1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/FastISel.h" 28 #include "llvm/CodeGen/FunctionLoweringInfo.h" 29 #include "llvm/CodeGen/GCMetadata.h" 30 #include "llvm/CodeGen/GCStrategy.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineJumpTableInfo.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/SelectionDAG.h" 38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 39 #include "llvm/CodeGen/StackMaps.h" 40 #include "llvm/CodeGen/WinEHFuncInfo.h" 41 #include "llvm/IR/CallingConv.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GetElementPtrTypeIterator.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Statepoint.h" 56 #include "llvm/MC/MCSymbol.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MathExtras.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetFrameLowering.h" 63 #include "llvm/Target/TargetInstrInfo.h" 64 #include "llvm/Target/TargetIntrinsicInfo.h" 65 #include "llvm/Target/TargetLowering.h" 66 #include "llvm/Target/TargetOptions.h" 67 #include "llvm/Target/TargetSubtargetInfo.h" 68 #include <algorithm> 69 #include <utility> 70 using namespace llvm; 71 72 #define DEBUG_TYPE "isel" 73 74 /// LimitFloatPrecision - Generate low-precision inline sequences for 75 /// some float libcalls (6, 8 or 12 bits). 76 static unsigned LimitFloatPrecision; 77 78 static cl::opt<unsigned, true> 79 LimitFPPrecision("limit-float-precision", 80 cl::desc("Generate low-precision inline sequences " 81 "for some float libcalls"), 82 cl::location(LimitFloatPrecision), 83 cl::init(0)); 84 85 static cl::opt<bool> 86 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 87 cl::desc("Enable fast-math-flags for DAG nodes")); 88 89 /// Minimum jump table density for normal functions. 90 static cl::opt<unsigned> 91 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 92 cl::desc("Minimum density for building a jump table in " 93 "a normal function")); 94 95 /// Minimum jump table density for -Os or -Oz functions. 96 static cl::opt<unsigned> 97 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, 98 cl::desc("Minimum density for building a jump table in " 99 "an optsize function")); 100 101 102 // Limit the width of DAG chains. This is important in general to prevent 103 // DAG-based analysis from blowing up. For example, alias analysis and 104 // load clustering may not complete in reasonable time. It is difficult to 105 // recognize and avoid this situation within each individual analysis, and 106 // future analyses are likely to have the same behavior. Limiting DAG width is 107 // the safe approach and will be especially important with global DAGs. 108 // 109 // MaxParallelChains default is arbitrarily high to avoid affecting 110 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 111 // sequence over this should have been converted to llvm.memcpy by the 112 // frontend. It easy to induce this behavior with .ll code such as: 113 // %buffer = alloca [4096 x i8] 114 // %data = load [4096 x i8]* %argPtr 115 // store [4096 x i8] %data, [4096 x i8]* %buffer 116 static const unsigned MaxParallelChains = 64; 117 118 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 119 const SDValue *Parts, unsigned NumParts, 120 MVT PartVT, EVT ValueVT, const Value *V); 121 122 /// getCopyFromParts - Create a value that contains the specified legal parts 123 /// combined into the value they represent. If the parts combine to a type 124 /// larger then ValueVT then AssertOp can be used to specify whether the extra 125 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 126 /// (ISD::AssertSext). 127 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 128 const SDValue *Parts, 129 unsigned NumParts, MVT PartVT, EVT ValueVT, 130 const Value *V, 131 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 132 if (ValueVT.isVector()) 133 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 134 PartVT, ValueVT, V); 135 136 assert(NumParts > 0 && "No parts to assemble!"); 137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 138 SDValue Val = Parts[0]; 139 140 if (NumParts > 1) { 141 // Assemble the value from multiple parts. 142 if (ValueVT.isInteger()) { 143 unsigned PartBits = PartVT.getSizeInBits(); 144 unsigned ValueBits = ValueVT.getSizeInBits(); 145 146 // Assemble the power of 2 part. 147 unsigned RoundParts = NumParts & (NumParts - 1) ? 148 1 << Log2_32(NumParts) : NumParts; 149 unsigned RoundBits = PartBits * RoundParts; 150 EVT RoundVT = RoundBits == ValueBits ? 151 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 152 SDValue Lo, Hi; 153 154 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 155 156 if (RoundParts > 2) { 157 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 158 PartVT, HalfVT, V); 159 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 160 RoundParts / 2, PartVT, HalfVT, V); 161 } else { 162 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 163 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 164 } 165 166 if (DAG.getDataLayout().isBigEndian()) 167 std::swap(Lo, Hi); 168 169 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 170 171 if (RoundParts < NumParts) { 172 // Assemble the trailing non-power-of-2 part. 173 unsigned OddParts = NumParts - RoundParts; 174 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 175 Hi = getCopyFromParts(DAG, DL, 176 Parts + RoundParts, OddParts, PartVT, OddVT, V); 177 178 // Combine the round and odd parts. 179 Lo = Val; 180 if (DAG.getDataLayout().isBigEndian()) 181 std::swap(Lo, Hi); 182 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 183 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 184 Hi = 185 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 186 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 187 TLI.getPointerTy(DAG.getDataLayout()))); 188 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 189 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 190 } 191 } else if (PartVT.isFloatingPoint()) { 192 // FP split into multiple FP parts (for ppcf128) 193 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 194 "Unexpected split"); 195 SDValue Lo, Hi; 196 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 197 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 198 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 199 std::swap(Lo, Hi); 200 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 201 } else { 202 // FP split into integer parts (soft fp) 203 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 204 !PartVT.isVector() && "Unexpected split"); 205 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 207 } 208 } 209 210 // There is now one part, held in Val. Correct it to match ValueVT. 211 // PartEVT is the type of the register class that holds the value. 212 // ValueVT is the type of the inline asm operation. 213 EVT PartEVT = Val.getValueType(); 214 215 if (PartEVT == ValueVT) 216 return Val; 217 218 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 219 ValueVT.bitsLT(PartEVT)) { 220 // For an FP value in an integer part, we need to truncate to the right 221 // width first. 222 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 223 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 224 } 225 226 // Handle types that have the same size. 227 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 228 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 229 230 // Handle types with different sizes. 231 if (PartEVT.isInteger() && ValueVT.isInteger()) { 232 if (ValueVT.bitsLT(PartEVT)) { 233 // For a truncate, see if we have any information to 234 // indicate whether the truncated bits will always be 235 // zero or sign-extension. 236 if (AssertOp != ISD::DELETED_NODE) 237 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 238 DAG.getValueType(ValueVT)); 239 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 240 } 241 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 242 } 243 244 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 245 // FP_ROUND's are always exact here. 246 if (ValueVT.bitsLT(Val.getValueType())) 247 return DAG.getNode( 248 ISD::FP_ROUND, DL, ValueVT, Val, 249 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 250 251 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 252 } 253 254 llvm_unreachable("Unknown mismatch!"); 255 } 256 257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 258 const Twine &ErrMsg) { 259 const Instruction *I = dyn_cast_or_null<Instruction>(V); 260 if (!V) 261 return Ctx.emitError(ErrMsg); 262 263 const char *AsmError = ", possible invalid constraint for vector type"; 264 if (const CallInst *CI = dyn_cast<CallInst>(I)) 265 if (isa<InlineAsm>(CI->getCalledValue())) 266 return Ctx.emitError(I, ErrMsg + AsmError); 267 268 return Ctx.emitError(I, ErrMsg); 269 } 270 271 /// getCopyFromPartsVector - Create a value that contains the specified legal 272 /// parts combined into the value they represent. If the parts combine to a 273 /// type larger then ValueVT then AssertOp can be used to specify whether the 274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 275 /// ValueVT (ISD::AssertSext). 276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 277 const SDValue *Parts, unsigned NumParts, 278 MVT PartVT, EVT ValueVT, const Value *V) { 279 assert(ValueVT.isVector() && "Not a vector value"); 280 assert(NumParts > 0 && "No parts to assemble!"); 281 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 282 SDValue Val = Parts[0]; 283 284 // Handle a multi-element vector. 285 if (NumParts > 1) { 286 EVT IntermediateVT; 287 MVT RegisterVT; 288 unsigned NumIntermediates; 289 unsigned NumRegs = 290 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 291 NumIntermediates, RegisterVT); 292 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 293 NumParts = NumRegs; // Silence a compiler warning. 294 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 295 assert(RegisterVT.getSizeInBits() == 296 Parts[0].getSimpleValueType().getSizeInBits() && 297 "Part type sizes don't match!"); 298 299 // Assemble the parts into intermediate operands. 300 SmallVector<SDValue, 8> Ops(NumIntermediates); 301 if (NumIntermediates == NumParts) { 302 // If the register was not expanded, truncate or copy the value, 303 // as appropriate. 304 for (unsigned i = 0; i != NumParts; ++i) 305 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 306 PartVT, IntermediateVT, V); 307 } else if (NumParts > 0) { 308 // If the intermediate type was expanded, build the intermediate 309 // operands from the parts. 310 assert(NumParts % NumIntermediates == 0 && 311 "Must expand into a divisible number of parts!"); 312 unsigned Factor = NumParts / NumIntermediates; 313 for (unsigned i = 0; i != NumIntermediates; ++i) 314 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 315 PartVT, IntermediateVT, V); 316 } 317 318 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 319 // intermediate operands. 320 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 321 : ISD::BUILD_VECTOR, 322 DL, ValueVT, Ops); 323 } 324 325 // There is now one part, held in Val. Correct it to match ValueVT. 326 EVT PartEVT = Val.getValueType(); 327 328 if (PartEVT == ValueVT) 329 return Val; 330 331 if (PartEVT.isVector()) { 332 // If the element type of the source/dest vectors are the same, but the 333 // parts vector has more elements than the value vector, then we have a 334 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 335 // elements we want. 336 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 337 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 338 "Cannot narrow, it would be a lossy transformation"); 339 return DAG.getNode( 340 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 341 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 342 } 343 344 // Vector/Vector bitcast. 345 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 346 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 347 348 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 349 "Cannot handle this kind of promotion"); 350 // Promoted vector extract 351 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 352 353 } 354 355 // Trivial bitcast if the types are the same size and the destination 356 // vector type is legal. 357 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 358 TLI.isTypeLegal(ValueVT)) 359 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 360 361 // Handle cases such as i8 -> <1 x i1> 362 if (ValueVT.getVectorNumElements() != 1) { 363 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 364 "non-trivial scalar-to-vector conversion"); 365 return DAG.getUNDEF(ValueVT); 366 } 367 368 if (ValueVT.getVectorNumElements() == 1 && 369 ValueVT.getVectorElementType() != PartEVT) 370 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 371 372 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 373 } 374 375 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 376 SDValue Val, SDValue *Parts, unsigned NumParts, 377 MVT PartVT, const Value *V); 378 379 /// getCopyToParts - Create a series of nodes that contain the specified value 380 /// split into legal parts. If the parts contain more bits than Val, then, for 381 /// integers, ExtendKind can be used to specify how to generate the extra bits. 382 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 383 SDValue Val, SDValue *Parts, unsigned NumParts, 384 MVT PartVT, const Value *V, 385 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 386 EVT ValueVT = Val.getValueType(); 387 388 // Handle the vector case separately. 389 if (ValueVT.isVector()) 390 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 391 392 unsigned PartBits = PartVT.getSizeInBits(); 393 unsigned OrigNumParts = NumParts; 394 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 395 "Copying to an illegal type!"); 396 397 if (NumParts == 0) 398 return; 399 400 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 401 EVT PartEVT = PartVT; 402 if (PartEVT == ValueVT) { 403 assert(NumParts == 1 && "No-op copy with multiple parts!"); 404 Parts[0] = Val; 405 return; 406 } 407 408 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 409 // If the parts cover more bits than the value has, promote the value. 410 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 411 assert(NumParts == 1 && "Do not know what to promote to!"); 412 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 413 } else { 414 if (ValueVT.isFloatingPoint()) { 415 // FP values need to be bitcast, then extended if they are being put 416 // into a larger container. 417 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 418 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 } 420 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 421 ValueVT.isInteger() && 422 "Unknown mismatch!"); 423 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 424 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 425 if (PartVT == MVT::x86mmx) 426 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 427 } 428 } else if (PartBits == ValueVT.getSizeInBits()) { 429 // Different types of the same size. 430 assert(NumParts == 1 && PartEVT != ValueVT); 431 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 432 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 433 // If the parts cover less bits than value has, truncate the value. 434 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 435 ValueVT.isInteger() && 436 "Unknown mismatch!"); 437 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 438 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 439 if (PartVT == MVT::x86mmx) 440 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 441 } 442 443 // The value may have changed - recompute ValueVT. 444 ValueVT = Val.getValueType(); 445 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 446 "Failed to tile the value with PartVT!"); 447 448 if (NumParts == 1) { 449 if (PartEVT != ValueVT) 450 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 451 "scalar-to-vector conversion failed"); 452 453 Parts[0] = Val; 454 return; 455 } 456 457 // Expand the value into multiple parts. 458 if (NumParts & (NumParts - 1)) { 459 // The number of parts is not a power of 2. Split off and copy the tail. 460 assert(PartVT.isInteger() && ValueVT.isInteger() && 461 "Do not know what to expand to!"); 462 unsigned RoundParts = 1 << Log2_32(NumParts); 463 unsigned RoundBits = RoundParts * PartBits; 464 unsigned OddParts = NumParts - RoundParts; 465 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 466 DAG.getIntPtrConstant(RoundBits, DL)); 467 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 468 469 if (DAG.getDataLayout().isBigEndian()) 470 // The odd parts were reversed by getCopyToParts - unreverse them. 471 std::reverse(Parts + RoundParts, Parts + NumParts); 472 473 NumParts = RoundParts; 474 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 475 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 476 } 477 478 // The number of parts is a power of 2. Repeatedly bisect the value using 479 // EXTRACT_ELEMENT. 480 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 481 EVT::getIntegerVT(*DAG.getContext(), 482 ValueVT.getSizeInBits()), 483 Val); 484 485 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 486 for (unsigned i = 0; i < NumParts; i += StepSize) { 487 unsigned ThisBits = StepSize * PartBits / 2; 488 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 489 SDValue &Part0 = Parts[i]; 490 SDValue &Part1 = Parts[i+StepSize/2]; 491 492 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 493 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 494 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 495 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 496 497 if (ThisBits == PartBits && ThisVT != PartVT) { 498 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 499 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 500 } 501 } 502 } 503 504 if (DAG.getDataLayout().isBigEndian()) 505 std::reverse(Parts, Parts + OrigNumParts); 506 } 507 508 509 /// getCopyToPartsVector - Create a series of nodes that contain the specified 510 /// value split into legal parts. 511 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 512 SDValue Val, SDValue *Parts, unsigned NumParts, 513 MVT PartVT, const Value *V) { 514 EVT ValueVT = Val.getValueType(); 515 assert(ValueVT.isVector() && "Not a vector"); 516 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 517 518 if (NumParts == 1) { 519 EVT PartEVT = PartVT; 520 if (PartEVT == ValueVT) { 521 // Nothing to do. 522 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 523 // Bitconvert vector->vector case. 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } else if (PartVT.isVector() && 526 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 527 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 528 EVT ElementVT = PartVT.getVectorElementType(); 529 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 530 // undef elements. 531 SmallVector<SDValue, 16> Ops; 532 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 533 Ops.push_back(DAG.getNode( 534 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 535 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 536 537 for (unsigned i = ValueVT.getVectorNumElements(), 538 e = PartVT.getVectorNumElements(); i != e; ++i) 539 Ops.push_back(DAG.getUNDEF(ElementVT)); 540 541 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 542 543 // FIXME: Use CONCAT for 2x -> 4x. 544 545 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 546 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 547 } else if (PartVT.isVector() && 548 PartEVT.getVectorElementType().bitsGE( 549 ValueVT.getVectorElementType()) && 550 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 551 552 // Promoted vector extract 553 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 554 } else{ 555 // Vector -> scalar conversion. 556 assert(ValueVT.getVectorNumElements() == 1 && 557 "Only trivial vector-to-scalar conversions should get here!"); 558 Val = DAG.getNode( 559 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 560 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 561 562 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 563 } 564 565 Parts[0] = Val; 566 return; 567 } 568 569 // Handle a multi-element vector. 570 EVT IntermediateVT; 571 MVT RegisterVT; 572 unsigned NumIntermediates; 573 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 574 IntermediateVT, 575 NumIntermediates, RegisterVT); 576 unsigned NumElements = ValueVT.getVectorNumElements(); 577 578 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 579 NumParts = NumRegs; // Silence a compiler warning. 580 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 581 582 // Split the vector into intermediate operands. 583 SmallVector<SDValue, 8> Ops(NumIntermediates); 584 for (unsigned i = 0; i != NumIntermediates; ++i) { 585 if (IntermediateVT.isVector()) 586 Ops[i] = 587 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 588 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 589 TLI.getVectorIdxTy(DAG.getDataLayout()))); 590 else 591 Ops[i] = DAG.getNode( 592 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 593 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 594 } 595 596 // Split the intermediate operands into legal parts. 597 if (NumParts == NumIntermediates) { 598 // If the register was not expanded, promote or copy the value, 599 // as appropriate. 600 for (unsigned i = 0; i != NumParts; ++i) 601 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 602 } else if (NumParts > 0) { 603 // If the intermediate type was expanded, split each the value into 604 // legal parts. 605 assert(NumIntermediates != 0 && "division by zero"); 606 assert(NumParts % NumIntermediates == 0 && 607 "Must expand into a divisible number of parts!"); 608 unsigned Factor = NumParts / NumIntermediates; 609 for (unsigned i = 0; i != NumIntermediates; ++i) 610 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 611 } 612 } 613 614 RegsForValue::RegsForValue() {} 615 616 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 617 EVT valuevt) 618 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 619 620 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 621 const DataLayout &DL, unsigned Reg, Type *Ty) { 622 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 623 624 for (EVT ValueVT : ValueVTs) { 625 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 626 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 627 for (unsigned i = 0; i != NumRegs; ++i) 628 Regs.push_back(Reg + i); 629 RegVTs.push_back(RegisterVT); 630 Reg += NumRegs; 631 } 632 } 633 634 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 635 /// this value and returns the result as a ValueVT value. This uses 636 /// Chain/Flag as the input and updates them for the output Chain/Flag. 637 /// If the Flag pointer is NULL, no flag is used. 638 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 639 FunctionLoweringInfo &FuncInfo, 640 SDLoc dl, 641 SDValue &Chain, SDValue *Flag, 642 const Value *V) const { 643 // A Value with type {} or [0 x %t] needs no registers. 644 if (ValueVTs.empty()) 645 return SDValue(); 646 647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 648 649 // Assemble the legal parts into the final values. 650 SmallVector<SDValue, 4> Values(ValueVTs.size()); 651 SmallVector<SDValue, 8> Parts; 652 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 653 // Copy the legal parts from the registers. 654 EVT ValueVT = ValueVTs[Value]; 655 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 656 MVT RegisterVT = RegVTs[Value]; 657 658 Parts.resize(NumRegs); 659 for (unsigned i = 0; i != NumRegs; ++i) { 660 SDValue P; 661 if (!Flag) { 662 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 663 } else { 664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 665 *Flag = P.getValue(2); 666 } 667 668 Chain = P.getValue(1); 669 Parts[i] = P; 670 671 // If the source register was virtual and if we know something about it, 672 // add an assert node. 673 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 674 !RegisterVT.isInteger() || RegisterVT.isVector()) 675 continue; 676 677 const FunctionLoweringInfo::LiveOutInfo *LOI = 678 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 679 if (!LOI) 680 continue; 681 682 unsigned RegSize = RegisterVT.getSizeInBits(); 683 unsigned NumSignBits = LOI->NumSignBits; 684 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 685 686 if (NumZeroBits == RegSize) { 687 // The current value is a zero. 688 // Explicitly express that as it would be easier for 689 // optimizations to kick in. 690 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 691 continue; 692 } 693 694 // FIXME: We capture more information than the dag can represent. For 695 // now, just use the tightest assertzext/assertsext possible. 696 bool isSExt = true; 697 EVT FromVT(MVT::Other); 698 if (NumSignBits == RegSize) { 699 isSExt = true; // ASSERT SEXT 1 700 FromVT = MVT::i1; 701 } else if (NumZeroBits >= RegSize - 1) { 702 isSExt = false; // ASSERT ZEXT 1 703 FromVT = MVT::i1; 704 } else if (NumSignBits > RegSize - 8) { 705 isSExt = true; // ASSERT SEXT 8 706 FromVT = MVT::i8; 707 } else if (NumZeroBits >= RegSize - 8) { 708 isSExt = false; // ASSERT ZEXT 8 709 FromVT = MVT::i8; 710 } else if (NumSignBits > RegSize - 16) { 711 isSExt = true; // ASSERT SEXT 16 712 FromVT = MVT::i16; 713 } else if (NumZeroBits >= RegSize - 16) { 714 isSExt = false; // ASSERT ZEXT 16 715 FromVT = MVT::i16; 716 } else if (NumSignBits > RegSize - 32) { 717 isSExt = true; // ASSERT SEXT 32 718 FromVT = MVT::i32; 719 } else if (NumZeroBits >= RegSize - 32) { 720 isSExt = false; // ASSERT ZEXT 32 721 FromVT = MVT::i32; 722 } else { 723 continue; 724 } 725 // Add an assertion node. 726 assert(FromVT != MVT::Other); 727 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 728 RegisterVT, P, DAG.getValueType(FromVT)); 729 } 730 731 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 732 NumRegs, RegisterVT, ValueVT, V); 733 Part += NumRegs; 734 Parts.clear(); 735 } 736 737 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 738 } 739 740 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 741 /// specified value into the registers specified by this object. This uses 742 /// Chain/Flag as the input and updates them for the output Chain/Flag. 743 /// If the Flag pointer is NULL, no flag is used. 744 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 745 SDValue &Chain, SDValue *Flag, const Value *V, 746 ISD::NodeType PreferredExtendType) const { 747 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 748 ISD::NodeType ExtendKind = PreferredExtendType; 749 750 // Get the list of the values's legal parts. 751 unsigned NumRegs = Regs.size(); 752 SmallVector<SDValue, 8> Parts(NumRegs); 753 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 754 EVT ValueVT = ValueVTs[Value]; 755 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 756 MVT RegisterVT = RegVTs[Value]; 757 758 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 759 ExtendKind = ISD::ZERO_EXTEND; 760 761 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 762 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 763 Part += NumParts; 764 } 765 766 // Copy the parts into the registers. 767 SmallVector<SDValue, 8> Chains(NumRegs); 768 for (unsigned i = 0; i != NumRegs; ++i) { 769 SDValue Part; 770 if (!Flag) { 771 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 772 } else { 773 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 774 *Flag = Part.getValue(1); 775 } 776 777 Chains[i] = Part.getValue(0); 778 } 779 780 if (NumRegs == 1 || Flag) 781 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 782 // flagged to it. That is the CopyToReg nodes and the user are considered 783 // a single scheduling unit. If we create a TokenFactor and return it as 784 // chain, then the TokenFactor is both a predecessor (operand) of the 785 // user as well as a successor (the TF operands are flagged to the user). 786 // c1, f1 = CopyToReg 787 // c2, f2 = CopyToReg 788 // c3 = TokenFactor c1, c2 789 // ... 790 // = op c3, ..., f2 791 Chain = Chains[NumRegs-1]; 792 else 793 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 794 } 795 796 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 797 /// operand list. This adds the code marker and includes the number of 798 /// values added into it. 799 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 800 unsigned MatchingIdx, SDLoc dl, 801 SelectionDAG &DAG, 802 std::vector<SDValue> &Ops) const { 803 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 804 805 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 806 if (HasMatching) 807 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 808 else if (!Regs.empty() && 809 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 810 // Put the register class of the virtual registers in the flag word. That 811 // way, later passes can recompute register class constraints for inline 812 // assembly as well as normal instructions. 813 // Don't do this for tied operands that can use the regclass information 814 // from the def. 815 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 816 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 817 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 818 } 819 820 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 821 Ops.push_back(Res); 822 823 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 824 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 825 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 826 MVT RegisterVT = RegVTs[Value]; 827 for (unsigned i = 0; i != NumRegs; ++i) { 828 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 829 unsigned TheReg = Regs[Reg++]; 830 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 831 832 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 833 // If we clobbered the stack pointer, MFI should know about it. 834 assert(DAG.getMachineFunction().getFrameInfo()-> 835 hasOpaqueSPAdjustment()); 836 } 837 } 838 } 839 } 840 841 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 842 const TargetLibraryInfo *li) { 843 AA = &aa; 844 GFI = gfi; 845 LibInfo = li; 846 DL = &DAG.getDataLayout(); 847 Context = DAG.getContext(); 848 LPadToCallSiteMap.clear(); 849 } 850 851 /// clear - Clear out the current SelectionDAG and the associated 852 /// state and prepare this SelectionDAGBuilder object to be used 853 /// for a new block. This doesn't clear out information about 854 /// additional blocks that are needed to complete switch lowering 855 /// or PHI node updating; that information is cleared out as it is 856 /// consumed. 857 void SelectionDAGBuilder::clear() { 858 NodeMap.clear(); 859 UnusedArgNodeMap.clear(); 860 PendingLoads.clear(); 861 PendingExports.clear(); 862 CurInst = nullptr; 863 HasTailCall = false; 864 SDNodeOrder = LowestSDNodeOrder; 865 StatepointLowering.clear(); 866 } 867 868 /// clearDanglingDebugInfo - Clear the dangling debug information 869 /// map. This function is separated from the clear so that debug 870 /// information that is dangling in a basic block can be properly 871 /// resolved in a different basic block. This allows the 872 /// SelectionDAG to resolve dangling debug information attached 873 /// to PHI nodes. 874 void SelectionDAGBuilder::clearDanglingDebugInfo() { 875 DanglingDebugInfoMap.clear(); 876 } 877 878 /// getRoot - Return the current virtual root of the Selection DAG, 879 /// flushing any PendingLoad items. This must be done before emitting 880 /// a store or any other node that may need to be ordered after any 881 /// prior load instructions. 882 /// 883 SDValue SelectionDAGBuilder::getRoot() { 884 if (PendingLoads.empty()) 885 return DAG.getRoot(); 886 887 if (PendingLoads.size() == 1) { 888 SDValue Root = PendingLoads[0]; 889 DAG.setRoot(Root); 890 PendingLoads.clear(); 891 return Root; 892 } 893 894 // Otherwise, we have to make a token factor node. 895 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 896 PendingLoads); 897 PendingLoads.clear(); 898 DAG.setRoot(Root); 899 return Root; 900 } 901 902 /// getControlRoot - Similar to getRoot, but instead of flushing all the 903 /// PendingLoad items, flush all the PendingExports items. It is necessary 904 /// to do this before emitting a terminator instruction. 905 /// 906 SDValue SelectionDAGBuilder::getControlRoot() { 907 SDValue Root = DAG.getRoot(); 908 909 if (PendingExports.empty()) 910 return Root; 911 912 // Turn all of the CopyToReg chains into one factored node. 913 if (Root.getOpcode() != ISD::EntryToken) { 914 unsigned i = 0, e = PendingExports.size(); 915 for (; i != e; ++i) { 916 assert(PendingExports[i].getNode()->getNumOperands() > 1); 917 if (PendingExports[i].getNode()->getOperand(0) == Root) 918 break; // Don't add the root if we already indirectly depend on it. 919 } 920 921 if (i == e) 922 PendingExports.push_back(Root); 923 } 924 925 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 926 PendingExports); 927 PendingExports.clear(); 928 DAG.setRoot(Root); 929 return Root; 930 } 931 932 /// Copy swift error to the final virtual register at end of a basic block, as 933 /// specified by SwiftErrorWorklist, if necessary. 934 static void copySwiftErrorsToFinalVRegs(SelectionDAGBuilder &SDB) { 935 const TargetLowering &TLI = SDB.DAG.getTargetLoweringInfo(); 936 if (!TLI.supportSwiftError()) 937 return; 938 939 if (!SDB.FuncInfo.SwiftErrorWorklist.count(SDB.FuncInfo.MBB)) 940 return; 941 942 // Go through entries in SwiftErrorWorklist, and create copy as necessary. 943 FunctionLoweringInfo::SwiftErrorVRegs &WorklistEntry = 944 SDB.FuncInfo.SwiftErrorWorklist[SDB.FuncInfo.MBB]; 945 FunctionLoweringInfo::SwiftErrorVRegs &MapEntry = 946 SDB.FuncInfo.SwiftErrorMap[SDB.FuncInfo.MBB]; 947 for (unsigned I = 0, E = WorklistEntry.size(); I < E; I++) { 948 unsigned WorkReg = WorklistEntry[I]; 949 950 // Find the swifterror virtual register for the value in SwiftErrorMap. 951 unsigned MapReg = MapEntry[I]; 952 assert(TargetRegisterInfo::isVirtualRegister(MapReg) && 953 "Entries in SwiftErrorMap should be virtual registers"); 954 955 if (WorkReg == MapReg) 956 continue; 957 958 // Create copy from SwiftErrorMap to SwiftWorklist. 959 auto &DL = SDB.DAG.getDataLayout(); 960 SDValue CopyNode = SDB.DAG.getCopyToReg( 961 SDB.getRoot(), SDB.getCurSDLoc(), WorkReg, 962 SDB.DAG.getRegister(MapReg, EVT(TLI.getPointerTy(DL)))); 963 MapEntry[I] = WorkReg; 964 SDB.DAG.setRoot(CopyNode); 965 } 966 } 967 968 void SelectionDAGBuilder::visit(const Instruction &I) { 969 // Set up outgoing PHI node register values before emitting the terminator. 970 if (isa<TerminatorInst>(&I)) { 971 copySwiftErrorsToFinalVRegs(*this); 972 HandlePHINodesInSuccessorBlocks(I.getParent()); 973 } 974 975 ++SDNodeOrder; 976 977 CurInst = &I; 978 979 visit(I.getOpcode(), I); 980 981 if (!isa<TerminatorInst>(&I) && !HasTailCall && 982 !isStatepoint(&I)) // statepoints handle their exports internally 983 CopyToExportRegsIfNeeded(&I); 984 985 CurInst = nullptr; 986 } 987 988 void SelectionDAGBuilder::visitPHI(const PHINode &) { 989 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 990 } 991 992 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 993 // Note: this doesn't use InstVisitor, because it has to work with 994 // ConstantExpr's in addition to instructions. 995 switch (Opcode) { 996 default: llvm_unreachable("Unknown instruction type encountered!"); 997 // Build the switch statement using the Instruction.def file. 998 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 999 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1000 #include "llvm/IR/Instruction.def" 1001 } 1002 } 1003 1004 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1005 // generate the debug data structures now that we've seen its definition. 1006 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1007 SDValue Val) { 1008 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 1009 if (DDI.getDI()) { 1010 const DbgValueInst *DI = DDI.getDI(); 1011 DebugLoc dl = DDI.getdl(); 1012 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1013 DILocalVariable *Variable = DI->getVariable(); 1014 DIExpression *Expr = DI->getExpression(); 1015 assert(Variable->isValidLocationForIntrinsic(dl) && 1016 "Expected inlined-at fields to agree"); 1017 uint64_t Offset = DI->getOffset(); 1018 SDDbgValue *SDV; 1019 if (Val.getNode()) { 1020 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 1021 Val)) { 1022 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1023 false, Offset, dl, DbgSDNodeOrder); 1024 DAG.AddDbgValue(SDV, Val.getNode(), false); 1025 } 1026 } else 1027 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1028 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1029 } 1030 } 1031 1032 /// getCopyFromRegs - If there was virtual register allocated for the value V 1033 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1034 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1035 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1036 SDValue Result; 1037 1038 if (It != FuncInfo.ValueMap.end()) { 1039 unsigned InReg = It->second; 1040 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1041 DAG.getDataLayout(), InReg, Ty); 1042 SDValue Chain = DAG.getEntryNode(); 1043 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1044 resolveDanglingDebugInfo(V, Result); 1045 } 1046 1047 return Result; 1048 } 1049 1050 /// getValue - Return an SDValue for the given Value. 1051 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1052 // If we already have an SDValue for this value, use it. It's important 1053 // to do this first, so that we don't create a CopyFromReg if we already 1054 // have a regular SDValue. 1055 SDValue &N = NodeMap[V]; 1056 if (N.getNode()) return N; 1057 1058 // If there's a virtual register allocated and initialized for this 1059 // value, use it. 1060 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1061 return copyFromReg; 1062 1063 // Otherwise create a new SDValue and remember it. 1064 SDValue Val = getValueImpl(V); 1065 NodeMap[V] = Val; 1066 resolveDanglingDebugInfo(V, Val); 1067 return Val; 1068 } 1069 1070 // Return true if SDValue exists for the given Value 1071 bool SelectionDAGBuilder::findValue(const Value *V) const { 1072 return (NodeMap.find(V) != NodeMap.end()) || 1073 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1074 } 1075 1076 /// getNonRegisterValue - Return an SDValue for the given Value, but 1077 /// don't look in FuncInfo.ValueMap for a virtual register. 1078 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1079 // If we already have an SDValue for this value, use it. 1080 SDValue &N = NodeMap[V]; 1081 if (N.getNode()) { 1082 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1083 // Remove the debug location from the node as the node is about to be used 1084 // in a location which may differ from the original debug location. This 1085 // is relevant to Constant and ConstantFP nodes because they can appear 1086 // as constant expressions inside PHI nodes. 1087 N->setDebugLoc(DebugLoc()); 1088 } 1089 return N; 1090 } 1091 1092 // Otherwise create a new SDValue and remember it. 1093 SDValue Val = getValueImpl(V); 1094 NodeMap[V] = Val; 1095 resolveDanglingDebugInfo(V, Val); 1096 return Val; 1097 } 1098 1099 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1100 /// Create an SDValue for the given value. 1101 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1102 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1103 1104 if (const Constant *C = dyn_cast<Constant>(V)) { 1105 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1106 1107 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1108 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1109 1110 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1111 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1112 1113 if (isa<ConstantPointerNull>(C)) { 1114 unsigned AS = V->getType()->getPointerAddressSpace(); 1115 return DAG.getConstant(0, getCurSDLoc(), 1116 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1117 } 1118 1119 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1120 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1121 1122 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1123 return DAG.getUNDEF(VT); 1124 1125 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1126 visit(CE->getOpcode(), *CE); 1127 SDValue N1 = NodeMap[V]; 1128 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1129 return N1; 1130 } 1131 1132 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1133 SmallVector<SDValue, 4> Constants; 1134 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1135 OI != OE; ++OI) { 1136 SDNode *Val = getValue(*OI).getNode(); 1137 // If the operand is an empty aggregate, there are no values. 1138 if (!Val) continue; 1139 // Add each leaf value from the operand to the Constants list 1140 // to form a flattened list of all the values. 1141 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1142 Constants.push_back(SDValue(Val, i)); 1143 } 1144 1145 return DAG.getMergeValues(Constants, getCurSDLoc()); 1146 } 1147 1148 if (const ConstantDataSequential *CDS = 1149 dyn_cast<ConstantDataSequential>(C)) { 1150 SmallVector<SDValue, 4> Ops; 1151 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1152 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1153 // Add each leaf value from the operand to the Constants list 1154 // to form a flattened list of all the values. 