !Inst->getType()->isVectorTy())
2681     return false;
2682 
2683   auto OpCode = Inst->getOpcode();
2684   switch (OpCode) {
2685   case Instruction::Add:
2686   case Instruction::Mul:
2687   case Instruction::And:
2688   case Instruction::Or:
2689   case Instruction::Xor:
2690     break;
2691   case Instruction::FAdd:
2692   case Instruction::FMul:
2693     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2694       if (FPOp->getFastMathFlags().isFast())
2695         break;
2696     LLVM_FALLTHROUGH;
2697   default:
2698     return false;
2699   }
2700 
2701   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2702   // Ensure the reduction size is a power of 2.
2703   if (!isPowerOf2_32(ElemNum))
2704     return false;
2705 
2706   unsigned ElemNumToReduce = ElemNum;
2707 
2708   // Do DFS search on the def-use chain from the given instruction. We only
2709   // allow four kinds of operations during the search until we reach the
2710   // instruction that extracts the first element from the vector:
2711   //
2712   //   1. The reduction operation of the same opcode as the given instruction.
2713   //
2714   //   2. PHI node.
2715   //
2716   //   3. ShuffleVector instruction together with a reduction operation that
2717   //      does a partial reduction.
2718   //
2719   //   4. ExtractElement that extracts the first element from the vector, and we
2720   //      stop searching the def-use chain here.
2721   //
2722   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2723   // from 1-3 to the stack to continue the DFS. The given instruction is not
2724   // a reduction operation if we meet any other instructions other than those
2725   // listed above.
2726 
2727   SmallVector<const User *, 16> UsersToVisit{Inst};
2728   SmallPtrSet<const User *, 16> Visited;
2729   bool ReduxExtracted = false;
2730 
2731   while (!UsersToVisit.empty()) {
2732     auto User = UsersToVisit.back();
2733     UsersToVisit.pop_back();
2734     if (!Visited.insert(User).second)
2735       continue;
2736 
2737     for (const auto &U : User->users()) {
2738       auto Inst = dyn_cast<Instruction>(U);
2739       if (!Inst)
2740         return false;
2741 
2742       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2743         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2744           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2745             return false;
2746         UsersToVisit.push_back(U);
2747       } else if (const ShuffleVectorInst *ShufInst =
2748                      dyn_cast<ShuffleVectorInst>(U)) {
2749         // Detect the following pattern: A ShuffleVector instruction together
2750         // with a reduction that do partial reduction on the first and second
2751         // ElemNumToReduce / 2 elements, and store the result in
2752         // ElemNumToReduce / 2 elements in another vector.
2753 
2754         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2755         if (ResultElements < ElemNum)
2756           return false;
2757 
2758         if (ElemNumToReduce == 1)
2759           return false;
2760         if (!isa<UndefValue>(U->getOperand(1)))
2761           return false;
2762         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2763           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2764             return false;
2765         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2766           if (ShufInst->getMaskValue(i) != -1)
2767             return false;
2768 
2769         // There is only one user of this ShuffleVector instruction, which
2770         // must be a reduction operation.
2771         if (!U->hasOneUse())
2772           return false;
2773 
2774         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2775         if (!U2 || U2->getOpcode() != OpCode)
2776           return false;
2777 
2778         // Check operands of the reduction operation.
2779         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2780             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2781           UsersToVisit.push_back(U2);
2782           ElemNumToReduce /= 2;
2783         } else
2784           return false;
2785       } else if (isa<ExtractElementInst>(U)) {
2786         // At this moment we should have reduced all elements in the vector.
2787         if (ElemNumToReduce != 1)
2788           return false;
2789 
2790         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2791         if (!Val || !Val->isZero())
2792           return false;
2793 
2794         ReduxExtracted = true;
2795       } else
2796         return false;
2797     }
2798   }
2799   return ReduxExtracted;
2800 }
2801 
2802 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
2803   SDNodeFlags Flags;
2804 
2805   SDValue Op = getValue(I.getOperand(0));
2806   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
2807                                     Op, Flags);
2808   setValue(&I, UnNodeValue);
2809 }
2810 
2811 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2812   SDNodeFlags Flags;
2813   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2814     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2815     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2816   }
2817   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
2818     Flags.setExact(ExactOp->isExact());
2819   }
2820   if (isVectorReductionOp(&I)) {
2821     Flags.setVectorReduction(true);
2822     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2823   }
2824 
2825   SDValue Op1 = getValue(I.getOperand(0));
2826   SDValue Op2 = getValue(I.getOperand(1));
2827   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
2828                                      Op1, Op2, Flags);
2829   setValue(&I, BinNodeValue);
2830 }
2831 
2832 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2833   SDValue Op1 = getValue(I.getOperand(0));
2834   SDValue Op2 = getValue(I.getOperand(1));
2835 
2836   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2837       Op1.getValueType(), DAG.getDataLayout());
2838 
2839   // Coerce the shift amount to the right type if we can.
2840   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2841     unsigned ShiftSize = ShiftTy.getSizeInBits();
2842     unsigned Op2Size = Op2.getValueSizeInBits();
2843     SDLoc DL = getCurSDLoc();
2844 
2845     // If the operand is smaller than the shift count type, promote it.
2846     if (ShiftSize > Op2Size)
2847       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2848 
2849     // If the operand is larger than the shift count type but the shift
2850     // count type has enough bits to represent any shift value, truncate
2851     // it now. This is a common case and it exposes the truncate to
2852     // optimization early.
2853     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2854       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2855     // Otherwise we'll need to temporarily settle for some other convenient
2856     // type.  Type legalization will make adjustments once the shiftee is split.
2857     else
2858       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2859   }
2860 
2861   bool nuw = false;
2862   bool nsw = false;
2863   bool exact = false;
2864 
2865   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2866 
2867     if (const OverflowingBinaryOperator *OFBinOp =
2868             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2869       nuw = OFBinOp->hasNoUnsignedWrap();
2870       nsw = OFBinOp->hasNoSignedWrap();
2871     }
2872     if (const PossiblyExactOperator *ExactOp =
2873             dyn_cast<const PossiblyExactOperator>(&I))
2874       exact = ExactOp->isExact();
2875   }
2876   SDNodeFlags Flags;
2877   Flags.setExact(exact);
2878   Flags.setNoSignedWrap(nsw);
2879   Flags.setNoUnsignedWrap(nuw);
2880   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2881                             Flags);
2882   setValue(&I, Res);
2883 }
2884 
2885 void SelectionDAGBuilder::visitSDiv(const User &I) {
2886   SDValue Op1 = getValue(I.getOperand(0));
2887   SDValue Op2 = getValue(I.getOperand(1));
2888 
2889   SDNodeFlags Flags;
2890   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2891                  cast<PossiblyExactOperator>(&I)->isExact());
2892   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2893                            Op2, Flags));
2894 }
2895 
2896 void SelectionDAGBuilder::visitICmp(const User &I) {
2897   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2898   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2899     predicate = IC->getPredicate();
2900   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2901     predicate = ICmpInst::Predicate(IC->getPredicate());
2902   SDValue Op1 = getValue(I.getOperand(0));
2903   SDValue Op2 = getValue(I.getOperand(1));
2904   ISD::CondCode Opcode = getICmpCondCode(predicate);
2905 
2906   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2907                                                         I.getType());
2908   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2909 }
2910 
2911 void SelectionDAGBuilder::visitFCmp(const User &I) {
2912   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2913   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2914     predicate = FC->getPredicate();
2915   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2916     predicate = FCmpInst::Predicate(FC->getPredicate());
2917   SDValue Op1 = getValue(I.getOperand(0));
2918   SDValue Op2 = getValue(I.getOperand(1));
2919 
2920   ISD::CondCode Condition = getFCmpCondCode(predicate);
2921   auto *FPMO = dyn_cast<FPMathOperator>(&I);
2922   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
2923     Condition = getFCmpCodeWithoutNaN(Condition);
2924 
2925   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2926                                                         I.getType());
2927   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2928 }
2929 
2930 // Check if the condition of the select has one use or two users that are both
2931 // selects with the same condition.
2932 static bool hasOnlySelectUsers(const Value *Cond) {
2933   return llvm::all_of(Cond->users(), [](const Value *V) {
2934     return isa<SelectInst>(V);
2935   });
2936 }
2937 
2938 void SelectionDAGBuilder::visitSelect(const User &I) {
2939   SmallVector<EVT, 4> ValueVTs;
2940   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2941                   ValueVTs);
2942   unsigned NumValues = ValueVTs.size();
2943   if (NumValues == 0) return;
2944 
2945   SmallVector<SDValue, 4> Values(NumValues);
2946   SDValue Cond     = getValue(I.getOperand(0));
2947   SDValue LHSVal   = getValue(I.getOperand(1));
2948   SDValue RHSVal   = getValue(I.getOperand(2));
2949   auto BaseOps = {Cond};
2950   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2951     ISD::VSELECT : ISD::SELECT;
2952 
2953   // Min/max matching is only viable if all output VTs are the same.
2954   if (is_splat(ValueVTs)) {
2955     EVT VT = ValueVTs[0];
2956     LLVMContext &Ctx = *DAG.getContext();
2957     auto &TLI = DAG.getTargetLoweringInfo();
2958 
2959     // We care about the legality of the operation after it has been type
2960     // legalized.
2961     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2962            VT != TLI.getTypeToTransformTo(Ctx, VT))
2963       VT = TLI.getTypeToTransformTo(Ctx, VT);
2964 
2965     // If the vselect is legal, assume we want to leave this as a vector setcc +
2966     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2967     // min/max is legal on the scalar type.
2968     bool UseScalarMinMax = VT.isVector() &&
2969       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2970 
2971     Value *LHS, *RHS;
2972     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2973     ISD::NodeType Opc = ISD::DELETED_NODE;
2974     switch (SPR.Flavor) {
2975     case SPF_UMAX:    Opc = ISD::UMAX; break;
2976     case SPF_UMIN:    Opc = ISD::UMIN; break;
2977     case SPF_SMAX:    Opc = ISD::SMAX; break;
2978     case SPF_SMIN:    Opc = ISD::SMIN; break;
2979     case SPF_FMINNUM:
2980       switch (SPR.NaNBehavior) {
2981       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2982       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
2983       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2984       case SPNB_RETURNS_ANY: {
2985         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2986           Opc = ISD::FMINNUM;
2987         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
2988           Opc = ISD::FMINIMUM;
2989         else if (UseScalarMinMax)
2990           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2991             ISD::FMINNUM : ISD::FMINIMUM;
2992         break;
2993       }
2994       }
2995       break;
2996     case SPF_FMAXNUM:
2997       switch (SPR.NaNBehavior) {
2998       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2999       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3000       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3001       case SPNB_RETURNS_ANY:
3002 
3003         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3004           Opc = ISD::FMAXNUM;
3005         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3006           Opc = ISD::FMAXIMUM;
3007         else if (UseScalarMinMax)
3008           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3009             ISD::FMAXNUM : ISD::FMAXIMUM;
3010         break;
3011       }
3012       break;
3013     default: break;
3014     }
3015 
3016     if (Opc != ISD::DELETED_NODE &&
3017         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3018          (UseScalarMinMax &&
3019           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3020         // If the underlying comparison instruction is used by any other
3021         // instruction, the consumed instructions won't be destroyed, so it is
3022         // not profitable to convert to a min/max.
3023         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3024       OpCode = Opc;
3025       LHSVal = getValue(LHS);
3026       RHSVal = getValue(RHS);
3027       BaseOps = {};
3028     }
3029   }
3030 
3031   for (unsigned i = 0; i != NumValues; ++i) {
3032     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3033     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3034     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3035     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
3036                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
3037                             Ops);
3038   }
3039 
3040   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3041                            DAG.getVTList(ValueVTs), Values));
3042 }
3043 
3044 void SelectionDAGBuilder::visitTrunc(const User &I) {
3045   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3046   SDValue N = getValue(I.getOperand(0));
3047   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3048                                                         I.getType());
3049   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3050 }
3051 
3052 void SelectionDAGBuilder::visitZExt(const User &I) {
3053   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3054   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3055   SDValue N = getValue(I.getOperand(0));
3056   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3057                                                         I.getType());
3058   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3059 }
3060 
3061 void SelectionDAGBuilder::visitSExt(const User &I) {
3062   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3063   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3064   SDValue N = getValue(I.getOperand(0));
3065   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3066                                                         I.getType());
3067   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3068 }
3069 
3070 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3071   // FPTrunc is never a no-op cast, no need to check
3072   SDValue N = getValue(I.getOperand(0));
3073   SDLoc dl = getCurSDLoc();
3074   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3075   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3076   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3077                            DAG.getTargetConstant(
3078                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3079 }
3080 
3081 void SelectionDAGBuilder::visitFPExt(const User &I) {
3082   // FPExt is never a no-op cast, no need to check
3083   SDValue N = getValue(I.getOperand(0));
3084   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3085                                                         I.getType());
3086   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3087 }
3088 
3089 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3090   // FPToUI is never a no-op cast, no need to check
3091   SDValue N = getValue(I.getOperand(0));
3092   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3093                                                         I.getType());
3094   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3095 }
3096 
3097 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3098   // FPToSI is never a no-op cast, no need to check
3099   SDValue N = getValue(I.getOperand(0));
3100   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3101                                                         I.getType());
3102   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3103 }
3104 
3105 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3106   // UIToFP is never a no-op cast, no need to check
3107   SDValue N = getValue(I.getOperand(0));
3108   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3109                                                         I.getType());
3110   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3111 }
3112 
3113 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3114   // SIToFP is never a no-op cast, no need to check
3115   SDValue N = getValue(I.getOperand(0));
3116   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3117                                                         I.getType());
3118   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3119 }
3120 
3121 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3122   // What to do depends on the size of the integer and the size of the pointer.
3123   // We can either truncate, zero extend, or no-op, accordingly.
3124   SDValue N = getValue(I.getOperand(0));
3125   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3126                                                         I.getType());
3127   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3128 }
3129 
3130 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3131   // What to do depends on the size of the integer and the size of the pointer.
3132   // We can either truncate, zero extend, or no-op, accordingly.
3133   SDValue N = getValue(I.getOperand(0));
3134   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3135                                                         I.getType());
3136   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3137 }
3138 
3139 void SelectionDAGBuilder::visitBitCast(const User &I) {
3140   SDValue N = getValue(I.getOperand(0));
3141   SDLoc dl = getCurSDLoc();
3142   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3143                                                         I.getType());
3144 
3145   // BitCast assures us that source and destination are the same size so this is
3146   // either a BITCAST or a no-op.
3147   if (DestVT != N.getValueType())
3148     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3149                              DestVT, N)); // convert types.
3150   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3151   // might fold any kind of constant expression to an integer constant and that
3152   // is not what we are looking for. Only recognize a bitcast of a genuine
3153   // constant integer as an opaque constant.
3154   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3155     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3156                                  /*isOpaque*/true));
3157   else
3158     setValue(&I, N);            // noop cast.
3159 }
3160 
3161 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3162   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3163   const Value *SV = I.getOperand(0);
3164   SDValue N = getValue(SV);
3165   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3166 
3167   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3168   unsigned DestAS = I.getType()->getPointerAddressSpace();
3169 
3170   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3171     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3172 
3173   setValue(&I, N);
3174 }
3175 
3176 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3177   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3178   SDValue InVec = getValue(I.getOperand(0));
3179   SDValue InVal = getValue(I.getOperand(1));
3180   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3181                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3182   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3183                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3184                            InVec, InVal, InIdx));
3185 }
3186 
3187 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3188   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3189   SDValue InVec = getValue(I.getOperand(0));
3190   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3191                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3192   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3193                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3194                            InVec, InIdx));
3195 }
3196 
3197 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3198   SDValue Src1 = getValue(I.getOperand(0));
3199   SDValue Src2 = getValue(I.getOperand(1));
3200   SDLoc DL = getCurSDLoc();
3201 
3202   SmallVector<int, 8> Mask;
3203   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3204   unsigned MaskNumElts = Mask.size();
3205 
3206   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3207   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3208   EVT SrcVT = Src1.getValueType();
3209   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3210 
3211   if (SrcNumElts == MaskNumElts) {
3212     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3213     return;
3214   }
3215 
3216   // Normalize the shuffle vector since mask and vector length don't match.
3217   if (SrcNumElts < MaskNumElts) {
3218     // Mask is longer than the source vectors. We can use concatenate vector to
3219     // make the mask and vectors lengths match.
3220 
3221     if (MaskNumElts % SrcNumElts == 0) {
3222       // Mask length is a multiple of the source vector length.
3223       // Check if the shuffle is some kind of concatenation of the input
3224       // vectors.
3225       unsigned NumConcat = MaskNumElts / SrcNumElts;
3226       bool IsConcat = true;
3227       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3228       for (unsigned i = 0; i != MaskNumElts; ++i) {
3229         int Idx = Mask[i];
3230         if (Idx < 0)
3231           continue;
3232         // Ensure the indices in each SrcVT sized piece are sequential and that
3233         // the same source is used for the whole piece.
3234         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3235             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3236              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3237           IsConcat = false;
3238           break;
3239         }
3240         // Remember which source this index came from.
3241         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3242       }
3243 
3244       // The shuffle is concatenating multiple vectors together. Just emit
3245       // a CONCAT_VECTORS operation.
3246       if (IsConcat) {
3247         SmallVector<SDValue, 8> ConcatOps;
3248         for (auto Src : ConcatSrcs) {
3249           if (Src < 0)
3250             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3251           else if (Src == 0)
3252             ConcatOps.push_back(Src1);
3253           else
3254             ConcatOps.push_back(Src2);
3255         }
3256         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3257         return;
3258       }
3259     }
3260 
3261     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3262     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3263     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3264                                     PaddedMaskNumElts);
3265 
3266     // Pad both vectors with undefs to make them the same length as the mask.
3267     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3268 
3269     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3270     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3271     MOps1[0] = Src1;
3272     MOps2[0] = Src2;
3273 
3274     Src1 = Src1.isUndef()
3275                ? DAG.getUNDEF(PaddedVT)
3276                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3277     Src2 = Src2.isUndef()
3278                ? DAG.getUNDEF(PaddedVT)
3279                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3280 
3281     // Readjust mask for new input vector length.
3282     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3283     for (unsigned i = 0; i != MaskNumElts; ++i) {
3284       int Idx = Mask[i];
3285       if (Idx >= (int)SrcNumElts)
3286         Idx -= SrcNumElts - PaddedMaskNumElts;
3287       MappedOps[i] = Idx;
3288     }
3289 
3290     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3291 
3292     // If the concatenated vector was padded, extract a subvector with the
3293     // correct number of elements.
3294     if (MaskNumElts != PaddedMaskNumElts)
3295       Result = DAG.getNode(
3296           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3297           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3298 
3299     setValue(&I, Result);
3300     return;
3301   }
3302 
3303   if (SrcNumElts > MaskNumElts) {
3304     // Analyze the access pattern of the vector to see if we can extract
3305     // two subvectors and do the shuffle.
3306     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3307     bool CanExtract = true;
3308     for (int Idx : Mask) {
3309       unsigned Input = 0;
3310       if (Idx < 0)
3311         continue;
3312 
3313       if (Idx >= (int)SrcNumElts) {
3314         Input = 1;
3315         Idx -= SrcNumElts;
3316       }
3317 
3318       // If all the indices come from the same MaskNumElts sized portion of
3319       // the sources we can use extract. Also make sure the extract wouldn't
3320       // extract past the end of the source.
3321       int NewStartIdx = alignDown(Idx, MaskNumElts);
3322       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3323           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3324         CanExtract = false;
3325       // Make sure we always update StartIdx as we use it to track if all
3326       // elements are undef.
3327       StartIdx[Input] = NewStartIdx;
3328     }
3329 
3330     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3331       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3332       return;
3333     }
3334     if (CanExtract) {
3335       // Extract appropriate subvector and generate a vector shuffle
3336       for (unsigned Input = 0; Input < 2; ++Input) {
3337         SDValue &Src = Input == 0 ? Src1 : Src2;
3338         if (StartIdx[Input] < 0)
3339           Src = DAG.getUNDEF(VT);
3340         else {
3341           Src = DAG.getNode(
3342               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3343               DAG.getConstant(StartIdx[Input], DL,
3344                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3345         }
3346       }
3347 
3348       // Calculate new mask.
3349       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3350       for (int &Idx : MappedOps) {
3351         if (Idx >= (int)SrcNumElts)
3352           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3353         else if (Idx >= 0)
3354           Idx -= StartIdx[0];
3355       }
3356 
3357       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3358       return;
3359     }
3360   }
3361 
3362   // We can't use either concat vectors or extract subvectors so fall back to
3363   // replacing the shuffle with extract and build vector.
3364   // to insert and build vector.
3365   EVT EltVT = VT.getVectorElementType();
3366   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3367   SmallVector<SDValue,8> Ops;
3368   for (int Idx : Mask) {
3369     SDValue Res;
3370 
3371     if (Idx < 0) {
3372       Res = DAG.getUNDEF(EltVT);
3373     } else {
3374       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3375       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3376 
3377       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3378                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3379     }
3380 
3381     Ops.push_back(Res);
3382   }
3383 
3384   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3385 }
3386 
3387 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3388   ArrayRef<unsigned> Indices;
3389   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3390     Indices = IV->getIndices();
3391   else
3392     Indices = cast<ConstantExpr>(&I)->getIndices();
3393 
3394   const Value *Op0 = I.getOperand(0);
3395   const Value *Op1 = I.getOperand(1);
3396   Type *AggTy = I.getType();
3397   Type *ValTy = Op1->getType();
3398   bool IntoUndef = isa<UndefValue>(Op0);
3399   bool FromUndef = isa<UndefValue>(Op1);
3400 
3401   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3402 
3403   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3404   SmallVector<EVT, 4> AggValueVTs;
3405   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3406   SmallVector<EVT, 4> ValValueVTs;
3407   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3408 
3409   unsigned NumAggValues = AggValueVTs.size();
3410   unsigned NumValValues = ValValueVTs.size();
3411   SmallVector<SDValue, 4> Values(NumAggValues);
3412 
3413   // Ignore an insertvalue that produces an empty object
3414   if (!NumAggValues) {
3415     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3416     return;
3417   }
3418 
3419   SDValue Agg = getValue(Op0);
3420   unsigned i = 0;
3421   // Copy the beginning value(s) from the original aggregate.
3422   for (; i != LinearIndex; ++i)
3423     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3424                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3425   // Copy values from the inserted value(s).
3426   if (NumValValues) {
3427     SDValue Val = getValue(Op1);
3428     for (; i != LinearIndex + NumValValues; ++i)
3429       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3430                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3431   }
3432   // Copy remaining value(s) from the original aggregate.
3433   for (; i != NumAggValues; ++i)
3434     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3435                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3436 
3437   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3438                            DAG.getVTList(AggValueVTs), Values));
3439 }
3440 
3441 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3442   ArrayRef<unsigned> Indices;
3443   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3444     Indices = EV->getIndices();
3445   else
3446     Indices = cast<ConstantExpr>(&I)->getIndices();
3447 
3448   const Value *Op0 = I.getOperand(0);
3449   Type *AggTy = Op0->getType();
3450   Type *ValTy = I.getType();
3451   bool OutOfUndef = isa<UndefValue>(Op0);
3452 
3453   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3454 
3455   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3456   SmallVector<EVT, 4> ValValueVTs;
3457   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3458 
3459   unsigned NumValValues = ValValueVTs.size();
3460 
3461   // Ignore a extractvalue that produces an empty object
3462   if (!NumValValues) {
3463     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3464     return;
3465   }
3466 
3467   SmallVector<SDValue, 4> Values(NumValValues);
3468 
3469   SDValue Agg = getValue(Op0);
3470   // Copy out the selected value(s).
3471   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3472     Values[i - LinearIndex] =
3473       OutOfUndef ?
3474         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3475         SDValue(Agg.getNode(), Agg.getResNo() + i);
3476 
3477   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3478                            DAG.getVTList(ValValueVTs), Values));
3479 }
3480 
3481 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3482   Value *Op0 = I.getOperand(0);
3483   // Note that the pointer operand may be a vector of pointers. Take the scalar
3484   // element which holds a pointer.
3485   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3486   SDValue N = getValue(Op0);
3487   SDLoc dl = getCurSDLoc();
3488 
3489   // Normalize Vector GEP - all scalar operands should be converted to the
3490   // splat vector.
3491   unsigned VectorWidth = I.getType()->isVectorTy() ?
3492     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3493 
3494   if (VectorWidth && !N.getValueType().isVector()) {
3495     LLVMContext &Context = *DAG.getContext();
3496     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3497     N = DAG.getSplatBuildVector(VT, dl, N);
3498   }
3499 
3500   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3501        GTI != E; ++GTI) {
3502     const Value *Idx = GTI.getOperand();
3503     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3504       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3505       if (Field) {
3506         // N = N + Offset
3507         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3508 
3509         // In an inbounds GEP with an offset that is nonnegative even when
3510         // interpreted as signed, assume there is no unsigned overflow.
3511         SDNodeFlags Flags;
3512         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3513           Flags.setNoUnsignedWrap(true);
3514 
3515         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3516                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3517       }
3518     } else {
3519       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3520       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3521       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3522 
3523       // If this is a scalar constant or a splat vector of constants,
3524       // handle it quickly.
3525       const auto *CI = dyn_cast<ConstantInt>(Idx);
3526       if (!CI && isa<ConstantDataVector>(Idx) &&
3527           cast<ConstantDataVector>(Idx)->getSplatValue())
3528         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3529 
3530       if (CI) {
3531         if (CI->isZero())
3532           continue;
3533         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3534         LLVMContext &Context = *DAG.getContext();
3535         SDValue OffsVal = VectorWidth ?
3536           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3537           DAG.getConstant(Offs, dl, IdxTy);
3538 
3539         // In an inbouds GEP with an offset that is nonnegative even when
3540         // interpreted as signed, assume there is no unsigned overflow.
3541         SDNodeFlags Flags;
3542         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3543           Flags.setNoUnsignedWrap(true);
3544 
3545         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3546         continue;
3547       }
3548 
3549       // N = N + Idx * ElementSize;
3550       SDValue IdxN = getValue(Idx);
3551 
3552       if (!IdxN.getValueType().isVector() && VectorWidth) {
3553         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3554         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3555       }
3556 
3557       // If the index is smaller or larger than intptr_t, truncate or extend
3558       // it.
3559       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3560 
3561       // If this is a multiply by a power of two, turn it into a shl
3562       // immediately.  This is a very common case.
3563       if (ElementSize != 1) {
3564         if (ElementSize.isPowerOf2()) {
3565           unsigned Amt = ElementSize.logBase2();
3566           IdxN = DAG.getNode(ISD::SHL, dl,
3567                              N.getValueType(), IdxN,
3568                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3569         } else {
3570           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3571           IdxN = DAG.getNode(ISD::MUL, dl,
3572                              N.getValueType(), IdxN, Scale);
3573         }
3574       }
3575 
3576       N = DAG.getNode(ISD::ADD, dl,
3577                       N.getValueType(), N, IdxN);
3578     }
3579   }
3580 
3581   setValue(&I, N);
3582 }
3583 
3584 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3585   // If this is a fixed sized alloca in the entry block of the function,
3586   // allocate it statically on the stack.
3587   if (FuncInfo.StaticAllocaMap.count(&I))
3588     return;   // getValue will auto-populate this.
3589 
3590   SDLoc dl = getCurSDLoc();
3591   Type *Ty = I.getAllocatedType();
3592   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3593   auto &DL = DAG.getDataLayout();
3594   uint64_t TySize = DL.getTypeAllocSize(Ty);
3595   unsigned Align =
3596       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3597 
3598   SDValue AllocSize = getValue(I.getArraySize());
3599 
3600   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3601   if (AllocSize.getValueType() != IntPtr)
3602     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3603 
3604   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3605                           AllocSize,
3606                           DAG.getConstant(TySize, dl, IntPtr));
3607 
3608   // Handle alignment.  If the requested alignment is less than or equal to
3609   // the stack alignment, ignore it.  If the size is greater than or equal to
3610   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3611   unsigned StackAlign =
3612       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3613   if (Align <= StackAlign)
3614     Align = 0;
3615 
3616   // Round the size of the allocation up to the stack alignment size
3617   // by add SA-1 to the size. This doesn't overflow because we're computing
3618   // an address inside an alloca.
3619   SDNodeFlags Flags;
3620   Flags.setNoUnsignedWrap(true);
3621   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3622                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3623 
3624   // Mask out the low bits for alignment purposes.
3625   AllocSize =
3626       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3627                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3628 
3629   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3630   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3631   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3632   setValue(&I, DSA);
3633   DAG.setRoot(DSA.getValue(1));
3634 
3635   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3636 }
3637 
3638 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3639   if (I.isAtomic())
3640     return visitAtomicLoad(I);
3641 
3642   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3643   const Value *SV = I.getOperand(0);
3644   if (TLI.supportSwiftError()) {
3645     // Swifterror values can come from either a function parameter with
3646     // swifterror attribute or an alloca with swifterror attribute.
3647     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3648       if (Arg->hasSwiftErrorAttr())
3649         return visitLoadFromSwiftError(I);
3650     }
3651 
3652     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3653       if (Alloca->isSwiftError())
3654         return visitLoadFromSwiftError(I);
3655     }
3656   }
3657 
3658   SDValue Ptr = getValue(SV);
3659 
3660   Type *Ty = I.getType();
3661 
3662   bool isVolatile = I.isVolatile();
3663   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3664   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3665   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3666   unsigned Alignment = I.getAlignment();
3667 
3668   AAMDNodes AAInfo;
3669   I.getAAMetadata(AAInfo);
3670   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3671 
3672   SmallVector<EVT, 4> ValueVTs;
3673   SmallVector<uint64_t, 4> Offsets;
3674   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3675   unsigned NumValues = ValueVTs.size();
3676   if (NumValues == 0)
3677     return;
3678 
3679   SDValue Root;
3680   bool ConstantMemory = false;
3681   if (isVolatile || NumValues > MaxParallelChains)
3682     // Serialize volatile loads with other side effects.
3683     Root = getRoot();
3684   else if (AA &&
3685            AA->pointsToConstantMemory(MemoryLocation(
3686                SV,
3687                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3688                AAInfo))) {
3689     // Do not serialize (non-volatile) loads of constant memory with anything.
3690     Root = DAG.getEntryNode();
3691     ConstantMemory = true;
3692   } else {
3693     // Do not serialize non-volatile loads against each other.
3694     Root = DAG.getRoot();
3695   }
3696 
3697   SDLoc dl = getCurSDLoc();
3698 
3699   if (isVolatile)
3700     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3701 
3702   // An aggregate load cannot wrap around the address space, so offsets to its
3703   // parts don't wrap either.
3704   SDNodeFlags Flags;
3705   Flags.setNoUnsignedWrap(true);
3706 
3707   SmallVector<SDValue, 4> Values(NumValues);
3708   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3709   EVT PtrVT = Ptr.getValueType();
3710   unsigned ChainI = 0;
3711   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3712     // Serializing loads here may result in excessive register pressure, and
3713     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3714     // could recover a bit by hoisting nodes upward in the chain by recognizing
3715     // they are side-effect free or do not alias. The optimizer should really
3716     // avoid this case by converting large object/array copies to llvm.memcpy
3717     // (MaxParallelChains should always remain as failsafe).
