1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/MemoryLocation.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/CodeGenCommonISel.h" 36 #include "llvm/CodeGen/FunctionLoweringInfo.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcalls.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GetElementPtrTypeIterator.h" 72 #include "llvm/IR/InlineAsm.h" 73 #include "llvm/IR/InstrTypes.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/Intrinsics.h" 77 #include "llvm/IR/IntrinsicsAArch64.h" 78 #include "llvm/IR/IntrinsicsWebAssembly.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Metadata.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/Operator.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Statepoint.h" 85 #include "llvm/IR/Type.h" 86 #include "llvm/IR/User.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/MC/MCContext.h" 89 #include "llvm/Support/AtomicOrdering.h" 90 #include "llvm/Support/Casting.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Compiler.h" 93 #include "llvm/Support/Debug.h" 94 #include "llvm/Support/MathExtras.h" 95 #include "llvm/Support/raw_ostream.h" 96 #include "llvm/Target/TargetIntrinsicInfo.h" 97 #include "llvm/Target/TargetMachine.h" 98 #include "llvm/Target/TargetOptions.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include <cstddef> 101 #include <iterator> 102 #include <limits> 103 #include <tuple> 104 105 using namespace llvm; 106 using namespace PatternMatch; 107 using namespace SwitchCG; 108 109 #define DEBUG_TYPE "isel" 110 111 /// LimitFloatPrecision - Generate low-precision inline sequences for 112 /// some float libcalls (6, 8 or 12 bits). 113 static unsigned LimitFloatPrecision; 114 115 static cl::opt<bool> 116 InsertAssertAlign("insert-assert-align", cl::init(true), 117 cl::desc("Insert the experimental `assertalign` node."), 118 cl::ReallyHidden); 119 120 static cl::opt<unsigned, true> 121 LimitFPPrecision("limit-float-precision", 122 cl::desc("Generate low-precision inline sequences " 123 "for some float libcalls"), 124 cl::location(LimitFloatPrecision), cl::Hidden, 125 cl::init(0)); 126 127 static cl::opt<unsigned> SwitchPeelThreshold( 128 "switch-peel-threshold", cl::Hidden, cl::init(66), 129 cl::desc("Set the case probability threshold for peeling the case from a " 130 "switch statement. A value greater than 100 will void this " 131 "optimization")); 132 133 // Limit the width of DAG chains. This is important in general to prevent 134 // DAG-based analysis from blowing up. For example, alias analysis and 135 // load clustering may not complete in reasonable time. It is difficult to 136 // recognize and avoid this situation within each individual analysis, and 137 // future analyses are likely to have the same behavior. Limiting DAG width is 138 // the safe approach and will be especially important with global DAGs. 139 // 140 // MaxParallelChains default is arbitrarily high to avoid affecting 141 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 142 // sequence over this should have been converted to llvm.memcpy by the 143 // frontend. It is easy to induce this behavior with .ll code such as: 144 // %buffer = alloca [4096 x i8] 145 // %data = load [4096 x i8]* %argPtr 146 // store [4096 x i8] %data, [4096 x i8]* %buffer 147 static const unsigned MaxParallelChains = 64; 148 149 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 150 const SDValue *Parts, unsigned NumParts, 151 MVT PartVT, EVT ValueVT, const Value *V, 152 Optional<CallingConv::ID> CC); 153 154 /// getCopyFromParts - Create a value that contains the specified legal parts 155 /// combined into the value they represent. If the parts combine to a type 156 /// larger than ValueVT then AssertOp can be used to specify whether the extra 157 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 158 /// (ISD::AssertSext). 159 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 160 const SDValue *Parts, unsigned NumParts, 161 MVT PartVT, EVT ValueVT, const Value *V, 162 Optional<CallingConv::ID> CC = None, 163 Optional<ISD::NodeType> AssertOp = None) { 164 // Let the target assemble the parts if it wants to 165 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 166 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 167 PartVT, ValueVT, CC)) 168 return Val; 169 170 if (ValueVT.isVector()) 171 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 172 CC); 173 174 assert(NumParts > 0 && "No parts to assemble!"); 175 SDValue Val = Parts[0]; 176 177 if (NumParts > 1) { 178 // Assemble the value from multiple parts. 179 if (ValueVT.isInteger()) { 180 unsigned PartBits = PartVT.getSizeInBits(); 181 unsigned ValueBits = ValueVT.getSizeInBits(); 182 183 // Assemble the power of 2 part. 184 unsigned RoundParts = 185 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 186 unsigned RoundBits = PartBits * RoundParts; 187 EVT RoundVT = RoundBits == ValueBits ? 188 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 189 SDValue Lo, Hi; 190 191 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 192 193 if (RoundParts > 2) { 194 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 195 PartVT, HalfVT, V); 196 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 197 RoundParts / 2, PartVT, HalfVT, V); 198 } else { 199 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 200 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 201 } 202 203 if (DAG.getDataLayout().isBigEndian()) 204 std::swap(Lo, Hi); 205 206 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 207 208 if (RoundParts < NumParts) { 209 // Assemble the trailing non-power-of-2 part. 210 unsigned OddParts = NumParts - RoundParts; 211 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 212 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 213 OddVT, V, CC); 214 215 // Combine the round and odd parts. 216 Lo = Val; 217 if (DAG.getDataLayout().isBigEndian()) 218 std::swap(Lo, Hi); 219 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 220 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 221 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 222 DAG.getConstant(Lo.getValueSizeInBits(), DL, 223 TLI.getShiftAmountTy( 224 TotalVT, DAG.getDataLayout()))); 225 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 226 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 227 } 228 } else if (PartVT.isFloatingPoint()) { 229 // FP split into multiple FP parts (for ppcf128) 230 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 231 "Unexpected split"); 232 SDValue Lo, Hi; 233 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 235 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 236 std::swap(Lo, Hi); 237 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 238 } else { 239 // FP split into integer parts (soft fp) 240 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 241 !PartVT.isVector() && "Unexpected split"); 242 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 243 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 244 } 245 } 246 247 // There is now one part, held in Val. Correct it to match ValueVT. 248 // PartEVT is the type of the register class that holds the value. 249 // ValueVT is the type of the inline asm operation. 250 EVT PartEVT = Val.getValueType(); 251 252 if (PartEVT == ValueVT) 253 return Val; 254 255 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 256 ValueVT.bitsLT(PartEVT)) { 257 // For an FP value in an integer part, we need to truncate to the right 258 // width first. 259 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 260 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 261 } 262 263 // Handle types that have the same size. 264 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 265 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 266 267 // Handle types with different sizes. 268 if (PartEVT.isInteger() && ValueVT.isInteger()) { 269 if (ValueVT.bitsLT(PartEVT)) { 270 // For a truncate, see if we have any information to 271 // indicate whether the truncated bits will always be 272 // zero or sign-extension. 273 if (AssertOp) 274 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 275 DAG.getValueType(ValueVT)); 276 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 277 } 278 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 279 } 280 281 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 282 // FP_ROUND's are always exact here. 283 if (ValueVT.bitsLT(Val.getValueType())) 284 return DAG.getNode( 285 ISD::FP_ROUND, DL, ValueVT, Val, 286 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 287 288 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 289 } 290 291 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 292 // then truncating. 293 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 294 ValueVT.bitsLT(PartEVT)) { 295 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 296 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 297 } 298 299 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 300 } 301 302 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 303 const Twine &ErrMsg) { 304 const Instruction *I = dyn_cast_or_null<Instruction>(V); 305 if (!V) 306 return Ctx.emitError(ErrMsg); 307 308 const char *AsmError = ", possible invalid constraint for vector type"; 309 if (const CallInst *CI = dyn_cast<CallInst>(I)) 310 if (CI->isInlineAsm()) 311 return Ctx.emitError(I, ErrMsg + AsmError); 312 313 return Ctx.emitError(I, ErrMsg); 314 } 315 316 /// getCopyFromPartsVector - Create a value that contains the specified legal 317 /// parts combined into the value they represent. If the parts combine to a 318 /// type larger than ValueVT then AssertOp can be used to specify whether the 319 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 320 /// ValueVT (ISD::AssertSext). 321 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 322 const SDValue *Parts, unsigned NumParts, 323 MVT PartVT, EVT ValueVT, const Value *V, 324 Optional<CallingConv::ID> CallConv) { 325 assert(ValueVT.isVector() && "Not a vector value"); 326 assert(NumParts > 0 && "No parts to assemble!"); 327 const bool IsABIRegCopy = CallConv.has_value(); 328 329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 330 SDValue Val = Parts[0]; 331 332 // Handle a multi-element vector. 333 if (NumParts > 1) { 334 EVT IntermediateVT; 335 MVT RegisterVT; 336 unsigned NumIntermediates; 337 unsigned NumRegs; 338 339 if (IsABIRegCopy) { 340 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 341 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 342 NumIntermediates, RegisterVT); 343 } else { 344 NumRegs = 345 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 346 NumIntermediates, RegisterVT); 347 } 348 349 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 350 NumParts = NumRegs; // Silence a compiler warning. 351 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 352 assert(RegisterVT.getSizeInBits() == 353 Parts[0].getSimpleValueType().getSizeInBits() && 354 "Part type sizes don't match!"); 355 356 // Assemble the parts into intermediate operands. 357 SmallVector<SDValue, 8> Ops(NumIntermediates); 358 if (NumIntermediates == NumParts) { 359 // If the register was not expanded, truncate or copy the value, 360 // as appropriate. 361 for (unsigned i = 0; i != NumParts; ++i) 362 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 363 PartVT, IntermediateVT, V, CallConv); 364 } else if (NumParts > 0) { 365 // If the intermediate type was expanded, build the intermediate 366 // operands from the parts. 367 assert(NumParts % NumIntermediates == 0 && 368 "Must expand into a divisible number of parts!"); 369 unsigned Factor = NumParts / NumIntermediates; 370 for (unsigned i = 0; i != NumIntermediates; ++i) 371 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 372 PartVT, IntermediateVT, V, CallConv); 373 } 374 375 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 376 // intermediate operands. 377 EVT BuiltVectorTy = 378 IntermediateVT.isVector() 379 ? EVT::getVectorVT( 380 *DAG.getContext(), IntermediateVT.getScalarType(), 381 IntermediateVT.getVectorElementCount() * NumParts) 382 : EVT::getVectorVT(*DAG.getContext(), 383 IntermediateVT.getScalarType(), 384 NumIntermediates); 385 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 386 : ISD::BUILD_VECTOR, 387 DL, BuiltVectorTy, Ops); 388 } 389 390 // There is now one part, held in Val. Correct it to match ValueVT. 391 EVT PartEVT = Val.getValueType(); 392 393 if (PartEVT == ValueVT) 394 return Val; 395 396 if (PartEVT.isVector()) { 397 // Vector/Vector bitcast. 398 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 399 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 401 // If the parts vector has more elements than the value vector, then we 402 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 403 // Extract the elements we want. 404 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 405 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 406 ValueVT.getVectorElementCount().getKnownMinValue()) && 407 (PartEVT.getVectorElementCount().isScalable() == 408 ValueVT.getVectorElementCount().isScalable()) && 409 "Cannot narrow, it would be a lossy transformation"); 410 PartEVT = 411 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 412 ValueVT.getVectorElementCount()); 413 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 414 DAG.getVectorIdxConstant(0, DL)); 415 if (PartEVT == ValueVT) 416 return Val; 417 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 } 420 421 // Promoted vector extract 422 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 423 } 424 425 // Trivial bitcast if the types are the same size and the destination 426 // vector type is legal. 427 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 428 TLI.isTypeLegal(ValueVT)) 429 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 430 431 if (ValueVT.getVectorNumElements() != 1) { 432 // Certain ABIs require that vectors are passed as integers. For vectors 433 // are the same size, this is an obvious bitcast. 434 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 436 } else if (ValueVT.bitsLT(PartEVT)) { 437 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 438 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 439 // Drop the extra bits. 440 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 441 return DAG.getBitcast(ValueVT, Val); 442 } 443 444 diagnosePossiblyInvalidConstraint( 445 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 446 return DAG.getUNDEF(ValueVT); 447 } 448 449 // Handle cases such as i8 -> <1 x i1> 450 EVT ValueSVT = ValueVT.getVectorElementType(); 451 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 452 unsigned ValueSize = ValueSVT.getSizeInBits(); 453 if (ValueSize == PartEVT.getSizeInBits()) { 454 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 455 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 456 // It's possible a scalar floating point type gets softened to integer and 457 // then promoted to a larger integer. If PartEVT is the larger integer 458 // we need to truncate it and then bitcast to the FP type. 459 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 460 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 461 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 462 Val = DAG.getBitcast(ValueSVT, Val); 463 } else { 464 Val = ValueVT.isFloatingPoint() 465 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 466 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 467 } 468 } 469 470 return DAG.getBuildVector(ValueVT, DL, Val); 471 } 472 473 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V, 476 Optional<CallingConv::ID> CallConv); 477 478 /// getCopyToParts - Create a series of nodes that contain the specified value 479 /// split into legal parts. If the parts contain more bits than Val, then, for 480 /// integers, ExtendKind can be used to specify how to generate the extra bits. 481 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 482 SDValue *Parts, unsigned NumParts, MVT PartVT, 483 const Value *V, 484 Optional<CallingConv::ID> CallConv = None, 485 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 486 // Let the target split the parts if it wants to 487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 488 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 489 CallConv)) 490 return; 491 EVT ValueVT = Val.getValueType(); 492 493 // Handle the vector case separately. 494 if (ValueVT.isVector()) 495 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 496 CallConv); 497 498 unsigned PartBits = PartVT.getSizeInBits(); 499 unsigned OrigNumParts = NumParts; 500 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 501 "Copying to an illegal type!"); 502 503 if (NumParts == 0) 504 return; 505 506 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 507 EVT PartEVT = PartVT; 508 if (PartEVT == ValueVT) { 509 assert(NumParts == 1 && "No-op copy with multiple parts!"); 510 Parts[0] = Val; 511 return; 512 } 513 514 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 515 // If the parts cover more bits than the value has, promote the value. 516 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 517 assert(NumParts == 1 && "Do not know what to promote to!"); 518 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 519 } else { 520 if (ValueVT.isFloatingPoint()) { 521 // FP values need to be bitcast, then extended if they are being put 522 // into a larger container. 523 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 524 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 525 } 526 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 527 ValueVT.isInteger() && 528 "Unknown mismatch!"); 529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 530 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 531 if (PartVT == MVT::x86mmx) 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } 534 } else if (PartBits == ValueVT.getSizeInBits()) { 535 // Different types of the same size. 536 assert(NumParts == 1 && PartEVT != ValueVT); 537 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 538 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 539 // If the parts cover less bits than value has, truncate the value. 540 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 541 ValueVT.isInteger() && 542 "Unknown mismatch!"); 543 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 544 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 545 if (PartVT == MVT::x86mmx) 546 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 547 } 548 549 // The value may have changed - recompute ValueVT. 550 ValueVT = Val.getValueType(); 551 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 552 "Failed to tile the value with PartVT!"); 553 554 if (NumParts == 1) { 555 if (PartEVT != ValueVT) { 556 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 557 "scalar-to-vector conversion failed"); 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } 560 561 Parts[0] = Val; 562 return; 563 } 564 565 // Expand the value into multiple parts. 566 if (NumParts & (NumParts - 1)) { 567 // The number of parts is not a power of 2. Split off and copy the tail. 568 assert(PartVT.isInteger() && ValueVT.isInteger() && 569 "Do not know what to expand to!"); 570 unsigned RoundParts = 1 << Log2_32(NumParts); 571 unsigned RoundBits = RoundParts * PartBits; 572 unsigned OddParts = NumParts - RoundParts; 573 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 574 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 575 576 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 577 CallConv); 578 579 if (DAG.getDataLayout().isBigEndian()) 580 // The odd parts were reversed by getCopyToParts - unreverse them. 581 std::reverse(Parts + RoundParts, Parts + NumParts); 582 583 NumParts = RoundParts; 584 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 585 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 586 } 587 588 // The number of parts is a power of 2. Repeatedly bisect the value using 589 // EXTRACT_ELEMENT. 590 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 591 EVT::getIntegerVT(*DAG.getContext(), 592 ValueVT.getSizeInBits()), 593 Val); 594 595 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 596 for (unsigned i = 0; i < NumParts; i += StepSize) { 597 unsigned ThisBits = StepSize * PartBits / 2; 598 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 599 SDValue &Part0 = Parts[i]; 600 SDValue &Part1 = Parts[i+StepSize/2]; 601 602 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 603 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 604 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 605 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 606 607 if (ThisBits == PartBits && ThisVT != PartVT) { 608 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 609 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 610 } 611 } 612 } 613 614 if (DAG.getDataLayout().isBigEndian()) 615 std::reverse(Parts, Parts + OrigNumParts); 616 } 617 618 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 619 const SDLoc &DL, EVT PartVT) { 620 if (!PartVT.isVector()) 621 return SDValue(); 622 623 EVT ValueVT = Val.getValueType(); 624 ElementCount PartNumElts = PartVT.getVectorElementCount(); 625 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 626 627 // We only support widening vectors with equivalent element types and 628 // fixed/scalable properties. If a target needs to widen a fixed-length type 629 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 630 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 631 PartNumElts.isScalable() != ValueNumElts.isScalable() || 632 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 633 return SDValue(); 634 635 // Widening a scalable vector to another scalable vector is done by inserting 636 // the vector into a larger undef one. 637 if (PartNumElts.isScalable()) 638 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 639 Val, DAG.getVectorIdxConstant(0, DL)); 640 641 EVT ElementVT = PartVT.getVectorElementType(); 642 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 643 // undef elements. 644 SmallVector<SDValue, 16> Ops; 645 DAG.ExtractVectorElements(Val, Ops); 646 SDValue EltUndef = DAG.getUNDEF(ElementVT); 647 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 648 649 // FIXME: Use CONCAT for 2x -> 4x. 650 return DAG.getBuildVector(PartVT, DL, Ops); 651 } 652 653 /// getCopyToPartsVector - Create a series of nodes that contain the specified 654 /// value split into legal parts. 655 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 656 SDValue Val, SDValue *Parts, unsigned NumParts, 657 MVT PartVT, const Value *V, 658 Optional<CallingConv::ID> CallConv) { 659 EVT ValueVT = Val.getValueType(); 660 assert(ValueVT.isVector() && "Not a vector"); 661 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 662 const bool IsABIRegCopy = CallConv.has_value(); 663 664 if (NumParts == 1) { 665 EVT PartEVT = PartVT; 666 if (PartEVT == ValueVT) { 667 // Nothing to do. 668 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 669 // Bitconvert vector->vector case. 670 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 671 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 672 Val = Widened; 673 } else if (PartVT.isVector() && 674 PartEVT.getVectorElementType().bitsGE( 675 ValueVT.getVectorElementType()) && 676 PartEVT.getVectorElementCount() == 677 ValueVT.getVectorElementCount()) { 678 679 // Promoted vector extract 680 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 681 } else if (PartEVT.isVector() && 682 PartEVT.getVectorElementType() != 683 ValueVT.getVectorElementType() && 684 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 685 TargetLowering::TypeWidenVector) { 686 // Combination of widening and promotion. 687 EVT WidenVT = 688 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 689 PartVT.getVectorElementCount()); 690 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 691 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 692 } else { 693 // Don't extract an integer from a float vector. This can happen if the 694 // FP type gets softened to integer and then promoted. The promotion 695 // prevents it from being picked up by the earlier bitcast case. 696 if (ValueVT.getVectorElementCount().isScalar() && 697 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 698 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 699 DAG.getVectorIdxConstant(0, DL)); 700 } else { 701 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 702 assert(PartVT.getFixedSizeInBits() > ValueSize && 703 "lossy conversion of vector to scalar type"); 704 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 705 Val = DAG.getBitcast(IntermediateType, Val); 706 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 707 } 708 } 709 710 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 711 Parts[0] = Val; 712 return; 713 } 714 715 // Handle a multi-element vector. 716 EVT IntermediateVT; 717 MVT RegisterVT; 718 unsigned NumIntermediates; 719 unsigned NumRegs; 720 if (IsABIRegCopy) { 721 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 722 *DAG.getContext(), CallConv.value(), ValueVT, IntermediateVT, 723 NumIntermediates, RegisterVT); 724 } else { 725 NumRegs = 726 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 727 NumIntermediates, RegisterVT); 728 } 729 730 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 731 NumParts = NumRegs; // Silence a compiler warning. 732 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 733 734 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 735 "Mixing scalable and fixed vectors when copying in parts"); 736 737 Optional<ElementCount> DestEltCnt; 738 739 if (IntermediateVT.isVector()) 740 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 741 else 742 DestEltCnt = ElementCount::getFixed(NumIntermediates); 743 744 EVT BuiltVectorTy = EVT::getVectorVT( 745 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 746 747 if (ValueVT == BuiltVectorTy) { 748 // Nothing to do. 749 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 750 // Bitconvert vector->vector case. 751 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 752 } else { 753 if (BuiltVectorTy.getVectorElementType().bitsGT( 754 ValueVT.getVectorElementType())) { 755 // Integer promotion. 756 ValueVT = EVT::getVectorVT(*DAG.getContext(), 757 BuiltVectorTy.getVectorElementType(), 758 ValueVT.getVectorElementCount()); 759 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 760 } 761 762 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 763 Val = Widened; 764 } 765 } 766 767 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 768 769 // Split the vector into intermediate operands. 770 SmallVector<SDValue, 8> Ops(NumIntermediates); 771 for (unsigned i = 0; i != NumIntermediates; ++i) { 772 if (IntermediateVT.isVector()) { 773 // This does something sensible for scalable vectors - see the 774 // definition of EXTRACT_SUBVECTOR for further details. 775 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 776 Ops[i] = 777 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 778 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 779 } else { 780 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 781 DAG.getVectorIdxConstant(i, DL)); 782 } 783 } 784 785 // Split the intermediate operands into legal parts. 786 if (NumParts == NumIntermediates) { 787 // If the register was not expanded, promote or copy the value, 788 // as appropriate. 789 for (unsigned i = 0; i != NumParts; ++i) 790 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 791 } else if (NumParts > 0) { 792 // If the intermediate type was expanded, split each the value into 793 // legal parts. 794 assert(NumIntermediates != 0 && "division by zero"); 795 assert(NumParts % NumIntermediates == 0 && 796 "Must expand into a divisible number of parts!"); 797 unsigned Factor = NumParts / NumIntermediates; 798 for (unsigned i = 0; i != NumIntermediates; ++i) 799 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 800 CallConv); 801 } 802 } 803 804 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 805 EVT valuevt, Optional<CallingConv::ID> CC) 806 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 807 RegCount(1, regs.size()), CallConv(CC) {} 808 809 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 810 const DataLayout &DL, unsigned Reg, Type *Ty, 811 Optional<CallingConv::ID> CC) { 812 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 813 814 CallConv = CC; 815 816 for (EVT ValueVT : ValueVTs) { 817 unsigned NumRegs = 818 isABIMangled() 819 ? TLI.getNumRegistersForCallingConv(Context, CC.value(), ValueVT) 820 : TLI.getNumRegisters(Context, ValueVT); 821 MVT RegisterVT = 822 isABIMangled() 823 ? TLI.getRegisterTypeForCallingConv(Context, CC.value(), ValueVT) 824 : TLI.getRegisterType(Context, ValueVT); 825 for (unsigned i = 0; i != NumRegs; ++i) 826 Regs.push_back(Reg + i); 827 RegVTs.push_back(RegisterVT); 828 RegCount.push_back(NumRegs); 829 Reg += NumRegs; 830 } 831 } 832 833 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 834 FunctionLoweringInfo &FuncInfo, 835 const SDLoc &dl, SDValue &Chain, 836 SDValue *Flag, const Value *V) const { 837 // A Value with type {} or [0 x %t] needs no registers. 838 if (ValueVTs.empty()) 839 return SDValue(); 840 841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 842 843 // Assemble the legal parts into the final values. 844 SmallVector<SDValue, 4> Values(ValueVTs.size()); 845 SmallVector<SDValue, 8> Parts; 846 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 847 // Copy the legal parts from the registers. 848 EVT ValueVT = ValueVTs[Value]; 849 unsigned NumRegs = RegCount[Value]; 850 MVT RegisterVT = 851 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 852 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 853 : RegVTs[Value]; 854 855 Parts.resize(NumRegs); 856 for (unsigned i = 0; i != NumRegs; ++i) { 857 SDValue P; 858 if (!Flag) { 859 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 860 } else { 861 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 862 *Flag = P.getValue(2); 863 } 864 865 Chain = P.getValue(1); 866 Parts[i] = P; 867 868 // If the source register was virtual and if we know something about it, 869 // add an assert node. 870 if (!Register::isVirtualRegister(Regs[Part + i]) || 871 !RegisterVT.isInteger()) 872 continue; 873 874 const FunctionLoweringInfo::LiveOutInfo *LOI = 875 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 876 if (!LOI) 877 continue; 878 879 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 880 unsigned NumSignBits = LOI->NumSignBits; 881 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 882 883 if (NumZeroBits == RegSize) { 884 // The current value is a zero. 885 // Explicitly express that as it would be easier for 886 // optimizations to kick in. 887 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 888 continue; 889 } 890 891 // FIXME: We capture more information than the dag can represent. For 892 // now, just use the tightest assertzext/assertsext possible. 893 bool isSExt; 894 EVT FromVT(MVT::Other); 895 if (NumZeroBits) { 896 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 897 isSExt = false; 898 } else if (NumSignBits > 1) { 899 FromVT = 900 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 901 isSExt = true; 902 } else { 903 continue; 904 } 905 // Add an assertion node. 906 assert(FromVT != MVT::Other); 907 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 908 RegisterVT, P, DAG.getValueType(FromVT)); 909 } 910 911 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 912 RegisterVT, ValueVT, V, CallConv); 913 Part += NumRegs; 914 Parts.clear(); 915 } 916 917 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 918 } 919 920 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 921 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 922 const Value *V, 923 ISD::NodeType PreferredExtendType) const { 924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 925 ISD::NodeType ExtendKind = PreferredExtendType; 926 927 // Get the list of the values's legal parts. 928 unsigned NumRegs = Regs.size(); 929 SmallVector<SDValue, 8> Parts(NumRegs); 930 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 931 unsigned NumParts = RegCount[Value]; 932 933 MVT RegisterVT = 934 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 935 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 936 : RegVTs[Value]; 937 938 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 939 ExtendKind = ISD::ZERO_EXTEND; 940 941 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 942 NumParts, RegisterVT, V, CallConv, ExtendKind); 943 Part += NumParts; 944 } 945 946 // Copy the parts into the registers. 947 SmallVector<SDValue, 8> Chains(NumRegs); 948 for (unsigned i = 0; i != NumRegs; ++i) { 949 SDValue Part; 950 if (!Flag) { 951 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 952 } else { 953 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 954 *Flag = Part.getValue(1); 955 } 956 957 Chains[i] = Part.getValue(0); 958 } 959 960 if (NumRegs == 1 || Flag) 961 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 962 // flagged to it. That is the CopyToReg nodes and the user are considered 963 // a single scheduling unit. If we create a TokenFactor and return it as 964 // chain, then the TokenFactor is both a predecessor (operand) of the 965 // user as well as a successor (the TF operands are flagged to the user). 966 // c1, f1 = CopyToReg 967 // c2, f2 = CopyToReg 968 // c3 = TokenFactor c1, c2 969 // ... 970 // = op c3, ..., f2 971 Chain = Chains[NumRegs-1]; 972 else 973 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 974 } 975 976 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 977 unsigned MatchingIdx, const SDLoc &dl, 978 SelectionDAG &DAG, 979 std::vector<SDValue> &Ops) const { 980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 981 982 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 983 if (HasMatching) 984 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 985 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 986 // Put the register class of the virtual registers in the flag word. That 987 // way, later passes can recompute register class constraints for inline 988 // assembly as well as normal instructions. 989 // Don't do this for tied operands that can use the regclass information 990 // from the def. 991 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 992 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 993 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 994 } 995 996 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 997 Ops.push_back(Res); 998 999 if (Code == InlineAsm::Kind_Clobber) { 1000 // Clobbers should always have a 1:1 mapping with registers, and may 1001 // reference registers that have illegal (e.g. vector) types. Hence, we 1002 // shouldn't try to apply any sort of splitting logic to them. 1003 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1004 "No 1:1 mapping from clobbers to regs?"); 1005 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1006 (void)SP; 1007 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1008 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1009 assert( 1010 (Regs[I] != SP || 1011 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1012 "If we clobbered the stack pointer, MFI should know about it."); 1013 } 1014 return; 1015 } 1016 1017 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1018 MVT RegisterVT = RegVTs[Value]; 1019 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1020 RegisterVT); 1021 for (unsigned i = 0; i != NumRegs; ++i) { 1022 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1023 unsigned TheReg = Regs[Reg++]; 1024 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1025 } 1026 } 1027 } 1028 1029 SmallVector<std::pair<unsigned, TypeSize>, 4> 1030 RegsForValue::getRegsAndSizes() const { 1031 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1032 unsigned I = 0; 1033 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1034 unsigned RegCount = std::get<0>(CountAndVT); 1035 MVT RegisterVT = std::get<1>(CountAndVT); 1036 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1037 for (unsigned E = I + RegCount; I != E; ++I) 1038 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1039 } 1040 return OutVec; 1041 } 1042 1043 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1044 AssumptionCache *ac, 1045 const TargetLibraryInfo *li) { 1046 AA = aa; 1047 AC = ac; 1048 GFI = gfi; 1049 LibInfo = li; 1050 Context = DAG.getContext(); 1051 LPadToCallSiteMap.clear(); 1052 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1053 } 1054 1055 void SelectionDAGBuilder::clear() { 1056 NodeMap.clear(); 1057 UnusedArgNodeMap.clear(); 1058 PendingLoads.clear(); 1059 PendingExports.clear(); 1060 PendingConstrainedFP.clear(); 1061 PendingConstrainedFPStrict.clear(); 1062 CurInst = nullptr; 1063 HasTailCall = false; 1064 SDNodeOrder = LowestSDNodeOrder; 1065 StatepointLowering.clear(); 1066 } 1067 1068 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1069 DanglingDebugInfoMap.clear(); 1070 } 1071 1072 // Update DAG root to include dependencies on Pending chains. 1073 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1074 SDValue Root = DAG.getRoot(); 1075 1076 if (Pending.empty()) 1077 return Root; 1078 1079 // Add current root to PendingChains, unless we already indirectly 1080 // depend on it. 1081 if (Root.getOpcode() != ISD::EntryToken) { 1082 unsigned i = 0, e = Pending.size(); 1083 for (; i != e; ++i) { 1084 assert(Pending[i].getNode()->getNumOperands() > 1); 1085 if (Pending[i].getNode()->getOperand(0) == Root) 1086 break; // Don't add the root if we already indirectly depend on it. 1087 } 1088 1089 if (i == e) 1090 Pending.push_back(Root); 1091 } 1092 1093 if (Pending.size() == 1) 1094 Root = Pending[0]; 1095 else 1096 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1097 1098 DAG.setRoot(Root); 1099 Pending.clear(); 1100 return Root; 1101 } 1102 1103 SDValue SelectionDAGBuilder::getMemoryRoot() { 1104 return updateRoot(PendingLoads); 1105 } 1106 1107 SDValue SelectionDAGBuilder::getRoot() { 1108 // Chain up all pending constrained intrinsics together with all 1109 // pending loads, by simply appending them to PendingLoads and 1110 // then calling getMemoryRoot(). 