1155 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1156 Ops.push_back(SDValue(Val, i)); 1157 } 1158 1159 if (isa<ArrayType>(CDS->getType())) 1160 return DAG.getMergeValues(Ops, getCurSDLoc()); 1161 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1162 VT, Ops); 1163 } 1164 1165 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1166 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1167 "Unknown struct or array constant!"); 1168 1169 SmallVector<EVT, 4> ValueVTs; 1170 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1171 unsigned NumElts = ValueVTs.size(); 1172 if (NumElts == 0) 1173 return SDValue(); // empty struct 1174 SmallVector<SDValue, 4> Constants(NumElts); 1175 for (unsigned i = 0; i != NumElts; ++i) { 1176 EVT EltVT = ValueVTs[i]; 1177 if (isa<UndefValue>(C)) 1178 Constants[i] = DAG.getUNDEF(EltVT); 1179 else if (EltVT.isFloatingPoint()) 1180 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1181 else 1182 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1183 } 1184 1185 return DAG.getMergeValues(Constants, getCurSDLoc()); 1186 } 1187 1188 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1189 return DAG.getBlockAddress(BA, VT); 1190 1191 VectorType *VecTy = cast<VectorType>(V->getType()); 1192 unsigned NumElements = VecTy->getNumElements(); 1193 1194 // Now that we know the number and type of the elements, get that number of 1195 // elements into the Ops array based on what kind of constant it is. 1196 SmallVector<SDValue, 16> Ops; 1197 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1198 for (unsigned i = 0; i != NumElements; ++i) 1199 Ops.push_back(getValue(CV->getOperand(i))); 1200 } else { 1201 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1202 EVT EltVT = 1203 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1204 1205 SDValue Op; 1206 if (EltVT.isFloatingPoint()) 1207 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1208 else 1209 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1210 Ops.assign(NumElements, Op); 1211 } 1212 1213 // Create a BUILD_VECTOR node. 1214 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1215 } 1216 1217 // If this is a static alloca, generate it as the frameindex instead of 1218 // computation. 1219 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1220 DenseMap<const AllocaInst*, int>::iterator SI = 1221 FuncInfo.StaticAllocaMap.find(AI); 1222 if (SI != FuncInfo.StaticAllocaMap.end()) 1223 return DAG.getFrameIndex(SI->second, 1224 TLI.getPointerTy(DAG.getDataLayout())); 1225 } 1226 1227 // If this is an instruction which fast-isel has deferred, select it now. 1228 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1229 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1230 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1231 Inst->getType()); 1232 SDValue Chain = DAG.getEntryNode(); 1233 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1234 } 1235 1236 llvm_unreachable("Can't get register for value!"); 1237 } 1238 1239 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1240 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1241 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1242 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1243 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1244 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1245 if (IsMSVCCXX || IsCoreCLR) 1246 CatchPadMBB->setIsEHFuncletEntry(); 1247 1248 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1249 } 1250 1251 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1252 // Update machine-CFG edge. 1253 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1254 FuncInfo.MBB->addSuccessor(TargetMBB); 1255 1256 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1257 bool IsSEH = isAsynchronousEHPersonality(Pers); 1258 if (IsSEH) { 1259 // If this is not a fall-through branch or optimizations are switched off, 1260 // emit the branch. 1261 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1262 TM.getOptLevel() == CodeGenOpt::None) 1263 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1264 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1265 return; 1266 } 1267 1268 // Figure out the funclet membership for the catchret's successor. 1269 // This will be used by the FuncletLayout pass to determine how to order the 1270 // BB's. 1271 // A 'catchret' returns to the outer scope's color. 1272 Value *ParentPad = I.getCatchSwitchParentPad(); 1273 const BasicBlock *SuccessorColor; 1274 if (isa<ConstantTokenNone>(ParentPad)) 1275 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1276 else 1277 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1278 assert(SuccessorColor && "No parent funclet for catchret!"); 1279 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1280 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1281 1282 // Create the terminator node. 1283 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1284 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1285 DAG.getBasicBlock(SuccessorColorMBB)); 1286 DAG.setRoot(Ret); 1287 } 1288 1289 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1290 // Don't emit any special code for the cleanuppad instruction. It just marks 1291 // the start of a funclet. 1292 FuncInfo.MBB->setIsEHFuncletEntry(); 1293 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1294 } 1295 1296 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1297 /// many places it could ultimately go. In the IR, we have a single unwind 1298 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1299 /// This function skips over imaginary basic blocks that hold catchswitch 1300 /// instructions, and finds all the "real" machine 1301 /// basic block destinations. As those destinations may not be successors of 1302 /// EHPadBB, here we also calculate the edge probability to those destinations. 1303 /// The passed-in Prob is the edge probability to EHPadBB. 1304 static void findUnwindDestinations( 1305 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1306 BranchProbability Prob, 1307 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1308 &UnwindDests) { 1309 EHPersonality Personality = 1310 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1311 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1312 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1313 1314 while (EHPadBB) { 1315 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1316 BasicBlock *NewEHPadBB = nullptr; 1317 if (isa<LandingPadInst>(Pad)) { 1318 // Stop on landingpads. They are not funclets. 1319 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1320 break; 1321 } else if (isa<CleanupPadInst>(Pad)) { 1322 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1323 // personalities. 1324 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1325 UnwindDests.back().first->setIsEHFuncletEntry(); 1326 break; 1327 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1328 // Add the catchpad handlers to the possible destinations. 1329 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1330 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1331 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1332 if (IsMSVCCXX || IsCoreCLR) 1333 UnwindDests.back().first->setIsEHFuncletEntry(); 1334 } 1335 NewEHPadBB = CatchSwitch->getUnwindDest(); 1336 } else { 1337 continue; 1338 } 1339 1340 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1341 if (BPI && NewEHPadBB) 1342 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1343 EHPadBB = NewEHPadBB; 1344 } 1345 } 1346 1347 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1348 // Update successor info. 1349 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1350 auto UnwindDest = I.getUnwindDest(); 1351 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1352 BranchProbability UnwindDestProb = 1353 (BPI && UnwindDest) 1354 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1355 : BranchProbability::getZero(); 1356 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1357 for (auto &UnwindDest : UnwindDests) { 1358 UnwindDest.first->setIsEHPad(); 1359 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1360 } 1361 FuncInfo.MBB->normalizeSuccProbs(); 1362 1363 // Create the terminator node. 1364 SDValue Ret = 1365 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1366 DAG.setRoot(Ret); 1367 } 1368 1369 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1370 report_fatal_error("visitCatchSwitch not yet implemented!"); 1371 } 1372 1373 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1374 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1375 auto &DL = DAG.getDataLayout(); 1376 SDValue Chain = getControlRoot(); 1377 SmallVector<ISD::OutputArg, 8> Outs; 1378 SmallVector<SDValue, 8> OutVals; 1379 1380 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1381 // lower 1382 // 1383 // %val = call <ty> @llvm.experimental.deoptimize() 1384 // ret <ty> %val 1385 // 1386 // differently. 1387 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1388 LowerDeoptimizingReturn(); 1389 return; 1390 } 1391 1392 if (!FuncInfo.CanLowerReturn) { 1393 unsigned DemoteReg = FuncInfo.DemoteRegister; 1394 const Function *F = I.getParent()->getParent(); 1395 1396 // Emit a store of the return value through the virtual register. 1397 // Leave Outs empty so that LowerReturn won't try to load return 1398 // registers the usual way. 1399 SmallVector<EVT, 1> PtrValueVTs; 1400 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1401 PtrValueVTs); 1402 1403 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1404 DemoteReg, PtrValueVTs[0]); 1405 SDValue RetOp = getValue(I.getOperand(0)); 1406 1407 SmallVector<EVT, 4> ValueVTs; 1408 SmallVector<uint64_t, 4> Offsets; 1409 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1410 unsigned NumValues = ValueVTs.size(); 1411 1412 // An aggregate return value cannot wrap around the address space, so 1413 // offsets to its parts don't wrap either. 1414 SDNodeFlags Flags; 1415 Flags.setNoUnsignedWrap(true); 1416 1417 SmallVector<SDValue, 4> Chains(NumValues); 1418 for (unsigned i = 0; i != NumValues; ++i) { 1419 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1420 RetPtr.getValueType(), RetPtr, 1421 DAG.getIntPtrConstant(Offsets[i], 1422 getCurSDLoc()), 1423 &Flags); 1424 Chains[i] = 1425 DAG.getStore(Chain, getCurSDLoc(), 1426 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1427 // FIXME: better loc info would be nice. 1428 Add, MachinePointerInfo(), false, false, 0); 1429 } 1430 1431 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1432 MVT::Other, Chains); 1433 } else if (I.getNumOperands() != 0) { 1434 SmallVector<EVT, 4> ValueVTs; 1435 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1436 unsigned NumValues = ValueVTs.size(); 1437 if (NumValues) { 1438 SDValue RetOp = getValue(I.getOperand(0)); 1439 1440 const Function *F = I.getParent()->getParent(); 1441 1442 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1443 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1444 Attribute::SExt)) 1445 ExtendKind = ISD::SIGN_EXTEND; 1446 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1447 Attribute::ZExt)) 1448 ExtendKind = ISD::ZERO_EXTEND; 1449 1450 LLVMContext &Context = F->getContext(); 1451 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1452 Attribute::InReg); 1453 1454 for (unsigned j = 0; j != NumValues; ++j) { 1455 EVT VT = ValueVTs[j]; 1456 1457 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1458 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1459 1460 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1461 MVT PartVT = TLI.getRegisterType(Context, VT); 1462 SmallVector<SDValue, 4> Parts(NumParts); 1463 getCopyToParts(DAG, getCurSDLoc(), 1464 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1465 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1466 1467 // 'inreg' on function refers to return value 1468 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1469 if (RetInReg) 1470 Flags.setInReg(); 1471 1472 // Propagate extension type if any 1473 if (ExtendKind == ISD::SIGN_EXTEND) 1474 Flags.setSExt(); 1475 else if (ExtendKind == ISD::ZERO_EXTEND) 1476 Flags.setZExt(); 1477 1478 for (unsigned i = 0; i < NumParts; ++i) { 1479 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1480 VT, /*isfixed=*/true, 0, 0)); 1481 OutVals.push_back(Parts[i]); 1482 } 1483 } 1484 } 1485 } 1486 1487 // Push in swifterror virtual register as the last element of Outs. This makes 1488 // sure swifterror virtual register will be returned in the swifterror 1489 // physical register. 1490 const Function *F = I.getParent()->getParent(); 1491 if (TLI.supportSwiftError() && 1492 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1493 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1494 Flags.setSwiftError(); 1495 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1496 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1497 true /*isfixed*/, 1 /*origidx*/, 1498 0 /*partOffs*/)); 1499 // Create SDNode for the swifterror virtual register. 1500 OutVals.push_back(DAG.getRegister(FuncInfo.SwiftErrorMap[FuncInfo.MBB][0], 1501 EVT(TLI.getPointerTy(DL)))); 1502 } 1503 1504 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1505 CallingConv::ID CallConv = 1506 DAG.getMachineFunction().getFunction()->getCallingConv(); 1507 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1508 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1509 1510 // Verify that the target's LowerReturn behaved as expected. 1511 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1512 "LowerReturn didn't return a valid chain!"); 1513 1514 // Update the DAG with the new chain value resulting from return lowering. 1515 DAG.setRoot(Chain); 1516 } 1517 1518 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1519 /// created for it, emit nodes to copy the value into the virtual 1520 /// registers. 1521 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1522 // Skip empty types 1523 if (V->getType()->isEmptyTy()) 1524 return; 1525 1526 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1527 if (VMI != FuncInfo.ValueMap.end()) { 1528 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1529 CopyValueToVirtualRegister(V, VMI->second); 1530 } 1531 } 1532 1533 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1534 /// the current basic block, add it to ValueMap now so that we'll get a 1535 /// CopyTo/FromReg. 1536 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1537 // No need to export constants. 1538 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1539 1540 // Already exported? 1541 if (FuncInfo.isExportedInst(V)) return; 1542 1543 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1544 CopyValueToVirtualRegister(V, Reg); 1545 } 1546 1547 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1548 const BasicBlock *FromBB) { 1549 // The operands of the setcc have to be in this block. We don't know 1550 // how to export them from some other block. 1551 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1552 // Can export from current BB. 1553 if (VI->getParent() == FromBB) 1554 return true; 1555 1556 // Is already exported, noop. 1557 return FuncInfo.isExportedInst(V); 1558 } 1559 1560 // If this is an argument, we can export it if the BB is the entry block or 1561 // if it is already exported. 1562 if (isa<Argument>(V)) { 1563 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1564 return true; 1565 1566 // Otherwise, can only export this if it is already exported. 1567 return FuncInfo.isExportedInst(V); 1568 } 1569 1570 // Otherwise, constants can always be exported. 1571 return true; 1572 } 1573 1574 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1575 BranchProbability 1576 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1577 const MachineBasicBlock *Dst) const { 1578 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1579 const BasicBlock *SrcBB = Src->getBasicBlock(); 1580 const BasicBlock *DstBB = Dst->getBasicBlock(); 1581 if (!BPI) { 1582 // If BPI is not available, set the default probability as 1 / N, where N is 1583 // the number of successors. 1584 auto SuccSize = std::max<uint32_t>( 1585 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1586 return BranchProbability(1, SuccSize); 1587 } 1588 return BPI->getEdgeProbability(SrcBB, DstBB); 1589 } 1590 1591 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1592 MachineBasicBlock *Dst, 1593 BranchProbability Prob) { 1594 if (!FuncInfo.BPI) 1595 Src->addSuccessorWithoutProb(Dst); 1596 else { 1597 if (Prob.isUnknown()) 1598 Prob = getEdgeProbability(Src, Dst); 1599 Src->addSuccessor(Dst, Prob); 1600 } 1601 } 1602 1603 static bool InBlock(const Value *V, const BasicBlock *BB) { 1604 if (const Instruction *I = dyn_cast<Instruction>(V)) 1605 return I->getParent() == BB; 1606 return true; 1607 } 1608 1609 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1610 /// This function emits a branch and is used at the leaves of an OR or an 1611 /// AND operator tree. 1612 /// 1613 void 1614 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1615 MachineBasicBlock *TBB, 1616 MachineBasicBlock *FBB, 1617 MachineBasicBlock *CurBB, 1618 MachineBasicBlock *SwitchBB, 1619 BranchProbability TProb, 1620 BranchProbability FProb) { 1621 const BasicBlock *BB = CurBB->getBasicBlock(); 1622 1623 // If the leaf of the tree is a comparison, merge the condition into 1624 // the caseblock. 1625 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1626 // The operands of the cmp have to be in this block. We don't know 1627 // how to export them from some other block. If this is the first block 1628 // of the sequence, no exporting is needed. 1629 if (CurBB == SwitchBB || 1630 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1631 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1632 ISD::CondCode Condition; 1633 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1634 Condition = getICmpCondCode(IC->getPredicate()); 1635 } else { 1636 const FCmpInst *FC = cast<FCmpInst>(Cond); 1637 Condition = getFCmpCondCode(FC->getPredicate()); 1638 if (TM.Options.NoNaNsFPMath) 1639 Condition = getFCmpCodeWithoutNaN(Condition); 1640 } 1641 1642 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1643 TBB, FBB, CurBB, TProb, FProb); 1644 SwitchCases.push_back(CB); 1645 return; 1646 } 1647 } 1648 1649 // Create a CaseBlock record representing this branch. 1650 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1651 nullptr, TBB, FBB, CurBB, TProb, FProb); 1652 SwitchCases.push_back(CB); 1653 } 1654 1655 /// FindMergedConditions - If Cond is an expression like 1656 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1657 MachineBasicBlock *TBB, 1658 MachineBasicBlock *FBB, 1659 MachineBasicBlock *CurBB, 1660 MachineBasicBlock *SwitchBB, 1661 Instruction::BinaryOps Opc, 1662 BranchProbability TProb, 1663 BranchProbability FProb) { 1664 // If this node is not part of the or/and tree, emit it as a branch. 1665 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1666 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1667 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1668 BOp->getParent() != CurBB->getBasicBlock() || 1669 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1670 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1671 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1672 TProb, FProb); 1673 return; 1674 } 1675 1676 // Create TmpBB after CurBB. 1677 MachineFunction::iterator BBI(CurBB); 1678 MachineFunction &MF = DAG.getMachineFunction(); 1679 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1680 CurBB->getParent()->insert(++BBI, TmpBB); 1681 1682 if (Opc == Instruction::Or) { 1683 // Codegen X | Y as: 1684 // BB1: 1685 // jmp_if_X TBB 1686 // jmp TmpBB 1687 // TmpBB: 1688 // jmp_if_Y TBB 1689 // jmp FBB 1690 // 1691 1692 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1693 // The requirement is that 1694 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1695 // = TrueProb for original BB. 1696 // Assuming the original probabilities are A and B, one choice is to set 1697 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1698 // A/(1+B) and 2B/(1+B). This choice assumes that 1699 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1700 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1701 // TmpBB, but the math is more complicated. 1702 1703 auto NewTrueProb = TProb / 2; 1704 auto NewFalseProb = TProb / 2 + FProb; 1705 // Emit the LHS condition. 1706 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1707 NewTrueProb, NewFalseProb); 1708 1709 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1710 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1711 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1712 // Emit the RHS condition into TmpBB. 1713 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1714 Probs[0], Probs[1]); 1715 } else { 1716 assert(Opc == Instruction::And && "Unknown merge op!"); 1717 // Codegen X & Y as: 1718 // BB1: 1719 // jmp_if_X TmpBB 1720 // jmp FBB 1721 // TmpBB: 1722 // jmp_if_Y TBB 1723 // jmp FBB 1724 // 1725 // This requires creation of TmpBB after CurBB. 1726 1727 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1728 // The requirement is that 1729 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1730 // = FalseProb for original BB. 1731 // Assuming the original probabilities are A and B, one choice is to set 1732 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1733 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1734 // TrueProb for BB1 * FalseProb for TmpBB. 1735 1736 auto NewTrueProb = TProb + FProb / 2; 1737 auto NewFalseProb = FProb / 2; 1738 // Emit the LHS condition. 1739 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1740 NewTrueProb, NewFalseProb); 1741 1742 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1743 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1744 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1745 // Emit the RHS condition into TmpBB. 1746 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1747 Probs[0], Probs[1]); 1748 } 1749 } 1750 1751 /// If the set of cases should be emitted as a series of branches, return true. 1752 /// If we should emit this as a bunch of and/or'd together conditions, return 1753 /// false. 1754 bool 1755 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1756 if (Cases.size() != 2) return true; 1757 1758 // If this is two comparisons of the same values or'd or and'd together, they 1759 // will get folded into a single comparison, so don't emit two blocks. 1760 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1761 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1762 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1763 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1764 return false; 1765 } 1766 1767 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1768 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1769 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1770 Cases[0].CC == Cases[1].CC && 1771 isa<Constant>(Cases[0].CmpRHS) && 1772 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1773 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1774 return false; 1775 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1776 return false; 1777 } 1778 1779 return true; 1780 } 1781 1782 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1783 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1784 1785 // Update machine-CFG edges. 1786 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1787 1788 if (I.isUnconditional()) { 1789 // Update machine-CFG edges. 1790 BrMBB->addSuccessor(Succ0MBB); 1791 1792 // If this is not a fall-through branch or optimizations are switched off, 1793 // emit the branch. 1794 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1795 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1796 MVT::Other, getControlRoot(), 1797 DAG.getBasicBlock(Succ0MBB))); 1798 1799 return; 1800 } 1801 1802 // If this condition is one of the special cases we handle, do special stuff 1803 // now. 1804 const Value *CondVal = I.getCondition(); 1805 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1806 1807 // If this is a series of conditions that are or'd or and'd together, emit 1808 // this as a sequence of branches instead of setcc's with and/or operations. 1809 // As long as jumps are not expensive, this should improve performance. 1810 // For example, instead of something like: 1811 // cmp A, B 1812 // C = seteq 1813 // cmp D, E 1814 // F = setle 1815 // or C, F 1816 // jnz foo 1817 // Emit: 1818 // cmp A, B 1819 // je foo 1820 // cmp D, E 1821 // jle foo 1822 // 1823 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1824 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1825 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1826 !I.getMetadata(LLVMContext::MD_unpredictable) && 1827 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1828 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1829 Opcode, 1830 getEdgeProbability(BrMBB, Succ0MBB), 1831 getEdgeProbability(BrMBB, Succ1MBB)); 1832 // If the compares in later blocks need to use values not currently 1833 // exported from this block, export them now. This block should always 1834 // be the first entry. 1835 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1836 1837 // Allow some cases to be rejected. 1838 if (ShouldEmitAsBranches(SwitchCases)) { 1839 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1840 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1841 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1842 } 1843 1844 // Emit the branch for this block. 1845 visitSwitchCase(SwitchCases[0], BrMBB); 1846 SwitchCases.erase(SwitchCases.begin()); 1847 return; 1848 } 1849 1850 // Okay, we decided not to do this, remove any inserted MBB's and clear 1851 // SwitchCases. 1852 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1853 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1854 1855 SwitchCases.clear(); 1856 } 1857 } 1858 1859 // Create a CaseBlock record representing this branch. 1860 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1861 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1862 1863 // Use visitSwitchCase to actually insert the fast branch sequence for this 1864 // cond branch. 1865 visitSwitchCase(CB, BrMBB); 1866 } 1867 1868 /// visitSwitchCase - Emits the necessary code to represent a single node in 1869 /// the binary search tree resulting from lowering a switch instruction. 1870 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1871 MachineBasicBlock *SwitchBB) { 1872 SDValue Cond; 1873 SDValue CondLHS = getValue(CB.CmpLHS); 1874 SDLoc dl = getCurSDLoc(); 1875 1876 // Build the setcc now. 1877 if (!CB.CmpMHS) { 1878 // Fold "(X == true)" to X and "(X == false)" to !X to 1879 // handle common cases produced by branch lowering. 1880 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1881 CB.CC == ISD::SETEQ) 1882 Cond = CondLHS; 1883 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1884 CB.CC == ISD::SETEQ) { 1885 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1886 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1887 } else 1888 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1889 } else { 1890 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1891 1892 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1893 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1894 1895 SDValue CmpOp = getValue(CB.CmpMHS); 1896 EVT VT = CmpOp.getValueType(); 1897 1898 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1899 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1900 ISD::SETLE); 1901 } else { 1902 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1903 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1904 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1905 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1906 } 1907 } 1908 1909 // Update successor info 1910 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1911 // TrueBB and FalseBB are always different unless the incoming IR is 1912 // degenerate. This only happens when running llc on weird IR. 1913 if (CB.TrueBB != CB.FalseBB) 1914 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1915 SwitchBB->normalizeSuccProbs(); 1916 1917 // If the lhs block is the next block, invert the condition so that we can 1918 // fall through to the lhs instead of the rhs block. 1919 if (CB.TrueBB == NextBlock(SwitchBB)) { 1920 std::swap(CB.TrueBB, CB.FalseBB); 1921 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1922 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1923 } 1924 1925 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1926 MVT::Other, getControlRoot(), Cond, 1927 DAG.getBasicBlock(CB.TrueBB)); 1928 1929 // Insert the false branch. Do this even if it's a fall through branch, 1930 // this makes it easier to do DAG optimizations which require inverting 1931 // the branch condition. 1932 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1933 DAG.getBasicBlock(CB.FalseBB)); 1934 1935 DAG.setRoot(BrCond); 1936 } 1937 1938 /// visitJumpTable - Emit JumpTable node in the current MBB 1939 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1940 // Emit the code for the jump table 1941 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1942 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1943 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1944 JT.Reg, PTy); 1945 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1946 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1947 MVT::Other, Index.getValue(1), 1948 Table, Index); 1949 DAG.setRoot(BrJumpTable); 1950 } 1951 1952 /// visitJumpTableHeader - This function emits necessary code to produce index 1953 /// in the JumpTable from switch case. 1954 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1955 JumpTableHeader &JTH, 1956 MachineBasicBlock *SwitchBB) { 1957 SDLoc dl = getCurSDLoc(); 1958 1959 // Subtract the lowest switch case value from the value being switched on and 1960 // conditional branch to default mbb if the result is greater than the 1961 // difference between smallest and largest cases. 1962 SDValue SwitchOp = getValue(JTH.SValue); 1963 EVT VT = SwitchOp.getValueType(); 1964 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1965 DAG.getConstant(JTH.First, dl, VT)); 1966 1967 // The SDNode we just created, which holds the value being switched on minus 1968 // the smallest case value, needs to be copied to a virtual register so it 1969 // can be used as an index into the jump table in a subsequent basic block. 1970 // This value may be smaller or larger than the target's pointer type, and 1971 // therefore require extension or truncating. 1972 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1973 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1974 1975 unsigned JumpTableReg = 1976 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1977 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1978 JumpTableReg, SwitchOp); 1979 JT.Reg = JumpTableReg; 1980 1981 // Emit the range check for the jump table, and branch to the default block 1982 // for the switch statement if the value being switched on exceeds the largest 1983 // case in the switch. 1984 SDValue CMP = DAG.getSetCC( 1985 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1986 Sub.getValueType()), 1987 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1988 1989 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1990 MVT::Other, CopyTo, CMP, 1991 DAG.getBasicBlock(JT.Default)); 1992 1993 // Avoid emitting unnecessary branches to the next block. 1994 if (JT.MBB != NextBlock(SwitchBB)) 1995 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1996 DAG.getBasicBlock(JT.MBB)); 1997 1998 DAG.setRoot(BrCond); 1999 } 2000 2001 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2002 /// variable if there exists one. 2003 static SDValue getLoadStackGuard(SelectionDAG &DAG, SDLoc DL, SDValue &Chain) { 2004 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2005 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2006 MachineFunction &MF = DAG.getMachineFunction(); 2007 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent()); 2008 MachineSDNode *Node = 2009 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2010 if (Global) { 2011 MachinePointerInfo MPInfo(Global); 2012 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2013 unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant; 2014 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2015 DAG.getEVTAlignment(PtrTy)); 2016 Node->setMemRefs(MemRefs, MemRefs + 1); 2017 } 2018 return SDValue(Node, 0); 2019 } 2020 2021 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2022 /// tail spliced into a stack protector check success bb. 2023 /// 2024 /// For a high level explanation of how this fits into the stack protector 2025 /// generation see the comment on the declaration of class 2026 /// StackProtectorDescriptor. 2027 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2028 MachineBasicBlock *ParentBB) { 2029 2030 // First create the loads to the guard/stack slot for the comparison. 2031 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2032 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2033 2034 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 2035 int FI = MFI->getStackProtectorIndex(); 2036 2037 SDValue Guard; 2038 SDLoc dl = getCurSDLoc(); 2039 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2040 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 2041 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2042 2043 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2044 // Otherwise, emit a volatile load to retrieve the stack guard value. 2045 SDValue Chain = DAG.getEntryNode(); 2046 if (TLI.useLoadStackGuardNode()) { 2047 Guard = getLoadStackGuard(DAG, dl, Chain); 2048 } else { 2049 const Value *IRGuard = TLI.getSDagStackGuard(M); 2050 SDValue GuardPtr = getValue(IRGuard); 2051 2052 Guard = 2053 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2054 true, false, false, Align); 2055 } 2056 2057 SDValue StackSlot = DAG.getLoad( 2058 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2059 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 2060 false, false, Align); 2061 2062 // Perform the comparison via a subtract/getsetcc. 2063 EVT VT = Guard.getValueType(); 2064 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2065 2066 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2067 *DAG.getContext(), 2068 Sub.getValueType()), 2069 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2070 2071 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2072 // branch to failure MBB. 2073 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2074 MVT::Other, StackSlot.getOperand(0), 2075 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2076 // Otherwise branch to success MBB. 2077 SDValue Br = DAG.getNode(ISD::BR, dl, 2078 MVT::Other, BrCond, 2079 DAG.getBasicBlock(SPD.getSuccessMBB())); 2080 2081 DAG.setRoot(Br); 2082 } 2083 2084 /// Codegen the failure basic block for a stack protector check. 2085 /// 2086 /// A failure stack protector machine basic block consists simply of a call to 2087 /// __stack_chk_fail(). 2088 /// 2089 /// For a high level explanation of how this fits into the stack protector 2090 /// generation see the comment on the declaration of class 2091 /// StackProtectorDescriptor. 2092 void 2093 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2094 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2095 SDValue Chain = 2096 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2097 None, false, getCurSDLoc(), false, false).second; 2098 DAG.setRoot(Chain); 2099 } 2100 2101 /// visitBitTestHeader - This function emits necessary code to produce value 2102 /// suitable for "bit tests" 2103 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2104 MachineBasicBlock *SwitchBB) { 2105 SDLoc dl = getCurSDLoc(); 2106 2107 // Subtract the minimum value 2108 SDValue SwitchOp = getValue(B.SValue); 2109 EVT VT = SwitchOp.getValueType(); 2110 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2111 DAG.getConstant(B.First, dl, VT)); 2112 2113 // Check range 2114 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2115 SDValue RangeCmp = DAG.getSetCC( 2116 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2117 Sub.getValueType()), 2118 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2119 2120 // Determine the type of the test operands. 2121 bool UsePtrType = false; 2122 if (!TLI.isTypeLegal(VT)) 2123 UsePtrType = true; 2124 else { 2125 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2126 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2127 // Switch table case range are encoded into series of masks. 2128 // Just use pointer type, it's guaranteed to fit. 2129 UsePtrType = true; 2130 break; 2131 } 2132 } 2133 if (UsePtrType) { 2134 VT = TLI.getPointerTy(DAG.getDataLayout()); 2135 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2136 } 2137 2138 B.RegVT = VT.getSimpleVT(); 2139 B.Reg = FuncInfo.CreateReg(B.RegVT); 2140 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2141 2142 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2143 2144 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2145 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2146 SwitchBB->normalizeSuccProbs(); 2147 2148 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2149 MVT::Other, CopyTo, RangeCmp, 2150 DAG.getBasicBlock(B.Default)); 2151 2152 // Avoid emitting unnecessary branches to the next block. 2153 if (MBB != NextBlock(SwitchBB)) 2154 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2155 DAG.getBasicBlock(MBB)); 2156 2157 DAG.setRoot(BrRange); 2158 } 2159 2160 /// visitBitTestCase - this function produces one "bit test" 2161 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2162 MachineBasicBlock* NextMBB, 2163 BranchProbability BranchProbToNext, 2164 unsigned Reg, 2165 BitTestCase &B, 2166 MachineBasicBlock *SwitchBB) { 2167 SDLoc dl = getCurSDLoc(); 2168 MVT VT = BB.RegVT; 2169 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2170 SDValue Cmp; 2171 unsigned PopCount = countPopulation(B.Mask); 2172 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2173 if (PopCount == 1) { 2174 // Testing for a single bit; just compare the shift count with what it 2175 // would need to be to shift a 1 bit in that position. 2176 Cmp = DAG.getSetCC( 2177 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2178 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2179 ISD::SETEQ); 2180 } else if (PopCount == BB.Range) { 2181 // There is only one zero bit in the range, test for it directly. 2182 Cmp = DAG.getSetCC( 2183 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2184 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2185 ISD::SETNE); 2186 } else { 2187 // Make desired shift 2188 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2189 DAG.getConstant(1, dl, VT), ShiftOp); 2190 2191 // Emit bit tests and jumps 2192 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2193 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2194 Cmp = DAG.getSetCC( 2195 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2196 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2197 } 2198 2199 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2200 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2201 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2202 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2203 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2204 // one as they are relative probabilities (and thus work more like weights), 2205 // and hence we need to normalize them to let the sum of them become one. 2206 SwitchBB->normalizeSuccProbs(); 2207 2208 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2209 MVT::Other, getControlRoot(), 2210 Cmp, DAG.getBasicBlock(B.TargetBB)); 2211 2212 // Avoid emitting unnecessary branches to the next block. 2213 if (NextMBB != NextBlock(SwitchBB)) 2214 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2215 DAG.getBasicBlock(NextMBB)); 2216 2217 DAG.setRoot(BrAnd); 2218 } 2219 2220 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2221 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2222 2223 // Retrieve successors. Look through artificial IR level blocks like 2224 // catchswitch for successors. 2225 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2226 const BasicBlock *EHPadBB = I.getSuccessor(1); 2227 2228 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2229 // have to do anything here to lower funclet bundles. 2230 assert(!I.hasOperandBundlesOtherThan( 2231 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2232 "Cannot lower invokes with arbitrary operand bundles yet!"); 2233 2234 const Value *Callee(I.getCalledValue()); 2235 const Function *Fn = dyn_cast<Function>(Callee); 2236 if (isa<InlineAsm>(Callee)) 2237 visitInlineAsm(&I); 2238 else if (Fn && Fn->isIntrinsic()) { 2239 switch (Fn->getIntrinsicID()) { 2240 default: 2241 llvm_unreachable("Cannot invoke this intrinsic"); 2242 case Intrinsic::donothing: 2243 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2244 break; 2245 case Intrinsic::experimental_patchpoint_void: 2246 case Intrinsic::experimental_patchpoint_i64: 2247 visitPatchpoint(&I, EHPadBB); 2248 break; 2249 case Intrinsic::experimental_gc_statepoint: 2250 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2251 break; 2252 } 2253 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2254 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2255 // Eventually we will support lowering the @llvm.experimental.deoptimize 2256 // intrinsic, and right now there are no plans to support other intrinsics 2257 // with deopt state. 