3718     if (ChainI == MaxParallelChains) {
3719       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3720       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3721                                   makeArrayRef(Chains.data(), ChainI));
3722       Root = Chain;
3723       ChainI = 0;
3724     }
3725     SDValue A = DAG.getNode(ISD::ADD, dl,
3726                             PtrVT, Ptr,
3727                             DAG.getConstant(Offsets[i], dl, PtrVT),
3728                             Flags);
3729     auto MMOFlags = MachineMemOperand::MONone;
3730     if (isVolatile)
3731       MMOFlags |= MachineMemOperand::MOVolatile;
3732     if (isNonTemporal)
3733       MMOFlags |= MachineMemOperand::MONonTemporal;
3734     if (isInvariant)
3735       MMOFlags |= MachineMemOperand::MOInvariant;
3736     if (isDereferenceable)
3737       MMOFlags |= MachineMemOperand::MODereferenceable;
3738     MMOFlags |= TLI.getMMOFlags(I);
3739 
3740     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3741                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3742                             MMOFlags, AAInfo, Ranges);
3743 
3744     Values[i] = L;
3745     Chains[ChainI] = L.getValue(1);
3746   }
3747 
3748   if (!ConstantMemory) {
3749     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3750                                 makeArrayRef(Chains.data(), ChainI));
3751     if (isVolatile)
3752       DAG.setRoot(Chain);
3753     else
3754       PendingLoads.push_back(Chain);
3755   }
3756 
3757   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3758                            DAG.getVTList(ValueVTs), Values));
3759 }
3760 
3761 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3762   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3763          "call visitStoreToSwiftError when backend supports swifterror");
3764 
3765   SmallVector<EVT, 4> ValueVTs;
3766   SmallVector<uint64_t, 4> Offsets;
3767   const Value *SrcV = I.getOperand(0);
3768   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3769                   SrcV->getType(), ValueVTs, &Offsets);
3770   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3771          "expect a single EVT for swifterror");
3772 
3773   SDValue Src = getValue(SrcV);
3774   // Create a virtual register, then update the virtual register.
3775   unsigned VReg; bool CreatedVReg;
3776   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3777   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3778   // Chain can be getRoot or getControlRoot.
3779   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3780                                       SDValue(Src.getNode(), Src.getResNo()));
3781   DAG.setRoot(CopyNode);
3782   if (CreatedVReg)
3783     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3784 }
3785 
3786 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3787   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3788          "call visitLoadFromSwiftError when backend supports swifterror");
3789 
3790   assert(!I.isVolatile() &&
3791          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3792          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3793          "Support volatile, non temporal, invariant for load_from_swift_error");
3794 
3795   const Value *SV = I.getOperand(0);
3796   Type *Ty = I.getType();
3797   AAMDNodes AAInfo;
3798   I.getAAMetadata(AAInfo);
3799   assert(
3800       (!AA ||
3801        !AA->pointsToConstantMemory(MemoryLocation(
3802            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3803            AAInfo))) &&
3804       "load_from_swift_error should not be constant memory");
3805 
3806   SmallVector<EVT, 4> ValueVTs;
3807   SmallVector<uint64_t, 4> Offsets;
3808   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3809                   ValueVTs, &Offsets);
3810   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3811          "expect a single EVT for swifterror");
3812 
3813   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3814   SDValue L = DAG.getCopyFromReg(
3815       getRoot(), getCurSDLoc(),
3816       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3817       ValueVTs[0]);
3818 
3819   setValue(&I, L);
3820 }
3821 
3822 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3823   if (I.isAtomic())
3824     return visitAtomicStore(I);
3825 
3826   const Value *SrcV = I.getOperand(0);
3827   const Value *PtrV = I.getOperand(1);
3828 
3829   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3830   if (TLI.supportSwiftError()) {
3831     // Swifterror values can come from either a function parameter with
3832     // swifterror attribute or an alloca with swifterror attribute.
3833     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3834       if (Arg->hasSwiftErrorAttr())
3835         return visitStoreToSwiftError(I);
3836     }
3837 
3838     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3839       if (Alloca->isSwiftError())
3840         return visitStoreToSwiftError(I);
3841     }
3842   }
3843 
3844   SmallVector<EVT, 4> ValueVTs;
3845   SmallVector<uint64_t, 4> Offsets;
3846   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3847                   SrcV->getType(), ValueVTs, &Offsets);
3848   unsigned NumValues = ValueVTs.size();
3849   if (NumValues == 0)
3850     return;
3851 
3852   // Get the lowered operands. Note that we do this after
3853   // checking if NumResults is zero, because with zero results
3854   // the operands won't have values in the map.
3855   SDValue Src = getValue(SrcV);
3856   SDValue Ptr = getValue(PtrV);
3857 
3858   SDValue Root = getRoot();
3859   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3860   SDLoc dl = getCurSDLoc();
3861   EVT PtrVT = Ptr.getValueType();
3862   unsigned Alignment = I.getAlignment();
3863   AAMDNodes AAInfo;
3864   I.getAAMetadata(AAInfo);
3865 
3866   auto MMOFlags = MachineMemOperand::MONone;
3867   if (I.isVolatile())
3868     MMOFlags |= MachineMemOperand::MOVolatile;
3869   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3870     MMOFlags |= MachineMemOperand::MONonTemporal;
3871   MMOFlags |= TLI.getMMOFlags(I);
3872 
3873   // An aggregate load cannot wrap around the address space, so offsets to its
3874   // parts don't wrap either.
3875   SDNodeFlags Flags;
3876   Flags.setNoUnsignedWrap(true);
3877 
3878   unsigned ChainI = 0;
3879   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3880     // See visitLoad comments.
3881     if (ChainI == MaxParallelChains) {
3882       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3883                                   makeArrayRef(Chains.data(), ChainI));
3884       Root = Chain;
3885       ChainI = 0;
3886     }
3887     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3888                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3889     SDValue St = DAG.getStore(
3890         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3891         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3892     Chains[ChainI] = St;
3893   }
3894 
3895   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3896                                   makeArrayRef(Chains.data(), ChainI));
3897   DAG.setRoot(StoreNode);
3898 }
3899 
3900 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3901                                            bool IsCompressing) {
3902   SDLoc sdl = getCurSDLoc();
3903 
3904   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3905                            unsigned& Alignment) {
3906     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3907     Src0 = I.getArgOperand(0);
3908     Ptr = I.getArgOperand(1);
3909     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3910     Mask = I.getArgOperand(3);
3911   };
3912   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3913                            unsigned& Alignment) {
3914     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3915     Src0 = I.getArgOperand(0);
3916     Ptr = I.getArgOperand(1);
3917     Mask = I.getArgOperand(2);
3918     Alignment = 0;
3919   };
3920 
3921   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3922   unsigned Alignment;
3923   if (IsCompressing)
3924     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3925   else
3926     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3927 
3928   SDValue Ptr = getValue(PtrOperand);
3929   SDValue Src0 = getValue(Src0Operand);
3930   SDValue Mask = getValue(MaskOperand);
3931 
3932   EVT VT = Src0.getValueType();
3933   if (!Alignment)
3934     Alignment = DAG.getEVTAlignment(VT);
3935 
3936   AAMDNodes AAInfo;
3937   I.getAAMetadata(AAInfo);
3938 
3939   MachineMemOperand *MMO =
3940     DAG.getMachineFunction().
3941     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3942                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3943                           Alignment, AAInfo);
3944   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3945                                          MMO, false /* Truncating */,
3946                                          IsCompressing);
3947   DAG.setRoot(StoreNode);
3948   setValue(&I, StoreNode);
3949 }
3950 
3951 // Get a uniform base for the Gather/Scatter intrinsic.
3952 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3953 // We try to represent it as a base pointer + vector of indices.
3954 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3955 // The first operand of the GEP may be a single pointer or a vector of pointers
3956 // Example:
3957 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3958 //  or
3959 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3960 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3961 //
3962 // When the first GEP operand is a single pointer - it is the uniform base we
3963 // are looking for. If first operand of the GEP is a splat vector - we
3964 // extract the splat value and use it as a uniform base.
3965 // In all other cases the function returns 'false'.
3966 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3967                            SDValue &Scale, SelectionDAGBuilder* SDB) {
3968   SelectionDAG& DAG = SDB->DAG;
3969   LLVMContext &Context = *DAG.getContext();
3970 
3971   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3972   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3973   if (!GEP)
3974     return false;
3975 
3976   const Value *GEPPtr = GEP->getPointerOperand();
3977   if (!GEPPtr->getType()->isVectorTy())
3978     Ptr = GEPPtr;
3979   else if (!(Ptr = getSplatValue(GEPPtr)))
3980     return false;
3981 
3982   unsigned FinalIndex = GEP->getNumOperands() - 1;
3983   Value *IndexVal = GEP->getOperand(FinalIndex);
3984 
3985   // Ensure all the other indices are 0.
3986   for (unsigned i = 1; i < FinalIndex; ++i) {
3987     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
3988     if (!C || !C->isZero())
3989       return false;
3990   }
3991 
3992   // The operands of the GEP may be defined in another basic block.
3993   // In this case we'll not find nodes for the operands.
3994   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3995     return false;
3996 
3997   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3998   const DataLayout &DL = DAG.getDataLayout();
3999   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4000                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4001   Base = SDB->getValue(Ptr);
4002   Index = SDB->getValue(IndexVal);
4003 
4004   if (!Index.getValueType().isVector()) {
4005     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4006     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4007     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4008   }
4009   return true;
4010 }
4011 
4012 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4013   SDLoc sdl = getCurSDLoc();
4014 
4015   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4016   const Value *Ptr = I.getArgOperand(1);
4017   SDValue Src0 = getValue(I.getArgOperand(0));
4018   SDValue Mask = getValue(I.getArgOperand(3));
4019   EVT VT = Src0.getValueType();
4020   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4021   if (!Alignment)
4022     Alignment = DAG.getEVTAlignment(VT);
4023   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4024 
4025   AAMDNodes AAInfo;
4026   I.getAAMetadata(AAInfo);
4027 
4028   SDValue Base;
4029   SDValue Index;
4030   SDValue Scale;
4031   const Value *BasePtr = Ptr;
4032   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4033 
4034   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4035   MachineMemOperand *MMO = DAG.getMachineFunction().
4036     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4037                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4038                          Alignment, AAInfo);
4039   if (!UniformBase) {
4040     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4041     Index = getValue(Ptr);
4042     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4043   }
4044   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4045   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4046                                          Ops, MMO);
4047   DAG.setRoot(Scatter);
4048   setValue(&I, Scatter);
4049 }
4050 
4051 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4052   SDLoc sdl = getCurSDLoc();
4053 
4054   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4055                            unsigned& Alignment) {
4056     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4057     Ptr = I.getArgOperand(0);
4058     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4059     Mask = I.getArgOperand(2);
4060     Src0 = I.getArgOperand(3);
4061   };
4062   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4063                            unsigned& Alignment) {
4064     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4065     Ptr = I.getArgOperand(0);
4066     Alignment = 0;
4067     Mask = I.getArgOperand(1);
4068     Src0 = I.getArgOperand(2);
4069   };
4070 
4071   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4072   unsigned Alignment;
4073   if (IsExpanding)
4074     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4075   else
4076     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4077 
4078   SDValue Ptr = getValue(PtrOperand);
4079   SDValue Src0 = getValue(Src0Operand);
4080   SDValue Mask = getValue(MaskOperand);
4081 
4082   EVT VT = Src0.getValueType();
4083   if (!Alignment)
4084     Alignment = DAG.getEVTAlignment(VT);
4085 
4086   AAMDNodes AAInfo;
4087   I.getAAMetadata(AAInfo);
4088   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4089 
4090   // Do not serialize masked loads of constant memory with anything.
4091   bool AddToChain =
4092       !AA || !AA->pointsToConstantMemory(MemoryLocation(
4093                  PtrOperand,
4094                  LocationSize::precise(
4095                      DAG.getDataLayout().getTypeStoreSize(I.getType())),
4096                  AAInfo));
4097   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4098 
4099   MachineMemOperand *MMO =
4100     DAG.getMachineFunction().
4101     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4102                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4103                           Alignment, AAInfo, Ranges);
4104 
4105   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4106                                    ISD::NON_EXTLOAD, IsExpanding);
4107   if (AddToChain)
4108     PendingLoads.push_back(Load.getValue(1));
4109   setValue(&I, Load);
4110 }
4111 
4112 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4113   SDLoc sdl = getCurSDLoc();
4114 
4115   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4116   const Value *Ptr = I.getArgOperand(0);
4117   SDValue Src0 = getValue(I.getArgOperand(3));
4118   SDValue Mask = getValue(I.getArgOperand(2));
4119 
4120   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4121   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4122   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4123   if (!Alignment)
4124     Alignment = DAG.getEVTAlignment(VT);
4125 
4126   AAMDNodes AAInfo;
4127   I.getAAMetadata(AAInfo);
4128   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4129 
4130   SDValue Root = DAG.getRoot();
4131   SDValue Base;
4132   SDValue Index;
4133   SDValue Scale;
4134   const Value *BasePtr = Ptr;
4135   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4136   bool ConstantMemory = false;
4137   if (UniformBase && AA &&
4138       AA->pointsToConstantMemory(
4139           MemoryLocation(BasePtr,
4140                          LocationSize::precise(
4141                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4142                          AAInfo))) {
4143     // Do not serialize (non-volatile) loads of constant memory with anything.
4144     Root = DAG.getEntryNode();
4145     ConstantMemory = true;
4146   }
4147 
4148   MachineMemOperand *MMO =
4149     DAG.getMachineFunction().
4150     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4151                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4152                          Alignment, AAInfo, Ranges);
4153 
4154   if (!UniformBase) {
4155     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4156     Index = getValue(Ptr);
4157     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4158   }
4159   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4160   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4161                                        Ops, MMO);
4162 
4163   SDValue OutChain = Gather.getValue(1);
4164   if (!ConstantMemory)
4165     PendingLoads.push_back(OutChain);
4166   setValue(&I, Gather);
4167 }
4168 
4169 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4170   SDLoc dl = getCurSDLoc();
4171   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4172   AtomicOrdering FailureOrder = I.getFailureOrdering();
4173   SyncScope::ID SSID = I.getSyncScopeID();
4174 
4175   SDValue InChain = getRoot();
4176 
4177   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4178   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4179   SDValue L = DAG.getAtomicCmpSwap(
4180       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4181       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4182       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4183       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4184 
4185   SDValue OutChain = L.getValue(2);
4186 
4187   setValue(&I, L);
4188   DAG.setRoot(OutChain);
4189 }
4190 
4191 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4192   SDLoc dl = getCurSDLoc();
4193   ISD::NodeType NT;
4194   switch (I.getOperation()) {
4195   default: llvm_unreachable("Unknown atomicrmw operation");
4196   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4197   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4198   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4199   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4200   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4201   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4202   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4203   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4204   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4205   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4206   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4207   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4208   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4209   }
4210   AtomicOrdering Order = I.getOrdering();
4211   SyncScope::ID SSID = I.getSyncScopeID();
4212 
4213   SDValue InChain = getRoot();
4214 
4215   SDValue L =
4216     DAG.getAtomic(NT, dl,
4217                   getValue(I.getValOperand()).getSimpleValueType(),
4218                   InChain,
4219                   getValue(I.getPointerOperand()),
4220                   getValue(I.getValOperand()),
4221                   I.getPointerOperand(),
4222                   /* Alignment=*/ 0, Order, SSID);
4223 
4224   SDValue OutChain = L.getValue(1);
4225 
4226   setValue(&I, L);
4227   DAG.setRoot(OutChain);
4228 }
4229 
4230 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4231   SDLoc dl = getCurSDLoc();
4232   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4233   SDValue Ops[3];
4234   Ops[0] = getRoot();
4235   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4236                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4237   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4238                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4239   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4240 }
4241 
4242 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4243   SDLoc dl = getCurSDLoc();
4244   AtomicOrdering Order = I.getOrdering();
4245   SyncScope::ID SSID = I.getSyncScopeID();
4246 
4247   SDValue InChain = getRoot();
4248 
4249   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4250   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4251 
4252   if (!TLI.supportsUnalignedAtomics() &&
4253       I.getAlignment() < VT.getStoreSize())
4254     report_fatal_error("Cannot generate unaligned atomic load");
4255 
4256   MachineMemOperand *MMO =
4257       DAG.getMachineFunction().
4258       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4259                            MachineMemOperand::MOVolatile |
4260                            MachineMemOperand::MOLoad,
4261                            VT.getStoreSize(),
4262                            I.getAlignment() ? I.getAlignment() :
4263                                               DAG.getEVTAlignment(VT),
4264                            AAMDNodes(), nullptr, SSID, Order);
4265 
4266   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4267   SDValue L =
4268       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4269                     getValue(I.getPointerOperand()), MMO);
4270 
4271   SDValue OutChain = L.getValue(1);
4272 
4273   setValue(&I, L);
4274   DAG.setRoot(OutChain);
4275 }
4276 
4277 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4278   SDLoc dl = getCurSDLoc();
4279 
4280   AtomicOrdering Order = I.getOrdering();
4281   SyncScope::ID SSID = I.getSyncScopeID();
4282 
4283   SDValue InChain = getRoot();
4284 
4285   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4286   EVT VT =
4287       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4288 
4289   if (I.getAlignment() < VT.getStoreSize())
4290     report_fatal_error("Cannot generate unaligned atomic store");
4291 
4292   SDValue OutChain =
4293     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4294                   InChain,
4295                   getValue(I.getPointerOperand()),
4296                   getValue(I.getValueOperand()),
4297                   I.getPointerOperand(), I.getAlignment(),
4298                   Order, SSID);
4299 
4300   DAG.setRoot(OutChain);
4301 }
4302 
4303 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4304 /// node.
4305 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4306                                                unsigned Intrinsic) {
4307   // Ignore the callsite's attributes. A specific call site may be marked with
4308   // readnone, but the lowering code will expect the chain based on the
4309   // definition.
4310   const Function *F = I.getCalledFunction();
4311   bool HasChain = !F->doesNotAccessMemory();
4312   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4313 
4314   // Build the operand list.
4315   SmallVector<SDValue, 8> Ops;
4316   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4317     if (OnlyLoad) {
4318       // We don't need to serialize loads against other loads.
4319       Ops.push_back(DAG.getRoot());
4320     } else {
4321       Ops.push_back(getRoot());
4322     }
4323   }
4324 
4325   // Info is set by getTgtMemInstrinsic
4326   TargetLowering::IntrinsicInfo Info;
4327   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4328   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4329                                                DAG.getMachineFunction(),
4330                                                Intrinsic);
4331 
4332   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4333   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4334       Info.opc == ISD::INTRINSIC_W_CHAIN)
4335     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4336                                         TLI.getPointerTy(DAG.getDataLayout())));
4337 
4338   // Add all operands of the call to the operand list.
4339   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4340     SDValue Op = getValue(I.getArgOperand(i));
4341     Ops.push_back(Op);
4342   }
4343 
4344   SmallVector<EVT, 4> ValueVTs;
4345   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4346 
4347   if (HasChain)
4348     ValueVTs.push_back(MVT::Other);
4349 
4350   SDVTList VTs = DAG.getVTList(ValueVTs);
4351 
4352   // Create the node.
4353   SDValue Result;
4354   if (IsTgtIntrinsic) {
4355     // This is target intrinsic that touches memory
4356     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4357       Ops, Info.memVT,
4358       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4359       Info.flags, Info.size);
4360   } else if (!HasChain) {
4361     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4362   } else if (!I.getType()->isVoidTy()) {
4363     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4364   } else {
4365     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4366   }
4367 
4368   if (HasChain) {
4369     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4370     if (OnlyLoad)
4371       PendingLoads.push_back(Chain);
4372     else
4373       DAG.setRoot(Chain);
4374   }
4375 
4376   if (!I.getType()->isVoidTy()) {
4377     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4378       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4379       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4380     } else
4381       Result = lowerRangeToAssertZExt(DAG, I, Result);
4382 
4383     setValue(&I, Result);
4384   }
4385 }
4386 
4387 /// GetSignificand - Get the significand and build it into a floating-point
4388 /// number with exponent of 1:
4389 ///
4390 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4391 ///
4392 /// where Op is the hexadecimal representation of floating point value.
4393 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4394   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4395                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4396   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4397                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4398   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4399 }
4400 
4401 /// GetExponent - Get the exponent:
4402 ///
4403 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4404 ///
4405 /// where Op is the hexadecimal representation of floating point value.
4406 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4407                            const TargetLowering &TLI, const SDLoc &dl) {
4408   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4409                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4410   SDValue t1 = DAG.getNode(
4411       ISD::SRL, dl, MVT::i32, t0,
4412       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4413   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4414                            DAG.getConstant(127, dl, MVT::i32));
4415   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4416 }
4417 
4418 /// getF32Constant - Get 32-bit floating point constant.
4419 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4420                               const SDLoc &dl) {
4421   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4422                            MVT::f32);
4423 }
4424 
4425 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4426                                        SelectionDAG &DAG) {
4427   // TODO: What fast-math-flags should be set on the floating-point nodes?
4428 
4429   //   IntegerPartOfX = ((int32_t)(t0);
4430   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4431 
4432   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4433   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4434   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4435 
4436   //   IntegerPartOfX <<= 23;
4437   IntegerPartOfX = DAG.getNode(
4438       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4439       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4440                                   DAG.getDataLayout())));
4441 
4442   SDValue TwoToFractionalPartOfX;
4443   if (LimitFloatPrecision <= 6) {
4444     // For floating-point precision of 6:
4445     //
4446     //   TwoToFractionalPartOfX =
4447     //     0.997535578f +
4448     //       (0.735607626f + 0.252464424f * x) * x;
4449     //
4450     // error 0.0144103317, which is 6 bits
4451     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4452                              getF32Constant(DAG, 0x3e814304, dl));
4453     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4454                              getF32Constant(DAG, 0x3f3c50c8, dl));
4455     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4456     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4457                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4458   } else if (LimitFloatPrecision <= 12) {
4459     // For floating-point precision of 12:
4460     //
4461     //   TwoToFractionalPartOfX =
4462     //     0.999892986f +
4463     //       (0.696457318f +
4464     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4465     //
4466     // error 0.000107046256, which is 13 to 14 bits
4467     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4468                              getF32Constant(DAG, 0x3da235e3, dl));
4469     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4470                              getF32Constant(DAG, 0x3e65b8f3, dl));
4471     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4472     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4473                              getF32Constant(DAG, 0x3f324b07, dl));
4474     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4475     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4476                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4477   } else { // LimitFloatPrecision <= 18
4478     // For floating-point precision of 18:
4479     //
4480     //   TwoToFractionalPartOfX =
4481     //     0.999999982f +
4482     //       (0.693148872f +
4483     //         (0.240227044f +
4484     //           (0.554906021e-1f +
4485     //             (0.961591928e-2f +
4486     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4487     // error 2.47208000*10^(-7), which is better than 18 bits
4488     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4489                              getF32Constant(DAG, 0x3924b03e, dl));
4490     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4491                              getF32Constant(DAG, 0x3ab24b87, dl));
4492     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4493     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4494                              getF32Constant(DAG, 0x3c1d8c17, dl));
4495     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4496     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4497                              getF32Constant(DAG, 0x3d634a1d, dl));
4498     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4499     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4500                              getF32Constant(DAG, 0x3e75fe14, dl));
4501     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4502     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4503                               getF32Constant(DAG, 0x3f317234, dl));
4504     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4505     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4506                                          getF32Constant(DAG, 0x3f800000, dl));
4507   }
4508 
4509   // Add the exponent into the result in integer domain.
4510   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4511   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4512                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4513 }
4514 
4515 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4516 /// limited-precision mode.
4517 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4518                          const TargetLowering &TLI) {
4519   if (Op.getValueType() == MVT::f32 &&
4520       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4521 
4522     // Put the exponent in the right bit position for later addition to the
4523     // final result:
4524     //
4525     //   #define LOG2OFe 1.4426950f
4526     //   t0 = Op * LOG2OFe
4527 
4528     // TODO: What fast-math-flags should be set here?
4529     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4530                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4531     return getLimitedPrecisionExp2(t0, dl, DAG);
4532   }
4533 
4534   // No special expansion.
4535   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4536 }
4537 
4538 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4539 /// limited-precision mode.
4540 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4541                          const TargetLowering &TLI) {
4542   // TODO: What fast-math-flags should be set on the floating-point nodes?
4543 
4544   if (Op.getValueType() == MVT::f32 &&
4545       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4546     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4547 
4548     // Scale the exponent by log(2) [0.69314718f].
4549     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4550     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4551                                         getF32Constant(DAG, 0x3f317218, dl));
4552 
4553     // Get the significand and build it into a floating-point number with
4554     // exponent of 1.
4555     SDValue X = GetSignificand(DAG, Op1, dl);
4556 
4557     SDValue LogOfMantissa;
4558     if (LimitFloatPrecision <= 6) {
4559       // For floating-point precision of 6:
4560       //
4561       //   LogofMantissa =
4562       //     -1.1609546f +
4563       //       (1.4034025f - 0.23903021f * x) * x;
4564       //
4565       // error 0.0034276066, which is better than 8 bits
4566       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4567                                getF32Constant(DAG, 0xbe74c456, dl));
4568       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4569                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4570       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4571       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4572                                   getF32Constant(DAG, 0x3f949a29, dl));
4573     } else if (LimitFloatPrecision <= 12) {
4574       // For floating-point precision of 12:
4575       //
4576       //   LogOfMantissa =
4577       //     -1.7417939f +
4578       //       (2.8212026f +
4579       //         (-1.4699568f +
4580       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4581       //
4582       // error 0.000061011436, which is 14 bits
4583       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4584                                getF32Constant(DAG, 0xbd67b6d6, dl));
4585       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4586                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4587       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4588       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4589                                getF32Constant(DAG, 0x3fbc278b, dl));
4590       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4591       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4592                                getF32Constant(DAG, 0x40348e95, dl));
4593       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4594       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4595                                   getF32Constant(DAG, 0x3fdef31a, dl));
4596     } else { // LimitFloatPrecision <= 18
4597       // For floating-point precision of 18:
4598       //
4599       //   LogOfMantissa =
4600       //     -2.1072184f +
4601       //       (4.2372794f +
4602       //         (-3.7029485f +
4603       //           (2.2781945f +
4604       //             (-0.87823314f +
4605       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4606       //
4607       // error 0.0000023660568, which is better than 18 bits
4608       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4609                                getF32Constant(DAG, 0xbc91e5ac, dl));
4610       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4611                                getF32Constant(DAG, 0x3e4350aa, dl));
4612       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4613       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4614                                getF32Constant(DAG, 0x3f60d3e3, dl));
4615       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4616       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4617                                getF32Constant(DAG, 0x4011cdf0, dl));
4618       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4619       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4620                                getF32Constant(DAG, 0x406cfd1c, dl));
4621       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4622       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4623                                getF32Constant(DAG, 0x408797cb, dl));
4624       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4625       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4626                                   getF32Constant(DAG, 0x4006dcab, dl));
4627     }
4628 
4629     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4630   }
4631 
4632   // No special expansion.
4633   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4634 }
4635 
4636 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4637 /// limited-precision mode.
4638 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4639                           const TargetLowering &TLI) {
4640   // TODO: What fast-math-flags should be set on the floating-point nodes?
4641 
4642   if (Op.getValueType() == MVT::f32 &&
4643       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4644     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4645 
4646     // Get the exponent.
4647     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4648 
4649     // Get the significand and build it into a floating-point number with
4650     // exponent of 1.
4651     SDValue X = GetSignificand(DAG, Op1, dl);
4652 
4653     // Different possible minimax approximations of significand in
4654     // floating-point for various degrees of accuracy over [1,2].
4655     SDValue Log2ofMantissa;
4656     if (LimitFloatPrecision <= 6) {
4657       // For floating-point precision of 6:
4658       //
4659       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4660       //
4661       // error 0.0049451742, which is more than 7 bits
4662       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4663                                getF32Constant(DAG, 0xbeb08fe0, dl));
4664       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4665                                getF32Constant(DAG, 0x40019463, dl));
4666       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4667       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4668                                    getF32Constant(DAG, 0x3fd6633d, dl));
4669     } else if (LimitFloatPrecision <= 12) {
4670       // For floating-point precision of 12:
4671       //
4672       //   Log2ofMantissa =
4673       //     -2.51285454f +
4674       //       (4.07009056f +
4675       //         (-2.12067489f +
4676       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4677       //
4678       // error 0.0000876136000, which is better than 13 bits
4679       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4680                                getF32Constant(DAG, 0xbda7262e, dl));
4681       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4682                                getF32Constant(DAG, 0x3f25280b, dl));
4683       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4684       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4685                                getF32Constant(DAG, 0x4007b923, dl));
4686       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4687       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4688                                getF32Constant(DAG, 0x40823e2f, dl));
4689       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4690       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4691                                    getF32Constant(DAG, 0x4020d29c, dl));
4692     } else { // LimitFloatPrecision <= 18
4693       // For floating-point precision of 18:
4694       //
4695       //   Log2ofMantissa =
4696       //     -3.0400495f +
4697       //       (6.1129976f +
4698       //         (-5.3420409f +
4699       //           (3.2865683f +
4700       //             (-1.2669343f +
4701       //               (0.27515199f -
4702       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4703       //
4704       // error 0.0000018516, which is better than 18 bits
4705       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4706                                getF32Constant(DAG, 0xbcd2769e, dl));
4707       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4708                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4709       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4710       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4711                                getF32Constant(DAG, 0x3fa22ae7, dl));
4712       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4713       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4714                                getF32Constant(DAG, 0x40525723, dl));
4715       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4716       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4717                                getF32Constant(DAG, 0x40aaf200, dl));
4718       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4719       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4720                                getF32Constant(DAG, 0x40c39dad, dl));
4721       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4722       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4723                                    getF32Constant(DAG, 0x4042902c, dl));
4724     }
4725 
4726     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4727   }
4728 
4729   // No special expansion.
4730   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4731 }
4732 
4733 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4734 /// limited-precision mode.
4735 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4736                            const TargetLowering &TLI) {
4737   // TODO: What fast-math-flags should be set on the floating-point nodes?
4738 
4739   if (Op.getValueType() == MVT::f32 &&
4740       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4741     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4742 
4743     // Scale the exponent by log10(2) [0.30102999f].
4744     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4745     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4746                                         getF32Constant(DAG, 0x3e9a209a, dl));
4747 
4748     // Get the significand and build it into a floating-point number with
4749     // exponent of 1.