1111 PendingLoads.reserve(PendingLoads.size() + 1112 PendingConstrainedFP.size() + 1113 PendingConstrainedFPStrict.size()); 1114 PendingLoads.append(PendingConstrainedFP.begin(), 1115 PendingConstrainedFP.end()); 1116 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1117 PendingConstrainedFPStrict.end()); 1118 PendingConstrainedFP.clear(); 1119 PendingConstrainedFPStrict.clear(); 1120 return getMemoryRoot(); 1121 } 1122 1123 SDValue SelectionDAGBuilder::getControlRoot() { 1124 // We need to emit pending fpexcept.strict constrained intrinsics, 1125 // so append them to the PendingExports list. 1126 PendingExports.append(PendingConstrainedFPStrict.begin(), 1127 PendingConstrainedFPStrict.end()); 1128 PendingConstrainedFPStrict.clear(); 1129 return updateRoot(PendingExports); 1130 } 1131 1132 void SelectionDAGBuilder::visit(const Instruction &I) { 1133 // Set up outgoing PHI node register values before emitting the terminator. 1134 if (I.isTerminator()) { 1135 HandlePHINodesInSuccessorBlocks(I.getParent()); 1136 } 1137 1138 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1139 if (!isa<DbgInfoIntrinsic>(I)) 1140 ++SDNodeOrder; 1141 1142 CurInst = &I; 1143 1144 // Set inserted listener only if required. 1145 bool NodeInserted = false; 1146 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1147 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1148 if (PCSectionsMD) { 1149 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1150 DAG, [&](SDNode *) { NodeInserted = true; }); 1151 } 1152 1153 visit(I.getOpcode(), I); 1154 1155 if (!I.isTerminator() && !HasTailCall && 1156 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1157 CopyToExportRegsIfNeeded(&I); 1158 1159 // Handle metadata. 1160 if (PCSectionsMD) { 1161 auto It = NodeMap.find(&I); 1162 if (It != NodeMap.end()) { 1163 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1164 } else if (NodeInserted) { 1165 // This should not happen; if it does, don't let it go unnoticed so we can 1166 // fix it. Relevant visit*() function is probably missing a setValue(). 1167 errs() << "warning: loosing !pcsections metadata [" 1168 << I.getModule()->getName() << "]\n"; 1169 LLVM_DEBUG(I.dump()); 1170 assert(false); 1171 } 1172 } 1173 1174 CurInst = nullptr; 1175 } 1176 1177 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1178 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1179 } 1180 1181 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1182 // Note: this doesn't use InstVisitor, because it has to work with 1183 // ConstantExpr's in addition to instructions. 1184 switch (Opcode) { 1185 default: llvm_unreachable("Unknown instruction type encountered!"); 1186 // Build the switch statement using the Instruction.def file. 1187 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1188 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1189 #include "llvm/IR/Instruction.def" 1190 } 1191 } 1192 1193 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1194 unsigned Order) { 1195 // We treat variadic dbg_values differently at this stage. 1196 if (DI->hasArgList()) { 1197 // For variadic dbg_values we will now insert an undef. 1198 // FIXME: We can potentially recover these! 1199 SmallVector<SDDbgOperand, 2> Locs; 1200 for (const Value *V : DI->getValues()) { 1201 auto Undef = UndefValue::get(V->getType()); 1202 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1203 } 1204 SDDbgValue *SDV = DAG.getDbgValueList( 1205 DI->getVariable(), DI->getExpression(), Locs, {}, 1206 /*IsIndirect=*/false, DI->getDebugLoc(), Order, /*IsVariadic=*/true); 1207 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1208 } else { 1209 // TODO: Dangling debug info will eventually either be resolved or produce 1210 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1211 // between the original dbg.value location and its resolved DBG_VALUE, 1212 // which we should ideally fill with an extra Undef DBG_VALUE. 1213 assert(DI->getNumVariableLocationOps() == 1 && 1214 "DbgValueInst without an ArgList should have a single location " 1215 "operand."); 1216 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order); 1217 } 1218 } 1219 1220 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1221 const DIExpression *Expr) { 1222 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1223 DIVariable *DanglingVariable = DDI.getVariable(); 1224 DIExpression *DanglingExpr = DDI.getExpression(); 1225 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1226 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << DDI << "\n"); 1227 return true; 1228 } 1229 return false; 1230 }; 1231 1232 for (auto &DDIMI : DanglingDebugInfoMap) { 1233 DanglingDebugInfoVector &DDIV = DDIMI.second; 1234 1235 // If debug info is to be dropped, run it through final checks to see 1236 // whether it can be salvaged. 1237 for (auto &DDI : DDIV) 1238 if (isMatchingDbgValue(DDI)) 1239 salvageUnresolvedDbgValue(DDI); 1240 1241 erase_if(DDIV, isMatchingDbgValue); 1242 } 1243 } 1244 1245 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1246 // generate the debug data structures now that we've seen its definition. 1247 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1248 SDValue Val) { 1249 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1250 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1251 return; 1252 1253 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1254 for (auto &DDI : DDIV) { 1255 DebugLoc DL = DDI.getDebugLoc(); 1256 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1257 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1258 DILocalVariable *Variable = DDI.getVariable(); 1259 DIExpression *Expr = DDI.getExpression(); 1260 assert(Variable->isValidLocationForIntrinsic(DL) && 1261 "Expected inlined-at fields to agree"); 1262 SDDbgValue *SDV; 1263 if (Val.getNode()) { 1264 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1265 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1266 // we couldn't resolve it directly when examining the DbgValue intrinsic 1267 // in the first place we should not be more successful here). Unless we 1268 // have some test case that prove this to be correct we should avoid 1269 // calling EmitFuncArgumentDbgValue here. 1270 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1271 FuncArgumentDbgValueKind::Value, Val)) { 1272 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << DDI << "\n"); 1273 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1274 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1275 // inserted after the definition of Val when emitting the instructions 1276 // after ISel. An alternative could be to teach 1277 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1278 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1279 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1280 << ValSDNodeOrder << "\n"); 1281 SDV = getDbgValue(Val, Variable, Expr, DL, 1282 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1283 DAG.AddDbgValue(SDV, false); 1284 } else 1285 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << DDI 1286 << "in EmitFuncArgumentDbgValue\n"); 1287 } else { 1288 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DDI << "\n"); 1289 auto Undef = UndefValue::get(V->getType()); 1290 auto SDV = 1291 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1292 DAG.AddDbgValue(SDV, false); 1293 } 1294 } 1295 DDIV.clear(); 1296 } 1297 1298 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1299 // TODO: For the variadic implementation, instead of only checking the fail 1300 // state of `handleDebugValue`, we need know specifically which values were 1301 // invalid, so that we attempt to salvage only those values when processing 1302 // a DIArgList. 1303 Value *V = DDI.getVariableLocationOp(0); 1304 Value *OrigV = V; 1305 DILocalVariable *Var = DDI.getVariable(); 1306 DIExpression *Expr = DDI.getExpression(); 1307 DebugLoc DL = DDI.getDebugLoc(); 1308 unsigned SDOrder = DDI.getSDNodeOrder(); 1309 1310 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1311 // that DW_OP_stack_value is desired. 1312 bool StackValue = true; 1313 1314 // Can this Value can be encoded without any further work? 1315 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1316 return; 1317 1318 // Attempt to salvage back through as many instructions as possible. Bail if 1319 // a non-instruction is seen, such as a constant expression or global 1320 // variable. FIXME: Further work could recover those too. 1321 while (isa<Instruction>(V)) { 1322 Instruction &VAsInst = *cast<Instruction>(V); 1323 // Temporary "0", awaiting real implementation. 1324 SmallVector<uint64_t, 16> Ops; 1325 SmallVector<Value *, 4> AdditionalValues; 1326 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1327 AdditionalValues); 1328 // If we cannot salvage any further, and haven't yet found a suitable debug 1329 // expression, bail out. 1330 if (!V) 1331 break; 1332 1333 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1334 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1335 // here for variadic dbg_values, remove that condition. 1336 if (!AdditionalValues.empty()) 1337 break; 1338 1339 // New value and expr now represent this debuginfo. 1340 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1341 1342 // Some kind of simplification occurred: check whether the operand of the 1343 // salvaged debug expression can be encoded in this DAG. 1344 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1345 LLVM_DEBUG( 1346 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1347 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1348 return; 1349 } 1350 } 1351 1352 // This was the final opportunity to salvage this debug information, and it 1353 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1354 // any earlier variable location. 1355 assert(OrigV && "V shouldn't be null"); 1356 auto *Undef = UndefValue::get(OrigV->getType()); 1357 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1358 DAG.AddDbgValue(SDV, false); 1359 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI << "\n"); 1360 } 1361 1362 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1363 DILocalVariable *Var, 1364 DIExpression *Expr, DebugLoc DbgLoc, 1365 unsigned Order, bool IsVariadic) { 1366 if (Values.empty()) 1367 return true; 1368 SmallVector<SDDbgOperand> LocationOps; 1369 SmallVector<SDNode *> Dependencies; 1370 for (const Value *V : Values) { 1371 // Constant value. 1372 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1373 isa<ConstantPointerNull>(V)) { 1374 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1375 continue; 1376 } 1377 1378 // Look through IntToPtr constants. 1379 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1380 if (CE->getOpcode() == Instruction::IntToPtr) { 1381 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1382 continue; 1383 } 1384 1385 // If the Value is a frame index, we can create a FrameIndex debug value 1386 // without relying on the DAG at all. 1387 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1388 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1389 if (SI != FuncInfo.StaticAllocaMap.end()) { 1390 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1391 continue; 1392 } 1393 } 1394 1395 // Do not use getValue() in here; we don't want to generate code at 1396 // this point if it hasn't been done yet. 1397 SDValue N = NodeMap[V]; 1398 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1399 N = UnusedArgNodeMap[V]; 1400 if (N.getNode()) { 1401 // Only emit func arg dbg value for non-variadic dbg.values for now. 1402 if (!IsVariadic && 1403 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1404 FuncArgumentDbgValueKind::Value, N)) 1405 return true; 1406 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1407 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1408 // describe stack slot locations. 1409 // 1410 // Consider "int x = 0; int *px = &x;". There are two kinds of 1411 // interesting debug values here after optimization: 1412 // 1413 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1414 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1415 // 1416 // Both describe the direct values of their associated variables. 1417 Dependencies.push_back(N.getNode()); 1418 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1419 continue; 1420 } 1421 LocationOps.emplace_back( 1422 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1423 continue; 1424 } 1425 1426 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1427 // Special rules apply for the first dbg.values of parameter variables in a 1428 // function. Identify them by the fact they reference Argument Values, that 1429 // they're parameters, and they are parameters of the current function. We 1430 // need to let them dangle until they get an SDNode. 1431 bool IsParamOfFunc = 1432 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1433 if (IsParamOfFunc) 1434 return false; 1435 1436 // The value is not used in this block yet (or it would have an SDNode). 1437 // We still want the value to appear for the user if possible -- if it has 1438 // an associated VReg, we can refer to that instead. 1439 auto VMI = FuncInfo.ValueMap.find(V); 1440 if (VMI != FuncInfo.ValueMap.end()) { 1441 unsigned Reg = VMI->second; 1442 // If this is a PHI node, it may be split up into several MI PHI nodes 1443 // (in FunctionLoweringInfo::set). 1444 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1445 V->getType(), None); 1446 if (RFV.occupiesMultipleRegs()) { 1447 // FIXME: We could potentially support variadic dbg_values here. 1448 if (IsVariadic) 1449 return false; 1450 unsigned Offset = 0; 1451 unsigned BitsToDescribe = 0; 1452 if (auto VarSize = Var->getSizeInBits()) 1453 BitsToDescribe = *VarSize; 1454 if (auto Fragment = Expr->getFragmentInfo()) 1455 BitsToDescribe = Fragment->SizeInBits; 1456 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1457 // Bail out if all bits are described already. 1458 if (Offset >= BitsToDescribe) 1459 break; 1460 // TODO: handle scalable vectors. 1461 unsigned RegisterSize = RegAndSize.second; 1462 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1463 ? BitsToDescribe - Offset 1464 : RegisterSize; 1465 auto FragmentExpr = DIExpression::createFragmentExpression( 1466 Expr, Offset, FragmentSize); 1467 if (!FragmentExpr) 1468 continue; 1469 SDDbgValue *SDV = DAG.getVRegDbgValue( 1470 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1471 DAG.AddDbgValue(SDV, false); 1472 Offset += RegisterSize; 1473 } 1474 return true; 1475 } 1476 // We can use simple vreg locations for variadic dbg_values as well. 1477 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1478 continue; 1479 } 1480 // We failed to create a SDDbgOperand for V. 1481 return false; 1482 } 1483 1484 // We have created a SDDbgOperand for each Value in Values. 1485 // Should use Order instead of SDNodeOrder? 1486 assert(!LocationOps.empty()); 1487 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1488 /*IsIndirect=*/false, DbgLoc, 1489 SDNodeOrder, IsVariadic); 1490 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1491 return true; 1492 } 1493 1494 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1495 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1496 for (auto &Pair : DanglingDebugInfoMap) 1497 for (auto &DDI : Pair.second) 1498 salvageUnresolvedDbgValue(DDI); 1499 clearDanglingDebugInfo(); 1500 } 1501 1502 /// getCopyFromRegs - If there was virtual register allocated for the value V 1503 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1504 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1505 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1506 SDValue Result; 1507 1508 if (It != FuncInfo.ValueMap.end()) { 1509 Register InReg = It->second; 1510 1511 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1512 DAG.getDataLayout(), InReg, Ty, 1513 None); // This is not an ABI copy. 1514 SDValue Chain = DAG.getEntryNode(); 1515 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1516 V); 1517 resolveDanglingDebugInfo(V, Result); 1518 } 1519 1520 return Result; 1521 } 1522 1523 /// getValue - Return an SDValue for the given Value. 1524 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1525 // If we already have an SDValue for this value, use it. It's important 1526 // to do this first, so that we don't create a CopyFromReg if we already 1527 // have a regular SDValue. 1528 SDValue &N = NodeMap[V]; 1529 if (N.getNode()) return N; 1530 1531 // If there's a virtual register allocated and initialized for this 1532 // value, use it. 1533 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1534 return copyFromReg; 1535 1536 // Otherwise create a new SDValue and remember it. 1537 SDValue Val = getValueImpl(V); 1538 NodeMap[V] = Val; 1539 resolveDanglingDebugInfo(V, Val); 1540 return Val; 1541 } 1542 1543 /// getNonRegisterValue - Return an SDValue for the given Value, but 1544 /// don't look in FuncInfo.ValueMap for a virtual register. 1545 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1546 // If we already have an SDValue for this value, use it. 1547 SDValue &N = NodeMap[V]; 1548 if (N.getNode()) { 1549 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1550 // Remove the debug location from the node as the node is about to be used 1551 // in a location which may differ from the original debug location. This 1552 // is relevant to Constant and ConstantFP nodes because they can appear 1553 // as constant expressions inside PHI nodes. 1554 N->setDebugLoc(DebugLoc()); 1555 } 1556 return N; 1557 } 1558 1559 // Otherwise create a new SDValue and remember it. 1560 SDValue Val = getValueImpl(V); 1561 NodeMap[V] = Val; 1562 resolveDanglingDebugInfo(V, Val); 1563 return Val; 1564 } 1565 1566 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1567 /// Create an SDValue for the given value. 1568 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1569 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1570 1571 if (const Constant *C = dyn_cast<Constant>(V)) { 1572 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1573 1574 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1575 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1576 1577 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1578 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1579 1580 if (isa<ConstantPointerNull>(C)) { 1581 unsigned AS = V->getType()->getPointerAddressSpace(); 1582 return DAG.getConstant(0, getCurSDLoc(), 1583 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1584 } 1585 1586 if (match(C, m_VScale(DAG.getDataLayout()))) 1587 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1588 1589 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1590 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1591 1592 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1593 return DAG.getUNDEF(VT); 1594 1595 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1596 visit(CE->getOpcode(), *CE); 1597 SDValue N1 = NodeMap[V]; 1598 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1599 return N1; 1600 } 1601 1602 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1603 SmallVector<SDValue, 4> Constants; 1604 for (const Use &U : C->operands()) { 1605 SDNode *Val = getValue(U).getNode(); 1606 // If the operand is an empty aggregate, there are no values. 1607 if (!Val) continue; 1608 // Add each leaf value from the operand to the Constants list 1609 // to form a flattened list of all the values. 1610 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1611 Constants.push_back(SDValue(Val, i)); 1612 } 1613 1614 return DAG.getMergeValues(Constants, getCurSDLoc()); 1615 } 1616 1617 if (const ConstantDataSequential *CDS = 1618 dyn_cast<ConstantDataSequential>(C)) { 1619 SmallVector<SDValue, 4> Ops; 1620 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1621 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1622 // Add each leaf value from the operand to the Constants list 1623 // to form a flattened list of all the values. 1624 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1625 Ops.push_back(SDValue(Val, i)); 1626 } 1627 1628 if (isa<ArrayType>(CDS->getType())) 1629 return DAG.getMergeValues(Ops, getCurSDLoc()); 1630 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1631 } 1632 1633 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1634 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1635 "Unknown struct or array constant!"); 1636 1637 SmallVector<EVT, 4> ValueVTs; 1638 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1639 unsigned NumElts = ValueVTs.size(); 1640 if (NumElts == 0) 1641 return SDValue(); // empty struct 1642 SmallVector<SDValue, 4> Constants(NumElts); 1643 for (unsigned i = 0; i != NumElts; ++i) { 1644 EVT EltVT = ValueVTs[i]; 1645 if (isa<UndefValue>(C)) 1646 Constants[i] = DAG.getUNDEF(EltVT); 1647 else if (EltVT.isFloatingPoint()) 1648 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1649 else 1650 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1651 } 1652 1653 return DAG.getMergeValues(Constants, getCurSDLoc()); 1654 } 1655 1656 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1657 return DAG.getBlockAddress(BA, VT); 1658 1659 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1660 return getValue(Equiv->getGlobalValue()); 1661 1662 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1663 return getValue(NC->getGlobalValue()); 1664 1665 VectorType *VecTy = cast<VectorType>(V->getType()); 1666 1667 // Now that we know the number and type of the elements, get that number of 1668 // elements into the Ops array based on what kind of constant it is. 1669 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1670 SmallVector<SDValue, 16> Ops; 1671 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1672 for (unsigned i = 0; i != NumElements; ++i) 1673 Ops.push_back(getValue(CV->getOperand(i))); 1674 1675 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1676 } 1677 1678 if (isa<ConstantAggregateZero>(C)) { 1679 EVT EltVT = 1680 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1681 1682 SDValue Op; 1683 if (EltVT.isFloatingPoint()) 1684 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1685 else 1686 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1687 1688 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1689 } 1690 1691 llvm_unreachable("Unknown vector constant"); 1692 } 1693 1694 // If this is a static alloca, generate it as the frameindex instead of 1695 // computation. 1696 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1697 DenseMap<const AllocaInst*, int>::iterator SI = 1698 FuncInfo.StaticAllocaMap.find(AI); 1699 if (SI != FuncInfo.StaticAllocaMap.end()) 1700 return DAG.getFrameIndex(SI->second, 1701 TLI.getFrameIndexTy(DAG.getDataLayout())); 1702 } 1703 1704 // If this is an instruction which fast-isel has deferred, select it now. 1705 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1706 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1707 1708 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1709 Inst->getType(), None); 1710 SDValue Chain = DAG.getEntryNode(); 1711 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1712 } 1713 1714 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1715 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1716 1717 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1718 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1719 1720 llvm_unreachable("Can't get register for value!"); 1721 } 1722 1723 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1724 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1725 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1726 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1727 bool IsSEH = isAsynchronousEHPersonality(Pers); 1728 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1729 if (!IsSEH) 1730 CatchPadMBB->setIsEHScopeEntry(); 1731 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1732 if (IsMSVCCXX || IsCoreCLR) 1733 CatchPadMBB->setIsEHFuncletEntry(); 1734 } 1735 1736 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1737 // Update machine-CFG edge. 1738 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1739 FuncInfo.MBB->addSuccessor(TargetMBB); 1740 TargetMBB->setIsEHCatchretTarget(true); 1741 DAG.getMachineFunction().setHasEHCatchret(true); 1742 1743 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1744 bool IsSEH = isAsynchronousEHPersonality(Pers); 1745 if (IsSEH) { 1746 // If this is not a fall-through branch or optimizations are switched off, 1747 // emit the branch. 1748 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1749 TM.getOptLevel() == CodeGenOpt::None) 1750 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1751 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1752 return; 1753 } 1754 1755 // Figure out the funclet membership for the catchret's successor. 1756 // This will be used by the FuncletLayout pass to determine how to order the 1757 // BB's. 1758 // A 'catchret' returns to the outer scope's color. 1759 Value *ParentPad = I.getCatchSwitchParentPad(); 1760 const BasicBlock *SuccessorColor; 1761 if (isa<ConstantTokenNone>(ParentPad)) 1762 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1763 else 1764 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1765 assert(SuccessorColor && "No parent funclet for catchret!"); 1766 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1767 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1768 1769 // Create the terminator node. 1770 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1771 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1772 DAG.getBasicBlock(SuccessorColorMBB)); 1773 DAG.setRoot(Ret); 1774 } 1775 1776 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1777 // Don't emit any special code for the cleanuppad instruction. It just marks 1778 // the start of an EH scope/funclet. 1779 FuncInfo.MBB->setIsEHScopeEntry(); 1780 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1781 if (Pers != EHPersonality::Wasm_CXX) { 1782 FuncInfo.MBB->setIsEHFuncletEntry(); 1783 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1784 } 1785 } 1786 1787 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1788 // not match, it is OK to add only the first unwind destination catchpad to the 1789 // successors, because there will be at least one invoke instruction within the 1790 // catch scope that points to the next unwind destination, if one exists, so 1791 // CFGSort cannot mess up with BB sorting order. 1792 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1793 // call within them, and catchpads only consisting of 'catch (...)' have a 1794 // '__cxa_end_catch' call within them, both of which generate invokes in case 1795 // the next unwind destination exists, i.e., the next unwind destination is not 1796 // the caller.) 1797 // 1798 // Having at most one EH pad successor is also simpler and helps later 1799 // transformations. 1800 // 1801 // For example, 1802 // current: 1803 // invoke void @foo to ... unwind label %catch.dispatch 1804 // catch.dispatch: 1805 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1806 // catch.start: 1807 // ... 1808 // ... in this BB or some other child BB dominated by this BB there will be an 1809 // invoke that points to 'next' BB as an unwind destination 1810 // 1811 // next: ; We don't need to add this to 'current' BB's successor 1812 // ... 1813 static void findWasmUnwindDestinations( 1814 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1815 BranchProbability Prob, 1816 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1817 &UnwindDests) { 1818 while (EHPadBB) { 1819 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1820 if (isa<CleanupPadInst>(Pad)) { 1821 // Stop on cleanup pads. 1822 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1823 UnwindDests.back().first->setIsEHScopeEntry(); 1824 break; 1825 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1826 // Add the catchpad handlers to the possible destinations. We don't 1827 // continue to the unwind destination of the catchswitch for wasm. 1828 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1829 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1830 UnwindDests.back().first->setIsEHScopeEntry(); 1831 } 1832 break; 1833 } else { 1834 continue; 1835 } 1836 } 1837 } 1838 1839 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1840 /// many places it could ultimately go. In the IR, we have a single unwind 1841 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1842 /// This function skips over imaginary basic blocks that hold catchswitch 1843 /// instructions, and finds all the "real" machine 1844 /// basic block destinations. As those destinations may not be successors of 1845 /// EHPadBB, here we also calculate the edge probability to those destinations. 1846 /// The passed-in Prob is the edge probability to EHPadBB. 1847 static void findUnwindDestinations( 1848 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1849 BranchProbability Prob, 1850 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1851 &UnwindDests) { 1852 EHPersonality Personality = 1853 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1854 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1855 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1856 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1857 bool IsSEH = isAsynchronousEHPersonality(Personality); 1858 1859 if (IsWasmCXX) { 1860 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1861 assert(UnwindDests.size() <= 1 && 1862 "There should be at most one unwind destination for wasm"); 1863 return; 1864 } 1865 1866 while (EHPadBB) { 1867 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1868 BasicBlock *NewEHPadBB = nullptr; 1869 if (isa<LandingPadInst>(Pad)) { 1870 // Stop on landingpads. They are not funclets. 1871 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1872 break; 1873 } else if (isa<CleanupPadInst>(Pad)) { 1874 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1875 // personalities. 1876 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1877 UnwindDests.back().first->setIsEHScopeEntry(); 1878 UnwindDests.back().first->setIsEHFuncletEntry(); 1879 break; 1880 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1881 // Add the catchpad handlers to the possible destinations. 1882 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1883 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1884 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1885 if (IsMSVCCXX || IsCoreCLR) 1886 UnwindDests.back().first->setIsEHFuncletEntry(); 1887 if (!IsSEH) 1888 UnwindDests.back().first->setIsEHScopeEntry(); 1889 } 1890 NewEHPadBB = CatchSwitch->getUnwindDest(); 1891 } else { 1892 continue; 1893 } 1894 1895 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1896 if (BPI && NewEHPadBB) 1897 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1898 EHPadBB = NewEHPadBB; 1899 } 1900 } 1901 1902 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1903 // Update successor info. 1904 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1905 auto UnwindDest = I.getUnwindDest(); 1906 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1907 BranchProbability UnwindDestProb = 1908 (BPI && UnwindDest) 1909 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1910 : BranchProbability::getZero(); 1911 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1912 for (auto &UnwindDest : UnwindDests) { 1913 UnwindDest.first->setIsEHPad(); 1914 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1915 } 1916 FuncInfo.MBB->normalizeSuccProbs(); 1917 1918 // Create the terminator node. 1919 SDValue Ret = 1920 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1921 DAG.setRoot(Ret); 1922 } 1923 1924 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1925 report_fatal_error("visitCatchSwitch not yet implemented!"); 1926 } 1927 1928 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1929 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1930 auto &DL = DAG.getDataLayout(); 1931 SDValue Chain = getControlRoot(); 1932 SmallVector<ISD::OutputArg, 8> Outs; 1933 SmallVector<SDValue, 8> OutVals; 1934 1935 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1936 // lower 1937 // 1938 // %val = call <ty> @llvm.experimental.deoptimize() 1939 // ret <ty> %val 1940 // 1941 // differently. 1942 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1943 LowerDeoptimizingReturn(); 1944 return; 1945 } 1946 1947 if (!FuncInfo.CanLowerReturn) { 1948 unsigned DemoteReg = FuncInfo.DemoteRegister; 1949 const Function *F = I.getParent()->getParent(); 1950 1951 // Emit a store of the return value through the virtual register. 1952 // Leave Outs empty so that LowerReturn won't try to load return 1953 // registers the usual way. 1954 SmallVector<EVT, 1> PtrValueVTs; 1955 ComputeValueVTs(TLI, DL, 1956 F->getReturnType()->getPointerTo( 1957 DAG.getDataLayout().getAllocaAddrSpace()), 1958 PtrValueVTs); 1959 1960 SDValue RetPtr = 1961 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1962 SDValue RetOp = getValue(I.getOperand(0)); 1963 1964 SmallVector<EVT, 4> ValueVTs, MemVTs; 1965 SmallVector<uint64_t, 4> Offsets; 1966 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1967 &Offsets); 1968 unsigned NumValues = ValueVTs.size(); 1969 1970 SmallVector<SDValue, 4> Chains(NumValues); 1971 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1972 for (unsigned i = 0; i != NumValues; ++i) { 1973 // An aggregate return value cannot wrap around the address space, so 1974 // offsets to its parts don't wrap either. 1975 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1976 TypeSize::Fixed(Offsets[i])); 1977 1978 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1979 if (MemVTs[i] != ValueVTs[i]) 1980 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1981 Chains[i] = DAG.getStore( 1982 Chain, getCurSDLoc(), Val, 1983 // FIXME: better loc info would be nice. 1984 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1985 commonAlignment(BaseAlign, Offsets[i])); 1986 } 1987 1988 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1989 MVT::Other, Chains); 1990 } else if (I.getNumOperands() != 0) { 1991 SmallVector<EVT, 4> ValueVTs; 1992 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1993 unsigned NumValues = ValueVTs.size(); 1994 if (NumValues) { 1995 SDValue RetOp = getValue(I.getOperand(0)); 1996 1997 const Function *F = I.getParent()->getParent(); 1998 1999 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2000 I.getOperand(0)->getType(), F->getCallingConv(), 2001 /*IsVarArg*/ false, DL); 2002 2003 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2004 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2005 ExtendKind = ISD::SIGN_EXTEND; 2006 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2007 ExtendKind = ISD::ZERO_EXTEND; 2008 2009 LLVMContext &Context = F->getContext(); 2010 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2011 2012 for (unsigned j = 0; j != NumValues; ++j) { 2013 EVT VT = ValueVTs[j]; 2014 2015 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2016 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2017 2018 CallingConv::ID CC = F->getCallingConv(); 2019 2020 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2021 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2022 SmallVector<SDValue, 4> Parts(NumParts); 2023 getCopyToParts(DAG, getCurSDLoc(), 2024 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2025 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2026 2027 // 'inreg' on function refers to return value 2028 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2029 if (RetInReg) 2030 Flags.setInReg(); 2031 2032 if (I.getOperand(0)->getType()->isPointerTy()) { 2033 Flags.setPointer(); 2034 Flags.setPointerAddrSpace( 2035 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2036 } 2037 2038 if (NeedsRegBlock) { 2039 Flags.setInConsecutiveRegs(); 2040 if (j == NumValues - 1) 2041 Flags.setInConsecutiveRegsLast(); 2042 } 2043 2044 // Propagate extension type if any 2045 if (ExtendKind == ISD::SIGN_EXTEND) 2046 Flags.setSExt(); 2047 else if (ExtendKind == ISD::ZERO_EXTEND) 2048 Flags.setZExt(); 2049 2050 for (unsigned i = 0; i < NumParts; ++i) { 2051 Outs.push_back(ISD::OutputArg(Flags, 2052 Parts[i].getValueType().getSimpleVT(), 2053 VT, /*isfixed=*/true, 0, 0)); 2054 OutVals.push_back(Parts[i]); 2055 } 2056 } 2057 } 2058 } 2059 2060 // Push in swifterror virtual register as the last element of Outs. This makes 2061 // sure swifterror virtual register will be returned in the swifterror 2062 // physical register. 2063 const Function *F = I.getParent()->getParent(); 2064 if (TLI.supportSwiftError() && 2065 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2066 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2067 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2068 Flags.setSwiftError(); 2069 Outs.push_back(ISD::OutputArg( 2070 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2071 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2072 // Create SDNode for the swifterror virtual register. 2073 OutVals.push_back( 2074 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2075 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2076 EVT(TLI.getPointerTy(DL)))); 2077 } 2078 2079 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2080 CallingConv::ID CallConv = 2081 DAG.getMachineFunction().getFunction().getCallingConv(); 2082 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2083 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2084 2085 // Verify that the target's LowerReturn behaved as expected. 2086 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2087 "LowerReturn didn't return a valid chain!"); 2088 2089 // Update the DAG with the new chain value resulting from return lowering. 2090 DAG.setRoot(Chain); 2091 } 2092 2093 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2094 /// created for it, emit nodes to copy the value into the virtual 2095 /// registers. 