2258 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2259 } else { 2260 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2261 } 2262 2263 // If the value of the invoke is used outside of its defining block, make it 2264 // available as a virtual register. 2265 // We already took care of the exported value for the statepoint instruction 2266 // during call to the LowerStatepoint. 2267 if (!isStatepoint(I)) { 2268 CopyToExportRegsIfNeeded(&I); 2269 } 2270 2271 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2272 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2273 BranchProbability EHPadBBProb = 2274 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2275 : BranchProbability::getZero(); 2276 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2277 2278 // Update successor info. 2279 addSuccessorWithProb(InvokeMBB, Return); 2280 for (auto &UnwindDest : UnwindDests) { 2281 UnwindDest.first->setIsEHPad(); 2282 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2283 } 2284 InvokeMBB->normalizeSuccProbs(); 2285 2286 // Drop into normal successor. 2287 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2288 MVT::Other, getControlRoot(), 2289 DAG.getBasicBlock(Return))); 2290 } 2291 2292 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2293 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2294 } 2295 2296 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2297 assert(FuncInfo.MBB->isEHPad() && 2298 "Call to landingpad not in landing pad!"); 2299 2300 MachineBasicBlock *MBB = FuncInfo.MBB; 2301 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2302 AddLandingPadInfo(LP, MMI, MBB); 2303 2304 // If there aren't registers to copy the values into (e.g., during SjLj 2305 // exceptions), then don't bother to create these DAG nodes. 2306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2307 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2308 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2309 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2310 return; 2311 2312 // If landingpad's return type is token type, we don't create DAG nodes 2313 // for its exception pointer and selector value. The extraction of exception 2314 // pointer or selector value from token type landingpads is not currently 2315 // supported. 2316 if (LP.getType()->isTokenTy()) 2317 return; 2318 2319 SmallVector<EVT, 2> ValueVTs; 2320 SDLoc dl = getCurSDLoc(); 2321 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2322 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2323 2324 // Get the two live-in registers as SDValues. The physregs have already been 2325 // copied into virtual registers. 2326 SDValue Ops[2]; 2327 if (FuncInfo.ExceptionPointerVirtReg) { 2328 Ops[0] = DAG.getZExtOrTrunc( 2329 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2330 FuncInfo.ExceptionPointerVirtReg, 2331 TLI.getPointerTy(DAG.getDataLayout())), 2332 dl, ValueVTs[0]); 2333 } else { 2334 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2335 } 2336 Ops[1] = DAG.getZExtOrTrunc( 2337 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2338 FuncInfo.ExceptionSelectorVirtReg, 2339 TLI.getPointerTy(DAG.getDataLayout())), 2340 dl, ValueVTs[1]); 2341 2342 // Merge into one. 2343 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2344 DAG.getVTList(ValueVTs), Ops); 2345 setValue(&LP, Res); 2346 } 2347 2348 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2349 #ifndef NDEBUG 2350 for (const CaseCluster &CC : Clusters) 2351 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2352 #endif 2353 2354 std::sort(Clusters.begin(), Clusters.end(), 2355 [](const CaseCluster &a, const CaseCluster &b) { 2356 return a.Low->getValue().slt(b.Low->getValue()); 2357 }); 2358 2359 // Merge adjacent clusters with the same destination. 2360 const unsigned N = Clusters.size(); 2361 unsigned DstIndex = 0; 2362 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2363 CaseCluster &CC = Clusters[SrcIndex]; 2364 const ConstantInt *CaseVal = CC.Low; 2365 MachineBasicBlock *Succ = CC.MBB; 2366 2367 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2368 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2369 // If this case has the same successor and is a neighbour, merge it into 2370 // the previous cluster. 2371 Clusters[DstIndex - 1].High = CaseVal; 2372 Clusters[DstIndex - 1].Prob += CC.Prob; 2373 } else { 2374 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2375 sizeof(Clusters[SrcIndex])); 2376 } 2377 } 2378 Clusters.resize(DstIndex); 2379 } 2380 2381 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2382 MachineBasicBlock *Last) { 2383 // Update JTCases. 2384 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2385 if (JTCases[i].first.HeaderBB == First) 2386 JTCases[i].first.HeaderBB = Last; 2387 2388 // Update BitTestCases. 2389 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2390 if (BitTestCases[i].Parent == First) 2391 BitTestCases[i].Parent = Last; 2392 } 2393 2394 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2395 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2396 2397 // Update machine-CFG edges with unique successors. 2398 SmallSet<BasicBlock*, 32> Done; 2399 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2400 BasicBlock *BB = I.getSuccessor(i); 2401 bool Inserted = Done.insert(BB).second; 2402 if (!Inserted) 2403 continue; 2404 2405 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2406 addSuccessorWithProb(IndirectBrMBB, Succ); 2407 } 2408 IndirectBrMBB->normalizeSuccProbs(); 2409 2410 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2411 MVT::Other, getControlRoot(), 2412 getValue(I.getAddress()))); 2413 } 2414 2415 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2416 if (DAG.getTarget().Options.TrapUnreachable) 2417 DAG.setRoot( 2418 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2419 } 2420 2421 void SelectionDAGBuilder::visitFSub(const User &I) { 2422 // -0.0 - X --> fneg 2423 Type *Ty = I.getType(); 2424 if (isa<Constant>(I.getOperand(0)) && 2425 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2426 SDValue Op2 = getValue(I.getOperand(1)); 2427 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2428 Op2.getValueType(), Op2)); 2429 return; 2430 } 2431 2432 visitBinary(I, ISD::FSUB); 2433 } 2434 2435 /// Checks if the given instruction performs a vector reduction, in which case 2436 /// we have the freedom to alter the elements in the result as long as the 2437 /// reduction of them stays unchanged. 2438 static bool isVectorReductionOp(const User *I) { 2439 const Instruction *Inst = dyn_cast<Instruction>(I); 2440 if (!Inst || !Inst->getType()->isVectorTy()) 2441 return false; 2442 2443 auto OpCode = Inst->getOpcode(); 2444 switch (OpCode) { 2445 case Instruction::Add: 2446 case Instruction::Mul: 2447 case Instruction::And: 2448 case Instruction::Or: 2449 case Instruction::Xor: 2450 break; 2451 case Instruction::FAdd: 2452 case Instruction::FMul: 2453 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2454 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2455 break; 2456 // Fall through. 2457 default: 2458 return false; 2459 } 2460 2461 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2462 unsigned ElemNumToReduce = ElemNum; 2463 2464 // Do DFS search on the def-use chain from the given instruction. We only 2465 // allow four kinds of operations during the search until we reach the 2466 // instruction that extracts the first element from the vector: 2467 // 2468 // 1. The reduction operation of the same opcode as the given instruction. 2469 // 2470 // 2. PHI node. 2471 // 2472 // 3. ShuffleVector instruction together with a reduction operation that 2473 // does a partial reduction. 2474 // 2475 // 4. ExtractElement that extracts the first element from the vector, and we 2476 // stop searching the def-use chain here. 2477 // 2478 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2479 // from 1-3 to the stack to continue the DFS. The given instruction is not 2480 // a reduction operation if we meet any other instructions other than those 2481 // listed above. 2482 2483 SmallVector<const User *, 16> UsersToVisit{Inst}; 2484 SmallPtrSet<const User *, 16> Visited; 2485 bool ReduxExtracted = false; 2486 2487 while (!UsersToVisit.empty()) { 2488 auto User = UsersToVisit.back(); 2489 UsersToVisit.pop_back(); 2490 if (!Visited.insert(User).second) 2491 continue; 2492 2493 for (const auto &U : User->users()) { 2494 auto Inst = dyn_cast<Instruction>(U); 2495 if (!Inst) 2496 return false; 2497 2498 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2499 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2500 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2501 return false; 2502 UsersToVisit.push_back(U); 2503 } else if (const ShuffleVectorInst *ShufInst = 2504 dyn_cast<ShuffleVectorInst>(U)) { 2505 // Detect the following pattern: A ShuffleVector instruction together 2506 // with a reduction that do partial reduction on the first and second 2507 // ElemNumToReduce / 2 elements, and store the result in 2508 // ElemNumToReduce / 2 elements in another vector. 2509 2510 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2511 if (ResultElements < ElemNum) 2512 return false; 2513 2514 if (ElemNumToReduce == 1) 2515 return false; 2516 if (!isa<UndefValue>(U->getOperand(1))) 2517 return false; 2518 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2519 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2520 return false; 2521 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2522 if (ShufInst->getMaskValue(i) != -1) 2523 return false; 2524 2525 // There is only one user of this ShuffleVector instruction, which 2526 // must be a reduction operation. 2527 if (!U->hasOneUse()) 2528 return false; 2529 2530 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2531 if (!U2 || U2->getOpcode() != OpCode) 2532 return false; 2533 2534 // Check operands of the reduction operation. 2535 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2536 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2537 UsersToVisit.push_back(U2); 2538 ElemNumToReduce /= 2; 2539 } else 2540 return false; 2541 } else if (isa<ExtractElementInst>(U)) { 2542 // At this moment we should have reduced all elements in the vector. 2543 if (ElemNumToReduce != 1) 2544 return false; 2545 2546 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2547 if (!Val || Val->getZExtValue() != 0) 2548 return false; 2549 2550 ReduxExtracted = true; 2551 } else 2552 return false; 2553 } 2554 } 2555 return ReduxExtracted; 2556 } 2557 2558 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2559 SDValue Op1 = getValue(I.getOperand(0)); 2560 SDValue Op2 = getValue(I.getOperand(1)); 2561 2562 bool nuw = false; 2563 bool nsw = false; 2564 bool exact = false; 2565 bool vec_redux = false; 2566 FastMathFlags FMF; 2567 2568 if (const OverflowingBinaryOperator *OFBinOp = 2569 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2570 nuw = OFBinOp->hasNoUnsignedWrap(); 2571 nsw = OFBinOp->hasNoSignedWrap(); 2572 } 2573 if (const PossiblyExactOperator *ExactOp = 2574 dyn_cast<const PossiblyExactOperator>(&I)) 2575 exact = ExactOp->isExact(); 2576 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2577 FMF = FPOp->getFastMathFlags(); 2578 2579 if (isVectorReductionOp(&I)) { 2580 vec_redux = true; 2581 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2582 } 2583 2584 SDNodeFlags Flags; 2585 Flags.setExact(exact); 2586 Flags.setNoSignedWrap(nsw); 2587 Flags.setNoUnsignedWrap(nuw); 2588 Flags.setVectorReduction(vec_redux); 2589 if (EnableFMFInDAG) { 2590 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2591 Flags.setNoInfs(FMF.noInfs()); 2592 Flags.setNoNaNs(FMF.noNaNs()); 2593 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2594 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2595 } 2596 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2597 Op1, Op2, &Flags); 2598 setValue(&I, BinNodeValue); 2599 } 2600 2601 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2602 SDValue Op1 = getValue(I.getOperand(0)); 2603 SDValue Op2 = getValue(I.getOperand(1)); 2604 2605 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2606 Op2.getValueType(), DAG.getDataLayout()); 2607 2608 // Coerce the shift amount to the right type if we can. 2609 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2610 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2611 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2612 SDLoc DL = getCurSDLoc(); 2613 2614 // If the operand is smaller than the shift count type, promote it. 2615 if (ShiftSize > Op2Size) 2616 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2617 2618 // If the operand is larger than the shift count type but the shift 2619 // count type has enough bits to represent any shift value, truncate 2620 // it now. This is a common case and it exposes the truncate to 2621 // optimization early. 2622 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2623 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2624 // Otherwise we'll need to temporarily settle for some other convenient 2625 // type. Type legalization will make adjustments once the shiftee is split. 2626 else 2627 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2628 } 2629 2630 bool nuw = false; 2631 bool nsw = false; 2632 bool exact = false; 2633 2634 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2635 2636 if (const OverflowingBinaryOperator *OFBinOp = 2637 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2638 nuw = OFBinOp->hasNoUnsignedWrap(); 2639 nsw = OFBinOp->hasNoSignedWrap(); 2640 } 2641 if (const PossiblyExactOperator *ExactOp = 2642 dyn_cast<const PossiblyExactOperator>(&I)) 2643 exact = ExactOp->isExact(); 2644 } 2645 SDNodeFlags Flags; 2646 Flags.setExact(exact); 2647 Flags.setNoSignedWrap(nsw); 2648 Flags.setNoUnsignedWrap(nuw); 2649 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2650 &Flags); 2651 setValue(&I, Res); 2652 } 2653 2654 void SelectionDAGBuilder::visitSDiv(const User &I) { 2655 SDValue Op1 = getValue(I.getOperand(0)); 2656 SDValue Op2 = getValue(I.getOperand(1)); 2657 2658 SDNodeFlags Flags; 2659 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2660 cast<PossiblyExactOperator>(&I)->isExact()); 2661 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2662 Op2, &Flags)); 2663 } 2664 2665 void SelectionDAGBuilder::visitICmp(const User &I) { 2666 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2667 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2668 predicate = IC->getPredicate(); 2669 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2670 predicate = ICmpInst::Predicate(IC->getPredicate()); 2671 SDValue Op1 = getValue(I.getOperand(0)); 2672 SDValue Op2 = getValue(I.getOperand(1)); 2673 ISD::CondCode Opcode = getICmpCondCode(predicate); 2674 2675 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2676 I.getType()); 2677 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2678 } 2679 2680 void SelectionDAGBuilder::visitFCmp(const User &I) { 2681 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2682 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2683 predicate = FC->getPredicate(); 2684 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2685 predicate = FCmpInst::Predicate(FC->getPredicate()); 2686 SDValue Op1 = getValue(I.getOperand(0)); 2687 SDValue Op2 = getValue(I.getOperand(1)); 2688 ISD::CondCode Condition = getFCmpCondCode(predicate); 2689 2690 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2691 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2692 // further optimization, but currently FMF is only applicable to binary nodes. 2693 if (TM.Options.NoNaNsFPMath) 2694 Condition = getFCmpCodeWithoutNaN(Condition); 2695 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2696 I.getType()); 2697 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2698 } 2699 2700 void SelectionDAGBuilder::visitSelect(const User &I) { 2701 SmallVector<EVT, 4> ValueVTs; 2702 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2703 ValueVTs); 2704 unsigned NumValues = ValueVTs.size(); 2705 if (NumValues == 0) return; 2706 2707 SmallVector<SDValue, 4> Values(NumValues); 2708 SDValue Cond = getValue(I.getOperand(0)); 2709 SDValue LHSVal = getValue(I.getOperand(1)); 2710 SDValue RHSVal = getValue(I.getOperand(2)); 2711 auto BaseOps = {Cond}; 2712 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2713 ISD::VSELECT : ISD::SELECT; 2714 2715 // Min/max matching is only viable if all output VTs are the same. 2716 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2717 EVT VT = ValueVTs[0]; 2718 LLVMContext &Ctx = *DAG.getContext(); 2719 auto &TLI = DAG.getTargetLoweringInfo(); 2720 2721 // We care about the legality of the operation after it has been type 2722 // legalized. 2723 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2724 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2725 VT = TLI.getTypeToTransformTo(Ctx, VT); 2726 2727 // If the vselect is legal, assume we want to leave this as a vector setcc + 2728 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2729 // min/max is legal on the scalar type. 2730 bool UseScalarMinMax = VT.isVector() && 2731 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2732 2733 Value *LHS, *RHS; 2734 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2735 ISD::NodeType Opc = ISD::DELETED_NODE; 2736 switch (SPR.Flavor) { 2737 case SPF_UMAX: Opc = ISD::UMAX; break; 2738 case SPF_UMIN: Opc = ISD::UMIN; break; 2739 case SPF_SMAX: Opc = ISD::SMAX; break; 2740 case SPF_SMIN: Opc = ISD::SMIN; break; 2741 case SPF_FMINNUM: 2742 switch (SPR.NaNBehavior) { 2743 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2744 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2745 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2746 case SPNB_RETURNS_ANY: { 2747 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2748 Opc = ISD::FMINNUM; 2749 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2750 Opc = ISD::FMINNAN; 2751 else if (UseScalarMinMax) 2752 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2753 ISD::FMINNUM : ISD::FMINNAN; 2754 break; 2755 } 2756 } 2757 break; 2758 case SPF_FMAXNUM: 2759 switch (SPR.NaNBehavior) { 2760 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2761 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2762 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2763 case SPNB_RETURNS_ANY: 2764 2765 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2766 Opc = ISD::FMAXNUM; 2767 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2768 Opc = ISD::FMAXNAN; 2769 else if (UseScalarMinMax) 2770 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2771 ISD::FMAXNUM : ISD::FMAXNAN; 2772 break; 2773 } 2774 break; 2775 default: break; 2776 } 2777 2778 if (Opc != ISD::DELETED_NODE && 2779 (TLI.isOperationLegalOrCustom(Opc, VT) || 2780 (UseScalarMinMax && 2781 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2782 // If the underlying comparison instruction is used by any other 2783 // instruction, the consumed instructions won't be destroyed, so it is 2784 // not profitable to convert to a min/max. 2785 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2786 OpCode = Opc; 2787 LHSVal = getValue(LHS); 2788 RHSVal = getValue(RHS); 2789 BaseOps = {}; 2790 } 2791 } 2792 2793 for (unsigned i = 0; i != NumValues; ++i) { 2794 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2795 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2796 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2797 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2798 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2799 Ops); 2800 } 2801 2802 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2803 DAG.getVTList(ValueVTs), Values)); 2804 } 2805 2806 void SelectionDAGBuilder::visitTrunc(const User &I) { 2807 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2808 SDValue N = getValue(I.getOperand(0)); 2809 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2810 I.getType()); 2811 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2812 } 2813 2814 void SelectionDAGBuilder::visitZExt(const User &I) { 2815 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2816 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2817 SDValue N = getValue(I.getOperand(0)); 2818 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2819 I.getType()); 2820 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2821 } 2822 2823 void SelectionDAGBuilder::visitSExt(const User &I) { 2824 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2825 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2826 SDValue N = getValue(I.getOperand(0)); 2827 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2828 I.getType()); 2829 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2830 } 2831 2832 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2833 // FPTrunc is never a no-op cast, no need to check 2834 SDValue N = getValue(I.getOperand(0)); 2835 SDLoc dl = getCurSDLoc(); 2836 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2837 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2838 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2839 DAG.getTargetConstant( 2840 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2841 } 2842 2843 void SelectionDAGBuilder::visitFPExt(const User &I) { 2844 // FPExt is never a no-op cast, no need to check 2845 SDValue N = getValue(I.getOperand(0)); 2846 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2847 I.getType()); 2848 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2849 } 2850 2851 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2852 // FPToUI is never a no-op cast, no need to check 2853 SDValue N = getValue(I.getOperand(0)); 2854 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2855 I.getType()); 2856 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2857 } 2858 2859 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2860 // FPToSI is never a no-op cast, no need to check 2861 SDValue N = getValue(I.getOperand(0)); 2862 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2863 I.getType()); 2864 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2865 } 2866 2867 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2868 // UIToFP is never a no-op cast, no need to check 2869 SDValue N = getValue(I.getOperand(0)); 2870 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2871 I.getType()); 2872 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2873 } 2874 2875 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2876 // SIToFP is never a no-op cast, no need to check 2877 SDValue N = getValue(I.getOperand(0)); 2878 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2879 I.getType()); 2880 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2881 } 2882 2883 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2884 // What to do depends on the size of the integer and the size of the pointer. 2885 // We can either truncate, zero extend, or no-op, accordingly. 2886 SDValue N = getValue(I.getOperand(0)); 2887 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2888 I.getType()); 2889 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2890 } 2891 2892 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2893 // What to do depends on the size of the integer and the size of the pointer. 2894 // We can either truncate, zero extend, or no-op, accordingly. 2895 SDValue N = getValue(I.getOperand(0)); 2896 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2897 I.getType()); 2898 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2899 } 2900 2901 void SelectionDAGBuilder::visitBitCast(const User &I) { 2902 SDValue N = getValue(I.getOperand(0)); 2903 SDLoc dl = getCurSDLoc(); 2904 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2905 I.getType()); 2906 2907 // BitCast assures us that source and destination are the same size so this is 2908 // either a BITCAST or a no-op. 2909 if (DestVT != N.getValueType()) 2910 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2911 DestVT, N)); // convert types. 2912 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2913 // might fold any kind of constant expression to an integer constant and that 2914 // is not what we are looking for. Only regcognize a bitcast of a genuine 2915 // constant integer as an opaque constant. 2916 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2917 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2918 /*isOpaque*/true)); 2919 else 2920 setValue(&I, N); // noop cast. 2921 } 2922 2923 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2925 const Value *SV = I.getOperand(0); 2926 SDValue N = getValue(SV); 2927 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2928 2929 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2930 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2931 2932 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2933 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2934 2935 setValue(&I, N); 2936 } 2937 2938 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2939 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2940 SDValue InVec = getValue(I.getOperand(0)); 2941 SDValue InVal = getValue(I.getOperand(1)); 2942 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2943 TLI.getVectorIdxTy(DAG.getDataLayout())); 2944 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2945 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2946 InVec, InVal, InIdx)); 2947 } 2948 2949 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2950 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2951 SDValue InVec = getValue(I.getOperand(0)); 2952 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2953 TLI.getVectorIdxTy(DAG.getDataLayout())); 2954 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2955 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2956 InVec, InIdx)); 2957 } 2958 2959 // Utility for visitShuffleVector - Return true if every element in Mask, 2960 // beginning from position Pos and ending in Pos+Size, falls within the 2961 // specified sequential range [L, L+Pos). or is undef. 2962 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2963 unsigned Pos, unsigned Size, int Low) { 2964 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2965 if (Mask[i] >= 0 && Mask[i] != Low) 2966 return false; 2967 return true; 2968 } 2969 2970 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2971 SDValue Src1 = getValue(I.getOperand(0)); 2972 SDValue Src2 = getValue(I.getOperand(1)); 2973 2974 SmallVector<int, 8> Mask; 2975 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2976 unsigned MaskNumElts = Mask.size(); 2977 2978 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2979 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2980 EVT SrcVT = Src1.getValueType(); 2981 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2982 2983 if (SrcNumElts == MaskNumElts) { 2984 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2985 &Mask[0])); 2986 return; 2987 } 2988 2989 // Normalize the shuffle vector since mask and vector length don't match. 2990 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2991 // Mask is longer than the source vectors and is a multiple of the source 2992 // vectors. We can use concatenate vector to make the mask and vectors 2993 // lengths match. 2994 if (SrcNumElts*2 == MaskNumElts) { 2995 // First check for Src1 in low and Src2 in high 2996 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2997 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2998 // The shuffle is concatenating two vectors together. 2999 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3000 VT, Src1, Src2)); 3001 return; 3002 } 3003 // Then check for Src2 in low and Src1 in high 3004 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3005 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3006 // The shuffle is concatenating two vectors together. 3007 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3008 VT, Src2, Src1)); 3009 return; 3010 } 3011 } 3012 3013 // Pad both vectors with undefs to make them the same length as the mask. 3014 unsigned NumConcat = MaskNumElts / SrcNumElts; 3015 bool Src1U = Src1.isUndef(); 3016 bool Src2U = Src2.isUndef(); 3017 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3018 3019 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3020 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3021 MOps1[0] = Src1; 3022 MOps2[0] = Src2; 3023 3024 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3025 getCurSDLoc(), VT, MOps1); 3026 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3027 getCurSDLoc(), VT, MOps2); 3028 3029 // Readjust mask for new input vector length. 3030 SmallVector<int, 8> MappedOps; 3031 for (unsigned i = 0; i != MaskNumElts; ++i) { 3032 int Idx = Mask[i]; 3033 if (Idx >= (int)SrcNumElts) 3034 Idx -= SrcNumElts - MaskNumElts; 3035 MappedOps.push_back(Idx); 3036 } 3037 3038 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3039 &MappedOps[0])); 3040 return; 3041 } 3042 3043 if (SrcNumElts > MaskNumElts) { 3044 // Analyze the access pattern of the vector to see if we can extract 3045 // two subvectors and do the shuffle. The analysis is done by calculating 3046 // the range of elements the mask access on both vectors. 3047 int MinRange[2] = { static_cast<int>(SrcNumElts), 3048 static_cast<int>(SrcNumElts)}; 3049 int MaxRange[2] = {-1, -1}; 3050 3051 for (unsigned i = 0; i != MaskNumElts; ++i) { 3052 int Idx = Mask[i]; 3053 unsigned Input = 0; 3054 if (Idx < 0) 3055 continue; 3056 3057 if (Idx >= (int)SrcNumElts) { 3058 Input = 1; 3059 Idx -= SrcNumElts; 3060 } 3061 if (Idx > MaxRange[Input]) 3062 MaxRange[Input] = Idx; 3063 if (Idx < MinRange[Input]) 3064 MinRange[Input] = Idx; 3065 } 3066 3067 // Check if the access is smaller than the vector size and can we find 3068 // a reasonable extract index. 3069 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3070 // Extract. 3071 int StartIdx[2]; // StartIdx to extract from 3072 for (unsigned Input = 0; Input < 2; ++Input) { 3073 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3074 RangeUse[Input] = 0; // Unused 3075 StartIdx[Input] = 0; 3076 continue; 3077 } 3078 3079 // Find a good start index that is a multiple of the mask length. Then 3080 // see if the rest of the elements are in range. 3081 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3082 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3083 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3084 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3085 } 3086 3087 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3088 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3089 return; 3090 } 3091 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3092 // Extract appropriate subvector and generate a vector shuffle 3093 for (unsigned Input = 0; Input < 2; ++Input) { 3094 SDValue &Src = Input == 0 ? Src1 : Src2; 3095 if (RangeUse[Input] == 0) 3096 Src = DAG.getUNDEF(VT); 3097 else { 3098 SDLoc dl = getCurSDLoc(); 3099 Src = DAG.getNode( 3100 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 3101 DAG.getConstant(StartIdx[Input], dl, 3102 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3103 } 3104 } 3105 3106 // Calculate new mask. 3107 SmallVector<int, 8> MappedOps; 3108 for (unsigned i = 0; i != MaskNumElts; ++i) { 3109 int Idx = Mask[i]; 3110 if (Idx >= 0) { 3111 if (Idx < (int)SrcNumElts) 3112 Idx -= StartIdx[0]; 3113 else 3114 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3115 } 3116 MappedOps.push_back(Idx); 3117 } 3118 3119 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3120 &MappedOps[0])); 3121 return; 3122 } 3123 } 3124 3125 // We can't use either concat vectors or extract subvectors so fall back to 3126 // replacing the shuffle with extract and build vector. 3127 // to insert and build vector. 3128 EVT EltVT = VT.getVectorElementType(); 3129 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3130 SDLoc dl = getCurSDLoc(); 3131 SmallVector<SDValue,8> Ops; 3132 for (unsigned i = 0; i != MaskNumElts; ++i) { 3133 int Idx = Mask[i]; 3134 SDValue Res; 3135 3136 if (Idx < 0) { 3137 Res = DAG.getUNDEF(EltVT); 3138 } else { 3139 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3140 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3141 3142 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3143 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 3144 } 3145 3146 Ops.push_back(Res); 3147 } 3148 3149 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 3150 } 3151 3152 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3153 const Value *Op0 = I.getOperand(0); 3154 const Value *Op1 = I.getOperand(1); 3155 Type *AggTy = I.getType(); 3156 Type *ValTy = Op1->getType(); 3157 bool IntoUndef = isa<UndefValue>(Op0); 3158 bool FromUndef = isa<UndefValue>(Op1); 3159 3160 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3161 3162 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3163 SmallVector<EVT, 4> AggValueVTs; 3164 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3165 SmallVector<EVT, 4> ValValueVTs; 3166 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3167 3168 unsigned NumAggValues = AggValueVTs.size(); 3169 unsigned NumValValues = ValValueVTs.size(); 3170 SmallVector<SDValue, 4> Values(NumAggValues); 3171 3172 // Ignore an insertvalue that produces an empty object 3173 if (!NumAggValues) { 3174 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3175 return; 3176 } 3177 3178 SDValue Agg = getValue(Op0); 3179 unsigned i = 0; 3180 // Copy the beginning value(s) from the original aggregate. 3181 for (; i != LinearIndex; ++i) 3182 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3183 SDValue(Agg.getNode(), Agg.getResNo() + i); 3184 // Copy values from the inserted value(s). 3185 if (NumValValues) { 3186 SDValue Val = getValue(Op1); 3187 for (; i != LinearIndex + NumValValues; ++i) 3188 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3189 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3190 } 3191 // Copy remaining value(s) from the original aggregate. 3192 for (; i != NumAggValues; ++i) 3193 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3194 SDValue(Agg.getNode(), Agg.getResNo() + i); 3195 3196 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3197 DAG.getVTList(AggValueVTs), Values)); 3198 } 3199 3200 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3201 const Value *Op0 = I.getOperand(0); 3202 Type *AggTy = Op0->getType(); 3203 Type *ValTy = I.getType(); 3204 bool OutOfUndef = isa<UndefValue>(Op0); 3205 3206 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3207 3208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3209 SmallVector<EVT, 4> ValValueVTs; 3210 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3211 3212 unsigned NumValValues = ValValueVTs.size(); 3213 3214 // Ignore a extractvalue that produces an empty object 3215 if (!NumValValues) { 3216 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3217 return; 3218 } 3219 3220 SmallVector<SDValue, 4> Values(NumValValues); 3221 3222 SDValue Agg = getValue(Op0); 3223 // Copy out the selected value(s). 3224 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3225 Values[i - LinearIndex] = 3226 OutOfUndef ? 3227 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3228 SDValue(Agg.getNode(), Agg.getResNo() + i); 3229 3230 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3231 DAG.getVTList(ValValueVTs), Values)); 3232 } 3233 3234 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3235 Value *Op0 = I.getOperand(0); 3236 // Note that the pointer operand may be a vector of pointers. Take the scalar 3237 // element which holds a pointer. 3238 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3239 SDValue N = getValue(Op0); 3240 SDLoc dl = getCurSDLoc(); 3241 3242 // Normalize Vector GEP - all scalar operands should be converted to the 3243 // splat vector. 3244 unsigned VectorWidth = I.getType()->isVectorTy() ? 3245 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3246 3247 if (VectorWidth && !N.getValueType().isVector()) { 3248 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 3249 SmallVector<SDValue, 16> Ops(VectorWidth, N); 3250 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3251 } 3252 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3253 GTI != E; ++GTI) { 3254 const Value *Idx = GTI.getOperand(); 3255 if (StructType *StTy = dyn_cast<StructType>(*GTI)) { 3256 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3257 if (Field) { 3258 // N = N + Offset 3259 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3260 3261 // In an inbouds GEP with an offset that is nonnegative even when 3262 // interpreted as signed, assume there is no unsigned overflow. 3263 SDNodeFlags Flags; 3264 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3265 Flags.setNoUnsignedWrap(true); 3266 3267 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3268 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3269 } 3270 } else { 3271 MVT PtrTy = 3272 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3273 unsigned PtrSize = PtrTy.getSizeInBits(); 3274 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3275 3276 // If this is a scalar constant or a splat vector of constants, 3277 // handle it quickly. 3278 const auto *CI = dyn_cast<ConstantInt>(Idx); 3279 if (!CI && isa<ConstantDataVector>(Idx) && 3280 cast<ConstantDataVector>(Idx)->getSplatValue()) 3281 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3282 3283 if (CI) { 3284 if (CI->isZero()) 3285 continue; 3286 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3287 SDValue OffsVal = VectorWidth ? 3288 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3289 DAG.getConstant(Offs, dl, PtrTy); 3290 3291 // In an inbouds GEP with an offset that is nonnegative even when 3292 // interpreted as signed, assume there is no unsigned overflow. 3293 SDNodeFlags Flags; 3294 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3295 Flags.setNoUnsignedWrap(true); 3296 3297 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3298 continue; 3299 } 3300 3301 // N = N + Idx * ElementSize; 3302 SDValue IdxN = getValue(Idx); 3303 3304 if (!IdxN.getValueType().isVector() && VectorWidth) { 3305 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3306 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3307 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3308 } 3309 // If the index is smaller or larger than intptr_t, truncate or extend 3310 // it. 3311 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3312 3313 // If this is a multiply by a power of two, turn it into a shl 3314 // immediately. This is a very common case. 3315 if (ElementSize != 1) { 3316 if (ElementSize.isPowerOf2()) { 3317 unsigned Amt = ElementSize.logBase2(); 3318 IdxN = DAG.getNode(ISD::SHL, dl, 3319 N.getValueType(), IdxN, 3320 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3321 } else { 3322 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3323 IdxN = DAG.getNode(ISD::MUL, dl, 3324 N.getValueType(), IdxN, Scale); 3325 } 3326 } 3327 3328 N = DAG.getNode(ISD::ADD, dl, 3329 N.getValueType(), N, IdxN); 3330 } 3331 } 3332 3333 setValue(&I, N); 3334 } 3335 3336 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3337 // If this is a fixed sized alloca in the entry block of the function, 3338 // allocate it statically on the stack. 3339 if (FuncInfo.StaticAllocaMap.count(&I)) 3340 return; // getValue will auto-populate this. 3341 3342 SDLoc dl = getCurSDLoc(); 3343 Type *Ty = I.getAllocatedType(); 3344 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3345 auto &DL = DAG.getDataLayout(); 3346 uint64_t TySize = DL.getTypeAllocSize(Ty); 3347 unsigned Align = 3348 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3349 3350 SDValue AllocSize = getValue(I.getArraySize()); 3351 3352 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3353 if (AllocSize.getValueType() != IntPtr) 3354 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3355 3356 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3357 AllocSize, 3358 DAG.getConstant(TySize, dl, IntPtr)); 3359 3360 // Handle alignment. If the requested alignment is less than or equal to 3361 // the stack alignment, ignore it. If the size is greater than or equal to 3362 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3363 unsigned StackAlign = 3364 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3365 if (Align <= StackAlign) 3366 Align = 0; 3367 3368 // Round the size of the allocation up to the stack alignment size 3369 // by add SA-1 to the size. This doesn't overflow because we're computing 3370 // an address inside an alloca. 3371 SDNodeFlags Flags; 3372 Flags.setNoUnsignedWrap(true); 3373 AllocSize = DAG.getNode(ISD::ADD, dl, 3374 AllocSize.getValueType(), AllocSize, 3375 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3376 3377 // Mask out the low bits for alignment purposes. 3378 AllocSize = DAG.getNode(ISD::AND, dl, 3379 AllocSize.getValueType(), AllocSize, 3380 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3381 dl)); 3382 3383 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3384 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3385 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3386 setValue(&I, DSA); 3387 DAG.setRoot(DSA.getValue(1)); 3388 3389 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3390 } 3391 3392 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3393 if (I.isAtomic()) 3394 return visitAtomicLoad(I); 3395 3396 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3397 const Value *SV = I.getOperand(0); 3398 if (TLI.supportSwiftError()) { 3399 // Swifterror values can come from either a function parameter with 3400 // swifterror attribute or an alloca with swifterror attribute. 