4750     SDValue X = GetSignificand(DAG, Op1, dl);
4751 
4752     SDValue Log10ofMantissa;
4753     if (LimitFloatPrecision <= 6) {
4754       // For floating-point precision of 6:
4755       //
4756       //   Log10ofMantissa =
4757       //     -0.50419619f +
4758       //       (0.60948995f - 0.10380950f * x) * x;
4759       //
4760       // error 0.0014886165, which is 6 bits
4761       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4762                                getF32Constant(DAG, 0xbdd49a13, dl));
4763       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4764                                getF32Constant(DAG, 0x3f1c0789, dl));
4765       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4766       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4767                                     getF32Constant(DAG, 0x3f011300, dl));
4768     } else if (LimitFloatPrecision <= 12) {
4769       // For floating-point precision of 12:
4770       //
4771       //   Log10ofMantissa =
4772       //     -0.64831180f +
4773       //       (0.91751397f +
4774       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4775       //
4776       // error 0.00019228036, which is better than 12 bits
4777       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4778                                getF32Constant(DAG, 0x3d431f31, dl));
4779       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4780                                getF32Constant(DAG, 0x3ea21fb2, dl));
4781       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4782       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4783                                getF32Constant(DAG, 0x3f6ae232, dl));
4784       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4785       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4786                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4787     } else { // LimitFloatPrecision <= 18
4788       // For floating-point precision of 18:
4789       //
4790       //   Log10ofMantissa =
4791       //     -0.84299375f +
4792       //       (1.5327582f +
4793       //         (-1.0688956f +
4794       //           (0.49102474f +
4795       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4796       //
4797       // error 0.0000037995730, which is better than 18 bits
4798       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4799                                getF32Constant(DAG, 0x3c5d51ce, dl));
4800       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4801                                getF32Constant(DAG, 0x3e00685a, dl));
4802       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4803       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4804                                getF32Constant(DAG, 0x3efb6798, dl));
4805       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4806       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4807                                getF32Constant(DAG, 0x3f88d192, dl));
4808       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4809       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4810                                getF32Constant(DAG, 0x3fc4316c, dl));
4811       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4812       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4813                                     getF32Constant(DAG, 0x3f57ce70, dl));
4814     }
4815 
4816     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4817   }
4818 
4819   // No special expansion.
4820   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4821 }
4822 
4823 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4824 /// limited-precision mode.
4825 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4826                           const TargetLowering &TLI) {
4827   if (Op.getValueType() == MVT::f32 &&
4828       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4829     return getLimitedPrecisionExp2(Op, dl, DAG);
4830 
4831   // No special expansion.
4832   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4833 }
4834 
4835 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4836 /// limited-precision mode with x == 10.0f.
4837 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4838                          SelectionDAG &DAG, const TargetLowering &TLI) {
4839   bool IsExp10 = false;
4840   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4841       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4842     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4843       APFloat Ten(10.0f);
4844       IsExp10 = LHSC->isExactlyValue(Ten);
4845     }
4846   }
4847 
4848   // TODO: What fast-math-flags should be set on the FMUL node?
4849   if (IsExp10) {
4850     // Put the exponent in the right bit position for later addition to the
4851     // final result:
4852     //
4853     //   #define LOG2OF10 3.3219281f
4854     //   t0 = Op * LOG2OF10;
4855     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4856                              getF32Constant(DAG, 0x40549a78, dl));
4857     return getLimitedPrecisionExp2(t0, dl, DAG);
4858   }
4859 
4860   // No special expansion.
4861   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4862 }
4863 
4864 /// ExpandPowI - Expand a llvm.powi intrinsic.
4865 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4866                           SelectionDAG &DAG) {
4867   // If RHS is a constant, we can expand this out to a multiplication tree,
4868   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4869   // optimizing for size, we only want to do this if the expansion would produce
4870   // a small number of multiplies, otherwise we do the full expansion.
4871   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4872     // Get the exponent as a positive value.
4873     unsigned Val = RHSC->getSExtValue();
4874     if ((int)Val < 0) Val = -Val;
4875 
4876     // powi(x, 0) -> 1.0
4877     if (Val == 0)
4878       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4879 
4880     const Function &F = DAG.getMachineFunction().getFunction();
4881     if (!F.optForSize() ||
4882         // If optimizing for size, don't insert too many multiplies.
4883         // This inserts up to 5 multiplies.
4884         countPopulation(Val) + Log2_32(Val) < 7) {
4885       // We use the simple binary decomposition method to generate the multiply
4886       // sequence.  There are more optimal ways to do this (for example,
4887       // powi(x,15) generates one more multiply than it should), but this has
4888       // the benefit of being both really simple and much better than a libcall.
4889       SDValue Res;  // Logically starts equal to 1.0
4890       SDValue CurSquare = LHS;
4891       // TODO: Intrinsics should have fast-math-flags that propagate to these
4892       // nodes.
4893       while (Val) {
4894         if (Val & 1) {
4895           if (Res.getNode())
4896             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4897           else
4898             Res = CurSquare;  // 1.0*CurSquare.
4899         }
4900 
4901         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4902                                 CurSquare, CurSquare);
4903         Val >>= 1;
4904       }
4905 
4906       // If the original was negative, invert the result, producing 1/(x*x*x).
4907       if (RHSC->getSExtValue() < 0)
4908         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4909                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4910       return Res;
4911     }
4912   }
4913 
4914   // Otherwise, expand to a libcall.
4915   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4916 }
4917 
4918 // getUnderlyingArgReg - Find underlying register used for a truncated or
4919 // bitcasted argument.
4920 static unsigned getUnderlyingArgReg(const SDValue &N) {
4921   switch (N.getOpcode()) {
4922   case ISD::CopyFromReg:
4923     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4924   case ISD::BITCAST:
4925   case ISD::AssertZext:
4926   case ISD::AssertSext:
4927   case ISD::TRUNCATE:
4928     return getUnderlyingArgReg(N.getOperand(0));
4929   default:
4930     return 0;
4931   }
4932 }
4933 
4934 /// If the DbgValueInst is a dbg_value of a function argument, create the
4935 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4936 /// instruction selection, they will be inserted to the entry BB.
4937 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4938     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4939     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4940   const Argument *Arg = dyn_cast<Argument>(V);
4941   if (!Arg)
4942     return false;
4943 
4944   MachineFunction &MF = DAG.getMachineFunction();
4945   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4946 
4947   bool IsIndirect = false;
4948   Optional<MachineOperand> Op;
4949   // Some arguments' frame index is recorded during argument lowering.
4950   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4951   if (FI != std::numeric_limits<int>::max())
4952     Op = MachineOperand::CreateFI(FI);
4953 
4954   if (!Op && N.getNode()) {
4955     unsigned Reg = getUnderlyingArgReg(N);
4956     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4957       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4958       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4959       if (PR)
4960         Reg = PR;
4961     }
4962     if (Reg) {
4963       Op = MachineOperand::CreateReg(Reg, false);
4964       IsIndirect = IsDbgDeclare;
4965     }
4966   }
4967 
4968   if (!Op && N.getNode())
4969     // Check if frame index is available.
4970     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4971       if (FrameIndexSDNode *FINode =
4972           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4973         Op = MachineOperand::CreateFI(FINode->getIndex());
4974 
4975   if (!Op) {
4976     // Check if ValueMap has reg number.
4977     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4978     if (VMI != FuncInfo.ValueMap.end()) {
4979       const auto &TLI = DAG.getTargetLoweringInfo();
4980       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4981                        V->getType(), getABIRegCopyCC(V));
4982       if (RFV.occupiesMultipleRegs()) {
4983         unsigned Offset = 0;
4984         for (auto RegAndSize : RFV.getRegsAndSizes()) {
4985           Op = MachineOperand::CreateReg(RegAndSize.first, false);
4986           auto FragmentExpr = DIExpression::createFragmentExpression(
4987               Expr, Offset, RegAndSize.second);
4988           if (!FragmentExpr)
4989             continue;
4990           FuncInfo.ArgDbgValues.push_back(
4991               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4992                       Op->getReg(), Variable, *FragmentExpr));
4993           Offset += RegAndSize.second;
4994         }
4995         return true;
4996       }
4997       Op = MachineOperand::CreateReg(VMI->second, false);
4998       IsIndirect = IsDbgDeclare;
4999     }
5000   }
5001 
5002   if (!Op)
5003     return false;
5004 
5005   assert(Variable->isValidLocationForIntrinsic(DL) &&
5006          "Expected inlined-at fields to agree");
5007   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5008   FuncInfo.ArgDbgValues.push_back(
5009       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5010               *Op, Variable, Expr));
5011 
5012   return true;
5013 }
5014 
5015 /// Return the appropriate SDDbgValue based on N.
5016 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5017                                              DILocalVariable *Variable,
5018                                              DIExpression *Expr,
5019                                              const DebugLoc &dl,
5020                                              unsigned DbgSDNodeOrder) {
5021   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5022     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5023     // stack slot locations.
5024     //
5025     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5026     // debug values here after optimization:
5027     //
5028     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5029     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5030     //
5031     // Both describe the direct values of their associated variables.
5032     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5033                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5034   }
5035   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5036                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5037 }
5038 
5039 // VisualStudio defines setjmp as _setjmp
5040 #if defined(_MSC_VER) && defined(setjmp) && \
5041                          !defined(setjmp_undefined_for_msvc)
5042 #  pragma push_macro("setjmp")
5043 #  undef setjmp
5044 #  define setjmp_undefined_for_msvc
5045 #endif
5046 
5047 /// Lower the call to the specified intrinsic function. If we want to emit this
5048 /// as a call to a named external function, return the name. Otherwise, lower it
5049 /// and return null.
5050 const char *
5051 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5052   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5053   SDLoc sdl = getCurSDLoc();
5054   DebugLoc dl = getCurDebugLoc();
5055   SDValue Res;
5056 
5057   switch (Intrinsic) {
5058   default:
5059     // By default, turn this into a target intrinsic node.
5060     visitTargetIntrinsic(I, Intrinsic);
5061     return nullptr;
5062   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5063   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5064   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5065   case Intrinsic::returnaddress:
5066     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5067                              TLI.getPointerTy(DAG.getDataLayout()),
5068                              getValue(I.getArgOperand(0))));
5069     return nullptr;
5070   case Intrinsic::addressofreturnaddress:
5071     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5072                              TLI.getPointerTy(DAG.getDataLayout())));
5073     return nullptr;
5074   case Intrinsic::sponentry:
5075     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5076                              TLI.getPointerTy(DAG.getDataLayout())));
5077     return nullptr;
5078   case Intrinsic::frameaddress:
5079     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5080                              TLI.getPointerTy(DAG.getDataLayout()),
5081                              getValue(I.getArgOperand(0))));
5082     return nullptr;
5083   case Intrinsic::read_register: {
5084     Value *Reg = I.getArgOperand(0);
5085     SDValue Chain = getRoot();
5086     SDValue RegName =
5087         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5088     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5089     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5090       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5091     setValue(&I, Res);
5092     DAG.setRoot(Res.getValue(1));
5093     return nullptr;
5094   }
5095   case Intrinsic::write_register: {
5096     Value *Reg = I.getArgOperand(0);
5097     Value *RegValue = I.getArgOperand(1);
5098     SDValue Chain = getRoot();
5099     SDValue RegName =
5100         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5101     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5102                             RegName, getValue(RegValue)));
5103     return nullptr;
5104   }
5105   case Intrinsic::setjmp:
5106     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5107   case Intrinsic::longjmp:
5108     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5109   case Intrinsic::memcpy: {
5110     const auto &MCI = cast<MemCpyInst>(I);
5111     SDValue Op1 = getValue(I.getArgOperand(0));
5112     SDValue Op2 = getValue(I.getArgOperand(1));
5113     SDValue Op3 = getValue(I.getArgOperand(2));
5114     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5115     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5116     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5117     unsigned Align = MinAlign(DstAlign, SrcAlign);
5118     bool isVol = MCI.isVolatile();
5119     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5120     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5121     // node.
5122     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5123                                false, isTC,
5124                                MachinePointerInfo(I.getArgOperand(0)),
5125                                MachinePointerInfo(I.getArgOperand(1)));
5126     updateDAGForMaybeTailCall(MC);
5127     return nullptr;
5128   }
5129   case Intrinsic::memset: {
5130     const auto &MSI = cast<MemSetInst>(I);
5131     SDValue Op1 = getValue(I.getArgOperand(0));
5132     SDValue Op2 = getValue(I.getArgOperand(1));
5133     SDValue Op3 = getValue(I.getArgOperand(2));
5134     // @llvm.memset defines 0 and 1 to both mean no alignment.
5135     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5136     bool isVol = MSI.isVolatile();
5137     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5138     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5139                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5140     updateDAGForMaybeTailCall(MS);
5141     return nullptr;
5142   }
5143   case Intrinsic::memmove: {
5144     const auto &MMI = cast<MemMoveInst>(I);
5145     SDValue Op1 = getValue(I.getArgOperand(0));
5146     SDValue Op2 = getValue(I.getArgOperand(1));
5147     SDValue Op3 = getValue(I.getArgOperand(2));
5148     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5149     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5150     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5151     unsigned Align = MinAlign(DstAlign, SrcAlign);
5152     bool isVol = MMI.isVolatile();
5153     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5154     // FIXME: Support passing different dest/src alignments to the memmove DAG
5155     // node.
5156     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5157                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5158                                 MachinePointerInfo(I.getArgOperand(1)));
5159     updateDAGForMaybeTailCall(MM);
5160     return nullptr;
5161   }
5162   case Intrinsic::memcpy_element_unordered_atomic: {
5163     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5164     SDValue Dst = getValue(MI.getRawDest());
5165     SDValue Src = getValue(MI.getRawSource());
5166     SDValue Length = getValue(MI.getLength());
5167 
5168     unsigned DstAlign = MI.getDestAlignment();
5169     unsigned SrcAlign = MI.getSourceAlignment();
5170     Type *LengthTy = MI.getLength()->getType();
5171     unsigned ElemSz = MI.getElementSizeInBytes();
5172     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5173     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5174                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5175                                      MachinePointerInfo(MI.getRawDest()),
5176                                      MachinePointerInfo(MI.getRawSource()));
5177     updateDAGForMaybeTailCall(MC);
5178     return nullptr;
5179   }
5180   case Intrinsic::memmove_element_unordered_atomic: {
5181     auto &MI = cast<AtomicMemMoveInst>(I);
5182     SDValue Dst = getValue(MI.getRawDest());
5183     SDValue Src = getValue(MI.getRawSource());
5184     SDValue Length = getValue(MI.getLength());
5185 
5186     unsigned DstAlign = MI.getDestAlignment();
5187     unsigned SrcAlign = MI.getSourceAlignment();
5188     Type *LengthTy = MI.getLength()->getType();
5189     unsigned ElemSz = MI.getElementSizeInBytes();
5190     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5191     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5192                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5193                                       MachinePointerInfo(MI.getRawDest()),
5194                                       MachinePointerInfo(MI.getRawSource()));
5195     updateDAGForMaybeTailCall(MC);
5196     return nullptr;
5197   }
5198   case Intrinsic::memset_element_unordered_atomic: {
5199     auto &MI = cast<AtomicMemSetInst>(I);
5200     SDValue Dst = getValue(MI.getRawDest());
5201     SDValue Val = getValue(MI.getValue());
5202     SDValue Length = getValue(MI.getLength());
5203 
5204     unsigned DstAlign = MI.getDestAlignment();
5205     Type *LengthTy = MI.getLength()->getType();
5206     unsigned ElemSz = MI.getElementSizeInBytes();
5207     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5208     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5209                                      LengthTy, ElemSz, isTC,
5210                                      MachinePointerInfo(MI.getRawDest()));
5211     updateDAGForMaybeTailCall(MC);
5212     return nullptr;
5213   }
5214   case Intrinsic::dbg_addr:
5215   case Intrinsic::dbg_declare: {
5216     const auto &DI = cast<DbgVariableIntrinsic>(I);
5217     DILocalVariable *Variable = DI.getVariable();
5218     DIExpression *Expression = DI.getExpression();
5219     dropDanglingDebugInfo(Variable, Expression);
5220     assert(Variable && "Missing variable");
5221 
5222     // Check if address has undef value.
5223     const Value *Address = DI.getVariableLocation();
5224     if (!Address || isa<UndefValue>(Address) ||
5225         (Address->use_empty() && !isa<Argument>(Address))) {
5226       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5227       return nullptr;
5228     }
5229 
5230     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5231 
5232     // Check if this variable can be described by a frame index, typically
5233     // either as a static alloca or a byval parameter.
5234     int FI = std::numeric_limits<int>::max();
5235     if (const auto *AI =
5236             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5237       if (AI->isStaticAlloca()) {
5238         auto I = FuncInfo.StaticAllocaMap.find(AI);
5239         if (I != FuncInfo.StaticAllocaMap.end())
5240           FI = I->second;
5241       }
5242     } else if (const auto *Arg = dyn_cast<Argument>(
5243                    Address->stripInBoundsConstantOffsets())) {
5244       FI = FuncInfo.getArgumentFrameIndex(Arg);
5245     }
5246 
5247     // llvm.dbg.addr is control dependent and always generates indirect
5248     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5249     // the MachineFunction variable table.
5250     if (FI != std::numeric_limits<int>::max()) {
5251       if (Intrinsic == Intrinsic::dbg_addr) {
5252         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5253             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5254         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5255       }
5256       return nullptr;
5257     }
5258 
5259     SDValue &N = NodeMap[Address];
5260     if (!N.getNode() && isa<Argument>(Address))
5261       // Check unused arguments map.
5262       N = UnusedArgNodeMap[Address];
5263     SDDbgValue *SDV;
5264     if (N.getNode()) {
5265       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5266         Address = BCI->getOperand(0);
5267       // Parameters are handled specially.
5268       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5269       if (isParameter && FINode) {
5270         // Byval parameter. We have a frame index at this point.
5271         SDV =
5272             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5273                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5274       } else if (isa<Argument>(Address)) {
5275         // Address is an argument, so try to emit its dbg value using
5276         // virtual register info from the FuncInfo.ValueMap.
5277         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5278         return nullptr;
5279       } else {
5280         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5281                               true, dl, SDNodeOrder);
5282       }
5283       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5284     } else {
5285       // If Address is an argument then try to emit its dbg value using
5286       // virtual register info from the FuncInfo.ValueMap.
5287       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5288                                     N)) {
5289         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5290       }
5291     }
5292     return nullptr;
5293   }
5294   case Intrinsic::dbg_label: {
5295     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5296     DILabel *Label = DI.getLabel();
5297     assert(Label && "Missing label");
5298 
5299     SDDbgLabel *SDV;
5300     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5301     DAG.AddDbgLabel(SDV);
5302     return nullptr;
5303   }
5304   case Intrinsic::dbg_value: {
5305     const DbgValueInst &DI = cast<DbgValueInst>(I);
5306     assert(DI.getVariable() && "Missing variable");
5307 
5308     DILocalVariable *Variable = DI.getVariable();
5309     DIExpression *Expression = DI.getExpression();
5310     dropDanglingDebugInfo(Variable, Expression);
5311     const Value *V = DI.getValue();
5312     if (!V)
5313       return nullptr;
5314 
5315     SDDbgValue *SDV;
5316     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
5317         isa<ConstantPointerNull>(V)) {
5318       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5319       DAG.AddDbgValue(SDV, nullptr, false);
5320       return nullptr;
5321     }
5322 
5323     // If the Value is a frame index, we can create a FrameIndex debug value
5324     // without relying on the DAG at all.
5325     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
5326       auto SI = FuncInfo.StaticAllocaMap.find(AI);
5327       if (SI != FuncInfo.StaticAllocaMap.end()) {
5328         auto SDV =
5329             DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
5330                                       /*IsIndirect*/ false, dl, SDNodeOrder);
5331         // Do not attach the SDNodeDbgValue to an SDNode: this variable location
5332         // is still available even if the SDNode gets optimized out.
5333         DAG.AddDbgValue(SDV, nullptr, false);
5334         return nullptr;
5335       }
5336     }
5337 
5338     // Do not use getValue() in here; we don't want to generate code at
5339     // this point if it hasn't been done yet.
5340     SDValue N = NodeMap[V];
5341     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5342       N = UnusedArgNodeMap[V];
5343     if (N.getNode()) {
5344       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5345         return nullptr;
5346       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5347       DAG.AddDbgValue(SDV, N.getNode(), false);
5348       return nullptr;
5349     }
5350 
5351     // The value is not used in this block yet (or it would have an SDNode).
5352     // We still want the value to appear for the user if possible -- if it has
5353     // an associated VReg, we can refer to that instead.
5354     if (!isa<Argument>(V)) {
5355       auto VMI = FuncInfo.ValueMap.find(V);
5356       if (VMI != FuncInfo.ValueMap.end()) {
5357         unsigned Reg = VMI->second;
5358         // If this is a PHI node, it may be split up into several MI PHI nodes
5359         // (in FunctionLoweringInfo::set).
5360         RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
5361                          V->getType(), None);
5362         if (RFV.occupiesMultipleRegs()) {
5363           unsigned Offset = 0;
5364           unsigned BitsToDescribe = 0;
5365           if (auto VarSize = Variable->getSizeInBits())
5366             BitsToDescribe = *VarSize;
5367           if (auto Fragment = Expression->getFragmentInfo())
5368             BitsToDescribe = Fragment->SizeInBits;
5369           for (auto RegAndSize : RFV.getRegsAndSizes()) {
5370             unsigned RegisterSize = RegAndSize.second;
5371             // Bail out if all bits are described already.
5372             if (Offset >= BitsToDescribe)
5373               break;
5374             unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
5375                 ? BitsToDescribe - Offset
5376                 : RegisterSize;
5377             auto FragmentExpr = DIExpression::createFragmentExpression(
5378                 Expression, Offset, FragmentSize);
5379             if (!FragmentExpr)
5380                 continue;
5381             SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first,
5382                                       false, dl, SDNodeOrder);
5383             DAG.AddDbgValue(SDV, nullptr, false);
5384             Offset += RegisterSize;
5385           }
5386         } else {
5387           SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl,
5388                                     SDNodeOrder);
5389           DAG.AddDbgValue(SDV, nullptr, false);
5390         }
5391         return nullptr;
5392       }
5393     }
5394 
5395     // TODO: When we get here we will either drop the dbg.value completely, or
5396     // we try to move it forward by letting it dangle for awhile. So we should
5397     // probably add an extra DbgValue to the DAG here, with a reference to
5398     // "noreg", to indicate that we have lost the debug location for the
5399     // variable.
5400 
5401     if (!V->use_empty() ) {
5402       // Do not call getValue(V) yet, as we don't want to generate code.
5403       // Remember it for later.
5404       DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5405       return nullptr;
5406     }
5407 
5408     LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5409     LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5410     return nullptr;
5411   }
5412 
5413   case Intrinsic::eh_typeid_for: {
5414     // Find the type id for the given typeinfo.
5415     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5416     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5417     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5418     setValue(&I, Res);
5419     return nullptr;
5420   }
5421 
5422   case Intrinsic::eh_return_i32:
5423   case Intrinsic::eh_return_i64:
5424     DAG.getMachineFunction().setCallsEHReturn(true);
5425     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5426                             MVT::Other,
5427                             getControlRoot(),
5428                             getValue(I.getArgOperand(0)),
5429                             getValue(I.getArgOperand(1))));
5430     return nullptr;
5431   case Intrinsic::eh_unwind_init:
5432     DAG.getMachineFunction().setCallsUnwindInit(true);
5433     return nullptr;
5434   case Intrinsic::eh_dwarf_cfa:
5435     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5436                              TLI.getPointerTy(DAG.getDataLayout()),
5437                              getValue(I.getArgOperand(0))));
5438     return nullptr;
5439   case Intrinsic::eh_sjlj_callsite: {
5440     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5441     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5442     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5443     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5444 
5445     MMI.setCurrentCallSite(CI->getZExtValue());
5446     return nullptr;
5447   }
5448   case Intrinsic::eh_sjlj_functioncontext: {
5449     // Get and store the index of the function context.
5450     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5451     AllocaInst *FnCtx =
5452       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5453     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5454     MFI.setFunctionContextIndex(FI);
5455     return nullptr;
5456   }
5457   case Intrinsic::eh_sjlj_setjmp: {
5458     SDValue Ops[2];
5459     Ops[0] = getRoot();
5460     Ops[1] = getValue(I.getArgOperand(0));
5461     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5462                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5463     setValue(&I, Op.getValue(0));
5464     DAG.setRoot(Op.getValue(1));
5465     return nullptr;
5466   }
5467   case Intrinsic::eh_sjlj_longjmp:
5468     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5469                             getRoot(), getValue(I.getArgOperand(0))));
5470     return nullptr;
5471   case Intrinsic::eh_sjlj_setup_dispatch:
5472     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5473                             getRoot()));
5474     return nullptr;
5475   case Intrinsic::masked_gather:
5476     visitMaskedGather(I);
5477     return nullptr;
5478   case Intrinsic::masked_load:
5479     visitMaskedLoad(I);
5480     return nullptr;
5481   case Intrinsic::masked_scatter:
5482     visitMaskedScatter(I);
5483     return nullptr;
5484   case Intrinsic::masked_store:
5485     visitMaskedStore(I);
5486     return nullptr;
5487   case Intrinsic::masked_expandload:
5488     visitMaskedLoad(I, true /* IsExpanding */);
5489     return nullptr;
5490   case Intrinsic::masked_compressstore:
5491     visitMaskedStore(I, true /* IsCompressing */);
5492     return nullptr;
5493   case Intrinsic::x86_mmx_pslli_w:
5494   case Intrinsic::x86_mmx_pslli_d:
5495   case Intrinsic::x86_mmx_pslli_q:
5496   case Intrinsic::x86_mmx_psrli_w:
5497   case Intrinsic::x86_mmx_psrli_d:
5498   case Intrinsic::x86_mmx_psrli_q:
5499   case Intrinsic::x86_mmx_psrai_w:
5500   case Intrinsic::x86_mmx_psrai_d: {
5501     SDValue ShAmt = getValue(I.getArgOperand(1));
5502     if (isa<ConstantSDNode>(ShAmt)) {
5503       visitTargetIntrinsic(I, Intrinsic);
5504       return nullptr;
5505     }
5506     unsigned NewIntrinsic = 0;
5507     EVT ShAmtVT = MVT::v2i32;
5508     switch (Intrinsic) {
5509     case Intrinsic::x86_mmx_pslli_w:
5510       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5511       break;
5512     case Intrinsic::x86_mmx_pslli_d:
5513       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5514       break;
5515     case Intrinsic::x86_mmx_pslli_q:
5516       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5517       break;
5518     case Intrinsic::x86_mmx_psrli_w:
5519       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5520       break;
5521     case Intrinsic::x86_mmx_psrli_d:
5522       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5523       break;
5524     case Intrinsic::x86_mmx_psrli_q:
5525       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5526       break;
5527     case Intrinsic::x86_mmx_psrai_w:
5528       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5529       break;
5530     case Intrinsic::x86_mmx_psrai_d:
5531       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5532       break;
5533     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5534     }
5535 
5536     // The vector shift intrinsics with scalars uses 32b shift amounts but
5537     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5538     // to be zero.
5539     // We must do this early because v2i32 is not a legal type.
5540     SDValue ShOps[2];
5541     ShOps[0] = ShAmt;
5542     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5543     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5544     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5545     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5546     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5547                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5548                        getValue(I.getArgOperand(0)), ShAmt);
5549     setValue(&I, Res);
5550     return nullptr;
5551   }
5552   case Intrinsic::powi:
5553     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5554                             getValue(I.getArgOperand(1)), DAG));
5555     return nullptr;
5556   case Intrinsic::log:
5557     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5558     return nullptr;
5559   case Intrinsic::log2:
5560     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5561     return nullptr;
5562   case Intrinsic::log10:
5563     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5564     return nullptr;
5565   case Intrinsic::exp:
5566     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5567     return nullptr;
5568   case Intrinsic::exp2:
5569     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5570     return nullptr;
5571   case Intrinsic::pow:
5572     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5573                            getValue(I.getArgOperand(1)), DAG, TLI));
5574     return nullptr;
5575   case Intrinsic::sqrt:
5576   case Intrinsic::fabs:
5577   case Intrinsic::sin:
5578   case Intrinsic::cos:
5579   case Intrinsic::floor:
5580   case Intrinsic::ceil:
5581   case Intrinsic::trunc:
5582   case Intrinsic::rint:
5583   case Intrinsic::nearbyint:
5584   case Intrinsic::round:
5585   case Intrinsic::canonicalize: {
5586     unsigned Opcode;
5587     switch (Intrinsic) {
5588     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5589     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5590     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5591     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5592     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5593     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5594     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5595     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5596     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5597     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5598     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5599     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5600     }
5601 
5602     setValue(&I, DAG.getNode(Opcode, sdl,
5603                              getValue(I.getArgOperand(0)).getValueType(),
5604                              getValue(I.getArgOperand(0))));
5605     return nullptr;
5606   }
5607   case Intrinsic::minnum: {
5608     auto VT = getValue(I.getArgOperand(0)).getValueType();
5609     unsigned Opc =
5610         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
5611             ? ISD::FMINIMUM
5612             : ISD::FMINNUM;
5613     setValue(&I, DAG.getNode(Opc, sdl, VT,
5614                              getValue(I.getArgOperand(0)),
5615                              getValue(I.getArgOperand(1))));
5616     return nullptr;
5617   }
5618   case Intrinsic::maxnum: {
5619     auto VT = getValue(I.getArgOperand(0)).getValueType();
5620     unsigned Opc =
5621         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
5622             ? ISD::FMAXIMUM
5623             : ISD::FMAXNUM;
5624     setValue(&I, DAG.getNode(Opc, sdl, VT,
5625                              getValue(I.getArgOperand(0)),
5626                              getValue(I.getArgOperand(1))));
5627     return nullptr;
5628   }
5629   case Intrinsic::minimum:
5630     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
5631                              getValue(I.getArgOperand(0)).getValueType(),
5632                              getValue(I.getArgOperand(0)),
5633                              getValue(I.getArgOperand(1))));
5634     return nullptr;
5635   case Intrinsic::maximum:
5636     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
5637                              getValue(I.getArgOperand(0)).getValueType(),
5638                              getValue(I.getArgOperand(0)),
5639                              getValue(I.getArgOperand(1))));
5640     return nullptr;
5641   case Intrinsic::copysign:
5642     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5643                              getValue(I.getArgOperand(0)).getValueType(),
5644                              getValue(I.getArgOperand(0)),
5645                              getValue(I.getArgOperand(1))));
5646     return nullptr;
5647   case Intrinsic::fma:
5648     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5649                              getValue(I.getArgOperand(0)).getValueType(),
5650                              getValue(I.getArgOperand(0)),
5651                              getValue(I.getArgOperand(1)),
5652                              getValue(I.getArgOperand(2))));
5653     return nullptr;
5654   case Intrinsic::experimental_constrained_fadd:
5655   case Intrinsic::experimental_constrained_fsub:
5656   case Intrinsic::experimental_constrained_fmul:
5657   case Intrinsic::experimental_constrained_fdiv:
5658   case Intrinsic::experimental_constrained_frem:
5659   case Intrinsic::experimental_constrained_fma:
5660   case Intrinsic::experimental_constrained_sqrt:
5661   case Intrinsic::experimental_constrained_pow:
5662   case Intrinsic::experimental_constrained_powi:
5663   case Intrinsic::experimental_constrained_sin:
5664   case Intrinsic::experimental_constrained_cos:
5665   case Intrinsic::experimental_constrained_exp:
5666   case Intrinsic::experimental_constrained_exp2:
5667   case Intrinsic::experimental_constrained_log:
5668   case Intrinsic::experimental_constrained_log10:
5669   case Intrinsic::experimental_constrained_log2:
5670   case Intrinsic::experimental_constrained_rint:
5671   case Intrinsic::experimental_constrained_nearbyint:
5672   case Intrinsic::experimental_constrained_maxnum:
5673   case Intrinsic::experimental_constrained_minnum:
5674   case Intrinsic::experimental_constrained_ceil:
5675   case Intrinsic::experimental_constrained_floor:
5676   case Intrinsic::experimental_constrained_round:
5677   case Intrinsic::experimental_constrained_trunc:
5678     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5679     return nullptr;
5680   case Intrinsic::fmuladd: {
5681     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5682     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5683         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5684       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5685                                getValue(I.getArgOperand(0)).getValueType(),
5686                                getValue(I.getArgOperand(0)),
5687                                getValue(I.getArgOperand(1)),
5688                                getValue(I.getArgOperand(2))));
5689     } else {
5690       // TODO: Intrinsic calls should have fast-math-flags.