2096 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2097 // Skip empty types 2098 if (V->getType()->isEmptyTy()) 2099 return; 2100 2101 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2102 if (VMI != FuncInfo.ValueMap.end()) { 2103 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2104 CopyValueToVirtualRegister(V, VMI->second); 2105 } 2106 } 2107 2108 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2109 /// the current basic block, add it to ValueMap now so that we'll get a 2110 /// CopyTo/FromReg. 2111 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2112 // No need to export constants. 2113 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2114 2115 // Already exported? 2116 if (FuncInfo.isExportedInst(V)) return; 2117 2118 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2119 CopyValueToVirtualRegister(V, Reg); 2120 } 2121 2122 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2123 const BasicBlock *FromBB) { 2124 // The operands of the setcc have to be in this block. We don't know 2125 // how to export them from some other block. 2126 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2127 // Can export from current BB. 2128 if (VI->getParent() == FromBB) 2129 return true; 2130 2131 // Is already exported, noop. 2132 return FuncInfo.isExportedInst(V); 2133 } 2134 2135 // If this is an argument, we can export it if the BB is the entry block or 2136 // if it is already exported. 2137 if (isa<Argument>(V)) { 2138 if (FromBB->isEntryBlock()) 2139 return true; 2140 2141 // Otherwise, can only export this if it is already exported. 2142 return FuncInfo.isExportedInst(V); 2143 } 2144 2145 // Otherwise, constants can always be exported. 2146 return true; 2147 } 2148 2149 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2150 BranchProbability 2151 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2152 const MachineBasicBlock *Dst) const { 2153 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2154 const BasicBlock *SrcBB = Src->getBasicBlock(); 2155 const BasicBlock *DstBB = Dst->getBasicBlock(); 2156 if (!BPI) { 2157 // If BPI is not available, set the default probability as 1 / N, where N is 2158 // the number of successors. 2159 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2160 return BranchProbability(1, SuccSize); 2161 } 2162 return BPI->getEdgeProbability(SrcBB, DstBB); 2163 } 2164 2165 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2166 MachineBasicBlock *Dst, 2167 BranchProbability Prob) { 2168 if (!FuncInfo.BPI) 2169 Src->addSuccessorWithoutProb(Dst); 2170 else { 2171 if (Prob.isUnknown()) 2172 Prob = getEdgeProbability(Src, Dst); 2173 Src->addSuccessor(Dst, Prob); 2174 } 2175 } 2176 2177 static bool InBlock(const Value *V, const BasicBlock *BB) { 2178 if (const Instruction *I = dyn_cast<Instruction>(V)) 2179 return I->getParent() == BB; 2180 return true; 2181 } 2182 2183 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2184 /// This function emits a branch and is used at the leaves of an OR or an 2185 /// AND operator tree. 2186 void 2187 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2188 MachineBasicBlock *TBB, 2189 MachineBasicBlock *FBB, 2190 MachineBasicBlock *CurBB, 2191 MachineBasicBlock *SwitchBB, 2192 BranchProbability TProb, 2193 BranchProbability FProb, 2194 bool InvertCond) { 2195 const BasicBlock *BB = CurBB->getBasicBlock(); 2196 2197 // If the leaf of the tree is a comparison, merge the condition into 2198 // the caseblock. 2199 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2200 // The operands of the cmp have to be in this block. We don't know 2201 // how to export them from some other block. If this is the first block 2202 // of the sequence, no exporting is needed. 2203 if (CurBB == SwitchBB || 2204 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2205 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2206 ISD::CondCode Condition; 2207 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2208 ICmpInst::Predicate Pred = 2209 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2210 Condition = getICmpCondCode(Pred); 2211 } else { 2212 const FCmpInst *FC = cast<FCmpInst>(Cond); 2213 FCmpInst::Predicate Pred = 2214 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2215 Condition = getFCmpCondCode(Pred); 2216 if (TM.Options.NoNaNsFPMath) 2217 Condition = getFCmpCodeWithoutNaN(Condition); 2218 } 2219 2220 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2221 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2222 SL->SwitchCases.push_back(CB); 2223 return; 2224 } 2225 } 2226 2227 // Create a CaseBlock record representing this branch. 2228 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2229 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2230 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2231 SL->SwitchCases.push_back(CB); 2232 } 2233 2234 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2235 MachineBasicBlock *TBB, 2236 MachineBasicBlock *FBB, 2237 MachineBasicBlock *CurBB, 2238 MachineBasicBlock *SwitchBB, 2239 Instruction::BinaryOps Opc, 2240 BranchProbability TProb, 2241 BranchProbability FProb, 2242 bool InvertCond) { 2243 // Skip over not part of the tree and remember to invert op and operands at 2244 // next level. 2245 Value *NotCond; 2246 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2247 InBlock(NotCond, CurBB->getBasicBlock())) { 2248 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2249 !InvertCond); 2250 return; 2251 } 2252 2253 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2254 const Value *BOpOp0, *BOpOp1; 2255 // Compute the effective opcode for Cond, taking into account whether it needs 2256 // to be inverted, e.g. 2257 // and (not (or A, B)), C 2258 // gets lowered as 2259 // and (and (not A, not B), C) 2260 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2261 if (BOp) { 2262 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2263 ? Instruction::And 2264 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2265 ? Instruction::Or 2266 : (Instruction::BinaryOps)0); 2267 if (InvertCond) { 2268 if (BOpc == Instruction::And) 2269 BOpc = Instruction::Or; 2270 else if (BOpc == Instruction::Or) 2271 BOpc = Instruction::And; 2272 } 2273 } 2274 2275 // If this node is not part of the or/and tree, emit it as a branch. 2276 // Note that all nodes in the tree should have same opcode. 2277 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2278 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2279 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2280 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2281 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2282 TProb, FProb, InvertCond); 2283 return; 2284 } 2285 2286 // Create TmpBB after CurBB. 2287 MachineFunction::iterator BBI(CurBB); 2288 MachineFunction &MF = DAG.getMachineFunction(); 2289 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2290 CurBB->getParent()->insert(++BBI, TmpBB); 2291 2292 if (Opc == Instruction::Or) { 2293 // Codegen X | Y as: 2294 // BB1: 2295 // jmp_if_X TBB 2296 // jmp TmpBB 2297 // TmpBB: 2298 // jmp_if_Y TBB 2299 // jmp FBB 2300 // 2301 2302 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2303 // The requirement is that 2304 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2305 // = TrueProb for original BB. 2306 // Assuming the original probabilities are A and B, one choice is to set 2307 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2308 // A/(1+B) and 2B/(1+B). This choice assumes that 2309 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2310 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2311 // TmpBB, but the math is more complicated. 2312 2313 auto NewTrueProb = TProb / 2; 2314 auto NewFalseProb = TProb / 2 + FProb; 2315 // Emit the LHS condition. 2316 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2317 NewFalseProb, InvertCond); 2318 2319 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2320 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2321 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2322 // Emit the RHS condition into TmpBB. 2323 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2324 Probs[1], InvertCond); 2325 } else { 2326 assert(Opc == Instruction::And && "Unknown merge op!"); 2327 // Codegen X & Y as: 2328 // BB1: 2329 // jmp_if_X TmpBB 2330 // jmp FBB 2331 // TmpBB: 2332 // jmp_if_Y TBB 2333 // jmp FBB 2334 // 2335 // This requires creation of TmpBB after CurBB. 2336 2337 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2338 // The requirement is that 2339 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2340 // = FalseProb for original BB. 2341 // Assuming the original probabilities are A and B, one choice is to set 2342 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2343 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2344 // TrueProb for BB1 * FalseProb for TmpBB. 2345 2346 auto NewTrueProb = TProb + FProb / 2; 2347 auto NewFalseProb = FProb / 2; 2348 // Emit the LHS condition. 2349 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2350 NewFalseProb, InvertCond); 2351 2352 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2353 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2354 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2355 // Emit the RHS condition into TmpBB. 2356 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2357 Probs[1], InvertCond); 2358 } 2359 } 2360 2361 /// If the set of cases should be emitted as a series of branches, return true. 2362 /// If we should emit this as a bunch of and/or'd together conditions, return 2363 /// false. 2364 bool 2365 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2366 if (Cases.size() != 2) return true; 2367 2368 // If this is two comparisons of the same values or'd or and'd together, they 2369 // will get folded into a single comparison, so don't emit two blocks. 2370 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2371 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2372 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2373 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2374 return false; 2375 } 2376 2377 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2378 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2379 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2380 Cases[0].CC == Cases[1].CC && 2381 isa<Constant>(Cases[0].CmpRHS) && 2382 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2383 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2384 return false; 2385 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2386 return false; 2387 } 2388 2389 return true; 2390 } 2391 2392 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2393 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2394 2395 // Update machine-CFG edges. 2396 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2397 2398 if (I.isUnconditional()) { 2399 // Update machine-CFG edges. 2400 BrMBB->addSuccessor(Succ0MBB); 2401 2402 // If this is not a fall-through branch or optimizations are switched off, 2403 // emit the branch. 2404 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2405 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2406 MVT::Other, getControlRoot(), 2407 DAG.getBasicBlock(Succ0MBB))); 2408 2409 return; 2410 } 2411 2412 // If this condition is one of the special cases we handle, do special stuff 2413 // now. 2414 const Value *CondVal = I.getCondition(); 2415 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2416 2417 // If this is a series of conditions that are or'd or and'd together, emit 2418 // this as a sequence of branches instead of setcc's with and/or operations. 2419 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2420 // unpredictable branches, and vector extracts because those jumps are likely 2421 // expensive for any target), this should improve performance. 2422 // For example, instead of something like: 2423 // cmp A, B 2424 // C = seteq 2425 // cmp D, E 2426 // F = setle 2427 // or C, F 2428 // jnz foo 2429 // Emit: 2430 // cmp A, B 2431 // je foo 2432 // cmp D, E 2433 // jle foo 2434 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2435 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2436 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2437 Value *Vec; 2438 const Value *BOp0, *BOp1; 2439 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2440 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2441 Opcode = Instruction::And; 2442 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2443 Opcode = Instruction::Or; 2444 2445 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2446 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2447 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2448 getEdgeProbability(BrMBB, Succ0MBB), 2449 getEdgeProbability(BrMBB, Succ1MBB), 2450 /*InvertCond=*/false); 2451 // If the compares in later blocks need to use values not currently 2452 // exported from this block, export them now. This block should always 2453 // be the first entry. 2454 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2455 2456 // Allow some cases to be rejected. 2457 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2458 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2459 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2460 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2461 } 2462 2463 // Emit the branch for this block. 2464 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2465 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2466 return; 2467 } 2468 2469 // Okay, we decided not to do this, remove any inserted MBB's and clear 2470 // SwitchCases. 2471 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2472 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2473 2474 SL->SwitchCases.clear(); 2475 } 2476 } 2477 2478 // Create a CaseBlock record representing this branch. 2479 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2480 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2481 2482 // Use visitSwitchCase to actually insert the fast branch sequence for this 2483 // cond branch. 2484 visitSwitchCase(CB, BrMBB); 2485 } 2486 2487 /// visitSwitchCase - Emits the necessary code to represent a single node in 2488 /// the binary search tree resulting from lowering a switch instruction. 2489 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2490 MachineBasicBlock *SwitchBB) { 2491 SDValue Cond; 2492 SDValue CondLHS = getValue(CB.CmpLHS); 2493 SDLoc dl = CB.DL; 2494 2495 if (CB.CC == ISD::SETTRUE) { 2496 // Branch or fall through to TrueBB. 2497 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2498 SwitchBB->normalizeSuccProbs(); 2499 if (CB.TrueBB != NextBlock(SwitchBB)) { 2500 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2501 DAG.getBasicBlock(CB.TrueBB))); 2502 } 2503 return; 2504 } 2505 2506 auto &TLI = DAG.getTargetLoweringInfo(); 2507 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2508 2509 // Build the setcc now. 2510 if (!CB.CmpMHS) { 2511 // Fold "(X == true)" to X and "(X == false)" to !X to 2512 // handle common cases produced by branch lowering. 2513 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2514 CB.CC == ISD::SETEQ) 2515 Cond = CondLHS; 2516 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2517 CB.CC == ISD::SETEQ) { 2518 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2519 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2520 } else { 2521 SDValue CondRHS = getValue(CB.CmpRHS); 2522 2523 // If a pointer's DAG type is larger than its memory type then the DAG 2524 // values are zero-extended. This breaks signed comparisons so truncate 2525 // back to the underlying type before doing the compare. 2526 if (CondLHS.getValueType() != MemVT) { 2527 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2528 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2529 } 2530 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2531 } 2532 } else { 2533 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2534 2535 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2536 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2537 2538 SDValue CmpOp = getValue(CB.CmpMHS); 2539 EVT VT = CmpOp.getValueType(); 2540 2541 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2542 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2543 ISD::SETLE); 2544 } else { 2545 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2546 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2547 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2548 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2549 } 2550 } 2551 2552 // Update successor info 2553 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2554 // TrueBB and FalseBB are always different unless the incoming IR is 2555 // degenerate. This only happens when running llc on weird IR. 2556 if (CB.TrueBB != CB.FalseBB) 2557 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2558 SwitchBB->normalizeSuccProbs(); 2559 2560 // If the lhs block is the next block, invert the condition so that we can 2561 // fall through to the lhs instead of the rhs block. 2562 if (CB.TrueBB == NextBlock(SwitchBB)) { 2563 std::swap(CB.TrueBB, CB.FalseBB); 2564 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2565 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2566 } 2567 2568 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2569 MVT::Other, getControlRoot(), Cond, 2570 DAG.getBasicBlock(CB.TrueBB)); 2571 2572 setValue(CurInst, BrCond); 2573 2574 // Insert the false branch. Do this even if it's a fall through branch, 2575 // this makes it easier to do DAG optimizations which require inverting 2576 // the branch condition. 2577 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2578 DAG.getBasicBlock(CB.FalseBB)); 2579 2580 DAG.setRoot(BrCond); 2581 } 2582 2583 /// visitJumpTable - Emit JumpTable node in the current MBB 2584 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2585 // Emit the code for the jump table 2586 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2587 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2588 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2589 JT.Reg, PTy); 2590 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2591 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2592 MVT::Other, Index.getValue(1), 2593 Table, Index); 2594 DAG.setRoot(BrJumpTable); 2595 } 2596 2597 /// visitJumpTableHeader - This function emits necessary code to produce index 2598 /// in the JumpTable from switch case. 2599 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2600 JumpTableHeader &JTH, 2601 MachineBasicBlock *SwitchBB) { 2602 SDLoc dl = getCurSDLoc(); 2603 2604 // Subtract the lowest switch case value from the value being switched on. 2605 SDValue SwitchOp = getValue(JTH.SValue); 2606 EVT VT = SwitchOp.getValueType(); 2607 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2608 DAG.getConstant(JTH.First, dl, VT)); 2609 2610 // The SDNode we just created, which holds the value being switched on minus 2611 // the smallest case value, needs to be copied to a virtual register so it 2612 // can be used as an index into the jump table in a subsequent basic block. 2613 // This value may be smaller or larger than the target's pointer type, and 2614 // therefore require extension or truncating. 2615 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2616 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2617 2618 unsigned JumpTableReg = 2619 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2620 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2621 JumpTableReg, SwitchOp); 2622 JT.Reg = JumpTableReg; 2623 2624 if (!JTH.FallthroughUnreachable) { 2625 // Emit the range check for the jump table, and branch to the default block 2626 // for the switch statement if the value being switched on exceeds the 2627 // largest case in the switch. 2628 SDValue CMP = DAG.getSetCC( 2629 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2630 Sub.getValueType()), 2631 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2632 2633 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2634 MVT::Other, CopyTo, CMP, 2635 DAG.getBasicBlock(JT.Default)); 2636 2637 // Avoid emitting unnecessary branches to the next block. 2638 if (JT.MBB != NextBlock(SwitchBB)) 2639 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2640 DAG.getBasicBlock(JT.MBB)); 2641 2642 DAG.setRoot(BrCond); 2643 } else { 2644 // Avoid emitting unnecessary branches to the next block. 2645 if (JT.MBB != NextBlock(SwitchBB)) 2646 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2647 DAG.getBasicBlock(JT.MBB))); 2648 else 2649 DAG.setRoot(CopyTo); 2650 } 2651 } 2652 2653 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2654 /// variable if there exists one. 2655 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2656 SDValue &Chain) { 2657 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2658 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2659 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2660 MachineFunction &MF = DAG.getMachineFunction(); 2661 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2662 MachineSDNode *Node = 2663 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2664 if (Global) { 2665 MachinePointerInfo MPInfo(Global); 2666 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2667 MachineMemOperand::MODereferenceable; 2668 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2669 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2670 DAG.setNodeMemRefs(Node, {MemRef}); 2671 } 2672 if (PtrTy != PtrMemTy) 2673 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2674 return SDValue(Node, 0); 2675 } 2676 2677 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2678 /// tail spliced into a stack protector check success bb. 2679 /// 2680 /// For a high level explanation of how this fits into the stack protector 2681 /// generation see the comment on the declaration of class 2682 /// StackProtectorDescriptor. 2683 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2684 MachineBasicBlock *ParentBB) { 2685 2686 // First create the loads to the guard/stack slot for the comparison. 2687 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2688 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2689 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2690 2691 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2692 int FI = MFI.getStackProtectorIndex(); 2693 2694 SDValue Guard; 2695 SDLoc dl = getCurSDLoc(); 2696 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2697 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2698 Align Align = 2699 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2700 2701 // Generate code to load the content of the guard slot. 2702 SDValue GuardVal = DAG.getLoad( 2703 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2704 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2705 MachineMemOperand::MOVolatile); 2706 2707 if (TLI.useStackGuardXorFP()) 2708 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2709 2710 // Retrieve guard check function, nullptr if instrumentation is inlined. 2711 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2712 // The target provides a guard check function to validate the guard value. 2713 // Generate a call to that function with the content of the guard slot as 2714 // argument. 2715 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2716 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2717 2718 TargetLowering::ArgListTy Args; 2719 TargetLowering::ArgListEntry Entry; 2720 Entry.Node = GuardVal; 2721 Entry.Ty = FnTy->getParamType(0); 2722 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2723 Entry.IsInReg = true; 2724 Args.push_back(Entry); 2725 2726 TargetLowering::CallLoweringInfo CLI(DAG); 2727 CLI.setDebugLoc(getCurSDLoc()) 2728 .setChain(DAG.getEntryNode()) 2729 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2730 getValue(GuardCheckFn), std::move(Args)); 2731 2732 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2733 DAG.setRoot(Result.second); 2734 return; 2735 } 2736 2737 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2738 // Otherwise, emit a volatile load to retrieve the stack guard value. 2739 SDValue Chain = DAG.getEntryNode(); 2740 if (TLI.useLoadStackGuardNode()) { 2741 Guard = getLoadStackGuard(DAG, dl, Chain); 2742 } else { 2743 const Value *IRGuard = TLI.getSDagStackGuard(M); 2744 SDValue GuardPtr = getValue(IRGuard); 2745 2746 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2747 MachinePointerInfo(IRGuard, 0), Align, 2748 MachineMemOperand::MOVolatile); 2749 } 2750 2751 // Perform the comparison via a getsetcc. 2752 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2753 *DAG.getContext(), 2754 Guard.getValueType()), 2755 Guard, GuardVal, ISD::SETNE); 2756 2757 // If the guard/stackslot do not equal, branch to failure MBB. 2758 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2759 MVT::Other, GuardVal.getOperand(0), 2760 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2761 // Otherwise branch to success MBB. 2762 SDValue Br = DAG.getNode(ISD::BR, dl, 2763 MVT::Other, BrCond, 2764 DAG.getBasicBlock(SPD.getSuccessMBB())); 2765 2766 DAG.setRoot(Br); 2767 } 2768 2769 /// Codegen the failure basic block for a stack protector check. 2770 /// 2771 /// A failure stack protector machine basic block consists simply of a call to 2772 /// __stack_chk_fail(). 2773 /// 2774 /// For a high level explanation of how this fits into the stack protector 2775 /// generation see the comment on the declaration of class 2776 /// StackProtectorDescriptor. 2777 void 2778 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2779 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2780 TargetLowering::MakeLibCallOptions CallOptions; 2781 CallOptions.setDiscardResult(true); 2782 SDValue Chain = 2783 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2784 None, CallOptions, getCurSDLoc()).second; 2785 // On PS4/PS5, the "return address" must still be within the calling 2786 // function, even if it's at the very end, so emit an explicit TRAP here. 2787 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2788 if (TM.getTargetTriple().isPS()) 2789 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2790 // WebAssembly needs an unreachable instruction after a non-returning call, 2791 // because the function return type can be different from __stack_chk_fail's 2792 // return type (void). 2793 if (TM.getTargetTriple().isWasm()) 2794 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2795 2796 DAG.setRoot(Chain); 2797 } 2798 2799 /// visitBitTestHeader - This function emits necessary code to produce value 2800 /// suitable for "bit tests" 2801 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2802 MachineBasicBlock *SwitchBB) { 2803 SDLoc dl = getCurSDLoc(); 2804 2805 // Subtract the minimum value. 2806 SDValue SwitchOp = getValue(B.SValue); 2807 EVT VT = SwitchOp.getValueType(); 2808 SDValue RangeSub = 2809 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2810 2811 // Determine the type of the test operands. 2812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2813 bool UsePtrType = false; 2814 if (!TLI.isTypeLegal(VT)) { 2815 UsePtrType = true; 2816 } else { 2817 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2818 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2819 // Switch table case range are encoded into series of masks. 2820 // Just use pointer type, it's guaranteed to fit. 2821 UsePtrType = true; 2822 break; 2823 } 2824 } 2825 SDValue Sub = RangeSub; 2826 if (UsePtrType) { 2827 VT = TLI.getPointerTy(DAG.getDataLayout()); 2828 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2829 } 2830 2831 B.RegVT = VT.getSimpleVT(); 2832 B.Reg = FuncInfo.CreateReg(B.RegVT); 2833 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2834 2835 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2836 2837 if (!B.FallthroughUnreachable) 2838 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2839 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2840 SwitchBB->normalizeSuccProbs(); 2841 2842 SDValue Root = CopyTo; 2843 if (!B.FallthroughUnreachable) { 2844 // Conditional branch to the default block. 2845 SDValue RangeCmp = DAG.getSetCC(dl, 2846 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2847 RangeSub.getValueType()), 2848 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2849 ISD::SETUGT); 2850 2851 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2852 DAG.getBasicBlock(B.Default)); 2853 } 2854 2855 // Avoid emitting unnecessary branches to the next block. 2856 if (MBB != NextBlock(SwitchBB)) 2857 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2858 2859 DAG.setRoot(Root); 2860 } 2861 2862 /// visitBitTestCase - this function produces one "bit test" 2863 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2864 MachineBasicBlock* NextMBB, 2865 BranchProbability BranchProbToNext, 2866 unsigned Reg, 2867 BitTestCase &B, 2868 MachineBasicBlock *SwitchBB) { 2869 SDLoc dl = getCurSDLoc(); 2870 MVT VT = BB.RegVT; 2871 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2872 SDValue Cmp; 2873 unsigned PopCount = countPopulation(B.Mask); 2874 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2875 if (PopCount == 1) { 2876 // Testing for a single bit; just compare the shift count with what it 2877 // would need to be to shift a 1 bit in that position. 2878 Cmp = DAG.getSetCC( 2879 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2880 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2881 ISD::SETEQ); 2882 } else if (PopCount == BB.Range) { 2883 // There is only one zero bit in the range, test for it directly. 2884 Cmp = DAG.getSetCC( 2885 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2886 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2887 ISD::SETNE); 2888 } else { 2889 // Make desired shift 2890 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2891 DAG.getConstant(1, dl, VT), ShiftOp); 2892 2893 // Emit bit tests and jumps 2894 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2895 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2896 Cmp = DAG.getSetCC( 2897 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2898 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2899 } 2900 2901 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2902 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2903 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2904 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2905 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2906 // one as they are relative probabilities (and thus work more like weights), 2907 // and hence we need to normalize them to let the sum of them become one. 2908 SwitchBB->normalizeSuccProbs(); 2909 2910 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2911 MVT::Other, getControlRoot(), 2912 Cmp, DAG.getBasicBlock(B.TargetBB)); 2913 2914 // Avoid emitting unnecessary branches to the next block. 2915 if (NextMBB != NextBlock(SwitchBB)) 2916 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2917 DAG.getBasicBlock(NextMBB)); 2918 2919 DAG.setRoot(BrAnd); 2920 } 2921 2922 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2923 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2924 2925 // Retrieve successors. Look through artificial IR level blocks like 2926 // catchswitch for successors. 2927 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2928 const BasicBlock *EHPadBB = I.getSuccessor(1); 2929 2930 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2931 // have to do anything here to lower funclet bundles. 2932 assert(!I.hasOperandBundlesOtherThan( 2933 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2934 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2935 LLVMContext::OB_cfguardtarget, 2936 LLVMContext::OB_clang_arc_attachedcall}) && 2937 "Cannot lower invokes with arbitrary operand bundles yet!"); 2938 2939 const Value *Callee(I.getCalledOperand()); 2940 const Function *Fn = dyn_cast<Function>(Callee); 2941 if (isa<InlineAsm>(Callee)) 2942 visitInlineAsm(I, EHPadBB); 2943 else if (Fn && Fn->isIntrinsic()) { 2944 switch (Fn->getIntrinsicID()) { 2945 default: 2946 llvm_unreachable("Cannot invoke this intrinsic"); 2947 case Intrinsic::donothing: 2948 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2949 case Intrinsic::seh_try_begin: 2950 case Intrinsic::seh_scope_begin: 2951 case Intrinsic::seh_try_end: 2952 case Intrinsic::seh_scope_end: 2953 break; 2954 case Intrinsic::experimental_patchpoint_void: 2955 case Intrinsic::experimental_patchpoint_i64: 2956 visitPatchpoint(I, EHPadBB); 2957 break; 2958 case Intrinsic::experimental_gc_statepoint: 2959 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2960 break; 2961 case Intrinsic::wasm_rethrow: { 2962 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2963 // special because it can be invoked, so we manually lower it to a DAG 2964 // node here. 2965 SmallVector<SDValue, 8> Ops; 2966 Ops.push_back(getRoot()); // inchain 2967 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2968 Ops.push_back( 2969 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2970 TLI.getPointerTy(DAG.getDataLayout()))); 2971 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2972 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2973 break; 2974 } 2975 } 2976 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2977 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2978 // Eventually we will support lowering the @llvm.experimental.deoptimize 2979 // intrinsic, and right now there are no plans to support other intrinsics 2980 // with deopt state. 2981 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2982 } else { 2983 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2984 } 2985 2986 // If the value of the invoke is used outside of its defining block, make it 2987 // available as a virtual register. 2988 // We already took care of the exported value for the statepoint instruction 2989 // during call to the LowerStatepoint. 2990 if (!isa<GCStatepointInst>(I)) { 2991 CopyToExportRegsIfNeeded(&I); 2992 } 2993 2994 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2995 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2996 BranchProbability EHPadBBProb = 2997 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2998 : BranchProbability::getZero(); 2999 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3000 3001 // Update successor info. 3002 addSuccessorWithProb(InvokeMBB, Return); 3003 for (auto &UnwindDest : UnwindDests) { 3004 UnwindDest.first->setIsEHPad(); 3005 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3006 } 3007 InvokeMBB->normalizeSuccProbs(); 3008 3009 // Drop into normal successor. 3010 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3011 DAG.getBasicBlock(Return))); 3012 } 3013 3014 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3015 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3016 3017 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3018 // have to do anything here to lower funclet bundles. 3019 assert(!I.hasOperandBundlesOtherThan( 3020 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3021 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3022 3023 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3024 visitInlineAsm(I); 3025 CopyToExportRegsIfNeeded(&I); 3026 3027 // Retrieve successors. 3028 SmallPtrSet<BasicBlock *, 8> Dests; 3029 Dests.insert(I.getDefaultDest()); 3030 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3031 3032 // Update successor info. 3033 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3034 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3035 BasicBlock *Dest = I.getIndirectDest(i); 3036 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3037 Target->setIsInlineAsmBrIndirectTarget(); 3038 Target->setMachineBlockAddressTaken(); 3039 Target->setLabelMustBeEmitted(); 3040 // Don't add duplicate machine successors. 3041 if (Dests.insert(Dest).second) 3042 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3043 } 3044 CallBrMBB->normalizeSuccProbs(); 3045 3046 // Drop into default successor. 3047 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3048 MVT::Other, getControlRoot(), 3049 DAG.getBasicBlock(Return))); 3050 } 3051 3052 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3053 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3054 } 3055 3056 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3057 assert(FuncInfo.MBB->isEHPad() && 3058 "Call to landingpad not in landing pad!"); 3059 3060 // If there aren't registers to copy the values into (e.g., during SjLj 3061 // exceptions), then don't bother to create these DAG nodes. 3062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3063 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3064 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3065 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3066 return; 3067 3068 // If landingpad's return type is token type, we don't create DAG nodes 3069 // for its exception pointer and selector value. The extraction of exception 3070 // pointer or selector value from token type landingpads is not currently 3071 // supported. 3072 if (LP.getType()->isTokenTy()) 3073 return; 3074 3075 SmallVector<EVT, 2> ValueVTs; 3076 SDLoc dl = getCurSDLoc(); 3077 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3078 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3079 3080 // Get the two live-in registers as SDValues. The physregs have already been 3081 // copied into virtual registers. 3082 SDValue Ops[2]; 3083 if (FuncInfo.ExceptionPointerVirtReg) { 3084 Ops[0] = DAG.getZExtOrTrunc( 3085 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3086 FuncInfo.ExceptionPointerVirtReg, 3087 TLI.getPointerTy(DAG.getDataLayout())), 3088 dl, ValueVTs[0]); 3089 } else { 3090 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3091 } 3092 Ops[1] = DAG.getZExtOrTrunc( 3093 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3094 FuncInfo.ExceptionSelectorVirtReg, 3095 TLI.getPointerTy(DAG.getDataLayout())), 3096 dl, ValueVTs[1]); 3097 3098 // Merge into one. 3099 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3100 DAG.getVTList(ValueVTs), Ops); 3101 setValue(&LP, Res); 3102 } 3103 3104 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3105 MachineBasicBlock *Last) { 3106 // Update JTCases. 