3401 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3402 if (Arg->hasSwiftErrorAttr()) 3403 return visitLoadFromSwiftError(I); 3404 } 3405 3406 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3407 if (Alloca->isSwiftError()) 3408 return visitLoadFromSwiftError(I); 3409 } 3410 } 3411 3412 SDValue Ptr = getValue(SV); 3413 3414 Type *Ty = I.getType(); 3415 3416 bool isVolatile = I.isVolatile(); 3417 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3418 3419 // The IR notion of invariant_load only guarantees that all *non-faulting* 3420 // invariant loads result in the same value. The MI notion of invariant load 3421 // guarantees that the load can be legally moved to any location within its 3422 // containing function. The MI notion of invariant_load is stronger than the 3423 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3424 // with a guarantee that the location being loaded from is dereferenceable 3425 // throughout the function's lifetime. 3426 3427 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3428 isDereferenceablePointer(SV, DAG.getDataLayout()); 3429 unsigned Alignment = I.getAlignment(); 3430 3431 AAMDNodes AAInfo; 3432 I.getAAMetadata(AAInfo); 3433 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3434 3435 SmallVector<EVT, 4> ValueVTs; 3436 SmallVector<uint64_t, 4> Offsets; 3437 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3438 unsigned NumValues = ValueVTs.size(); 3439 if (NumValues == 0) 3440 return; 3441 3442 SDValue Root; 3443 bool ConstantMemory = false; 3444 if (isVolatile || NumValues > MaxParallelChains) 3445 // Serialize volatile loads with other side effects. 3446 Root = getRoot(); 3447 else if (AA->pointsToConstantMemory(MemoryLocation( 3448 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3449 // Do not serialize (non-volatile) loads of constant memory with anything. 3450 Root = DAG.getEntryNode(); 3451 ConstantMemory = true; 3452 } else { 3453 // Do not serialize non-volatile loads against each other. 3454 Root = DAG.getRoot(); 3455 } 3456 3457 SDLoc dl = getCurSDLoc(); 3458 3459 if (isVolatile) 3460 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3461 3462 // An aggregate load cannot wrap around the address space, so offsets to its 3463 // parts don't wrap either. 3464 SDNodeFlags Flags; 3465 Flags.setNoUnsignedWrap(true); 3466 3467 SmallVector<SDValue, 4> Values(NumValues); 3468 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3469 EVT PtrVT = Ptr.getValueType(); 3470 unsigned ChainI = 0; 3471 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3472 // Serializing loads here may result in excessive register pressure, and 3473 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3474 // could recover a bit by hoisting nodes upward in the chain by recognizing 3475 // they are side-effect free or do not alias. The optimizer should really 3476 // avoid this case by converting large object/array copies to llvm.memcpy 3477 // (MaxParallelChains should always remain as failsafe). 3478 if (ChainI == MaxParallelChains) { 3479 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3480 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3481 makeArrayRef(Chains.data(), ChainI)); 3482 Root = Chain; 3483 ChainI = 0; 3484 } 3485 SDValue A = DAG.getNode(ISD::ADD, dl, 3486 PtrVT, Ptr, 3487 DAG.getConstant(Offsets[i], dl, PtrVT), 3488 &Flags); 3489 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3490 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3491 isNonTemporal, isInvariant, Alignment, AAInfo, 3492 Ranges); 3493 3494 Values[i] = L; 3495 Chains[ChainI] = L.getValue(1); 3496 } 3497 3498 if (!ConstantMemory) { 3499 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3500 makeArrayRef(Chains.data(), ChainI)); 3501 if (isVolatile) 3502 DAG.setRoot(Chain); 3503 else 3504 PendingLoads.push_back(Chain); 3505 } 3506 3507 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3508 DAG.getVTList(ValueVTs), Values)); 3509 } 3510 3511 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3512 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3513 assert(TLI.supportSwiftError() && 3514 "call visitStoreToSwiftError when backend supports swifterror"); 3515 3516 SmallVector<EVT, 4> ValueVTs; 3517 SmallVector<uint64_t, 4> Offsets; 3518 const Value *SrcV = I.getOperand(0); 3519 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3520 SrcV->getType(), ValueVTs, &Offsets); 3521 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3522 "expect a single EVT for swifterror"); 3523 3524 SDValue Src = getValue(SrcV); 3525 // Create a virtual register, then update the virtual register. 3526 auto &DL = DAG.getDataLayout(); 3527 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3528 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 3529 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3530 // Chain can be getRoot or getControlRoot. 3531 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3532 SDValue(Src.getNode(), Src.getResNo())); 3533 DAG.setRoot(CopyNode); 3534 FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3535 } 3536 3537 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3538 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3539 "call visitLoadFromSwiftError when backend supports swifterror"); 3540 3541 assert(!I.isVolatile() && 3542 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3543 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3544 "Support volatile, non temporal, invariant for load_from_swift_error"); 3545 3546 const Value *SV = I.getOperand(0); 3547 Type *Ty = I.getType(); 3548 AAMDNodes AAInfo; 3549 I.getAAMetadata(AAInfo); 3550 assert(!AA->pointsToConstantMemory(MemoryLocation( 3551 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) && 3552 "load_from_swift_error should not be constant memory"); 3553 3554 SmallVector<EVT, 4> ValueVTs; 3555 SmallVector<uint64_t, 4> Offsets; 3556 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3557 ValueVTs, &Offsets); 3558 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3559 "expect a single EVT for swifterror"); 3560 3561 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3562 SDValue L = DAG.getCopyFromReg(getRoot(), getCurSDLoc(), 3563 FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, SV), 3564 ValueVTs[0]); 3565 3566 setValue(&I, L); 3567 } 3568 3569 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3570 if (I.isAtomic()) 3571 return visitAtomicStore(I); 3572 3573 const Value *SrcV = I.getOperand(0); 3574 const Value *PtrV = I.getOperand(1); 3575 3576 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3577 if (TLI.supportSwiftError()) { 3578 // Swifterror values can come from either a function parameter with 3579 // swifterror attribute or an alloca with swifterror attribute. 3580 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3581 if (Arg->hasSwiftErrorAttr()) 3582 return visitStoreToSwiftError(I); 3583 } 3584 3585 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3586 if (Alloca->isSwiftError()) 3587 return visitStoreToSwiftError(I); 3588 } 3589 } 3590 3591 SmallVector<EVT, 4> ValueVTs; 3592 SmallVector<uint64_t, 4> Offsets; 3593 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3594 SrcV->getType(), ValueVTs, &Offsets); 3595 unsigned NumValues = ValueVTs.size(); 3596 if (NumValues == 0) 3597 return; 3598 3599 // Get the lowered operands. Note that we do this after 3600 // checking if NumResults is zero, because with zero results 3601 // the operands won't have values in the map. 3602 SDValue Src = getValue(SrcV); 3603 SDValue Ptr = getValue(PtrV); 3604 3605 SDValue Root = getRoot(); 3606 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3607 EVT PtrVT = Ptr.getValueType(); 3608 bool isVolatile = I.isVolatile(); 3609 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3610 unsigned Alignment = I.getAlignment(); 3611 SDLoc dl = getCurSDLoc(); 3612 3613 AAMDNodes AAInfo; 3614 I.getAAMetadata(AAInfo); 3615 3616 // An aggregate load cannot wrap around the address space, so offsets to its 3617 // parts don't wrap either. 3618 SDNodeFlags Flags; 3619 Flags.setNoUnsignedWrap(true); 3620 3621 unsigned ChainI = 0; 3622 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3623 // See visitLoad comments. 3624 if (ChainI == MaxParallelChains) { 3625 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3626 makeArrayRef(Chains.data(), ChainI)); 3627 Root = Chain; 3628 ChainI = 0; 3629 } 3630 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3631 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3632 SDValue St = DAG.getStore(Root, dl, 3633 SDValue(Src.getNode(), Src.getResNo() + i), 3634 Add, MachinePointerInfo(PtrV, Offsets[i]), 3635 isVolatile, isNonTemporal, Alignment, AAInfo); 3636 Chains[ChainI] = St; 3637 } 3638 3639 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3640 makeArrayRef(Chains.data(), ChainI)); 3641 DAG.setRoot(StoreNode); 3642 } 3643 3644 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3645 SDLoc sdl = getCurSDLoc(); 3646 3647 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3648 Value *PtrOperand = I.getArgOperand(1); 3649 SDValue Ptr = getValue(PtrOperand); 3650 SDValue Src0 = getValue(I.getArgOperand(0)); 3651 SDValue Mask = getValue(I.getArgOperand(3)); 3652 EVT VT = Src0.getValueType(); 3653 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3654 if (!Alignment) 3655 Alignment = DAG.getEVTAlignment(VT); 3656 3657 AAMDNodes AAInfo; 3658 I.getAAMetadata(AAInfo); 3659 3660 MachineMemOperand *MMO = 3661 DAG.getMachineFunction(). 3662 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3663 MachineMemOperand::MOStore, VT.getStoreSize(), 3664 Alignment, AAInfo); 3665 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3666 MMO, false); 3667 DAG.setRoot(StoreNode); 3668 setValue(&I, StoreNode); 3669 } 3670 3671 // Get a uniform base for the Gather/Scatter intrinsic. 3672 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3673 // We try to represent it as a base pointer + vector of indices. 3674 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3675 // The first operand of the GEP may be a single pointer or a vector of pointers 3676 // Example: 3677 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3678 // or 3679 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3680 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3681 // 3682 // When the first GEP operand is a single pointer - it is the uniform base we 3683 // are looking for. If first operand of the GEP is a splat vector - we 3684 // extract the spalt value and use it as a uniform base. 3685 // In all other cases the function returns 'false'. 3686 // 3687 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3688 SelectionDAGBuilder* SDB) { 3689 3690 SelectionDAG& DAG = SDB->DAG; 3691 LLVMContext &Context = *DAG.getContext(); 3692 3693 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3694 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3695 if (!GEP || GEP->getNumOperands() > 2) 3696 return false; 3697 3698 const Value *GEPPtr = GEP->getPointerOperand(); 3699 if (!GEPPtr->getType()->isVectorTy()) 3700 Ptr = GEPPtr; 3701 else if (!(Ptr = getSplatValue(GEPPtr))) 3702 return false; 3703 3704 Value *IndexVal = GEP->getOperand(1); 3705 3706 // The operands of the GEP may be defined in another basic block. 3707 // In this case we'll not find nodes for the operands. 3708 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3709 return false; 3710 3711 Base = SDB->getValue(Ptr); 3712 Index = SDB->getValue(IndexVal); 3713 3714 // Suppress sign extension. 3715 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3716 if (SDB->findValue(Sext->getOperand(0))) { 3717 IndexVal = Sext->getOperand(0); 3718 Index = SDB->getValue(IndexVal); 3719 } 3720 } 3721 if (!Index.getValueType().isVector()) { 3722 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3723 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3724 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3725 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3726 } 3727 return true; 3728 } 3729 3730 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3731 SDLoc sdl = getCurSDLoc(); 3732 3733 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3734 const Value *Ptr = I.getArgOperand(1); 3735 SDValue Src0 = getValue(I.getArgOperand(0)); 3736 SDValue Mask = getValue(I.getArgOperand(3)); 3737 EVT VT = Src0.getValueType(); 3738 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3739 if (!Alignment) 3740 Alignment = DAG.getEVTAlignment(VT); 3741 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3742 3743 AAMDNodes AAInfo; 3744 I.getAAMetadata(AAInfo); 3745 3746 SDValue Base; 3747 SDValue Index; 3748 const Value *BasePtr = Ptr; 3749 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3750 3751 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3752 MachineMemOperand *MMO = DAG.getMachineFunction(). 3753 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3754 MachineMemOperand::MOStore, VT.getStoreSize(), 3755 Alignment, AAInfo); 3756 if (!UniformBase) { 3757 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3758 Index = getValue(Ptr); 3759 } 3760 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3761 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3762 Ops, MMO); 3763 DAG.setRoot(Scatter); 3764 setValue(&I, Scatter); 3765 } 3766 3767 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3768 SDLoc sdl = getCurSDLoc(); 3769 3770 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3771 Value *PtrOperand = I.getArgOperand(0); 3772 SDValue Ptr = getValue(PtrOperand); 3773 SDValue Src0 = getValue(I.getArgOperand(3)); 3774 SDValue Mask = getValue(I.getArgOperand(2)); 3775 3776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3777 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3778 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3779 if (!Alignment) 3780 Alignment = DAG.getEVTAlignment(VT); 3781 3782 AAMDNodes AAInfo; 3783 I.getAAMetadata(AAInfo); 3784 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3785 3786 SDValue InChain = DAG.getRoot(); 3787 if (AA->pointsToConstantMemory(MemoryLocation( 3788 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3789 AAInfo))) { 3790 // Do not serialize (non-volatile) loads of constant memory with anything. 3791 InChain = DAG.getEntryNode(); 3792 } 3793 3794 MachineMemOperand *MMO = 3795 DAG.getMachineFunction(). 3796 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3797 MachineMemOperand::MOLoad, VT.getStoreSize(), 3798 Alignment, AAInfo, Ranges); 3799 3800 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3801 ISD::NON_EXTLOAD); 3802 SDValue OutChain = Load.getValue(1); 3803 DAG.setRoot(OutChain); 3804 setValue(&I, Load); 3805 } 3806 3807 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3808 SDLoc sdl = getCurSDLoc(); 3809 3810 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3811 const Value *Ptr = I.getArgOperand(0); 3812 SDValue Src0 = getValue(I.getArgOperand(3)); 3813 SDValue Mask = getValue(I.getArgOperand(2)); 3814 3815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3816 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3817 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3818 if (!Alignment) 3819 Alignment = DAG.getEVTAlignment(VT); 3820 3821 AAMDNodes AAInfo; 3822 I.getAAMetadata(AAInfo); 3823 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3824 3825 SDValue Root = DAG.getRoot(); 3826 SDValue Base; 3827 SDValue Index; 3828 const Value *BasePtr = Ptr; 3829 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3830 bool ConstantMemory = false; 3831 if (UniformBase && 3832 AA->pointsToConstantMemory(MemoryLocation( 3833 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3834 AAInfo))) { 3835 // Do not serialize (non-volatile) loads of constant memory with anything. 3836 Root = DAG.getEntryNode(); 3837 ConstantMemory = true; 3838 } 3839 3840 MachineMemOperand *MMO = 3841 DAG.getMachineFunction(). 3842 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3843 MachineMemOperand::MOLoad, VT.getStoreSize(), 3844 Alignment, AAInfo, Ranges); 3845 3846 if (!UniformBase) { 3847 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3848 Index = getValue(Ptr); 3849 } 3850 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3851 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3852 Ops, MMO); 3853 3854 SDValue OutChain = Gather.getValue(1); 3855 if (!ConstantMemory) 3856 PendingLoads.push_back(OutChain); 3857 setValue(&I, Gather); 3858 } 3859 3860 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3861 SDLoc dl = getCurSDLoc(); 3862 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3863 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3864 SynchronizationScope Scope = I.getSynchScope(); 3865 3866 SDValue InChain = getRoot(); 3867 3868 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3869 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3870 SDValue L = DAG.getAtomicCmpSwap( 3871 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3872 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3873 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3874 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3875 3876 SDValue OutChain = L.getValue(2); 3877 3878 setValue(&I, L); 3879 DAG.setRoot(OutChain); 3880 } 3881 3882 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3883 SDLoc dl = getCurSDLoc(); 3884 ISD::NodeType NT; 3885 switch (I.getOperation()) { 3886 default: llvm_unreachable("Unknown atomicrmw operation"); 3887 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3888 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3889 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3890 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3891 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3892 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3893 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3894 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3895 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3896 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3897 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3898 } 3899 AtomicOrdering Order = I.getOrdering(); 3900 SynchronizationScope Scope = I.getSynchScope(); 3901 3902 SDValue InChain = getRoot(); 3903 3904 SDValue L = 3905 DAG.getAtomic(NT, dl, 3906 getValue(I.getValOperand()).getSimpleValueType(), 3907 InChain, 3908 getValue(I.getPointerOperand()), 3909 getValue(I.getValOperand()), 3910 I.getPointerOperand(), 3911 /* Alignment=*/ 0, Order, Scope); 3912 3913 SDValue OutChain = L.getValue(1); 3914 3915 setValue(&I, L); 3916 DAG.setRoot(OutChain); 3917 } 3918 3919 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3920 SDLoc dl = getCurSDLoc(); 3921 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3922 SDValue Ops[3]; 3923 Ops[0] = getRoot(); 3924 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 3925 TLI.getPointerTy(DAG.getDataLayout())); 3926 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3927 TLI.getPointerTy(DAG.getDataLayout())); 3928 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3929 } 3930 3931 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3932 SDLoc dl = getCurSDLoc(); 3933 AtomicOrdering Order = I.getOrdering(); 3934 SynchronizationScope Scope = I.getSynchScope(); 3935 3936 SDValue InChain = getRoot(); 3937 3938 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3939 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3940 3941 if (I.getAlignment() < VT.getSizeInBits() / 8) 3942 report_fatal_error("Cannot generate unaligned atomic load"); 3943 3944 MachineMemOperand *MMO = 3945 DAG.getMachineFunction(). 3946 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3947 MachineMemOperand::MOVolatile | 3948 MachineMemOperand::MOLoad, 3949 VT.getStoreSize(), 3950 I.getAlignment() ? I.getAlignment() : 3951 DAG.getEVTAlignment(VT)); 3952 3953 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3954 SDValue L = 3955 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3956 getValue(I.getPointerOperand()), MMO, 3957 Order, Scope); 3958 3959 SDValue OutChain = L.getValue(1); 3960 3961 setValue(&I, L); 3962 DAG.setRoot(OutChain); 3963 } 3964 3965 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3966 SDLoc dl = getCurSDLoc(); 3967 3968 AtomicOrdering Order = I.getOrdering(); 3969 SynchronizationScope Scope = I.getSynchScope(); 3970 3971 SDValue InChain = getRoot(); 3972 3973 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3974 EVT VT = 3975 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3976 3977 if (I.getAlignment() < VT.getSizeInBits() / 8) 3978 report_fatal_error("Cannot generate unaligned atomic store"); 3979 3980 SDValue OutChain = 3981 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3982 InChain, 3983 getValue(I.getPointerOperand()), 3984 getValue(I.getValueOperand()), 3985 I.getPointerOperand(), I.getAlignment(), 3986 Order, Scope); 3987 3988 DAG.setRoot(OutChain); 3989 } 3990 3991 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3992 /// node. 3993 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3994 unsigned Intrinsic) { 3995 bool HasChain = !I.doesNotAccessMemory(); 3996 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3997 3998 // Build the operand list. 3999 SmallVector<SDValue, 8> Ops; 4000 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4001 if (OnlyLoad) { 4002 // We don't need to serialize loads against other loads. 4003 Ops.push_back(DAG.getRoot()); 4004 } else { 4005 Ops.push_back(getRoot()); 4006 } 4007 } 4008 4009 // Info is set by getTgtMemInstrinsic 4010 TargetLowering::IntrinsicInfo Info; 4011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4012 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 4013 4014 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4015 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4016 Info.opc == ISD::INTRINSIC_W_CHAIN) 4017 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4018 TLI.getPointerTy(DAG.getDataLayout()))); 4019 4020 // Add all operands of the call to the operand list. 4021 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4022 SDValue Op = getValue(I.getArgOperand(i)); 4023 Ops.push_back(Op); 4024 } 4025 4026 SmallVector<EVT, 4> ValueVTs; 4027 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4028 4029 if (HasChain) 4030 ValueVTs.push_back(MVT::Other); 4031 4032 SDVTList VTs = DAG.getVTList(ValueVTs); 4033 4034 // Create the node. 4035 SDValue Result; 4036 if (IsTgtIntrinsic) { 4037 // This is target intrinsic that touches memory 4038 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4039 VTs, Ops, Info.memVT, 4040 MachinePointerInfo(Info.ptrVal, Info.offset), 4041 Info.align, Info.vol, 4042 Info.readMem, Info.writeMem, Info.size); 4043 } else if (!HasChain) { 4044 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4045 } else if (!I.getType()->isVoidTy()) { 4046 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4047 } else { 4048 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4049 } 4050 4051 if (HasChain) { 4052 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4053 if (OnlyLoad) 4054 PendingLoads.push_back(Chain); 4055 else 4056 DAG.setRoot(Chain); 4057 } 4058 4059 if (!I.getType()->isVoidTy()) { 4060 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4061 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4062 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4063 } else 4064 Result = lowerRangeToAssertZExt(DAG, I, Result); 4065 4066 setValue(&I, Result); 4067 } 4068 } 4069 4070 /// GetSignificand - Get the significand and build it into a floating-point 4071 /// number with exponent of 1: 4072 /// 4073 /// Op = (Op & 0x007fffff) | 0x3f800000; 4074 /// 4075 /// where Op is the hexadecimal representation of floating point value. 4076 static SDValue 4077 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 4078 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4079 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4080 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4081 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4082 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4083 } 4084 4085 /// GetExponent - Get the exponent: 4086 /// 4087 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4088 /// 4089 /// where Op is the hexadecimal representation of floating point value. 4090 static SDValue 4091 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 4092 SDLoc dl) { 4093 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4094 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4095 SDValue t1 = DAG.getNode( 4096 ISD::SRL, dl, MVT::i32, t0, 4097 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4098 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4099 DAG.getConstant(127, dl, MVT::i32)); 4100 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4101 } 4102 4103 /// getF32Constant - Get 32-bit floating point constant. 4104 static SDValue 4105 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 4106 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 4107 MVT::f32); 4108 } 4109 4110 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 4111 SelectionDAG &DAG) { 4112 // TODO: What fast-math-flags should be set on the floating-point nodes? 4113 4114 // IntegerPartOfX = ((int32_t)(t0); 4115 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4116 4117 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4118 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4119 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4120 4121 // IntegerPartOfX <<= 23; 4122 IntegerPartOfX = DAG.getNode( 4123 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4124 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4125 DAG.getDataLayout()))); 4126 4127 SDValue TwoToFractionalPartOfX; 4128 if (LimitFloatPrecision <= 6) { 4129 // For floating-point precision of 6: 4130 // 4131 // TwoToFractionalPartOfX = 4132 // 0.997535578f + 4133 // (0.735607626f + 0.252464424f * x) * x; 4134 // 4135 // error 0.0144103317, which is 6 bits 4136 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4137 getF32Constant(DAG, 0x3e814304, dl)); 4138 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4139 getF32Constant(DAG, 0x3f3c50c8, dl)); 4140 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4141 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4142 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4143 } else if (LimitFloatPrecision <= 12) { 4144 // For floating-point precision of 12: 4145 // 4146 // TwoToFractionalPartOfX = 4147 // 0.999892986f + 4148 // (0.696457318f + 4149 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4150 // 4151 // error 0.000107046256, which is 13 to 14 bits 4152 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4153 getF32Constant(DAG, 0x3da235e3, dl)); 4154 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4155 getF32Constant(DAG, 0x3e65b8f3, dl)); 4156 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4157 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4158 getF32Constant(DAG, 0x3f324b07, dl)); 4159 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4160 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4161 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4162 } else { // LimitFloatPrecision <= 18 4163 // For floating-point precision of 18: 4164 // 4165 // TwoToFractionalPartOfX = 4166 // 0.999999982f + 4167 // (0.693148872f + 4168 // (0.240227044f + 4169 // (0.554906021e-1f + 4170 // (0.961591928e-2f + 4171 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4172 // error 2.47208000*10^(-7), which is better than 18 bits 4173 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4174 getF32Constant(DAG, 0x3924b03e, dl)); 4175 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4176 getF32Constant(DAG, 0x3ab24b87, dl)); 4177 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4178 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4179 getF32Constant(DAG, 0x3c1d8c17, dl)); 4180 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4181 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4182 getF32Constant(DAG, 0x3d634a1d, dl)); 4183 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4184 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4185 getF32Constant(DAG, 0x3e75fe14, dl)); 4186 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4187 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4188 getF32Constant(DAG, 0x3f317234, dl)); 4189 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4190 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4191 getF32Constant(DAG, 0x3f800000, dl)); 4192 } 4193 4194 // Add the exponent into the result in integer domain. 4195 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4196 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4197 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4198 } 4199 4200 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4201 /// limited-precision mode. 4202 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4203 const TargetLowering &TLI) { 4204 if (Op.getValueType() == MVT::f32 && 4205 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4206 4207 // Put the exponent in the right bit position for later addition to the 4208 // final result: 4209 // 4210 // #define LOG2OFe 1.4426950f 4211 // t0 = Op * LOG2OFe 4212 4213 // TODO: What fast-math-flags should be set here? 4214 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4215 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4216 return getLimitedPrecisionExp2(t0, dl, DAG); 4217 } 4218 4219 // No special expansion. 4220 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4221 } 4222 4223 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4224 /// limited-precision mode. 4225 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4226 const TargetLowering &TLI) { 4227 4228 // TODO: What fast-math-flags should be set on the floating-point nodes? 4229 4230 if (Op.getValueType() == MVT::f32 && 4231 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4232 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4233 4234 // Scale the exponent by log(2) [0.69314718f]. 4235 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4236 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4237 getF32Constant(DAG, 0x3f317218, dl)); 4238 4239 // Get the significand and build it into a floating-point number with 4240 // exponent of 1. 4241 SDValue X = GetSignificand(DAG, Op1, dl); 4242 4243 SDValue LogOfMantissa; 4244 if (LimitFloatPrecision <= 6) { 4245 // For floating-point precision of 6: 4246 // 4247 // LogofMantissa = 4248 // -1.1609546f + 4249 // (1.4034025f - 0.23903021f * x) * x; 4250 // 4251 // error 0.0034276066, which is better than 8 bits 4252 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4253 getF32Constant(DAG, 0xbe74c456, dl)); 4254 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4255 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4256 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4257 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4258 getF32Constant(DAG, 0x3f949a29, dl)); 4259 } else if (LimitFloatPrecision <= 12) { 4260 // For floating-point precision of 12: 4261 // 4262 // LogOfMantissa = 4263 // -1.7417939f + 4264 // (2.8212026f + 4265 // (-1.4699568f + 4266 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4267 // 4268 // error 0.000061011436, which is 14 bits 4269 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4270 getF32Constant(DAG, 0xbd67b6d6, dl)); 4271 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4272 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4273 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4274 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4275 getF32Constant(DAG, 0x3fbc278b, dl)); 4276 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4277 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4278 getF32Constant(DAG, 0x40348e95, dl)); 4279 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4280 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4281 getF32Constant(DAG, 0x3fdef31a, dl)); 4282 } else { // LimitFloatPrecision <= 18 4283 // For floating-point precision of 18: 4284 // 4285 // LogOfMantissa = 4286 // -2.1072184f + 4287 // (4.2372794f + 4288 // (-3.7029485f + 4289 // (2.2781945f + 4290 // (-0.87823314f + 4291 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4292 // 4293 // error 0.0000023660568, which is better than 18 bits 4294 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4295 getF32Constant(DAG, 0xbc91e5ac, dl)); 4296 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4297 getF32Constant(DAG, 0x3e4350aa, dl)); 4298 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4299 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4300 getF32Constant(DAG, 0x3f60d3e3, dl)); 4301 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4302 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4303 getF32Constant(DAG, 0x4011cdf0, dl)); 4304 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4305 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4306 getF32Constant(DAG, 0x406cfd1c, dl)); 4307 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4308 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4309 getF32Constant(DAG, 0x408797cb, dl)); 4310 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4311 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4312 getF32Constant(DAG, 0x4006dcab, dl)); 4313 } 4314 4315 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4316 } 4317 4318 // No special expansion. 4319 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4320 } 4321 4322 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4323 /// limited-precision mode. 4324 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4325 const TargetLowering &TLI) { 4326 4327 // TODO: What fast-math-flags should be set on the floating-point nodes? 4328 4329 if (Op.getValueType() == MVT::f32 && 4330 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4331 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4332 4333 // Get the exponent. 4334 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4335 4336 // Get the significand and build it into a floating-point number with 4337 // exponent of 1. 4338 SDValue X = GetSignificand(DAG, Op1, dl); 4339 4340 // Different possible minimax approximations of significand in 4341 // floating-point for various degrees of accuracy over [1,2]. 4342 SDValue Log2ofMantissa; 4343 if (LimitFloatPrecision <= 6) { 4344 // For floating-point precision of 6: 4345 // 4346 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4347 // 4348 // error 0.0049451742, which is more than 7 bits 4349 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4350 getF32Constant(DAG, 0xbeb08fe0, dl)); 4351 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4352 getF32Constant(DAG, 0x40019463, dl)); 4353 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4354 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4355 getF32Constant(DAG, 0x3fd6633d, dl)); 4356 } else if (LimitFloatPrecision <= 12) { 4357 // For floating-point precision of 12: 4358 // 4359 // Log2ofMantissa = 4360 // -2.51285454f + 4361 // (4.07009056f + 4362 // (-2.12067489f + 4363 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4364 // 4365 // error 0.0000876136000, which is better than 13 bits 4366 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4367 getF32Constant(DAG, 0xbda7262e, dl)); 4368 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4369 getF32Constant(DAG, 0x3f25280b, dl)); 4370 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4371 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4372 getF32Constant(DAG, 0x4007b923, dl)); 4373 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4374 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4375 getF32Constant(DAG, 0x40823e2f, dl)); 4376 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4377 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4378 getF32Constant(DAG, 0x4020d29c, dl)); 4379 } else { // LimitFloatPrecision <= 18 4380 // For floating-point precision of 18: 4381 // 4382 // Log2ofMantissa = 4383 // -3.0400495f + 4384 // (6.1129976f + 4385 // (-5.3420409f + 4386 // (3.2865683f + 4387 // (-1.2669343f + 4388 // (0.27515199f - 4389 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4390 // 4391 // error 0.0000018516, which is better than 18 bits 4392 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4393 getF32Constant(DAG, 0xbcd2769e, dl)); 4394 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4395 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4396 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4397 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4398 getF32Constant(DAG, 0x3fa22ae7, dl)); 4399 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4400 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4401 getF32Constant(DAG, 0x40525723, dl)); 4402 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4403 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4404 getF32Constant(DAG, 0x40aaf200, dl)); 4405 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4406 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4407 getF32Constant(DAG, 0x40c39dad, dl)); 4408 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4409 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4410 getF32Constant(DAG, 0x4042902c, dl)); 4411 } 4412 4413 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4414 } 4415 4416 // No special expansion. 4417 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4418 } 4419 4420 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4421 /// limited-precision mode. 4422 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4423 const TargetLowering &TLI) { 4424 4425 // TODO: What fast-math-flags should be set on the floating-point nodes? 4426 4427 if (Op.getValueType() == MVT::f32 && 4428 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4429 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4430 4431 // Scale the exponent by log10(2) [0.30102999f]. 4432 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4433 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4434 getF32Constant(DAG, 0x3e9a209a, dl)); 4435 4436 // Get the significand and build it into a floating-point number with 4437 // exponent of 1. 4438 SDValue X = GetSignificand(DAG, Op1, dl); 4439 4440 SDValue Log10ofMantissa; 4441 if (LimitFloatPrecision <= 6) { 4442 // For floating-point precision of 6: 4443 // 4444 // Log10ofMantissa = 4445 // -0.50419619f + 4446 // (0.60948995f - 0.10380950f * x) * x; 4447 // 4448 // error 0.0014886165, which is 6 bits 4449 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4450 getF32Constant(DAG, 0xbdd49a13, dl)); 4451 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4452 getF32Constant(DAG, 0x3f1c0789, dl)); 4453 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4454 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4455 getF32Constant(DAG, 0x3f011300, dl)); 4456 } else if (LimitFloatPrecision <= 12) { 4457 // For floating-point precision of 12: 4458 // 4459 // Log10ofMantissa = 4460 // -0.64831180f + 4461 // (0.91751397f + 4462 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4463 // 4464 // error 0.00019228036, which is better than 12 bits 4465 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4466 getF32Constant(DAG, 0x3d431f31, dl)); 4467 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4468 getF32Constant(DAG, 0x3ea21fb2, dl)); 4469 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4470 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4471 getF32Constant(DAG, 0x3f6ae232, dl)); 4472 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4473 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4474 getF32Constant(DAG, 0x3f25f7c3, dl)); 4475 } else { // LimitFloatPrecision <= 18 4476 // For floating-point precision of 18: 4477 // 4478 // Log10ofMantissa = 4479 // -0.84299375f + 4480 // (1.5327582f + 4481 // (-1.0688956f + 4482 // (0.49102474f + 4483 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4484 // 4485 // error 0.0000037995730, which is better than 18 bits 4486 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4487 getF32Constant(DAG, 0x3c5d51ce, dl)); 4488 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4489 getF32Constant(DAG, 0x3e00685a, dl)); 4490 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4491 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4492 getF32Constant(DAG, 0x3efb6798, dl)); 4493 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4494 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4495 getF32Constant(DAG, 0x3f88d192, dl)); 4496 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4497 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4498 getF32Constant(DAG, 0x3fc4316c, dl)); 4499 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4500 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4501 getF32Constant(DAG, 0x3f57ce70, dl)); 4502 } 4503 4504 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4505 } 4506 4507 // No special expansion. 