5691       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5692                                 getValue(I.getArgOperand(0)).getValueType(),
5693                                 getValue(I.getArgOperand(0)),
5694                                 getValue(I.getArgOperand(1)));
5695       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5696                                 getValue(I.getArgOperand(0)).getValueType(),
5697                                 Mul,
5698                                 getValue(I.getArgOperand(2)));
5699       setValue(&I, Add);
5700     }
5701     return nullptr;
5702   }
5703   case Intrinsic::convert_to_fp16:
5704     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5705                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5706                                          getValue(I.getArgOperand(0)),
5707                                          DAG.getTargetConstant(0, sdl,
5708                                                                MVT::i32))));
5709     return nullptr;
5710   case Intrinsic::convert_from_fp16:
5711     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5712                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5713                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5714                                          getValue(I.getArgOperand(0)))));
5715     return nullptr;
5716   case Intrinsic::pcmarker: {
5717     SDValue Tmp = getValue(I.getArgOperand(0));
5718     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5719     return nullptr;
5720   }
5721   case Intrinsic::readcyclecounter: {
5722     SDValue Op = getRoot();
5723     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5724                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5725     setValue(&I, Res);
5726     DAG.setRoot(Res.getValue(1));
5727     return nullptr;
5728   }
5729   case Intrinsic::bitreverse:
5730     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5731                              getValue(I.getArgOperand(0)).getValueType(),
5732                              getValue(I.getArgOperand(0))));
5733     return nullptr;
5734   case Intrinsic::bswap:
5735     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5736                              getValue(I.getArgOperand(0)).getValueType(),
5737                              getValue(I.getArgOperand(0))));
5738     return nullptr;
5739   case Intrinsic::cttz: {
5740     SDValue Arg = getValue(I.getArgOperand(0));
5741     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5742     EVT Ty = Arg.getValueType();
5743     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5744                              sdl, Ty, Arg));
5745     return nullptr;
5746   }
5747   case Intrinsic::ctlz: {
5748     SDValue Arg = getValue(I.getArgOperand(0));
5749     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5750     EVT Ty = Arg.getValueType();
5751     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5752                              sdl, Ty, Arg));
5753     return nullptr;
5754   }
5755   case Intrinsic::ctpop: {
5756     SDValue Arg = getValue(I.getArgOperand(0));
5757     EVT Ty = Arg.getValueType();
5758     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5759     return nullptr;
5760   }
5761   case Intrinsic::fshl:
5762   case Intrinsic::fshr: {
5763     bool IsFSHL = Intrinsic == Intrinsic::fshl;
5764     SDValue X = getValue(I.getArgOperand(0));
5765     SDValue Y = getValue(I.getArgOperand(1));
5766     SDValue Z = getValue(I.getArgOperand(2));
5767     EVT VT = X.getValueType();
5768     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
5769     SDValue Zero = DAG.getConstant(0, sdl, VT);
5770     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
5771 
5772     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
5773     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
5774       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
5775       return nullptr;
5776     }
5777 
5778     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
5779     // avoid the select that is necessary in the general case to filter out
5780     // the 0-shift possibility that leads to UB.
5781     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
5782       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
5783       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
5784         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
5785         return nullptr;
5786       }
5787 
5788       // Some targets only rotate one way. Try the opposite direction.
5789       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
5790       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
5791         // Negate the shift amount because it is safe to ignore the high bits.
5792         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5793         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
5794         return nullptr;
5795       }
5796 
5797       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
5798       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
5799       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5800       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
5801       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
5802       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
5803       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
5804       return nullptr;
5805     }
5806 
5807     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5808     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5809     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
5810     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
5811     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5812     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
5813 
5814     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5815     // and that is undefined. We must compare and select to avoid UB.
5816     EVT CCVT = MVT::i1;
5817     if (VT.isVector())
5818       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
5819 
5820     // For fshl, 0-shift returns the 1st arg (X).
5821     // For fshr, 0-shift returns the 2nd arg (Y).
5822     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
5823     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
5824     return nullptr;
5825   }
5826   case Intrinsic::sadd_sat: {
5827     SDValue Op1 = getValue(I.getArgOperand(0));
5828     SDValue Op2 = getValue(I.getArgOperand(1));
5829     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
5830     return nullptr;
5831   }
5832   case Intrinsic::uadd_sat: {
5833     SDValue Op1 = getValue(I.getArgOperand(0));
5834     SDValue Op2 = getValue(I.getArgOperand(1));
5835     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
5836     return nullptr;
5837   }
5838   case Intrinsic::ssub_sat: {
5839     SDValue Op1 = getValue(I.getArgOperand(0));
5840     SDValue Op2 = getValue(I.getArgOperand(1));
5841     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
5842     return nullptr;
5843   }
5844   case Intrinsic::usub_sat: {
5845     SDValue Op1 = getValue(I.getArgOperand(0));
5846     SDValue Op2 = getValue(I.getArgOperand(1));
5847     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
5848     return nullptr;
5849   }
5850   case Intrinsic::smul_fix: {
5851     SDValue Op1 = getValue(I.getArgOperand(0));
5852     SDValue Op2 = getValue(I.getArgOperand(1));
5853     SDValue Op3 = getValue(I.getArgOperand(2));
5854     setValue(&I,
5855              DAG.getNode(ISD::SMULFIX, sdl, Op1.getValueType(), Op1, Op2, Op3));
5856     return nullptr;
5857   }
5858   case Intrinsic::stacksave: {
5859     SDValue Op = getRoot();
5860     Res = DAG.getNode(
5861         ISD::STACKSAVE, sdl,
5862         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5863     setValue(&I, Res);
5864     DAG.setRoot(Res.getValue(1));
5865     return nullptr;
5866   }
5867   case Intrinsic::stackrestore:
5868     Res = getValue(I.getArgOperand(0));
5869     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5870     return nullptr;
5871   case Intrinsic::get_dynamic_area_offset: {
5872     SDValue Op = getRoot();
5873     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5874     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5875     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5876     // target.
5877     if (PtrTy != ResTy)
5878       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5879                          " intrinsic!");
5880     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5881                       Op);
5882     DAG.setRoot(Op);
5883     setValue(&I, Res);
5884     return nullptr;
5885   }
5886   case Intrinsic::stackguard: {
5887     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5888     MachineFunction &MF = DAG.getMachineFunction();
5889     const Module &M = *MF.getFunction().getParent();
5890     SDValue Chain = getRoot();
5891     if (TLI.useLoadStackGuardNode()) {
5892       Res = getLoadStackGuard(DAG, sdl, Chain);
5893     } else {
5894       const Value *Global = TLI.getSDagStackGuard(M);
5895       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5896       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5897                         MachinePointerInfo(Global, 0), Align,
5898                         MachineMemOperand::MOVolatile);
5899     }
5900     if (TLI.useStackGuardXorFP())
5901       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
5902     DAG.setRoot(Chain);
5903     setValue(&I, Res);
5904     return nullptr;
5905   }
5906   case Intrinsic::stackprotector: {
5907     // Emit code into the DAG to store the stack guard onto the stack.
5908     MachineFunction &MF = DAG.getMachineFunction();
5909     MachineFrameInfo &MFI = MF.getFrameInfo();
5910     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5911     SDValue Src, Chain = getRoot();
5912 
5913     if (TLI.useLoadStackGuardNode())
5914       Src = getLoadStackGuard(DAG, sdl, Chain);
5915     else
5916       Src = getValue(I.getArgOperand(0));   // The guard's value.
5917 
5918     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5919 
5920     int FI = FuncInfo.StaticAllocaMap[Slot];
5921     MFI.setStackProtectorIndex(FI);
5922 
5923     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5924 
5925     // Store the stack protector onto the stack.
5926     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5927                                                  DAG.getMachineFunction(), FI),
5928                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5929     setValue(&I, Res);
5930     DAG.setRoot(Res);
5931     return nullptr;
5932   }
5933   case Intrinsic::objectsize: {
5934     // If we don't know by now, we're never going to know.
5935     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5936 
5937     assert(CI && "Non-constant type in __builtin_object_size?");
5938 
5939     SDValue Arg = getValue(I.getCalledValue());
5940     EVT Ty = Arg.getValueType();
5941 
5942     if (CI->isZero())
5943       Res = DAG.getConstant(-1ULL, sdl, Ty);
5944     else
5945       Res = DAG.getConstant(0, sdl, Ty);
5946 
5947     setValue(&I, Res);
5948     return nullptr;
5949   }
5950 
5951   case Intrinsic::is_constant:
5952     // If this wasn't constant-folded away by now, then it's not a
5953     // constant.
5954     setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
5955     return nullptr;
5956 
5957   case Intrinsic::annotation:
5958   case Intrinsic::ptr_annotation:
5959   case Intrinsic::launder_invariant_group:
5960   case Intrinsic::strip_invariant_group:
5961     // Drop the intrinsic, but forward the value
5962     setValue(&I, getValue(I.getOperand(0)));
5963     return nullptr;
5964   case Intrinsic::assume:
5965   case Intrinsic::var_annotation:
5966   case Intrinsic::sideeffect:
5967     // Discard annotate attributes, assumptions, and artificial side-effects.
5968     return nullptr;
5969 
5970   case Intrinsic::codeview_annotation: {
5971     // Emit a label associated with this metadata.
5972     MachineFunction &MF = DAG.getMachineFunction();
5973     MCSymbol *Label =
5974         MF.getMMI().getContext().createTempSymbol("annotation", true);
5975     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5976     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5977     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5978     DAG.setRoot(Res);
5979     return nullptr;
5980   }
5981 
5982   case Intrinsic::init_trampoline: {
5983     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5984 
5985     SDValue Ops[6];
5986     Ops[0] = getRoot();
5987     Ops[1] = getValue(I.getArgOperand(0));
5988     Ops[2] = getValue(I.getArgOperand(1));
5989     Ops[3] = getValue(I.getArgOperand(2));
5990     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5991     Ops[5] = DAG.getSrcValue(F);
5992 
5993     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5994 
5995     DAG.setRoot(Res);
5996     return nullptr;
5997   }
5998   case Intrinsic::adjust_trampoline:
5999     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6000                              TLI.getPointerTy(DAG.getDataLayout()),
6001                              getValue(I.getArgOperand(0))));
6002     return nullptr;
6003   case Intrinsic::gcroot: {
6004     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6005            "only valid in functions with gc specified, enforced by Verifier");
6006     assert(GFI && "implied by previous");
6007     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6008     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6009 
6010     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6011     GFI->addStackRoot(FI->getIndex(), TypeMap);
6012     return nullptr;
6013   }
6014   case Intrinsic::gcread:
6015   case Intrinsic::gcwrite:
6016     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6017   case Intrinsic::flt_rounds:
6018     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6019     return nullptr;
6020 
6021   case Intrinsic::expect:
6022     // Just replace __builtin_expect(exp, c) with EXP.
6023     setValue(&I, getValue(I.getArgOperand(0)));
6024     return nullptr;
6025 
6026   case Intrinsic::debugtrap:
6027   case Intrinsic::trap: {
6028     StringRef TrapFuncName =
6029         I.getAttributes()
6030             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6031             .getValueAsString();
6032     if (TrapFuncName.empty()) {
6033       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6034         ISD::TRAP : ISD::DEBUGTRAP;
6035       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6036       return nullptr;
6037     }
6038     TargetLowering::ArgListTy Args;
6039 
6040     TargetLowering::CallLoweringInfo CLI(DAG);
6041     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6042         CallingConv::C, I.getType(),
6043         DAG.getExternalSymbol(TrapFuncName.data(),
6044                               TLI.getPointerTy(DAG.getDataLayout())),
6045         std::move(Args));
6046 
6047     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6048     DAG.setRoot(Result.second);
6049     return nullptr;
6050   }
6051 
6052   case Intrinsic::uadd_with_overflow:
6053   case Intrinsic::sadd_with_overflow:
6054   case Intrinsic::usub_with_overflow:
6055   case Intrinsic::ssub_with_overflow:
6056   case Intrinsic::umul_with_overflow:
6057   case Intrinsic::smul_with_overflow: {
6058     ISD::NodeType Op;
6059     switch (Intrinsic) {
6060     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6061     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6062     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6063     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6064     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6065     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6066     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6067     }
6068     SDValue Op1 = getValue(I.getArgOperand(0));
6069     SDValue Op2 = getValue(I.getArgOperand(1));
6070 
6071     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
6072     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6073     return nullptr;
6074   }
6075   case Intrinsic::prefetch: {
6076     SDValue Ops[5];
6077     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6078     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6079     Ops[0] = DAG.getRoot();
6080     Ops[1] = getValue(I.getArgOperand(0));
6081     Ops[2] = getValue(I.getArgOperand(1));
6082     Ops[3] = getValue(I.getArgOperand(2));
6083     Ops[4] = getValue(I.getArgOperand(3));
6084     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6085                                              DAG.getVTList(MVT::Other), Ops,
6086                                              EVT::getIntegerVT(*Context, 8),
6087                                              MachinePointerInfo(I.getArgOperand(0)),
6088                                              0, /* align */
6089                                              Flags);
6090 
6091     // Chain the prefetch in parallell with any pending loads, to stay out of
6092     // the way of later optimizations.
6093     PendingLoads.push_back(Result);
6094     Result = getRoot();
6095     DAG.setRoot(Result);
6096     return nullptr;
6097   }
6098   case Intrinsic::lifetime_start:
6099   case Intrinsic::lifetime_end: {
6100     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6101     // Stack coloring is not enabled in O0, discard region information.
6102     if (TM.getOptLevel() == CodeGenOpt::None)
6103       return nullptr;
6104 
6105     SmallVector<Value *, 4> Allocas;
6106     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
6107 
6108     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
6109            E = Allocas.end(); Object != E; ++Object) {
6110       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6111 
6112       // Could not find an Alloca.
6113       if (!LifetimeObject)
6114         continue;
6115 
6116       // First check that the Alloca is static, otherwise it won't have a
6117       // valid frame index.
6118       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6119       if (SI == FuncInfo.StaticAllocaMap.end())
6120         return nullptr;
6121 
6122       int FI = SI->second;
6123 
6124       SDValue Ops[2];
6125       Ops[0] = getRoot();
6126       Ops[1] =
6127           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
6128       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
6129 
6130       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
6131       DAG.setRoot(Res);
6132     }
6133     return nullptr;
6134   }
6135   case Intrinsic::invariant_start:
6136     // Discard region information.
6137     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6138     return nullptr;
6139   case Intrinsic::invariant_end:
6140     // Discard region information.
6141     return nullptr;
6142   case Intrinsic::clear_cache:
6143     return TLI.getClearCacheBuiltinName();
6144   case Intrinsic::donothing:
6145     // ignore
6146     return nullptr;
6147   case Intrinsic::experimental_stackmap:
6148     visitStackmap(I);
6149     return nullptr;
6150   case Intrinsic::experimental_patchpoint_void:
6151   case Intrinsic::experimental_patchpoint_i64:
6152     visitPatchpoint(&I);
6153     return nullptr;
6154   case Intrinsic::experimental_gc_statepoint:
6155     LowerStatepoint(ImmutableStatepoint(&I));
6156     return nullptr;
6157   case Intrinsic::experimental_gc_result:
6158     visitGCResult(cast<GCResultInst>(I));
6159     return nullptr;
6160   case Intrinsic::experimental_gc_relocate:
6161     visitGCRelocate(cast<GCRelocateInst>(I));
6162     return nullptr;
6163   case Intrinsic::instrprof_increment:
6164     llvm_unreachable("instrprof failed to lower an increment");
6165   case Intrinsic::instrprof_value_profile:
6166     llvm_unreachable("instrprof failed to lower a value profiling call");
6167   case Intrinsic::localescape: {
6168     MachineFunction &MF = DAG.getMachineFunction();
6169     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6170 
6171     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6172     // is the same on all targets.
6173     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6174       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6175       if (isa<ConstantPointerNull>(Arg))
6176         continue; // Skip null pointers. They represent a hole in index space.
6177       AllocaInst *Slot = cast<AllocaInst>(Arg);
6178       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6179              "can only escape static allocas");
6180       int FI = FuncInfo.StaticAllocaMap[Slot];
6181       MCSymbol *FrameAllocSym =
6182           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6183               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6184       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6185               TII->get(TargetOpcode::LOCAL_ESCAPE))
6186           .addSym(FrameAllocSym)
6187           .addFrameIndex(FI);
6188     }
6189 
6190     MF.setHasLocalEscape(true);
6191 
6192     return nullptr;
6193   }
6194 
6195   case Intrinsic::localrecover: {
6196     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6197     MachineFunction &MF = DAG.getMachineFunction();
6198     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6199 
6200     // Get the symbol that defines the frame offset.
6201     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6202     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6203     unsigned IdxVal =
6204         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6205     MCSymbol *FrameAllocSym =
6206         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6207             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6208 
6209     // Create a MCSymbol for the label to avoid any target lowering
6210     // that would make this PC relative.
6211     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6212     SDValue OffsetVal =
6213         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6214 
6215     // Add the offset to the FP.
6216     Value *FP = I.getArgOperand(1);
6217     SDValue FPVal = getValue(FP);
6218     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6219     setValue(&I, Add);
6220 
6221     return nullptr;
6222   }
6223 
6224   case Intrinsic::eh_exceptionpointer:
6225   case Intrinsic::eh_exceptioncode: {
6226     // Get the exception pointer vreg, copy from it, and resize it to fit.
6227     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6228     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6229     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6230     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6231     SDValue N =
6232         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6233     if (Intrinsic == Intrinsic::eh_exceptioncode)
6234       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6235     setValue(&I, N);
6236     return nullptr;
6237   }
6238   case Intrinsic::xray_customevent: {
6239     // Here we want to make sure that the intrinsic behaves as if it has a
6240     // specific calling convention, and only for x86_64.
6241     // FIXME: Support other platforms later.
6242     const auto &Triple = DAG.getTarget().getTargetTriple();
6243     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6244       return nullptr;
6245 
6246     SDLoc DL = getCurSDLoc();
6247     SmallVector<SDValue, 8> Ops;
6248 
6249     // We want to say that we always want the arguments in registers.
6250     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6251     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6252     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6253     SDValue Chain = getRoot();
6254     Ops.push_back(LogEntryVal);
6255     Ops.push_back(StrSizeVal);
6256     Ops.push_back(Chain);
6257 
6258     // We need to enforce the calling convention for the callsite, so that
6259     // argument ordering is enforced correctly, and that register allocation can
6260     // see that some registers may be assumed clobbered and have to preserve
6261     // them across calls to the intrinsic.
6262     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6263                                            DL, NodeTys, Ops);
6264     SDValue patchableNode = SDValue(MN, 0);
6265     DAG.setRoot(patchableNode);
6266     setValue(&I, patchableNode);
6267     return nullptr;
6268   }
6269   case Intrinsic::xray_typedevent: {
6270     // Here we want to make sure that the intrinsic behaves as if it has a
6271     // specific calling convention, and only for x86_64.
6272     // FIXME: Support other platforms later.
6273     const auto &Triple = DAG.getTarget().getTargetTriple();
6274     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6275       return nullptr;
6276 
6277     SDLoc DL = getCurSDLoc();
6278     SmallVector<SDValue, 8> Ops;
6279 
6280     // We want to say that we always want the arguments in registers.
6281     // It's unclear to me how manipulating the selection DAG here forces callers
6282     // to provide arguments in registers instead of on the stack.
6283     SDValue LogTypeId = getValue(I.getArgOperand(0));
6284     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6285     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6286     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6287     SDValue Chain = getRoot();
6288     Ops.push_back(LogTypeId);
6289     Ops.push_back(LogEntryVal);
6290     Ops.push_back(StrSizeVal);
6291     Ops.push_back(Chain);
6292 
6293     // We need to enforce the calling convention for the callsite, so that
6294     // argument ordering is enforced correctly, and that register allocation can
6295     // see that some registers may be assumed clobbered and have to preserve
6296     // them across calls to the intrinsic.
6297     MachineSDNode *MN = DAG.getMachineNode(
6298         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6299     SDValue patchableNode = SDValue(MN, 0);
6300     DAG.setRoot(patchableNode);
6301     setValue(&I, patchableNode);
6302     return nullptr;
6303   }
6304   case Intrinsic::experimental_deoptimize:
6305     LowerDeoptimizeCall(&I);
6306     return nullptr;
6307 
6308   case Intrinsic::experimental_vector_reduce_fadd:
6309   case Intrinsic::experimental_vector_reduce_fmul:
6310   case Intrinsic::experimental_vector_reduce_add:
6311   case Intrinsic::experimental_vector_reduce_mul:
6312   case Intrinsic::experimental_vector_reduce_and:
6313   case Intrinsic::experimental_vector_reduce_or:
6314   case Intrinsic::experimental_vector_reduce_xor:
6315   case Intrinsic::experimental_vector_reduce_smax:
6316   case Intrinsic::experimental_vector_reduce_smin:
6317   case Intrinsic::experimental_vector_reduce_umax:
6318   case Intrinsic::experimental_vector_reduce_umin:
6319   case Intrinsic::experimental_vector_reduce_fmax:
6320   case Intrinsic::experimental_vector_reduce_fmin:
6321     visitVectorReduce(I, Intrinsic);
6322     return nullptr;
6323 
6324   case Intrinsic::icall_branch_funnel: {
6325     SmallVector<SDValue, 16> Ops;
6326     Ops.push_back(DAG.getRoot());
6327     Ops.push_back(getValue(I.getArgOperand(0)));
6328 
6329     int64_t Offset;
6330     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6331         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6332     if (!Base)
6333       report_fatal_error(
6334           "llvm.icall.branch.funnel operand must be a GlobalValue");
6335     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6336 
6337     struct BranchFunnelTarget {
6338       int64_t Offset;
6339       SDValue Target;
6340     };
6341     SmallVector<BranchFunnelTarget, 8> Targets;
6342 
6343     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6344       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6345           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6346       if (ElemBase != Base)
6347         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6348                            "to the same GlobalValue");
6349 
6350       SDValue Val = getValue(I.getArgOperand(Op + 1));
6351       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6352       if (!GA)
6353         report_fatal_error(
6354             "llvm.icall.branch.funnel operand must be a GlobalValue");
6355       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6356                                      GA->getGlobal(), getCurSDLoc(),
6357                                      Val.getValueType(), GA->getOffset())});
6358     }
6359     llvm::sort(Targets,
6360                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6361                  return T1.Offset < T2.Offset;
6362                });
6363 
6364     for (auto &T : Targets) {
6365       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6366       Ops.push_back(T.Target);
6367     }
6368 
6369     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6370                                  getCurSDLoc(), MVT::Other, Ops),
6371               0);
6372     DAG.setRoot(N);
6373     setValue(&I, N);
6374     HasTailCall = true;
6375     return nullptr;
6376   }
6377 
6378   case Intrinsic::wasm_landingpad_index:
6379     // Information this intrinsic contained has been transferred to
6380     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6381     // delete it now.
6382     return nullptr;
6383   }
6384 }
6385 
6386 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6387     const ConstrainedFPIntrinsic &FPI) {
6388   SDLoc sdl = getCurSDLoc();
6389   unsigned Opcode;
6390   switch (FPI.getIntrinsicID()) {
6391   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6392   case Intrinsic::experimental_constrained_fadd:
6393     Opcode = ISD::STRICT_FADD;
6394     break;
6395   case Intrinsic::experimental_constrained_fsub:
6396     Opcode = ISD::STRICT_FSUB;
6397     break;
6398   case Intrinsic::experimental_constrained_fmul:
6399     Opcode = ISD::STRICT_FMUL;
6400     break;
6401   case Intrinsic::experimental_constrained_fdiv:
6402     Opcode = ISD::STRICT_FDIV;
6403     break;
6404   case Intrinsic::experimental_constrained_frem:
6405     Opcode = ISD::STRICT_FREM;
6406     break;
6407   case Intrinsic::experimental_constrained_fma:
6408     Opcode = ISD::STRICT_FMA;
6409     break;
6410   case Intrinsic::experimental_constrained_sqrt:
6411     Opcode = ISD::STRICT_FSQRT;
6412     break;
6413   case Intrinsic::experimental_constrained_pow:
6414     Opcode = ISD::STRICT_FPOW;
6415     break;
6416   case Intrinsic::experimental_constrained_powi:
6417     Opcode = ISD::STRICT_FPOWI;
6418     break;
6419   case Intrinsic::experimental_constrained_sin:
6420     Opcode = ISD::STRICT_FSIN;
6421     break;
6422   case Intrinsic::experimental_constrained_cos:
6423     Opcode = ISD::STRICT_FCOS;
6424     break;
6425   case Intrinsic::experimental_constrained_exp:
6426     Opcode = ISD::STRICT_FEXP;
6427     break;
6428   case Intrinsic::experimental_constrained_exp2:
6429     Opcode = ISD::STRICT_FEXP2;
6430     break;
6431   case Intrinsic::experimental_constrained_log:
6432     Opcode = ISD::STRICT_FLOG;
6433     break;
6434   case Intrinsic::experimental_constrained_log10:
6435     Opcode = ISD::STRICT_FLOG10;
6436     break;
6437   case Intrinsic::experimental_constrained_log2:
6438     Opcode = ISD::STRICT_FLOG2;
6439     break;
6440   case Intrinsic::experimental_constrained_rint:
6441     Opcode = ISD::STRICT_FRINT;
6442     break;
6443   case Intrinsic::experimental_constrained_nearbyint:
6444     Opcode = ISD::STRICT_FNEARBYINT;
6445     break;
6446   case Intrinsic::experimental_constrained_maxnum:
6447     Opcode = ISD::STRICT_FMAXNUM;
6448     break;
6449   case Intrinsic::experimental_constrained_minnum:
6450     Opcode = ISD::STRICT_FMINNUM;
6451     break;
6452   case Intrinsic::experimental_constrained_ceil:
6453     Opcode = ISD::STRICT_FCEIL;
6454     break;
6455   case Intrinsic::experimental_constrained_floor:
6456     Opcode = ISD::STRICT_FFLOOR;
6457     break;
6458   case Intrinsic::experimental_constrained_round:
6459     Opcode = ISD::STRICT_FROUND;
6460     break;
6461   case Intrinsic::experimental_constrained_trunc:
6462     Opcode = ISD::STRICT_FTRUNC;
6463     break;
6464   }
6465   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6466   SDValue Chain = getRoot();
6467   SmallVector<EVT, 4> ValueVTs;
6468   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6469   ValueVTs.push_back(MVT::Other); // Out chain
6470 
6471   SDVTList VTs = DAG.getVTList(ValueVTs);
6472   SDValue Result;
6473   if (FPI.isUnaryOp())
6474     Result = DAG.getNode(Opcode, sdl, VTs,
6475                          { Chain, getValue(FPI.getArgOperand(0)) });
6476   else if (FPI.isTernaryOp())
6477     Result = DAG.getNode(Opcode, sdl, VTs,
6478                          { Chain, getValue(FPI.getArgOperand(0)),
6479                                   getValue(FPI.getArgOperand(1)),
6480                                   getValue(FPI.getArgOperand(2)) });
6481   else
6482     Result = DAG.getNode(Opcode, sdl, VTs,
6483                          { Chain, getValue(FPI.getArgOperand(0)),
6484                            getValue(FPI.getArgOperand(1))  });
6485 
6486   assert(Result.getNode()->getNumValues() == 2);
6487   SDValue OutChain = Result.getValue(1);
6488   DAG.setRoot(OutChain);
6489   SDValue FPResult = Result.getValue(0);
6490   setValue(&FPI, FPResult);
6491 }
6492 
6493 std::pair<SDValue, SDValue>
6494 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6495                                     const BasicBlock *EHPadBB) {
6496   MachineFunction &MF = DAG.getMachineFunction();
6497   MachineModuleInfo &MMI = MF.getMMI();
6498   MCSymbol *BeginLabel = nullptr;
6499 
6500   if (EHPadBB) {
6501     // Insert a label before the invoke call to mark the try range.  This can be
6502     // used to detect deletion of the invoke via the MachineModuleInfo.
6503     BeginLabel = MMI.getContext().createTempSymbol();
6504 
6505     // For SjLj, keep track of which landing pads go with which invokes
6506     // so as to maintain the ordering of pads in the LSDA.
6507     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6508     if (CallSiteIndex) {
6509       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6510       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6511 
6512       // Now that the call site is handled, stop tracking it.
6513       MMI.setCurrentCallSite(0);
6514     }
6515 
6516     // Both PendingLoads and PendingExports must be flushed here;
6517     // this call might not return.
6518     (void)getRoot();
6519     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6520 
6521     CLI.setChain(getRoot());
6522   }
6523   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6524   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6525 
6526   assert((CLI.IsTailCall || Result.second.getNode()) &&
6527          "Non-null chain expected with non-tail call!");
6528   assert((Result.second.getNode() || !Result.first.getNode()) &&
6529          "Null value expected with tail call!");
6530 
6531   if (!Result.second.getNode()) {
6532     // As a special case, a null chain means that a tail call has been emitted
6533     // and the DAG root is already updated.
6534     HasTailCall = true;
6535 
6536     // Since there's no actual continuation from this block, nothing can be
6537     // relying on us setting vregs for them.
6538     PendingExports.clear();
6539   } else {
6540     DAG.setRoot(Result.second);
6541   }
6542 
6543   if (EHPadBB) {
6544     // Insert a label at the end of the invoke call to mark the try range.  This
6545     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6546     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6547     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6548 
6549     // Inform MachineModuleInfo of range.
6550     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6551     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6552     // actually use outlined funclets and their LSDA info style.
6553     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6554       assert(CLI.CS);
6555       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6556       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6557                                 BeginLabel, EndLabel);
6558     } else if (!isScopedEHPersonality(Pers)) {
6559       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6560     }
6561   }
6562 
6563   return Result;
6564 }
6565 
6566 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6567                                       bool isTailCall,
6568                                       const BasicBlock *EHPadBB) {
6569   auto &DL = DAG.getDataLayout();
6570   FunctionType *FTy = CS.getFunctionType();
6571   Type *RetTy = CS.getType();
6572 
6573   TargetLowering::ArgListTy Args;
6574   Args.reserve(CS.arg_size());
6575 
6576   const Value *SwiftErrorVal = nullptr;
6577   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6578 
6579   // We can't tail call inside a function with a swifterror argument. Lowering
6580   // does not support this yet. It would have to move into the swifterror
6581   // register before the call.
6582   auto *Caller = CS.getInstruction()->getParent()->getParent();
6583   if (TLI.supportSwiftError() &&
6584       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6585     isTailCall = false;
6586 
6587   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6588        i != e; ++i) {
6589     TargetLowering::ArgListEntry Entry;
6590     const Value *V = *i;
6591 
6592     // Skip empty types
6593     if (V->getType()->isEmptyTy())
6594       continue;
6595 
6596     SDValue ArgNode = getValue(V);
6597     Entry.Node = ArgNode; Entry.Ty = V->getType();
6598 
6599     Entry.setAttributes(&CS, i - CS.arg_begin());
6600 
6601     // Use swifterror virtual register as input to the call.