3107 for (JumpTableBlock &JTB : SL->JTCases) 3108 if (JTB.first.HeaderBB == First) 3109 JTB.first.HeaderBB = Last; 3110 3111 // Update BitTestCases. 3112 for (BitTestBlock &BTB : SL->BitTestCases) 3113 if (BTB.Parent == First) 3114 BTB.Parent = Last; 3115 } 3116 3117 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3118 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3119 3120 // Update machine-CFG edges with unique successors. 3121 SmallSet<BasicBlock*, 32> Done; 3122 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3123 BasicBlock *BB = I.getSuccessor(i); 3124 bool Inserted = Done.insert(BB).second; 3125 if (!Inserted) 3126 continue; 3127 3128 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3129 addSuccessorWithProb(IndirectBrMBB, Succ); 3130 } 3131 IndirectBrMBB->normalizeSuccProbs(); 3132 3133 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3134 MVT::Other, getControlRoot(), 3135 getValue(I.getAddress()))); 3136 } 3137 3138 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3139 if (!DAG.getTarget().Options.TrapUnreachable) 3140 return; 3141 3142 // We may be able to ignore unreachable behind a noreturn call. 3143 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3144 const BasicBlock &BB = *I.getParent(); 3145 if (&I != &BB.front()) { 3146 BasicBlock::const_iterator PredI = 3147 std::prev(BasicBlock::const_iterator(&I)); 3148 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3149 if (Call->doesNotReturn()) 3150 return; 3151 } 3152 } 3153 } 3154 3155 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3156 } 3157 3158 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3159 SDNodeFlags Flags; 3160 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3161 Flags.copyFMF(*FPOp); 3162 3163 SDValue Op = getValue(I.getOperand(0)); 3164 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3165 Op, Flags); 3166 setValue(&I, UnNodeValue); 3167 } 3168 3169 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3170 SDNodeFlags Flags; 3171 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3172 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3173 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3174 } 3175 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3176 Flags.setExact(ExactOp->isExact()); 3177 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3178 Flags.copyFMF(*FPOp); 3179 3180 SDValue Op1 = getValue(I.getOperand(0)); 3181 SDValue Op2 = getValue(I.getOperand(1)); 3182 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3183 Op1, Op2, Flags); 3184 setValue(&I, BinNodeValue); 3185 } 3186 3187 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3188 SDValue Op1 = getValue(I.getOperand(0)); 3189 SDValue Op2 = getValue(I.getOperand(1)); 3190 3191 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3192 Op1.getValueType(), DAG.getDataLayout()); 3193 3194 // Coerce the shift amount to the right type if we can. This exposes the 3195 // truncate or zext to optimization early. 3196 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3197 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3198 "Unexpected shift type"); 3199 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3200 } 3201 3202 bool nuw = false; 3203 bool nsw = false; 3204 bool exact = false; 3205 3206 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3207 3208 if (const OverflowingBinaryOperator *OFBinOp = 3209 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3210 nuw = OFBinOp->hasNoUnsignedWrap(); 3211 nsw = OFBinOp->hasNoSignedWrap(); 3212 } 3213 if (const PossiblyExactOperator *ExactOp = 3214 dyn_cast<const PossiblyExactOperator>(&I)) 3215 exact = ExactOp->isExact(); 3216 } 3217 SDNodeFlags Flags; 3218 Flags.setExact(exact); 3219 Flags.setNoSignedWrap(nsw); 3220 Flags.setNoUnsignedWrap(nuw); 3221 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3222 Flags); 3223 setValue(&I, Res); 3224 } 3225 3226 void SelectionDAGBuilder::visitSDiv(const User &I) { 3227 SDValue Op1 = getValue(I.getOperand(0)); 3228 SDValue Op2 = getValue(I.getOperand(1)); 3229 3230 SDNodeFlags Flags; 3231 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3232 cast<PossiblyExactOperator>(&I)->isExact()); 3233 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3234 Op2, Flags)); 3235 } 3236 3237 void SelectionDAGBuilder::visitICmp(const User &I) { 3238 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3239 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3240 predicate = IC->getPredicate(); 3241 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3242 predicate = ICmpInst::Predicate(IC->getPredicate()); 3243 SDValue Op1 = getValue(I.getOperand(0)); 3244 SDValue Op2 = getValue(I.getOperand(1)); 3245 ISD::CondCode Opcode = getICmpCondCode(predicate); 3246 3247 auto &TLI = DAG.getTargetLoweringInfo(); 3248 EVT MemVT = 3249 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3250 3251 // If a pointer's DAG type is larger than its memory type then the DAG values 3252 // are zero-extended. This breaks signed comparisons so truncate back to the 3253 // underlying type before doing the compare. 3254 if (Op1.getValueType() != MemVT) { 3255 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3256 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3257 } 3258 3259 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3260 I.getType()); 3261 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3262 } 3263 3264 void SelectionDAGBuilder::visitFCmp(const User &I) { 3265 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3266 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3267 predicate = FC->getPredicate(); 3268 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3269 predicate = FCmpInst::Predicate(FC->getPredicate()); 3270 SDValue Op1 = getValue(I.getOperand(0)); 3271 SDValue Op2 = getValue(I.getOperand(1)); 3272 3273 ISD::CondCode Condition = getFCmpCondCode(predicate); 3274 auto *FPMO = cast<FPMathOperator>(&I); 3275 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3276 Condition = getFCmpCodeWithoutNaN(Condition); 3277 3278 SDNodeFlags Flags; 3279 Flags.copyFMF(*FPMO); 3280 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3281 3282 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3283 I.getType()); 3284 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3285 } 3286 3287 // Check if the condition of the select has one use or two users that are both 3288 // selects with the same condition. 3289 static bool hasOnlySelectUsers(const Value *Cond) { 3290 return llvm::all_of(Cond->users(), [](const Value *V) { 3291 return isa<SelectInst>(V); 3292 }); 3293 } 3294 3295 void SelectionDAGBuilder::visitSelect(const User &I) { 3296 SmallVector<EVT, 4> ValueVTs; 3297 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3298 ValueVTs); 3299 unsigned NumValues = ValueVTs.size(); 3300 if (NumValues == 0) return; 3301 3302 SmallVector<SDValue, 4> Values(NumValues); 3303 SDValue Cond = getValue(I.getOperand(0)); 3304 SDValue LHSVal = getValue(I.getOperand(1)); 3305 SDValue RHSVal = getValue(I.getOperand(2)); 3306 SmallVector<SDValue, 1> BaseOps(1, Cond); 3307 ISD::NodeType OpCode = 3308 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3309 3310 bool IsUnaryAbs = false; 3311 bool Negate = false; 3312 3313 SDNodeFlags Flags; 3314 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3315 Flags.copyFMF(*FPOp); 3316 3317 // Min/max matching is only viable if all output VTs are the same. 3318 if (all_equal(ValueVTs)) { 3319 EVT VT = ValueVTs[0]; 3320 LLVMContext &Ctx = *DAG.getContext(); 3321 auto &TLI = DAG.getTargetLoweringInfo(); 3322 3323 // We care about the legality of the operation after it has been type 3324 // legalized. 3325 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3326 VT = TLI.getTypeToTransformTo(Ctx, VT); 3327 3328 // If the vselect is legal, assume we want to leave this as a vector setcc + 3329 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3330 // min/max is legal on the scalar type. 3331 bool UseScalarMinMax = VT.isVector() && 3332 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3333 3334 Value *LHS, *RHS; 3335 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3336 ISD::NodeType Opc = ISD::DELETED_NODE; 3337 switch (SPR.Flavor) { 3338 case SPF_UMAX: Opc = ISD::UMAX; break; 3339 case SPF_UMIN: Opc = ISD::UMIN; break; 3340 case SPF_SMAX: Opc = ISD::SMAX; break; 3341 case SPF_SMIN: Opc = ISD::SMIN; break; 3342 case SPF_FMINNUM: 3343 switch (SPR.NaNBehavior) { 3344 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3345 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3346 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3347 case SPNB_RETURNS_ANY: { 3348 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3349 Opc = ISD::FMINNUM; 3350 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3351 Opc = ISD::FMINIMUM; 3352 else if (UseScalarMinMax) 3353 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3354 ISD::FMINNUM : ISD::FMINIMUM; 3355 break; 3356 } 3357 } 3358 break; 3359 case SPF_FMAXNUM: 3360 switch (SPR.NaNBehavior) { 3361 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3362 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3363 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3364 case SPNB_RETURNS_ANY: 3365 3366 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3367 Opc = ISD::FMAXNUM; 3368 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3369 Opc = ISD::FMAXIMUM; 3370 else if (UseScalarMinMax) 3371 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3372 ISD::FMAXNUM : ISD::FMAXIMUM; 3373 break; 3374 } 3375 break; 3376 case SPF_NABS: 3377 Negate = true; 3378 [[fallthrough]]; 3379 case SPF_ABS: 3380 IsUnaryAbs = true; 3381 Opc = ISD::ABS; 3382 break; 3383 default: break; 3384 } 3385 3386 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3387 (TLI.isOperationLegalOrCustom(Opc, VT) || 3388 (UseScalarMinMax && 3389 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3390 // If the underlying comparison instruction is used by any other 3391 // instruction, the consumed instructions won't be destroyed, so it is 3392 // not profitable to convert to a min/max. 3393 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3394 OpCode = Opc; 3395 LHSVal = getValue(LHS); 3396 RHSVal = getValue(RHS); 3397 BaseOps.clear(); 3398 } 3399 3400 if (IsUnaryAbs) { 3401 OpCode = Opc; 3402 LHSVal = getValue(LHS); 3403 BaseOps.clear(); 3404 } 3405 } 3406 3407 if (IsUnaryAbs) { 3408 for (unsigned i = 0; i != NumValues; ++i) { 3409 SDLoc dl = getCurSDLoc(); 3410 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3411 Values[i] = 3412 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3413 if (Negate) 3414 Values[i] = DAG.getNegative(Values[i], dl, VT); 3415 } 3416 } else { 3417 for (unsigned i = 0; i != NumValues; ++i) { 3418 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3419 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3420 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3421 Values[i] = DAG.getNode( 3422 OpCode, getCurSDLoc(), 3423 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3424 } 3425 } 3426 3427 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3428 DAG.getVTList(ValueVTs), Values)); 3429 } 3430 3431 void SelectionDAGBuilder::visitTrunc(const User &I) { 3432 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3433 SDValue N = getValue(I.getOperand(0)); 3434 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3435 I.getType()); 3436 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3437 } 3438 3439 void SelectionDAGBuilder::visitZExt(const User &I) { 3440 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3441 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3442 SDValue N = getValue(I.getOperand(0)); 3443 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3444 I.getType()); 3445 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3446 } 3447 3448 void SelectionDAGBuilder::visitSExt(const User &I) { 3449 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3450 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3451 SDValue N = getValue(I.getOperand(0)); 3452 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3453 I.getType()); 3454 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3455 } 3456 3457 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3458 // FPTrunc is never a no-op cast, no need to check 3459 SDValue N = getValue(I.getOperand(0)); 3460 SDLoc dl = getCurSDLoc(); 3461 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3462 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3463 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3464 DAG.getTargetConstant( 3465 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3466 } 3467 3468 void SelectionDAGBuilder::visitFPExt(const User &I) { 3469 // FPExt is never a no-op cast, no need to check 3470 SDValue N = getValue(I.getOperand(0)); 3471 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3472 I.getType()); 3473 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3474 } 3475 3476 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3477 // FPToUI is never a no-op cast, no need to check 3478 SDValue N = getValue(I.getOperand(0)); 3479 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3480 I.getType()); 3481 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3482 } 3483 3484 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3485 // FPToSI is never a no-op cast, no need to check 3486 SDValue N = getValue(I.getOperand(0)); 3487 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3488 I.getType()); 3489 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3490 } 3491 3492 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3493 // UIToFP is never a no-op cast, no need to check 3494 SDValue N = getValue(I.getOperand(0)); 3495 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3496 I.getType()); 3497 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3498 } 3499 3500 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3501 // SIToFP is never a no-op cast, no need to check 3502 SDValue N = getValue(I.getOperand(0)); 3503 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3504 I.getType()); 3505 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3506 } 3507 3508 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3509 // What to do depends on the size of the integer and the size of the pointer. 3510 // We can either truncate, zero extend, or no-op, accordingly. 3511 SDValue N = getValue(I.getOperand(0)); 3512 auto &TLI = DAG.getTargetLoweringInfo(); 3513 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3514 I.getType()); 3515 EVT PtrMemVT = 3516 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3517 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3518 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3519 setValue(&I, N); 3520 } 3521 3522 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3523 // What to do depends on the size of the integer and the size of the pointer. 3524 // We can either truncate, zero extend, or no-op, accordingly. 3525 SDValue N = getValue(I.getOperand(0)); 3526 auto &TLI = DAG.getTargetLoweringInfo(); 3527 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3528 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3529 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3530 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3531 setValue(&I, N); 3532 } 3533 3534 void SelectionDAGBuilder::visitBitCast(const User &I) { 3535 SDValue N = getValue(I.getOperand(0)); 3536 SDLoc dl = getCurSDLoc(); 3537 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3538 I.getType()); 3539 3540 // BitCast assures us that source and destination are the same size so this is 3541 // either a BITCAST or a no-op. 3542 if (DestVT != N.getValueType()) 3543 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3544 DestVT, N)); // convert types. 3545 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3546 // might fold any kind of constant expression to an integer constant and that 3547 // is not what we are looking for. Only recognize a bitcast of a genuine 3548 // constant integer as an opaque constant. 3549 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3550 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3551 /*isOpaque*/true)); 3552 else 3553 setValue(&I, N); // noop cast. 3554 } 3555 3556 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3557 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3558 const Value *SV = I.getOperand(0); 3559 SDValue N = getValue(SV); 3560 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3561 3562 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3563 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3564 3565 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3566 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3567 3568 setValue(&I, N); 3569 } 3570 3571 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3572 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3573 SDValue InVec = getValue(I.getOperand(0)); 3574 SDValue InVal = getValue(I.getOperand(1)); 3575 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3576 TLI.getVectorIdxTy(DAG.getDataLayout())); 3577 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3578 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3579 InVec, InVal, InIdx)); 3580 } 3581 3582 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3583 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3584 SDValue InVec = getValue(I.getOperand(0)); 3585 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3586 TLI.getVectorIdxTy(DAG.getDataLayout())); 3587 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3588 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3589 InVec, InIdx)); 3590 } 3591 3592 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3593 SDValue Src1 = getValue(I.getOperand(0)); 3594 SDValue Src2 = getValue(I.getOperand(1)); 3595 ArrayRef<int> Mask; 3596 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3597 Mask = SVI->getShuffleMask(); 3598 else 3599 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3600 SDLoc DL = getCurSDLoc(); 3601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3602 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3603 EVT SrcVT = Src1.getValueType(); 3604 3605 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3606 VT.isScalableVector()) { 3607 // Canonical splat form of first element of first input vector. 3608 SDValue FirstElt = 3609 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3610 DAG.getVectorIdxConstant(0, DL)); 3611 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3612 return; 3613 } 3614 3615 // For now, we only handle splats for scalable vectors. 3616 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3617 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3618 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3619 3620 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3621 unsigned MaskNumElts = Mask.size(); 3622 3623 if (SrcNumElts == MaskNumElts) { 3624 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3625 return; 3626 } 3627 3628 // Normalize the shuffle vector since mask and vector length don't match. 3629 if (SrcNumElts < MaskNumElts) { 3630 // Mask is longer than the source vectors. We can use concatenate vector to 3631 // make the mask and vectors lengths match. 3632 3633 if (MaskNumElts % SrcNumElts == 0) { 3634 // Mask length is a multiple of the source vector length. 3635 // Check if the shuffle is some kind of concatenation of the input 3636 // vectors. 3637 unsigned NumConcat = MaskNumElts / SrcNumElts; 3638 bool IsConcat = true; 3639 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3640 for (unsigned i = 0; i != MaskNumElts; ++i) { 3641 int Idx = Mask[i]; 3642 if (Idx < 0) 3643 continue; 3644 // Ensure the indices in each SrcVT sized piece are sequential and that 3645 // the same source is used for the whole piece. 3646 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3647 (ConcatSrcs[i / SrcNumElts] >= 0 && 3648 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3649 IsConcat = false; 3650 break; 3651 } 3652 // Remember which source this index came from. 3653 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3654 } 3655 3656 // The shuffle is concatenating multiple vectors together. Just emit 3657 // a CONCAT_VECTORS operation. 3658 if (IsConcat) { 3659 SmallVector<SDValue, 8> ConcatOps; 3660 for (auto Src : ConcatSrcs) { 3661 if (Src < 0) 3662 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3663 else if (Src == 0) 3664 ConcatOps.push_back(Src1); 3665 else 3666 ConcatOps.push_back(Src2); 3667 } 3668 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3669 return; 3670 } 3671 } 3672 3673 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3674 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3675 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3676 PaddedMaskNumElts); 3677 3678 // Pad both vectors with undefs to make them the same length as the mask. 3679 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3680 3681 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3682 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3683 MOps1[0] = Src1; 3684 MOps2[0] = Src2; 3685 3686 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3687 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3688 3689 // Readjust mask for new input vector length. 3690 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3691 for (unsigned i = 0; i != MaskNumElts; ++i) { 3692 int Idx = Mask[i]; 3693 if (Idx >= (int)SrcNumElts) 3694 Idx -= SrcNumElts - PaddedMaskNumElts; 3695 MappedOps[i] = Idx; 3696 } 3697 3698 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3699 3700 // If the concatenated vector was padded, extract a subvector with the 3701 // correct number of elements. 3702 if (MaskNumElts != PaddedMaskNumElts) 3703 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3704 DAG.getVectorIdxConstant(0, DL)); 3705 3706 setValue(&I, Result); 3707 return; 3708 } 3709 3710 if (SrcNumElts > MaskNumElts) { 3711 // Analyze the access pattern of the vector to see if we can extract 3712 // two subvectors and do the shuffle. 3713 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3714 bool CanExtract = true; 3715 for (int Idx : Mask) { 3716 unsigned Input = 0; 3717 if (Idx < 0) 3718 continue; 3719 3720 if (Idx >= (int)SrcNumElts) { 3721 Input = 1; 3722 Idx -= SrcNumElts; 3723 } 3724 3725 // If all the indices come from the same MaskNumElts sized portion of 3726 // the sources we can use extract. Also make sure the extract wouldn't 3727 // extract past the end of the source. 3728 int NewStartIdx = alignDown(Idx, MaskNumElts); 3729 if (NewStartIdx + MaskNumElts > SrcNumElts || 3730 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3731 CanExtract = false; 3732 // Make sure we always update StartIdx as we use it to track if all 3733 // elements are undef. 3734 StartIdx[Input] = NewStartIdx; 3735 } 3736 3737 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3738 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3739 return; 3740 } 3741 if (CanExtract) { 3742 // Extract appropriate subvector and generate a vector shuffle 3743 for (unsigned Input = 0; Input < 2; ++Input) { 3744 SDValue &Src = Input == 0 ? Src1 : Src2; 3745 if (StartIdx[Input] < 0) 3746 Src = DAG.getUNDEF(VT); 3747 else { 3748 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3749 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3750 } 3751 } 3752 3753 // Calculate new mask. 3754 SmallVector<int, 8> MappedOps(Mask); 3755 for (int &Idx : MappedOps) { 3756 if (Idx >= (int)SrcNumElts) 3757 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3758 else if (Idx >= 0) 3759 Idx -= StartIdx[0]; 3760 } 3761 3762 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3763 return; 3764 } 3765 } 3766 3767 // We can't use either concat vectors or extract subvectors so fall back to 3768 // replacing the shuffle with extract and build vector. 3769 // to insert and build vector. 3770 EVT EltVT = VT.getVectorElementType(); 3771 SmallVector<SDValue,8> Ops; 3772 for (int Idx : Mask) { 3773 SDValue Res; 3774 3775 if (Idx < 0) { 3776 Res = DAG.getUNDEF(EltVT); 3777 } else { 3778 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3779 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3780 3781 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3782 DAG.getVectorIdxConstant(Idx, DL)); 3783 } 3784 3785 Ops.push_back(Res); 3786 } 3787 3788 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3789 } 3790 3791 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3792 ArrayRef<unsigned> Indices = I.getIndices(); 3793 const Value *Op0 = I.getOperand(0); 3794 const Value *Op1 = I.getOperand(1); 3795 Type *AggTy = I.getType(); 3796 Type *ValTy = Op1->getType(); 3797 bool IntoUndef = isa<UndefValue>(Op0); 3798 bool FromUndef = isa<UndefValue>(Op1); 3799 3800 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3801 3802 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3803 SmallVector<EVT, 4> AggValueVTs; 3804 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3805 SmallVector<EVT, 4> ValValueVTs; 3806 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3807 3808 unsigned NumAggValues = AggValueVTs.size(); 3809 unsigned NumValValues = ValValueVTs.size(); 3810 SmallVector<SDValue, 4> Values(NumAggValues); 3811 3812 // Ignore an insertvalue that produces an empty object 3813 if (!NumAggValues) { 3814 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3815 return; 3816 } 3817 3818 SDValue Agg = getValue(Op0); 3819 unsigned i = 0; 3820 // Copy the beginning value(s) from the original aggregate. 3821 for (; i != LinearIndex; ++i) 3822 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3823 SDValue(Agg.getNode(), Agg.getResNo() + i); 3824 // Copy values from the inserted value(s). 3825 if (NumValValues) { 3826 SDValue Val = getValue(Op1); 3827 for (; i != LinearIndex + NumValValues; ++i) 3828 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3829 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3830 } 3831 // Copy remaining value(s) from the original aggregate. 3832 for (; i != NumAggValues; ++i) 3833 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3834 SDValue(Agg.getNode(), Agg.getResNo() + i); 3835 3836 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3837 DAG.getVTList(AggValueVTs), Values)); 3838 } 3839 3840 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3841 ArrayRef<unsigned> Indices = I.getIndices(); 3842 const Value *Op0 = I.getOperand(0); 3843 Type *AggTy = Op0->getType(); 3844 Type *ValTy = I.getType(); 3845 bool OutOfUndef = isa<UndefValue>(Op0); 3846 3847 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3848 3849 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3850 SmallVector<EVT, 4> ValValueVTs; 3851 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3852 3853 unsigned NumValValues = ValValueVTs.size(); 3854 3855 // Ignore a extractvalue that produces an empty object 3856 if (!NumValValues) { 3857 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3858 return; 3859 } 3860 3861 SmallVector<SDValue, 4> Values(NumValValues); 3862 3863 SDValue Agg = getValue(Op0); 3864 // Copy out the selected value(s). 3865 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3866 Values[i - LinearIndex] = 3867 OutOfUndef ? 3868 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3869 SDValue(Agg.getNode(), Agg.getResNo() + i); 3870 3871 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3872 DAG.getVTList(ValValueVTs), Values)); 3873 } 3874 3875 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3876 Value *Op0 = I.getOperand(0); 3877 // Note that the pointer operand may be a vector of pointers. Take the scalar 3878 // element which holds a pointer. 3879 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3880 SDValue N = getValue(Op0); 3881 SDLoc dl = getCurSDLoc(); 3882 auto &TLI = DAG.getTargetLoweringInfo(); 3883 3884 // Normalize Vector GEP - all scalar operands should be converted to the 3885 // splat vector. 3886 bool IsVectorGEP = I.getType()->isVectorTy(); 3887 ElementCount VectorElementCount = 3888 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3889 : ElementCount::getFixed(0); 3890 3891 if (IsVectorGEP && !N.getValueType().isVector()) { 3892 LLVMContext &Context = *DAG.getContext(); 3893 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3894 N = DAG.getSplat(VT, dl, N); 3895 } 3896 3897 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3898 GTI != E; ++GTI) { 3899 const Value *Idx = GTI.getOperand(); 3900 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3901 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3902 if (Field) { 3903 // N = N + Offset 3904 uint64_t Offset = 3905 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3906 3907 // In an inbounds GEP with an offset that is nonnegative even when 3908 // interpreted as signed, assume there is no unsigned overflow. 3909 SDNodeFlags Flags; 3910 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3911 Flags.setNoUnsignedWrap(true); 3912 3913 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3914 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3915 } 3916 } else { 3917 // IdxSize is the width of the arithmetic according to IR semantics. 3918 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3919 // (and fix up the result later). 3920 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3921 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3922 TypeSize ElementSize = 3923 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3924 // We intentionally mask away the high bits here; ElementSize may not 3925 // fit in IdxTy. 3926 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3927 bool ElementScalable = ElementSize.isScalable(); 3928 3929 // If this is a scalar constant or a splat vector of constants, 3930 // handle it quickly. 3931 const auto *C = dyn_cast<Constant>(Idx); 3932 if (C && isa<VectorType>(C->getType())) 3933 C = C->getSplatValue(); 3934 3935 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3936 if (CI && CI->isZero()) 3937 continue; 3938 if (CI && !ElementScalable) { 3939 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3940 LLVMContext &Context = *DAG.getContext(); 3941 SDValue OffsVal; 3942 if (IsVectorGEP) 3943 OffsVal = DAG.getConstant( 3944 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3945 else 3946 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3947 3948 // In an inbounds GEP with an offset that is nonnegative even when 3949 // interpreted as signed, assume there is no unsigned overflow. 3950 SDNodeFlags Flags; 3951 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3952 Flags.setNoUnsignedWrap(true); 3953 3954 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3955 3956 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3957 continue; 3958 } 3959 3960 // N = N + Idx * ElementMul; 3961 SDValue IdxN = getValue(Idx); 3962 3963 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3964 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3965 VectorElementCount); 3966 IdxN = DAG.getSplat(VT, dl, IdxN); 3967 } 3968 3969 // If the index is smaller or larger than intptr_t, truncate or extend 3970 // it. 3971 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3972 3973 if (ElementScalable) { 3974 EVT VScaleTy = N.getValueType().getScalarType(); 3975 SDValue VScale = DAG.getNode( 3976 ISD::VSCALE, dl, VScaleTy, 3977 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3978 if (IsVectorGEP) 3979 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3980 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3981 } else { 3982 // If this is a multiply by a power of two, turn it into a shl 3983 // immediately. This is a very common case. 3984 if (ElementMul != 1) { 3985 if (ElementMul.isPowerOf2()) { 3986 unsigned Amt = ElementMul.logBase2(); 3987 IdxN = DAG.getNode(ISD::SHL, dl, 3988 N.getValueType(), IdxN, 3989 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3990 } else { 3991 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3992 IdxN.getValueType()); 3993 IdxN = DAG.getNode(ISD::MUL, dl, 3994 N.getValueType(), IdxN, Scale); 3995 } 3996 } 3997 } 3998 3999 N = DAG.getNode(ISD::ADD, dl, 4000 N.getValueType(), N, IdxN); 4001 } 4002 } 4003 4004 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4005 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4006 if (IsVectorGEP) { 4007 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4008 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4009 } 4010 4011 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4012 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4013 4014 setValue(&I, N); 4015 } 4016 4017 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4018 // If this is a fixed sized alloca in the entry block of the function, 4019 // allocate it statically on the stack. 4020 if (FuncInfo.StaticAllocaMap.count(&I)) 4021 return; // getValue will auto-populate this. 4022 4023 SDLoc dl = getCurSDLoc(); 4024 Type *Ty = I.getAllocatedType(); 4025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4026 auto &DL = DAG.getDataLayout(); 4027 TypeSize TySize = DL.getTypeAllocSize(Ty); 4028 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4029 4030 SDValue AllocSize = getValue(I.getArraySize()); 4031 4032 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4033 if (AllocSize.getValueType() != IntPtr) 4034 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4035 4036 if (TySize.isScalable()) 4037 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4038 DAG.getVScale(dl, IntPtr, 4039 APInt(IntPtr.getScalarSizeInBits(), 4040 TySize.getKnownMinValue()))); 4041 else 4042 AllocSize = 4043 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4044 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4045 4046 // Handle alignment. If the requested alignment is less than or equal to 4047 // the stack alignment, ignore it. If the size is greater than or equal to 4048 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4049 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4050 if (*Alignment <= StackAlign) 4051 Alignment = None; 4052 4053 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4054 // Round the size of the allocation up to the stack alignment size 4055 // by add SA-1 to the size. This doesn't overflow because we're computing 4056 // an address inside an alloca. 4057 SDNodeFlags Flags; 4058 Flags.setNoUnsignedWrap(true); 4059 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4060 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4061 4062 // Mask out the low bits for alignment purposes. 4063 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4064 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4065 4066 SDValue Ops[] = { 4067 getRoot(), AllocSize, 4068 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4069 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4070 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4071 setValue(&I, DSA); 4072 DAG.setRoot(DSA.getValue(1)); 4073 4074 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4075 } 4076 4077 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4078 if (I.isAtomic()) 4079 return visitAtomicLoad(I); 4080 4081 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4082 const Value *SV = I.getOperand(0); 4083 if (TLI.supportSwiftError()) { 4084 // Swifterror values can come from either a function parameter with 4085 // swifterror attribute or an alloca with swifterror attribute. 4086 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4087 if (Arg->hasSwiftErrorAttr()) 4088 return visitLoadFromSwiftError(I); 4089 } 4090 4091 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4092 if (Alloca->isSwiftError()) 4093 return visitLoadFromSwiftError(I); 4094 } 4095 } 4096 4097 SDValue Ptr = getValue(SV); 4098 4099 Type *Ty = I.getType(); 4100 SmallVector<EVT, 4> ValueVTs, MemVTs; 4101 SmallVector<uint64_t, 4> Offsets; 4102 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4103 unsigned NumValues = ValueVTs.size(); 4104 if (NumValues == 0) 4105 return; 4106 4107 Align Alignment = I.getAlign(); 4108 AAMDNodes AAInfo = I.getAAMetadata(); 4109 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4110 bool isVolatile = I.isVolatile(); 4111 MachineMemOperand::Flags MMOFlags = 4112 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4113 4114 SDValue Root; 4115 bool ConstantMemory = false; 4116 if (isVolatile) 4117 // Serialize volatile loads with other side effects. 4118 Root = getRoot(); 4119 else if (NumValues > MaxParallelChains) 4120 Root = getMemoryRoot(); 4121 else if (AA && 4122 AA->pointsToConstantMemory(MemoryLocation( 4123 SV, 4124 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4125 AAInfo))) { 4126 // Do not serialize (non-volatile) loads of constant memory with anything. 4127 Root = DAG.getEntryNode(); 4128 ConstantMemory = true; 4129 MMOFlags |= MachineMemOperand::MOInvariant; 4130 } else { 4131 // Do not serialize non-volatile loads against each other. 4132 Root = DAG.getRoot(); 4133 } 4134 4135 if (isDereferenceableAndAlignedPointer(SV, Ty, Alignment, DAG.getDataLayout(), 4136 &I, AC, nullptr, LibInfo)) 4137 MMOFlags |= MachineMemOperand::MODereferenceable; 4138 4139 SDLoc dl = getCurSDLoc(); 4140 4141 if (isVolatile) 4142 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4143 4144 // An aggregate load cannot wrap around the address space, so offsets to its 4145 // parts don't wrap either. 4146 SDNodeFlags Flags; 4147 Flags.setNoUnsignedWrap(true); 4148 4149 SmallVector<SDValue, 4> Values(NumValues); 4150 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4151 EVT PtrVT = Ptr.getValueType(); 4152 4153 unsigned ChainI = 0; 4154 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4155 // Serializing loads here may result in excessive register pressure, and 4156 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4157 // could recover a bit by hoisting nodes upward in the chain by recognizing 4158 // they are side-effect free or do not alias. The optimizer should really 4159 // avoid this case by converting large object/array copies to llvm.memcpy 4160 // (MaxParallelChains should always remain as failsafe). 