4508 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4509 } 4510 4511 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4512 /// limited-precision mode. 4513 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4514 const TargetLowering &TLI) { 4515 if (Op.getValueType() == MVT::f32 && 4516 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4517 return getLimitedPrecisionExp2(Op, dl, DAG); 4518 4519 // No special expansion. 4520 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4521 } 4522 4523 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4524 /// limited-precision mode with x == 10.0f. 4525 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4526 SelectionDAG &DAG, const TargetLowering &TLI) { 4527 bool IsExp10 = false; 4528 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4529 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4530 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4531 APFloat Ten(10.0f); 4532 IsExp10 = LHSC->isExactlyValue(Ten); 4533 } 4534 } 4535 4536 // TODO: What fast-math-flags should be set on the FMUL node? 4537 if (IsExp10) { 4538 // Put the exponent in the right bit position for later addition to the 4539 // final result: 4540 // 4541 // #define LOG2OF10 3.3219281f 4542 // t0 = Op * LOG2OF10; 4543 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4544 getF32Constant(DAG, 0x40549a78, dl)); 4545 return getLimitedPrecisionExp2(t0, dl, DAG); 4546 } 4547 4548 // No special expansion. 4549 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4550 } 4551 4552 4553 /// ExpandPowI - Expand a llvm.powi intrinsic. 4554 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4555 SelectionDAG &DAG) { 4556 // If RHS is a constant, we can expand this out to a multiplication tree, 4557 // otherwise we end up lowering to a call to __powidf2 (for example). When 4558 // optimizing for size, we only want to do this if the expansion would produce 4559 // a small number of multiplies, otherwise we do the full expansion. 4560 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4561 // Get the exponent as a positive value. 4562 unsigned Val = RHSC->getSExtValue(); 4563 if ((int)Val < 0) Val = -Val; 4564 4565 // powi(x, 0) -> 1.0 4566 if (Val == 0) 4567 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4568 4569 const Function *F = DAG.getMachineFunction().getFunction(); 4570 if (!F->optForSize() || 4571 // If optimizing for size, don't insert too many multiplies. 4572 // This inserts up to 5 multiplies. 4573 countPopulation(Val) + Log2_32(Val) < 7) { 4574 // We use the simple binary decomposition method to generate the multiply 4575 // sequence. There are more optimal ways to do this (for example, 4576 // powi(x,15) generates one more multiply than it should), but this has 4577 // the benefit of being both really simple and much better than a libcall. 4578 SDValue Res; // Logically starts equal to 1.0 4579 SDValue CurSquare = LHS; 4580 // TODO: Intrinsics should have fast-math-flags that propagate to these 4581 // nodes. 4582 while (Val) { 4583 if (Val & 1) { 4584 if (Res.getNode()) 4585 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4586 else 4587 Res = CurSquare; // 1.0*CurSquare. 4588 } 4589 4590 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4591 CurSquare, CurSquare); 4592 Val >>= 1; 4593 } 4594 4595 // If the original was negative, invert the result, producing 1/(x*x*x). 4596 if (RHSC->getSExtValue() < 0) 4597 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4598 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4599 return Res; 4600 } 4601 } 4602 4603 // Otherwise, expand to a libcall. 4604 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4605 } 4606 4607 // getUnderlyingArgReg - Find underlying register used for a truncated or 4608 // bitcasted argument. 4609 static unsigned getUnderlyingArgReg(const SDValue &N) { 4610 switch (N.getOpcode()) { 4611 case ISD::CopyFromReg: 4612 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4613 case ISD::BITCAST: 4614 case ISD::AssertZext: 4615 case ISD::AssertSext: 4616 case ISD::TRUNCATE: 4617 return getUnderlyingArgReg(N.getOperand(0)); 4618 default: 4619 return 0; 4620 } 4621 } 4622 4623 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4624 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4625 /// At the end of instruction selection, they will be inserted to the entry BB. 4626 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4627 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4628 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4629 const Argument *Arg = dyn_cast<Argument>(V); 4630 if (!Arg) 4631 return false; 4632 4633 MachineFunction &MF = DAG.getMachineFunction(); 4634 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4635 4636 // Ignore inlined function arguments here. 4637 // 4638 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4639 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4640 return false; 4641 4642 Optional<MachineOperand> Op; 4643 // Some arguments' frame index is recorded during argument lowering. 4644 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4645 Op = MachineOperand::CreateFI(FI); 4646 4647 if (!Op && N.getNode()) { 4648 unsigned Reg = getUnderlyingArgReg(N); 4649 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4650 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4651 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4652 if (PR) 4653 Reg = PR; 4654 } 4655 if (Reg) 4656 Op = MachineOperand::CreateReg(Reg, false); 4657 } 4658 4659 if (!Op) { 4660 // Check if ValueMap has reg number. 4661 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4662 if (VMI != FuncInfo.ValueMap.end()) 4663 Op = MachineOperand::CreateReg(VMI->second, false); 4664 } 4665 4666 if (!Op && N.getNode()) 4667 // Check if frame index is available. 4668 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4669 if (FrameIndexSDNode *FINode = 4670 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4671 Op = MachineOperand::CreateFI(FINode->getIndex()); 4672 4673 if (!Op) 4674 return false; 4675 4676 assert(Variable->isValidLocationForIntrinsic(DL) && 4677 "Expected inlined-at fields to agree"); 4678 if (Op->isReg()) 4679 FuncInfo.ArgDbgValues.push_back( 4680 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4681 Op->getReg(), Offset, Variable, Expr)); 4682 else 4683 FuncInfo.ArgDbgValues.push_back( 4684 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4685 .addOperand(*Op) 4686 .addImm(Offset) 4687 .addMetadata(Variable) 4688 .addMetadata(Expr)); 4689 4690 return true; 4691 } 4692 4693 // VisualStudio defines setjmp as _setjmp 4694 #if defined(_MSC_VER) && defined(setjmp) && \ 4695 !defined(setjmp_undefined_for_msvc) 4696 # pragma push_macro("setjmp") 4697 # undef setjmp 4698 # define setjmp_undefined_for_msvc 4699 #endif 4700 4701 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4702 /// we want to emit this as a call to a named external function, return the name 4703 /// otherwise lower it and return null. 4704 const char * 4705 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4707 SDLoc sdl = getCurSDLoc(); 4708 DebugLoc dl = getCurDebugLoc(); 4709 SDValue Res; 4710 4711 switch (Intrinsic) { 4712 default: 4713 // By default, turn this into a target intrinsic node. 4714 visitTargetIntrinsic(I, Intrinsic); 4715 return nullptr; 4716 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4717 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4718 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4719 case Intrinsic::returnaddress: 4720 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4721 TLI.getPointerTy(DAG.getDataLayout()), 4722 getValue(I.getArgOperand(0)))); 4723 return nullptr; 4724 case Intrinsic::frameaddress: 4725 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4726 TLI.getPointerTy(DAG.getDataLayout()), 4727 getValue(I.getArgOperand(0)))); 4728 return nullptr; 4729 case Intrinsic::read_register: { 4730 Value *Reg = I.getArgOperand(0); 4731 SDValue Chain = getRoot(); 4732 SDValue RegName = 4733 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4734 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4735 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4736 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4737 setValue(&I, Res); 4738 DAG.setRoot(Res.getValue(1)); 4739 return nullptr; 4740 } 4741 case Intrinsic::write_register: { 4742 Value *Reg = I.getArgOperand(0); 4743 Value *RegValue = I.getArgOperand(1); 4744 SDValue Chain = getRoot(); 4745 SDValue RegName = 4746 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4747 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4748 RegName, getValue(RegValue))); 4749 return nullptr; 4750 } 4751 case Intrinsic::setjmp: 4752 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4753 case Intrinsic::longjmp: 4754 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4755 case Intrinsic::memcpy: { 4756 SDValue Op1 = getValue(I.getArgOperand(0)); 4757 SDValue Op2 = getValue(I.getArgOperand(1)); 4758 SDValue Op3 = getValue(I.getArgOperand(2)); 4759 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4760 if (!Align) 4761 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4762 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4763 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4764 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4765 false, isTC, 4766 MachinePointerInfo(I.getArgOperand(0)), 4767 MachinePointerInfo(I.getArgOperand(1))); 4768 updateDAGForMaybeTailCall(MC); 4769 return nullptr; 4770 } 4771 case Intrinsic::memset: { 4772 SDValue Op1 = getValue(I.getArgOperand(0)); 4773 SDValue Op2 = getValue(I.getArgOperand(1)); 4774 SDValue Op3 = getValue(I.getArgOperand(2)); 4775 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4776 if (!Align) 4777 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4778 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4779 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4780 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4781 isTC, MachinePointerInfo(I.getArgOperand(0))); 4782 updateDAGForMaybeTailCall(MS); 4783 return nullptr; 4784 } 4785 case Intrinsic::memmove: { 4786 SDValue Op1 = getValue(I.getArgOperand(0)); 4787 SDValue Op2 = getValue(I.getArgOperand(1)); 4788 SDValue Op3 = getValue(I.getArgOperand(2)); 4789 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4790 if (!Align) 4791 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4792 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4793 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4794 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4795 isTC, MachinePointerInfo(I.getArgOperand(0)), 4796 MachinePointerInfo(I.getArgOperand(1))); 4797 updateDAGForMaybeTailCall(MM); 4798 return nullptr; 4799 } 4800 case Intrinsic::dbg_declare: { 4801 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4802 DILocalVariable *Variable = DI.getVariable(); 4803 DIExpression *Expression = DI.getExpression(); 4804 const Value *Address = DI.getAddress(); 4805 assert(Variable && "Missing variable"); 4806 if (!Address) { 4807 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4808 return nullptr; 4809 } 4810 4811 // Check if address has undef value. 4812 if (isa<UndefValue>(Address) || 4813 (Address->use_empty() && !isa<Argument>(Address))) { 4814 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4815 return nullptr; 4816 } 4817 4818 SDValue &N = NodeMap[Address]; 4819 if (!N.getNode() && isa<Argument>(Address)) 4820 // Check unused arguments map. 4821 N = UnusedArgNodeMap[Address]; 4822 SDDbgValue *SDV; 4823 if (N.getNode()) { 4824 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4825 Address = BCI->getOperand(0); 4826 // Parameters are handled specially. 4827 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4828 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4829 if (isParameter && FINode) { 4830 // Byval parameter. We have a frame index at this point. 4831 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4832 FINode->getIndex(), 0, dl, SDNodeOrder); 4833 } else if (isa<Argument>(Address)) { 4834 // Address is an argument, so try to emit its dbg value using 4835 // virtual register info from the FuncInfo.ValueMap. 4836 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4837 N); 4838 return nullptr; 4839 } else { 4840 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4841 true, 0, dl, SDNodeOrder); 4842 } 4843 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4844 } else { 4845 // If Address is an argument then try to emit its dbg value using 4846 // virtual register info from the FuncInfo.ValueMap. 4847 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4848 N)) { 4849 // If variable is pinned by a alloca in dominating bb then 4850 // use StaticAllocaMap. 4851 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4852 if (AI->getParent() != DI.getParent()) { 4853 DenseMap<const AllocaInst*, int>::iterator SI = 4854 FuncInfo.StaticAllocaMap.find(AI); 4855 if (SI != FuncInfo.StaticAllocaMap.end()) { 4856 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4857 0, dl, SDNodeOrder); 4858 DAG.AddDbgValue(SDV, nullptr, false); 4859 return nullptr; 4860 } 4861 } 4862 } 4863 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4864 } 4865 } 4866 return nullptr; 4867 } 4868 case Intrinsic::dbg_value: { 4869 const DbgValueInst &DI = cast<DbgValueInst>(I); 4870 assert(DI.getVariable() && "Missing variable"); 4871 4872 DILocalVariable *Variable = DI.getVariable(); 4873 DIExpression *Expression = DI.getExpression(); 4874 uint64_t Offset = DI.getOffset(); 4875 const Value *V = DI.getValue(); 4876 if (!V) 4877 return nullptr; 4878 4879 SDDbgValue *SDV; 4880 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4881 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4882 SDNodeOrder); 4883 DAG.AddDbgValue(SDV, nullptr, false); 4884 } else { 4885 // Do not use getValue() in here; we don't want to generate code at 4886 // this point if it hasn't been done yet. 4887 SDValue N = NodeMap[V]; 4888 if (!N.getNode() && isa<Argument>(V)) 4889 // Check unused arguments map. 4890 N = UnusedArgNodeMap[V]; 4891 if (N.getNode()) { 4892 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4893 false, N)) { 4894 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4895 false, Offset, dl, SDNodeOrder); 4896 DAG.AddDbgValue(SDV, N.getNode(), false); 4897 } 4898 } else if (!V->use_empty() ) { 4899 // Do not call getValue(V) yet, as we don't want to generate code. 4900 // Remember it for later. 4901 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4902 DanglingDebugInfoMap[V] = DDI; 4903 } else { 4904 // We may expand this to cover more cases. One case where we have no 4905 // data available is an unreferenced parameter. 4906 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4907 } 4908 } 4909 4910 // Build a debug info table entry. 4911 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4912 V = BCI->getOperand(0); 4913 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4914 // Don't handle byval struct arguments or VLAs, for example. 4915 if (!AI) { 4916 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4917 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4918 return nullptr; 4919 } 4920 DenseMap<const AllocaInst*, int>::iterator SI = 4921 FuncInfo.StaticAllocaMap.find(AI); 4922 if (SI == FuncInfo.StaticAllocaMap.end()) 4923 return nullptr; // VLAs. 4924 return nullptr; 4925 } 4926 4927 case Intrinsic::eh_typeid_for: { 4928 // Find the type id for the given typeinfo. 4929 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4930 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4931 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4932 setValue(&I, Res); 4933 return nullptr; 4934 } 4935 4936 case Intrinsic::eh_return_i32: 4937 case Intrinsic::eh_return_i64: 4938 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4939 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4940 MVT::Other, 4941 getControlRoot(), 4942 getValue(I.getArgOperand(0)), 4943 getValue(I.getArgOperand(1)))); 4944 return nullptr; 4945 case Intrinsic::eh_unwind_init: 4946 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4947 return nullptr; 4948 case Intrinsic::eh_dwarf_cfa: { 4949 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4950 TLI.getPointerTy(DAG.getDataLayout())); 4951 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4952 CfaArg.getValueType(), 4953 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4954 CfaArg.getValueType()), 4955 CfaArg); 4956 SDValue FA = DAG.getNode( 4957 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4958 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4959 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4960 FA, Offset)); 4961 return nullptr; 4962 } 4963 case Intrinsic::eh_sjlj_callsite: { 4964 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4965 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4966 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4967 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4968 4969 MMI.setCurrentCallSite(CI->getZExtValue()); 4970 return nullptr; 4971 } 4972 case Intrinsic::eh_sjlj_functioncontext: { 4973 // Get and store the index of the function context. 4974 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4975 AllocaInst *FnCtx = 4976 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4977 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4978 MFI->setFunctionContextIndex(FI); 4979 return nullptr; 4980 } 4981 case Intrinsic::eh_sjlj_setjmp: { 4982 SDValue Ops[2]; 4983 Ops[0] = getRoot(); 4984 Ops[1] = getValue(I.getArgOperand(0)); 4985 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4986 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4987 setValue(&I, Op.getValue(0)); 4988 DAG.setRoot(Op.getValue(1)); 4989 return nullptr; 4990 } 4991 case Intrinsic::eh_sjlj_longjmp: { 4992 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4993 getRoot(), getValue(I.getArgOperand(0)))); 4994 return nullptr; 4995 } 4996 case Intrinsic::eh_sjlj_setup_dispatch: { 4997 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4998 getRoot())); 4999 return nullptr; 5000 } 5001 5002 case Intrinsic::masked_gather: 5003 visitMaskedGather(I); 5004 return nullptr; 5005 case Intrinsic::masked_load: 5006 visitMaskedLoad(I); 5007 return nullptr; 5008 case Intrinsic::masked_scatter: 5009 visitMaskedScatter(I); 5010 return nullptr; 5011 case Intrinsic::masked_store: 5012 visitMaskedStore(I); 5013 return nullptr; 5014 case Intrinsic::x86_mmx_pslli_w: 5015 case Intrinsic::x86_mmx_pslli_d: 5016 case Intrinsic::x86_mmx_pslli_q: 5017 case Intrinsic::x86_mmx_psrli_w: 5018 case Intrinsic::x86_mmx_psrli_d: 5019 case Intrinsic::x86_mmx_psrli_q: 5020 case Intrinsic::x86_mmx_psrai_w: 5021 case Intrinsic::x86_mmx_psrai_d: { 5022 SDValue ShAmt = getValue(I.getArgOperand(1)); 5023 if (isa<ConstantSDNode>(ShAmt)) { 5024 visitTargetIntrinsic(I, Intrinsic); 5025 return nullptr; 5026 } 5027 unsigned NewIntrinsic = 0; 5028 EVT ShAmtVT = MVT::v2i32; 5029 switch (Intrinsic) { 5030 case Intrinsic::x86_mmx_pslli_w: 5031 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5032 break; 5033 case Intrinsic::x86_mmx_pslli_d: 5034 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5035 break; 5036 case Intrinsic::x86_mmx_pslli_q: 5037 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5038 break; 5039 case Intrinsic::x86_mmx_psrli_w: 5040 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5041 break; 5042 case Intrinsic::x86_mmx_psrli_d: 5043 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5044 break; 5045 case Intrinsic::x86_mmx_psrli_q: 5046 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5047 break; 5048 case Intrinsic::x86_mmx_psrai_w: 5049 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5050 break; 5051 case Intrinsic::x86_mmx_psrai_d: 5052 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5053 break; 5054 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5055 } 5056 5057 // The vector shift intrinsics with scalars uses 32b shift amounts but 5058 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5059 // to be zero. 5060 // We must do this early because v2i32 is not a legal type. 5061 SDValue ShOps[2]; 5062 ShOps[0] = ShAmt; 5063 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5064 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5065 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5066 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5067 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5068 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5069 getValue(I.getArgOperand(0)), ShAmt); 5070 setValue(&I, Res); 5071 return nullptr; 5072 } 5073 case Intrinsic::convertff: 5074 case Intrinsic::convertfsi: 5075 case Intrinsic::convertfui: 5076 case Intrinsic::convertsif: 5077 case Intrinsic::convertuif: 5078 case Intrinsic::convertss: 5079 case Intrinsic::convertsu: 5080 case Intrinsic::convertus: 5081 case Intrinsic::convertuu: { 5082 ISD::CvtCode Code = ISD::CVT_INVALID; 5083 switch (Intrinsic) { 5084 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5085 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5086 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5087 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5088 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5089 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5090 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5091 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5092 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5093 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5094 } 5095 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5096 const Value *Op1 = I.getArgOperand(0); 5097 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5098 DAG.getValueType(DestVT), 5099 DAG.getValueType(getValue(Op1).getValueType()), 5100 getValue(I.getArgOperand(1)), 5101 getValue(I.getArgOperand(2)), 5102 Code); 5103 setValue(&I, Res); 5104 return nullptr; 5105 } 5106 case Intrinsic::powi: 5107 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5108 getValue(I.getArgOperand(1)), DAG)); 5109 return nullptr; 5110 case Intrinsic::log: 5111 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5112 return nullptr; 5113 case Intrinsic::log2: 5114 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5115 return nullptr; 5116 case Intrinsic::log10: 5117 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5118 return nullptr; 5119 case Intrinsic::exp: 5120 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5121 return nullptr; 5122 case Intrinsic::exp2: 5123 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5124 return nullptr; 5125 case Intrinsic::pow: 5126 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5127 getValue(I.getArgOperand(1)), DAG, TLI)); 5128 return nullptr; 5129 case Intrinsic::sqrt: 5130 case Intrinsic::fabs: 5131 case Intrinsic::sin: 5132 case Intrinsic::cos: 5133 case Intrinsic::floor: 5134 case Intrinsic::ceil: 5135 case Intrinsic::trunc: 5136 case Intrinsic::rint: 5137 case Intrinsic::nearbyint: 5138 case Intrinsic::round: 5139 case Intrinsic::canonicalize: { 5140 unsigned Opcode; 5141 switch (Intrinsic) { 5142 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5143 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5144 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5145 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5146 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5147 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5148 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5149 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5150 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5151 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5152 case Intrinsic::round: Opcode = ISD::FROUND; break; 5153 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5154 } 5155 5156 setValue(&I, DAG.getNode(Opcode, sdl, 5157 getValue(I.getArgOperand(0)).getValueType(), 5158 getValue(I.getArgOperand(0)))); 5159 return nullptr; 5160 } 5161 case Intrinsic::minnum: { 5162 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5163 unsigned Opc = 5164 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5165 ? ISD::FMINNAN 5166 : ISD::FMINNUM; 5167 setValue(&I, DAG.getNode(Opc, sdl, VT, 5168 getValue(I.getArgOperand(0)), 5169 getValue(I.getArgOperand(1)))); 5170 return nullptr; 5171 } 5172 case Intrinsic::maxnum: { 5173 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5174 unsigned Opc = 5175 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5176 ? ISD::FMAXNAN 5177 : ISD::FMAXNUM; 5178 setValue(&I, DAG.getNode(Opc, sdl, VT, 5179 getValue(I.getArgOperand(0)), 5180 getValue(I.getArgOperand(1)))); 5181 return nullptr; 5182 } 5183 case Intrinsic::copysign: 5184 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5185 getValue(I.getArgOperand(0)).getValueType(), 5186 getValue(I.getArgOperand(0)), 5187 getValue(I.getArgOperand(1)))); 5188 return nullptr; 5189 case Intrinsic::fma: 5190 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5191 getValue(I.getArgOperand(0)).getValueType(), 5192 getValue(I.getArgOperand(0)), 5193 getValue(I.getArgOperand(1)), 5194 getValue(I.getArgOperand(2)))); 5195 return nullptr; 5196 case Intrinsic::fmuladd: { 5197 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5198 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5199 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5200 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5201 getValue(I.getArgOperand(0)).getValueType(), 5202 getValue(I.getArgOperand(0)), 5203 getValue(I.getArgOperand(1)), 5204 getValue(I.getArgOperand(2)))); 5205 } else { 5206 // TODO: Intrinsic calls should have fast-math-flags. 5207 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5208 getValue(I.getArgOperand(0)).getValueType(), 5209 getValue(I.getArgOperand(0)), 5210 getValue(I.getArgOperand(1))); 5211 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5212 getValue(I.getArgOperand(0)).getValueType(), 5213 Mul, 5214 getValue(I.getArgOperand(2))); 5215 setValue(&I, Add); 5216 } 5217 return nullptr; 5218 } 5219 case Intrinsic::convert_to_fp16: 5220 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5221 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5222 getValue(I.getArgOperand(0)), 5223 DAG.getTargetConstant(0, sdl, 5224 MVT::i32)))); 5225 return nullptr; 5226 case Intrinsic::convert_from_fp16: 5227 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5228 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5229 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5230 getValue(I.getArgOperand(0))))); 5231 return nullptr; 5232 case Intrinsic::pcmarker: { 5233 SDValue Tmp = getValue(I.getArgOperand(0)); 5234 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5235 return nullptr; 5236 } 5237 case Intrinsic::readcyclecounter: { 5238 SDValue Op = getRoot(); 5239 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5240 DAG.getVTList(MVT::i64, MVT::Other), Op); 5241 setValue(&I, Res); 5242 DAG.setRoot(Res.getValue(1)); 5243 return nullptr; 5244 } 5245 case Intrinsic::bitreverse: 5246 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5247 getValue(I.getArgOperand(0)).getValueType(), 5248 getValue(I.getArgOperand(0)))); 5249 return nullptr; 5250 case Intrinsic::bswap: 5251 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5252 getValue(I.getArgOperand(0)).getValueType(), 5253 getValue(I.getArgOperand(0)))); 5254 return nullptr; 5255 case Intrinsic::cttz: { 5256 SDValue Arg = getValue(I.getArgOperand(0)); 5257 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5258 EVT Ty = Arg.getValueType(); 5259 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5260 sdl, Ty, Arg)); 5261 return nullptr; 5262 } 5263 case Intrinsic::ctlz: { 5264 SDValue Arg = getValue(I.getArgOperand(0)); 5265 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5266 EVT Ty = Arg.getValueType(); 5267 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5268 sdl, Ty, Arg)); 5269 return nullptr; 5270 } 5271 case Intrinsic::ctpop: { 5272 SDValue Arg = getValue(I.getArgOperand(0)); 5273 EVT Ty = Arg.getValueType(); 5274 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5275 return nullptr; 5276 } 5277 case Intrinsic::stacksave: { 5278 SDValue Op = getRoot(); 5279 Res = DAG.getNode( 5280 ISD::STACKSAVE, sdl, 5281 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5282 setValue(&I, Res); 5283 DAG.setRoot(Res.getValue(1)); 5284 return nullptr; 5285 } 5286 case Intrinsic::stackrestore: { 5287 Res = getValue(I.getArgOperand(0)); 5288 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5289 return nullptr; 5290 } 5291 case Intrinsic::get_dynamic_area_offset: { 5292 SDValue Op = getRoot(); 5293 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5294 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5295 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5296 // target. 5297 if (PtrTy != ResTy) 5298 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5299 " intrinsic!"); 5300 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5301 Op); 5302 DAG.setRoot(Op); 5303 setValue(&I, Res); 5304 return nullptr; 5305 } 5306 case Intrinsic::stackguard: { 5307 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5308 MachineFunction &MF = DAG.getMachineFunction(); 5309 const Module &M = *MF.getFunction()->getParent(); 5310 SDValue Chain = getRoot(); 5311 if (TLI.useLoadStackGuardNode()) { 5312 Res = getLoadStackGuard(DAG, sdl, Chain); 5313 } else { 5314 const Value *Global = TLI.getSDagStackGuard(M); 5315 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5316 Res = 5317 DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5318 MachinePointerInfo(Global, 0), true, false, false, Align); 5319 } 5320 DAG.setRoot(Chain); 5321 setValue(&I, Res); 5322 return nullptr; 5323 } 5324 case Intrinsic::stackprotector: { 5325 // Emit code into the DAG to store the stack guard onto the stack. 5326 MachineFunction &MF = DAG.getMachineFunction(); 5327 MachineFrameInfo *MFI = MF.getFrameInfo(); 5328 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5329 SDValue Src, Chain = getRoot(); 5330 5331 if (TLI.useLoadStackGuardNode()) 5332 Src = getLoadStackGuard(DAG, sdl, Chain); 5333 else 5334 Src = getValue(I.getArgOperand(0)); // The guard's value. 5335 5336 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5337 5338 int FI = FuncInfo.StaticAllocaMap[Slot]; 5339 MFI->setStackProtectorIndex(FI); 5340 5341 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5342 5343 // Store the stack protector onto the stack. 5344 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5345 DAG.getMachineFunction(), FI), 5346 true, false, 0); 5347 setValue(&I, Res); 5348 DAG.setRoot(Res); 5349 return nullptr; 5350 } 5351 case Intrinsic::objectsize: { 5352 // If we don't know by now, we're never going to know. 5353 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5354 5355 assert(CI && "Non-constant type in __builtin_object_size?"); 5356 5357 SDValue Arg = getValue(I.getCalledValue()); 5358 EVT Ty = Arg.getValueType(); 5359 5360 if (CI->isZero()) 5361 Res = DAG.getConstant(-1ULL, sdl, Ty); 5362 else 5363 Res = DAG.getConstant(0, sdl, Ty); 5364 5365 setValue(&I, Res); 5366 return nullptr; 5367 } 5368 case Intrinsic::annotation: 5369 case Intrinsic::ptr_annotation: 5370 // Drop the intrinsic, but forward the value 5371 setValue(&I, getValue(I.getOperand(0))); 5372 return nullptr; 5373 case Intrinsic::assume: 5374 case Intrinsic::var_annotation: 5375 // Discard annotate attributes and assumptions 5376 return nullptr; 5377 5378 case Intrinsic::init_trampoline: { 5379 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5380 5381 SDValue Ops[6]; 5382 Ops[0] = getRoot(); 5383 Ops[1] = getValue(I.getArgOperand(0)); 5384 Ops[2] = getValue(I.getArgOperand(1)); 5385 Ops[3] = getValue(I.getArgOperand(2)); 5386 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5387 Ops[5] = DAG.getSrcValue(F); 5388 5389 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5390 5391 DAG.setRoot(Res); 5392 return nullptr; 5393 } 5394 case Intrinsic::adjust_trampoline: { 5395 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5396 TLI.getPointerTy(DAG.getDataLayout()), 5397 getValue(I.getArgOperand(0)))); 5398 return nullptr; 5399 } 5400 case Intrinsic::gcroot: { 5401 MachineFunction &MF = DAG.getMachineFunction(); 5402 const Function *F = MF.getFunction(); 5403 (void)F; 5404 assert(F->hasGC() && 5405 "only valid in functions with gc specified, enforced by Verifier"); 5406 assert(GFI && "implied by previous"); 5407 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5408 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5409 5410 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5411 GFI->addStackRoot(FI->getIndex(), TypeMap); 5412 return nullptr; 5413 } 5414 case Intrinsic::gcread: 5415 case Intrinsic::gcwrite: 5416 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5417 case Intrinsic::flt_rounds: 5418 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5419 return nullptr; 5420 5421 case Intrinsic::expect: { 5422 // Just replace __builtin_expect(exp, c) with EXP. 5423 setValue(&I, getValue(I.getArgOperand(0))); 5424 return nullptr; 5425 } 5426 5427 case Intrinsic::debugtrap: 5428 case Intrinsic::trap: { 5429 StringRef TrapFuncName = 5430 I.getAttributes() 5431 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5432 .getValueAsString(); 5433 if (TrapFuncName.empty()) { 5434 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5435 ISD::TRAP : ISD::DEBUGTRAP; 5436 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5437 return nullptr; 5438 } 5439 TargetLowering::ArgListTy Args; 5440 5441 TargetLowering::CallLoweringInfo CLI(DAG); 5442 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5443 CallingConv::C, I.getType(), 5444 DAG.getExternalSymbol(TrapFuncName.data(), 5445 TLI.getPointerTy(DAG.getDataLayout())), 5446 std::move(Args), 0); 5447 5448 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5449 DAG.setRoot(Result.second); 5450 return nullptr; 5451 } 5452 5453 case Intrinsic::uadd_with_overflow: 5454 case Intrinsic::sadd_with_overflow: 5455 case Intrinsic::usub_with_overflow: 5456 case Intrinsic::ssub_with_overflow: 5457 case Intrinsic::umul_with_overflow: 5458 case Intrinsic::smul_with_overflow: { 5459 ISD::NodeType Op; 5460 switch (Intrinsic) { 5461 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5462 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5463 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5464 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5465 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5466 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5467 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5468 } 5469 SDValue Op1 = getValue(I.getArgOperand(0)); 5470 SDValue Op2 = getValue(I.getArgOperand(1)); 5471 5472 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5473 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5474 return nullptr; 5475 } 5476 case Intrinsic::prefetch: { 5477 SDValue Ops[5]; 5478 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5479 Ops[0] = getRoot(); 5480 Ops[1] = getValue(I.getArgOperand(0)); 5481 Ops[2] = getValue(I.getArgOperand(1)); 5482 Ops[3] = getValue(I.getArgOperand(2)); 5483 Ops[4] = getValue(I.getArgOperand(3)); 5484 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5485 DAG.getVTList(MVT::Other), Ops, 5486 EVT::getIntegerVT(*Context, 8), 5487 MachinePointerInfo(I.getArgOperand(0)), 5488 0, /* align */ 5489 false, /* volatile */ 5490 rw==0, /* read */ 5491 rw==1)); /* write */ 5492 return nullptr; 5493 } 5494 case Intrinsic::lifetime_start: 5495 case Intrinsic::lifetime_end: { 5496 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5497 // Stack coloring is not enabled in O0, discard region information. 5498 if (TM.getOptLevel() == CodeGenOpt::None) 5499 return nullptr; 5500 5501 SmallVector<Value *, 4> Allocas; 5502 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5503 5504 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5505 E = Allocas.end(); Object != E; ++Object) { 5506 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5507 5508 // Could not find an Alloca. 5509 if (!LifetimeObject) 5510 continue; 5511 5512 // First check that the Alloca is static, otherwise it won't have a 5513 // valid frame index. 5514 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5515 if (SI == FuncInfo.StaticAllocaMap.end()) 5516 return nullptr; 5517 5518 int FI = SI->second; 5519 5520 SDValue Ops[2]; 5521 Ops[0] = getRoot(); 5522 Ops[1] = 5523 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5524 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5525 5526 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5527 DAG.setRoot(Res); 5528 } 5529 return nullptr; 5530 } 5531 case Intrinsic::invariant_start: 5532 // Discard region information. 5533 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5534 return nullptr; 5535 case Intrinsic::invariant_end: 5536 // Discard region information. 5537 return nullptr; 5538 case Intrinsic::clear_cache: 5539 return TLI.getClearCacheBuiltinName(); 5540 case Intrinsic::donothing: 5541 // ignore 5542 return nullptr; 5543 case Intrinsic::experimental_stackmap: { 5544 visitStackmap(I); 5545 return nullptr; 5546 } 5547 case Intrinsic::experimental_patchpoint_void: 5548 case Intrinsic::experimental_patchpoint_i64: { 5549 visitPatchpoint(&I); 5550 return nullptr; 5551 } 5552 case Intrinsic::experimental_gc_statepoint: { 5553 LowerStatepoint(ImmutableStatepoint(&I)); 5554 return nullptr; 5555 } 5556 case Intrinsic::experimental_gc_result: { 5557 visitGCResult(cast<GCResultInst>(I)); 5558 return nullptr; 5559 } 5560 case Intrinsic::experimental_gc_relocate: { 5561 visitGCRelocate(cast<GCRelocateInst>(I)); 5562 return nullptr; 5563 } 5564 case Intrinsic::instrprof_increment: 5565 llvm_unreachable("instrprof failed to lower an increment"); 5566 case Intrinsic::instrprof_value_profile: 5567 llvm_unreachable("instrprof failed to lower a value profiling call"); 5568 case Intrinsic::localescape: { 5569 MachineFunction &MF = DAG.getMachineFunction(); 5570 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5571 5572 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5573 // is the same on all targets. 5574 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5575 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5576 if (isa<ConstantPointerNull>(Arg)) 5577 continue; // Skip null pointers. They represent a hole in index space. 5578 AllocaInst *Slot = cast<AllocaInst>(Arg); 5579 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5580 "can only escape static allocas"); 5581 int FI = FuncInfo.StaticAllocaMap[Slot]; 5582 MCSymbol *FrameAllocSym = 5583 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5584 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5585 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5586 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5587 .addSym(FrameAllocSym) 5588 .addFrameIndex(FI); 5589 } 5590 5591 return nullptr; 5592 } 5593 5594 case Intrinsic::localrecover: { 5595 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5596 MachineFunction &MF = DAG.getMachineFunction(); 5597 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5598 5599 // Get the symbol that defines the frame offset. 5600 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5601 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5602 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5603 MCSymbol *FrameAllocSym = 5604 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5605 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5606 5607 // Create a MCSymbol for the label to avoid any target lowering 5608 // that would make this PC relative. 5609 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5610 SDValue OffsetVal = 5611 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5612 5613 // Add the offset to the FP. 5614 Value *FP = I.getArgOperand(1); 5615 SDValue FPVal = getValue(FP); 5616 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5617 setValue(&I, Add); 5618 5619 return nullptr; 5620 } 5621 5622 case Intrinsic::eh_exceptionpointer: 5623 case Intrinsic::eh_exceptioncode: { 5624 // Get the exception pointer vreg, copy from it, and resize it to fit. 5625 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5626 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5627 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5628 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5629 SDValue N = 5630 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5631 if (Intrinsic == Intrinsic::eh_exceptioncode) 5632 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5633 setValue(&I, N); 5634 return nullptr; 5635 } 5636 5637 case Intrinsic::experimental_deoptimize: 5638 LowerDeoptimizeCall(&I); 5639 return nullptr; 5640 } 5641 } 5642 5643 std::pair<SDValue, SDValue> 5644 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5645 const BasicBlock *EHPadBB) { 5646 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5647 MCSymbol *BeginLabel = nullptr; 5648 5649 if (EHPadBB) { 5650 // Insert a label before the invoke call to mark the try range. This can be 5651 // used to detect deletion of the invoke via the MachineModuleInfo. 