6602     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6603       SwiftErrorVal = V;
6604       // We find the virtual register for the actual swifterror argument.
6605       // Instead of using the Value, we use the virtual register instead.
6606       Entry.Node = DAG.getRegister(FuncInfo
6607                                        .getOrCreateSwiftErrorVRegUseAt(
6608                                            CS.getInstruction(), FuncInfo.MBB, V)
6609                                        .first,
6610                                    EVT(TLI.getPointerTy(DL)));
6611     }
6612 
6613     Args.push_back(Entry);
6614 
6615     // If we have an explicit sret argument that is an Instruction, (i.e., it
6616     // might point to function-local memory), we can't meaningfully tail-call.
6617     if (Entry.IsSRet && isa<Instruction>(V))
6618       isTailCall = false;
6619   }
6620 
6621   // Check if target-independent constraints permit a tail call here.
6622   // Target-dependent constraints are checked within TLI->LowerCallTo.
6623   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6624     isTailCall = false;
6625 
6626   // Disable tail calls if there is an swifterror argument. Targets have not
6627   // been updated to support tail calls.
6628   if (TLI.supportSwiftError() && SwiftErrorVal)
6629     isTailCall = false;
6630 
6631   TargetLowering::CallLoweringInfo CLI(DAG);
6632   CLI.setDebugLoc(getCurSDLoc())
6633       .setChain(getRoot())
6634       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6635       .setTailCall(isTailCall)
6636       .setConvergent(CS.isConvergent());
6637   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6638 
6639   if (Result.first.getNode()) {
6640     const Instruction *Inst = CS.getInstruction();
6641     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6642     setValue(Inst, Result.first);
6643   }
6644 
6645   // The last element of CLI.InVals has the SDValue for swifterror return.
6646   // Here we copy it to a virtual register and update SwiftErrorMap for
6647   // book-keeping.
6648   if (SwiftErrorVal && TLI.supportSwiftError()) {
6649     // Get the last element of InVals.
6650     SDValue Src = CLI.InVals.back();
6651     unsigned VReg; bool CreatedVReg;
6652     std::tie(VReg, CreatedVReg) =
6653         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6654     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6655     // We update the virtual register for the actual swifterror argument.
6656     if (CreatedVReg)
6657       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6658     DAG.setRoot(CopyNode);
6659   }
6660 }
6661 
6662 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6663                              SelectionDAGBuilder &Builder) {
6664   // Check to see if this load can be trivially constant folded, e.g. if the
6665   // input is from a string literal.
6666   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6667     // Cast pointer to the type we really want to load.
6668     Type *LoadTy =
6669         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6670     if (LoadVT.isVector())
6671       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6672 
6673     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6674                                          PointerType::getUnqual(LoadTy));
6675 
6676     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6677             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6678       return Builder.getValue(LoadCst);
6679   }
6680 
6681   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6682   // still constant memory, the input chain can be the entry node.
6683   SDValue Root;
6684   bool ConstantMemory = false;
6685 
6686   // Do not serialize (non-volatile) loads of constant memory with anything.
6687   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6688     Root = Builder.DAG.getEntryNode();
6689     ConstantMemory = true;
6690   } else {
6691     // Do not serialize non-volatile loads against each other.
6692     Root = Builder.DAG.getRoot();
6693   }
6694 
6695   SDValue Ptr = Builder.getValue(PtrVal);
6696   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6697                                         Ptr, MachinePointerInfo(PtrVal),
6698                                         /* Alignment = */ 1);
6699 
6700   if (!ConstantMemory)
6701     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6702   return LoadVal;
6703 }
6704 
6705 /// Record the value for an instruction that produces an integer result,
6706 /// converting the type where necessary.
6707 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6708                                                   SDValue Value,
6709                                                   bool IsSigned) {
6710   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6711                                                     I.getType(), true);
6712   if (IsSigned)
6713     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6714   else
6715     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6716   setValue(&I, Value);
6717 }
6718 
6719 /// See if we can lower a memcmp call into an optimized form. If so, return
6720 /// true and lower it. Otherwise return false, and it will be lowered like a
6721 /// normal call.
6722 /// The caller already checked that \p I calls the appropriate LibFunc with a
6723 /// correct prototype.
6724 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6725   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6726   const Value *Size = I.getArgOperand(2);
6727   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6728   if (CSize && CSize->getZExtValue() == 0) {
6729     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6730                                                           I.getType(), true);
6731     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6732     return true;
6733   }
6734 
6735   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6736   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6737       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6738       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6739   if (Res.first.getNode()) {
6740     processIntegerCallValue(I, Res.first, true);
6741     PendingLoads.push_back(Res.second);
6742     return true;
6743   }
6744 
6745   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6746   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6747   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6748     return false;
6749 
6750   // If the target has a fast compare for the given size, it will return a
6751   // preferred load type for that size. Require that the load VT is legal and
6752   // that the target supports unaligned loads of that type. Otherwise, return
6753   // INVALID.
6754   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6755     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6756     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6757     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6758       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6759       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6760       // TODO: Check alignment of src and dest ptrs.
6761       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6762       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6763       if (!TLI.isTypeLegal(LVT) ||
6764           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6765           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6766         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6767     }
6768 
6769     return LVT;
6770   };
6771 
6772   // This turns into unaligned loads. We only do this if the target natively
6773   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6774   // we'll only produce a small number of byte loads.
6775   MVT LoadVT;
6776   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6777   switch (NumBitsToCompare) {
6778   default:
6779     return false;
6780   case 16:
6781     LoadVT = MVT::i16;
6782     break;
6783   case 32:
6784     LoadVT = MVT::i32;
6785     break;
6786   case 64:
6787   case 128:
6788   case 256:
6789     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6790     break;
6791   }
6792 
6793   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6794     return false;
6795 
6796   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6797   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6798 
6799   // Bitcast to a wide integer type if the loads are vectors.
6800   if (LoadVT.isVector()) {
6801     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6802     LoadL = DAG.getBitcast(CmpVT, LoadL);
6803     LoadR = DAG.getBitcast(CmpVT, LoadR);
6804   }
6805 
6806   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6807   processIntegerCallValue(I, Cmp, false);
6808   return true;
6809 }
6810 
6811 /// See if we can lower a memchr call into an optimized form. If so, return
6812 /// true and lower it. Otherwise return false, and it will be lowered like a
6813 /// normal call.
6814 /// The caller already checked that \p I calls the appropriate LibFunc with a
6815 /// correct prototype.
6816 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6817   const Value *Src = I.getArgOperand(0);
6818   const Value *Char = I.getArgOperand(1);
6819   const Value *Length = I.getArgOperand(2);
6820 
6821   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6822   std::pair<SDValue, SDValue> Res =
6823     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6824                                 getValue(Src), getValue(Char), getValue(Length),
6825                                 MachinePointerInfo(Src));
6826   if (Res.first.getNode()) {
6827     setValue(&I, Res.first);
6828     PendingLoads.push_back(Res.second);
6829     return true;
6830   }
6831 
6832   return false;
6833 }
6834 
6835 /// See if we can lower a mempcpy call into an optimized form. If so, return
6836 /// true and lower it. Otherwise return false, and it will be lowered like a
6837 /// normal call.
6838 /// The caller already checked that \p I calls the appropriate LibFunc with a
6839 /// correct prototype.
6840 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6841   SDValue Dst = getValue(I.getArgOperand(0));
6842   SDValue Src = getValue(I.getArgOperand(1));
6843   SDValue Size = getValue(I.getArgOperand(2));
6844 
6845   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6846   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6847   unsigned Align = std::min(DstAlign, SrcAlign);
6848   if (Align == 0) // Alignment of one or both could not be inferred.
6849     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6850 
6851   bool isVol = false;
6852   SDLoc sdl = getCurSDLoc();
6853 
6854   // In the mempcpy context we need to pass in a false value for isTailCall
6855   // because the return pointer needs to be adjusted by the size of
6856   // the copied memory.
6857   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6858                              false, /*isTailCall=*/false,
6859                              MachinePointerInfo(I.getArgOperand(0)),
6860                              MachinePointerInfo(I.getArgOperand(1)));
6861   assert(MC.getNode() != nullptr &&
6862          "** memcpy should not be lowered as TailCall in mempcpy context **");
6863   DAG.setRoot(MC);
6864 
6865   // Check if Size needs to be truncated or extended.
6866   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6867 
6868   // Adjust return pointer to point just past the last dst byte.
6869   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6870                                     Dst, Size);
6871   setValue(&I, DstPlusSize);
6872   return true;
6873 }
6874 
6875 /// See if we can lower a strcpy call into an optimized form.  If so, return
6876 /// true and lower it, otherwise return false and it will be lowered like a
6877 /// normal call.
6878 /// The caller already checked that \p I calls the appropriate LibFunc with a
6879 /// correct prototype.
6880 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6881   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6882 
6883   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6884   std::pair<SDValue, SDValue> Res =
6885     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6886                                 getValue(Arg0), getValue(Arg1),
6887                                 MachinePointerInfo(Arg0),
6888                                 MachinePointerInfo(Arg1), isStpcpy);
6889   if (Res.first.getNode()) {
6890     setValue(&I, Res.first);
6891     DAG.setRoot(Res.second);
6892     return true;
6893   }
6894 
6895   return false;
6896 }
6897 
6898 /// See if we can lower a strcmp call into an optimized form.  If so, return
6899 /// true and lower it, otherwise return false and it will be lowered like a
6900 /// normal call.
6901 /// The caller already checked that \p I calls the appropriate LibFunc with a
6902 /// correct prototype.
6903 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6904   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6905 
6906   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6907   std::pair<SDValue, SDValue> Res =
6908     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6909                                 getValue(Arg0), getValue(Arg1),
6910                                 MachinePointerInfo(Arg0),
6911                                 MachinePointerInfo(Arg1));
6912   if (Res.first.getNode()) {
6913     processIntegerCallValue(I, Res.first, true);
6914     PendingLoads.push_back(Res.second);
6915     return true;
6916   }
6917 
6918   return false;
6919 }
6920 
6921 /// See if we can lower a strlen call into an optimized form.  If so, return
6922 /// true and lower it, otherwise return false and it will be lowered like a
6923 /// normal call.
6924 /// The caller already checked that \p I calls the appropriate LibFunc with a
6925 /// correct prototype.
6926 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6927   const Value *Arg0 = I.getArgOperand(0);
6928 
6929   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6930   std::pair<SDValue, SDValue> Res =
6931     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6932                                 getValue(Arg0), MachinePointerInfo(Arg0));
6933   if (Res.first.getNode()) {
6934     processIntegerCallValue(I, Res.first, false);
6935     PendingLoads.push_back(Res.second);
6936     return true;
6937   }
6938 
6939   return false;
6940 }
6941 
6942 /// See if we can lower a strnlen call into an optimized form.  If so, return
6943 /// true and lower it, otherwise return false and it will be lowered like a
6944 /// normal call.
6945 /// The caller already checked that \p I calls the appropriate LibFunc with a
6946 /// correct prototype.
6947 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6948   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6949 
6950   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6951   std::pair<SDValue, SDValue> Res =
6952     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6953                                  getValue(Arg0), getValue(Arg1),
6954                                  MachinePointerInfo(Arg0));
6955   if (Res.first.getNode()) {
6956     processIntegerCallValue(I, Res.first, false);
6957     PendingLoads.push_back(Res.second);
6958     return true;
6959   }
6960 
6961   return false;
6962 }
6963 
6964 /// See if we can lower a unary floating-point operation into an SDNode with
6965 /// the specified Opcode.  If so, return true and lower it, otherwise return
6966 /// false and it will be lowered like a normal call.
6967 /// The caller already checked that \p I calls the appropriate LibFunc with a
6968 /// correct prototype.
6969 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6970                                               unsigned Opcode) {
6971   // We already checked this call's prototype; verify it doesn't modify errno.
6972   if (!I.onlyReadsMemory())
6973     return false;
6974 
6975   SDValue Tmp = getValue(I.getArgOperand(0));
6976   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6977   return true;
6978 }
6979 
6980 /// See if we can lower a binary floating-point operation into an SDNode with
6981 /// the specified Opcode. If so, return true and lower it. Otherwise return
6982 /// false, and it will be lowered like a normal call.
6983 /// The caller already checked that \p I calls the appropriate LibFunc with a
6984 /// correct prototype.
6985 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6986                                                unsigned Opcode) {
6987   // We already checked this call's prototype; verify it doesn't modify errno.
6988   if (!I.onlyReadsMemory())
6989     return false;
6990 
6991   SDValue Tmp0 = getValue(I.getArgOperand(0));
6992   SDValue Tmp1 = getValue(I.getArgOperand(1));
6993   EVT VT = Tmp0.getValueType();
6994   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6995   return true;
6996 }
6997 
6998 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6999   // Handle inline assembly differently.
7000   if (isa<InlineAsm>(I.getCalledValue())) {
7001     visitInlineAsm(&I);
7002     return;
7003   }
7004 
7005   const char *RenameFn = nullptr;
7006   if (Function *F = I.getCalledFunction()) {
7007     if (F->isDeclaration()) {
7008       // Is this an LLVM intrinsic or a target-specific intrinsic?
7009       unsigned IID = F->getIntrinsicID();
7010       if (!IID)
7011         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7012           IID = II->getIntrinsicID(F);
7013 
7014       if (IID) {
7015         RenameFn = visitIntrinsicCall(I, IID);
7016         if (!RenameFn)
7017           return;
7018       }
7019     }
7020 
7021     // Check for well-known libc/libm calls.  If the function is internal, it
7022     // can't be a library call.  Don't do the check if marked as nobuiltin for
7023     // some reason or the call site requires strict floating point semantics.
7024     LibFunc Func;
7025     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7026         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7027         LibInfo->hasOptimizedCodeGen(Func)) {
7028       switch (Func) {
7029       default: break;
7030       case LibFunc_copysign:
7031       case LibFunc_copysignf:
7032       case LibFunc_copysignl:
7033         // We already checked this call's prototype; verify it doesn't modify
7034         // errno.
7035         if (I.onlyReadsMemory()) {
7036           SDValue LHS = getValue(I.getArgOperand(0));
7037           SDValue RHS = getValue(I.getArgOperand(1));
7038           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7039                                    LHS.getValueType(), LHS, RHS));
7040           return;
7041         }
7042         break;
7043       case LibFunc_fabs:
7044       case LibFunc_fabsf:
7045       case LibFunc_fabsl:
7046         if (visitUnaryFloatCall(I, ISD::FABS))
7047           return;
7048         break;
7049       case LibFunc_fmin:
7050       case LibFunc_fminf:
7051       case LibFunc_fminl:
7052         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7053           return;
7054         break;
7055       case LibFunc_fmax:
7056       case LibFunc_fmaxf:
7057       case LibFunc_fmaxl:
7058         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7059           return;
7060         break;
7061       case LibFunc_sin:
7062       case LibFunc_sinf:
7063       case LibFunc_sinl:
7064         if (visitUnaryFloatCall(I, ISD::FSIN))
7065           return;
7066         break;
7067       case LibFunc_cos:
7068       case LibFunc_cosf:
7069       case LibFunc_cosl:
7070         if (visitUnaryFloatCall(I, ISD::FCOS))
7071           return;
7072         break;
7073       case LibFunc_sqrt:
7074       case LibFunc_sqrtf:
7075       case LibFunc_sqrtl:
7076       case LibFunc_sqrt_finite:
7077       case LibFunc_sqrtf_finite:
7078       case LibFunc_sqrtl_finite:
7079         if (visitUnaryFloatCall(I, ISD::FSQRT))
7080           return;
7081         break;
7082       case LibFunc_floor:
7083       case LibFunc_floorf:
7084       case LibFunc_floorl:
7085         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7086           return;
7087         break;
7088       case LibFunc_nearbyint:
7089       case LibFunc_nearbyintf:
7090       case LibFunc_nearbyintl:
7091         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7092           return;
7093         break;
7094       case LibFunc_ceil:
7095       case LibFunc_ceilf:
7096       case LibFunc_ceill:
7097         if (visitUnaryFloatCall(I, ISD::FCEIL))
7098           return;
7099         break;
7100       case LibFunc_rint:
7101       case LibFunc_rintf:
7102       case LibFunc_rintl:
7103         if (visitUnaryFloatCall(I, ISD::FRINT))
7104           return;
7105         break;
7106       case LibFunc_round:
7107       case LibFunc_roundf:
7108       case LibFunc_roundl:
7109         if (visitUnaryFloatCall(I, ISD::FROUND))
7110           return;
7111         break;
7112       case LibFunc_trunc:
7113       case LibFunc_truncf:
7114       case LibFunc_truncl:
7115         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7116           return;
7117         break;
7118       case LibFunc_log2:
7119       case LibFunc_log2f:
7120       case LibFunc_log2l:
7121         if (visitUnaryFloatCall(I, ISD::FLOG2))
7122           return;
7123         break;
7124       case LibFunc_exp2:
7125       case LibFunc_exp2f:
7126       case LibFunc_exp2l:
7127         if (visitUnaryFloatCall(I, ISD::FEXP2))
7128           return;
7129         break;
7130       case LibFunc_memcmp:
7131         if (visitMemCmpCall(I))
7132           return;
7133         break;
7134       case LibFunc_mempcpy:
7135         if (visitMemPCpyCall(I))
7136           return;
7137         break;
7138       case LibFunc_memchr:
7139         if (visitMemChrCall(I))
7140           return;
7141         break;
7142       case LibFunc_strcpy:
7143         if (visitStrCpyCall(I, false))
7144           return;
7145         break;
7146       case LibFunc_stpcpy:
7147         if (visitStrCpyCall(I, true))
7148           return;
7149         break;
7150       case LibFunc_strcmp:
7151         if (visitStrCmpCall(I))
7152           return;
7153         break;
7154       case LibFunc_strlen:
7155         if (visitStrLenCall(I))
7156           return;
7157         break;
7158       case LibFunc_strnlen:
7159         if (visitStrNLenCall(I))
7160           return;
7161         break;
7162       }
7163     }
7164   }
7165 
7166   SDValue Callee;
7167   if (!RenameFn)
7168     Callee = getValue(I.getCalledValue());
7169   else
7170     Callee = DAG.getExternalSymbol(
7171         RenameFn,
7172         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7173 
7174   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7175   // have to do anything here to lower funclet bundles.
7176   assert(!I.hasOperandBundlesOtherThan(
7177              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7178          "Cannot lower calls with arbitrary operand bundles!");
7179 
7180   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7181     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7182   else
7183     // Check if we can potentially perform a tail call. More detailed checking
7184     // is be done within LowerCallTo, after more information about the call is
7185     // known.
7186     LowerCallTo(&I, Callee, I.isTailCall());
7187 }
7188 
7189 namespace {
7190 
7191 /// AsmOperandInfo - This contains information for each constraint that we are
7192 /// lowering.
7193 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7194 public:
7195   /// CallOperand - If this is the result output operand or a clobber
7196   /// this is null, otherwise it is the incoming operand to the CallInst.
7197   /// This gets modified as the asm is processed.
7198   SDValue CallOperand;
7199 
7200   /// AssignedRegs - If this is a register or register class operand, this
7201   /// contains the set of register corresponding to the operand.
7202   RegsForValue AssignedRegs;
7203 
7204   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7205     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7206   }
7207 
7208   /// Whether or not this operand accesses memory
7209   bool hasMemory(const TargetLowering &TLI) const {
7210     // Indirect operand accesses access memory.
7211     if (isIndirect)
7212       return true;
7213 
7214     for (const auto &Code : Codes)
7215       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7216         return true;
7217 
7218     return false;
7219   }
7220 
7221   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7222   /// corresponds to.  If there is no Value* for this operand, it returns
7223   /// MVT::Other.
7224   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7225                            const DataLayout &DL) const {
7226     if (!CallOperandVal) return MVT::Other;
7227 
7228     if (isa<BasicBlock>(CallOperandVal))
7229       return TLI.getPointerTy(DL);
7230 
7231     llvm::Type *OpTy = CallOperandVal->getType();
7232 
7233     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7234     // If this is an indirect operand, the operand is a pointer to the
7235     // accessed type.
7236     if (isIndirect) {
7237       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7238       if (!PtrTy)
7239         report_fatal_error("Indirect operand for inline asm not a pointer!");
7240       OpTy = PtrTy->getElementType();
7241     }
7242 
7243     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7244     if (StructType *STy = dyn_cast<StructType>(OpTy))
7245       if (STy->getNumElements() == 1)
7246         OpTy = STy->getElementType(0);
7247 
7248     // If OpTy is not a single value, it may be a struct/union that we
7249     // can tile with integers.
7250     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7251       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7252       switch (BitSize) {
7253       default: break;
7254       case 1:
7255       case 8:
7256       case 16:
7257       case 32:
7258       case 64:
7259       case 128:
7260         OpTy = IntegerType::get(Context, BitSize);
7261         break;
7262       }
7263     }
7264 
7265     return TLI.getValueType(DL, OpTy, true);
7266   }
7267 };
7268 
7269 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7270 
7271 } // end anonymous namespace
7272 
7273 /// Make sure that the output operand \p OpInfo and its corresponding input
7274 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7275 /// out).
7276 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7277                                SDISelAsmOperandInfo &MatchingOpInfo,
7278                                SelectionDAG &DAG) {
7279   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7280     return;
7281 
7282   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7283   const auto &TLI = DAG.getTargetLoweringInfo();
7284 
7285   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7286       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7287                                        OpInfo.ConstraintVT);
7288   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7289       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7290                                        MatchingOpInfo.ConstraintVT);
7291   if ((OpInfo.ConstraintVT.isInteger() !=
7292        MatchingOpInfo.ConstraintVT.isInteger()) ||
7293       (MatchRC.second != InputRC.second)) {
7294     // FIXME: error out in a more elegant fashion
7295     report_fatal_error("Unsupported asm: input constraint"
7296                        " with a matching output constraint of"
7297                        " incompatible type!");
7298   }
7299   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7300 }
7301 
7302 /// Get a direct memory input to behave well as an indirect operand.
7303 /// This may introduce stores, hence the need for a \p Chain.
7304 /// \return The (possibly updated) chain.
7305 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7306                                         SDISelAsmOperandInfo &OpInfo,
7307                                         SelectionDAG &DAG) {
7308   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7309 
7310   // If we don't have an indirect input, put it in the constpool if we can,
7311   // otherwise spill it to a stack slot.
7312   // TODO: This isn't quite right. We need to handle these according to
7313   // the addressing mode that the constraint wants. Also, this may take
7314   // an additional register for the computation and we don't want that
7315   // either.
7316 
7317   // If the operand is a float, integer, or vector constant, spill to a
7318   // constant pool entry to get its address.
7319   const Value *OpVal = OpInfo.CallOperandVal;
7320   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7321       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7322     OpInfo.CallOperand = DAG.getConstantPool(
7323         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7324     return Chain;
7325   }
7326 
7327   // Otherwise, create a stack slot and emit a store to it before the asm.
7328   Type *Ty = OpVal->getType();
7329   auto &DL = DAG.getDataLayout();
7330   uint64_t TySize = DL.getTypeAllocSize(Ty);
7331   unsigned Align = DL.getPrefTypeAlignment(Ty);
7332   MachineFunction &MF = DAG.getMachineFunction();
7333   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7334   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7335   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7336                        MachinePointerInfo::getFixedStack(MF, SSFI));
7337   OpInfo.CallOperand = StackSlot;
7338 
7339   return Chain;
7340 }
7341 
7342 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7343 /// specified operand.  We prefer to assign virtual registers, to allow the
7344 /// register allocator to handle the assignment process.  However, if the asm
7345 /// uses features that we can't model on machineinstrs, we have SDISel do the
7346 /// allocation.  This produces generally horrible, but correct, code.
7347 ///
7348 ///   OpInfo describes the operand
7349 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7350 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7351                                  SDISelAsmOperandInfo &OpInfo,
7352                                  SDISelAsmOperandInfo &RefOpInfo) {
7353   LLVMContext &Context = *DAG.getContext();
7354   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7355 
7356   MachineFunction &MF = DAG.getMachineFunction();
7357   SmallVector<unsigned, 4> Regs;
7358   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7359 
7360   // No work to do for memory operations.
7361   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7362     return;
7363 
7364   // If this is a constraint for a single physreg, or a constraint for a
7365   // register class, find it.
7366   unsigned AssignedReg;
7367   const TargetRegisterClass *RC;
7368   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7369       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7370   // RC is unset only on failure. Return immediately.
7371   if (!RC)
7372     return;
7373 
7374   // Get the actual register value type.  This is important, because the user
7375   // may have asked for (e.g.) the AX register in i32 type.  We need to
7376   // remember that AX is actually i16 to get the right extension.
7377   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7378 
7379   if (OpInfo.ConstraintVT != MVT::Other) {
7380     // If this is an FP operand in an integer register (or visa versa), or more
7381     // generally if the operand value disagrees with the register class we plan
7382     // to stick it in, fix the operand type.
7383     //
7384     // If this is an input value, the bitcast to the new type is done now.
7385     // Bitcast for output value is done at the end of visitInlineAsm().
7386     if ((OpInfo.Type == InlineAsm::isOutput ||
7387          OpInfo.Type == InlineAsm::isInput) &&
7388         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7389       // Try to convert to the first EVT that the reg class contains.  If the
7390       // types are identical size, use a bitcast to convert (e.g. two differing
7391       // vector types).  Note: output bitcast is done at the end of
7392       // visitInlineAsm().
7393       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7394         // Exclude indirect inputs while they are unsupported because the code
7395         // to perform the load is missing and thus OpInfo.CallOperand still
7396         // refers to the input address rather than the pointed-to value.
7397         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7398           OpInfo.CallOperand =
7399               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7400         OpInfo.ConstraintVT = RegVT;
7401         // If the operand is an FP value and we want it in integer registers,
7402         // use the corresponding integer type. This turns an f64 value into
7403         // i64, which can be passed with two i32 values on a 32-bit machine.
7404       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7405         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7406         if (OpInfo.Type == InlineAsm::isInput)
7407           OpInfo.CallOperand =
7408               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7409         OpInfo.ConstraintVT = VT;
7410       }
7411     }
7412   }
7413 
7414   // No need to allocate a matching input constraint since the constraint it's
7415   // matching to has already been allocated.
7416   if (OpInfo.isMatchingInputConstraint())
7417     return;
7418 
7419   EVT ValueVT = OpInfo.ConstraintVT;
7420   if (OpInfo.ConstraintVT == MVT::Other)
7421     ValueVT = RegVT;
7422 
7423   // Initialize NumRegs.
7424   unsigned NumRegs = 1;
7425   if (OpInfo.ConstraintVT != MVT::Other)
7426     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7427 
7428   // If this is a constraint for a specific physical register, like {r17},
7429   // assign it now.
7430 
7431   // If this associated to a specific register, initialize iterator to correct
7432   // place. If virtual, make sure we have enough registers
7433 
7434   // Initialize iterator if necessary
7435   TargetRegisterClass::iterator I = RC->begin();
7436   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7437 
7438   // Do not check for single registers.
7439   if (AssignedReg) {
7440       for (; *I != AssignedReg; ++I)
7441         assert(I != RC->end() && "AssignedReg should be member of RC");
7442   }
7443 
7444   for (; NumRegs; --NumRegs, ++I) {
7445     assert(I != RC->end() && "Ran out of registers to allocate!");
7446     auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC);
7447     Regs.push_back(R);
7448   }
7449 
7450   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7451 }
7452 
7453 static unsigned
7454 findMatchingInlineAsmOperand(unsigned OperandNo,
7455                              const std::vector<SDValue> &AsmNodeOperands) {
7456   // Scan until we find the definition we already emitted of this operand.
7457   unsigned CurOp = InlineAsm::Op_FirstOperand;
7458   for (; OperandNo; --OperandNo) {
7459     // Advance to the next operand.
7460     unsigned OpFlag =
7461         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7462     assert((InlineAsm::isRegDefKind(OpFlag) ||
7463             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7464             InlineAsm::isMemKind(OpFlag)) &&
7465            "Skipped past definitions?");
7466     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7467   }
7468   return CurOp;
7469 }
7470 
7471 namespace {
7472 
7473 class ExtraFlags {
7474   unsigned Flags = 0;
7475 
7476 public:
7477   explicit ExtraFlags(ImmutableCallSite CS) {
7478     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7479     if (IA->hasSideEffects())
7480       Flags |= InlineAsm::Extra_HasSideEffects;
7481     if (IA->isAlignStack())
7482       Flags |= InlineAsm::Extra_IsAlignStack;
7483     if (CS.isConvergent())
7484       Flags |= InlineAsm::Extra_IsConvergent;
7485     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7486   }
7487 
7488   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7489     // Ideally, we would only check against memory constraints.  However, the
7490     // meaning of an Other constraint can be target-specific and we can't easily
7491     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7492     // for Other constraints as well.
7493     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7494         OpInfo.ConstraintType == TargetLowering::C_Other) {
7495       if (OpInfo.Type == InlineAsm::isInput)
7496         Flags |= InlineAsm::Extra_MayLoad;
7497       else if (OpInfo.Type == InlineAsm::isOutput)
7498         Flags |= InlineAsm::Extra_MayStore;
7499       else if (OpInfo.Type == InlineAsm::isClobber)
7500         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7501     }
7502   }
7503 
7504   unsigned get() const { return Flags; }
7505 };
7506 
7507 } // end anonymous namespace
7508 
7509 /// visitInlineAsm - Handle a call to an InlineAsm object.
7510 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7511   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7512 
7513   /// ConstraintOperands - Information about all of the constraints.
7514   SDISelAsmOperandInfoVector ConstraintOperands;
7515 
7516   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7517   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7518       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7519 
7520   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
7521   // AsmDialect, MayLoad, MayStore).
7522   bool HasSideEffect = IA->hasSideEffects();
7523   ExtraFlags ExtraInfo(CS);
7524 
7525   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7526   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7527   for (auto &T : TargetConstraints) {
7528     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
7529     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7530 
7531     // Compute the value type for each operand.
7532     if (OpInfo.Type == InlineAsm::isInput ||
7533         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7534       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7535 
7536       // Process the call argument. BasicBlocks are labels, currently appearing
7537       // only in asm's.
7538       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7539         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7540       } else {
7541         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7542       }
7543 
7544       OpInfo.ConstraintVT =
7545           OpInfo
7546               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7547               .getSimpleVT();
7548     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7549       // The return value of the call is this value.  As such, there is no
7550       // corresponding argument.
7551       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7552       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7553         OpInfo.ConstraintVT = TLI.getSimpleValueType(
7554             DAG.getDataLayout(), STy->getElementType(ResNo));
7555       } else {
7556         assert(ResNo == 0 && "Asm only has one result!");
7557         OpInfo.ConstraintVT =
7558             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7559       }
7560       ++ResNo;
7561     } else {
7562       OpInfo.ConstraintVT = MVT::Other;
7563     }
7564 
7565     if (!HasSideEffect)
7566       HasSideEffect = OpInfo.hasMemory(TLI);
7567 
7568     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7569     // FIXME: Could we compute this on OpInfo rather than T?
7570 
7571     // Compute the constraint code and ConstraintType to use.
7572     TLI.ComputeConstraintToUse(T, SDValue());
7573 
7574     ExtraInfo.update(T);
7575   }
7576 
7577   // We won't need to flush pending loads if this asm doesn't touch
7578   // memory and is nonvolatile.