4161 if (ChainI == MaxParallelChains) { 4162 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4163 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4164 makeArrayRef(Chains.data(), ChainI)); 4165 Root = Chain; 4166 ChainI = 0; 4167 } 4168 SDValue A = DAG.getNode(ISD::ADD, dl, 4169 PtrVT, Ptr, 4170 DAG.getConstant(Offsets[i], dl, PtrVT), 4171 Flags); 4172 4173 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4174 MachinePointerInfo(SV, Offsets[i]), Alignment, 4175 MMOFlags, AAInfo, Ranges); 4176 Chains[ChainI] = L.getValue(1); 4177 4178 if (MemVTs[i] != ValueVTs[i]) 4179 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4180 4181 Values[i] = L; 4182 } 4183 4184 if (!ConstantMemory) { 4185 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4186 makeArrayRef(Chains.data(), ChainI)); 4187 if (isVolatile) 4188 DAG.setRoot(Chain); 4189 else 4190 PendingLoads.push_back(Chain); 4191 } 4192 4193 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4194 DAG.getVTList(ValueVTs), Values)); 4195 } 4196 4197 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4198 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4199 "call visitStoreToSwiftError when backend supports swifterror"); 4200 4201 SmallVector<EVT, 4> ValueVTs; 4202 SmallVector<uint64_t, 4> Offsets; 4203 const Value *SrcV = I.getOperand(0); 4204 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4205 SrcV->getType(), ValueVTs, &Offsets); 4206 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4207 "expect a single EVT for swifterror"); 4208 4209 SDValue Src = getValue(SrcV); 4210 // Create a virtual register, then update the virtual register. 4211 Register VReg = 4212 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4213 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4214 // Chain can be getRoot or getControlRoot. 4215 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4216 SDValue(Src.getNode(), Src.getResNo())); 4217 DAG.setRoot(CopyNode); 4218 } 4219 4220 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4221 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4222 "call visitLoadFromSwiftError when backend supports swifterror"); 4223 4224 assert(!I.isVolatile() && 4225 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4226 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4227 "Support volatile, non temporal, invariant for load_from_swift_error"); 4228 4229 const Value *SV = I.getOperand(0); 4230 Type *Ty = I.getType(); 4231 assert( 4232 (!AA || 4233 !AA->pointsToConstantMemory(MemoryLocation( 4234 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4235 I.getAAMetadata()))) && 4236 "load_from_swift_error should not be constant memory"); 4237 4238 SmallVector<EVT, 4> ValueVTs; 4239 SmallVector<uint64_t, 4> Offsets; 4240 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4241 ValueVTs, &Offsets); 4242 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4243 "expect a single EVT for swifterror"); 4244 4245 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4246 SDValue L = DAG.getCopyFromReg( 4247 getRoot(), getCurSDLoc(), 4248 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4249 4250 setValue(&I, L); 4251 } 4252 4253 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4254 if (I.isAtomic()) 4255 return visitAtomicStore(I); 4256 4257 const Value *SrcV = I.getOperand(0); 4258 const Value *PtrV = I.getOperand(1); 4259 4260 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4261 if (TLI.supportSwiftError()) { 4262 // Swifterror values can come from either a function parameter with 4263 // swifterror attribute or an alloca with swifterror attribute. 4264 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4265 if (Arg->hasSwiftErrorAttr()) 4266 return visitStoreToSwiftError(I); 4267 } 4268 4269 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4270 if (Alloca->isSwiftError()) 4271 return visitStoreToSwiftError(I); 4272 } 4273 } 4274 4275 SmallVector<EVT, 4> ValueVTs, MemVTs; 4276 SmallVector<uint64_t, 4> Offsets; 4277 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4278 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4279 unsigned NumValues = ValueVTs.size(); 4280 if (NumValues == 0) 4281 return; 4282 4283 // Get the lowered operands. Note that we do this after 4284 // checking if NumResults is zero, because with zero results 4285 // the operands won't have values in the map. 4286 SDValue Src = getValue(SrcV); 4287 SDValue Ptr = getValue(PtrV); 4288 4289 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4290 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4291 SDLoc dl = getCurSDLoc(); 4292 Align Alignment = I.getAlign(); 4293 AAMDNodes AAInfo = I.getAAMetadata(); 4294 4295 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4296 4297 // An aggregate load cannot wrap around the address space, so offsets to its 4298 // parts don't wrap either. 4299 SDNodeFlags Flags; 4300 Flags.setNoUnsignedWrap(true); 4301 4302 unsigned ChainI = 0; 4303 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4304 // See visitLoad comments. 4305 if (ChainI == MaxParallelChains) { 4306 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4307 makeArrayRef(Chains.data(), ChainI)); 4308 Root = Chain; 4309 ChainI = 0; 4310 } 4311 SDValue Add = 4312 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4313 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4314 if (MemVTs[i] != ValueVTs[i]) 4315 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4316 SDValue St = 4317 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4318 Alignment, MMOFlags, AAInfo); 4319 Chains[ChainI] = St; 4320 } 4321 4322 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4323 makeArrayRef(Chains.data(), ChainI)); 4324 setValue(&I, StoreNode); 4325 DAG.setRoot(StoreNode); 4326 } 4327 4328 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4329 bool IsCompressing) { 4330 SDLoc sdl = getCurSDLoc(); 4331 4332 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4333 MaybeAlign &Alignment) { 4334 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4335 Src0 = I.getArgOperand(0); 4336 Ptr = I.getArgOperand(1); 4337 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4338 Mask = I.getArgOperand(3); 4339 }; 4340 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4341 MaybeAlign &Alignment) { 4342 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4343 Src0 = I.getArgOperand(0); 4344 Ptr = I.getArgOperand(1); 4345 Mask = I.getArgOperand(2); 4346 Alignment = None; 4347 }; 4348 4349 Value *PtrOperand, *MaskOperand, *Src0Operand; 4350 MaybeAlign Alignment; 4351 if (IsCompressing) 4352 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4353 else 4354 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4355 4356 SDValue Ptr = getValue(PtrOperand); 4357 SDValue Src0 = getValue(Src0Operand); 4358 SDValue Mask = getValue(MaskOperand); 4359 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4360 4361 EVT VT = Src0.getValueType(); 4362 if (!Alignment) 4363 Alignment = DAG.getEVTAlign(VT); 4364 4365 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4366 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4367 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4368 SDValue StoreNode = 4369 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4370 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4371 DAG.setRoot(StoreNode); 4372 setValue(&I, StoreNode); 4373 } 4374 4375 // Get a uniform base for the Gather/Scatter intrinsic. 4376 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4377 // We try to represent it as a base pointer + vector of indices. 4378 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4379 // The first operand of the GEP may be a single pointer or a vector of pointers 4380 // Example: 4381 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4382 // or 4383 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4384 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4385 // 4386 // When the first GEP operand is a single pointer - it is the uniform base we 4387 // are looking for. If first operand of the GEP is a splat vector - we 4388 // extract the splat value and use it as a uniform base. 4389 // In all other cases the function returns 'false'. 4390 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4391 ISD::MemIndexType &IndexType, SDValue &Scale, 4392 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4393 uint64_t ElemSize) { 4394 SelectionDAG& DAG = SDB->DAG; 4395 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4396 const DataLayout &DL = DAG.getDataLayout(); 4397 4398 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4399 4400 // Handle splat constant pointer. 4401 if (auto *C = dyn_cast<Constant>(Ptr)) { 4402 C = C->getSplatValue(); 4403 if (!C) 4404 return false; 4405 4406 Base = SDB->getValue(C); 4407 4408 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4409 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4410 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4411 IndexType = ISD::SIGNED_SCALED; 4412 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4413 return true; 4414 } 4415 4416 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4417 if (!GEP || GEP->getParent() != CurBB) 4418 return false; 4419 4420 if (GEP->getNumOperands() != 2) 4421 return false; 4422 4423 const Value *BasePtr = GEP->getPointerOperand(); 4424 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4425 4426 // Make sure the base is scalar and the index is a vector. 4427 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4428 return false; 4429 4430 uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4431 4432 // Target may not support the required addressing mode. 4433 if (ScaleVal != 1 && 4434 !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize)) 4435 return false; 4436 4437 Base = SDB->getValue(BasePtr); 4438 Index = SDB->getValue(IndexVal); 4439 IndexType = ISD::SIGNED_SCALED; 4440 4441 Scale = 4442 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4443 return true; 4444 } 4445 4446 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4447 SDLoc sdl = getCurSDLoc(); 4448 4449 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4450 const Value *Ptr = I.getArgOperand(1); 4451 SDValue Src0 = getValue(I.getArgOperand(0)); 4452 SDValue Mask = getValue(I.getArgOperand(3)); 4453 EVT VT = Src0.getValueType(); 4454 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4455 ->getMaybeAlignValue() 4456 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4457 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4458 4459 SDValue Base; 4460 SDValue Index; 4461 ISD::MemIndexType IndexType; 4462 SDValue Scale; 4463 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4464 I.getParent(), VT.getScalarStoreSize()); 4465 4466 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4467 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4468 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4469 // TODO: Make MachineMemOperands aware of scalable 4470 // vectors. 4471 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4472 if (!UniformBase) { 4473 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4474 Index = getValue(Ptr); 4475 IndexType = ISD::SIGNED_SCALED; 4476 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4477 } 4478 4479 EVT IdxVT = Index.getValueType(); 4480 EVT EltTy = IdxVT.getVectorElementType(); 4481 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4482 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4483 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4484 } 4485 4486 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4487 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4488 Ops, MMO, IndexType, false); 4489 DAG.setRoot(Scatter); 4490 setValue(&I, Scatter); 4491 } 4492 4493 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4494 SDLoc sdl = getCurSDLoc(); 4495 4496 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4497 MaybeAlign &Alignment) { 4498 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4499 Ptr = I.getArgOperand(0); 4500 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4501 Mask = I.getArgOperand(2); 4502 Src0 = I.getArgOperand(3); 4503 }; 4504 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4505 MaybeAlign &Alignment) { 4506 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4507 Ptr = I.getArgOperand(0); 4508 Alignment = None; 4509 Mask = I.getArgOperand(1); 4510 Src0 = I.getArgOperand(2); 4511 }; 4512 4513 Value *PtrOperand, *MaskOperand, *Src0Operand; 4514 MaybeAlign Alignment; 4515 if (IsExpanding) 4516 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4517 else 4518 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4519 4520 SDValue Ptr = getValue(PtrOperand); 4521 SDValue Src0 = getValue(Src0Operand); 4522 SDValue Mask = getValue(MaskOperand); 4523 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4524 4525 EVT VT = Src0.getValueType(); 4526 if (!Alignment) 4527 Alignment = DAG.getEVTAlign(VT); 4528 4529 AAMDNodes AAInfo = I.getAAMetadata(); 4530 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4531 4532 // Do not serialize masked loads of constant memory with anything. 4533 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4534 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4535 4536 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4537 4538 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4539 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4540 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4541 4542 SDValue Load = 4543 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4544 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4545 if (AddToChain) 4546 PendingLoads.push_back(Load.getValue(1)); 4547 setValue(&I, Load); 4548 } 4549 4550 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4551 SDLoc sdl = getCurSDLoc(); 4552 4553 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4554 const Value *Ptr = I.getArgOperand(0); 4555 SDValue Src0 = getValue(I.getArgOperand(3)); 4556 SDValue Mask = getValue(I.getArgOperand(2)); 4557 4558 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4559 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4560 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4561 ->getMaybeAlignValue() 4562 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4563 4564 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4565 4566 SDValue Root = DAG.getRoot(); 4567 SDValue Base; 4568 SDValue Index; 4569 ISD::MemIndexType IndexType; 4570 SDValue Scale; 4571 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4572 I.getParent(), VT.getScalarStoreSize()); 4573 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4574 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4575 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4576 // TODO: Make MachineMemOperands aware of scalable 4577 // vectors. 4578 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4579 4580 if (!UniformBase) { 4581 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4582 Index = getValue(Ptr); 4583 IndexType = ISD::SIGNED_SCALED; 4584 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4585 } 4586 4587 EVT IdxVT = Index.getValueType(); 4588 EVT EltTy = IdxVT.getVectorElementType(); 4589 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4590 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4591 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4592 } 4593 4594 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4595 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4596 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4597 4598 PendingLoads.push_back(Gather.getValue(1)); 4599 setValue(&I, Gather); 4600 } 4601 4602 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4603 SDLoc dl = getCurSDLoc(); 4604 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4605 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4606 SyncScope::ID SSID = I.getSyncScopeID(); 4607 4608 SDValue InChain = getRoot(); 4609 4610 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4611 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4612 4613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4614 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4615 4616 MachineFunction &MF = DAG.getMachineFunction(); 4617 MachineMemOperand *MMO = MF.getMachineMemOperand( 4618 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4619 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4620 FailureOrdering); 4621 4622 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4623 dl, MemVT, VTs, InChain, 4624 getValue(I.getPointerOperand()), 4625 getValue(I.getCompareOperand()), 4626 getValue(I.getNewValOperand()), MMO); 4627 4628 SDValue OutChain = L.getValue(2); 4629 4630 setValue(&I, L); 4631 DAG.setRoot(OutChain); 4632 } 4633 4634 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4635 SDLoc dl = getCurSDLoc(); 4636 ISD::NodeType NT; 4637 switch (I.getOperation()) { 4638 default: llvm_unreachable("Unknown atomicrmw operation"); 4639 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4640 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4641 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4642 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4643 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4644 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4645 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4646 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4647 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4648 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4649 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4650 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4651 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4652 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4653 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4654 } 4655 AtomicOrdering Ordering = I.getOrdering(); 4656 SyncScope::ID SSID = I.getSyncScopeID(); 4657 4658 SDValue InChain = getRoot(); 4659 4660 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4661 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4662 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4663 4664 MachineFunction &MF = DAG.getMachineFunction(); 4665 MachineMemOperand *MMO = MF.getMachineMemOperand( 4666 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4667 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4668 4669 SDValue L = 4670 DAG.getAtomic(NT, dl, MemVT, InChain, 4671 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4672 MMO); 4673 4674 SDValue OutChain = L.getValue(1); 4675 4676 setValue(&I, L); 4677 DAG.setRoot(OutChain); 4678 } 4679 4680 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4681 SDLoc dl = getCurSDLoc(); 4682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4683 SDValue Ops[3]; 4684 Ops[0] = getRoot(); 4685 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4686 TLI.getFenceOperandTy(DAG.getDataLayout())); 4687 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4688 TLI.getFenceOperandTy(DAG.getDataLayout())); 4689 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4690 setValue(&I, N); 4691 DAG.setRoot(N); 4692 } 4693 4694 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4695 SDLoc dl = getCurSDLoc(); 4696 AtomicOrdering Order = I.getOrdering(); 4697 SyncScope::ID SSID = I.getSyncScopeID(); 4698 4699 SDValue InChain = getRoot(); 4700 4701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4702 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4703 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4704 4705 if (!TLI.supportsUnalignedAtomics() && 4706 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4707 report_fatal_error("Cannot generate unaligned atomic load"); 4708 4709 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4710 4711 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4712 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4713 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4714 4715 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4716 4717 SDValue Ptr = getValue(I.getPointerOperand()); 4718 4719 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4720 // TODO: Once this is better exercised by tests, it should be merged with 4721 // the normal path for loads to prevent future divergence. 4722 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4723 if (MemVT != VT) 4724 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4725 4726 setValue(&I, L); 4727 SDValue OutChain = L.getValue(1); 4728 if (!I.isUnordered()) 4729 DAG.setRoot(OutChain); 4730 else 4731 PendingLoads.push_back(OutChain); 4732 return; 4733 } 4734 4735 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4736 Ptr, MMO); 4737 4738 SDValue OutChain = L.getValue(1); 4739 if (MemVT != VT) 4740 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4741 4742 setValue(&I, L); 4743 DAG.setRoot(OutChain); 4744 } 4745 4746 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4747 SDLoc dl = getCurSDLoc(); 4748 4749 AtomicOrdering Ordering = I.getOrdering(); 4750 SyncScope::ID SSID = I.getSyncScopeID(); 4751 4752 SDValue InChain = getRoot(); 4753 4754 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4755 EVT MemVT = 4756 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4757 4758 if (!TLI.supportsUnalignedAtomics() && 4759 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4760 report_fatal_error("Cannot generate unaligned atomic store"); 4761 4762 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4763 4764 MachineFunction &MF = DAG.getMachineFunction(); 4765 MachineMemOperand *MMO = MF.getMachineMemOperand( 4766 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4767 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4768 4769 SDValue Val = getValue(I.getValueOperand()); 4770 if (Val.getValueType() != MemVT) 4771 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4772 SDValue Ptr = getValue(I.getPointerOperand()); 4773 4774 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4775 // TODO: Once this is better exercised by tests, it should be merged with 4776 // the normal path for stores to prevent future divergence. 4777 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4778 setValue(&I, S); 4779 DAG.setRoot(S); 4780 return; 4781 } 4782 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4783 Ptr, Val, MMO); 4784 4785 setValue(&I, OutChain); 4786 DAG.setRoot(OutChain); 4787 } 4788 4789 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4790 /// node. 4791 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4792 unsigned Intrinsic) { 4793 // Ignore the callsite's attributes. A specific call site may be marked with 4794 // readnone, but the lowering code will expect the chain based on the 4795 // definition. 4796 const Function *F = I.getCalledFunction(); 4797 bool HasChain = !F->doesNotAccessMemory(); 4798 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4799 4800 // Build the operand list. 4801 SmallVector<SDValue, 8> Ops; 4802 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4803 if (OnlyLoad) { 4804 // We don't need to serialize loads against other loads. 4805 Ops.push_back(DAG.getRoot()); 4806 } else { 4807 Ops.push_back(getRoot()); 4808 } 4809 } 4810 4811 // Info is set by getTgtMemIntrinsic 4812 TargetLowering::IntrinsicInfo Info; 4813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4814 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4815 DAG.getMachineFunction(), 4816 Intrinsic); 4817 4818 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4819 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4820 Info.opc == ISD::INTRINSIC_W_CHAIN) 4821 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4822 TLI.getPointerTy(DAG.getDataLayout()))); 4823 4824 // Add all operands of the call to the operand list. 4825 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4826 const Value *Arg = I.getArgOperand(i); 4827 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4828 Ops.push_back(getValue(Arg)); 4829 continue; 4830 } 4831 4832 // Use TargetConstant instead of a regular constant for immarg. 4833 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4834 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4835 assert(CI->getBitWidth() <= 64 && 4836 "large intrinsic immediates not handled"); 4837 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4838 } else { 4839 Ops.push_back( 4840 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4841 } 4842 } 4843 4844 SmallVector<EVT, 4> ValueVTs; 4845 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4846 4847 if (HasChain) 4848 ValueVTs.push_back(MVT::Other); 4849 4850 SDVTList VTs = DAG.getVTList(ValueVTs); 4851 4852 // Propagate fast-math-flags from IR to node(s). 4853 SDNodeFlags Flags; 4854 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4855 Flags.copyFMF(*FPMO); 4856 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4857 4858 // Create the node. 4859 SDValue Result; 4860 // In some cases, custom collection of operands from CallInst I may be needed. 4861 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4862 if (IsTgtIntrinsic) { 4863 // This is target intrinsic that touches memory 4864 Result = 4865 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4866 MachinePointerInfo(Info.ptrVal, Info.offset), 4867 Info.align, Info.flags, Info.size, 4868 I.getAAMetadata()); 4869 } else if (!HasChain) { 4870 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4871 } else if (!I.getType()->isVoidTy()) { 4872 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4873 } else { 4874 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4875 } 4876 4877 if (HasChain) { 4878 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4879 if (OnlyLoad) 4880 PendingLoads.push_back(Chain); 4881 else 4882 DAG.setRoot(Chain); 4883 } 4884 4885 if (!I.getType()->isVoidTy()) { 4886 if (!isa<VectorType>(I.getType())) 4887 Result = lowerRangeToAssertZExt(DAG, I, Result); 4888 4889 MaybeAlign Alignment = I.getRetAlign(); 4890 if (!Alignment) 4891 Alignment = F->getAttributes().getRetAlignment(); 4892 // Insert `assertalign` node if there's an alignment. 4893 if (InsertAssertAlign && Alignment) { 4894 Result = 4895 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4896 } 4897 4898 setValue(&I, Result); 4899 } 4900 } 4901 4902 /// GetSignificand - Get the significand and build it into a floating-point 4903 /// number with exponent of 1: 4904 /// 4905 /// Op = (Op & 0x007fffff) | 0x3f800000; 4906 /// 4907 /// where Op is the hexadecimal representation of floating point value. 4908 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4909 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4910 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4911 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4912 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4913 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4914 } 4915 4916 /// GetExponent - Get the exponent: 4917 /// 4918 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4919 /// 4920 /// where Op is the hexadecimal representation of floating point value. 4921 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4922 const TargetLowering &TLI, const SDLoc &dl) { 4923 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4924 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4925 SDValue t1 = DAG.getNode( 4926 ISD::SRL, dl, MVT::i32, t0, 4927 DAG.getConstant(23, dl, 4928 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 4929 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4930 DAG.getConstant(127, dl, MVT::i32)); 4931 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4932 } 4933 4934 /// getF32Constant - Get 32-bit floating point constant. 4935 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4936 const SDLoc &dl) { 4937 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4938 MVT::f32); 4939 } 4940 4941 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4942 SelectionDAG &DAG) { 4943 // TODO: What fast-math-flags should be set on the floating-point nodes? 4944 4945 // IntegerPartOfX = ((int32_t)(t0); 4946 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4947 4948 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4949 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4950 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4951 4952 // IntegerPartOfX <<= 23; 4953 IntegerPartOfX = 4954 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4955 DAG.getConstant(23, dl, 4956 DAG.getTargetLoweringInfo().getShiftAmountTy( 4957 MVT::i32, DAG.getDataLayout()))); 4958 4959 SDValue TwoToFractionalPartOfX; 4960 if (LimitFloatPrecision <= 6) { 4961 // For floating-point precision of 6: 4962 // 4963 // TwoToFractionalPartOfX = 4964 // 0.997535578f + 4965 // (0.735607626f + 0.252464424f * x) * x; 4966 // 4967 // error 0.0144103317, which is 6 bits 4968 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4969 getF32Constant(DAG, 0x3e814304, dl)); 4970 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4971 getF32Constant(DAG, 0x3f3c50c8, dl)); 4972 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4973 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4974 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4975 } else if (LimitFloatPrecision <= 12) { 4976 // For floating-point precision of 12: 4977 // 4978 // TwoToFractionalPartOfX = 4979 // 0.999892986f + 4980 // (0.696457318f + 4981 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4982 // 4983 // error 0.000107046256, which is 13 to 14 bits 4984 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4985 getF32Constant(DAG, 0x3da235e3, dl)); 4986 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4987 getF32Constant(DAG, 0x3e65b8f3, dl)); 4988 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4989 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4990 getF32Constant(DAG, 0x3f324b07, dl)); 4991 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4992 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4993 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4994 } else { // LimitFloatPrecision <= 18 4995 // For floating-point precision of 18: 4996 // 4997 // TwoToFractionalPartOfX = 4998 // 0.999999982f + 4999 // (0.693148872f + 5000 // (0.240227044f + 5001 // (0.554906021e-1f + 5002 // (0.961591928e-2f + 5003 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5004 // error 2.47208000*10^(-7), which is better than 18 bits 5005 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5006 getF32Constant(DAG, 0x3924b03e, dl)); 5007 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5008 getF32Constant(DAG, 0x3ab24b87, dl)); 5009 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5010 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5011 getF32Constant(DAG, 0x3c1d8c17, dl)); 5012 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5013 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5014 getF32Constant(DAG, 0x3d634a1d, dl)); 5015 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5016 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5017 getF32Constant(DAG, 0x3e75fe14, dl)); 5018 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5019 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5020 getF32Constant(DAG, 0x3f317234, dl)); 5021 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5022 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5023 getF32Constant(DAG, 0x3f800000, dl)); 5024 } 5025 5026 // Add the exponent into the result in integer domain. 5027 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5028 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5029 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5030 } 5031 5032 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5033 /// limited-precision mode. 5034 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5035 const TargetLowering &TLI, SDNodeFlags Flags) { 5036 if (Op.getValueType() == MVT::f32 && 5037 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5038 5039 // Put the exponent in the right bit position for later addition to the 5040 // final result: 5041 // 5042 // t0 = Op * log2(e) 5043 5044 // TODO: What fast-math-flags should be set here? 5045 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5046 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5047 return getLimitedPrecisionExp2(t0, dl, DAG); 5048 } 5049 5050 // No special expansion. 5051 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5052 } 5053 5054 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5055 /// limited-precision mode. 5056 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5057 const TargetLowering &TLI, SDNodeFlags Flags) { 5058 // TODO: What fast-math-flags should be set on the floating-point nodes? 5059 5060 if (Op.getValueType() == MVT::f32 && 5061 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5062 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5063 5064 // Scale the exponent by log(2). 5065 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5066 SDValue LogOfExponent = 5067 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5068 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5069 5070 // Get the significand and build it into a floating-point number with 5071 // exponent of 1. 5072 SDValue X = GetSignificand(DAG, Op1, dl); 5073 5074 SDValue LogOfMantissa; 5075 if (LimitFloatPrecision <= 6) { 5076 // For floating-point precision of 6: 5077 // 5078 // LogofMantissa = 5079 // -1.1609546f + 5080 // (1.4034025f - 0.23903021f * x) * x; 5081 // 5082 // error 0.0034276066, which is better than 8 bits 5083 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5084 getF32Constant(DAG, 0xbe74c456, dl)); 5085 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5086 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5087 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5088 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5089 getF32Constant(DAG, 0x3f949a29, dl)); 5090 } else if (LimitFloatPrecision <= 12) { 5091 // For floating-point precision of 12: 5092 // 5093 // LogOfMantissa = 5094 // -1.7417939f + 5095 // (2.8212026f + 5096 // (-1.4699568f + 5097 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5098 // 5099 // error 0.000061011436, which is 14 bits 5100 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5101 getF32Constant(DAG, 0xbd67b6d6, dl)); 5102 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5103 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5104 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5105 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5106 getF32Constant(DAG, 0x3fbc278b, dl)); 5107 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5108 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5109 getF32Constant(DAG, 0x40348e95, dl)); 5110 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5111 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5112 getF32Constant(DAG, 0x3fdef31a, dl)); 5113 } else { // LimitFloatPrecision <= 18 5114 // For floating-point precision of 18: 5115 // 5116 // LogOfMantissa = 5117 // -2.1072184f + 5118 // (4.2372794f + 5119 // (-3.7029485f + 5120 // (2.2781945f + 5121 // (-0.87823314f + 5122 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5123 // 5124 // error 0.0000023660568, which is better than 18 bits 5125 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5126 getF32Constant(DAG, 0xbc91e5ac, dl)); 5127 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5128 getF32Constant(DAG, 0x3e4350aa, dl)); 5129 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5130 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5131 getF32Constant(DAG, 0x3f60d3e3, dl)); 5132 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5133 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5134 getF32Constant(DAG, 0x4011cdf0, dl)); 5135 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5136 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5137 getF32Constant(DAG, 0x406cfd1c, dl)); 5138 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5139 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5140 getF32Constant(DAG, 0x408797cb, dl)); 5141 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5142 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5143 getF32Constant(DAG, 0x4006dcab, dl)); 5144 } 5145 5146 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5147 } 5148 5149 // No special expansion. 5150 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5151 } 5152 5153 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5154 /// limited-precision mode. 5155 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5156 const TargetLowering &TLI, SDNodeFlags Flags) { 5157 // TODO: What fast-math-flags should be set on the floating-point nodes? 5158 5159 if (Op.getValueType() == MVT::f32 && 5160 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5161 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5162 5163 // Get the exponent. 5164 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5165 5166 // Get the significand and build it into a floating-point number with 5167 // exponent of 1. 5168 SDValue X = GetSignificand(DAG, Op1, dl); 5169 5170 // Different possible minimax approximations of significand in 5171 // floating-point for various degrees of accuracy over [1,2]. 