5652 BeginLabel = MMI.getContext().createTempSymbol(); 5653 5654 // For SjLj, keep track of which landing pads go with which invokes 5655 // so as to maintain the ordering of pads in the LSDA. 5656 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5657 if (CallSiteIndex) { 5658 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5659 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5660 5661 // Now that the call site is handled, stop tracking it. 5662 MMI.setCurrentCallSite(0); 5663 } 5664 5665 // Both PendingLoads and PendingExports must be flushed here; 5666 // this call might not return. 5667 (void)getRoot(); 5668 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5669 5670 CLI.setChain(getRoot()); 5671 } 5672 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5673 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5674 5675 assert((CLI.IsTailCall || Result.second.getNode()) && 5676 "Non-null chain expected with non-tail call!"); 5677 assert((Result.second.getNode() || !Result.first.getNode()) && 5678 "Null value expected with tail call!"); 5679 5680 if (!Result.second.getNode()) { 5681 // As a special case, a null chain means that a tail call has been emitted 5682 // and the DAG root is already updated. 5683 HasTailCall = true; 5684 5685 // Since there's no actual continuation from this block, nothing can be 5686 // relying on us setting vregs for them. 5687 PendingExports.clear(); 5688 } else { 5689 DAG.setRoot(Result.second); 5690 } 5691 5692 if (EHPadBB) { 5693 // Insert a label at the end of the invoke call to mark the try range. This 5694 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5695 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5696 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5697 5698 // Inform MachineModuleInfo of range. 5699 if (MMI.hasEHFunclets()) { 5700 assert(CLI.CS); 5701 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5702 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5703 BeginLabel, EndLabel); 5704 } else { 5705 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5706 } 5707 } 5708 5709 return Result; 5710 } 5711 5712 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5713 bool isTailCall, 5714 const BasicBlock *EHPadBB) { 5715 auto &DL = DAG.getDataLayout(); 5716 FunctionType *FTy = CS.getFunctionType(); 5717 Type *RetTy = CS.getType(); 5718 5719 TargetLowering::ArgListTy Args; 5720 TargetLowering::ArgListEntry Entry; 5721 Args.reserve(CS.arg_size()); 5722 5723 const Value *SwiftErrorVal = nullptr; 5724 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5725 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5726 i != e; ++i) { 5727 const Value *V = *i; 5728 5729 // Skip empty types 5730 if (V->getType()->isEmptyTy()) 5731 continue; 5732 5733 SDValue ArgNode = getValue(V); 5734 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5735 5736 // Skip the first return-type Attribute to get to params. 5737 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5738 5739 // Use swifterror virtual register as input to the call. 5740 if (Entry.isSwiftError && TLI.supportSwiftError()) { 5741 SwiftErrorVal = V; 5742 // We find the virtual register for the actual swifterror argument. 5743 // Instead of using the Value, we use the virtual register instead. 5744 Entry.Node = DAG.getRegister( 5745 FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, V), 5746 EVT(TLI.getPointerTy(DL))); 5747 } 5748 5749 Args.push_back(Entry); 5750 5751 // If we have an explicit sret argument that is an Instruction, (i.e., it 5752 // might point to function-local memory), we can't meaningfully tail-call. 5753 if (Entry.isSRet && isa<Instruction>(V)) 5754 isTailCall = false; 5755 } 5756 5757 // Check if target-independent constraints permit a tail call here. 5758 // Target-dependent constraints are checked within TLI->LowerCallTo. 5759 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5760 isTailCall = false; 5761 5762 TargetLowering::CallLoweringInfo CLI(DAG); 5763 CLI.setDebugLoc(getCurSDLoc()) 5764 .setChain(getRoot()) 5765 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5766 .setTailCall(isTailCall) 5767 .setConvergent(CS.isConvergent()); 5768 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5769 5770 if (Result.first.getNode()) { 5771 const Instruction *Inst = CS.getInstruction(); 5772 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5773 setValue(Inst, Result.first); 5774 } 5775 5776 // The last element of CLI.InVals has the SDValue for swifterror return. 5777 // Here we copy it to a virtual register and update SwiftErrorMap for 5778 // book-keeping. 5779 if (SwiftErrorVal && TLI.supportSwiftError()) { 5780 // Get the last element of InVals. 5781 SDValue Src = CLI.InVals.back(); 5782 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 5783 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 5784 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 5785 // We update the virtual register for the actual swifterror argument. 5786 FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 5787 DAG.setRoot(CopyNode); 5788 } 5789 } 5790 5791 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5792 /// value is equal or not-equal to zero. 5793 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5794 for (const User *U : V->users()) { 5795 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5796 if (IC->isEquality()) 5797 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5798 if (C->isNullValue()) 5799 continue; 5800 // Unknown instruction. 5801 return false; 5802 } 5803 return true; 5804 } 5805 5806 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5807 Type *LoadTy, 5808 SelectionDAGBuilder &Builder) { 5809 5810 // Check to see if this load can be trivially constant folded, e.g. if the 5811 // input is from a string literal. 5812 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5813 // Cast pointer to the type we really want to load. 5814 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5815 PointerType::getUnqual(LoadTy)); 5816 5817 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5818 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 5819 return Builder.getValue(LoadCst); 5820 } 5821 5822 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5823 // still constant memory, the input chain can be the entry node. 5824 SDValue Root; 5825 bool ConstantMemory = false; 5826 5827 // Do not serialize (non-volatile) loads of constant memory with anything. 5828 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5829 Root = Builder.DAG.getEntryNode(); 5830 ConstantMemory = true; 5831 } else { 5832 // Do not serialize non-volatile loads against each other. 5833 Root = Builder.DAG.getRoot(); 5834 } 5835 5836 SDValue Ptr = Builder.getValue(PtrVal); 5837 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5838 Ptr, MachinePointerInfo(PtrVal), 5839 false /*volatile*/, 5840 false /*nontemporal*/, 5841 false /*isinvariant*/, 1 /* align=1 */); 5842 5843 if (!ConstantMemory) 5844 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5845 return LoadVal; 5846 } 5847 5848 /// processIntegerCallValue - Record the value for an instruction that 5849 /// produces an integer result, converting the type where necessary. 5850 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5851 SDValue Value, 5852 bool IsSigned) { 5853 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5854 I.getType(), true); 5855 if (IsSigned) 5856 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5857 else 5858 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5859 setValue(&I, Value); 5860 } 5861 5862 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5863 /// If so, return true and lower it, otherwise return false and it will be 5864 /// lowered like a normal call. 5865 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5866 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5867 if (I.getNumArgOperands() != 3) 5868 return false; 5869 5870 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5871 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5872 !I.getArgOperand(2)->getType()->isIntegerTy() || 5873 !I.getType()->isIntegerTy()) 5874 return false; 5875 5876 const Value *Size = I.getArgOperand(2); 5877 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5878 if (CSize && CSize->getZExtValue() == 0) { 5879 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5880 I.getType(), true); 5881 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5882 return true; 5883 } 5884 5885 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5886 std::pair<SDValue, SDValue> Res = 5887 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5888 getValue(LHS), getValue(RHS), getValue(Size), 5889 MachinePointerInfo(LHS), 5890 MachinePointerInfo(RHS)); 5891 if (Res.first.getNode()) { 5892 processIntegerCallValue(I, Res.first, true); 5893 PendingLoads.push_back(Res.second); 5894 return true; 5895 } 5896 5897 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5898 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5899 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5900 bool ActuallyDoIt = true; 5901 MVT LoadVT; 5902 Type *LoadTy; 5903 switch (CSize->getZExtValue()) { 5904 default: 5905 LoadVT = MVT::Other; 5906 LoadTy = nullptr; 5907 ActuallyDoIt = false; 5908 break; 5909 case 2: 5910 LoadVT = MVT::i16; 5911 LoadTy = Type::getInt16Ty(CSize->getContext()); 5912 break; 5913 case 4: 5914 LoadVT = MVT::i32; 5915 LoadTy = Type::getInt32Ty(CSize->getContext()); 5916 break; 5917 case 8: 5918 LoadVT = MVT::i64; 5919 LoadTy = Type::getInt64Ty(CSize->getContext()); 5920 break; 5921 /* 5922 case 16: 5923 LoadVT = MVT::v4i32; 5924 LoadTy = Type::getInt32Ty(CSize->getContext()); 5925 LoadTy = VectorType::get(LoadTy, 4); 5926 break; 5927 */ 5928 } 5929 5930 // This turns into unaligned loads. We only do this if the target natively 5931 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5932 // we'll only produce a small number of byte loads. 5933 5934 // Require that we can find a legal MVT, and only do this if the target 5935 // supports unaligned loads of that type. Expanding into byte loads would 5936 // bloat the code. 5937 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5938 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5939 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5940 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5941 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5942 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5943 // TODO: Check alignment of src and dest ptrs. 5944 if (!TLI.isTypeLegal(LoadVT) || 5945 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5946 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5947 ActuallyDoIt = false; 5948 } 5949 5950 if (ActuallyDoIt) { 5951 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5952 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5953 5954 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5955 ISD::SETNE); 5956 processIntegerCallValue(I, Res, false); 5957 return true; 5958 } 5959 } 5960 5961 5962 return false; 5963 } 5964 5965 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5966 /// form. If so, return true and lower it, otherwise return false and it 5967 /// will be lowered like a normal call. 5968 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5969 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5970 if (I.getNumArgOperands() != 3) 5971 return false; 5972 5973 const Value *Src = I.getArgOperand(0); 5974 const Value *Char = I.getArgOperand(1); 5975 const Value *Length = I.getArgOperand(2); 5976 if (!Src->getType()->isPointerTy() || 5977 !Char->getType()->isIntegerTy() || 5978 !Length->getType()->isIntegerTy() || 5979 !I.getType()->isPointerTy()) 5980 return false; 5981 5982 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5983 std::pair<SDValue, SDValue> Res = 5984 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5985 getValue(Src), getValue(Char), getValue(Length), 5986 MachinePointerInfo(Src)); 5987 if (Res.first.getNode()) { 5988 setValue(&I, Res.first); 5989 PendingLoads.push_back(Res.second); 5990 return true; 5991 } 5992 5993 return false; 5994 } 5995 5996 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5997 /// optimized form. If so, return true and lower it, otherwise return false 5998 /// and it will be lowered like a normal call. 5999 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6000 // Verify that the prototype makes sense. char *strcpy(char *, char *) 6001 if (I.getNumArgOperands() != 2) 6002 return false; 6003 6004 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6005 if (!Arg0->getType()->isPointerTy() || 6006 !Arg1->getType()->isPointerTy() || 6007 !I.getType()->isPointerTy()) 6008 return false; 6009 6010 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6011 std::pair<SDValue, SDValue> Res = 6012 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6013 getValue(Arg0), getValue(Arg1), 6014 MachinePointerInfo(Arg0), 6015 MachinePointerInfo(Arg1), isStpcpy); 6016 if (Res.first.getNode()) { 6017 setValue(&I, Res.first); 6018 DAG.setRoot(Res.second); 6019 return true; 6020 } 6021 6022 return false; 6023 } 6024 6025 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 6026 /// If so, return true and lower it, otherwise return false and it will be 6027 /// lowered like a normal call. 6028 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6029 // Verify that the prototype makes sense. int strcmp(void*,void*) 6030 if (I.getNumArgOperands() != 2) 6031 return false; 6032 6033 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6034 if (!Arg0->getType()->isPointerTy() || 6035 !Arg1->getType()->isPointerTy() || 6036 !I.getType()->isIntegerTy()) 6037 return false; 6038 6039 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6040 std::pair<SDValue, SDValue> Res = 6041 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6042 getValue(Arg0), getValue(Arg1), 6043 MachinePointerInfo(Arg0), 6044 MachinePointerInfo(Arg1)); 6045 if (Res.first.getNode()) { 6046 processIntegerCallValue(I, Res.first, true); 6047 PendingLoads.push_back(Res.second); 6048 return true; 6049 } 6050 6051 return false; 6052 } 6053 6054 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 6055 /// form. If so, return true and lower it, otherwise return false and it 6056 /// will be lowered like a normal call. 6057 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6058 // Verify that the prototype makes sense. size_t strlen(char *) 6059 if (I.getNumArgOperands() != 1) 6060 return false; 6061 6062 const Value *Arg0 = I.getArgOperand(0); 6063 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 6064 return false; 6065 6066 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6067 std::pair<SDValue, SDValue> Res = 6068 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6069 getValue(Arg0), MachinePointerInfo(Arg0)); 6070 if (Res.first.getNode()) { 6071 processIntegerCallValue(I, Res.first, false); 6072 PendingLoads.push_back(Res.second); 6073 return true; 6074 } 6075 6076 return false; 6077 } 6078 6079 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 6080 /// form. If so, return true and lower it, otherwise return false and it 6081 /// will be lowered like a normal call. 6082 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6083 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 6084 if (I.getNumArgOperands() != 2) 6085 return false; 6086 6087 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6088 if (!Arg0->getType()->isPointerTy() || 6089 !Arg1->getType()->isIntegerTy() || 6090 !I.getType()->isIntegerTy()) 6091 return false; 6092 6093 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6094 std::pair<SDValue, SDValue> Res = 6095 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6096 getValue(Arg0), getValue(Arg1), 6097 MachinePointerInfo(Arg0)); 6098 if (Res.first.getNode()) { 6099 processIntegerCallValue(I, Res.first, false); 6100 PendingLoads.push_back(Res.second); 6101 return true; 6102 } 6103 6104 return false; 6105 } 6106 6107 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 6108 /// operation (as expected), translate it to an SDNode with the specified opcode 6109 /// and return true. 6110 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6111 unsigned Opcode) { 6112 // Sanity check that it really is a unary floating-point call. 6113 if (I.getNumArgOperands() != 1 || 6114 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6115 I.getType() != I.getArgOperand(0)->getType() || 6116 !I.onlyReadsMemory()) 6117 return false; 6118 6119 SDValue Tmp = getValue(I.getArgOperand(0)); 6120 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6121 return true; 6122 } 6123 6124 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 6125 /// operation (as expected), translate it to an SDNode with the specified opcode 6126 /// and return true. 6127 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6128 unsigned Opcode) { 6129 // Sanity check that it really is a binary floating-point call. 6130 if (I.getNumArgOperands() != 2 || 6131 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6132 I.getType() != I.getArgOperand(0)->getType() || 6133 I.getType() != I.getArgOperand(1)->getType() || 6134 !I.onlyReadsMemory()) 6135 return false; 6136 6137 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6138 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6139 EVT VT = Tmp0.getValueType(); 6140 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6141 return true; 6142 } 6143 6144 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6145 // Handle inline assembly differently. 6146 if (isa<InlineAsm>(I.getCalledValue())) { 6147 visitInlineAsm(&I); 6148 return; 6149 } 6150 6151 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6152 ComputeUsesVAFloatArgument(I, &MMI); 6153 6154 const char *RenameFn = nullptr; 6155 if (Function *F = I.getCalledFunction()) { 6156 if (F->isDeclaration()) { 6157 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6158 if (unsigned IID = II->getIntrinsicID(F)) { 6159 RenameFn = visitIntrinsicCall(I, IID); 6160 if (!RenameFn) 6161 return; 6162 } 6163 } 6164 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6165 RenameFn = visitIntrinsicCall(I, IID); 6166 if (!RenameFn) 6167 return; 6168 } 6169 } 6170 6171 // Check for well-known libc/libm calls. If the function is internal, it 6172 // can't be a library call. 6173 LibFunc::Func Func; 6174 if (!F->hasLocalLinkage() && F->hasName() && 6175 LibInfo->getLibFunc(F->getName(), Func) && 6176 LibInfo->hasOptimizedCodeGen(Func)) { 6177 switch (Func) { 6178 default: break; 6179 case LibFunc::copysign: 6180 case LibFunc::copysignf: 6181 case LibFunc::copysignl: 6182 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 6183 I.getArgOperand(0)->getType()->isFloatingPointTy() && 6184 I.getType() == I.getArgOperand(0)->getType() && 6185 I.getType() == I.getArgOperand(1)->getType() && 6186 I.onlyReadsMemory()) { 6187 SDValue LHS = getValue(I.getArgOperand(0)); 6188 SDValue RHS = getValue(I.getArgOperand(1)); 6189 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6190 LHS.getValueType(), LHS, RHS)); 6191 return; 6192 } 6193 break; 6194 case LibFunc::fabs: 6195 case LibFunc::fabsf: 6196 case LibFunc::fabsl: 6197 if (visitUnaryFloatCall(I, ISD::FABS)) 6198 return; 6199 break; 6200 case LibFunc::fmin: 6201 case LibFunc::fminf: 6202 case LibFunc::fminl: 6203 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6204 return; 6205 break; 6206 case LibFunc::fmax: 6207 case LibFunc::fmaxf: 6208 case LibFunc::fmaxl: 6209 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6210 return; 6211 break; 6212 case LibFunc::sin: 6213 case LibFunc::sinf: 6214 case LibFunc::sinl: 6215 if (visitUnaryFloatCall(I, ISD::FSIN)) 6216 return; 6217 break; 6218 case LibFunc::cos: 6219 case LibFunc::cosf: 6220 case LibFunc::cosl: 6221 if (visitUnaryFloatCall(I, ISD::FCOS)) 6222 return; 6223 break; 6224 case LibFunc::sqrt: 6225 case LibFunc::sqrtf: 6226 case LibFunc::sqrtl: 6227 case LibFunc::sqrt_finite: 6228 case LibFunc::sqrtf_finite: 6229 case LibFunc::sqrtl_finite: 6230 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6231 return; 6232 break; 6233 case LibFunc::floor: 6234 case LibFunc::floorf: 6235 case LibFunc::floorl: 6236 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6237 return; 6238 break; 6239 case LibFunc::nearbyint: 6240 case LibFunc::nearbyintf: 6241 case LibFunc::nearbyintl: 6242 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6243 return; 6244 break; 6245 case LibFunc::ceil: 6246 case LibFunc::ceilf: 6247 case LibFunc::ceill: 6248 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6249 return; 6250 break; 6251 case LibFunc::rint: 6252 case LibFunc::rintf: 6253 case LibFunc::rintl: 6254 if (visitUnaryFloatCall(I, ISD::FRINT)) 6255 return; 6256 break; 6257 case LibFunc::round: 6258 case LibFunc::roundf: 6259 case LibFunc::roundl: 6260 if (visitUnaryFloatCall(I, ISD::FROUND)) 6261 return; 6262 break; 6263 case LibFunc::trunc: 6264 case LibFunc::truncf: 6265 case LibFunc::truncl: 6266 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6267 return; 6268 break; 6269 case LibFunc::log2: 6270 case LibFunc::log2f: 6271 case LibFunc::log2l: 6272 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6273 return; 6274 break; 6275 case LibFunc::exp2: 6276 case LibFunc::exp2f: 6277 case LibFunc::exp2l: 6278 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6279 return; 6280 break; 6281 case LibFunc::memcmp: 6282 if (visitMemCmpCall(I)) 6283 return; 6284 break; 6285 case LibFunc::memchr: 6286 if (visitMemChrCall(I)) 6287 return; 6288 break; 6289 case LibFunc::strcpy: 6290 if (visitStrCpyCall(I, false)) 6291 return; 6292 break; 6293 case LibFunc::stpcpy: 6294 if (visitStrCpyCall(I, true)) 6295 return; 6296 break; 6297 case LibFunc::strcmp: 6298 if (visitStrCmpCall(I)) 6299 return; 6300 break; 6301 case LibFunc::strlen: 6302 if (visitStrLenCall(I)) 6303 return; 6304 break; 6305 case LibFunc::strnlen: 6306 if (visitStrNLenCall(I)) 6307 return; 6308 break; 6309 } 6310 } 6311 } 6312 6313 SDValue Callee; 6314 if (!RenameFn) 6315 Callee = getValue(I.getCalledValue()); 6316 else 6317 Callee = DAG.getExternalSymbol( 6318 RenameFn, 6319 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6320 6321 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6322 // have to do anything here to lower funclet bundles. 6323 assert(!I.hasOperandBundlesOtherThan( 6324 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6325 "Cannot lower calls with arbitrary operand bundles!"); 6326 6327 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6328 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6329 else 6330 // Check if we can potentially perform a tail call. More detailed checking 6331 // is be done within LowerCallTo, after more information about the call is 6332 // known. 6333 LowerCallTo(&I, Callee, I.isTailCall()); 6334 } 6335 6336 namespace { 6337 6338 /// AsmOperandInfo - This contains information for each constraint that we are 6339 /// lowering. 6340 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6341 public: 6342 /// CallOperand - If this is the result output operand or a clobber 6343 /// this is null, otherwise it is the incoming operand to the CallInst. 6344 /// This gets modified as the asm is processed. 6345 SDValue CallOperand; 6346 6347 /// AssignedRegs - If this is a register or register class operand, this 6348 /// contains the set of register corresponding to the operand. 6349 RegsForValue AssignedRegs; 6350 6351 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6352 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6353 } 6354 6355 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6356 /// corresponds to. If there is no Value* for this operand, it returns 6357 /// MVT::Other. 6358 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6359 const DataLayout &DL) const { 6360 if (!CallOperandVal) return MVT::Other; 6361 6362 if (isa<BasicBlock>(CallOperandVal)) 6363 return TLI.getPointerTy(DL); 6364 6365 llvm::Type *OpTy = CallOperandVal->getType(); 6366 6367 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6368 // If this is an indirect operand, the operand is a pointer to the 6369 // accessed type. 6370 if (isIndirect) { 6371 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6372 if (!PtrTy) 6373 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6374 OpTy = PtrTy->getElementType(); 6375 } 6376 6377 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6378 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6379 if (STy->getNumElements() == 1) 6380 OpTy = STy->getElementType(0); 6381 6382 // If OpTy is not a single value, it may be a struct/union that we 6383 // can tile with integers. 6384 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6385 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6386 switch (BitSize) { 6387 default: break; 6388 case 1: 6389 case 8: 6390 case 16: 6391 case 32: 6392 case 64: 6393 case 128: 6394 OpTy = IntegerType::get(Context, BitSize); 6395 break; 6396 } 6397 } 6398 6399 return TLI.getValueType(DL, OpTy, true); 6400 } 6401 }; 6402 6403 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6404 6405 } // end anonymous namespace 6406 6407 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6408 /// specified operand. We prefer to assign virtual registers, to allow the 6409 /// register allocator to handle the assignment process. However, if the asm 6410 /// uses features that we can't model on machineinstrs, we have SDISel do the 6411 /// allocation. This produces generally horrible, but correct, code. 6412 /// 6413 /// OpInfo describes the operand. 6414 /// 6415 static void GetRegistersForValue(SelectionDAG &DAG, 6416 const TargetLowering &TLI, 6417 SDLoc DL, 6418 SDISelAsmOperandInfo &OpInfo) { 6419 LLVMContext &Context = *DAG.getContext(); 6420 6421 MachineFunction &MF = DAG.getMachineFunction(); 6422 SmallVector<unsigned, 4> Regs; 6423 6424 // If this is a constraint for a single physreg, or a constraint for a 6425 // register class, find it. 6426 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6427 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6428 OpInfo.ConstraintCode, 6429 OpInfo.ConstraintVT); 6430 6431 unsigned NumRegs = 1; 6432 if (OpInfo.ConstraintVT != MVT::Other) { 6433 // If this is a FP input in an integer register (or visa versa) insert a bit 6434 // cast of the input value. More generally, handle any case where the input 6435 // value disagrees with the register class we plan to stick this in. 6436 if (OpInfo.Type == InlineAsm::isInput && 6437 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6438 // Try to convert to the first EVT that the reg class contains. If the 6439 // types are identical size, use a bitcast to convert (e.g. two differing 6440 // vector types). 6441 MVT RegVT = *PhysReg.second->vt_begin(); 6442 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6443 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6444 RegVT, OpInfo.CallOperand); 6445 OpInfo.ConstraintVT = RegVT; 6446 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6447 // If the input is a FP value and we want it in FP registers, do a 6448 // bitcast to the corresponding integer type. This turns an f64 value 6449 // into i64, which can be passed with two i32 values on a 32-bit 6450 // machine. 6451 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6452 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6453 RegVT, OpInfo.CallOperand); 6454 OpInfo.ConstraintVT = RegVT; 6455 } 6456 } 6457 6458 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6459 } 6460 6461 MVT RegVT; 6462 EVT ValueVT = OpInfo.ConstraintVT; 6463 6464 // If this is a constraint for a specific physical register, like {r17}, 6465 // assign it now. 6466 if (unsigned AssignedReg = PhysReg.first) { 6467 const TargetRegisterClass *RC = PhysReg.second; 6468 if (OpInfo.ConstraintVT == MVT::Other) 6469 ValueVT = *RC->vt_begin(); 6470 6471 // Get the actual register value type. This is important, because the user 6472 // may have asked for (e.g.) the AX register in i32 type. We need to 6473 // remember that AX is actually i16 to get the right extension. 6474 RegVT = *RC->vt_begin(); 6475 6476 // This is a explicit reference to a physical register. 6477 Regs.push_back(AssignedReg); 6478 6479 // If this is an expanded reference, add the rest of the regs to Regs. 6480 if (NumRegs != 1) { 6481 TargetRegisterClass::iterator I = RC->begin(); 6482 for (; *I != AssignedReg; ++I) 6483 assert(I != RC->end() && "Didn't find reg!"); 6484 6485 // Already added the first reg. 6486 --NumRegs; ++I; 6487 for (; NumRegs; --NumRegs, ++I) { 6488 assert(I != RC->end() && "Ran out of registers to allocate!"); 6489 Regs.push_back(*I); 6490 } 6491 } 6492 6493 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6494 return; 6495 } 6496 6497 // Otherwise, if this was a reference to an LLVM register class, create vregs 6498 // for this reference. 6499 if (const TargetRegisterClass *RC = PhysReg.second) { 6500 RegVT = *RC->vt_begin(); 6501 if (OpInfo.ConstraintVT == MVT::Other) 6502 ValueVT = RegVT; 6503 6504 // Create the appropriate number of virtual registers. 6505 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6506 for (; NumRegs; --NumRegs) 6507 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6508 6509 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6510 return; 6511 } 6512 6513 // Otherwise, we couldn't allocate enough registers for this. 6514 } 6515 6516 /// visitInlineAsm - Handle a call to an InlineAsm object. 6517 /// 6518 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6519 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6520 6521 /// ConstraintOperands - Information about all of the constraints. 6522 SDISelAsmOperandInfoVector ConstraintOperands; 6523 6524 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6525 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6526 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6527 6528 bool hasMemory = false; 6529 6530 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6531 unsigned ResNo = 0; // ResNo - The result number of the next output. 6532 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6533 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6534 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6535 6536 MVT OpVT = MVT::Other; 6537 6538 // Compute the value type for each operand. 6539 switch (OpInfo.Type) { 6540 case InlineAsm::isOutput: 6541 // Indirect outputs just consume an argument. 6542 if (OpInfo.isIndirect) { 6543 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6544 break; 6545 } 6546 6547 // The return value of the call is this value. As such, there is no 6548 // corresponding argument. 6549 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6550 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6551 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6552 STy->getElementType(ResNo)); 6553 } else { 6554 assert(ResNo == 0 && "Asm only has one result!"); 6555 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6556 } 6557 ++ResNo; 6558 break; 6559 case InlineAsm::isInput: 6560 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6561 break; 6562 case InlineAsm::isClobber: 6563 // Nothing to do. 6564 break; 6565 } 6566 6567 // If this is an input or an indirect output, process the call argument. 6568 // BasicBlocks are labels, currently appearing only in asm's. 6569 if (OpInfo.CallOperandVal) { 6570 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6571 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6572 } else { 6573 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6574 } 6575 6576 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6577 DAG.getDataLayout()).getSimpleVT(); 6578 } 6579 6580 OpInfo.ConstraintVT = OpVT; 6581 6582 // Indirect operand accesses access memory. 6583 if (OpInfo.isIndirect) 6584 hasMemory = true; 6585 else { 6586 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6587 TargetLowering::ConstraintType 6588 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6589 if (CType == TargetLowering::C_Memory) { 6590 hasMemory = true; 6591 break; 6592 } 6593 } 6594 } 6595 } 6596 6597 SDValue Chain, Flag; 6598 6599 // We won't need to flush pending loads if this asm doesn't touch 6600 // memory and is nonvolatile. 6601 if (hasMemory || IA->hasSideEffects()) 6602 Chain = getRoot(); 6603 else 6604 Chain = DAG.getRoot(); 6605 6606 // Second pass over the constraints: compute which constraint option to use 6607 // and assign registers to constraints that want a specific physreg. 6608 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6609 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6610 6611 // If this is an output operand with a matching input operand, look up the 6612 // matching input. If their types mismatch, e.g. one is an integer, the 6613 // other is floating point, or their sizes are different, flag it as an 6614 // error. 6615 if (OpInfo.hasMatchingInput()) { 6616 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6617 6618 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6619 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6620 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6621 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6622 OpInfo.ConstraintVT); 6623 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6624 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6625 Input.ConstraintVT); 6626 if ((OpInfo.ConstraintVT.isInteger() != 6627 Input.ConstraintVT.isInteger()) || 6628 (MatchRC.second != InputRC.second)) { 6629 report_fatal_error("Unsupported asm: input constraint" 6630 " with a matching output constraint of" 6631 " incompatible type!"); 6632 } 6633 Input.ConstraintVT = OpInfo.ConstraintVT; 6634 } 6635 } 6636 6637 // Compute the constraint code and ConstraintType to use. 6638 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6639 6640 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6641 OpInfo.Type == InlineAsm::isClobber) 6642 continue; 6643 6644 // If this is a memory input, and if the operand is not indirect, do what we 6645 // need to to provide an address for the memory input. 6646 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6647 !OpInfo.isIndirect) { 6648 assert((OpInfo.isMultipleAlternative || 6649 (OpInfo.Type == InlineAsm::isInput)) && 6650 "Can only indirectify direct input operands!"); 6651 6652 // Memory operands really want the address of the value. If we don't have 6653 // an indirect input, put it in the constpool if we can, otherwise spill 6654 // it to a stack slot. 6655 // TODO: This isn't quite right. We need to handle these according to 6656 // the addressing mode that the constraint wants. Also, this may take 6657 // an additional register for the computation and we don't want that 6658 // either. 6659 6660 // If the operand is a float, integer, or vector constant, spill to a 6661 // constant pool entry to get its address. 6662 const Value *OpVal = OpInfo.CallOperandVal; 6663 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6664 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6665 OpInfo.CallOperand = DAG.getConstantPool( 6666 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6667 } else { 6668 // Otherwise, create a stack slot and emit a store to it before the 6669 // asm. 6670 Type *Ty = OpVal->getType(); 6671 auto &DL = DAG.getDataLayout(); 6672 uint64_t TySize = DL.getTypeAllocSize(Ty); 6673 unsigned Align = DL.getPrefTypeAlignment(Ty); 6674 MachineFunction &MF = DAG.getMachineFunction(); 6675 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6676 SDValue StackSlot = 6677 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6678 Chain = DAG.getStore( 6679 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6680 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6681 false, false, 0); 6682 OpInfo.CallOperand = StackSlot; 6683 } 6684 6685 // There is no longer a Value* corresponding to this operand. 6686 OpInfo.CallOperandVal = nullptr; 6687 6688 // It is now an indirect operand. 6689 OpInfo.isIndirect = true; 6690 } 6691 6692 // If this constraint is for a specific register, allocate it before 6693 // anything else. 6694 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6695 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6696 } 6697 6698 // Second pass - Loop over all of the operands, assigning virtual or physregs 6699 // to register class operands. 6700 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6701 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6702 6703 // C_Register operands have already been allocated, Other/Memory don't need 6704 // to be. 6705 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6706 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6707 } 6708 6709 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6710 std::vector<SDValue> AsmNodeOperands; 6711 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6712 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6713 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6714 6715 // If we have a !srcloc metadata node associated with it, we want to attach 6716 // this to the ultimately generated inline asm machineinstr. To do this, we 6717 // pass in the third operand as this (potentially null) inline asm MDNode. 6718 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6719 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6720 6721 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6722 // bits as operand 3. 6723 unsigned ExtraInfo = 0; 6724 if (IA->hasSideEffects()) 6725 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6726 if (IA->isAlignStack()) 6727 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6728 // Set the asm dialect. 6729 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6730 6731 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6732 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6733 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6734 6735 // Compute the constraint code and ConstraintType to use. 6736 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6737 6738 // Ideally, we would only check against memory constraints. However, the 6739 // meaning of an other constraint can be target-specific and we can't easily 6740 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6741 // for other constriants as well. 6742 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6743 OpInfo.ConstraintType == TargetLowering::C_Other) { 6744 if (OpInfo.Type == InlineAsm::isInput) 6745 ExtraInfo |= InlineAsm::Extra_MayLoad; 6746 else if (OpInfo.Type == InlineAsm::isOutput) 6747 ExtraInfo |= InlineAsm::Extra_MayStore; 6748 else if (OpInfo.Type == InlineAsm::isClobber) 6749 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6750 } 6751 } 6752 6753 AsmNodeOperands.push_back(DAG.getTargetConstant( 6754 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6755 6756 // Loop over all of the inputs, copying the operand values into the 6757 // appropriate registers and processing the output regs. 6758 RegsForValue RetValRegs; 6759 6760 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6761 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6762 6763 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6764 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6765 6766 switch (OpInfo.Type) { 6767 case InlineAsm::isOutput: { 6768 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6769 OpInfo.ConstraintType != TargetLowering::C_Register) { 6770 // Memory output, or 'other' output (e.g. 'X' constraint). 6771 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6772 6773 unsigned ConstraintID = 6774 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6775 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6776 "Failed to convert memory constraint code to constraint id."); 6777 6778 // Add information to the INLINEASM node to know about this output. 6779 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6780 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6781 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6782 MVT::i32)); 6783 AsmNodeOperands.push_back(OpInfo.CallOperand); 6784 break; 6785 } 6786 6787 // Otherwise, this is a register or register class output. 6788 6789 // Copy the output from the appropriate register. Find a register that 6790 // we can use. 6791 if (OpInfo.AssignedRegs.Regs.empty()) { 6792 LLVMContext &Ctx = *DAG.getContext(); 6793 Ctx.emitError(CS.getInstruction(), 6794 "couldn't allocate output register for constraint '" + 6795 Twine(OpInfo.ConstraintCode) + "'"); 6796 return; 6797 } 6798 6799 // If this is an indirect operand, store through the pointer after the 6800 // asm. 6801 if (OpInfo.isIndirect) { 6802 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6803 OpInfo.CallOperandVal)); 6804 } else { 6805 // This is the result value of the call. 6806 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6807 // Concatenate this output onto the outputs list. 6808 RetValRegs.append(OpInfo.AssignedRegs); 6809 } 6810 6811 // Add information to the INLINEASM node to know that this register is 6812 // set. 6813 OpInfo.AssignedRegs 6814 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6815 ? InlineAsm::Kind_RegDefEarlyClobber 6816 : InlineAsm::Kind_RegDef, 6817 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6818 break; 6819 } 6820 case InlineAsm::isInput: { 6821 SDValue InOperandVal = OpInfo.CallOperand; 6822 6823 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6824 // If this is required to match an output register we have already set, 6825 // just use its register. 6826 unsigned OperandNo = OpInfo.getMatchedOperand(); 6827 6828 // Scan until we find the definition we already emitted of this operand. 6829 // When we find it, create a RegsForValue operand. 