7579   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
7580 
7581   // Second pass over the constraints: compute which constraint option to use.
7582   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7583     // If this is an output operand with a matching input operand, look up the
7584     // matching input. If their types mismatch, e.g. one is an integer, the
7585     // other is floating point, or their sizes are different, flag it as an
7586     // error.
7587     if (OpInfo.hasMatchingInput()) {
7588       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7589       patchMatchingInput(OpInfo, Input, DAG);
7590     }
7591 
7592     // Compute the constraint code and ConstraintType to use.
7593     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7594 
7595     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7596         OpInfo.Type == InlineAsm::isClobber)
7597       continue;
7598 
7599     // If this is a memory input, and if the operand is not indirect, do what we
7600     // need to provide an address for the memory input.
7601     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7602         !OpInfo.isIndirect) {
7603       assert((OpInfo.isMultipleAlternative ||
7604               (OpInfo.Type == InlineAsm::isInput)) &&
7605              "Can only indirectify direct input operands!");
7606 
7607       // Memory operands really want the address of the value.
7608       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7609 
7610       // There is no longer a Value* corresponding to this operand.
7611       OpInfo.CallOperandVal = nullptr;
7612 
7613       // It is now an indirect operand.
7614       OpInfo.isIndirect = true;
7615     }
7616 
7617   }
7618 
7619   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7620   std::vector<SDValue> AsmNodeOperands;
7621   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7622   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7623       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7624 
7625   // If we have a !srcloc metadata node associated with it, we want to attach
7626   // this to the ultimately generated inline asm machineinstr.  To do this, we
7627   // pass in the third operand as this (potentially null) inline asm MDNode.
7628   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7629   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7630 
7631   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7632   // bits as operand 3.
7633   AsmNodeOperands.push_back(DAG.getTargetConstant(
7634       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7635 
7636   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
7637   // this, assign virtual and physical registers for inputs and otput.
7638   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7639     // Assign Registers.
7640     SDISelAsmOperandInfo &RefOpInfo =
7641         OpInfo.isMatchingInputConstraint()
7642             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7643             : OpInfo;
7644     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
7645 
7646     switch (OpInfo.Type) {
7647     case InlineAsm::isOutput:
7648       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7649           OpInfo.ConstraintType != TargetLowering::C_Register) {
7650         // Memory output, or 'other' output (e.g. 'X' constraint).
7651         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7652 
7653         unsigned ConstraintID =
7654             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7655         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7656                "Failed to convert memory constraint code to constraint id.");
7657 
7658         // Add information to the INLINEASM node to know about this output.
7659         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7660         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7661         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7662                                                         MVT::i32));
7663         AsmNodeOperands.push_back(OpInfo.CallOperand);
7664         break;
7665       } else if (OpInfo.ConstraintType == TargetLowering::C_Register ||
7666                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
7667         // Otherwise, this is a register or register class output.
7668 
7669         // Copy the output from the appropriate register.  Find a register that
7670         // we can use.
7671         if (OpInfo.AssignedRegs.Regs.empty()) {
7672           emitInlineAsmError(
7673               CS, "couldn't allocate output register for constraint '" +
7674                       Twine(OpInfo.ConstraintCode) + "'");
7675           return;
7676         }
7677 
7678         // Add information to the INLINEASM node to know that this register is
7679         // set.
7680         OpInfo.AssignedRegs.AddInlineAsmOperands(
7681             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
7682                                   : InlineAsm::Kind_RegDef,
7683             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7684       }
7685       break;
7686 
7687     case InlineAsm::isInput: {
7688       SDValue InOperandVal = OpInfo.CallOperand;
7689 
7690       if (OpInfo.isMatchingInputConstraint()) {
7691         // If this is required to match an output register we have already set,
7692         // just use its register.
7693         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7694                                                   AsmNodeOperands);
7695         unsigned OpFlag =
7696           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7697         if (InlineAsm::isRegDefKind(OpFlag) ||
7698             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7699           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7700           if (OpInfo.isIndirect) {
7701             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7702             emitInlineAsmError(CS, "inline asm not supported yet:"
7703                                    " don't know how to handle tied "
7704                                    "indirect register inputs");
7705             return;
7706           }
7707 
7708           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7709           SmallVector<unsigned, 4> Regs;
7710 
7711           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
7712             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
7713             MachineRegisterInfo &RegInfo =
7714                 DAG.getMachineFunction().getRegInfo();
7715             for (unsigned i = 0; i != NumRegs; ++i)
7716               Regs.push_back(RegInfo.createVirtualRegister(RC));
7717           } else {
7718             emitInlineAsmError(CS, "inline asm error: This value type register "
7719                                    "class is not natively supported!");
7720             return;
7721           }
7722 
7723           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7724 
7725           SDLoc dl = getCurSDLoc();
7726           // Use the produced MatchedRegs object to
7727           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7728                                     CS.getInstruction());
7729           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7730                                            true, OpInfo.getMatchedOperand(), dl,
7731                                            DAG, AsmNodeOperands);
7732           break;
7733         }
7734 
7735         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7736         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7737                "Unexpected number of operands");
7738         // Add information to the INLINEASM node to know about this input.
7739         // See InlineAsm.h isUseOperandTiedToDef.
7740         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7741         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7742                                                     OpInfo.getMatchedOperand());
7743         AsmNodeOperands.push_back(DAG.getTargetConstant(
7744             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7745         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7746         break;
7747       }
7748 
7749       // Treat indirect 'X' constraint as memory.
7750       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7751           OpInfo.isIndirect)
7752         OpInfo.ConstraintType = TargetLowering::C_Memory;
7753 
7754       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7755         std::vector<SDValue> Ops;
7756         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7757                                           Ops, DAG);
7758         if (Ops.empty()) {
7759           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7760                                      Twine(OpInfo.ConstraintCode) + "'");
7761           return;
7762         }
7763 
7764         // Add information to the INLINEASM node to know about this input.
7765         unsigned ResOpType =
7766           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7767         AsmNodeOperands.push_back(DAG.getTargetConstant(
7768             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7769         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7770         break;
7771       }
7772 
7773       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7774         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7775         assert(InOperandVal.getValueType() ==
7776                    TLI.getPointerTy(DAG.getDataLayout()) &&
7777                "Memory operands expect pointer values");
7778 
7779         unsigned ConstraintID =
7780             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7781         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7782                "Failed to convert memory constraint code to constraint id.");
7783 
7784         // Add information to the INLINEASM node to know about this input.
7785         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7786         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7787         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7788                                                         getCurSDLoc(),
7789                                                         MVT::i32));
7790         AsmNodeOperands.push_back(InOperandVal);
7791         break;
7792       }
7793 
7794       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7795               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7796              "Unknown constraint type!");
7797 
7798       // TODO: Support this.
7799       if (OpInfo.isIndirect) {
7800         emitInlineAsmError(
7801             CS, "Don't know how to handle indirect register inputs yet "
7802                 "for constraint '" +
7803                     Twine(OpInfo.ConstraintCode) + "'");
7804         return;
7805       }
7806 
7807       // Copy the input into the appropriate registers.
7808       if (OpInfo.AssignedRegs.Regs.empty()) {
7809         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7810                                    Twine(OpInfo.ConstraintCode) + "'");
7811         return;
7812       }
7813 
7814       SDLoc dl = getCurSDLoc();
7815 
7816       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7817                                         Chain, &Flag, CS.getInstruction());
7818 
7819       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7820                                                dl, DAG, AsmNodeOperands);
7821       break;
7822     }
7823     case InlineAsm::isClobber:
7824       // Add the clobbered value to the operand list, so that the register
7825       // allocator is aware that the physreg got clobbered.
7826       if (!OpInfo.AssignedRegs.Regs.empty())
7827         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7828                                                  false, 0, getCurSDLoc(), DAG,
7829                                                  AsmNodeOperands);
7830       break;
7831     }
7832   }
7833 
7834   // Finish up input operands.  Set the input chain and add the flag last.
7835   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7836   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7837 
7838   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7839                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7840   Flag = Chain.getValue(1);
7841 
7842   // Do additional work to generate outputs.
7843 
7844   SmallVector<EVT, 1> ResultVTs;
7845   SmallVector<SDValue, 1> ResultValues;
7846   SmallVector<SDValue, 8> OutChains;
7847 
7848   llvm::Type *CSResultType = CS.getType();
7849   unsigned NumReturns = 0;
7850   ArrayRef<Type *> ResultTypes;
7851   if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) {
7852     NumReturns = StructResult->getNumElements();
7853     ResultTypes = StructResult->elements();
7854   } else if (!CSResultType->isVoidTy()) {
7855     NumReturns = 1;
7856     ResultTypes = makeArrayRef(CSResultType);
7857   }
7858 
7859   auto CurResultType = ResultTypes.begin();
7860   auto handleRegAssign = [&](SDValue V) {
7861     assert(CurResultType != ResultTypes.end() && "Unexpected value");
7862     assert((*CurResultType)->isSized() && "Unexpected unsized type");
7863     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
7864     ++CurResultType;
7865     // If the type of the inline asm call site return value is different but has
7866     // same size as the type of the asm output bitcast it.  One example of this
7867     // is for vectors with different width / number of elements.  This can
7868     // happen for register classes that can contain multiple different value
7869     // types.  The preg or vreg allocated may not have the same VT as was
7870     // expected.
7871     //
7872     // This can also happen for a return value that disagrees with the register
7873     // class it is put in, eg. a double in a general-purpose register on a
7874     // 32-bit machine.
7875     if (ResultVT != V.getValueType() &&
7876         ResultVT.getSizeInBits() == V.getValueSizeInBits())
7877       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
7878     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
7879              V.getValueType().isInteger()) {
7880       // If a result value was tied to an input value, the computed result
7881       // may have a wider width than the expected result.  Extract the
7882       // relevant portion.
7883       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
7884     }
7885     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
7886     ResultVTs.push_back(ResultVT);
7887     ResultValues.push_back(V);
7888   };
7889 
7890   // Deal with assembly output fixups.
7891   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7892     if (OpInfo.Type == InlineAsm::isOutput &&
7893         (OpInfo.ConstraintType == TargetLowering::C_Register ||
7894          OpInfo.ConstraintType == TargetLowering::C_RegisterClass)) {
7895       if (OpInfo.isIndirect) {
7896         // Register indirect are manifest as stores.
7897         const RegsForValue &OutRegs = OpInfo.AssignedRegs;
7898         const Value *Ptr = OpInfo.CallOperandVal;
7899         SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7900                                                  Chain, &Flag, IA);
7901         SDValue Val = DAG.getStore(Chain, getCurSDLoc(), OutVal, getValue(Ptr),
7902                                    MachinePointerInfo(Ptr));
7903         OutChains.push_back(Val);
7904       } else {
7905         // generate CopyFromRegs to associated registers.
7906         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7907         SDValue Val = OpInfo.AssignedRegs.getCopyFromRegs(
7908             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
7909         if (Val.getOpcode() == ISD::MERGE_VALUES) {
7910           for (const SDValue &V : Val->op_values())
7911             handleRegAssign(V);
7912         } else
7913           handleRegAssign(Val);
7914       }
7915     }
7916   }
7917 
7918   // Set results.
7919   if (!ResultValues.empty()) {
7920     assert(CurResultType == ResultTypes.end() &&
7921            "Mismatch in number of ResultTypes");
7922     assert(ResultValues.size() == NumReturns &&
7923            "Mismatch in number of output operands in asm result");
7924 
7925     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
7926                             DAG.getVTList(ResultVTs), ResultValues);
7927     setValue(CS.getInstruction(), V);
7928   }
7929 
7930   // Collect store chains.
7931   if (!OutChains.empty())
7932     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7933 
7934   // Only Update Root if inline assembly has a memory effect.
7935   if (ResultValues.empty() || HasSideEffect || !OutChains.empty())
7936     DAG.setRoot(Chain);
7937 }
7938 
7939 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7940                                              const Twine &Message) {
7941   LLVMContext &Ctx = *DAG.getContext();
7942   Ctx.emitError(CS.getInstruction(), Message);
7943 
7944   // Make sure we leave the DAG in a valid state
7945   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7946   SmallVector<EVT, 1> ValueVTs;
7947   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7948 
7949   if (ValueVTs.empty())
7950     return;
7951 
7952   SmallVector<SDValue, 1> Ops;
7953   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
7954     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
7955 
7956   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
7957 }
7958 
7959 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7960   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7961                           MVT::Other, getRoot(),
7962                           getValue(I.getArgOperand(0)),
7963                           DAG.getSrcValue(I.getArgOperand(0))));
7964 }
7965 
7966 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7967   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7968   const DataLayout &DL = DAG.getDataLayout();
7969   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7970                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7971                            DAG.getSrcValue(I.getOperand(0)),
7972                            DL.getABITypeAlignment(I.getType()));
7973   setValue(&I, V);
7974   DAG.setRoot(V.getValue(1));
7975 }
7976 
7977 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7978   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7979                           MVT::Other, getRoot(),
7980                           getValue(I.getArgOperand(0)),
7981                           DAG.getSrcValue(I.getArgOperand(0))));
7982 }
7983 
7984 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7985   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7986                           MVT::Other, getRoot(),
7987                           getValue(I.getArgOperand(0)),
7988                           getValue(I.getArgOperand(1)),
7989                           DAG.getSrcValue(I.getArgOperand(0)),
7990                           DAG.getSrcValue(I.getArgOperand(1))));
7991 }
7992 
7993 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7994                                                     const Instruction &I,
7995                                                     SDValue Op) {
7996   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7997   if (!Range)
7998     return Op;
7999 
8000   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8001   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
8002     return Op;
8003 
8004   APInt Lo = CR.getUnsignedMin();
8005   if (!Lo.isMinValue())
8006     return Op;
8007 
8008   APInt Hi = CR.getUnsignedMax();
8009   unsigned Bits = std::max(Hi.getActiveBits(),
8010                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8011 
8012   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8013 
8014   SDLoc SL = getCurSDLoc();
8015 
8016   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8017                              DAG.getValueType(SmallVT));
8018   unsigned NumVals = Op.getNode()->getNumValues();
8019   if (NumVals == 1)
8020     return ZExt;
8021 
8022   SmallVector<SDValue, 4> Ops;
8023 
8024   Ops.push_back(ZExt);
8025   for (unsigned I = 1; I != NumVals; ++I)
8026     Ops.push_back(Op.getValue(I));
8027 
8028   return DAG.getMergeValues(Ops, SL);
8029 }
8030 
8031 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8032 /// the call being lowered.
8033 ///
8034 /// This is a helper for lowering intrinsics that follow a target calling
8035 /// convention or require stack pointer adjustment. Only a subset of the
8036 /// intrinsic's operands need to participate in the calling convention.
8037 void SelectionDAGBuilder::populateCallLoweringInfo(
8038     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
8039     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8040     bool IsPatchPoint) {
8041   TargetLowering::ArgListTy Args;
8042   Args.reserve(NumArgs);
8043 
8044   // Populate the argument list.
8045   // Attributes for args start at offset 1, after the return attribute.
8046   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8047        ArgI != ArgE; ++ArgI) {
8048     const Value *V = CS->getOperand(ArgI);
8049 
8050     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8051 
8052     TargetLowering::ArgListEntry Entry;
8053     Entry.Node = getValue(V);
8054     Entry.Ty = V->getType();
8055     Entry.setAttributes(&CS, ArgI);
8056     Args.push_back(Entry);
8057   }
8058 
8059   CLI.setDebugLoc(getCurSDLoc())
8060       .setChain(getRoot())
8061       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
8062       .setDiscardResult(CS->use_empty())
8063       .setIsPatchPoint(IsPatchPoint);
8064 }
8065 
8066 /// Add a stack map intrinsic call's live variable operands to a stackmap
8067 /// or patchpoint target node's operand list.
8068 ///
8069 /// Constants are converted to TargetConstants purely as an optimization to
8070 /// avoid constant materialization and register allocation.
8071 ///
8072 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8073 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8074 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8075 /// address materialization and register allocation, but may also be required
8076 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8077 /// alloca in the entry block, then the runtime may assume that the alloca's
8078 /// StackMap location can be read immediately after compilation and that the
8079 /// location is valid at any point during execution (this is similar to the
8080 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8081 /// only available in a register, then the runtime would need to trap when
8082 /// execution reaches the StackMap in order to read the alloca's location.
8083 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8084                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8085                                 SelectionDAGBuilder &Builder) {
8086   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8087     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8088     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8089       Ops.push_back(
8090         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8091       Ops.push_back(
8092         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8093     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8094       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8095       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8096           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8097     } else
8098       Ops.push_back(OpVal);
8099   }
8100 }
8101 
8102 /// Lower llvm.experimental.stackmap directly to its target opcode.
8103 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8104   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8105   //                                  [live variables...])
8106 
8107   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8108 
8109   SDValue Chain, InFlag, Callee, NullPtr;
8110   SmallVector<SDValue, 32> Ops;
8111 
8112   SDLoc DL = getCurSDLoc();
8113   Callee = getValue(CI.getCalledValue());
8114   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8115 
8116   // The stackmap intrinsic only records the live variables (the arguemnts
8117   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8118   // intrinsic, this won't be lowered to a function call. This means we don't
8119   // have to worry about calling conventions and target specific lowering code.
8120   // Instead we perform the call lowering right here.
8121   //
8122   // chain, flag = CALLSEQ_START(chain, 0, 0)
8123   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8124   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8125   //
8126   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8127   InFlag = Chain.getValue(1);
8128 
8129   // Add the <id> and <numBytes> constants.
8130   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8131   Ops.push_back(DAG.getTargetConstant(
8132                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8133   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8134   Ops.push_back(DAG.getTargetConstant(
8135                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8136                   MVT::i32));
8137 
8138   // Push live variables for the stack map.
8139   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8140 
8141   // We are not pushing any register mask info here on the operands list,
8142   // because the stackmap doesn't clobber anything.
8143 
8144   // Push the chain and the glue flag.
8145   Ops.push_back(Chain);
8146   Ops.push_back(InFlag);
8147 
8148   // Create the STACKMAP node.
8149   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8150   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8151   Chain = SDValue(SM, 0);
8152   InFlag = Chain.getValue(1);
8153 
8154   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8155 
8156   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8157 
8158   // Set the root to the target-lowered call chain.
8159   DAG.setRoot(Chain);
8160 
8161   // Inform the Frame Information that we have a stackmap in this function.
8162   FuncInfo.MF->getFrameInfo().setHasStackMap();
8163 }
8164 
8165 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8166 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8167                                           const BasicBlock *EHPadBB) {
8168   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8169   //                                                 i32 <numBytes>,
8170   //                                                 i8* <target>,
8171   //                                                 i32 <numArgs>,
8172   //                                                 [Args...],
8173   //                                                 [live variables...])
8174 
8175   CallingConv::ID CC = CS.getCallingConv();
8176   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8177   bool HasDef = !CS->getType()->isVoidTy();
8178   SDLoc dl = getCurSDLoc();
8179   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8180 
8181   // Handle immediate and symbolic callees.
8182   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8183     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8184                                    /*isTarget=*/true);
8185   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8186     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8187                                          SDLoc(SymbolicCallee),
8188                                          SymbolicCallee->getValueType(0));
8189 
8190   // Get the real number of arguments participating in the call <numArgs>
8191   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8192   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8193 
8194   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8195   // Intrinsics include all meta-operands up to but not including CC.
8196   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8197   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8198          "Not enough arguments provided to the patchpoint intrinsic");
8199 
8200   // For AnyRegCC the arguments are lowered later on manually.
8201   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8202   Type *ReturnTy =
8203     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8204 
8205   TargetLowering::CallLoweringInfo CLI(DAG);
8206   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
8207                            true);
8208   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8209 
8210   SDNode *CallEnd = Result.second.getNode();
8211   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8212     CallEnd = CallEnd->getOperand(0).getNode();
8213 
8214   /// Get a call instruction from the call sequence chain.
8215   /// Tail calls are not allowed.
8216   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8217          "Expected a callseq node.");
8218   SDNode *Call = CallEnd->getOperand(0).getNode();
8219   bool HasGlue = Call->getGluedNode();
8220 
8221   // Replace the target specific call node with the patchable intrinsic.
8222   SmallVector<SDValue, 8> Ops;
8223 
8224   // Add the <id> and <numBytes> constants.
8225   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8226   Ops.push_back(DAG.getTargetConstant(
8227                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8228   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8229   Ops.push_back(DAG.getTargetConstant(
8230                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8231                   MVT::i32));
8232 
8233   // Add the callee.
8234   Ops.push_back(Callee);
8235 
8236   // Adjust <numArgs> to account for any arguments that have been passed on the
8237   // stack instead.
8238   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8239   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8240   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8241   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8242 
8243   // Add the calling convention
8244   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8245 
8246   // Add the arguments we omitted previously. The register allocator should
8247   // place these in any free register.
8248   if (IsAnyRegCC)
8249     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8250       Ops.push_back(getValue(CS.getArgument(i)));
8251 
8252   // Push the arguments from the call instruction up to the register mask.
8253   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8254   Ops.append(Call->op_begin() + 2, e);
8255 
8256   // Push live variables for the stack map.
8257   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8258 
8259   // Push the register mask info.
8260   if (HasGlue)
8261     Ops.push_back(*(Call->op_end()-2));
8262   else
8263     Ops.push_back(*(Call->op_end()-1));
8264 
8265   // Push the chain (this is originally the first operand of the call, but
8266   // becomes now the last or second to last operand).
8267   Ops.push_back(*(Call->op_begin()));
8268 
8269   // Push the glue flag (last operand).
8270   if (HasGlue)
8271     Ops.push_back(*(Call->op_end()-1));
8272 
8273   SDVTList NodeTys;
8274   if (IsAnyRegCC && HasDef) {
8275     // Create the return types based on the intrinsic definition
8276     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8277     SmallVector<EVT, 3> ValueVTs;
8278     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8279     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8280 
8281     // There is always a chain and a glue type at the end
8282     ValueVTs.push_back(MVT::Other);
8283     ValueVTs.push_back(MVT::Glue);
8284     NodeTys = DAG.getVTList(ValueVTs);
8285   } else
8286     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8287 
8288   // Replace the target specific call node with a PATCHPOINT node.
8289   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8290                                          dl, NodeTys, Ops);
8291 
8292   // Update the NodeMap.
8293   if (HasDef) {
8294     if (IsAnyRegCC)
8295       setValue(CS.getInstruction(), SDValue(MN, 0));
8296     else
8297       setValue(CS.getInstruction(), Result.first);
8298   }
8299 
8300   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8301   // call sequence. Furthermore the location of the chain and glue can change
8302   // when the AnyReg calling convention is used and the intrinsic returns a
8303   // value.
8304   if (IsAnyRegCC && HasDef) {
8305     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8306     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8307     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8308   } else
8309     DAG.ReplaceAllUsesWith(Call, MN);
8310   DAG.DeleteNode(Call);
8311 
8312   // Inform the Frame Information that we have a patchpoint in this function.
8313   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8314 }
8315 
8316 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8317                                             unsigned Intrinsic) {
8318   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8319   SDValue Op1 = getValue(I.getArgOperand(0));
8320   SDValue Op2;
8321   if (I.getNumArgOperands() > 1)
8322     Op2 = getValue(I.getArgOperand(1));
8323   SDLoc dl = getCurSDLoc();
8324   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8325   SDValue Res;
8326   FastMathFlags FMF;
8327   if (isa<FPMathOperator>(I))
8328     FMF = I.getFastMathFlags();
8329 
8330   switch (Intrinsic) {
8331   case Intrinsic::experimental_vector_reduce_fadd:
8332     if (FMF.isFast())
8333       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8334     else
8335       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8336     break;
8337   case Intrinsic::experimental_vector_reduce_fmul:
8338     if (FMF.isFast())
8339       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8340     else
8341       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8342     break;
8343   case Intrinsic::experimental_vector_reduce_add:
8344     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8345     break;
8346   case Intrinsic::experimental_vector_reduce_mul:
8347     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8348     break;
8349   case Intrinsic::experimental_vector_reduce_and:
8350     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8351     break;
8352   case Intrinsic::experimental_vector_reduce_or:
8353     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8354     break;
8355   case Intrinsic::experimental_vector_reduce_xor:
8356     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8357     break;
8358   case Intrinsic::experimental_vector_reduce_smax:
8359     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8360     break;
8361   case Intrinsic::experimental_vector_reduce_smin:
8362     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8363     break;
8364   case Intrinsic::experimental_vector_reduce_umax:
8365     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8366     break;
8367   case Intrinsic::experimental_vector_reduce_umin:
8368     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8369     break;
8370   case Intrinsic::experimental_vector_reduce_fmax:
8371     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8372     break;
8373   case Intrinsic::experimental_vector_reduce_fmin:
8374     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8375     break;
8376   default:
8377     llvm_unreachable("Unhandled vector reduce intrinsic");
8378   }
8379   setValue(&I, Res);
8380 }
8381 
8382 /// Returns an AttributeList representing the attributes applied to the return
8383 /// value of the given call.
8384 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8385   SmallVector<Attribute::AttrKind, 2> Attrs;
8386   if (CLI.RetSExt)
8387     Attrs.push_back(Attribute::SExt);
8388   if (CLI.RetZExt)
8389     Attrs.push_back(Attribute::ZExt);
8390   if (CLI.IsInReg)
8391     Attrs.push_back(Attribute::InReg);
8392 
8393   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8394                             Attrs);
8395 }
8396 
8397 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8398 /// implementation, which just calls LowerCall.
8399 /// FIXME: When all targets are
8400 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8401 std::pair<SDValue, SDValue>
8402 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8403   // Handle the incoming return values from the call.
8404   CLI.Ins.clear();
8405   Type *OrigRetTy = CLI.RetTy;
8406   SmallVector<EVT, 4> RetTys;
8407   SmallVector<uint64_t, 4> Offsets;
8408   auto &DL = CLI.DAG.getDataLayout();
8409   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8410 
8411   if (CLI.IsPostTypeLegalization) {
8412     // If we are lowering a libcall after legalization, split the return type.
8413     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8414     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8415     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8416       EVT RetVT = OldRetTys[i];
8417       uint64_t Offset = OldOffsets[i];
8418       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8419       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8420       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8421       RetTys.append(NumRegs, RegisterVT);
8422       for (unsigned j = 0; j != NumRegs; ++j)
8423         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8424     }
8425   }
8426 
8427   SmallVector<ISD::OutputArg, 4> Outs;
8428   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8429 
8430   bool CanLowerReturn =
8431       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8432                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8433 
8434   SDValue DemoteStackSlot;
8435   int DemoteStackIdx = -100;
8436   if (!CanLowerReturn) {
8437     // FIXME: equivalent assert?
8438     // assert(!CS.hasInAllocaArgument() &&
8439     //        "sret demotion is incompatible with inalloca");
8440     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8441     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8442     MachineFunction &MF = CLI.DAG.getMachineFunction();
8443     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8444     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8445                                               DL.getAllocaAddrSpace());
8446 
8447     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8448     ArgListEntry Entry;
8449     Entry.Node = DemoteStackSlot;
8450     Entry.Ty = StackSlotPtrType;
8451     Entry.IsSExt = false;
8452     Entry.IsZExt = false;
8453     Entry.IsInReg = false;
8454     Entry.IsSRet = true;
8455     Entry.IsNest = false;
8456     Entry.IsByVal = false;
8457     Entry.IsReturned = false;
8458     Entry.IsSwiftSelf = false;
8459     Entry.IsSwiftError = false;
8460     Entry.Alignment = Align;
8461     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8462     CLI.NumFixedArgs += 1;
8463     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8464 
8465     // sret demotion isn't compatible with tail-calls, since the sret argument
8466     // points into the callers stack frame.
8467     CLI.IsTailCall = false;
8468   } else {
8469     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8470       EVT VT = RetTys[I];
8471       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8472                                                      CLI.CallConv, VT);
8473       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8474                                                        CLI.CallConv, VT);
8475       for (unsigned i = 0; i != NumRegs; ++i) {
8476         ISD::InputArg MyFlags;
8477         MyFlags.VT = RegisterVT;
8478         MyFlags.ArgVT = VT;
8479         MyFlags.Used = CLI.IsReturnValueUsed;
8480         if (CLI.RetSExt)
8481           MyFlags.Flags.setSExt();
8482         if (CLI.RetZExt)
8483           MyFlags.Flags.setZExt();
8484         if (CLI.IsInReg)
8485           MyFlags.Flags.setInReg();
8486         CLI.Ins.push_back(MyFlags);
8487       }
8488     }
8489   }
8490 
8491   // We push in swifterror return as the last element of CLI.Ins.
8492   ArgListTy &Args = CLI.getArgs();
8493   if (supportSwiftError()) {
8494     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8495       if (Args[i].IsSwiftError) {
8496         ISD::InputArg MyFlags;
8497         MyFlags.VT = getPointerTy(DL);
8498         MyFlags.ArgVT = EVT(getPointerTy(DL));
8499         MyFlags.Flags.setSwiftError();
8500         CLI.Ins.push_back(MyFlags);
8501       }
8502     }
8503   }
8504 
8505   // Handle all of the outgoing arguments.
8506   CLI.Outs.clear();
8507   CLI.OutVals.clear();
8508   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8509     SmallVector<EVT, 4> ValueVTs;
8510     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8511     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8512     Type *FinalType = Args[i].Ty;
8513     if (Args[i].IsByVal)
8514       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8515     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8516         FinalType, CLI.CallConv, CLI.IsVarArg);
8517     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8518          ++Value) {
8519       EVT VT = ValueVTs[Value];
8520       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8521       SDValue Op = SDValue(Args[i].Node.getNode(),
8522                            Args[i].Node.getResNo() + Value);
8523       ISD::ArgFlagsTy Flags;
8524 
8525       // Certain targets (such as MIPS), may have a different ABI alignment
8526       // for a type depending on the context. Give the target a chance to
8527       // specify the alignment it wants.
8528       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8529 
8530       if (Args[i].IsZExt)
8531         Flags.setZExt();
8532       if (Args[i].IsSExt)
8533         Flags.setSExt();
8534       if (Args[i].IsInReg) {
8535         // If we are using vectorcall calling convention, a structure that is
8536         // passed InReg - is surely an HVA
8537         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8538             isa<StructType>(FinalType)) {
8539           // The first value of a structure is marked
8540           if (0 == Value)
8541             Flags.setHvaStart();
8542           Flags.setHva();
8543         }
8544         // Set InReg Flag
8545         Flags.setInReg();
8546       }
8547       if (Args[i].IsSRet)
8548         Flags.setSRet();
8549       if (Args[i].IsSwiftSelf)
8550         Flags.setSwiftSelf();
8551       if (Args[i].IsSwiftError)
8552         Flags.setSwiftError();
8553       if (Args[i].IsByVal)
8554         Flags.setByVal();
8555       if (Args[i].IsInAlloca) {
8556         Flags.setInAlloca();
8557         // Set the byval flag for CCAssignFn callbacks that don't know about
8558         // inalloca.  This way we can know how many bytes we should've allocated
8559         // and how many bytes a callee cleanup function will pop.  If we port
8560         // inalloca to more targets, we'll have to add custom inalloca handling
8561         // in the various CC lowering callbacks.
8562         Flags.setByVal();
8563       }
8564       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8565         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8566         Type *ElementTy = Ty->getElementType();
8567         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8568         // For ByVal, alignment should come from FE.  BE will guess if this
8569         // info is not there but there are cases it cannot get right.