5172 SDValue Log2ofMantissa; 5173 if (LimitFloatPrecision <= 6) { 5174 // For floating-point precision of 6: 5175 // 5176 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5177 // 5178 // error 0.0049451742, which is more than 7 bits 5179 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5180 getF32Constant(DAG, 0xbeb08fe0, dl)); 5181 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5182 getF32Constant(DAG, 0x40019463, dl)); 5183 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5184 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5185 getF32Constant(DAG, 0x3fd6633d, dl)); 5186 } else if (LimitFloatPrecision <= 12) { 5187 // For floating-point precision of 12: 5188 // 5189 // Log2ofMantissa = 5190 // -2.51285454f + 5191 // (4.07009056f + 5192 // (-2.12067489f + 5193 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5194 // 5195 // error 0.0000876136000, which is better than 13 bits 5196 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5197 getF32Constant(DAG, 0xbda7262e, dl)); 5198 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5199 getF32Constant(DAG, 0x3f25280b, dl)); 5200 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5201 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5202 getF32Constant(DAG, 0x4007b923, dl)); 5203 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5204 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5205 getF32Constant(DAG, 0x40823e2f, dl)); 5206 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5207 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5208 getF32Constant(DAG, 0x4020d29c, dl)); 5209 } else { // LimitFloatPrecision <= 18 5210 // For floating-point precision of 18: 5211 // 5212 // Log2ofMantissa = 5213 // -3.0400495f + 5214 // (6.1129976f + 5215 // (-5.3420409f + 5216 // (3.2865683f + 5217 // (-1.2669343f + 5218 // (0.27515199f - 5219 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5220 // 5221 // error 0.0000018516, which is better than 18 bits 5222 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5223 getF32Constant(DAG, 0xbcd2769e, dl)); 5224 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5225 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5226 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5227 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5228 getF32Constant(DAG, 0x3fa22ae7, dl)); 5229 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5230 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5231 getF32Constant(DAG, 0x40525723, dl)); 5232 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5233 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5234 getF32Constant(DAG, 0x40aaf200, dl)); 5235 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5236 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5237 getF32Constant(DAG, 0x40c39dad, dl)); 5238 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5239 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5240 getF32Constant(DAG, 0x4042902c, dl)); 5241 } 5242 5243 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5244 } 5245 5246 // No special expansion. 5247 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5248 } 5249 5250 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5251 /// limited-precision mode. 5252 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5253 const TargetLowering &TLI, SDNodeFlags Flags) { 5254 // TODO: What fast-math-flags should be set on the floating-point nodes? 5255 5256 if (Op.getValueType() == MVT::f32 && 5257 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5258 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5259 5260 // Scale the exponent by log10(2) [0.30102999f]. 5261 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5262 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5263 getF32Constant(DAG, 0x3e9a209a, dl)); 5264 5265 // Get the significand and build it into a floating-point number with 5266 // exponent of 1. 5267 SDValue X = GetSignificand(DAG, Op1, dl); 5268 5269 SDValue Log10ofMantissa; 5270 if (LimitFloatPrecision <= 6) { 5271 // For floating-point precision of 6: 5272 // 5273 // Log10ofMantissa = 5274 // -0.50419619f + 5275 // (0.60948995f - 0.10380950f * x) * x; 5276 // 5277 // error 0.0014886165, which is 6 bits 5278 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5279 getF32Constant(DAG, 0xbdd49a13, dl)); 5280 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5281 getF32Constant(DAG, 0x3f1c0789, dl)); 5282 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5283 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5284 getF32Constant(DAG, 0x3f011300, dl)); 5285 } else if (LimitFloatPrecision <= 12) { 5286 // For floating-point precision of 12: 5287 // 5288 // Log10ofMantissa = 5289 // -0.64831180f + 5290 // (0.91751397f + 5291 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5292 // 5293 // error 0.00019228036, which is better than 12 bits 5294 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5295 getF32Constant(DAG, 0x3d431f31, dl)); 5296 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5297 getF32Constant(DAG, 0x3ea21fb2, dl)); 5298 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5299 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5300 getF32Constant(DAG, 0x3f6ae232, dl)); 5301 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5302 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5303 getF32Constant(DAG, 0x3f25f7c3, dl)); 5304 } else { // LimitFloatPrecision <= 18 5305 // For floating-point precision of 18: 5306 // 5307 // Log10ofMantissa = 5308 // -0.84299375f + 5309 // (1.5327582f + 5310 // (-1.0688956f + 5311 // (0.49102474f + 5312 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5313 // 5314 // error 0.0000037995730, which is better than 18 bits 5315 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5316 getF32Constant(DAG, 0x3c5d51ce, dl)); 5317 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5318 getF32Constant(DAG, 0x3e00685a, dl)); 5319 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5320 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5321 getF32Constant(DAG, 0x3efb6798, dl)); 5322 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5323 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5324 getF32Constant(DAG, 0x3f88d192, dl)); 5325 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5326 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5327 getF32Constant(DAG, 0x3fc4316c, dl)); 5328 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5329 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5330 getF32Constant(DAG, 0x3f57ce70, dl)); 5331 } 5332 5333 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5334 } 5335 5336 // No special expansion. 5337 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5338 } 5339 5340 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5341 /// limited-precision mode. 5342 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5343 const TargetLowering &TLI, SDNodeFlags Flags) { 5344 if (Op.getValueType() == MVT::f32 && 5345 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5346 return getLimitedPrecisionExp2(Op, dl, DAG); 5347 5348 // No special expansion. 5349 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5350 } 5351 5352 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5353 /// limited-precision mode with x == 10.0f. 5354 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5355 SelectionDAG &DAG, const TargetLowering &TLI, 5356 SDNodeFlags Flags) { 5357 bool IsExp10 = false; 5358 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5359 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5360 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5361 APFloat Ten(10.0f); 5362 IsExp10 = LHSC->isExactlyValue(Ten); 5363 } 5364 } 5365 5366 // TODO: What fast-math-flags should be set on the FMUL node? 5367 if (IsExp10) { 5368 // Put the exponent in the right bit position for later addition to the 5369 // final result: 5370 // 5371 // #define LOG2OF10 3.3219281f 5372 // t0 = Op * LOG2OF10; 5373 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5374 getF32Constant(DAG, 0x40549a78, dl)); 5375 return getLimitedPrecisionExp2(t0, dl, DAG); 5376 } 5377 5378 // No special expansion. 5379 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5380 } 5381 5382 /// ExpandPowI - Expand a llvm.powi intrinsic. 5383 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5384 SelectionDAG &DAG) { 5385 // If RHS is a constant, we can expand this out to a multiplication tree if 5386 // it's beneficial on the target, otherwise we end up lowering to a call to 5387 // __powidf2 (for example). 5388 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5389 unsigned Val = RHSC->getSExtValue(); 5390 5391 // powi(x, 0) -> 1.0 5392 if (Val == 0) 5393 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5394 5395 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5396 Val, DAG.shouldOptForSize())) { 5397 // Get the exponent as a positive value. 5398 if ((int)Val < 0) 5399 Val = -Val; 5400 // We use the simple binary decomposition method to generate the multiply 5401 // sequence. There are more optimal ways to do this (for example, 5402 // powi(x,15) generates one more multiply than it should), but this has 5403 // the benefit of being both really simple and much better than a libcall. 5404 SDValue Res; // Logically starts equal to 1.0 5405 SDValue CurSquare = LHS; 5406 // TODO: Intrinsics should have fast-math-flags that propagate to these 5407 // nodes. 5408 while (Val) { 5409 if (Val & 1) { 5410 if (Res.getNode()) 5411 Res = 5412 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5413 else 5414 Res = CurSquare; // 1.0*CurSquare. 5415 } 5416 5417 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5418 CurSquare, CurSquare); 5419 Val >>= 1; 5420 } 5421 5422 // If the original was negative, invert the result, producing 1/(x*x*x). 5423 if (RHSC->getSExtValue() < 0) 5424 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5425 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5426 return Res; 5427 } 5428 } 5429 5430 // Otherwise, expand to a libcall. 5431 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5432 } 5433 5434 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5435 SDValue LHS, SDValue RHS, SDValue Scale, 5436 SelectionDAG &DAG, const TargetLowering &TLI) { 5437 EVT VT = LHS.getValueType(); 5438 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5439 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5440 LLVMContext &Ctx = *DAG.getContext(); 5441 5442 // If the type is legal but the operation isn't, this node might survive all 5443 // the way to operation legalization. If we end up there and we do not have 5444 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5445 // node. 5446 5447 // Coax the legalizer into expanding the node during type legalization instead 5448 // by bumping the size by one bit. This will force it to Promote, enabling the 5449 // early expansion and avoiding the need to expand later. 5450 5451 // We don't have to do this if Scale is 0; that can always be expanded, unless 5452 // it's a saturating signed operation. Those can experience true integer 5453 // division overflow, a case which we must avoid. 5454 5455 // FIXME: We wouldn't have to do this (or any of the early 5456 // expansion/promotion) if it was possible to expand a libcall of an 5457 // illegal type during operation legalization. But it's not, so things 5458 // get a bit hacky. 5459 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5460 if ((ScaleInt > 0 || (Saturating && Signed)) && 5461 (TLI.isTypeLegal(VT) || 5462 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5463 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5464 Opcode, VT, ScaleInt); 5465 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5466 EVT PromVT; 5467 if (VT.isScalarInteger()) 5468 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5469 else if (VT.isVector()) { 5470 PromVT = VT.getVectorElementType(); 5471 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5472 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5473 } else 5474 llvm_unreachable("Wrong VT for DIVFIX?"); 5475 if (Signed) { 5476 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5477 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5478 } else { 5479 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5480 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5481 } 5482 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5483 // For saturating operations, we need to shift up the LHS to get the 5484 // proper saturation width, and then shift down again afterwards. 5485 if (Saturating) 5486 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5487 DAG.getConstant(1, DL, ShiftTy)); 5488 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5489 if (Saturating) 5490 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5491 DAG.getConstant(1, DL, ShiftTy)); 5492 return DAG.getZExtOrTrunc(Res, DL, VT); 5493 } 5494 } 5495 5496 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5497 } 5498 5499 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5500 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5501 static void 5502 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5503 const SDValue &N) { 5504 switch (N.getOpcode()) { 5505 case ISD::CopyFromReg: { 5506 SDValue Op = N.getOperand(1); 5507 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5508 Op.getValueType().getSizeInBits()); 5509 return; 5510 } 5511 case ISD::BITCAST: 5512 case ISD::AssertZext: 5513 case ISD::AssertSext: 5514 case ISD::TRUNCATE: 5515 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5516 return; 5517 case ISD::BUILD_PAIR: 5518 case ISD::BUILD_VECTOR: 5519 case ISD::CONCAT_VECTORS: 5520 for (SDValue Op : N->op_values()) 5521 getUnderlyingArgRegs(Regs, Op); 5522 return; 5523 default: 5524 return; 5525 } 5526 } 5527 5528 /// If the DbgValueInst is a dbg_value of a function argument, create the 5529 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5530 /// instruction selection, they will be inserted to the entry BB. 5531 /// We don't currently support this for variadic dbg_values, as they shouldn't 5532 /// appear for function arguments or in the prologue. 5533 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5534 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5535 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5536 const Argument *Arg = dyn_cast<Argument>(V); 5537 if (!Arg) 5538 return false; 5539 5540 MachineFunction &MF = DAG.getMachineFunction(); 5541 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5542 5543 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5544 // we've been asked to pursue. 5545 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5546 bool Indirect) { 5547 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5548 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5549 // pointing at the VReg, which will be patched up later. 5550 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5551 auto MIB = BuildMI(MF, DL, Inst); 5552 MIB.addReg(Reg); 5553 MIB.addImm(0); 5554 MIB.addMetadata(Variable); 5555 auto *NewDIExpr = FragExpr; 5556 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5557 // the DIExpression. 5558 if (Indirect) 5559 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5560 MIB.addMetadata(NewDIExpr); 5561 return MIB; 5562 } else { 5563 // Create a completely standard DBG_VALUE. 5564 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5565 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5566 } 5567 }; 5568 5569 if (Kind == FuncArgumentDbgValueKind::Value) { 5570 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5571 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5572 // the entry block. 5573 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5574 if (!IsInEntryBlock) 5575 return false; 5576 5577 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5578 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5579 // variable that also is a param. 5580 // 5581 // Although, if we are at the top of the entry block already, we can still 5582 // emit using ArgDbgValue. This might catch some situations when the 5583 // dbg.value refers to an argument that isn't used in the entry block, so 5584 // any CopyToReg node would be optimized out and the only way to express 5585 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5586 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5587 // we should only emit as ArgDbgValue if the Variable is an argument to the 5588 // current function, and the dbg.value intrinsic is found in the entry 5589 // block. 5590 bool VariableIsFunctionInputArg = Variable->isParameter() && 5591 !DL->getInlinedAt(); 5592 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5593 if (!IsInPrologue && !VariableIsFunctionInputArg) 5594 return false; 5595 5596 // Here we assume that a function argument on IR level only can be used to 5597 // describe one input parameter on source level. If we for example have 5598 // source code like this 5599 // 5600 // struct A { long x, y; }; 5601 // void foo(struct A a, long b) { 5602 // ... 5603 // b = a.x; 5604 // ... 5605 // } 5606 // 5607 // and IR like this 5608 // 5609 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5610 // entry: 5611 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5612 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5613 // call void @llvm.dbg.value(metadata i32 %b, "b", 5614 // ... 5615 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5616 // ... 5617 // 5618 // then the last dbg.value is describing a parameter "b" using a value that 5619 // is an argument. But since we already has used %a1 to describe a parameter 5620 // we should not handle that last dbg.value here (that would result in an 5621 // incorrect hoisting of the DBG_VALUE to the function entry). 5622 // Notice that we allow one dbg.value per IR level argument, to accommodate 5623 // for the situation with fragments above. 5624 if (VariableIsFunctionInputArg) { 5625 unsigned ArgNo = Arg->getArgNo(); 5626 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5627 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5628 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5629 return false; 5630 FuncInfo.DescribedArgs.set(ArgNo); 5631 } 5632 } 5633 5634 bool IsIndirect = false; 5635 Optional<MachineOperand> Op; 5636 // Some arguments' frame index is recorded during argument lowering. 5637 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5638 if (FI != std::numeric_limits<int>::max()) 5639 Op = MachineOperand::CreateFI(FI); 5640 5641 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5642 if (!Op && N.getNode()) { 5643 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5644 Register Reg; 5645 if (ArgRegsAndSizes.size() == 1) 5646 Reg = ArgRegsAndSizes.front().first; 5647 5648 if (Reg && Reg.isVirtual()) { 5649 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5650 Register PR = RegInfo.getLiveInPhysReg(Reg); 5651 if (PR) 5652 Reg = PR; 5653 } 5654 if (Reg) { 5655 Op = MachineOperand::CreateReg(Reg, false); 5656 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5657 } 5658 } 5659 5660 if (!Op && N.getNode()) { 5661 // Check if frame index is available. 5662 SDValue LCandidate = peekThroughBitcasts(N); 5663 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5664 if (FrameIndexSDNode *FINode = 5665 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5666 Op = MachineOperand::CreateFI(FINode->getIndex()); 5667 } 5668 5669 if (!Op) { 5670 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5671 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5672 SplitRegs) { 5673 unsigned Offset = 0; 5674 for (const auto &RegAndSize : SplitRegs) { 5675 // If the expression is already a fragment, the current register 5676 // offset+size might extend beyond the fragment. In this case, only 5677 // the register bits that are inside the fragment are relevant. 5678 int RegFragmentSizeInBits = RegAndSize.second; 5679 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5680 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5681 // The register is entirely outside the expression fragment, 5682 // so is irrelevant for debug info. 5683 if (Offset >= ExprFragmentSizeInBits) 5684 break; 5685 // The register is partially outside the expression fragment, only 5686 // the low bits within the fragment are relevant for debug info. 5687 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5688 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5689 } 5690 } 5691 5692 auto FragmentExpr = DIExpression::createFragmentExpression( 5693 Expr, Offset, RegFragmentSizeInBits); 5694 Offset += RegAndSize.second; 5695 // If a valid fragment expression cannot be created, the variable's 5696 // correct value cannot be determined and so it is set as Undef. 5697 if (!FragmentExpr) { 5698 SDDbgValue *SDV = DAG.getConstantDbgValue( 5699 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5700 DAG.AddDbgValue(SDV, false); 5701 continue; 5702 } 5703 MachineInstr *NewMI = 5704 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5705 Kind != FuncArgumentDbgValueKind::Value); 5706 FuncInfo.ArgDbgValues.push_back(NewMI); 5707 } 5708 }; 5709 5710 // Check if ValueMap has reg number. 5711 DenseMap<const Value *, Register>::const_iterator 5712 VMI = FuncInfo.ValueMap.find(V); 5713 if (VMI != FuncInfo.ValueMap.end()) { 5714 const auto &TLI = DAG.getTargetLoweringInfo(); 5715 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5716 V->getType(), None); 5717 if (RFV.occupiesMultipleRegs()) { 5718 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5719 return true; 5720 } 5721 5722 Op = MachineOperand::CreateReg(VMI->second, false); 5723 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5724 } else if (ArgRegsAndSizes.size() > 1) { 5725 // This was split due to the calling convention, and no virtual register 5726 // mapping exists for the value. 5727 splitMultiRegDbgValue(ArgRegsAndSizes); 5728 return true; 5729 } 5730 } 5731 5732 if (!Op) 5733 return false; 5734 5735 assert(Variable->isValidLocationForIntrinsic(DL) && 5736 "Expected inlined-at fields to agree"); 5737 MachineInstr *NewMI = nullptr; 5738 5739 if (Op->isReg()) 5740 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5741 else 5742 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5743 Variable, Expr); 5744 5745 // Otherwise, use ArgDbgValues. 5746 FuncInfo.ArgDbgValues.push_back(NewMI); 5747 return true; 5748 } 5749 5750 /// Return the appropriate SDDbgValue based on N. 5751 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5752 DILocalVariable *Variable, 5753 DIExpression *Expr, 5754 const DebugLoc &dl, 5755 unsigned DbgSDNodeOrder) { 5756 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5757 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5758 // stack slot locations. 5759 // 5760 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5761 // debug values here after optimization: 5762 // 5763 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5764 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5765 // 5766 // Both describe the direct values of their associated variables. 5767 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5768 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5769 } 5770 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5771 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5772 } 5773 5774 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5775 switch (Intrinsic) { 5776 case Intrinsic::smul_fix: 5777 return ISD::SMULFIX; 5778 case Intrinsic::umul_fix: 5779 return ISD::UMULFIX; 5780 case Intrinsic::smul_fix_sat: 5781 return ISD::SMULFIXSAT; 5782 case Intrinsic::umul_fix_sat: 5783 return ISD::UMULFIXSAT; 5784 case Intrinsic::sdiv_fix: 5785 return ISD::SDIVFIX; 5786 case Intrinsic::udiv_fix: 5787 return ISD::UDIVFIX; 5788 case Intrinsic::sdiv_fix_sat: 5789 return ISD::SDIVFIXSAT; 5790 case Intrinsic::udiv_fix_sat: 5791 return ISD::UDIVFIXSAT; 5792 default: 5793 llvm_unreachable("Unhandled fixed point intrinsic"); 5794 } 5795 } 5796 5797 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5798 const char *FunctionName) { 5799 assert(FunctionName && "FunctionName must not be nullptr"); 5800 SDValue Callee = DAG.getExternalSymbol( 5801 FunctionName, 5802 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5803 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5804 } 5805 5806 /// Given a @llvm.call.preallocated.setup, return the corresponding 5807 /// preallocated call. 5808 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5809 assert(cast<CallBase>(PreallocatedSetup) 5810 ->getCalledFunction() 5811 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5812 "expected call_preallocated_setup Value"); 5813 for (const auto *U : PreallocatedSetup->users()) { 5814 auto *UseCall = cast<CallBase>(U); 5815 const Function *Fn = UseCall->getCalledFunction(); 5816 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5817 return UseCall; 5818 } 5819 } 5820 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5821 } 5822 5823 /// Lower the call to the specified intrinsic function. 5824 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5825 unsigned Intrinsic) { 5826 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5827 SDLoc sdl = getCurSDLoc(); 5828 DebugLoc dl = getCurDebugLoc(); 5829 SDValue Res; 5830 5831 SDNodeFlags Flags; 5832 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5833 Flags.copyFMF(*FPOp); 5834 5835 switch (Intrinsic) { 5836 default: 5837 // By default, turn this into a target intrinsic node. 5838 visitTargetIntrinsic(I, Intrinsic); 5839 return; 5840 case Intrinsic::vscale: { 5841 match(&I, m_VScale(DAG.getDataLayout())); 5842 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5843 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5844 return; 5845 } 5846 case Intrinsic::vastart: visitVAStart(I); return; 5847 case Intrinsic::vaend: visitVAEnd(I); return; 5848 case Intrinsic::vacopy: visitVACopy(I); return; 5849 case Intrinsic::returnaddress: 5850 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5851 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5852 getValue(I.getArgOperand(0)))); 5853 return; 5854 case Intrinsic::addressofreturnaddress: 5855 setValue(&I, 5856 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5857 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5858 return; 5859 case Intrinsic::sponentry: 5860 setValue(&I, 5861 DAG.getNode(ISD::SPONENTRY, sdl, 5862 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5863 return; 5864 case Intrinsic::frameaddress: 5865 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5866 TLI.getFrameIndexTy(DAG.getDataLayout()), 5867 getValue(I.getArgOperand(0)))); 5868 return; 5869 case Intrinsic::read_volatile_register: 5870 case Intrinsic::read_register: { 5871 Value *Reg = I.getArgOperand(0); 5872 SDValue Chain = getRoot(); 5873 SDValue RegName = 5874 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5875 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5876 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5877 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5878 setValue(&I, Res); 5879 DAG.setRoot(Res.getValue(1)); 5880 return; 5881 } 5882 case Intrinsic::write_register: { 5883 Value *Reg = I.getArgOperand(0); 5884 Value *RegValue = I.getArgOperand(1); 5885 SDValue Chain = getRoot(); 5886 SDValue RegName = 5887 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5888 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5889 RegName, getValue(RegValue))); 5890 return; 5891 } 5892 case Intrinsic::memcpy: { 5893 const auto &MCI = cast<MemCpyInst>(I); 5894 SDValue Op1 = getValue(I.getArgOperand(0)); 5895 SDValue Op2 = getValue(I.getArgOperand(1)); 5896 SDValue Op3 = getValue(I.getArgOperand(2)); 5897 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5898 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5899 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5900 Align Alignment = std::min(DstAlign, SrcAlign); 5901 bool isVol = MCI.isVolatile(); 5902 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5903 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5904 // node. 5905 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5906 SDValue MC = DAG.getMemcpy( 5907 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5908 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 5909 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5910 updateDAGForMaybeTailCall(MC); 5911 return; 5912 } 5913 case Intrinsic::memcpy_inline: { 5914 const auto &MCI = cast<MemCpyInlineInst>(I); 5915 SDValue Dst = getValue(I.getArgOperand(0)); 5916 SDValue Src = getValue(I.getArgOperand(1)); 5917 SDValue Size = getValue(I.getArgOperand(2)); 5918 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5919 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5920 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5921 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5922 Align Alignment = std::min(DstAlign, SrcAlign); 5923 bool isVol = MCI.isVolatile(); 5924 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5925 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5926 // node. 5927 SDValue MC = DAG.getMemcpy( 5928 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5929 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 5930 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5931 updateDAGForMaybeTailCall(MC); 5932 return; 5933 } 5934 case Intrinsic::memset: { 5935 const auto &MSI = cast<MemSetInst>(I); 5936 SDValue Op1 = getValue(I.getArgOperand(0)); 5937 SDValue Op2 = getValue(I.getArgOperand(1)); 5938 SDValue Op3 = getValue(I.getArgOperand(2)); 5939 // @llvm.memset defines 0 and 1 to both mean no alignment. 5940 Align Alignment = MSI.getDestAlign().valueOrOne(); 5941 bool isVol = MSI.isVolatile(); 5942 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5943 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5944 SDValue MS = DAG.getMemset( 5945 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 5946 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 5947 updateDAGForMaybeTailCall(MS); 5948 return; 5949 } 5950 case Intrinsic::memset_inline: { 5951 const auto &MSII = cast<MemSetInlineInst>(I); 5952 SDValue Dst = getValue(I.getArgOperand(0)); 5953 SDValue Value = getValue(I.getArgOperand(1)); 5954 SDValue Size = getValue(I.getArgOperand(2)); 5955 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 5956 // @llvm.memset defines 0 and 1 to both mean no alignment. 5957 Align DstAlign = MSII.getDestAlign().valueOrOne(); 5958 bool isVol = MSII.isVolatile(); 5959 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5960 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5961 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 5962 /* AlwaysInline */ true, isTC, 5963 MachinePointerInfo(I.getArgOperand(0)), 5964 I.getAAMetadata()); 5965 updateDAGForMaybeTailCall(MC); 5966 return; 5967 } 5968 case Intrinsic::memmove: { 5969 const auto &MMI = cast<MemMoveInst>(I); 5970 SDValue Op1 = getValue(I.getArgOperand(0)); 5971 SDValue Op2 = getValue(I.getArgOperand(1)); 5972 SDValue Op3 = getValue(I.getArgOperand(2)); 5973 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5974 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5975 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5976 Align Alignment = std::min(DstAlign, SrcAlign); 5977 bool isVol = MMI.isVolatile(); 5978 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5979 // FIXME: Support passing different dest/src alignments to the memmove DAG 5980 // node. 5981 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5982 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5983 isTC, MachinePointerInfo(I.getArgOperand(0)), 5984 MachinePointerInfo(I.getArgOperand(1)), 5985 I.getAAMetadata(), AA); 5986 updateDAGForMaybeTailCall(MM); 5987 return; 5988 } 5989 case Intrinsic::memcpy_element_unordered_atomic: { 5990 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5991 SDValue Dst = getValue(MI.getRawDest()); 5992 SDValue Src = getValue(MI.getRawSource()); 5993 SDValue Length = getValue(MI.getLength()); 5994 5995 Type *LengthTy = MI.getLength()->getType(); 5996 unsigned ElemSz = MI.getElementSizeInBytes(); 5997 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5998 SDValue MC = 5999 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6000 isTC, MachinePointerInfo(MI.getRawDest()), 6001 MachinePointerInfo(MI.getRawSource())); 6002 updateDAGForMaybeTailCall(MC); 6003 return; 6004 } 6005 case Intrinsic::memmove_element_unordered_atomic: { 6006 auto &MI = cast<AtomicMemMoveInst>(I); 6007 SDValue Dst = getValue(MI.getRawDest()); 6008 SDValue Src = getValue(MI.getRawSource()); 6009 SDValue Length = getValue(MI.getLength()); 6010 6011 Type *LengthTy = MI.getLength()->getType(); 6012 unsigned ElemSz = MI.getElementSizeInBytes(); 6013 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6014 SDValue MC = 6015 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6016 isTC, MachinePointerInfo(MI.getRawDest()), 6017 MachinePointerInfo(MI.getRawSource())); 6018 updateDAGForMaybeTailCall(MC); 6019 return; 6020 } 6021 case Intrinsic::memset_element_unordered_atomic: { 6022 auto &MI = cast<AtomicMemSetInst>(I); 6023 SDValue Dst = getValue(MI.getRawDest()); 6024 SDValue Val = getValue(MI.getValue()); 6025 SDValue Length = getValue(MI.getLength()); 6026 6027 Type *LengthTy = MI.getLength()->getType(); 6028 unsigned ElemSz = MI.getElementSizeInBytes(); 6029 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6030 SDValue MC = 6031 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6032 isTC, MachinePointerInfo(MI.getRawDest())); 6033 updateDAGForMaybeTailCall(MC); 6034 return; 6035 } 6036 case Intrinsic::call_preallocated_setup: { 6037 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6038 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6039 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6040 getRoot(), SrcValue); 6041 setValue(&I, Res); 6042 DAG.setRoot(Res); 6043 return; 6044 } 6045 case Intrinsic::call_preallocated_arg: { 6046 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6047 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6048 SDValue Ops[3]; 6049 Ops[0] = getRoot(); 6050 Ops[1] = SrcValue; 6051 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6052 MVT::i32); // arg index 6053 SDValue Res = DAG.getNode( 6054 ISD::PREALLOCATED_ARG, sdl, 6055 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6056 setValue(&I, Res); 6057 DAG.setRoot(Res.getValue(1)); 6058 return; 6059 } 6060 case Intrinsic::dbg_addr: 6061 case Intrinsic::dbg_declare: { 6062 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6063 // they are non-variadic. 6064 const auto &DI = cast<DbgVariableIntrinsic>(I); 6065 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6066 DILocalVariable *Variable = DI.getVariable(); 6067 DIExpression *Expression = DI.getExpression(); 6068 dropDanglingDebugInfo(Variable, Expression); 6069 assert(Variable && "Missing variable"); 6070 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6071 << "\n"); 6072 // Check if address has undef value. 6073 const Value *Address = DI.getVariableLocationOp(0); 6074 if (!Address || isa<UndefValue>(Address) || 6075 (Address->use_empty() && !isa<Argument>(Address))) { 6076 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6077 << " (bad/undef/unused-arg address)\n"); 6078 return; 6079 } 6080 6081 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6082 6083 // Check if this variable can be described by a frame index, typically 6084 // either as a static alloca or a byval parameter. 6085 int FI = std::numeric_limits<int>::max(); 6086 if (const auto *AI = 6087 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6088 if (AI->isStaticAlloca()) { 6089 auto I = FuncInfo.StaticAllocaMap.find(AI); 6090 if (I != FuncInfo.StaticAllocaMap.end()) 6091 FI = I->second; 6092 } 6093 } else if (const auto *Arg = dyn_cast<Argument>( 6094 Address->stripInBoundsConstantOffsets())) { 6095 FI = FuncInfo.getArgumentFrameIndex(Arg); 6096 } 6097 6098 // llvm.dbg.addr is control dependent and always generates indirect 6099 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6100 // the MachineFunction variable table. 6101 if (FI != std::numeric_limits<int>::max()) { 6102 if (Intrinsic == Intrinsic::dbg_addr) { 6103 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6104 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6105 dl, SDNodeOrder); 6106 DAG.AddDbgValue(SDV, isParameter); 6107 } else { 6108 LLVM_DEBUG(dbgs() << "Skipping " << DI 6109 << " (variable info stashed in MF side table)\n"); 6110 } 6111 return; 6112 } 6113 6114 SDValue &N = NodeMap[Address]; 6115 if (!N.getNode() && isa<Argument>(Address)) 6116 // Check unused arguments map. 6117 N = UnusedArgNodeMap[Address]; 6118 SDDbgValue *SDV; 6119 if (N.getNode()) { 6120 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6121 Address = BCI->getOperand(0); 6122 // Parameters are handled specially. 6123 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6124 if (isParameter && FINode) { 6125 // Byval parameter. We have a frame index at this point. 6126 SDV = 6127 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6128 /*IsIndirect*/ true, dl, SDNodeOrder); 6129 } else if (isa<Argument>(Address)) { 6130 // Address is an argument, so try to emit its dbg value using 6131 // virtual register info from the FuncInfo.ValueMap. 6132 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6133 FuncArgumentDbgValueKind::Declare, N); 6134 return; 6135 } else { 6136 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6137 true, dl, SDNodeOrder); 6138 } 6139 DAG.AddDbgValue(SDV, isParameter); 6140 } else { 6141 // If Address is an argument then try to emit its dbg value using 6142 // virtual register info from the FuncInfo.ValueMap. 6143 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6144 FuncArgumentDbgValueKind::Declare, N)) { 6145 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6146 << " (could not emit func-arg dbg_value)\n"); 6147 } 6148 } 6149 return; 6150 } 6151 case Intrinsic::dbg_label: { 6152 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6153 DILabel *Label = DI.getLabel(); 6154 assert(Label && "Missing label"); 6155 6156 SDDbgLabel *SDV; 6157 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6158 DAG.AddDbgLabel(SDV); 6159 return; 6160 } 6161 case Intrinsic::dbg_value: { 6162 const DbgValueInst &DI = cast<DbgValueInst>(I); 6163 assert(DI.getVariable() && "Missing variable"); 6164 6165 DILocalVariable *Variable = DI.getVariable(); 6166 DIExpression *Expression = DI.getExpression(); 6167 dropDanglingDebugInfo(Variable, Expression); 6168 SmallVector<Value *, 4> Values(DI.getValues()); 6169 if (Values.empty()) 6170 return; 6171 6172 if (llvm::is_contained(Values, nullptr)) 6173 return; 6174 6175 bool IsVariadic = DI.hasArgList(); 6176 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6177 SDNodeOrder, IsVariadic)) 6178 addDanglingDebugInfo(&DI, SDNodeOrder); 6179 return; 6180 } 6181 6182 case Intrinsic::eh_typeid_for: { 6183 // Find the type id for the given typeinfo. 