6830 unsigned CurOp = InlineAsm::Op_FirstOperand; 6831 for (; OperandNo; --OperandNo) { 6832 // Advance to the next operand. 6833 unsigned OpFlag = 6834 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6835 assert((InlineAsm::isRegDefKind(OpFlag) || 6836 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6837 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6838 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6839 } 6840 6841 unsigned OpFlag = 6842 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6843 if (InlineAsm::isRegDefKind(OpFlag) || 6844 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6845 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6846 if (OpInfo.isIndirect) { 6847 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6848 LLVMContext &Ctx = *DAG.getContext(); 6849 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6850 " don't know how to handle tied " 6851 "indirect register inputs"); 6852 return; 6853 } 6854 6855 RegsForValue MatchedRegs; 6856 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6857 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6858 MatchedRegs.RegVTs.push_back(RegVT); 6859 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6860 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6861 i != e; ++i) { 6862 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6863 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6864 else { 6865 LLVMContext &Ctx = *DAG.getContext(); 6866 Ctx.emitError(CS.getInstruction(), 6867 "inline asm error: This value" 6868 " type register class is not natively supported!"); 6869 return; 6870 } 6871 } 6872 SDLoc dl = getCurSDLoc(); 6873 // Use the produced MatchedRegs object to 6874 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6875 Chain, &Flag, CS.getInstruction()); 6876 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6877 true, OpInfo.getMatchedOperand(), dl, 6878 DAG, AsmNodeOperands); 6879 break; 6880 } 6881 6882 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6883 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6884 "Unexpected number of operands"); 6885 // Add information to the INLINEASM node to know about this input. 6886 // See InlineAsm.h isUseOperandTiedToDef. 6887 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6888 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6889 OpInfo.getMatchedOperand()); 6890 AsmNodeOperands.push_back(DAG.getTargetConstant( 6891 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6892 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6893 break; 6894 } 6895 6896 // Treat indirect 'X' constraint as memory. 6897 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6898 OpInfo.isIndirect) 6899 OpInfo.ConstraintType = TargetLowering::C_Memory; 6900 6901 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6902 std::vector<SDValue> Ops; 6903 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6904 Ops, DAG); 6905 if (Ops.empty()) { 6906 LLVMContext &Ctx = *DAG.getContext(); 6907 Ctx.emitError(CS.getInstruction(), 6908 "invalid operand for inline asm constraint '" + 6909 Twine(OpInfo.ConstraintCode) + "'"); 6910 return; 6911 } 6912 6913 // Add information to the INLINEASM node to know about this input. 6914 unsigned ResOpType = 6915 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6916 AsmNodeOperands.push_back(DAG.getTargetConstant( 6917 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6918 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6919 break; 6920 } 6921 6922 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6923 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6924 assert(InOperandVal.getValueType() == 6925 TLI.getPointerTy(DAG.getDataLayout()) && 6926 "Memory operands expect pointer values"); 6927 6928 unsigned ConstraintID = 6929 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6930 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6931 "Failed to convert memory constraint code to constraint id."); 6932 6933 // Add information to the INLINEASM node to know about this input. 6934 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6935 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6936 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6937 getCurSDLoc(), 6938 MVT::i32)); 6939 AsmNodeOperands.push_back(InOperandVal); 6940 break; 6941 } 6942 6943 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6944 OpInfo.ConstraintType == TargetLowering::C_Register) && 6945 "Unknown constraint type!"); 6946 6947 // TODO: Support this. 6948 if (OpInfo.isIndirect) { 6949 LLVMContext &Ctx = *DAG.getContext(); 6950 Ctx.emitError(CS.getInstruction(), 6951 "Don't know how to handle indirect register inputs yet " 6952 "for constraint '" + 6953 Twine(OpInfo.ConstraintCode) + "'"); 6954 return; 6955 } 6956 6957 // Copy the input into the appropriate registers. 6958 if (OpInfo.AssignedRegs.Regs.empty()) { 6959 LLVMContext &Ctx = *DAG.getContext(); 6960 Ctx.emitError(CS.getInstruction(), 6961 "couldn't allocate input reg for constraint '" + 6962 Twine(OpInfo.ConstraintCode) + "'"); 6963 return; 6964 } 6965 6966 SDLoc dl = getCurSDLoc(); 6967 6968 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6969 Chain, &Flag, CS.getInstruction()); 6970 6971 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6972 dl, DAG, AsmNodeOperands); 6973 break; 6974 } 6975 case InlineAsm::isClobber: { 6976 // Add the clobbered value to the operand list, so that the register 6977 // allocator is aware that the physreg got clobbered. 6978 if (!OpInfo.AssignedRegs.Regs.empty()) 6979 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6980 false, 0, getCurSDLoc(), DAG, 6981 AsmNodeOperands); 6982 break; 6983 } 6984 } 6985 } 6986 6987 // Finish up input operands. Set the input chain and add the flag last. 6988 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6989 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6990 6991 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6992 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6993 Flag = Chain.getValue(1); 6994 6995 // If this asm returns a register value, copy the result from that register 6996 // and set it as the value of the call. 6997 if (!RetValRegs.Regs.empty()) { 6998 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6999 Chain, &Flag, CS.getInstruction()); 7000 7001 // FIXME: Why don't we do this for inline asms with MRVs? 7002 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7003 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7004 7005 // If any of the results of the inline asm is a vector, it may have the 7006 // wrong width/num elts. This can happen for register classes that can 7007 // contain multiple different value types. The preg or vreg allocated may 7008 // not have the same VT as was expected. Convert it to the right type 7009 // with bit_convert. 7010 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7011 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7012 ResultType, Val); 7013 7014 } else if (ResultType != Val.getValueType() && 7015 ResultType.isInteger() && Val.getValueType().isInteger()) { 7016 // If a result value was tied to an input value, the computed result may 7017 // have a wider width than the expected result. Extract the relevant 7018 // portion. 7019 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7020 } 7021 7022 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7023 } 7024 7025 setValue(CS.getInstruction(), Val); 7026 // Don't need to use this as a chain in this case. 7027 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7028 return; 7029 } 7030 7031 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 7032 7033 // Process indirect outputs, first output all of the flagged copies out of 7034 // physregs. 7035 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7036 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7037 const Value *Ptr = IndirectStoresToEmit[i].second; 7038 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7039 Chain, &Flag, IA); 7040 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7041 } 7042 7043 // Emit the non-flagged stores from the physregs. 7044 SmallVector<SDValue, 8> OutChains; 7045 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7046 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 7047 StoresToEmit[i].first, 7048 getValue(StoresToEmit[i].second), 7049 MachinePointerInfo(StoresToEmit[i].second), 7050 false, false, 0); 7051 OutChains.push_back(Val); 7052 } 7053 7054 if (!OutChains.empty()) 7055 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7056 7057 DAG.setRoot(Chain); 7058 } 7059 7060 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7061 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7062 MVT::Other, getRoot(), 7063 getValue(I.getArgOperand(0)), 7064 DAG.getSrcValue(I.getArgOperand(0)))); 7065 } 7066 7067 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7068 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7069 const DataLayout &DL = DAG.getDataLayout(); 7070 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7071 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7072 DAG.getSrcValue(I.getOperand(0)), 7073 DL.getABITypeAlignment(I.getType())); 7074 setValue(&I, V); 7075 DAG.setRoot(V.getValue(1)); 7076 } 7077 7078 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7079 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7080 MVT::Other, getRoot(), 7081 getValue(I.getArgOperand(0)), 7082 DAG.getSrcValue(I.getArgOperand(0)))); 7083 } 7084 7085 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7086 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7087 MVT::Other, getRoot(), 7088 getValue(I.getArgOperand(0)), 7089 getValue(I.getArgOperand(1)), 7090 DAG.getSrcValue(I.getArgOperand(0)), 7091 DAG.getSrcValue(I.getArgOperand(1)))); 7092 } 7093 7094 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7095 const Instruction &I, 7096 SDValue Op) { 7097 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7098 if (!Range) 7099 return Op; 7100 7101 Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue(); 7102 if (!Lo->isNullValue()) 7103 return Op; 7104 7105 Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue(); 7106 unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2(); 7107 7108 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7109 7110 SDLoc SL = getCurSDLoc(); 7111 7112 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), 7113 Op, DAG.getValueType(SmallVT)); 7114 unsigned NumVals = Op.getNode()->getNumValues(); 7115 if (NumVals == 1) 7116 return ZExt; 7117 7118 SmallVector<SDValue, 4> Ops; 7119 7120 Ops.push_back(ZExt); 7121 for (unsigned I = 1; I != NumVals; ++I) 7122 Ops.push_back(Op.getValue(I)); 7123 7124 return DAG.getMergeValues(Ops, SL); 7125 } 7126 7127 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7128 /// the call being lowered. 7129 /// 7130 /// This is a helper for lowering intrinsics that follow a target calling 7131 /// convention or require stack pointer adjustment. Only a subset of the 7132 /// intrinsic's operands need to participate in the calling convention. 7133 void SelectionDAGBuilder::populateCallLoweringInfo( 7134 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7135 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7136 bool IsPatchPoint) { 7137 TargetLowering::ArgListTy Args; 7138 Args.reserve(NumArgs); 7139 7140 // Populate the argument list. 7141 // Attributes for args start at offset 1, after the return attribute. 7142 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 7143 ArgI != ArgE; ++ArgI) { 7144 const Value *V = CS->getOperand(ArgI); 7145 7146 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7147 7148 TargetLowering::ArgListEntry Entry; 7149 Entry.Node = getValue(V); 7150 Entry.Ty = V->getType(); 7151 Entry.setAttributes(&CS, AttrI); 7152 Args.push_back(Entry); 7153 } 7154 7155 CLI.setDebugLoc(getCurSDLoc()) 7156 .setChain(getRoot()) 7157 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), 7158 NumArgs) 7159 .setDiscardResult(CS->use_empty()) 7160 .setIsPatchPoint(IsPatchPoint); 7161 } 7162 7163 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7164 /// or patchpoint target node's operand list. 7165 /// 7166 /// Constants are converted to TargetConstants purely as an optimization to 7167 /// avoid constant materialization and register allocation. 7168 /// 7169 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7170 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7171 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7172 /// address materialization and register allocation, but may also be required 7173 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7174 /// alloca in the entry block, then the runtime may assume that the alloca's 7175 /// StackMap location can be read immediately after compilation and that the 7176 /// location is valid at any point during execution (this is similar to the 7177 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7178 /// only available in a register, then the runtime would need to trap when 7179 /// execution reaches the StackMap in order to read the alloca's location. 7180 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7181 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 7182 SelectionDAGBuilder &Builder) { 7183 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7184 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7185 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7186 Ops.push_back( 7187 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7188 Ops.push_back( 7189 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7190 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7191 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7192 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7193 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 7194 } else 7195 Ops.push_back(OpVal); 7196 } 7197 } 7198 7199 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7200 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7201 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7202 // [live variables...]) 7203 7204 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7205 7206 SDValue Chain, InFlag, Callee, NullPtr; 7207 SmallVector<SDValue, 32> Ops; 7208 7209 SDLoc DL = getCurSDLoc(); 7210 Callee = getValue(CI.getCalledValue()); 7211 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7212 7213 // The stackmap intrinsic only records the live variables (the arguemnts 7214 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7215 // intrinsic, this won't be lowered to a function call. This means we don't 7216 // have to worry about calling conventions and target specific lowering code. 7217 // Instead we perform the call lowering right here. 7218 // 7219 // chain, flag = CALLSEQ_START(chain, 0) 7220 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7221 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7222 // 7223 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7224 InFlag = Chain.getValue(1); 7225 7226 // Add the <id> and <numBytes> constants. 7227 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7228 Ops.push_back(DAG.getTargetConstant( 7229 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7230 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7231 Ops.push_back(DAG.getTargetConstant( 7232 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7233 MVT::i32)); 7234 7235 // Push live variables for the stack map. 7236 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7237 7238 // We are not pushing any register mask info here on the operands list, 7239 // because the stackmap doesn't clobber anything. 7240 7241 // Push the chain and the glue flag. 7242 Ops.push_back(Chain); 7243 Ops.push_back(InFlag); 7244 7245 // Create the STACKMAP node. 7246 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7247 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7248 Chain = SDValue(SM, 0); 7249 InFlag = Chain.getValue(1); 7250 7251 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7252 7253 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7254 7255 // Set the root to the target-lowered call chain. 7256 DAG.setRoot(Chain); 7257 7258 // Inform the Frame Information that we have a stackmap in this function. 7259 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 7260 } 7261 7262 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7263 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7264 const BasicBlock *EHPadBB) { 7265 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7266 // i32 <numBytes>, 7267 // i8* <target>, 7268 // i32 <numArgs>, 7269 // [Args...], 7270 // [live variables...]) 7271 7272 CallingConv::ID CC = CS.getCallingConv(); 7273 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7274 bool HasDef = !CS->getType()->isVoidTy(); 7275 SDLoc dl = getCurSDLoc(); 7276 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7277 7278 // Handle immediate and symbolic callees. 7279 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7280 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7281 /*isTarget=*/true); 7282 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7283 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7284 SDLoc(SymbolicCallee), 7285 SymbolicCallee->getValueType(0)); 7286 7287 // Get the real number of arguments participating in the call <numArgs> 7288 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7289 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7290 7291 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7292 // Intrinsics include all meta-operands up to but not including CC. 7293 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7294 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7295 "Not enough arguments provided to the patchpoint intrinsic"); 7296 7297 // For AnyRegCC the arguments are lowered later on manually. 7298 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7299 Type *ReturnTy = 7300 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7301 7302 TargetLowering::CallLoweringInfo CLI(DAG); 7303 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7304 true); 7305 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7306 7307 SDNode *CallEnd = Result.second.getNode(); 7308 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7309 CallEnd = CallEnd->getOperand(0).getNode(); 7310 7311 /// Get a call instruction from the call sequence chain. 7312 /// Tail calls are not allowed. 7313 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7314 "Expected a callseq node."); 7315 SDNode *Call = CallEnd->getOperand(0).getNode(); 7316 bool HasGlue = Call->getGluedNode(); 7317 7318 // Replace the target specific call node with the patchable intrinsic. 7319 SmallVector<SDValue, 8> Ops; 7320 7321 // Add the <id> and <numBytes> constants. 7322 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7323 Ops.push_back(DAG.getTargetConstant( 7324 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7325 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7326 Ops.push_back(DAG.getTargetConstant( 7327 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7328 MVT::i32)); 7329 7330 // Add the callee. 7331 Ops.push_back(Callee); 7332 7333 // Adjust <numArgs> to account for any arguments that have been passed on the 7334 // stack instead. 7335 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7336 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7337 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7338 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7339 7340 // Add the calling convention 7341 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7342 7343 // Add the arguments we omitted previously. The register allocator should 7344 // place these in any free register. 7345 if (IsAnyRegCC) 7346 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7347 Ops.push_back(getValue(CS.getArgument(i))); 7348 7349 // Push the arguments from the call instruction up to the register mask. 7350 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7351 Ops.append(Call->op_begin() + 2, e); 7352 7353 // Push live variables for the stack map. 7354 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7355 7356 // Push the register mask info. 7357 if (HasGlue) 7358 Ops.push_back(*(Call->op_end()-2)); 7359 else 7360 Ops.push_back(*(Call->op_end()-1)); 7361 7362 // Push the chain (this is originally the first operand of the call, but 7363 // becomes now the last or second to last operand). 7364 Ops.push_back(*(Call->op_begin())); 7365 7366 // Push the glue flag (last operand). 7367 if (HasGlue) 7368 Ops.push_back(*(Call->op_end()-1)); 7369 7370 SDVTList NodeTys; 7371 if (IsAnyRegCC && HasDef) { 7372 // Create the return types based on the intrinsic definition 7373 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7374 SmallVector<EVT, 3> ValueVTs; 7375 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7376 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7377 7378 // There is always a chain and a glue type at the end 7379 ValueVTs.push_back(MVT::Other); 7380 ValueVTs.push_back(MVT::Glue); 7381 NodeTys = DAG.getVTList(ValueVTs); 7382 } else 7383 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7384 7385 // Replace the target specific call node with a PATCHPOINT node. 7386 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7387 dl, NodeTys, Ops); 7388 7389 // Update the NodeMap. 7390 if (HasDef) { 7391 if (IsAnyRegCC) 7392 setValue(CS.getInstruction(), SDValue(MN, 0)); 7393 else 7394 setValue(CS.getInstruction(), Result.first); 7395 } 7396 7397 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7398 // call sequence. Furthermore the location of the chain and glue can change 7399 // when the AnyReg calling convention is used and the intrinsic returns a 7400 // value. 7401 if (IsAnyRegCC && HasDef) { 7402 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7403 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7404 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7405 } else 7406 DAG.ReplaceAllUsesWith(Call, MN); 7407 DAG.DeleteNode(Call); 7408 7409 // Inform the Frame Information that we have a patchpoint in this function. 7410 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7411 } 7412 7413 /// Returns an AttributeSet representing the attributes applied to the return 7414 /// value of the given call. 7415 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7416 SmallVector<Attribute::AttrKind, 2> Attrs; 7417 if (CLI.RetSExt) 7418 Attrs.push_back(Attribute::SExt); 7419 if (CLI.RetZExt) 7420 Attrs.push_back(Attribute::ZExt); 7421 if (CLI.IsInReg) 7422 Attrs.push_back(Attribute::InReg); 7423 7424 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7425 Attrs); 7426 } 7427 7428 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7429 /// implementation, which just calls LowerCall. 7430 /// FIXME: When all targets are 7431 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7432 std::pair<SDValue, SDValue> 7433 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7434 // Handle the incoming return values from the call. 7435 CLI.Ins.clear(); 7436 Type *OrigRetTy = CLI.RetTy; 7437 SmallVector<EVT, 4> RetTys; 7438 SmallVector<uint64_t, 4> Offsets; 7439 auto &DL = CLI.DAG.getDataLayout(); 7440 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7441 7442 SmallVector<ISD::OutputArg, 4> Outs; 7443 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7444 7445 bool CanLowerReturn = 7446 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7447 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7448 7449 SDValue DemoteStackSlot; 7450 int DemoteStackIdx = -100; 7451 if (!CanLowerReturn) { 7452 // FIXME: equivalent assert? 7453 // assert(!CS.hasInAllocaArgument() && 7454 // "sret demotion is incompatible with inalloca"); 7455 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7456 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7457 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7458 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7459 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7460 7461 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7462 ArgListEntry Entry; 7463 Entry.Node = DemoteStackSlot; 7464 Entry.Ty = StackSlotPtrType; 7465 Entry.isSExt = false; 7466 Entry.isZExt = false; 7467 Entry.isInReg = false; 7468 Entry.isSRet = true; 7469 Entry.isNest = false; 7470 Entry.isByVal = false; 7471 Entry.isReturned = false; 7472 Entry.isSwiftSelf = false; 7473 Entry.isSwiftError = false; 7474 Entry.Alignment = Align; 7475 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7476 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7477 7478 // sret demotion isn't compatible with tail-calls, since the sret argument 7479 // points into the callers stack frame. 7480 CLI.IsTailCall = false; 7481 } else { 7482 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7483 EVT VT = RetTys[I]; 7484 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7485 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7486 for (unsigned i = 0; i != NumRegs; ++i) { 7487 ISD::InputArg MyFlags; 7488 MyFlags.VT = RegisterVT; 7489 MyFlags.ArgVT = VT; 7490 MyFlags.Used = CLI.IsReturnValueUsed; 7491 if (CLI.RetSExt) 7492 MyFlags.Flags.setSExt(); 7493 if (CLI.RetZExt) 7494 MyFlags.Flags.setZExt(); 7495 if (CLI.IsInReg) 7496 MyFlags.Flags.setInReg(); 7497 CLI.Ins.push_back(MyFlags); 7498 } 7499 } 7500 } 7501 7502 // We push in swifterror return as the last element of CLI.Ins. 7503 ArgListTy &Args = CLI.getArgs(); 7504 if (supportSwiftError()) { 7505 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7506 if (Args[i].isSwiftError) { 7507 ISD::InputArg MyFlags; 7508 MyFlags.VT = getPointerTy(DL); 7509 MyFlags.ArgVT = EVT(getPointerTy(DL)); 7510 MyFlags.Flags.setSwiftError(); 7511 CLI.Ins.push_back(MyFlags); 7512 } 7513 } 7514 } 7515 7516 // Handle all of the outgoing arguments. 7517 CLI.Outs.clear(); 7518 CLI.OutVals.clear(); 7519 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7520 SmallVector<EVT, 4> ValueVTs; 7521 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7522 Type *FinalType = Args[i].Ty; 7523 if (Args[i].isByVal) 7524 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7525 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7526 FinalType, CLI.CallConv, CLI.IsVarArg); 7527 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7528 ++Value) { 7529 EVT VT = ValueVTs[Value]; 7530 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7531 SDValue Op = SDValue(Args[i].Node.getNode(), 7532 Args[i].Node.getResNo() + Value); 7533 ISD::ArgFlagsTy Flags; 7534 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7535 7536 if (Args[i].isZExt) 7537 Flags.setZExt(); 7538 if (Args[i].isSExt) 7539 Flags.setSExt(); 7540 if (Args[i].isInReg) 7541 Flags.setInReg(); 7542 if (Args[i].isSRet) 7543 Flags.setSRet(); 7544 if (Args[i].isSwiftSelf) 7545 Flags.setSwiftSelf(); 7546 if (Args[i].isSwiftError) 7547 Flags.setSwiftError(); 7548 if (Args[i].isByVal) 7549 Flags.setByVal(); 7550 if (Args[i].isInAlloca) { 7551 Flags.setInAlloca(); 7552 // Set the byval flag for CCAssignFn callbacks that don't know about 7553 // inalloca. This way we can know how many bytes we should've allocated 7554 // and how many bytes a callee cleanup function will pop. If we port 7555 // inalloca to more targets, we'll have to add custom inalloca handling 7556 // in the various CC lowering callbacks. 7557 Flags.setByVal(); 7558 } 7559 if (Args[i].isByVal || Args[i].isInAlloca) { 7560 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7561 Type *ElementTy = Ty->getElementType(); 7562 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7563 // For ByVal, alignment should come from FE. BE will guess if this 7564 // info is not there but there are cases it cannot get right. 7565 unsigned FrameAlign; 7566 if (Args[i].Alignment) 7567 FrameAlign = Args[i].Alignment; 7568 else 7569 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7570 Flags.setByValAlign(FrameAlign); 7571 } 7572 if (Args[i].isNest) 7573 Flags.setNest(); 7574 if (NeedsRegBlock) 7575 Flags.setInConsecutiveRegs(); 7576 Flags.setOrigAlign(OriginalAlignment); 7577 7578 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7579 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7580 SmallVector<SDValue, 4> Parts(NumParts); 7581 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7582 7583 if (Args[i].isSExt) 7584 ExtendKind = ISD::SIGN_EXTEND; 7585 else if (Args[i].isZExt) 7586 ExtendKind = ISD::ZERO_EXTEND; 7587 7588 // Conservatively only handle 'returned' on non-vectors for now 7589 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7590 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7591 "unexpected use of 'returned'"); 7592 // Before passing 'returned' to the target lowering code, ensure that 7593 // either the register MVT and the actual EVT are the same size or that 7594 // the return value and argument are extended in the same way; in these 7595 // cases it's safe to pass the argument register value unchanged as the 7596 // return register value (although it's at the target's option whether 7597 // to do so) 7598 // TODO: allow code generation to take advantage of partially preserved 7599 // registers rather than clobbering the entire register when the 7600 // parameter extension method is not compatible with the return 7601 // extension method 7602 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7603 (ExtendKind != ISD::ANY_EXTEND && 7604 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7605 Flags.setReturned(); 7606 } 7607 7608 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7609 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7610 7611 for (unsigned j = 0; j != NumParts; ++j) { 7612 // if it isn't first piece, alignment must be 1 7613 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7614 i < CLI.NumFixedArgs, 7615 i, j*Parts[j].getValueType().getStoreSize()); 7616 if (NumParts > 1 && j == 0) 7617 MyFlags.Flags.setSplit(); 7618 else if (j != 0) { 7619 MyFlags.Flags.setOrigAlign(1); 7620 if (j == NumParts - 1) 7621 MyFlags.Flags.setSplitEnd(); 7622 } 7623 7624 CLI.Outs.push_back(MyFlags); 7625 CLI.OutVals.push_back(Parts[j]); 7626 } 7627 7628 if (NeedsRegBlock && Value == NumValues - 1) 7629 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7630 } 7631 } 7632 7633 SmallVector<SDValue, 4> InVals; 7634 CLI.Chain = LowerCall(CLI, InVals); 7635 7636 // Update CLI.InVals to use outside of this function. 7637 CLI.InVals = InVals; 7638 7639 // Verify that the target's LowerCall behaved as expected. 7640 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7641 "LowerCall didn't return a valid chain!"); 7642 assert((!CLI.IsTailCall || InVals.empty()) && 7643 "LowerCall emitted a return value for a tail call!"); 7644 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7645 "LowerCall didn't emit the correct number of values!"); 7646 7647 // For a tail call, the return value is merely live-out and there aren't 7648 // any nodes in the DAG representing it. Return a special value to 7649 // indicate that a tail call has been emitted and no more Instructions 7650 // should be processed in the current block. 7651 if (CLI.IsTailCall) { 7652 CLI.DAG.setRoot(CLI.Chain); 7653 return std::make_pair(SDValue(), SDValue()); 7654 } 7655 7656 #ifndef NDEBUG 7657 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7658 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 7659 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7660 "LowerCall emitted a value with the wrong type!"); 7661 } 7662 #endif 7663 7664 SmallVector<SDValue, 4> ReturnValues; 7665 if (!CanLowerReturn) { 7666 // The instruction result is the result of loading from the 7667 // hidden sret parameter. 7668 SmallVector<EVT, 1> PVTs; 7669 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7670 7671 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7672 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7673 EVT PtrVT = PVTs[0]; 7674 7675 unsigned NumValues = RetTys.size(); 7676 ReturnValues.resize(NumValues); 7677 SmallVector<SDValue, 4> Chains(NumValues); 7678 7679 // An aggregate return value cannot wrap around the address space, so 7680 // offsets to its parts don't wrap either. 7681 SDNodeFlags Flags; 7682 Flags.setNoUnsignedWrap(true); 7683 7684 for (unsigned i = 0; i < NumValues; ++i) { 7685 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7686 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7687 PtrVT), &Flags); 7688 SDValue L = CLI.DAG.getLoad( 7689 RetTys[i], CLI.DL, CLI.Chain, Add, 7690 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7691 DemoteStackIdx, Offsets[i]), 7692 false, false, false, 1); 7693 ReturnValues[i] = L; 7694 Chains[i] = L.getValue(1); 7695 } 7696 7697 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7698 } else { 7699 // Collect the legal value parts into potentially illegal values 7700 // that correspond to the original function's return values. 7701 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7702 if (CLI.RetSExt) 7703 AssertOp = ISD::AssertSext; 7704 else if (CLI.RetZExt) 7705 AssertOp = ISD::AssertZext; 7706 unsigned CurReg = 0; 7707 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7708 EVT VT = RetTys[I]; 7709 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7710 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7711 7712 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7713 NumRegs, RegisterVT, VT, nullptr, 7714 AssertOp)); 7715 CurReg += NumRegs; 7716 } 7717 7718 // For a function returning void, there is no return value. We can't create 7719 // such a node, so we just return a null return value in that case. In 7720 // that case, nothing will actually look at the value. 7721 if (ReturnValues.empty()) 7722 return std::make_pair(SDValue(), CLI.Chain); 7723 } 7724 7725 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7726 CLI.DAG.getVTList(RetTys), ReturnValues); 7727 return std::make_pair(Res, CLI.Chain); 7728 } 7729 7730 void TargetLowering::LowerOperationWrapper(SDNode *N, 7731 SmallVectorImpl<SDValue> &Results, 7732 SelectionDAG &DAG) const { 7733 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 7734 Results.push_back(Res); 7735 } 7736 7737 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7738 llvm_unreachable("LowerOperation not implemented for this target!"); 7739 } 7740 7741 void 7742 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7743 SDValue Op = getNonRegisterValue(V); 7744 assert((Op.getOpcode() != ISD::CopyFromReg || 7745 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7746 "Copy from a reg to the same reg!"); 7747 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7748 7749 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7750 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7751 V->getType()); 7752 SDValue Chain = DAG.getEntryNode(); 7753 7754 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7755 FuncInfo.PreferredExtendType.end()) 7756 ? ISD::ANY_EXTEND 7757 : FuncInfo.PreferredExtendType[V]; 7758 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7759 PendingExports.push_back(Chain); 7760 } 7761 7762 #include "llvm/CodeGen/SelectionDAGISel.h" 7763 7764 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7765 /// entry block, return true. This includes arguments used by switches, since 7766 /// the switch may expand into multiple basic blocks. 7767 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7768 // With FastISel active, we may be splitting blocks, so force creation 7769 // of virtual registers for all non-dead arguments. 7770 if (FastISel) 7771 return A->use_empty(); 7772 7773 const BasicBlock &Entry = A->getParent()->front(); 7774 for (const User *U : A->users()) 7775 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7776 return false; // Use not in entry block. 7777 7778 return true; 7779 } 7780 7781 void SelectionDAGISel::LowerArguments(const Function &F) { 7782 SelectionDAG &DAG = SDB->DAG; 7783 SDLoc dl = SDB->getCurSDLoc(); 7784 const DataLayout &DL = DAG.getDataLayout(); 7785 SmallVector<ISD::InputArg, 16> Ins; 7786 7787 if (!FuncInfo->CanLowerReturn) { 7788 // Put in an sret pointer parameter before all the other parameters. 7789 SmallVector<EVT, 1> ValueVTs; 7790 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7791 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7792 7793 // NOTE: Assuming that a pointer will never break down to more than one VT 7794 // or one register. 7795 ISD::ArgFlagsTy Flags; 7796 Flags.setSRet(); 7797 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7798 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7799 ISD::InputArg::NoArgIndex, 0); 7800 Ins.push_back(RetArg); 7801 } 7802 7803 // Set up the incoming argument description vector. 7804 unsigned Idx = 1; 7805 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7806 I != E; ++I, ++Idx) { 7807 SmallVector<EVT, 4> ValueVTs; 7808 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7809 bool isArgValueUsed = !I->use_empty(); 7810 unsigned PartBase = 0; 7811 Type *FinalType = I->getType(); 7812 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7813 FinalType = cast<PointerType>(FinalType)->getElementType(); 7814 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7815 FinalType, F.getCallingConv(), F.isVarArg()); 7816 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7817 Value != NumValues; ++Value) { 7818 EVT VT = ValueVTs[Value]; 7819 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7820 ISD::ArgFlagsTy Flags; 7821 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7822 7823 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7824 Flags.setZExt(); 7825 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7826 Flags.setSExt(); 7827 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7828 Flags.setInReg(); 7829 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7830 Flags.setSRet(); 7831 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf)) 7832 Flags.setSwiftSelf(); 7833 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) 7834 Flags.setSwiftError(); 7835 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7836 Flags.setByVal(); 7837 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7838 Flags.setInAlloca(); 7839 // Set the byval flag for CCAssignFn callbacks that don't know about 7840 // inalloca. This way we can know how many bytes we should've allocated 7841 // and how many bytes a callee cleanup function will pop. If we port 7842 // inalloca to more targets, we'll have to add custom inalloca handling 7843 // in the various CC lowering callbacks. 7844 Flags.setByVal(); 7845 } 7846 if (F.getCallingConv() == CallingConv::X86_INTR) { 7847 // IA Interrupt passes frame (1st parameter) by value in the stack. 7848 if (Idx == 1) 7849 Flags.setByVal(); 7850 } 7851 if (Flags.isByVal() || Flags.isInAlloca()) { 7852 PointerType *Ty = cast<PointerType>(I->getType()); 7853 Type *ElementTy = Ty->getElementType(); 7854 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7855 // For ByVal, alignment should be passed from FE. BE will guess if 7856 // this info is not there but there are cases it cannot get right. 7857 unsigned FrameAlign; 7858 if (F.getParamAlignment(Idx)) 7859 FrameAlign = F.getParamAlignment(Idx); 7860 else 7861 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7862 Flags.setByValAlign(FrameAlign); 7863 } 7864 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7865 Flags.setNest(); 7866 if (NeedsRegBlock) 7867 Flags.setInConsecutiveRegs(); 7868 Flags.setOrigAlign(OriginalAlignment); 7869 7870 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7871 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7872 for (unsigned i = 0; i != NumRegs; ++i) { 7873 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7874 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7875 if (NumRegs > 1 && i == 0) 7876 MyFlags.Flags.setSplit(); 7877 // if it isn't first piece, alignment must be 1 7878 else if (i > 0) { 7879 MyFlags.Flags.setOrigAlign(1); 7880 if (i == NumRegs - 1) 7881 MyFlags.Flags.setSplitEnd(); 7882 } 7883 Ins.push_back(MyFlags); 7884 } 7885 if (NeedsRegBlock && Value == NumValues - 1) 7886 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7887 PartBase += VT.getStoreSize(); 7888 } 7889 } 7890 7891 // Call the target to set up the argument values. 7892 SmallVector<SDValue, 8> InVals; 7893 SDValue NewRoot = TLI->LowerFormalArguments( 7894 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7895 7896 // Verify that the target's LowerFormalArguments behaved as expected. 7897 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7898 "LowerFormalArguments didn't return a valid chain!"); 7899 assert(InVals.size() == Ins.size() && 7900 "LowerFormalArguments didn't emit the correct number of values!"); 7901 DEBUG({ 7902 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7903 assert(InVals[i].getNode() && 7904 "LowerFormalArguments emitted a null value!"); 7905 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7906 "LowerFormalArguments emitted a value with the wrong type!"); 7907 } 7908 }); 7909 7910 // Update the DAG with the new chain value resulting from argument lowering. 7911 DAG.setRoot(NewRoot); 7912 7913 // Set up the argument values. 