8570         unsigned FrameAlign;
8571         if (Args[i].Alignment)
8572           FrameAlign = Args[i].Alignment;
8573         else
8574           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8575         Flags.setByValAlign(FrameAlign);
8576       }
8577       if (Args[i].IsNest)
8578         Flags.setNest();
8579       if (NeedsRegBlock)
8580         Flags.setInConsecutiveRegs();
8581       Flags.setOrigAlign(OriginalAlignment);
8582 
8583       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8584                                                  CLI.CallConv, VT);
8585       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8586                                                         CLI.CallConv, VT);
8587       SmallVector<SDValue, 4> Parts(NumParts);
8588       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8589 
8590       if (Args[i].IsSExt)
8591         ExtendKind = ISD::SIGN_EXTEND;
8592       else if (Args[i].IsZExt)
8593         ExtendKind = ISD::ZERO_EXTEND;
8594 
8595       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8596       // for now.
8597       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8598           CanLowerReturn) {
8599         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8600                "unexpected use of 'returned'");
8601         // Before passing 'returned' to the target lowering code, ensure that
8602         // either the register MVT and the actual EVT are the same size or that
8603         // the return value and argument are extended in the same way; in these
8604         // cases it's safe to pass the argument register value unchanged as the
8605         // return register value (although it's at the target's option whether
8606         // to do so)
8607         // TODO: allow code generation to take advantage of partially preserved
8608         // registers rather than clobbering the entire register when the
8609         // parameter extension method is not compatible with the return
8610         // extension method
8611         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8612             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8613              CLI.RetZExt == Args[i].IsZExt))
8614           Flags.setReturned();
8615       }
8616 
8617       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8618                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
8619 
8620       for (unsigned j = 0; j != NumParts; ++j) {
8621         // if it isn't first piece, alignment must be 1
8622         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8623                                i < CLI.NumFixedArgs,
8624                                i, j*Parts[j].getValueType().getStoreSize());
8625         if (NumParts > 1 && j == 0)
8626           MyFlags.Flags.setSplit();
8627         else if (j != 0) {
8628           MyFlags.Flags.setOrigAlign(1);
8629           if (j == NumParts - 1)
8630             MyFlags.Flags.setSplitEnd();
8631         }
8632 
8633         CLI.Outs.push_back(MyFlags);
8634         CLI.OutVals.push_back(Parts[j]);
8635       }
8636 
8637       if (NeedsRegBlock && Value == NumValues - 1)
8638         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8639     }
8640   }
8641 
8642   SmallVector<SDValue, 4> InVals;
8643   CLI.Chain = LowerCall(CLI, InVals);
8644 
8645   // Update CLI.InVals to use outside of this function.
8646   CLI.InVals = InVals;
8647 
8648   // Verify that the target's LowerCall behaved as expected.
8649   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8650          "LowerCall didn't return a valid chain!");
8651   assert((!CLI.IsTailCall || InVals.empty()) &&
8652          "LowerCall emitted a return value for a tail call!");
8653   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8654          "LowerCall didn't emit the correct number of values!");
8655 
8656   // For a tail call, the return value is merely live-out and there aren't
8657   // any nodes in the DAG representing it. Return a special value to
8658   // indicate that a tail call has been emitted and no more Instructions
8659   // should be processed in the current block.
8660   if (CLI.IsTailCall) {
8661     CLI.DAG.setRoot(CLI.Chain);
8662     return std::make_pair(SDValue(), SDValue());
8663   }
8664 
8665 #ifndef NDEBUG
8666   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8667     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8668     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8669            "LowerCall emitted a value with the wrong type!");
8670   }
8671 #endif
8672 
8673   SmallVector<SDValue, 4> ReturnValues;
8674   if (!CanLowerReturn) {
8675     // The instruction result is the result of loading from the
8676     // hidden sret parameter.
8677     SmallVector<EVT, 1> PVTs;
8678     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8679 
8680     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8681     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8682     EVT PtrVT = PVTs[0];
8683 
8684     unsigned NumValues = RetTys.size();
8685     ReturnValues.resize(NumValues);
8686     SmallVector<SDValue, 4> Chains(NumValues);
8687 
8688     // An aggregate return value cannot wrap around the address space, so
8689     // offsets to its parts don't wrap either.
8690     SDNodeFlags Flags;
8691     Flags.setNoUnsignedWrap(true);
8692 
8693     for (unsigned i = 0; i < NumValues; ++i) {
8694       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8695                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8696                                                         PtrVT), Flags);
8697       SDValue L = CLI.DAG.getLoad(
8698           RetTys[i], CLI.DL, CLI.Chain, Add,
8699           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8700                                             DemoteStackIdx, Offsets[i]),
8701           /* Alignment = */ 1);
8702       ReturnValues[i] = L;
8703       Chains[i] = L.getValue(1);
8704     }
8705 
8706     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8707   } else {
8708     // Collect the legal value parts into potentially illegal values
8709     // that correspond to the original function's return values.
8710     Optional<ISD::NodeType> AssertOp;
8711     if (CLI.RetSExt)
8712       AssertOp = ISD::AssertSext;
8713     else if (CLI.RetZExt)
8714       AssertOp = ISD::AssertZext;
8715     unsigned CurReg = 0;
8716     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8717       EVT VT = RetTys[I];
8718       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8719                                                      CLI.CallConv, VT);
8720       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8721                                                        CLI.CallConv, VT);
8722 
8723       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8724                                               NumRegs, RegisterVT, VT, nullptr,
8725                                               CLI.CallConv, AssertOp));
8726       CurReg += NumRegs;
8727     }
8728 
8729     // For a function returning void, there is no return value. We can't create
8730     // such a node, so we just return a null return value in that case. In
8731     // that case, nothing will actually look at the value.
8732     if (ReturnValues.empty())
8733       return std::make_pair(SDValue(), CLI.Chain);
8734   }
8735 
8736   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8737                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8738   return std::make_pair(Res, CLI.Chain);
8739 }
8740 
8741 void TargetLowering::LowerOperationWrapper(SDNode *N,
8742                                            SmallVectorImpl<SDValue> &Results,
8743                                            SelectionDAG &DAG) const {
8744   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8745     Results.push_back(Res);
8746 }
8747 
8748 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8749   llvm_unreachable("LowerOperation not implemented for this target!");
8750 }
8751 
8752 void
8753 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8754   SDValue Op = getNonRegisterValue(V);
8755   assert((Op.getOpcode() != ISD::CopyFromReg ||
8756           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8757          "Copy from a reg to the same reg!");
8758   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8759 
8760   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8761   // If this is an InlineAsm we have to match the registers required, not the
8762   // notional registers required by the type.
8763 
8764   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
8765                    None); // This is not an ABI copy.
8766   SDValue Chain = DAG.getEntryNode();
8767 
8768   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8769                               FuncInfo.PreferredExtendType.end())
8770                                  ? ISD::ANY_EXTEND
8771                                  : FuncInfo.PreferredExtendType[V];
8772   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8773   PendingExports.push_back(Chain);
8774 }
8775 
8776 #include "llvm/CodeGen/SelectionDAGISel.h"
8777 
8778 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8779 /// entry block, return true.  This includes arguments used by switches, since
8780 /// the switch may expand into multiple basic blocks.
8781 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8782   // With FastISel active, we may be splitting blocks, so force creation
8783   // of virtual registers for all non-dead arguments.
8784   if (FastISel)
8785     return A->use_empty();
8786 
8787   const BasicBlock &Entry = A->getParent()->front();
8788   for (const User *U : A->users())
8789     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8790       return false;  // Use not in entry block.
8791 
8792   return true;
8793 }
8794 
8795 using ArgCopyElisionMapTy =
8796     DenseMap<const Argument *,
8797              std::pair<const AllocaInst *, const StoreInst *>>;
8798 
8799 /// Scan the entry block of the function in FuncInfo for arguments that look
8800 /// like copies into a local alloca. Record any copied arguments in
8801 /// ArgCopyElisionCandidates.
8802 static void
8803 findArgumentCopyElisionCandidates(const DataLayout &DL,
8804                                   FunctionLoweringInfo *FuncInfo,
8805                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8806   // Record the state of every static alloca used in the entry block. Argument
8807   // allocas are all used in the entry block, so we need approximately as many
8808   // entries as we have arguments.
8809   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8810   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8811   unsigned NumArgs = FuncInfo->Fn->arg_size();
8812   StaticAllocas.reserve(NumArgs * 2);
8813 
8814   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8815     if (!V)
8816       return nullptr;
8817     V = V->stripPointerCasts();
8818     const auto *AI = dyn_cast<AllocaInst>(V);
8819     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8820       return nullptr;
8821     auto Iter = StaticAllocas.insert({AI, Unknown});
8822     return &Iter.first->second;
8823   };
8824 
8825   // Look for stores of arguments to static allocas. Look through bitcasts and
8826   // GEPs to handle type coercions, as long as the alloca is fully initialized
8827   // by the store. Any non-store use of an alloca escapes it and any subsequent
8828   // unanalyzed store might write it.
8829   // FIXME: Handle structs initialized with multiple stores.
8830   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8831     // Look for stores, and handle non-store uses conservatively.
8832     const auto *SI = dyn_cast<StoreInst>(&I);
8833     if (!SI) {
8834       // We will look through cast uses, so ignore them completely.
8835       if (I.isCast())
8836         continue;
8837       // Ignore debug info intrinsics, they don't escape or store to allocas.
8838       if (isa<DbgInfoIntrinsic>(I))
8839         continue;
8840       // This is an unknown instruction. Assume it escapes or writes to all
8841       // static alloca operands.
8842       for (const Use &U : I.operands()) {
8843         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8844           *Info = StaticAllocaInfo::Clobbered;
8845       }
8846       continue;
8847     }
8848 
8849     // If the stored value is a static alloca, mark it as escaped.
8850     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8851       *Info = StaticAllocaInfo::Clobbered;
8852 
8853     // Check if the destination is a static alloca.
8854     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8855     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8856     if (!Info)
8857       continue;
8858     const AllocaInst *AI = cast<AllocaInst>(Dst);
8859 
8860     // Skip allocas that have been initialized or clobbered.
8861     if (*Info != StaticAllocaInfo::Unknown)
8862       continue;
8863 
8864     // Check if the stored value is an argument, and that this store fully
8865     // initializes the alloca. Don't elide copies from the same argument twice.
8866     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8867     const auto *Arg = dyn_cast<Argument>(Val);
8868     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8869         Arg->getType()->isEmptyTy() ||
8870         DL.getTypeStoreSize(Arg->getType()) !=
8871             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8872         ArgCopyElisionCandidates.count(Arg)) {
8873       *Info = StaticAllocaInfo::Clobbered;
8874       continue;
8875     }
8876 
8877     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
8878                       << '\n');
8879 
8880     // Mark this alloca and store for argument copy elision.
8881     *Info = StaticAllocaInfo::Elidable;
8882     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8883 
8884     // Stop scanning if we've seen all arguments. This will happen early in -O0
8885     // builds, which is useful, because -O0 builds have large entry blocks and
8886     // many allocas.
8887     if (ArgCopyElisionCandidates.size() == NumArgs)
8888       break;
8889   }
8890 }
8891 
8892 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8893 /// ArgVal is a load from a suitable fixed stack object.
8894 static void tryToElideArgumentCopy(
8895     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8896     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8897     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8898     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8899     SDValue ArgVal, bool &ArgHasUses) {
8900   // Check if this is a load from a fixed stack object.
8901   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8902   if (!LNode)
8903     return;
8904   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8905   if (!FINode)
8906     return;
8907 
8908   // Check that the fixed stack object is the right size and alignment.
8909   // Look at the alignment that the user wrote on the alloca instead of looking
8910   // at the stack object.
8911   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8912   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8913   const AllocaInst *AI = ArgCopyIter->second.first;
8914   int FixedIndex = FINode->getIndex();
8915   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8916   int OldIndex = AllocaIndex;
8917   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8918   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8919     LLVM_DEBUG(
8920         dbgs() << "  argument copy elision failed due to bad fixed stack "
8921                   "object size\n");
8922     return;
8923   }
8924   unsigned RequiredAlignment = AI->getAlignment();
8925   if (!RequiredAlignment) {
8926     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8927         AI->getAllocatedType());
8928   }
8929   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8930     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8931                          "greater than stack argument alignment ("
8932                       << RequiredAlignment << " vs "
8933                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
8934     return;
8935   }
8936 
8937   // Perform the elision. Delete the old stack object and replace its only use
8938   // in the variable info map. Mark the stack object as mutable.
8939   LLVM_DEBUG({
8940     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8941            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8942            << '\n';
8943   });
8944   MFI.RemoveStackObject(OldIndex);
8945   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8946   AllocaIndex = FixedIndex;
8947   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8948   Chains.push_back(ArgVal.getValue(1));
8949 
8950   // Avoid emitting code for the store implementing the copy.
8951   const StoreInst *SI = ArgCopyIter->second.second;
8952   ElidedArgCopyInstrs.insert(SI);
8953 
8954   // Check for uses of the argument again so that we can avoid exporting ArgVal
8955   // if it is't used by anything other than the store.
8956   for (const Value *U : Arg.users()) {
8957     if (U != SI) {
8958       ArgHasUses = true;
8959       break;
8960     }
8961   }
8962 }
8963 
8964 void SelectionDAGISel::LowerArguments(const Function &F) {
8965   SelectionDAG &DAG = SDB->DAG;
8966   SDLoc dl = SDB->getCurSDLoc();
8967   const DataLayout &DL = DAG.getDataLayout();
8968   SmallVector<ISD::InputArg, 16> Ins;
8969 
8970   if (!FuncInfo->CanLowerReturn) {
8971     // Put in an sret pointer parameter before all the other parameters.
8972     SmallVector<EVT, 1> ValueVTs;
8973     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8974                     F.getReturnType()->getPointerTo(
8975                         DAG.getDataLayout().getAllocaAddrSpace()),
8976                     ValueVTs);
8977 
8978     // NOTE: Assuming that a pointer will never break down to more than one VT
8979     // or one register.
8980     ISD::ArgFlagsTy Flags;
8981     Flags.setSRet();
8982     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8983     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8984                          ISD::InputArg::NoArgIndex, 0);
8985     Ins.push_back(RetArg);
8986   }
8987 
8988   // Look for stores of arguments to static allocas. Mark such arguments with a
8989   // flag to ask the target to give us the memory location of that argument if
8990   // available.
8991   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8992   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8993 
8994   // Set up the incoming argument description vector.
8995   for (const Argument &Arg : F.args()) {
8996     unsigned ArgNo = Arg.getArgNo();
8997     SmallVector<EVT, 4> ValueVTs;
8998     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8999     bool isArgValueUsed = !Arg.use_empty();
9000     unsigned PartBase = 0;
9001     Type *FinalType = Arg.getType();
9002     if (Arg.hasAttribute(Attribute::ByVal))
9003       FinalType = cast<PointerType>(FinalType)->getElementType();
9004     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9005         FinalType, F.getCallingConv(), F.isVarArg());
9006     for (unsigned Value = 0, NumValues = ValueVTs.size();
9007          Value != NumValues; ++Value) {
9008       EVT VT = ValueVTs[Value];
9009       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9010       ISD::ArgFlagsTy Flags;
9011 
9012       // Certain targets (such as MIPS), may have a different ABI alignment
9013       // for a type depending on the context. Give the target a chance to
9014       // specify the alignment it wants.
9015       unsigned OriginalAlignment =
9016           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9017 
9018       if (Arg.hasAttribute(Attribute::ZExt))
9019         Flags.setZExt();
9020       if (Arg.hasAttribute(Attribute::SExt))
9021         Flags.setSExt();
9022       if (Arg.hasAttribute(Attribute::InReg)) {
9023         // If we are using vectorcall calling convention, a structure that is
9024         // passed InReg - is surely an HVA
9025         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9026             isa<StructType>(Arg.getType())) {
9027           // The first value of a structure is marked
9028           if (0 == Value)
9029             Flags.setHvaStart();
9030           Flags.setHva();
9031         }
9032         // Set InReg Flag
9033         Flags.setInReg();
9034       }
9035       if (Arg.hasAttribute(Attribute::StructRet))
9036         Flags.setSRet();
9037       if (Arg.hasAttribute(Attribute::SwiftSelf))
9038         Flags.setSwiftSelf();
9039       if (Arg.hasAttribute(Attribute::SwiftError))
9040         Flags.setSwiftError();
9041       if (Arg.hasAttribute(Attribute::ByVal))
9042         Flags.setByVal();
9043       if (Arg.hasAttribute(Attribute::InAlloca)) {
9044         Flags.setInAlloca();
9045         // Set the byval flag for CCAssignFn callbacks that don't know about
9046         // inalloca.  This way we can know how many bytes we should've allocated
9047         // and how many bytes a callee cleanup function will pop.  If we port
9048         // inalloca to more targets, we'll have to add custom inalloca handling
9049         // in the various CC lowering callbacks.
9050         Flags.setByVal();
9051       }
9052       if (F.getCallingConv() == CallingConv::X86_INTR) {
9053         // IA Interrupt passes frame (1st parameter) by value in the stack.
9054         if (ArgNo == 0)
9055           Flags.setByVal();
9056       }
9057       if (Flags.isByVal() || Flags.isInAlloca()) {
9058         PointerType *Ty = cast<PointerType>(Arg.getType());
9059         Type *ElementTy = Ty->getElementType();
9060         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9061         // For ByVal, alignment should be passed from FE.  BE will guess if
9062         // this info is not there but there are cases it cannot get right.
9063         unsigned FrameAlign;
9064         if (Arg.getParamAlignment())
9065           FrameAlign = Arg.getParamAlignment();
9066         else
9067           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9068         Flags.setByValAlign(FrameAlign);
9069       }
9070       if (Arg.hasAttribute(Attribute::Nest))
9071         Flags.setNest();
9072       if (NeedsRegBlock)
9073         Flags.setInConsecutiveRegs();
9074       Flags.setOrigAlign(OriginalAlignment);
9075       if (ArgCopyElisionCandidates.count(&Arg))
9076         Flags.setCopyElisionCandidate();
9077 
9078       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9079           *CurDAG->getContext(), F.getCallingConv(), VT);
9080       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9081           *CurDAG->getContext(), F.getCallingConv(), VT);
9082       for (unsigned i = 0; i != NumRegs; ++i) {
9083         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9084                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9085         if (NumRegs > 1 && i == 0)
9086           MyFlags.Flags.setSplit();
9087         // if it isn't first piece, alignment must be 1
9088         else if (i > 0) {
9089           MyFlags.Flags.setOrigAlign(1);
9090           if (i == NumRegs - 1)
9091             MyFlags.Flags.setSplitEnd();
9092         }
9093         Ins.push_back(MyFlags);
9094       }
9095       if (NeedsRegBlock && Value == NumValues - 1)
9096         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9097       PartBase += VT.getStoreSize();
9098     }
9099   }
9100 
9101   // Call the target to set up the argument values.
9102   SmallVector<SDValue, 8> InVals;
9103   SDValue NewRoot = TLI->LowerFormalArguments(
9104       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9105 
9106   // Verify that the target's LowerFormalArguments behaved as expected.
9107   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9108          "LowerFormalArguments didn't return a valid chain!");
9109   assert(InVals.size() == Ins.size() &&
9110          "LowerFormalArguments didn't emit the correct number of values!");
9111   LLVM_DEBUG({
9112     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9113       assert(InVals[i].getNode() &&
9114              "LowerFormalArguments emitted a null value!");
9115       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9116              "LowerFormalArguments emitted a value with the wrong type!");
9117     }
9118   });
9119 
9120   // Update the DAG with the new chain value resulting from argument lowering.
9121   DAG.setRoot(NewRoot);
9122 
9123   // Set up the argument values.
9124   unsigned i = 0;
9125   if (!FuncInfo->CanLowerReturn) {
9126     // Create a virtual register for the sret pointer, and put in a copy
9127     // from the sret argument into it.
9128     SmallVector<EVT, 1> ValueVTs;
9129     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9130                     F.getReturnType()->getPointerTo(
9131                         DAG.getDataLayout().getAllocaAddrSpace()),
9132                     ValueVTs);
9133     MVT VT = ValueVTs[0].getSimpleVT();
9134     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9135     Optional<ISD::NodeType> AssertOp = None;
9136     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9137                                         nullptr, F.getCallingConv(), AssertOp);
9138 
9139     MachineFunction& MF = SDB->DAG.getMachineFunction();
9140     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9141     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9142     FuncInfo->DemoteRegister = SRetReg;
9143     NewRoot =
9144         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9145     DAG.setRoot(NewRoot);
9146 
9147     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9148     ++i;
9149   }
9150 
9151   SmallVector<SDValue, 4> Chains;
9152   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9153   for (const Argument &Arg : F.args()) {
9154     SmallVector<SDValue, 4> ArgValues;
9155     SmallVector<EVT, 4> ValueVTs;
9156     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9157     unsigned NumValues = ValueVTs.size();
9158     if (NumValues == 0)
9159       continue;
9160 
9161     bool ArgHasUses = !Arg.use_empty();
9162 
9163     // Elide the copying store if the target loaded this argument from a
9164     // suitable fixed stack object.
9165     if (Ins[i].Flags.isCopyElisionCandidate()) {
9166       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9167                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9168                              InVals[i], ArgHasUses);
9169     }
9170 
9171     // If this argument is unused then remember its value. It is used to generate
9172     // debugging information.
9173     bool isSwiftErrorArg =
9174         TLI->supportSwiftError() &&
9175         Arg.hasAttribute(Attribute::SwiftError);
9176     if (!ArgHasUses && !isSwiftErrorArg) {
9177       SDB->setUnusedArgValue(&Arg, InVals[i]);
9178 
9179       // Also remember any frame index for use in FastISel.
9180       if (FrameIndexSDNode *FI =
9181           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9182         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9183     }
9184 
9185     for (unsigned Val = 0; Val != NumValues; ++Val) {
9186       EVT VT = ValueVTs[Val];
9187       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9188                                                       F.getCallingConv(), VT);
9189       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9190           *CurDAG->getContext(), F.getCallingConv(), VT);
9191 
9192       // Even an apparant 'unused' swifterror argument needs to be returned. So
9193       // we do generate a copy for it that can be used on return from the
9194       // function.
9195       if (ArgHasUses || isSwiftErrorArg) {
9196         Optional<ISD::NodeType> AssertOp;
9197         if (Arg.hasAttribute(Attribute::SExt))
9198           AssertOp = ISD::AssertSext;
9199         else if (Arg.hasAttribute(Attribute::ZExt))
9200           AssertOp = ISD::AssertZext;
9201 
9202         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9203                                              PartVT, VT, nullptr,
9204                                              F.getCallingConv(), AssertOp));
9205       }
9206 
9207       i += NumParts;
9208     }
9209 
9210     // We don't need to do anything else for unused arguments.
9211     if (ArgValues.empty())
9212       continue;
9213 
9214     // Note down frame index.
9215     if (FrameIndexSDNode *FI =
9216         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9217       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9218 
9219     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9220                                      SDB->getCurSDLoc());
9221 
9222     SDB->setValue(&Arg, Res);
9223     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9224       // We want to associate the argument with the frame index, among
9225       // involved operands, that correspond to the lowest address. The
9226       // getCopyFromParts function, called earlier, is swapping the order of
9227       // the operands to BUILD_PAIR depending on endianness. The result of
9228       // that swapping is that the least significant bits of the argument will
9229       // be in the first operand of the BUILD_PAIR node, and the most
9230       // significant bits will be in the second operand.
9231       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9232       if (LoadSDNode *LNode =
9233           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9234         if (FrameIndexSDNode *FI =
9235             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9236           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9237     }
9238 
9239     // Update the SwiftErrorVRegDefMap.
9240     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9241       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9242       if (TargetRegisterInfo::isVirtualRegister(Reg))
9243         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9244                                            FuncInfo->SwiftErrorArg, Reg);
9245     }
9246 
9247     // If this argument is live outside of the entry block, insert a copy from
9248     // wherever we got it to the vreg that other BB's will reference it as.
9249     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9250       // If we can, though, try to skip creating an unnecessary vreg.
9251       // FIXME: This isn't very clean... it would be nice to make this more
9252       // general.  It's also subtly incompatible with the hacks FastISel
9253       // uses with vregs.
9254       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9255       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9256         FuncInfo->ValueMap[&Arg] = Reg;
9257         continue;
9258       }
9259     }
9260     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9261       FuncInfo->InitializeRegForValue(&Arg);
9262       SDB->CopyToExportRegsIfNeeded(&Arg);
9263     }
9264   }
9265 
9266   if (!Chains.empty()) {
9267     Chains.push_back(NewRoot);
9268     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9269   }
9270 
9271   DAG.setRoot(NewRoot);
9272 
9273   assert(i == InVals.size() && "Argument register count mismatch!");
9274 
9275   // If any argument copy elisions occurred and we have debug info, update the
9276   // stale frame indices used in the dbg.declare variable info table.
9277   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9278   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9279     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9280       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9281       if (I != ArgCopyElisionFrameIndexMap.end())
9282         VI.Slot = I->second;
9283     }
9284   }
9285 
9286   // Finally, if the target has anything special to do, allow it to do so.
9287   EmitFunctionEntryCode();
9288 }
9289 
9290 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9291 /// ensure constants are generated when needed.  Remember the virtual registers
9292 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9293 /// directly add them, because expansion might result in multiple MBB's for one
9294 /// BB.  As such, the start of the BB might correspond to a different MBB than
9295 /// the end.
9296 void
9297 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9298   const Instruction *TI = LLVMBB->getTerminator();
9299 
9300   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9301 
9302   // Check PHI nodes in successors that expect a value to be available from this
9303   // block.
9304   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9305     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9306     if (!isa<PHINode>(SuccBB->begin())) continue;
9307     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9308 
9309     // If this terminator has multiple identical successors (common for
9310     // switches), only handle each succ once.
9311     if (!SuccsHandled.insert(SuccMBB).second)
9312       continue;
9313 
9314     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9315 
9316     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9317     // nodes and Machine PHI nodes, but the incoming operands have not been
9318     // emitted yet.
9319     for (const PHINode &PN : SuccBB->phis()) {
9320       // Ignore dead phi's.
9321       if (PN.use_empty())
9322         continue;
9323 
9324       // Skip empty types
9325       if (PN.getType()->isEmptyTy())
9326         continue;
9327 
9328       unsigned Reg;
9329       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9330 
9331       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9332         unsigned &RegOut = ConstantsOut[C];
9333         if (RegOut == 0) {
9334           RegOut = FuncInfo.CreateRegs(C->getType());
9335           CopyValueToVirtualRegister(C, RegOut);
9336         }
9337         Reg = RegOut;
9338       } else {
9339         DenseMap<const Value *, unsigned>::iterator I =
9340           FuncInfo.ValueMap.find(PHIOp);
9341         if (I != FuncInfo.ValueMap.end())
9342           Reg = I->second;
9343         else {
9344           assert(isa<AllocaInst>(PHIOp) &&
9345                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9346                  "Didn't codegen value into a register!??");
9347           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9348           CopyValueToVirtualRegister(PHIOp, Reg);
9349         }
9350       }
9351 
9352       // Remember that this register needs to added to the machine PHI node as
9353       // the input for this MBB.
9354       SmallVector<EVT, 4> ValueVTs;
9355       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9356       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9357       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9358         EVT VT = ValueVTs[vti];
9359         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9360         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9361           FuncInfo.PHINodesToUpdate.push_back(
9362               std::make_pair(&*MBBI++, Reg + i));
9363         Reg += NumRegisters;
9364       }
9365     }
9366   }
9367 
9368   ConstantsOut.clear();
9369 }
9370 
9371 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9372 /// is 0.
9373 MachineBasicBlock *
9374 SelectionDAGBuilder::StackProtectorDescriptor::
9375 AddSuccessorMBB(const BasicBlock *BB,
9376                 MachineBasicBlock *ParentMBB,
9377                 bool IsLikely,
9378                 MachineBasicBlock *SuccMBB) {
9379   // If SuccBB has not been created yet, create it.
9380   if (!SuccMBB) {
9381     MachineFunction *MF = ParentMBB->getParent();
9382     MachineFunction::iterator BBI(ParentMBB);
9383     SuccMBB = MF->CreateMachineBasicBlock(BB);
9384     MF->insert(++BBI, SuccMBB);
9385   }
9386   // Add it as a successor of ParentMBB.
9387   ParentMBB->addSuccessor(
9388       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9389   return SuccMBB;
9390 }
9391 
9392 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9393   MachineFunction::iterator I(MBB);
9394   if (++I == FuncInfo.MF->end())
9395     return nullptr;
9396   return &*I;
9397 }
9398 
9399 /// During lowering new call nodes can be created (such as memset, etc.).
9400 /// Those will become new roots of the current DAG, but complications arise
9401 /// when they are tail calls. In such cases, the call lowering will update
9402 /// the root, but the builder still needs to know that a tail call has been
9403 /// lowered in order to avoid generating an additional return.
9404 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9405   // If the node is null, we do have a tail call.
9406   if (MaybeTC.getNode() != nullptr)
9407     DAG.setRoot(MaybeTC);
9408   else
9409     HasTailCall = true;
9410 }
9411 
9412 uint64_t
9413 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9414                                        unsigned First, unsigned Last) const {
9415   assert(Last >= First);
9416   const APInt &LowCase = Clusters[First].Low->getValue();
9417   const APInt &HighCase = Clusters[Last].High->getValue();
9418   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9419 
9420   // FIXME: A range of consecutive cases has 100% density, but only requires one
9421   // comparison to lower. We should discriminate against such consecutive ranges
9422   // in jump tables.
9423 
9424   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9425 }
9426 
9427 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9428     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9429     unsigned Last) const {
9430   assert(Last >= First);
9431   assert(TotalCases[Last] >= TotalCases[First]);
9432   uint64_t NumCases =
9433       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9434   return NumCases;
9435 }
9436 
9437 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9438                                          unsigned First, unsigned Last,
9439                                          const SwitchInst *SI,
9440                                          MachineBasicBlock *DefaultMBB,
9441                                          CaseCluster &JTCluster) {
9442   assert(First <= Last);
9443 
9444   auto Prob = BranchProbability::getZero();
9445   unsigned NumCmps = 0;
9446   std::vector<MachineBasicBlock*> Table;
9447   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9448 
9449   // Initialize probabilities in JTProbs.
9450   for (unsigned I = First; I <= Last; ++I)
9451     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9452 
9453   for (unsigned I = First; I <= Last; ++I) {
9454     assert(Clusters[I].Kind == CC_Range);
9455     Prob += Clusters[I].Prob;
9456     const APInt &Low = Clusters[I].Low->getValue();
9457     const APInt &High = Clusters[I].High->getValue();
9458     NumCmps += (Low == High) ? 1 : 2;
9459     if (I != First) {
9460       // Fill the gap between this and the previous cluster.
9461       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9462       assert(PreviousHigh.slt(Low));
9463       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9464       for (uint64_t J = 0; J < Gap; J++)
9465         Table.push_back(DefaultMBB);
9466     }
9467     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9468     for (uint64_t J = 0; J < ClusterSize; ++J)
9469       Table.push_back(Clusters[I].MBB);
9470     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9471   }
9472 
9473   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9474   unsigned NumDests = JTProbs.size();
9475   if (TLI.isSuitableForBitTests(
9476           NumDests, NumCmps, Clusters[First].Low->getValue(),
9477           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9478     // Clusters[First..Last] should be lowered as bit tests instead.