6184 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6185 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6186 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6187 setValue(&I, Res); 6188 return; 6189 } 6190 6191 case Intrinsic::eh_return_i32: 6192 case Intrinsic::eh_return_i64: 6193 DAG.getMachineFunction().setCallsEHReturn(true); 6194 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6195 MVT::Other, 6196 getControlRoot(), 6197 getValue(I.getArgOperand(0)), 6198 getValue(I.getArgOperand(1)))); 6199 return; 6200 case Intrinsic::eh_unwind_init: 6201 DAG.getMachineFunction().setCallsUnwindInit(true); 6202 return; 6203 case Intrinsic::eh_dwarf_cfa: 6204 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6205 TLI.getPointerTy(DAG.getDataLayout()), 6206 getValue(I.getArgOperand(0)))); 6207 return; 6208 case Intrinsic::eh_sjlj_callsite: { 6209 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6210 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6211 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6212 6213 MMI.setCurrentCallSite(CI->getZExtValue()); 6214 return; 6215 } 6216 case Intrinsic::eh_sjlj_functioncontext: { 6217 // Get and store the index of the function context. 6218 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6219 AllocaInst *FnCtx = 6220 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6221 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6222 MFI.setFunctionContextIndex(FI); 6223 return; 6224 } 6225 case Intrinsic::eh_sjlj_setjmp: { 6226 SDValue Ops[2]; 6227 Ops[0] = getRoot(); 6228 Ops[1] = getValue(I.getArgOperand(0)); 6229 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6230 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6231 setValue(&I, Op.getValue(0)); 6232 DAG.setRoot(Op.getValue(1)); 6233 return; 6234 } 6235 case Intrinsic::eh_sjlj_longjmp: 6236 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6237 getRoot(), getValue(I.getArgOperand(0)))); 6238 return; 6239 case Intrinsic::eh_sjlj_setup_dispatch: 6240 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6241 getRoot())); 6242 return; 6243 case Intrinsic::masked_gather: 6244 visitMaskedGather(I); 6245 return; 6246 case Intrinsic::masked_load: 6247 visitMaskedLoad(I); 6248 return; 6249 case Intrinsic::masked_scatter: 6250 visitMaskedScatter(I); 6251 return; 6252 case Intrinsic::masked_store: 6253 visitMaskedStore(I); 6254 return; 6255 case Intrinsic::masked_expandload: 6256 visitMaskedLoad(I, true /* IsExpanding */); 6257 return; 6258 case Intrinsic::masked_compressstore: 6259 visitMaskedStore(I, true /* IsCompressing */); 6260 return; 6261 case Intrinsic::powi: 6262 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6263 getValue(I.getArgOperand(1)), DAG)); 6264 return; 6265 case Intrinsic::log: 6266 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6267 return; 6268 case Intrinsic::log2: 6269 setValue(&I, 6270 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6271 return; 6272 case Intrinsic::log10: 6273 setValue(&I, 6274 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6275 return; 6276 case Intrinsic::exp: 6277 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6278 return; 6279 case Intrinsic::exp2: 6280 setValue(&I, 6281 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6282 return; 6283 case Intrinsic::pow: 6284 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6285 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6286 return; 6287 case Intrinsic::sqrt: 6288 case Intrinsic::fabs: 6289 case Intrinsic::sin: 6290 case Intrinsic::cos: 6291 case Intrinsic::floor: 6292 case Intrinsic::ceil: 6293 case Intrinsic::trunc: 6294 case Intrinsic::rint: 6295 case Intrinsic::nearbyint: 6296 case Intrinsic::round: 6297 case Intrinsic::roundeven: 6298 case Intrinsic::canonicalize: { 6299 unsigned Opcode; 6300 switch (Intrinsic) { 6301 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6302 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6303 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6304 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6305 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6306 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6307 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6308 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6309 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6310 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6311 case Intrinsic::round: Opcode = ISD::FROUND; break; 6312 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6313 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6314 } 6315 6316 setValue(&I, DAG.getNode(Opcode, sdl, 6317 getValue(I.getArgOperand(0)).getValueType(), 6318 getValue(I.getArgOperand(0)), Flags)); 6319 return; 6320 } 6321 case Intrinsic::lround: 6322 case Intrinsic::llround: 6323 case Intrinsic::lrint: 6324 case Intrinsic::llrint: { 6325 unsigned Opcode; 6326 switch (Intrinsic) { 6327 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6328 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6329 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6330 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6331 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6332 } 6333 6334 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6335 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6336 getValue(I.getArgOperand(0)))); 6337 return; 6338 } 6339 case Intrinsic::minnum: 6340 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6341 getValue(I.getArgOperand(0)).getValueType(), 6342 getValue(I.getArgOperand(0)), 6343 getValue(I.getArgOperand(1)), Flags)); 6344 return; 6345 case Intrinsic::maxnum: 6346 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6347 getValue(I.getArgOperand(0)).getValueType(), 6348 getValue(I.getArgOperand(0)), 6349 getValue(I.getArgOperand(1)), Flags)); 6350 return; 6351 case Intrinsic::minimum: 6352 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6353 getValue(I.getArgOperand(0)).getValueType(), 6354 getValue(I.getArgOperand(0)), 6355 getValue(I.getArgOperand(1)), Flags)); 6356 return; 6357 case Intrinsic::maximum: 6358 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6359 getValue(I.getArgOperand(0)).getValueType(), 6360 getValue(I.getArgOperand(0)), 6361 getValue(I.getArgOperand(1)), Flags)); 6362 return; 6363 case Intrinsic::copysign: 6364 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6365 getValue(I.getArgOperand(0)).getValueType(), 6366 getValue(I.getArgOperand(0)), 6367 getValue(I.getArgOperand(1)), Flags)); 6368 return; 6369 case Intrinsic::arithmetic_fence: { 6370 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6371 getValue(I.getArgOperand(0)).getValueType(), 6372 getValue(I.getArgOperand(0)), Flags)); 6373 return; 6374 } 6375 case Intrinsic::fma: 6376 setValue(&I, DAG.getNode( 6377 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6378 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6379 getValue(I.getArgOperand(2)), Flags)); 6380 return; 6381 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6382 case Intrinsic::INTRINSIC: 6383 #include "llvm/IR/ConstrainedOps.def" 6384 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6385 return; 6386 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6387 #include "llvm/IR/VPIntrinsics.def" 6388 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6389 return; 6390 case Intrinsic::fptrunc_round: { 6391 // Get the last argument, the metadata and convert it to an integer in the 6392 // call 6393 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6394 Optional<RoundingMode> RoundMode = 6395 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6396 6397 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6398 6399 // Propagate fast-math-flags from IR to node(s). 6400 SDNodeFlags Flags; 6401 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6402 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6403 6404 SDValue Result; 6405 Result = DAG.getNode( 6406 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6407 DAG.getTargetConstant((int)*RoundMode, sdl, 6408 TLI.getPointerTy(DAG.getDataLayout()))); 6409 setValue(&I, Result); 6410 6411 return; 6412 } 6413 case Intrinsic::fmuladd: { 6414 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6415 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6416 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6417 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6418 getValue(I.getArgOperand(0)).getValueType(), 6419 getValue(I.getArgOperand(0)), 6420 getValue(I.getArgOperand(1)), 6421 getValue(I.getArgOperand(2)), Flags)); 6422 } else { 6423 // TODO: Intrinsic calls should have fast-math-flags. 6424 SDValue Mul = DAG.getNode( 6425 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6426 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6427 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6428 getValue(I.getArgOperand(0)).getValueType(), 6429 Mul, getValue(I.getArgOperand(2)), Flags); 6430 setValue(&I, Add); 6431 } 6432 return; 6433 } 6434 case Intrinsic::convert_to_fp16: 6435 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6436 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6437 getValue(I.getArgOperand(0)), 6438 DAG.getTargetConstant(0, sdl, 6439 MVT::i32)))); 6440 return; 6441 case Intrinsic::convert_from_fp16: 6442 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6443 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6444 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6445 getValue(I.getArgOperand(0))))); 6446 return; 6447 case Intrinsic::fptosi_sat: { 6448 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6449 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6450 getValue(I.getArgOperand(0)), 6451 DAG.getValueType(VT.getScalarType()))); 6452 return; 6453 } 6454 case Intrinsic::fptoui_sat: { 6455 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6456 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6457 getValue(I.getArgOperand(0)), 6458 DAG.getValueType(VT.getScalarType()))); 6459 return; 6460 } 6461 case Intrinsic::set_rounding: 6462 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6463 {getRoot(), getValue(I.getArgOperand(0))}); 6464 setValue(&I, Res); 6465 DAG.setRoot(Res.getValue(0)); 6466 return; 6467 case Intrinsic::is_fpclass: { 6468 const DataLayout DLayout = DAG.getDataLayout(); 6469 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6470 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6471 unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6472 MachineFunction &MF = DAG.getMachineFunction(); 6473 const Function &F = MF.getFunction(); 6474 SDValue Op = getValue(I.getArgOperand(0)); 6475 SDNodeFlags Flags; 6476 Flags.setNoFPExcept( 6477 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6478 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6479 // expansion can use illegal types. Making expansion early allows 6480 // legalizing these types prior to selection. 6481 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6482 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6483 setValue(&I, Result); 6484 return; 6485 } 6486 6487 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6488 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6489 setValue(&I, V); 6490 return; 6491 } 6492 case Intrinsic::pcmarker: { 6493 SDValue Tmp = getValue(I.getArgOperand(0)); 6494 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6495 return; 6496 } 6497 case Intrinsic::readcyclecounter: { 6498 SDValue Op = getRoot(); 6499 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6500 DAG.getVTList(MVT::i64, MVT::Other), Op); 6501 setValue(&I, Res); 6502 DAG.setRoot(Res.getValue(1)); 6503 return; 6504 } 6505 case Intrinsic::bitreverse: 6506 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6507 getValue(I.getArgOperand(0)).getValueType(), 6508 getValue(I.getArgOperand(0)))); 6509 return; 6510 case Intrinsic::bswap: 6511 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6512 getValue(I.getArgOperand(0)).getValueType(), 6513 getValue(I.getArgOperand(0)))); 6514 return; 6515 case Intrinsic::cttz: { 6516 SDValue Arg = getValue(I.getArgOperand(0)); 6517 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6518 EVT Ty = Arg.getValueType(); 6519 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6520 sdl, Ty, Arg)); 6521 return; 6522 } 6523 case Intrinsic::ctlz: { 6524 SDValue Arg = getValue(I.getArgOperand(0)); 6525 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6526 EVT Ty = Arg.getValueType(); 6527 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6528 sdl, Ty, Arg)); 6529 return; 6530 } 6531 case Intrinsic::ctpop: { 6532 SDValue Arg = getValue(I.getArgOperand(0)); 6533 EVT Ty = Arg.getValueType(); 6534 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6535 return; 6536 } 6537 case Intrinsic::fshl: 6538 case Intrinsic::fshr: { 6539 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6540 SDValue X = getValue(I.getArgOperand(0)); 6541 SDValue Y = getValue(I.getArgOperand(1)); 6542 SDValue Z = getValue(I.getArgOperand(2)); 6543 EVT VT = X.getValueType(); 6544 6545 if (X == Y) { 6546 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6547 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6548 } else { 6549 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6550 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6551 } 6552 return; 6553 } 6554 case Intrinsic::sadd_sat: { 6555 SDValue Op1 = getValue(I.getArgOperand(0)); 6556 SDValue Op2 = getValue(I.getArgOperand(1)); 6557 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6558 return; 6559 } 6560 case Intrinsic::uadd_sat: { 6561 SDValue Op1 = getValue(I.getArgOperand(0)); 6562 SDValue Op2 = getValue(I.getArgOperand(1)); 6563 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6564 return; 6565 } 6566 case Intrinsic::ssub_sat: { 6567 SDValue Op1 = getValue(I.getArgOperand(0)); 6568 SDValue Op2 = getValue(I.getArgOperand(1)); 6569 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6570 return; 6571 } 6572 case Intrinsic::usub_sat: { 6573 SDValue Op1 = getValue(I.getArgOperand(0)); 6574 SDValue Op2 = getValue(I.getArgOperand(1)); 6575 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6576 return; 6577 } 6578 case Intrinsic::sshl_sat: { 6579 SDValue Op1 = getValue(I.getArgOperand(0)); 6580 SDValue Op2 = getValue(I.getArgOperand(1)); 6581 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6582 return; 6583 } 6584 case Intrinsic::ushl_sat: { 6585 SDValue Op1 = getValue(I.getArgOperand(0)); 6586 SDValue Op2 = getValue(I.getArgOperand(1)); 6587 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6588 return; 6589 } 6590 case Intrinsic::smul_fix: 6591 case Intrinsic::umul_fix: 6592 case Intrinsic::smul_fix_sat: 6593 case Intrinsic::umul_fix_sat: { 6594 SDValue Op1 = getValue(I.getArgOperand(0)); 6595 SDValue Op2 = getValue(I.getArgOperand(1)); 6596 SDValue Op3 = getValue(I.getArgOperand(2)); 6597 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6598 Op1.getValueType(), Op1, Op2, Op3)); 6599 return; 6600 } 6601 case Intrinsic::sdiv_fix: 6602 case Intrinsic::udiv_fix: 6603 case Intrinsic::sdiv_fix_sat: 6604 case Intrinsic::udiv_fix_sat: { 6605 SDValue Op1 = getValue(I.getArgOperand(0)); 6606 SDValue Op2 = getValue(I.getArgOperand(1)); 6607 SDValue Op3 = getValue(I.getArgOperand(2)); 6608 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6609 Op1, Op2, Op3, DAG, TLI)); 6610 return; 6611 } 6612 case Intrinsic::smax: { 6613 SDValue Op1 = getValue(I.getArgOperand(0)); 6614 SDValue Op2 = getValue(I.getArgOperand(1)); 6615 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6616 return; 6617 } 6618 case Intrinsic::smin: { 6619 SDValue Op1 = getValue(I.getArgOperand(0)); 6620 SDValue Op2 = getValue(I.getArgOperand(1)); 6621 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6622 return; 6623 } 6624 case Intrinsic::umax: { 6625 SDValue Op1 = getValue(I.getArgOperand(0)); 6626 SDValue Op2 = getValue(I.getArgOperand(1)); 6627 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6628 return; 6629 } 6630 case Intrinsic::umin: { 6631 SDValue Op1 = getValue(I.getArgOperand(0)); 6632 SDValue Op2 = getValue(I.getArgOperand(1)); 6633 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6634 return; 6635 } 6636 case Intrinsic::abs: { 6637 // TODO: Preserve "int min is poison" arg in SDAG? 6638 SDValue Op1 = getValue(I.getArgOperand(0)); 6639 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6640 return; 6641 } 6642 case Intrinsic::stacksave: { 6643 SDValue Op = getRoot(); 6644 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6645 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6646 setValue(&I, Res); 6647 DAG.setRoot(Res.getValue(1)); 6648 return; 6649 } 6650 case Intrinsic::stackrestore: 6651 Res = getValue(I.getArgOperand(0)); 6652 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6653 return; 6654 case Intrinsic::get_dynamic_area_offset: { 6655 SDValue Op = getRoot(); 6656 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6657 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6658 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6659 // target. 6660 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6661 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6662 " intrinsic!"); 6663 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6664 Op); 6665 DAG.setRoot(Op); 6666 setValue(&I, Res); 6667 return; 6668 } 6669 case Intrinsic::stackguard: { 6670 MachineFunction &MF = DAG.getMachineFunction(); 6671 const Module &M = *MF.getFunction().getParent(); 6672 SDValue Chain = getRoot(); 6673 if (TLI.useLoadStackGuardNode()) { 6674 Res = getLoadStackGuard(DAG, sdl, Chain); 6675 } else { 6676 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6677 const Value *Global = TLI.getSDagStackGuard(M); 6678 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6679 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6680 MachinePointerInfo(Global, 0), Align, 6681 MachineMemOperand::MOVolatile); 6682 } 6683 if (TLI.useStackGuardXorFP()) 6684 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6685 DAG.setRoot(Chain); 6686 setValue(&I, Res); 6687 return; 6688 } 6689 case Intrinsic::stackprotector: { 6690 // Emit code into the DAG to store the stack guard onto the stack. 6691 MachineFunction &MF = DAG.getMachineFunction(); 6692 MachineFrameInfo &MFI = MF.getFrameInfo(); 6693 SDValue Src, Chain = getRoot(); 6694 6695 if (TLI.useLoadStackGuardNode()) 6696 Src = getLoadStackGuard(DAG, sdl, Chain); 6697 else 6698 Src = getValue(I.getArgOperand(0)); // The guard's value. 6699 6700 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6701 6702 int FI = FuncInfo.StaticAllocaMap[Slot]; 6703 MFI.setStackProtectorIndex(FI); 6704 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6705 6706 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6707 6708 // Store the stack protector onto the stack. 6709 Res = DAG.getStore( 6710 Chain, sdl, Src, FIN, 6711 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6712 MaybeAlign(), MachineMemOperand::MOVolatile); 6713 setValue(&I, Res); 6714 DAG.setRoot(Res); 6715 return; 6716 } 6717 case Intrinsic::objectsize: 6718 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6719 6720 case Intrinsic::is_constant: 6721 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6722 6723 case Intrinsic::annotation: 6724 case Intrinsic::ptr_annotation: 6725 case Intrinsic::launder_invariant_group: 6726 case Intrinsic::strip_invariant_group: 6727 // Drop the intrinsic, but forward the value 6728 setValue(&I, getValue(I.getOperand(0))); 6729 return; 6730 6731 case Intrinsic::assume: 6732 case Intrinsic::experimental_noalias_scope_decl: 6733 case Intrinsic::var_annotation: 6734 case Intrinsic::sideeffect: 6735 // Discard annotate attributes, noalias scope declarations, assumptions, and 6736 // artificial side-effects. 6737 return; 6738 6739 case Intrinsic::codeview_annotation: { 6740 // Emit a label associated with this metadata. 6741 MachineFunction &MF = DAG.getMachineFunction(); 6742 MCSymbol *Label = 6743 MF.getMMI().getContext().createTempSymbol("annotation", true); 6744 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6745 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6746 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6747 DAG.setRoot(Res); 6748 return; 6749 } 6750 6751 case Intrinsic::init_trampoline: { 6752 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6753 6754 SDValue Ops[6]; 6755 Ops[0] = getRoot(); 6756 Ops[1] = getValue(I.getArgOperand(0)); 6757 Ops[2] = getValue(I.getArgOperand(1)); 6758 Ops[3] = getValue(I.getArgOperand(2)); 6759 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6760 Ops[5] = DAG.getSrcValue(F); 6761 6762 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6763 6764 DAG.setRoot(Res); 6765 return; 6766 } 6767 case Intrinsic::adjust_trampoline: 6768 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6769 TLI.getPointerTy(DAG.getDataLayout()), 6770 getValue(I.getArgOperand(0)))); 6771 return; 6772 case Intrinsic::gcroot: { 6773 assert(DAG.getMachineFunction().getFunction().hasGC() && 6774 "only valid in functions with gc specified, enforced by Verifier"); 6775 assert(GFI && "implied by previous"); 6776 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6777 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6778 6779 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6780 GFI->addStackRoot(FI->getIndex(), TypeMap); 6781 return; 6782 } 6783 case Intrinsic::gcread: 6784 case Intrinsic::gcwrite: 6785 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6786 case Intrinsic::flt_rounds: 6787 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6788 setValue(&I, Res); 6789 DAG.setRoot(Res.getValue(1)); 6790 return; 6791 6792 case Intrinsic::expect: 6793 // Just replace __builtin_expect(exp, c) with EXP. 6794 setValue(&I, getValue(I.getArgOperand(0))); 6795 return; 6796 6797 case Intrinsic::ubsantrap: 6798 case Intrinsic::debugtrap: 6799 case Intrinsic::trap: { 6800 StringRef TrapFuncName = 6801 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6802 if (TrapFuncName.empty()) { 6803 switch (Intrinsic) { 6804 case Intrinsic::trap: 6805 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6806 break; 6807 case Intrinsic::debugtrap: 6808 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6809 break; 6810 case Intrinsic::ubsantrap: 6811 DAG.setRoot(DAG.getNode( 6812 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6813 DAG.getTargetConstant( 6814 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6815 MVT::i32))); 6816 break; 6817 default: llvm_unreachable("unknown trap intrinsic"); 6818 } 6819 return; 6820 } 6821 TargetLowering::ArgListTy Args; 6822 if (Intrinsic == Intrinsic::ubsantrap) { 6823 Args.push_back(TargetLoweringBase::ArgListEntry()); 6824 Args[0].Val = I.getArgOperand(0); 6825 Args[0].Node = getValue(Args[0].Val); 6826 Args[0].Ty = Args[0].Val->getType(); 6827 } 6828 6829 TargetLowering::CallLoweringInfo CLI(DAG); 6830 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6831 CallingConv::C, I.getType(), 6832 DAG.getExternalSymbol(TrapFuncName.data(), 6833 TLI.getPointerTy(DAG.getDataLayout())), 6834 std::move(Args)); 6835 6836 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6837 DAG.setRoot(Result.second); 6838 return; 6839 } 6840 6841 case Intrinsic::uadd_with_overflow: 6842 case Intrinsic::sadd_with_overflow: 6843 case Intrinsic::usub_with_overflow: 6844 case Intrinsic::ssub_with_overflow: 6845 case Intrinsic::umul_with_overflow: 6846 case Intrinsic::smul_with_overflow: { 6847 ISD::NodeType Op; 6848 switch (Intrinsic) { 6849 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6850 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6851 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6852 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6853 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6854 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6855 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6856 } 6857 SDValue Op1 = getValue(I.getArgOperand(0)); 6858 SDValue Op2 = getValue(I.getArgOperand(1)); 6859 6860 EVT ResultVT = Op1.getValueType(); 6861 EVT OverflowVT = MVT::i1; 6862 if (ResultVT.isVector()) 6863 OverflowVT = EVT::getVectorVT( 6864 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6865 6866 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6867 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6868 return; 6869 } 6870 case Intrinsic::prefetch: { 6871 SDValue Ops[5]; 6872 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6873 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6874 Ops[0] = DAG.getRoot(); 6875 Ops[1] = getValue(I.getArgOperand(0)); 6876 Ops[2] = getValue(I.getArgOperand(1)); 6877 Ops[3] = getValue(I.getArgOperand(2)); 6878 Ops[4] = getValue(I.getArgOperand(3)); 6879 SDValue Result = DAG.getMemIntrinsicNode( 6880 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6881 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6882 /* align */ None, Flags); 6883 6884 // Chain the prefetch in parallell with any pending loads, to stay out of 6885 // the way of later optimizations. 6886 PendingLoads.push_back(Result); 6887 Result = getRoot(); 6888 DAG.setRoot(Result); 6889 return; 6890 } 6891 case Intrinsic::lifetime_start: 6892 case Intrinsic::lifetime_end: { 6893 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6894 // Stack coloring is not enabled in O0, discard region information. 6895 if (TM.getOptLevel() == CodeGenOpt::None) 6896 return; 6897 6898 const int64_t ObjectSize = 6899 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6900 Value *const ObjectPtr = I.getArgOperand(1); 6901 SmallVector<const Value *, 4> Allocas; 6902 getUnderlyingObjects(ObjectPtr, Allocas); 6903 6904 for (const Value *Alloca : Allocas) { 6905 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6906 6907 // Could not find an Alloca. 6908 if (!LifetimeObject) 6909 continue; 6910 6911 // First check that the Alloca is static, otherwise it won't have a 6912 // valid frame index. 6913 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6914 if (SI == FuncInfo.StaticAllocaMap.end()) 6915 return; 6916 6917 const int FrameIndex = SI->second; 6918 int64_t Offset; 6919 if (GetPointerBaseWithConstantOffset( 6920 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6921 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6922 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6923 Offset); 6924 DAG.setRoot(Res); 6925 } 6926 return; 6927 } 6928 case Intrinsic::pseudoprobe: { 6929 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6930 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6931 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6932 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6933 DAG.setRoot(Res); 6934 return; 6935 } 6936 case Intrinsic::invariant_start: 6937 // Discard region information. 6938 setValue(&I, 6939 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6940 return; 6941 case Intrinsic::invariant_end: 6942 // Discard region information. 6943 return; 6944 case Intrinsic::clear_cache: 6945 /// FunctionName may be null. 6946 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6947 lowerCallToExternalSymbol(I, FunctionName); 6948 return; 6949 case Intrinsic::donothing: 6950 case Intrinsic::seh_try_begin: 6951 case Intrinsic::seh_scope_begin: 6952 case Intrinsic::seh_try_end: 6953 case Intrinsic::seh_scope_end: 6954 // ignore 6955 return; 6956 case Intrinsic::experimental_stackmap: 6957 visitStackmap(I); 6958 return; 6959 case Intrinsic::experimental_patchpoint_void: 6960 case Intrinsic::experimental_patchpoint_i64: 6961 visitPatchpoint(I); 6962 return; 6963 case Intrinsic::experimental_gc_statepoint: 6964 LowerStatepoint(cast<GCStatepointInst>(I)); 6965 return; 6966 case Intrinsic::experimental_gc_result: 6967 visitGCResult(cast<GCResultInst>(I)); 6968 return; 6969 case Intrinsic::experimental_gc_relocate: 6970 visitGCRelocate(cast<GCRelocateInst>(I)); 6971 return; 6972 case Intrinsic::instrprof_cover: 6973 llvm_unreachable("instrprof failed to lower a cover"); 6974 case Intrinsic::instrprof_increment: 6975 llvm_unreachable("instrprof failed to lower an increment"); 6976 case Intrinsic::instrprof_value_profile: 6977 llvm_unreachable("instrprof failed to lower a value profiling call"); 6978 case Intrinsic::localescape: { 6979 MachineFunction &MF = DAG.getMachineFunction(); 6980 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6981 6982 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6983 // is the same on all targets. 6984 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 6985 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6986 if (isa<ConstantPointerNull>(Arg)) 6987 continue; // Skip null pointers. They represent a hole in index space. 6988 AllocaInst *Slot = cast<AllocaInst>(Arg); 6989 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6990 "can only escape static allocas"); 6991 int FI = FuncInfo.StaticAllocaMap[Slot]; 6992 MCSymbol *FrameAllocSym = 6993 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6994 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6995 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6996 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6997 .addSym(FrameAllocSym) 6998 .addFrameIndex(FI); 6999 } 7000 7001 return; 7002 } 7003 7004 case Intrinsic::localrecover: { 7005 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7006 MachineFunction &MF = DAG.getMachineFunction(); 7007 7008 // Get the symbol that defines the frame offset. 7009 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7010 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7011 unsigned IdxVal = 7012 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7013 MCSymbol *FrameAllocSym = 7014 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7015 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7016 7017 Value *FP = I.getArgOperand(1); 7018 SDValue FPVal = getValue(FP); 7019 EVT PtrVT = FPVal.getValueType(); 7020 7021 // Create a MCSymbol for the label to avoid any target lowering 7022 // that would make this PC relative. 7023 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7024 SDValue OffsetVal = 7025 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7026 7027 // Add the offset to the FP. 7028 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7029 setValue(&I, Add); 7030 7031 return; 7032 } 7033 7034 case Intrinsic::eh_exceptionpointer: 7035 case Intrinsic::eh_exceptioncode: { 7036 // Get the exception pointer vreg, copy from it, and resize it to fit. 7037 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7038 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7039 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7040 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7041 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7042 if (Intrinsic == Intrinsic::eh_exceptioncode) 7043 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7044 setValue(&I, N); 7045 return; 7046 } 7047 case Intrinsic::xray_customevent: { 7048 // Here we want to make sure that the intrinsic behaves as if it has a 7049 // specific calling convention, and only for x86_64. 7050 // FIXME: Support other platforms later. 7051 const auto &Triple = DAG.getTarget().getTargetTriple(); 7052 if (Triple.getArch() != Triple::x86_64) 7053 return; 7054 7055 SmallVector<SDValue, 8> Ops; 7056 7057 // We want to say that we always want the arguments in registers. 7058 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7059 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7060 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7061 SDValue Chain = getRoot(); 7062 Ops.push_back(LogEntryVal); 7063 Ops.push_back(StrSizeVal); 7064 Ops.push_back(Chain); 7065 7066 // We need to enforce the calling convention for the callsite, so that 7067 // argument ordering is enforced correctly, and that register allocation can 7068 // see that some registers may be assumed clobbered and have to preserve 7069 // them across calls to the intrinsic. 7070 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7071 sdl, NodeTys, Ops); 7072 SDValue patchableNode = SDValue(MN, 0); 7073 DAG.setRoot(patchableNode); 7074 setValue(&I, patchableNode); 7075 return; 7076 } 7077 case Intrinsic::xray_typedevent: { 7078 // Here we want to make sure that the intrinsic behaves as if it has a 7079 // specific calling convention, and only for x86_64. 7080 // FIXME: Support other platforms later. 7081 const auto &Triple = DAG.getTarget().getTargetTriple(); 7082 if (Triple.getArch() != Triple::x86_64) 7083 return; 7084 7085 SmallVector<SDValue, 8> Ops; 7086 7087 // We want to say that we always want the arguments in registers. 7088 // It's unclear to me how manipulating the selection DAG here forces callers 7089 // to provide arguments in registers instead of on the stack. 7090 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7091 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7092 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7093 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7094 SDValue Chain = getRoot(); 7095 Ops.push_back(LogTypeId); 7096 Ops.push_back(LogEntryVal); 7097 Ops.push_back(StrSizeVal); 7098 Ops.push_back(Chain); 7099 7100 // We need to enforce the calling convention for the callsite, so that 7101 // argument ordering is enforced correctly, and that register allocation can 7102 // see that some registers may be assumed clobbered and have to preserve 7103 // them across calls to the intrinsic. 7104 MachineSDNode *MN = DAG.getMachineNode( 7105 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7106 SDValue patchableNode = SDValue(MN, 0); 7107 DAG.setRoot(patchableNode); 7108 setValue(&I, patchableNode); 7109 return; 7110 } 7111 case Intrinsic::experimental_deoptimize: 7112 LowerDeoptimizeCall(&I); 7113 return; 7114 case Intrinsic::experimental_stepvector: 7115 visitStepVector(I); 7116 return; 7117 case Intrinsic::vector_reduce_fadd: 7118 case Intrinsic::vector_reduce_fmul: 7119 case Intrinsic::vector_reduce_add: 7120 case Intrinsic::vector_reduce_mul: 7121 case Intrinsic::vector_reduce_and: 7122 case Intrinsic::vector_reduce_or: 7123 case Intrinsic::vector_reduce_xor: 7124 case Intrinsic::vector_reduce_smax: 7125 case Intrinsic::vector_reduce_smin: 7126 case Intrinsic::vector_reduce_umax: 7127 case Intrinsic::vector_reduce_umin: 7128 case Intrinsic::vector_reduce_fmax: 7129 case Intrinsic::vector_reduce_fmin: 7130 visitVectorReduce(I, Intrinsic); 7131 return; 7132 7133 case Intrinsic::icall_branch_funnel: { 7134 SmallVector<SDValue, 16> Ops; 7135 Ops.push_back(getValue(I.getArgOperand(0))); 7136 7137 int64_t Offset; 7138 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7139 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7140 if (!Base) 7141 report_fatal_error( 7142 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7143 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7144 7145 struct BranchFunnelTarget { 7146 int64_t Offset; 7147 SDValue Target; 7148 }; 7149 SmallVector<BranchFunnelTarget, 8> Targets; 7150 7151 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7152 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7153 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7154 if (ElemBase != Base) 7155 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7156 "to the same GlobalValue"); 7157 7158 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7159 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7160 if (!GA) 7161 report_fatal_error( 7162 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7163 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7164 GA->getGlobal(), sdl, Val.getValueType(), 7165 GA->getOffset())}); 7166 } 7167 llvm::sort(Targets, 7168 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7169 return T1.Offset < T2.Offset; 7170 }); 7171 7172 for (auto &T : Targets) { 7173 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7174 Ops.push_back(T.Target); 7175 } 7176 7177 Ops.push_back(DAG.getRoot()); // Chain 7178 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7179 MVT::Other, Ops), 7180 0); 7181 DAG.setRoot(N); 7182 setValue(&I, N); 7183 HasTailCall = true; 7184 return; 7185 } 7186 7187 case Intrinsic::wasm_landingpad_index: 7188 // Information this intrinsic contained has been transferred to 7189 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7190 // delete it now. 7191 return; 7192 7193 case Intrinsic::aarch64_settag: 7194 case Intrinsic::aarch64_settag_zero: { 7195 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7196 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7197 SDValue Val = TSI.EmitTargetCodeForSetTag( 7198 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7199 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7200 ZeroMemory); 7201 DAG.setRoot(Val); 7202 setValue(&I, Val); 7203 return; 7204 } 7205 case Intrinsic::ptrmask: { 7206 SDValue Ptr = getValue(I.getOperand(0)); 7207 SDValue Const = getValue(I.getOperand(1)); 7208 7209 EVT PtrVT = Ptr.getValueType(); 7210 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7211 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7212 return; 7213 } 7214 case Intrinsic::threadlocal_address: { 7215 setValue(&I, getValue(I.getOperand(0))); 7216 return; 7217 } 7218 case Intrinsic::get_active_lane_mask: { 7219 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7220 SDValue Index = getValue(I.getOperand(0)); 7221 EVT ElementVT = Index.getValueType(); 7222 7223 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7224 visitTargetIntrinsic(I, Intrinsic); 7225 return; 7226 } 7227 7228 SDValue TripCount = getValue(I.getOperand(1)); 7229 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7230 7231 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7232 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7233 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7234 SDValue VectorInduction = DAG.getNode( 7235 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7236 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7237 VectorTripCount, ISD::CondCode::SETULT); 7238 setValue(&I, SetCC); 7239 return; 7240 } 7241 case Intrinsic::vector_insert: { 7242 SDValue Vec = getValue(I.getOperand(0)); 7243 SDValue SubVec = getValue(I.getOperand(1)); 7244 SDValue Index = getValue(I.getOperand(2)); 7245 7246 // The intrinsic's index type is i64, but the SDNode requires an index type 7247 // suitable for the target. Convert the index as required. 