7914 unsigned i = 0; 7915 Idx = 1; 7916 if (!FuncInfo->CanLowerReturn) { 7917 // Create a virtual register for the sret pointer, and put in a copy 7918 // from the sret argument into it. 7919 SmallVector<EVT, 1> ValueVTs; 7920 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7921 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7922 MVT VT = ValueVTs[0].getSimpleVT(); 7923 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7924 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7925 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7926 RegVT, VT, nullptr, AssertOp); 7927 7928 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7929 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7930 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7931 FuncInfo->DemoteRegister = SRetReg; 7932 NewRoot = 7933 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7934 DAG.setRoot(NewRoot); 7935 7936 // i indexes lowered arguments. Bump it past the hidden sret argument. 7937 // Idx indexes LLVM arguments. Don't touch it. 7938 ++i; 7939 } 7940 7941 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7942 ++I, ++Idx) { 7943 SmallVector<SDValue, 4> ArgValues; 7944 SmallVector<EVT, 4> ValueVTs; 7945 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7946 unsigned NumValues = ValueVTs.size(); 7947 7948 // If this argument is unused then remember its value. It is used to generate 7949 // debugging information. 7950 if (I->use_empty() && NumValues) { 7951 SDB->setUnusedArgValue(&*I, InVals[i]); 7952 7953 // Also remember any frame index for use in FastISel. 7954 if (FrameIndexSDNode *FI = 7955 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7956 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7957 } 7958 7959 for (unsigned Val = 0; Val != NumValues; ++Val) { 7960 EVT VT = ValueVTs[Val]; 7961 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7962 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7963 7964 if (!I->use_empty()) { 7965 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7966 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7967 AssertOp = ISD::AssertSext; 7968 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7969 AssertOp = ISD::AssertZext; 7970 7971 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7972 NumParts, PartVT, VT, 7973 nullptr, AssertOp)); 7974 } 7975 7976 i += NumParts; 7977 } 7978 7979 // We don't need to do anything else for unused arguments. 7980 if (ArgValues.empty()) 7981 continue; 7982 7983 // Note down frame index. 7984 if (FrameIndexSDNode *FI = 7985 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7986 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7987 7988 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7989 SDB->getCurSDLoc()); 7990 7991 SDB->setValue(&*I, Res); 7992 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7993 if (LoadSDNode *LNode = 7994 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7995 if (FrameIndexSDNode *FI = 7996 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7997 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7998 } 7999 8000 // Update SwiftErrorMap. 8001 if (Res.getOpcode() == ISD::CopyFromReg && TLI->supportSwiftError() && 8002 F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) { 8003 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8004 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8005 FuncInfo->SwiftErrorMap[FuncInfo->MBB][0] = Reg; 8006 } 8007 8008 // If this argument is live outside of the entry block, insert a copy from 8009 // wherever we got it to the vreg that other BB's will reference it as. 8010 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8011 // If we can, though, try to skip creating an unnecessary vreg. 8012 // FIXME: This isn't very clean... it would be nice to make this more 8013 // general. It's also subtly incompatible with the hacks FastISel 8014 // uses with vregs. 8015 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8016 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8017 FuncInfo->ValueMap[&*I] = Reg; 8018 continue; 8019 } 8020 } 8021 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 8022 FuncInfo->InitializeRegForValue(&*I); 8023 SDB->CopyToExportRegsIfNeeded(&*I); 8024 } 8025 } 8026 8027 assert(i == InVals.size() && "Argument register count mismatch!"); 8028 8029 // Finally, if the target has anything special to do, allow it to do so. 8030 EmitFunctionEntryCode(); 8031 } 8032 8033 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8034 /// ensure constants are generated when needed. Remember the virtual registers 8035 /// that need to be added to the Machine PHI nodes as input. We cannot just 8036 /// directly add them, because expansion might result in multiple MBB's for one 8037 /// BB. As such, the start of the BB might correspond to a different MBB than 8038 /// the end. 8039 /// 8040 void 8041 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8042 const TerminatorInst *TI = LLVMBB->getTerminator(); 8043 8044 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8045 8046 // Check PHI nodes in successors that expect a value to be available from this 8047 // block. 8048 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8049 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8050 if (!isa<PHINode>(SuccBB->begin())) continue; 8051 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8052 8053 // If this terminator has multiple identical successors (common for 8054 // switches), only handle each succ once. 8055 if (!SuccsHandled.insert(SuccMBB).second) 8056 continue; 8057 8058 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8059 8060 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8061 // nodes and Machine PHI nodes, but the incoming operands have not been 8062 // emitted yet. 8063 for (BasicBlock::const_iterator I = SuccBB->begin(); 8064 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8065 // Ignore dead phi's. 8066 if (PN->use_empty()) continue; 8067 8068 // Skip empty types 8069 if (PN->getType()->isEmptyTy()) 8070 continue; 8071 8072 unsigned Reg; 8073 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8074 8075 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8076 unsigned &RegOut = ConstantsOut[C]; 8077 if (RegOut == 0) { 8078 RegOut = FuncInfo.CreateRegs(C->getType()); 8079 CopyValueToVirtualRegister(C, RegOut); 8080 } 8081 Reg = RegOut; 8082 } else { 8083 DenseMap<const Value *, unsigned>::iterator I = 8084 FuncInfo.ValueMap.find(PHIOp); 8085 if (I != FuncInfo.ValueMap.end()) 8086 Reg = I->second; 8087 else { 8088 assert(isa<AllocaInst>(PHIOp) && 8089 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8090 "Didn't codegen value into a register!??"); 8091 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8092 CopyValueToVirtualRegister(PHIOp, Reg); 8093 } 8094 } 8095 8096 // Remember that this register needs to added to the machine PHI node as 8097 // the input for this MBB. 8098 SmallVector<EVT, 4> ValueVTs; 8099 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8100 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8101 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8102 EVT VT = ValueVTs[vti]; 8103 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8104 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8105 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 8106 Reg += NumRegisters; 8107 } 8108 } 8109 } 8110 8111 ConstantsOut.clear(); 8112 } 8113 8114 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8115 /// is 0. 8116 MachineBasicBlock * 8117 SelectionDAGBuilder::StackProtectorDescriptor:: 8118 AddSuccessorMBB(const BasicBlock *BB, 8119 MachineBasicBlock *ParentMBB, 8120 bool IsLikely, 8121 MachineBasicBlock *SuccMBB) { 8122 // If SuccBB has not been created yet, create it. 8123 if (!SuccMBB) { 8124 MachineFunction *MF = ParentMBB->getParent(); 8125 MachineFunction::iterator BBI(ParentMBB); 8126 SuccMBB = MF->CreateMachineBasicBlock(BB); 8127 MF->insert(++BBI, SuccMBB); 8128 } 8129 // Add it as a successor of ParentMBB. 8130 ParentMBB->addSuccessor( 8131 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 8132 return SuccMBB; 8133 } 8134 8135 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 8136 MachineFunction::iterator I(MBB); 8137 if (++I == FuncInfo.MF->end()) 8138 return nullptr; 8139 return &*I; 8140 } 8141 8142 /// During lowering new call nodes can be created (such as memset, etc.). 8143 /// Those will become new roots of the current DAG, but complications arise 8144 /// when they are tail calls. In such cases, the call lowering will update 8145 /// the root, but the builder still needs to know that a tail call has been 8146 /// lowered in order to avoid generating an additional return. 8147 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 8148 // If the node is null, we do have a tail call. 8149 if (MaybeTC.getNode() != nullptr) 8150 DAG.setRoot(MaybeTC); 8151 else 8152 HasTailCall = true; 8153 } 8154 8155 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 8156 unsigned *TotalCases, unsigned First, 8157 unsigned Last, 8158 unsigned Density) { 8159 assert(Last >= First); 8160 assert(TotalCases[Last] >= TotalCases[First]); 8161 8162 APInt LowCase = Clusters[First].Low->getValue(); 8163 APInt HighCase = Clusters[Last].High->getValue(); 8164 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 8165 8166 // FIXME: A range of consecutive cases has 100% density, but only requires one 8167 // comparison to lower. We should discriminate against such consecutive ranges 8168 // in jump tables. 8169 8170 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 8171 uint64_t Range = Diff + 1; 8172 8173 uint64_t NumCases = 8174 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 8175 8176 assert(NumCases < UINT64_MAX / 100); 8177 assert(Range >= NumCases); 8178 8179 return NumCases * 100 >= Range * Density; 8180 } 8181 8182 static inline bool areJTsAllowed(const TargetLowering &TLI, 8183 const SwitchInst *SI) { 8184 const Function *Fn = SI->getParent()->getParent(); 8185 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true") 8186 return false; 8187 8188 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 8189 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 8190 } 8191 8192 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 8193 unsigned First, unsigned Last, 8194 const SwitchInst *SI, 8195 MachineBasicBlock *DefaultMBB, 8196 CaseCluster &JTCluster) { 8197 assert(First <= Last); 8198 8199 auto Prob = BranchProbability::getZero(); 8200 unsigned NumCmps = 0; 8201 std::vector<MachineBasicBlock*> Table; 8202 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 8203 8204 // Initialize probabilities in JTProbs. 8205 for (unsigned I = First; I <= Last; ++I) 8206 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 8207 8208 for (unsigned I = First; I <= Last; ++I) { 8209 assert(Clusters[I].Kind == CC_Range); 8210 Prob += Clusters[I].Prob; 8211 APInt Low = Clusters[I].Low->getValue(); 8212 APInt High = Clusters[I].High->getValue(); 8213 NumCmps += (Low == High) ? 1 : 2; 8214 if (I != First) { 8215 // Fill the gap between this and the previous cluster. 8216 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 8217 assert(PreviousHigh.slt(Low)); 8218 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 8219 for (uint64_t J = 0; J < Gap; J++) 8220 Table.push_back(DefaultMBB); 8221 } 8222 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 8223 for (uint64_t J = 0; J < ClusterSize; ++J) 8224 Table.push_back(Clusters[I].MBB); 8225 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 8226 } 8227 8228 unsigned NumDests = JTProbs.size(); 8229 if (isSuitableForBitTests(NumDests, NumCmps, 8230 Clusters[First].Low->getValue(), 8231 Clusters[Last].High->getValue())) { 8232 // Clusters[First..Last] should be lowered as bit tests instead. 8233 return false; 8234 } 8235 8236 // Create the MBB that will load from and jump through the table. 8237 // Note: We create it here, but it's not inserted into the function yet. 8238 MachineFunction *CurMF = FuncInfo.MF; 8239 MachineBasicBlock *JumpTableMBB = 8240 CurMF->CreateMachineBasicBlock(SI->getParent()); 8241 8242 // Add successors. Note: use table order for determinism. 8243 SmallPtrSet<MachineBasicBlock *, 8> Done; 8244 for (MachineBasicBlock *Succ : Table) { 8245 if (Done.count(Succ)) 8246 continue; 8247 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 8248 Done.insert(Succ); 8249 } 8250 JumpTableMBB->normalizeSuccProbs(); 8251 8252 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8253 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 8254 ->createJumpTableIndex(Table); 8255 8256 // Set up the jump table info. 8257 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 8258 JumpTableHeader JTH(Clusters[First].Low->getValue(), 8259 Clusters[Last].High->getValue(), SI->getCondition(), 8260 nullptr, false); 8261 JTCases.emplace_back(std::move(JTH), std::move(JT)); 8262 8263 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 8264 JTCases.size() - 1, Prob); 8265 return true; 8266 } 8267 8268 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 8269 const SwitchInst *SI, 8270 MachineBasicBlock *DefaultMBB) { 8271 #ifndef NDEBUG 8272 // Clusters must be non-empty, sorted, and only contain Range clusters. 8273 assert(!Clusters.empty()); 8274 for (CaseCluster &C : Clusters) 8275 assert(C.Kind == CC_Range); 8276 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 8277 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 8278 #endif 8279 8280 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8281 if (!areJTsAllowed(TLI, SI)) 8282 return; 8283 8284 const int64_t N = Clusters.size(); 8285 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 8286 8287 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 8288 SmallVector<unsigned, 8> TotalCases(N); 8289 8290 for (unsigned i = 0; i < N; ++i) { 8291 APInt Hi = Clusters[i].High->getValue(); 8292 APInt Lo = Clusters[i].Low->getValue(); 8293 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 8294 if (i != 0) 8295 TotalCases[i] += TotalCases[i - 1]; 8296 } 8297 8298 unsigned MinDensity = JumpTableDensity; 8299 if (DefaultMBB->getParent()->getFunction()->optForSize()) 8300 MinDensity = OptsizeJumpTableDensity; 8301 if (N >= MinJumpTableSize 8302 && isDense(Clusters, &TotalCases[0], 0, N - 1, MinDensity)) { 8303 // Cheap case: the whole range might be suitable for jump table. 8304 CaseCluster JTCluster; 8305 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 8306 Clusters[0] = JTCluster; 8307 Clusters.resize(1); 8308 return; 8309 } 8310 } 8311 8312 // The algorithm below is not suitable for -O0. 8313 if (TM.getOptLevel() == CodeGenOpt::None) 8314 return; 8315 8316 // Split Clusters into minimum number of dense partitions. The algorithm uses 8317 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 8318 // for the Case Statement'" (1994), but builds the MinPartitions array in 8319 // reverse order to make it easier to reconstruct the partitions in ascending 8320 // order. In the choice between two optimal partitionings, it picks the one 8321 // which yields more jump tables. 8322 8323 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8324 SmallVector<unsigned, 8> MinPartitions(N); 8325 // LastElement[i] is the last element of the partition starting at i. 8326 SmallVector<unsigned, 8> LastElement(N); 8327 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 8328 SmallVector<unsigned, 8> NumTables(N); 8329 8330 // Base case: There is only one way to partition Clusters[N-1]. 8331 MinPartitions[N - 1] = 1; 8332 LastElement[N - 1] = N - 1; 8333 assert(MinJumpTableSize > 1); 8334 NumTables[N - 1] = 0; 8335 8336 // Note: loop indexes are signed to avoid underflow. 8337 for (int64_t i = N - 2; i >= 0; i--) { 8338 // Find optimal partitioning of Clusters[i..N-1]. 8339 // Baseline: Put Clusters[i] into a partition on its own. 8340 MinPartitions[i] = MinPartitions[i + 1] + 1; 8341 LastElement[i] = i; 8342 NumTables[i] = NumTables[i + 1]; 8343 8344 // Search for a solution that results in fewer partitions. 8345 for (int64_t j = N - 1; j > i; j--) { 8346 // Try building a partition from Clusters[i..j]. 8347 if (isDense(Clusters, &TotalCases[0], i, j, MinDensity)) { 8348 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8349 bool IsTable = j - i + 1 >= MinJumpTableSize; 8350 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 8351 8352 // If this j leads to fewer partitions, or same number of partitions 8353 // with more lookup tables, it is a better partitioning. 8354 if (NumPartitions < MinPartitions[i] || 8355 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 8356 MinPartitions[i] = NumPartitions; 8357 LastElement[i] = j; 8358 NumTables[i] = Tables; 8359 } 8360 } 8361 } 8362 } 8363 8364 // Iterate over the partitions, replacing some with jump tables in-place. 8365 unsigned DstIndex = 0; 8366 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8367 Last = LastElement[First]; 8368 assert(Last >= First); 8369 assert(DstIndex <= First); 8370 unsigned NumClusters = Last - First + 1; 8371 8372 CaseCluster JTCluster; 8373 if (NumClusters >= MinJumpTableSize && 8374 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 8375 Clusters[DstIndex++] = JTCluster; 8376 } else { 8377 for (unsigned I = First; I <= Last; ++I) 8378 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 8379 } 8380 } 8381 Clusters.resize(DstIndex); 8382 } 8383 8384 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 8385 // FIXME: Using the pointer type doesn't seem ideal. 8386 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 8387 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 8388 return Range <= BW; 8389 } 8390 8391 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 8392 unsigned NumCmps, 8393 const APInt &Low, 8394 const APInt &High) { 8395 // FIXME: I don't think NumCmps is the correct metric: a single case and a 8396 // range of cases both require only one branch to lower. Just looking at the 8397 // number of clusters and destinations should be enough to decide whether to 8398 // build bit tests. 8399 8400 // To lower a range with bit tests, the range must fit the bitwidth of a 8401 // machine word. 8402 if (!rangeFitsInWord(Low, High)) 8403 return false; 8404 8405 // Decide whether it's profitable to lower this range with bit tests. Each 8406 // destination requires a bit test and branch, and there is an overall range 8407 // check branch. For a small number of clusters, separate comparisons might be 8408 // cheaper, and for many destinations, splitting the range might be better. 8409 return (NumDests == 1 && NumCmps >= 3) || 8410 (NumDests == 2 && NumCmps >= 5) || 8411 (NumDests == 3 && NumCmps >= 6); 8412 } 8413 8414 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8415 unsigned First, unsigned Last, 8416 const SwitchInst *SI, 8417 CaseCluster &BTCluster) { 8418 assert(First <= Last); 8419 if (First == Last) 8420 return false; 8421 8422 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8423 unsigned NumCmps = 0; 8424 for (int64_t I = First; I <= Last; ++I) { 8425 assert(Clusters[I].Kind == CC_Range); 8426 Dests.set(Clusters[I].MBB->getNumber()); 8427 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8428 } 8429 unsigned NumDests = Dests.count(); 8430 8431 APInt Low = Clusters[First].Low->getValue(); 8432 APInt High = Clusters[Last].High->getValue(); 8433 assert(Low.slt(High)); 8434 8435 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8436 return false; 8437 8438 APInt LowBound; 8439 APInt CmpRange; 8440 8441 const int BitWidth = DAG.getTargetLoweringInfo() 8442 .getPointerTy(DAG.getDataLayout()) 8443 .getSizeInBits(); 8444 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8445 8446 // Check if the clusters cover a contiguous range such that no value in the 8447 // range will jump to the default statement. 8448 bool ContiguousRange = true; 8449 for (int64_t I = First + 1; I <= Last; ++I) { 8450 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8451 ContiguousRange = false; 8452 break; 8453 } 8454 } 8455 8456 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8457 // Optimize the case where all the case values fit in a word without having 8458 // to subtract minValue. In this case, we can optimize away the subtraction. 8459 LowBound = APInt::getNullValue(Low.getBitWidth()); 8460 CmpRange = High; 8461 ContiguousRange = false; 8462 } else { 8463 LowBound = Low; 8464 CmpRange = High - Low; 8465 } 8466 8467 CaseBitsVector CBV; 8468 auto TotalProb = BranchProbability::getZero(); 8469 for (unsigned i = First; i <= Last; ++i) { 8470 // Find the CaseBits for this destination. 8471 unsigned j; 8472 for (j = 0; j < CBV.size(); ++j) 8473 if (CBV[j].BB == Clusters[i].MBB) 8474 break; 8475 if (j == CBV.size()) 8476 CBV.push_back( 8477 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8478 CaseBits *CB = &CBV[j]; 8479 8480 // Update Mask, Bits and ExtraProb. 8481 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8482 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8483 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8484 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8485 CB->Bits += Hi - Lo + 1; 8486 CB->ExtraProb += Clusters[i].Prob; 8487 TotalProb += Clusters[i].Prob; 8488 } 8489 8490 BitTestInfo BTI; 8491 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8492 // Sort by probability first, number of bits second. 8493 if (a.ExtraProb != b.ExtraProb) 8494 return a.ExtraProb > b.ExtraProb; 8495 return a.Bits > b.Bits; 8496 }); 8497 8498 for (auto &CB : CBV) { 8499 MachineBasicBlock *BitTestBB = 8500 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8501 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8502 } 8503 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8504 SI->getCondition(), -1U, MVT::Other, false, 8505 ContiguousRange, nullptr, nullptr, std::move(BTI), 8506 TotalProb); 8507 8508 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8509 BitTestCases.size() - 1, TotalProb); 8510 return true; 8511 } 8512 8513 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8514 const SwitchInst *SI) { 8515 // Partition Clusters into as few subsets as possible, where each subset has a 8516 // range that fits in a machine word and has <= 3 unique destinations. 8517 8518 #ifndef NDEBUG 8519 // Clusters must be sorted and contain Range or JumpTable clusters. 8520 assert(!Clusters.empty()); 8521 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8522 for (const CaseCluster &C : Clusters) 8523 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8524 for (unsigned i = 1; i < Clusters.size(); ++i) 8525 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8526 #endif 8527 8528 // The algorithm below is not suitable for -O0. 8529 if (TM.getOptLevel() == CodeGenOpt::None) 8530 return; 8531 8532 // If target does not have legal shift left, do not emit bit tests at all. 8533 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8534 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8535 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8536 return; 8537 8538 int BitWidth = PTy.getSizeInBits(); 8539 const int64_t N = Clusters.size(); 8540 8541 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8542 SmallVector<unsigned, 8> MinPartitions(N); 8543 // LastElement[i] is the last element of the partition starting at i. 8544 SmallVector<unsigned, 8> LastElement(N); 8545 8546 // FIXME: This might not be the best algorithm for finding bit test clusters. 8547 8548 // Base case: There is only one way to partition Clusters[N-1]. 8549 MinPartitions[N - 1] = 1; 8550 LastElement[N - 1] = N - 1; 8551 8552 // Note: loop indexes are signed to avoid underflow. 8553 for (int64_t i = N - 2; i >= 0; --i) { 8554 // Find optimal partitioning of Clusters[i..N-1]. 8555 // Baseline: Put Clusters[i] into a partition on its own. 8556 MinPartitions[i] = MinPartitions[i + 1] + 1; 8557 LastElement[i] = i; 8558 8559 // Search for a solution that results in fewer partitions. 8560 // Note: the search is limited by BitWidth, reducing time complexity. 8561 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8562 // Try building a partition from Clusters[i..j]. 8563 8564 // Check the range. 8565 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8566 Clusters[j].High->getValue())) 8567 continue; 8568 8569 // Check nbr of destinations and cluster types. 8570 // FIXME: This works, but doesn't seem very efficient. 8571 bool RangesOnly = true; 8572 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8573 for (int64_t k = i; k <= j; k++) { 8574 if (Clusters[k].Kind != CC_Range) { 8575 RangesOnly = false; 8576 break; 8577 } 8578 Dests.set(Clusters[k].MBB->getNumber()); 8579 } 8580 if (!RangesOnly || Dests.count() > 3) 8581 break; 8582 8583 // Check if it's a better partition. 8584 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8585 if (NumPartitions < MinPartitions[i]) { 8586 // Found a better partition. 8587 MinPartitions[i] = NumPartitions; 8588 LastElement[i] = j; 8589 } 8590 } 8591 } 8592 8593 // Iterate over the partitions, replacing with bit-test clusters in-place. 8594 unsigned DstIndex = 0; 8595 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8596 Last = LastElement[First]; 8597 assert(First <= Last); 8598 assert(DstIndex <= First); 8599 8600 CaseCluster BitTestCluster; 8601 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8602 Clusters[DstIndex++] = BitTestCluster; 8603 } else { 8604 size_t NumClusters = Last - First + 1; 8605 std::memmove(&Clusters[DstIndex], &Clusters[First], 8606 sizeof(Clusters[0]) * NumClusters); 8607 DstIndex += NumClusters; 8608 } 8609 } 8610 Clusters.resize(DstIndex); 8611 } 8612 8613 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8614 MachineBasicBlock *SwitchMBB, 8615 MachineBasicBlock *DefaultMBB) { 8616 MachineFunction *CurMF = FuncInfo.MF; 8617 MachineBasicBlock *NextMBB = nullptr; 8618 MachineFunction::iterator BBI(W.MBB); 8619 if (++BBI != FuncInfo.MF->end()) 8620 NextMBB = &*BBI; 8621 8622 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8623 8624 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8625 8626 if (Size == 2 && W.MBB == SwitchMBB) { 8627 // If any two of the cases has the same destination, and if one value 8628 // is the same as the other, but has one bit unset that the other has set, 8629 // use bit manipulation to do two compares at once. For example: 8630 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8631 // TODO: This could be extended to merge any 2 cases in switches with 3 8632 // cases. 8633 // TODO: Handle cases where W.CaseBB != SwitchBB. 8634 CaseCluster &Small = *W.FirstCluster; 8635 CaseCluster &Big = *W.LastCluster; 8636 8637 if (Small.Low == Small.High && Big.Low == Big.High && 8638 Small.MBB == Big.MBB) { 8639 const APInt &SmallValue = Small.Low->getValue(); 8640 const APInt &BigValue = Big.Low->getValue(); 8641 8642 // Check that there is only one bit different. 8643 APInt CommonBit = BigValue ^ SmallValue; 8644 if (CommonBit.isPowerOf2()) { 8645 SDValue CondLHS = getValue(Cond); 8646 EVT VT = CondLHS.getValueType(); 8647 SDLoc DL = getCurSDLoc(); 8648 8649 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8650 DAG.getConstant(CommonBit, DL, VT)); 8651 SDValue Cond = DAG.getSetCC( 8652 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8653 ISD::SETEQ); 8654 8655 // Update successor info. 8656 // Both Small and Big will jump to Small.BB, so we sum up the 8657 // probabilities. 8658 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8659 if (BPI) 8660 addSuccessorWithProb( 8661 SwitchMBB, DefaultMBB, 8662 // The default destination is the first successor in IR. 8663 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8664 else 8665 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8666 8667 // Insert the true branch. 8668 SDValue BrCond = 8669 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8670 DAG.getBasicBlock(Small.MBB)); 8671 // Insert the false branch. 8672 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8673 DAG.getBasicBlock(DefaultMBB)); 8674 8675 DAG.setRoot(BrCond); 8676 return; 8677 } 8678 } 8679 } 8680 8681 if (TM.getOptLevel() != CodeGenOpt::None) { 8682 // Order cases by probability so the most likely case will be checked first. 8683 std::sort(W.FirstCluster, W.LastCluster + 1, 8684 [](const CaseCluster &a, const CaseCluster &b) { 8685 return a.Prob > b.Prob; 8686 }); 8687 8688 // Rearrange the case blocks so that the last one falls through if possible 8689 // without without changing the order of probabilities. 8690 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8691 --I; 8692 if (I->Prob > W.LastCluster->Prob) 8693 break; 8694 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8695 std::swap(*I, *W.LastCluster); 8696 break; 8697 } 8698 } 8699 } 8700 8701 // Compute total probability. 8702 BranchProbability DefaultProb = W.DefaultProb; 8703 BranchProbability UnhandledProbs = DefaultProb; 8704 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8705 UnhandledProbs += I->Prob; 8706 8707 MachineBasicBlock *CurMBB = W.MBB; 8708 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8709 MachineBasicBlock *Fallthrough; 8710 if (I == W.LastCluster) { 8711 // For the last cluster, fall through to the default destination. 8712 Fallthrough = DefaultMBB; 8713 } else { 8714 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8715 CurMF->insert(BBI, Fallthrough); 8716 // Put Cond in a virtual register to make it available from the new blocks. 8717 ExportFromCurrentBlock(Cond); 8718 } 8719 UnhandledProbs -= I->Prob; 8720 8721 switch (I->Kind) { 8722 case CC_JumpTable: { 8723 // FIXME: Optimize away range check based on pivot comparisons. 8724 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8725 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8726 8727 // The jump block hasn't been inserted yet; insert it here. 8728 MachineBasicBlock *JumpMBB = JT->MBB; 8729 CurMF->insert(BBI, JumpMBB); 8730 8731 auto JumpProb = I->Prob; 8732 auto FallthroughProb = UnhandledProbs; 8733 8734 // If the default statement is a target of the jump table, we evenly 8735 // distribute the default probability to successors of CurMBB. Also 8736 // update the probability on the edge from JumpMBB to Fallthrough. 8737 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8738 SE = JumpMBB->succ_end(); 8739 SI != SE; ++SI) { 8740 if (*SI == DefaultMBB) { 8741 JumpProb += DefaultProb / 2; 8742 FallthroughProb -= DefaultProb / 2; 8743 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8744 JumpMBB->normalizeSuccProbs(); 8745 break; 8746 } 8747 } 8748 8749 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8750 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8751 CurMBB->normalizeSuccProbs(); 8752 8753 // The jump table header will be inserted in our current block, do the 8754 // range check, and fall through to our fallthrough block. 8755 JTH->HeaderBB = CurMBB; 8756 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8757 8758 // If we're in the right place, emit the jump table header right now. 8759 if (CurMBB == SwitchMBB) { 8760 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8761 JTH->Emitted = true; 8762 } 8763 break; 8764 } 8765 case CC_BitTests: { 8766 // FIXME: Optimize away range check based on pivot comparisons. 8767 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8768 8769 // The bit test blocks haven't been inserted yet; insert them here. 8770 for (BitTestCase &BTC : BTB->Cases) 8771 CurMF->insert(BBI, BTC.ThisBB); 8772 8773 // Fill in fields of the BitTestBlock. 8774 BTB->Parent = CurMBB; 8775 BTB->Default = Fallthrough; 8776 8777 BTB->DefaultProb = UnhandledProbs; 8778 // If the cases in bit test don't form a contiguous range, we evenly 8779 // distribute the probability on the edge to Fallthrough to two 8780 // successors of CurMBB. 8781 if (!BTB->ContiguousRange) { 8782 BTB->Prob += DefaultProb / 2; 8783 BTB->DefaultProb -= DefaultProb / 2; 8784 } 8785 8786 // If we're in the right place, emit the bit test header right now. 8787 if (CurMBB == SwitchMBB) { 8788 visitBitTestHeader(*BTB, SwitchMBB); 8789 BTB->Emitted = true; 8790 } 8791 break; 8792 } 8793 case CC_Range: { 8794 const Value *RHS, *LHS, *MHS; 8795 ISD::CondCode CC; 8796 if (I->Low == I->High) { 8797 // Check Cond == I->Low. 8798 CC = ISD::SETEQ; 8799 LHS = Cond; 8800 RHS=I->Low; 8801 MHS = nullptr; 8802 } else { 8803 // Check I->Low <= Cond <= I->High. 8804 CC = ISD::SETLE; 8805 LHS = I->Low; 8806 MHS = Cond; 8807 RHS = I->High; 8808 } 8809 8810 // The false probability is the sum of all unhandled cases. 8811 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8812 UnhandledProbs); 8813 8814 if (CurMBB == SwitchMBB) 8815 visitSwitchCase(CB, SwitchMBB); 8816 else 8817 SwitchCases.push_back(CB); 8818 8819 break; 8820 } 8821 } 8822 CurMBB = Fallthrough; 8823 } 8824 } 8825 8826 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8827 CaseClusterIt First, 8828 CaseClusterIt Last) { 8829 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8830 if (X.Prob != CC.Prob) 8831 return X.Prob > CC.Prob; 8832 8833 // Ties are broken by comparing the case value. 8834 return X.Low->getValue().slt(CC.Low->getValue()); 8835 }); 8836 } 8837 8838 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8839 const SwitchWorkListItem &W, 8840 Value *Cond, 8841 MachineBasicBlock *SwitchMBB) { 8842 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8843 "Clusters not sorted?"); 8844 8845 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8846 8847 // Balance the tree based on branch probabilities to create a near-optimal (in 8848 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8849 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8850 CaseClusterIt LastLeft = W.FirstCluster; 8851 CaseClusterIt FirstRight = W.LastCluster; 8852 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8853 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8854 8855 // Move LastLeft and FirstRight towards each other from opposite directions to 8856 // find a partitioning of the clusters which balances the probability on both 8857 // sides. If LeftProb and RightProb are equal, alternate which side is 8858 // taken to ensure 0-probability nodes are distributed evenly. 8859 unsigned I = 0; 8860 while (LastLeft + 1 < FirstRight) { 8861 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8862 LeftProb += (++LastLeft)->Prob; 8863 else 8864 RightProb += (--FirstRight)->Prob; 8865 I++; 8866 } 8867 8868 for (;;) { 8869 // Our binary search tree differs from a typical BST in that ours can have up 8870 // to three values in each leaf. The pivot selection above doesn't take that 8871 // into account, which means the tree might require more nodes and be less 8872 // efficient. We compensate for this here. 8873 8874 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8875 unsigned NumRight = W.LastCluster - FirstRight + 1; 8876 8877 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8878 // If one side has less than 3 clusters, and the other has more than 3, 8879 // consider taking a cluster from the other side. 8880 8881 if (NumLeft < NumRight) { 8882 // Consider moving the first cluster on the right to the left side. 8883 CaseCluster &CC = *FirstRight; 8884 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8885 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8886 if (LeftSideRank <= RightSideRank) { 8887 // Moving the cluster to the left does not demote it. 8888 ++LastLeft; 8889 ++FirstRight; 8890 continue; 8891 } 8892 } else { 8893 assert(NumRight < NumLeft); 8894 // Consider moving the last element on the left to the right side. 8895 CaseCluster &CC = *LastLeft; 8896 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8897 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8898 if (RightSideRank <= LeftSideRank) { 8899 // Moving the cluster to the right does not demot it. 8900 --LastLeft; 8901 --FirstRight; 8902 continue; 8903 } 8904 } 8905 } 8906 break; 8907 } 8908 8909 assert(LastLeft + 1 == FirstRight); 8910 assert(LastLeft >= W.FirstCluster); 8911 assert(FirstRight <= W.LastCluster); 8912 8913 // Use the first element on the right as pivot since we will make less-than 8914 // comparisons against it. 8915 CaseClusterIt PivotCluster = FirstRight; 8916 assert(PivotCluster > W.FirstCluster); 8917 assert(PivotCluster <= W.LastCluster); 8918 8919 CaseClusterIt FirstLeft = W.FirstCluster; 8920 CaseClusterIt LastRight = W.LastCluster; 8921 8922 const ConstantInt *Pivot = PivotCluster->Low; 8923 8924 // New blocks will be inserted immediately after the current one. 8925 MachineFunction::iterator BBI(W.MBB); 8926 ++BBI; 8927 8928 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8929 // we can branch to its destination directly if it's squeezed exactly in 8930 // between the known lower bound and Pivot - 1. 8931 MachineBasicBlock *LeftMBB; 8932 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8933 FirstLeft->Low == W.GE && 8934 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8935 LeftMBB = FirstLeft->MBB; 8936 } else { 8937 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8938 FuncInfo.MF->insert(BBI, LeftMBB); 8939 WorkList.push_back( 8940 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8941 // Put Cond in a virtual register to make it available from the new blocks. 8942 ExportFromCurrentBlock(Cond); 8943 } 8944 8945 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8946 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8947 // directly if RHS.High equals the current upper bound. 8948 MachineBasicBlock *RightMBB; 8949 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8950 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8951 RightMBB = FirstRight->MBB; 8952 } else { 8953 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8954 FuncInfo.MF->insert(BBI, RightMBB); 8955 WorkList.push_back( 8956 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8957 // Put Cond in a virtual register to make it available from the new blocks. 8958 ExportFromCurrentBlock(Cond); 8959 } 8960 8961 // Create the CaseBlock record that will be used to lower the branch. 8962 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8963 LeftProb, RightProb); 8964 8965 if (W.MBB == SwitchMBB) 8966 visitSwitchCase(CB, SwitchMBB); 8967 else 8968 SwitchCases.push_back(CB); 8969 } 8970 8971 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8972 // Extract cases from the switch. 8973 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8974 CaseClusterVector Clusters; 8975 Clusters.reserve(SI.getNumCases()); 8976 for (auto I : SI.cases()) { 8977 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8978 const ConstantInt *CaseVal = I.getCaseValue(); 8979 BranchProbability Prob = 8980 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8981 : BranchProbability(1, SI.getNumCases() + 1); 8982 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8983 } 8984 8985 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8986 8987 // Cluster adjacent cases with the same destination. We do this at all 8988 // optimization levels because it's cheap to do and will make codegen faster 8989 // if there are many clusters. 8990 sortAndRangeify(Clusters); 8991 8992 if (TM.getOptLevel() != CodeGenOpt::None) { 8993 // Replace an unreachable default with the most popular destination. 8994 // FIXME: Exploit unreachable default more aggressively. 8995 bool UnreachableDefault = 8996 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8997 if (UnreachableDefault && !Clusters.empty()) { 8998 DenseMap<const BasicBlock *, unsigned> Popularity; 8999 unsigned MaxPop = 0; 9000 const BasicBlock *MaxBB = nullptr; 9001 for (auto I : SI.cases()) { 9002 const BasicBlock *BB = I.getCaseSuccessor(); 9003 if (++Popularity[BB] > MaxPop) { 9004 MaxPop = Popularity[BB]; 9005 MaxBB = BB; 9006 } 9007 } 9008 // Set new default. 9009 assert(MaxPop > 0 && MaxBB); 9010 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9011 9012 // Remove cases that were pointing to the destination that is now the 9013 // default. 9014 CaseClusterVector New; 9015 New.reserve(Clusters.size()); 9016 for (CaseCluster &CC : Clusters) { 9017 if (CC.MBB != DefaultMBB) 9018 New.push_back(CC); 9019 } 9020 Clusters = std::move(New); 9021 } 9022 } 9023 9024 // If there is only the default destination, jump there directly. 9025 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9026 if (Clusters.empty()) { 9027 SwitchMBB->addSuccessor(DefaultMBB); 9028 if (DefaultMBB != NextBlock(SwitchMBB)) { 9029 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9030 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9031 } 9032 return; 9033 } 9034 9035 findJumpTables(Clusters, &SI, DefaultMBB); 9036 findBitTestClusters(Clusters, &SI); 9037 9038 DEBUG({ 9039 dbgs() << "Case clusters: "; 9040 for (const CaseCluster &C : Clusters) { 9041 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9042 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9043 9044 C.Low->getValue().print(dbgs(), true); 9045 if (C.Low != C.High) { 9046 dbgs() << '-'; 9047 C.High->getValue().print(dbgs(), true); 9048 } 9049 dbgs() << ' '; 9050 } 9051 dbgs() << '\n'; 9052 }); 9053 9054 assert(!Clusters.empty()); 9055 SwitchWorkList WorkList; 9056 CaseClusterIt First = Clusters.begin(); 9057 CaseClusterIt Last = Clusters.end() - 1; 9058 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9059 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9060 9061 while (!WorkList.empty()) { 9062 SwitchWorkListItem W = WorkList.back(); 9063 WorkList.pop_back(); 9064 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9065 9066 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 9067 // For optimized builds, lower large range as a balanced binary tree. 9068 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9069 continue; 9070 } 9071 9072 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9073 } 9074 } 9075