9479     return false;
9480   }
9481 
9482   // Create the MBB that will load from and jump through the table.
9483   // Note: We create it here, but it's not inserted into the function yet.
9484   MachineFunction *CurMF = FuncInfo.MF;
9485   MachineBasicBlock *JumpTableMBB =
9486       CurMF->CreateMachineBasicBlock(SI->getParent());
9487 
9488   // Add successors. Note: use table order for determinism.
9489   SmallPtrSet<MachineBasicBlock *, 8> Done;
9490   for (MachineBasicBlock *Succ : Table) {
9491     if (Done.count(Succ))
9492       continue;
9493     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9494     Done.insert(Succ);
9495   }
9496   JumpTableMBB->normalizeSuccProbs();
9497 
9498   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9499                      ->createJumpTableIndex(Table);
9500 
9501   // Set up the jump table info.
9502   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9503   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9504                       Clusters[Last].High->getValue(), SI->getCondition(),
9505                       nullptr, false);
9506   JTCases.emplace_back(std::move(JTH), std::move(JT));
9507 
9508   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9509                                      JTCases.size() - 1, Prob);
9510   return true;
9511 }
9512 
9513 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9514                                          const SwitchInst *SI,
9515                                          MachineBasicBlock *DefaultMBB) {
9516 #ifndef NDEBUG
9517   // Clusters must be non-empty, sorted, and only contain Range clusters.
9518   assert(!Clusters.empty());
9519   for (CaseCluster &C : Clusters)
9520     assert(C.Kind == CC_Range);
9521   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9522     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9523 #endif
9524 
9525   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9526   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9527     return;
9528 
9529   const int64_t N = Clusters.size();
9530   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9531   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9532 
9533   if (N < 2 || N < MinJumpTableEntries)
9534     return;
9535 
9536   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9537   SmallVector<unsigned, 8> TotalCases(N);
9538   for (unsigned i = 0; i < N; ++i) {
9539     const APInt &Hi = Clusters[i].High->getValue();
9540     const APInt &Lo = Clusters[i].Low->getValue();
9541     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9542     if (i != 0)
9543       TotalCases[i] += TotalCases[i - 1];
9544   }
9545 
9546   // Cheap case: the whole range may be suitable for jump table.
9547   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9548   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9549   assert(NumCases < UINT64_MAX / 100);
9550   assert(Range >= NumCases);
9551   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9552     CaseCluster JTCluster;
9553     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9554       Clusters[0] = JTCluster;
9555       Clusters.resize(1);
9556       return;
9557     }
9558   }
9559 
9560   // The algorithm below is not suitable for -O0.
9561   if (TM.getOptLevel() == CodeGenOpt::None)
9562     return;
9563 
9564   // Split Clusters into minimum number of dense partitions. The algorithm uses
9565   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9566   // for the Case Statement'" (1994), but builds the MinPartitions array in
9567   // reverse order to make it easier to reconstruct the partitions in ascending
9568   // order. In the choice between two optimal partitionings, it picks the one
9569   // which yields more jump tables.
9570 
9571   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9572   SmallVector<unsigned, 8> MinPartitions(N);
9573   // LastElement[i] is the last element of the partition starting at i.
9574   SmallVector<unsigned, 8> LastElement(N);
9575   // PartitionsScore[i] is used to break ties when choosing between two
9576   // partitionings resulting in the same number of partitions.
9577   SmallVector<unsigned, 8> PartitionsScore(N);
9578   // For PartitionsScore, a small number of comparisons is considered as good as
9579   // a jump table and a single comparison is considered better than a jump
9580   // table.
9581   enum PartitionScores : unsigned {
9582     NoTable = 0,
9583     Table = 1,
9584     FewCases = 1,
9585     SingleCase = 2
9586   };
9587 
9588   // Base case: There is only one way to partition Clusters[N-1].
9589   MinPartitions[N - 1] = 1;
9590   LastElement[N - 1] = N - 1;
9591   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9592 
9593   // Note: loop indexes are signed to avoid underflow.
9594   for (int64_t i = N - 2; i >= 0; i--) {
9595     // Find optimal partitioning of Clusters[i..N-1].
9596     // Baseline: Put Clusters[i] into a partition on its own.
9597     MinPartitions[i] = MinPartitions[i + 1] + 1;
9598     LastElement[i] = i;
9599     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9600 
9601     // Search for a solution that results in fewer partitions.
9602     for (int64_t j = N - 1; j > i; j--) {
9603       // Try building a partition from Clusters[i..j].
9604       uint64_t Range = getJumpTableRange(Clusters, i, j);
9605       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9606       assert(NumCases < UINT64_MAX / 100);
9607       assert(Range >= NumCases);
9608       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9609         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9610         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9611         int64_t NumEntries = j - i + 1;
9612 
9613         if (NumEntries == 1)
9614           Score += PartitionScores::SingleCase;
9615         else if (NumEntries <= SmallNumberOfEntries)
9616           Score += PartitionScores::FewCases;
9617         else if (NumEntries >= MinJumpTableEntries)
9618           Score += PartitionScores::Table;
9619 
9620         // If this leads to fewer partitions, or to the same number of
9621         // partitions with better score, it is a better partitioning.
9622         if (NumPartitions < MinPartitions[i] ||
9623             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9624           MinPartitions[i] = NumPartitions;
9625           LastElement[i] = j;
9626           PartitionsScore[i] = Score;
9627         }
9628       }
9629     }
9630   }
9631 
9632   // Iterate over the partitions, replacing some with jump tables in-place.
9633   unsigned DstIndex = 0;
9634   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9635     Last = LastElement[First];
9636     assert(Last >= First);
9637     assert(DstIndex <= First);
9638     unsigned NumClusters = Last - First + 1;
9639 
9640     CaseCluster JTCluster;
9641     if (NumClusters >= MinJumpTableEntries &&
9642         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9643       Clusters[DstIndex++] = JTCluster;
9644     } else {
9645       for (unsigned I = First; I <= Last; ++I)
9646         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9647     }
9648   }
9649   Clusters.resize(DstIndex);
9650 }
9651 
9652 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9653                                         unsigned First, unsigned Last,
9654                                         const SwitchInst *SI,
9655                                         CaseCluster &BTCluster) {
9656   assert(First <= Last);
9657   if (First == Last)
9658     return false;
9659 
9660   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9661   unsigned NumCmps = 0;
9662   for (int64_t I = First; I <= Last; ++I) {
9663     assert(Clusters[I].Kind == CC_Range);
9664     Dests.set(Clusters[I].MBB->getNumber());
9665     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9666   }
9667   unsigned NumDests = Dests.count();
9668 
9669   APInt Low = Clusters[First].Low->getValue();
9670   APInt High = Clusters[Last].High->getValue();
9671   assert(Low.slt(High));
9672 
9673   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9674   const DataLayout &DL = DAG.getDataLayout();
9675   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9676     return false;
9677 
9678   APInt LowBound;
9679   APInt CmpRange;
9680 
9681   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9682   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9683          "Case range must fit in bit mask!");
9684 
9685   // Check if the clusters cover a contiguous range such that no value in the
9686   // range will jump to the default statement.
9687   bool ContiguousRange = true;
9688   for (int64_t I = First + 1; I <= Last; ++I) {
9689     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9690       ContiguousRange = false;
9691       break;
9692     }
9693   }
9694 
9695   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9696     // Optimize the case where all the case values fit in a word without having
9697     // to subtract minValue. In this case, we can optimize away the subtraction.
9698     LowBound = APInt::getNullValue(Low.getBitWidth());
9699     CmpRange = High;
9700     ContiguousRange = false;
9701   } else {
9702     LowBound = Low;
9703     CmpRange = High - Low;
9704   }
9705 
9706   CaseBitsVector CBV;
9707   auto TotalProb = BranchProbability::getZero();
9708   for (unsigned i = First; i <= Last; ++i) {
9709     // Find the CaseBits for this destination.
9710     unsigned j;
9711     for (j = 0; j < CBV.size(); ++j)
9712       if (CBV[j].BB == Clusters[i].MBB)
9713         break;
9714     if (j == CBV.size())
9715       CBV.push_back(
9716           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9717     CaseBits *CB = &CBV[j];
9718 
9719     // Update Mask, Bits and ExtraProb.
9720     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9721     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9722     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9723     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9724     CB->Bits += Hi - Lo + 1;
9725     CB->ExtraProb += Clusters[i].Prob;
9726     TotalProb += Clusters[i].Prob;
9727   }
9728 
9729   BitTestInfo BTI;
9730   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
9731     // Sort by probability first, number of bits second, bit mask third.
9732     if (a.ExtraProb != b.ExtraProb)
9733       return a.ExtraProb > b.ExtraProb;
9734     if (a.Bits != b.Bits)
9735       return a.Bits > b.Bits;
9736     return a.Mask < b.Mask;
9737   });
9738 
9739   for (auto &CB : CBV) {
9740     MachineBasicBlock *BitTestBB =
9741         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9742     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9743   }
9744   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9745                             SI->getCondition(), -1U, MVT::Other, false,
9746                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9747                             TotalProb);
9748 
9749   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9750                                     BitTestCases.size() - 1, TotalProb);
9751   return true;
9752 }
9753 
9754 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9755                                               const SwitchInst *SI) {
9756 // Partition Clusters into as few subsets as possible, where each subset has a
9757 // range that fits in a machine word and has <= 3 unique destinations.
9758 
9759 #ifndef NDEBUG
9760   // Clusters must be sorted and contain Range or JumpTable clusters.
9761   assert(!Clusters.empty());
9762   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9763   for (const CaseCluster &C : Clusters)
9764     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9765   for (unsigned i = 1; i < Clusters.size(); ++i)
9766     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9767 #endif
9768 
9769   // The algorithm below is not suitable for -O0.
9770   if (TM.getOptLevel() == CodeGenOpt::None)
9771     return;
9772 
9773   // If target does not have legal shift left, do not emit bit tests at all.
9774   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9775   const DataLayout &DL = DAG.getDataLayout();
9776 
9777   EVT PTy = TLI.getPointerTy(DL);
9778   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9779     return;
9780 
9781   int BitWidth = PTy.getSizeInBits();
9782   const int64_t N = Clusters.size();
9783 
9784   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9785   SmallVector<unsigned, 8> MinPartitions(N);
9786   // LastElement[i] is the last element of the partition starting at i.
9787   SmallVector<unsigned, 8> LastElement(N);
9788 
9789   // FIXME: This might not be the best algorithm for finding bit test clusters.
9790 
9791   // Base case: There is only one way to partition Clusters[N-1].
9792   MinPartitions[N - 1] = 1;
9793   LastElement[N - 1] = N - 1;
9794 
9795   // Note: loop indexes are signed to avoid underflow.
9796   for (int64_t i = N - 2; i >= 0; --i) {
9797     // Find optimal partitioning of Clusters[i..N-1].
9798     // Baseline: Put Clusters[i] into a partition on its own.
9799     MinPartitions[i] = MinPartitions[i + 1] + 1;
9800     LastElement[i] = i;
9801 
9802     // Search for a solution that results in fewer partitions.
9803     // Note: the search is limited by BitWidth, reducing time complexity.
9804     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9805       // Try building a partition from Clusters[i..j].
9806 
9807       // Check the range.
9808       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9809                                Clusters[j].High->getValue(), DL))
9810         continue;
9811 
9812       // Check nbr of destinations and cluster types.
9813       // FIXME: This works, but doesn't seem very efficient.
9814       bool RangesOnly = true;
9815       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9816       for (int64_t k = i; k <= j; k++) {
9817         if (Clusters[k].Kind != CC_Range) {
9818           RangesOnly = false;
9819           break;
9820         }
9821         Dests.set(Clusters[k].MBB->getNumber());
9822       }
9823       if (!RangesOnly || Dests.count() > 3)
9824         break;
9825 
9826       // Check if it's a better partition.
9827       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9828       if (NumPartitions < MinPartitions[i]) {
9829         // Found a better partition.
9830         MinPartitions[i] = NumPartitions;
9831         LastElement[i] = j;
9832       }
9833     }
9834   }
9835 
9836   // Iterate over the partitions, replacing with bit-test clusters in-place.
9837   unsigned DstIndex = 0;
9838   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9839     Last = LastElement[First];
9840     assert(First <= Last);
9841     assert(DstIndex <= First);
9842 
9843     CaseCluster BitTestCluster;
9844     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9845       Clusters[DstIndex++] = BitTestCluster;
9846     } else {
9847       size_t NumClusters = Last - First + 1;
9848       std::memmove(&Clusters[DstIndex], &Clusters[First],
9849                    sizeof(Clusters[0]) * NumClusters);
9850       DstIndex += NumClusters;
9851     }
9852   }
9853   Clusters.resize(DstIndex);
9854 }
9855 
9856 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9857                                         MachineBasicBlock *SwitchMBB,
9858                                         MachineBasicBlock *DefaultMBB) {
9859   MachineFunction *CurMF = FuncInfo.MF;
9860   MachineBasicBlock *NextMBB = nullptr;
9861   MachineFunction::iterator BBI(W.MBB);
9862   if (++BBI != FuncInfo.MF->end())
9863     NextMBB = &*BBI;
9864 
9865   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9866 
9867   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9868 
9869   if (Size == 2 && W.MBB == SwitchMBB) {
9870     // If any two of the cases has the same destination, and if one value
9871     // is the same as the other, but has one bit unset that the other has set,
9872     // use bit manipulation to do two compares at once.  For example:
9873     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9874     // TODO: This could be extended to merge any 2 cases in switches with 3
9875     // cases.
9876     // TODO: Handle cases where W.CaseBB != SwitchBB.
9877     CaseCluster &Small = *W.FirstCluster;
9878     CaseCluster &Big = *W.LastCluster;
9879 
9880     if (Small.Low == Small.High && Big.Low == Big.High &&
9881         Small.MBB == Big.MBB) {
9882       const APInt &SmallValue = Small.Low->getValue();
9883       const APInt &BigValue = Big.Low->getValue();
9884 
9885       // Check that there is only one bit different.
9886       APInt CommonBit = BigValue ^ SmallValue;
9887       if (CommonBit.isPowerOf2()) {
9888         SDValue CondLHS = getValue(Cond);
9889         EVT VT = CondLHS.getValueType();
9890         SDLoc DL = getCurSDLoc();
9891 
9892         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9893                                  DAG.getConstant(CommonBit, DL, VT));
9894         SDValue Cond = DAG.getSetCC(
9895             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9896             ISD::SETEQ);
9897 
9898         // Update successor info.
9899         // Both Small and Big will jump to Small.BB, so we sum up the
9900         // probabilities.
9901         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9902         if (BPI)
9903           addSuccessorWithProb(
9904               SwitchMBB, DefaultMBB,
9905               // The default destination is the first successor in IR.
9906               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9907         else
9908           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9909 
9910         // Insert the true branch.
9911         SDValue BrCond =
9912             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9913                         DAG.getBasicBlock(Small.MBB));
9914         // Insert the false branch.
9915         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9916                              DAG.getBasicBlock(DefaultMBB));
9917 
9918         DAG.setRoot(BrCond);
9919         return;
9920       }
9921     }
9922   }
9923 
9924   if (TM.getOptLevel() != CodeGenOpt::None) {
9925     // Here, we order cases by probability so the most likely case will be
9926     // checked first. However, two clusters can have the same probability in
9927     // which case their relative ordering is non-deterministic. So we use Low
9928     // as a tie-breaker as clusters are guaranteed to never overlap.
9929     llvm::sort(W.FirstCluster, W.LastCluster + 1,
9930                [](const CaseCluster &a, const CaseCluster &b) {
9931       return a.Prob != b.Prob ?
9932              a.Prob > b.Prob :
9933              a.Low->getValue().slt(b.Low->getValue());
9934     });
9935 
9936     // Rearrange the case blocks so that the last one falls through if possible
9937     // without changing the order of probabilities.
9938     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9939       --I;
9940       if (I->Prob > W.LastCluster->Prob)
9941         break;
9942       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9943         std::swap(*I, *W.LastCluster);
9944         break;
9945       }
9946     }
9947   }
9948 
9949   // Compute total probability.
9950   BranchProbability DefaultProb = W.DefaultProb;
9951   BranchProbability UnhandledProbs = DefaultProb;
9952   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9953     UnhandledProbs += I->Prob;
9954 
9955   MachineBasicBlock *CurMBB = W.MBB;
9956   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9957     MachineBasicBlock *Fallthrough;
9958     if (I == W.LastCluster) {
9959       // For the last cluster, fall through to the default destination.
9960       Fallthrough = DefaultMBB;
9961     } else {
9962       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9963       CurMF->insert(BBI, Fallthrough);
9964       // Put Cond in a virtual register to make it available from the new blocks.
9965       ExportFromCurrentBlock(Cond);
9966     }
9967     UnhandledProbs -= I->Prob;
9968 
9969     switch (I->Kind) {
9970       case CC_JumpTable: {
9971         // FIXME: Optimize away range check based on pivot comparisons.
9972         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9973         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9974 
9975         // The jump block hasn't been inserted yet; insert it here.
9976         MachineBasicBlock *JumpMBB = JT->MBB;
9977         CurMF->insert(BBI, JumpMBB);
9978 
9979         auto JumpProb = I->Prob;
9980         auto FallthroughProb = UnhandledProbs;
9981 
9982         // If the default statement is a target of the jump table, we evenly
9983         // distribute the default probability to successors of CurMBB. Also
9984         // update the probability on the edge from JumpMBB to Fallthrough.
9985         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9986                                               SE = JumpMBB->succ_end();
9987              SI != SE; ++SI) {
9988           if (*SI == DefaultMBB) {
9989             JumpProb += DefaultProb / 2;
9990             FallthroughProb -= DefaultProb / 2;
9991             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9992             JumpMBB->normalizeSuccProbs();
9993             break;
9994           }
9995         }
9996 
9997         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9998         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9999         CurMBB->normalizeSuccProbs();
10000 
10001         // The jump table header will be inserted in our current block, do the
10002         // range check, and fall through to our fallthrough block.
10003         JTH->HeaderBB = CurMBB;
10004         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10005 
10006         // If we're in the right place, emit the jump table header right now.
10007         if (CurMBB == SwitchMBB) {
10008           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10009           JTH->Emitted = true;
10010         }
10011         break;
10012       }
10013       case CC_BitTests: {
10014         // FIXME: Optimize away range check based on pivot comparisons.
10015         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
10016 
10017         // The bit test blocks haven't been inserted yet; insert them here.
10018         for (BitTestCase &BTC : BTB->Cases)
10019           CurMF->insert(BBI, BTC.ThisBB);
10020 
10021         // Fill in fields of the BitTestBlock.
10022         BTB->Parent = CurMBB;
10023         BTB->Default = Fallthrough;
10024 
10025         BTB->DefaultProb = UnhandledProbs;
10026         // If the cases in bit test don't form a contiguous range, we evenly
10027         // distribute the probability on the edge to Fallthrough to two
10028         // successors of CurMBB.
10029         if (!BTB->ContiguousRange) {
10030           BTB->Prob += DefaultProb / 2;
10031           BTB->DefaultProb -= DefaultProb / 2;
10032         }
10033 
10034         // If we're in the right place, emit the bit test header right now.
10035         if (CurMBB == SwitchMBB) {
10036           visitBitTestHeader(*BTB, SwitchMBB);
10037           BTB->Emitted = true;
10038         }
10039         break;
10040       }
10041       case CC_Range: {
10042         const Value *RHS, *LHS, *MHS;
10043         ISD::CondCode CC;
10044         if (I->Low == I->High) {
10045           // Check Cond == I->Low.
10046           CC = ISD::SETEQ;
10047           LHS = Cond;
10048           RHS=I->Low;
10049           MHS = nullptr;
10050         } else {
10051           // Check I->Low <= Cond <= I->High.
10052           CC = ISD::SETLE;
10053           LHS = I->Low;
10054           MHS = Cond;
10055           RHS = I->High;
10056         }
10057 
10058         // The false probability is the sum of all unhandled cases.
10059         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10060                      getCurSDLoc(), I->Prob, UnhandledProbs);
10061 
10062         if (CurMBB == SwitchMBB)
10063           visitSwitchCase(CB, SwitchMBB);
10064         else
10065           SwitchCases.push_back(CB);
10066 
10067         break;
10068       }
10069     }
10070     CurMBB = Fallthrough;
10071   }
10072 }
10073 
10074 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10075                                               CaseClusterIt First,
10076                                               CaseClusterIt Last) {
10077   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10078     if (X.Prob != CC.Prob)
10079       return X.Prob > CC.Prob;
10080 
10081     // Ties are broken by comparing the case value.
10082     return X.Low->getValue().slt(CC.Low->getValue());
10083   });
10084 }
10085 
10086 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10087                                         const SwitchWorkListItem &W,
10088                                         Value *Cond,
10089                                         MachineBasicBlock *SwitchMBB) {
10090   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10091          "Clusters not sorted?");
10092 
10093   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10094 
10095   // Balance the tree based on branch probabilities to create a near-optimal (in
10096   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10097   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10098   CaseClusterIt LastLeft = W.FirstCluster;
10099   CaseClusterIt FirstRight = W.LastCluster;
10100   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10101   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10102 
10103   // Move LastLeft and FirstRight towards each other from opposite directions to
10104   // find a partitioning of the clusters which balances the probability on both
10105   // sides. If LeftProb and RightProb are equal, alternate which side is
10106   // taken to ensure 0-probability nodes are distributed evenly.
10107   unsigned I = 0;
10108   while (LastLeft + 1 < FirstRight) {
10109     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10110       LeftProb += (++LastLeft)->Prob;
10111     else
10112       RightProb += (--FirstRight)->Prob;
10113     I++;
10114   }
10115 
10116   while (true) {
10117     // Our binary search tree differs from a typical BST in that ours can have up
10118     // to three values in each leaf. The pivot selection above doesn't take that
10119     // into account, which means the tree might require more nodes and be less
10120     // efficient. We compensate for this here.
10121 
10122     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10123     unsigned NumRight = W.LastCluster - FirstRight + 1;
10124 
10125     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10126       // If one side has less than 3 clusters, and the other has more than 3,
10127       // consider taking a cluster from the other side.
10128 
10129       if (NumLeft < NumRight) {
10130         // Consider moving the first cluster on the right to the left side.
10131         CaseCluster &CC = *FirstRight;
10132         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10133         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10134         if (LeftSideRank <= RightSideRank) {
10135           // Moving the cluster to the left does not demote it.
10136           ++LastLeft;
10137           ++FirstRight;
10138           continue;
10139         }
10140       } else {
10141         assert(NumRight < NumLeft);
10142         // Consider moving the last element on the left to the right side.
10143         CaseCluster &CC = *LastLeft;
10144         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10145         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10146         if (RightSideRank <= LeftSideRank) {
10147           // Moving the cluster to the right does not demot it.
10148           --LastLeft;
10149           --FirstRight;
10150           continue;
10151         }
10152       }
10153     }
10154     break;
10155   }
10156 
10157   assert(LastLeft + 1 == FirstRight);
10158   assert(LastLeft >= W.FirstCluster);
10159   assert(FirstRight <= W.LastCluster);
10160 
10161   // Use the first element on the right as pivot since we will make less-than
10162   // comparisons against it.
10163   CaseClusterIt PivotCluster = FirstRight;
10164   assert(PivotCluster > W.FirstCluster);
10165   assert(PivotCluster <= W.LastCluster);
10166 
10167   CaseClusterIt FirstLeft = W.FirstCluster;
10168   CaseClusterIt LastRight = W.LastCluster;
10169 
10170   const ConstantInt *Pivot = PivotCluster->Low;
10171 
10172   // New blocks will be inserted immediately after the current one.
10173   MachineFunction::iterator BBI(W.MBB);
10174   ++BBI;
10175 
10176   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10177   // we can branch to its destination directly if it's squeezed exactly in
10178   // between the known lower bound and Pivot - 1.
10179   MachineBasicBlock *LeftMBB;
10180   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10181       FirstLeft->Low == W.GE &&
10182       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10183     LeftMBB = FirstLeft->MBB;
10184   } else {
10185     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10186     FuncInfo.MF->insert(BBI, LeftMBB);
10187     WorkList.push_back(
10188         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10189     // Put Cond in a virtual register to make it available from the new blocks.
10190     ExportFromCurrentBlock(Cond);
10191   }
10192 
10193   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10194   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10195   // directly if RHS.High equals the current upper bound.
10196   MachineBasicBlock *RightMBB;
10197   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10198       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10199     RightMBB = FirstRight->MBB;
10200   } else {
10201     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10202     FuncInfo.MF->insert(BBI, RightMBB);
10203     WorkList.push_back(
10204         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10205     // Put Cond in a virtual register to make it available from the new blocks.
10206     ExportFromCurrentBlock(Cond);
10207   }
10208 
10209   // Create the CaseBlock record that will be used to lower the branch.
10210   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10211                getCurSDLoc(), LeftProb, RightProb);
10212 
10213   if (W.MBB == SwitchMBB)
10214     visitSwitchCase(CB, SwitchMBB);
10215   else
10216     SwitchCases.push_back(CB);
10217 }
10218 
10219 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10220 // from the swith statement.
10221 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10222                                             BranchProbability PeeledCaseProb) {
10223   if (PeeledCaseProb == BranchProbability::getOne())
10224     return BranchProbability::getZero();
10225   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10226 
10227   uint32_t Numerator = CaseProb.getNumerator();
10228   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10229   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10230 }
10231 
10232 // Try to peel the top probability case if it exceeds the threshold.
10233 // Return current MachineBasicBlock for the switch statement if the peeling
10234 // does not occur.
10235 // If the peeling is performed, return the newly created MachineBasicBlock
10236 // for the peeled switch statement. Also update Clusters to remove the peeled
10237 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10238 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10239     const SwitchInst &SI, CaseClusterVector &Clusters,
10240     BranchProbability &PeeledCaseProb) {
10241   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10242   // Don't perform if there is only one cluster or optimizing for size.
10243   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10244       TM.getOptLevel() == CodeGenOpt::None ||
10245       SwitchMBB->getParent()->getFunction().optForMinSize())
10246     return SwitchMBB;
10247 
10248   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10249   unsigned PeeledCaseIndex = 0;
10250   bool SwitchPeeled = false;
10251   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10252     CaseCluster &CC = Clusters[Index];
10253     if (CC.Prob < TopCaseProb)
10254       continue;
10255     TopCaseProb = CC.Prob;
10256     PeeledCaseIndex = Index;
10257     SwitchPeeled = true;
10258   }
10259   if (!SwitchPeeled)
10260     return SwitchMBB;
10261 
10262   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10263                     << TopCaseProb << "\n");
10264 
10265   // Record the MBB for the peeled switch statement.
10266   MachineFunction::iterator BBI(SwitchMBB);
10267   ++BBI;
10268   MachineBasicBlock *PeeledSwitchMBB =
10269       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10270   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10271 
10272   ExportFromCurrentBlock(SI.getCondition());
10273   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10274   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10275                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10276   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10277 
10278   Clusters.erase(PeeledCaseIt);
10279   for (CaseCluster &CC : Clusters) {
10280     LLVM_DEBUG(
10281         dbgs() << "Scale the probablity for one cluster, before scaling: "
10282                << CC.Prob << "\n");
10283     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10284     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10285   }
10286   PeeledCaseProb = TopCaseProb;
10287   return PeeledSwitchMBB;
10288 }
10289 
10290 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10291   // Extract cases from the switch.
10292   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10293   CaseClusterVector Clusters;
10294   Clusters.reserve(SI.getNumCases());
10295   for (auto I : SI.cases()) {
10296     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10297     const ConstantInt *CaseVal = I.getCaseValue();
10298     BranchProbability Prob =
10299         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10300             : BranchProbability(1, SI.getNumCases() + 1);
10301     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10302   }
10303 
10304   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10305 
10306   // Cluster adjacent cases with the same destination. We do this at all
10307   // optimization levels because it's cheap to do and will make codegen faster
10308   // if there are many clusters.
10309   sortAndRangeify(Clusters);
10310 
10311   if (TM.getOptLevel() != CodeGenOpt::None) {
10312     // Replace an unreachable default with the most popular destination.
10313     // FIXME: Exploit unreachable default more aggressively.
10314     bool UnreachableDefault =
10315         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10316     if (UnreachableDefault && !Clusters.empty()) {
10317       DenseMap<const BasicBlock *, unsigned> Popularity;
10318       unsigned MaxPop = 0;
10319       const BasicBlock *MaxBB = nullptr;
10320       for (auto I : SI.cases()) {
10321         const BasicBlock *BB = I.getCaseSuccessor();
10322         if (++Popularity[BB] > MaxPop) {
10323           MaxPop = Popularity[BB];
10324           MaxBB = BB;
10325         }
10326       }
10327       // Set new default.
10328       assert(MaxPop > 0 && MaxBB);
10329       DefaultMBB = FuncInfo.MBBMap[MaxBB];
10330 
10331       // Remove cases that were pointing to the destination that is now the
10332       // default.
10333       CaseClusterVector New;
10334       New.reserve(Clusters.size());
10335       for (CaseCluster &CC : Clusters) {
10336         if (CC.MBB != DefaultMBB)
10337           New.push_back(CC);
10338       }
10339       Clusters = std::move(New);
10340     }
10341   }
10342 
10343   // The branch probablity of the peeled case.
10344   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10345   MachineBasicBlock *PeeledSwitchMBB =
10346       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10347 
10348   // If there is only the default destination, jump there directly.
10349   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10350   if (Clusters.empty()) {
10351     assert(PeeledSwitchMBB == SwitchMBB);
10352     SwitchMBB->addSuccessor(DefaultMBB);
10353     if (DefaultMBB != NextBlock(SwitchMBB)) {
10354       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10355                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10356     }
10357     return;
10358   }
10359 
10360   findJumpTables(Clusters, &SI, DefaultMBB);
10361   findBitTestClusters(Clusters, &SI);
10362 
10363   LLVM_DEBUG({
10364     dbgs() << "Case clusters: ";
10365     for (const CaseCluster &C : Clusters) {
10366       if (C.Kind == CC_JumpTable)
10367         dbgs() << "JT:";
10368       if (C.Kind == CC_BitTests)
10369         dbgs() << "BT:";
10370 
10371       C.Low->getValue().print(dbgs(), true);
10372       if (C.Low != C.High) {
10373         dbgs() << '-';
10374         C.High->getValue().print(dbgs(), true);
10375       }
10376       dbgs() << ' ';
10377     }
10378     dbgs() << '\n';
10379   });
10380 
10381   assert(!Clusters.empty());
10382   SwitchWorkList WorkList;
10383   CaseClusterIt First = Clusters.begin();
10384   CaseClusterIt Last = Clusters.end() - 1;
10385   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10386   // Scale the branchprobability for DefaultMBB if the peel occurs and
10387   // DefaultMBB is not replaced.
10388   if (PeeledCaseProb != BranchProbability::getZero() &&
10389       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10390     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10391   WorkList.push_back(
10392       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10393 
10394   while (!WorkList.empty()) {
10395     SwitchWorkListItem W = WorkList.back();
10396     WorkList.pop_back();
10397     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10398 
10399     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10400         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10401       // For optimized builds, lower large range as a balanced binary tree.
10402       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10403       continue;
10404     }
10405 
10406     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10407   }
10408 }
10409