7248 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7249 if (Index.getValueType() != VectorIdxTy) 7250 Index = DAG.getVectorIdxConstant( 7251 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7252 7253 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7254 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7255 Index)); 7256 return; 7257 } 7258 case Intrinsic::vector_extract: { 7259 SDValue Vec = getValue(I.getOperand(0)); 7260 SDValue Index = getValue(I.getOperand(1)); 7261 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7262 7263 // The intrinsic's index type is i64, but the SDNode requires an index type 7264 // suitable for the target. Convert the index as required. 7265 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7266 if (Index.getValueType() != VectorIdxTy) 7267 Index = DAG.getVectorIdxConstant( 7268 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7269 7270 setValue(&I, 7271 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7272 return; 7273 } 7274 case Intrinsic::experimental_vector_reverse: 7275 visitVectorReverse(I); 7276 return; 7277 case Intrinsic::experimental_vector_splice: 7278 visitVectorSplice(I); 7279 return; 7280 } 7281 } 7282 7283 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7284 const ConstrainedFPIntrinsic &FPI) { 7285 SDLoc sdl = getCurSDLoc(); 7286 7287 // We do not need to serialize constrained FP intrinsics against 7288 // each other or against (nonvolatile) loads, so they can be 7289 // chained like loads. 7290 SDValue Chain = DAG.getRoot(); 7291 SmallVector<SDValue, 4> Opers; 7292 Opers.push_back(Chain); 7293 if (FPI.isUnaryOp()) { 7294 Opers.push_back(getValue(FPI.getArgOperand(0))); 7295 } else if (FPI.isTernaryOp()) { 7296 Opers.push_back(getValue(FPI.getArgOperand(0))); 7297 Opers.push_back(getValue(FPI.getArgOperand(1))); 7298 Opers.push_back(getValue(FPI.getArgOperand(2))); 7299 } else { 7300 Opers.push_back(getValue(FPI.getArgOperand(0))); 7301 Opers.push_back(getValue(FPI.getArgOperand(1))); 7302 } 7303 7304 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7305 assert(Result.getNode()->getNumValues() == 2); 7306 7307 // Push node to the appropriate list so that future instructions can be 7308 // chained up correctly. 7309 SDValue OutChain = Result.getValue(1); 7310 switch (EB) { 7311 case fp::ExceptionBehavior::ebIgnore: 7312 // The only reason why ebIgnore nodes still need to be chained is that 7313 // they might depend on the current rounding mode, and therefore must 7314 // not be moved across instruction that may change that mode. 7315 [[fallthrough]]; 7316 case fp::ExceptionBehavior::ebMayTrap: 7317 // These must not be moved across calls or instructions that may change 7318 // floating-point exception masks. 7319 PendingConstrainedFP.push_back(OutChain); 7320 break; 7321 case fp::ExceptionBehavior::ebStrict: 7322 // These must not be moved across calls or instructions that may change 7323 // floating-point exception masks or read floating-point exception flags. 7324 // In addition, they cannot be optimized out even if unused. 7325 PendingConstrainedFPStrict.push_back(OutChain); 7326 break; 7327 } 7328 }; 7329 7330 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7331 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7332 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7333 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7334 7335 SDNodeFlags Flags; 7336 if (EB == fp::ExceptionBehavior::ebIgnore) 7337 Flags.setNoFPExcept(true); 7338 7339 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7340 Flags.copyFMF(*FPOp); 7341 7342 unsigned Opcode; 7343 switch (FPI.getIntrinsicID()) { 7344 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7345 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7346 case Intrinsic::INTRINSIC: \ 7347 Opcode = ISD::STRICT_##DAGN; \ 7348 break; 7349 #include "llvm/IR/ConstrainedOps.def" 7350 case Intrinsic::experimental_constrained_fmuladd: { 7351 Opcode = ISD::STRICT_FMA; 7352 // Break fmuladd into fmul and fadd. 7353 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7354 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7355 Opers.pop_back(); 7356 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7357 pushOutChain(Mul, EB); 7358 Opcode = ISD::STRICT_FADD; 7359 Opers.clear(); 7360 Opers.push_back(Mul.getValue(1)); 7361 Opers.push_back(Mul.getValue(0)); 7362 Opers.push_back(getValue(FPI.getArgOperand(2))); 7363 } 7364 break; 7365 } 7366 } 7367 7368 // A few strict DAG nodes carry additional operands that are not 7369 // set up by the default code above. 7370 switch (Opcode) { 7371 default: break; 7372 case ISD::STRICT_FP_ROUND: 7373 Opers.push_back( 7374 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7375 break; 7376 case ISD::STRICT_FSETCC: 7377 case ISD::STRICT_FSETCCS: { 7378 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7379 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7380 if (TM.Options.NoNaNsFPMath) 7381 Condition = getFCmpCodeWithoutNaN(Condition); 7382 Opers.push_back(DAG.getCondCode(Condition)); 7383 break; 7384 } 7385 } 7386 7387 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7388 pushOutChain(Result, EB); 7389 7390 SDValue FPResult = Result.getValue(0); 7391 setValue(&FPI, FPResult); 7392 } 7393 7394 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7395 Optional<unsigned> ResOPC; 7396 switch (VPIntrin.getIntrinsicID()) { 7397 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7398 case Intrinsic::VPID: \ 7399 ResOPC = ISD::VPSD; \ 7400 break; 7401 #include "llvm/IR/VPIntrinsics.def" 7402 } 7403 7404 if (!ResOPC) 7405 llvm_unreachable( 7406 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7407 7408 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7409 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7410 if (VPIntrin.getFastMathFlags().allowReassoc()) 7411 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7412 : ISD::VP_REDUCE_FMUL; 7413 } 7414 7415 return *ResOPC; 7416 } 7417 7418 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT, 7419 SmallVector<SDValue, 7> &OpValues) { 7420 SDLoc DL = getCurSDLoc(); 7421 Value *PtrOperand = VPIntrin.getArgOperand(0); 7422 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7423 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7424 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7425 SDValue LD; 7426 bool AddToChain = true; 7427 // Do not serialize variable-length loads of constant memory with 7428 // anything. 7429 if (!Alignment) 7430 Alignment = DAG.getEVTAlign(VT); 7431 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7432 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7433 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7434 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7435 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7436 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7437 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7438 MMO, false /*IsExpanding */); 7439 if (AddToChain) 7440 PendingLoads.push_back(LD.getValue(1)); 7441 setValue(&VPIntrin, LD); 7442 } 7443 7444 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT, 7445 SmallVector<SDValue, 7> &OpValues) { 7446 SDLoc DL = getCurSDLoc(); 7447 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7448 Value *PtrOperand = VPIntrin.getArgOperand(0); 7449 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7450 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7451 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7452 SDValue LD; 7453 if (!Alignment) 7454 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7455 unsigned AS = 7456 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7457 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7458 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7459 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7460 SDValue Base, Index, Scale; 7461 ISD::MemIndexType IndexType; 7462 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7463 this, VPIntrin.getParent(), 7464 VT.getScalarStoreSize()); 7465 if (!UniformBase) { 7466 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7467 Index = getValue(PtrOperand); 7468 IndexType = ISD::SIGNED_SCALED; 7469 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7470 } 7471 EVT IdxVT = Index.getValueType(); 7472 EVT EltTy = IdxVT.getVectorElementType(); 7473 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7474 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7475 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7476 } 7477 LD = DAG.getGatherVP( 7478 DAG.getVTList(VT, MVT::Other), VT, DL, 7479 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7480 IndexType); 7481 PendingLoads.push_back(LD.getValue(1)); 7482 setValue(&VPIntrin, LD); 7483 } 7484 7485 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin, 7486 SmallVector<SDValue, 7> &OpValues) { 7487 SDLoc DL = getCurSDLoc(); 7488 Value *PtrOperand = VPIntrin.getArgOperand(1); 7489 EVT VT = OpValues[0].getValueType(); 7490 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7491 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7492 SDValue ST; 7493 if (!Alignment) 7494 Alignment = DAG.getEVTAlign(VT); 7495 SDValue Ptr = OpValues[1]; 7496 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7497 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7498 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7499 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7500 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7501 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7502 /* IsTruncating */ false, /*IsCompressing*/ false); 7503 DAG.setRoot(ST); 7504 setValue(&VPIntrin, ST); 7505 } 7506 7507 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin, 7508 SmallVector<SDValue, 7> &OpValues) { 7509 SDLoc DL = getCurSDLoc(); 7510 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7511 Value *PtrOperand = VPIntrin.getArgOperand(1); 7512 EVT VT = OpValues[0].getValueType(); 7513 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7514 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7515 SDValue ST; 7516 if (!Alignment) 7517 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7518 unsigned AS = 7519 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7520 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7521 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7522 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7523 SDValue Base, Index, Scale; 7524 ISD::MemIndexType IndexType; 7525 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7526 this, VPIntrin.getParent(), 7527 VT.getScalarStoreSize()); 7528 if (!UniformBase) { 7529 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7530 Index = getValue(PtrOperand); 7531 IndexType = ISD::SIGNED_SCALED; 7532 Scale = 7533 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7534 } 7535 EVT IdxVT = Index.getValueType(); 7536 EVT EltTy = IdxVT.getVectorElementType(); 7537 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7538 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7539 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7540 } 7541 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7542 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7543 OpValues[2], OpValues[3]}, 7544 MMO, IndexType); 7545 DAG.setRoot(ST); 7546 setValue(&VPIntrin, ST); 7547 } 7548 7549 void SelectionDAGBuilder::visitVPStridedLoad( 7550 const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) { 7551 SDLoc DL = getCurSDLoc(); 7552 Value *PtrOperand = VPIntrin.getArgOperand(0); 7553 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7554 if (!Alignment) 7555 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7556 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7557 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7558 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7559 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7560 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7561 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7562 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7563 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7564 7565 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7566 OpValues[2], OpValues[3], MMO, 7567 false /*IsExpanding*/); 7568 7569 if (AddToChain) 7570 PendingLoads.push_back(LD.getValue(1)); 7571 setValue(&VPIntrin, LD); 7572 } 7573 7574 void SelectionDAGBuilder::visitVPStridedStore( 7575 const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) { 7576 SDLoc DL = getCurSDLoc(); 7577 Value *PtrOperand = VPIntrin.getArgOperand(1); 7578 EVT VT = OpValues[0].getValueType(); 7579 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7580 if (!Alignment) 7581 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7582 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7583 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7584 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7585 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7586 7587 SDValue ST = DAG.getStridedStoreVP( 7588 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7589 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7590 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7591 /*IsCompressing*/ false); 7592 7593 DAG.setRoot(ST); 7594 setValue(&VPIntrin, ST); 7595 } 7596 7597 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7598 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7599 SDLoc DL = getCurSDLoc(); 7600 7601 ISD::CondCode Condition; 7602 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7603 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7604 if (IsFP) { 7605 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7606 // flags, but calls that don't return floating-point types can't be 7607 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7608 Condition = getFCmpCondCode(CondCode); 7609 if (TM.Options.NoNaNsFPMath) 7610 Condition = getFCmpCodeWithoutNaN(Condition); 7611 } else { 7612 Condition = getICmpCondCode(CondCode); 7613 } 7614 7615 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7616 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7617 // #2 is the condition code 7618 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7619 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7620 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7621 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7622 "Unexpected target EVL type"); 7623 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7624 7625 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7626 VPIntrin.getType()); 7627 setValue(&VPIntrin, 7628 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7629 } 7630 7631 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7632 const VPIntrinsic &VPIntrin) { 7633 SDLoc DL = getCurSDLoc(); 7634 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7635 7636 auto IID = VPIntrin.getIntrinsicID(); 7637 7638 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7639 return visitVPCmp(*CmpI); 7640 7641 SmallVector<EVT, 4> ValueVTs; 7642 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7643 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7644 SDVTList VTs = DAG.getVTList(ValueVTs); 7645 7646 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7647 7648 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7649 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7650 "Unexpected target EVL type"); 7651 7652 // Request operands. 7653 SmallVector<SDValue, 7> OpValues; 7654 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7655 auto Op = getValue(VPIntrin.getArgOperand(I)); 7656 if (I == EVLParamPos) 7657 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7658 OpValues.push_back(Op); 7659 } 7660 7661 switch (Opcode) { 7662 default: { 7663 SDNodeFlags SDFlags; 7664 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7665 SDFlags.copyFMF(*FPMO); 7666 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7667 setValue(&VPIntrin, Result); 7668 break; 7669 } 7670 case ISD::VP_LOAD: 7671 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 7672 break; 7673 case ISD::VP_GATHER: 7674 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 7675 break; 7676 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7677 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7678 break; 7679 case ISD::VP_STORE: 7680 visitVPStore(VPIntrin, OpValues); 7681 break; 7682 case ISD::VP_SCATTER: 7683 visitVPScatter(VPIntrin, OpValues); 7684 break; 7685 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7686 visitVPStridedStore(VPIntrin, OpValues); 7687 break; 7688 case ISD::VP_FMULADD: { 7689 assert(OpValues.size() == 5 && "Unexpected number of operands"); 7690 SDNodeFlags SDFlags; 7691 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7692 SDFlags.copyFMF(*FPMO); 7693 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 7694 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 7695 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 7696 } else { 7697 SDValue Mul = DAG.getNode( 7698 ISD::VP_FMUL, DL, VTs, 7699 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 7700 SDValue Add = 7701 DAG.getNode(ISD::VP_FADD, DL, VTs, 7702 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 7703 setValue(&VPIntrin, Add); 7704 } 7705 break; 7706 } 7707 } 7708 } 7709 7710 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7711 const BasicBlock *EHPadBB, 7712 MCSymbol *&BeginLabel) { 7713 MachineFunction &MF = DAG.getMachineFunction(); 7714 MachineModuleInfo &MMI = MF.getMMI(); 7715 7716 // Insert a label before the invoke call to mark the try range. This can be 7717 // used to detect deletion of the invoke via the MachineModuleInfo. 7718 BeginLabel = MMI.getContext().createTempSymbol(); 7719 7720 // For SjLj, keep track of which landing pads go with which invokes 7721 // so as to maintain the ordering of pads in the LSDA. 7722 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7723 if (CallSiteIndex) { 7724 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7725 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7726 7727 // Now that the call site is handled, stop tracking it. 7728 MMI.setCurrentCallSite(0); 7729 } 7730 7731 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7732 } 7733 7734 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7735 const BasicBlock *EHPadBB, 7736 MCSymbol *BeginLabel) { 7737 assert(BeginLabel && "BeginLabel should've been set"); 7738 7739 MachineFunction &MF = DAG.getMachineFunction(); 7740 MachineModuleInfo &MMI = MF.getMMI(); 7741 7742 // Insert a label at the end of the invoke call to mark the try range. This 7743 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7744 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7745 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7746 7747 // Inform MachineModuleInfo of range. 7748 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7749 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7750 // actually use outlined funclets and their LSDA info style. 7751 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7752 assert(II && "II should've been set"); 7753 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7754 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7755 } else if (!isScopedEHPersonality(Pers)) { 7756 assert(EHPadBB); 7757 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7758 } 7759 7760 return Chain; 7761 } 7762 7763 std::pair<SDValue, SDValue> 7764 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7765 const BasicBlock *EHPadBB) { 7766 MCSymbol *BeginLabel = nullptr; 7767 7768 if (EHPadBB) { 7769 // Both PendingLoads and PendingExports must be flushed here; 7770 // this call might not return. 7771 (void)getRoot(); 7772 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7773 CLI.setChain(getRoot()); 7774 } 7775 7776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7777 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7778 7779 assert((CLI.IsTailCall || Result.second.getNode()) && 7780 "Non-null chain expected with non-tail call!"); 7781 assert((Result.second.getNode() || !Result.first.getNode()) && 7782 "Null value expected with tail call!"); 7783 7784 if (!Result.second.getNode()) { 7785 // As a special case, a null chain means that a tail call has been emitted 7786 // and the DAG root is already updated. 7787 HasTailCall = true; 7788 7789 // Since there's no actual continuation from this block, nothing can be 7790 // relying on us setting vregs for them. 7791 PendingExports.clear(); 7792 } else { 7793 DAG.setRoot(Result.second); 7794 } 7795 7796 if (EHPadBB) { 7797 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7798 BeginLabel)); 7799 } 7800 7801 return Result; 7802 } 7803 7804 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7805 bool isTailCall, 7806 bool isMustTailCall, 7807 const BasicBlock *EHPadBB) { 7808 auto &DL = DAG.getDataLayout(); 7809 FunctionType *FTy = CB.getFunctionType(); 7810 Type *RetTy = CB.getType(); 7811 7812 TargetLowering::ArgListTy Args; 7813 Args.reserve(CB.arg_size()); 7814 7815 const Value *SwiftErrorVal = nullptr; 7816 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7817 7818 if (isTailCall) { 7819 // Avoid emitting tail calls in functions with the disable-tail-calls 7820 // attribute. 7821 auto *Caller = CB.getParent()->getParent(); 7822 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7823 "true" && !isMustTailCall) 7824 isTailCall = false; 7825 7826 // We can't tail call inside a function with a swifterror argument. Lowering 7827 // does not support this yet. It would have to move into the swifterror 7828 // register before the call. 7829 if (TLI.supportSwiftError() && 7830 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7831 isTailCall = false; 7832 } 7833 7834 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7835 TargetLowering::ArgListEntry Entry; 7836 const Value *V = *I; 7837 7838 // Skip empty types 7839 if (V->getType()->isEmptyTy()) 7840 continue; 7841 7842 SDValue ArgNode = getValue(V); 7843 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7844 7845 Entry.setAttributes(&CB, I - CB.arg_begin()); 7846 7847 // Use swifterror virtual register as input to the call. 7848 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7849 SwiftErrorVal = V; 7850 // We find the virtual register for the actual swifterror argument. 7851 // Instead of using the Value, we use the virtual register instead. 7852 Entry.Node = 7853 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7854 EVT(TLI.getPointerTy(DL))); 7855 } 7856 7857 Args.push_back(Entry); 7858 7859 // If we have an explicit sret argument that is an Instruction, (i.e., it 7860 // might point to function-local memory), we can't meaningfully tail-call. 7861 if (Entry.IsSRet && isa<Instruction>(V)) 7862 isTailCall = false; 7863 } 7864 7865 // If call site has a cfguardtarget operand bundle, create and add an 7866 // additional ArgListEntry. 7867 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7868 TargetLowering::ArgListEntry Entry; 7869 Value *V = Bundle->Inputs[0]; 7870 SDValue ArgNode = getValue(V); 7871 Entry.Node = ArgNode; 7872 Entry.Ty = V->getType(); 7873 Entry.IsCFGuardTarget = true; 7874 Args.push_back(Entry); 7875 } 7876 7877 // Check if target-independent constraints permit a tail call here. 7878 // Target-dependent constraints are checked within TLI->LowerCallTo. 7879 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7880 isTailCall = false; 7881 7882 // Disable tail calls if there is an swifterror argument. Targets have not 7883 // been updated to support tail calls. 7884 if (TLI.supportSwiftError() && SwiftErrorVal) 7885 isTailCall = false; 7886 7887 ConstantInt *CFIType = nullptr; 7888 if (CB.isIndirectCall()) { 7889 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 7890 if (!TLI.supportKCFIBundles()) 7891 report_fatal_error( 7892 "Target doesn't support calls with kcfi operand bundles."); 7893 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 7894 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 7895 } 7896 } 7897 7898 TargetLowering::CallLoweringInfo CLI(DAG); 7899 CLI.setDebugLoc(getCurSDLoc()) 7900 .setChain(getRoot()) 7901 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7902 .setTailCall(isTailCall) 7903 .setConvergent(CB.isConvergent()) 7904 .setIsPreallocated( 7905 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 7906 .setCFIType(CFIType); 7907 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7908 7909 if (Result.first.getNode()) { 7910 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7911 setValue(&CB, Result.first); 7912 } 7913 7914 // The last element of CLI.InVals has the SDValue for swifterror return. 7915 // Here we copy it to a virtual register and update SwiftErrorMap for 7916 // book-keeping. 7917 if (SwiftErrorVal && TLI.supportSwiftError()) { 7918 // Get the last element of InVals. 7919 SDValue Src = CLI.InVals.back(); 7920 Register VReg = 7921 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7922 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7923 DAG.setRoot(CopyNode); 7924 } 7925 } 7926 7927 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7928 SelectionDAGBuilder &Builder) { 7929 // Check to see if this load can be trivially constant folded, e.g. if the 7930 // input is from a string literal. 7931 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7932 // Cast pointer to the type we really want to load. 7933 Type *LoadTy = 7934 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7935 if (LoadVT.isVector()) 7936 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7937 7938 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7939 PointerType::getUnqual(LoadTy)); 7940 7941 if (const Constant *LoadCst = 7942 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 7943 LoadTy, Builder.DAG.getDataLayout())) 7944 return Builder.getValue(LoadCst); 7945 } 7946 7947 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7948 // still constant memory, the input chain can be the entry node. 7949 SDValue Root; 7950 bool ConstantMemory = false; 7951 7952 // Do not serialize (non-volatile) loads of constant memory with anything. 7953 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7954 Root = Builder.DAG.getEntryNode(); 7955 ConstantMemory = true; 7956 } else { 7957 // Do not serialize non-volatile loads against each other. 7958 Root = Builder.DAG.getRoot(); 7959 } 7960 7961 SDValue Ptr = Builder.getValue(PtrVal); 7962 SDValue LoadVal = 7963 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7964 MachinePointerInfo(PtrVal), Align(1)); 7965 7966 if (!ConstantMemory) 7967 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7968 return LoadVal; 7969 } 7970 7971 /// Record the value for an instruction that produces an integer result, 7972 /// converting the type where necessary. 7973 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7974 SDValue Value, 7975 bool IsSigned) { 7976 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7977 I.getType(), true); 7978 if (IsSigned) 7979 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7980 else 7981 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7982 setValue(&I, Value); 7983 } 7984 7985 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7986 /// true and lower it. Otherwise return false, and it will be lowered like a 7987 /// normal call. 7988 /// The caller already checked that \p I calls the appropriate LibFunc with a 7989 /// correct prototype. 7990 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7991 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7992 const Value *Size = I.getArgOperand(2); 7993 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 7994 if (CSize && CSize->getZExtValue() == 0) { 7995 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7996 I.getType(), true); 7997 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7998 return true; 7999 } 8000 8001 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8002 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8003 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8004 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8005 if (Res.first.getNode()) { 8006 processIntegerCallValue(I, Res.first, true); 8007 PendingLoads.push_back(Res.second); 8008 return true; 8009 } 8010 8011 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8012 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8013 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8014 return false; 8015 8016 // If the target has a fast compare for the given size, it will return a 8017 // preferred load type for that size. Require that the load VT is legal and 8018 // that the target supports unaligned loads of that type. Otherwise, return 8019 // INVALID. 8020 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8021 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8022 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8023 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8024 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8025 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8026 // TODO: Check alignment of src and dest ptrs. 8027 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8028 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8029 if (!TLI.isTypeLegal(LVT) || 8030 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8031 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8032 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8033 } 8034 8035 return LVT; 8036 }; 8037 8038 // This turns into unaligned loads. We only do this if the target natively 8039 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8040 // we'll only produce a small number of byte loads. 8041 MVT LoadVT; 8042 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8043 switch (NumBitsToCompare) { 8044 default: 8045 return false; 8046 case 16: 8047 LoadVT = MVT::i16; 8048 break; 8049 case 32: 8050 LoadVT = MVT::i32; 8051 break; 8052 case 64: 8053 case 128: 8054 case 256: 8055 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8056 break; 8057 } 8058 8059 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8060 return false; 8061 8062 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8063 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8064 8065 // Bitcast to a wide integer type if the loads are vectors. 8066 if (LoadVT.isVector()) { 8067 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8068 LoadL = DAG.getBitcast(CmpVT, LoadL); 8069 LoadR = DAG.getBitcast(CmpVT, LoadR); 8070 } 8071 8072 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8073 processIntegerCallValue(I, Cmp, false); 8074 return true; 8075 } 8076 8077 /// See if we can lower a memchr call into an optimized form. If so, return 8078 /// true and lower it. Otherwise return false, and it will be lowered like a 8079 /// normal call. 8080 /// The caller already checked that \p I calls the appropriate LibFunc with a 8081 /// correct prototype. 8082 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8083 const Value *Src = I.getArgOperand(0); 8084 const Value *Char = I.getArgOperand(1); 8085 const Value *Length = I.getArgOperand(2); 8086 8087 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8088 std::pair<SDValue, SDValue> Res = 8089 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8090 getValue(Src), getValue(Char), getValue(Length), 8091 MachinePointerInfo(Src)); 8092 if (Res.first.getNode()) { 8093 setValue(&I, Res.first); 8094 PendingLoads.push_back(Res.second); 8095 return true; 8096 } 8097 8098 return false; 8099 } 8100 8101 /// See if we can lower a mempcpy call into an optimized form. If so, return 8102 /// true and lower it. Otherwise return false, and it will be lowered like a 8103 /// normal call. 8104 /// The caller already checked that \p I calls the appropriate LibFunc with a 8105 /// correct prototype. 8106 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8107 SDValue Dst = getValue(I.getArgOperand(0)); 8108 SDValue Src = getValue(I.getArgOperand(1)); 8109 SDValue Size = getValue(I.getArgOperand(2)); 8110 8111 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8112 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8113 // DAG::getMemcpy needs Alignment to be defined. 8114 Align Alignment = std::min(DstAlign, SrcAlign); 8115 8116 bool isVol = false; 8117 SDLoc sdl = getCurSDLoc(); 8118 8119 // In the mempcpy context we need to pass in a false value for isTailCall 8120 // because the return pointer needs to be adjusted by the size of 8121 // the copied memory. 8122 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 8123 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 8124 /*isTailCall=*/false, 8125 MachinePointerInfo(I.getArgOperand(0)), 8126 MachinePointerInfo(I.getArgOperand(1)), 8127 I.getAAMetadata()); 8128 assert(MC.getNode() != nullptr && 8129 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8130 DAG.setRoot(MC); 8131 8132 // Check if Size needs to be truncated or extended. 8133 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8134 8135 // Adjust return pointer to point just past the last dst byte. 8136 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8137 Dst, Size); 8138 setValue(&I, DstPlusSize); 8139 return true; 8140 } 8141 8142 /// See if we can lower a strcpy call into an optimized form. If so, return 8143 /// true and lower it, otherwise return false and it will be lowered like a 8144 /// normal call. 8145 /// The caller already checked that \p I calls the appropriate LibFunc with a 8146 /// correct prototype. 8147 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8148 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8149 8150 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8151 std::pair<SDValue, SDValue> Res = 8152 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8153 getValue(Arg0), getValue(Arg1), 8154 MachinePointerInfo(Arg0), 8155 MachinePointerInfo(Arg1), isStpcpy); 8156 if (Res.first.getNode()) { 8157 setValue(&I, Res.first); 8158 DAG.setRoot(Res.second); 8159 return true; 8160 } 8161 8162 return false; 8163 } 8164 8165 /// See if we can lower a strcmp call into an optimized form. If so, return 8166 /// true and lower it, otherwise return false and it will be lowered like a 8167 /// normal call. 8168 /// The caller already checked that \p I calls the appropriate LibFunc with a 8169 /// correct prototype. 8170 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8171 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8172 8173 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8174 std::pair<SDValue, SDValue> Res = 8175 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8176 getValue(Arg0), getValue(Arg1), 8177 MachinePointerInfo(Arg0), 8178 MachinePointerInfo(Arg1)); 8179 if (Res.first.getNode()) { 8180 processIntegerCallValue(I, Res.first, true); 8181 PendingLoads.push_back(Res.second); 8182 return true; 8183 } 8184 8185 return false; 8186 } 8187 8188 /// See if we can lower a strlen call into an optimized form. If so, return 8189 /// true and lower it, otherwise return false and it will be lowered like a 8190 /// normal call. 8191 /// The caller already checked that \p I calls the appropriate LibFunc with a 8192 /// correct prototype. 8193 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8194 const Value *Arg0 = I.getArgOperand(0); 8195 8196 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8197 std::pair<SDValue, SDValue> Res = 8198 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8199 getValue(Arg0), MachinePointerInfo(Arg0)); 8200 if (Res.first.getNode()) { 8201 processIntegerCallValue(I, Res.first, false); 8202 PendingLoads.push_back(Res.second); 8203 return true; 8204 } 8205 8206 return false; 8207 } 8208 8209 /// See if we can lower a strnlen call into an optimized form. If so, return 8210 /// true and lower it, otherwise return false and it will be lowered like a 8211 /// normal call. 8212 /// The caller already checked that \p I calls the appropriate LibFunc with a 8213 /// correct prototype. 8214 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8215 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8216 8217 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8218 std::pair<SDValue, SDValue> Res = 8219 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8220 getValue(Arg0), getValue(Arg1), 8221 MachinePointerInfo(Arg0)); 8222 if (Res.first.getNode()) { 8223 processIntegerCallValue(I, Res.first, false); 8224 PendingLoads.push_back(Res.second); 8225 return true; 8226 } 8227 8228 return false; 8229 } 8230 8231 /// See if we can lower a unary floating-point operation into an SDNode with 8232 /// the specified Opcode. If so, return true and lower it, otherwise return 8233 /// false and it will be lowered like a normal call. 8234 /// The caller already checked that \p I calls the appropriate LibFunc with a 8235 /// correct prototype. 8236 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8237 unsigned Opcode) { 8238 // We already checked this call's prototype; verify it doesn't modify errno. 8239 if (!I.onlyReadsMemory()) 8240 return false; 8241 8242 SDNodeFlags Flags; 8243 Flags.copyFMF(cast<FPMathOperator>(I)); 8244 8245 SDValue Tmp = getValue(I.getArgOperand(0)); 8246 setValue(&I, 8247 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8248 return true; 8249 } 8250 8251 /// See if we can lower a binary floating-point operation into an SDNode with 8252 /// the specified Opcode. If so, return true and lower it. Otherwise return 8253 /// false, and it will be lowered like a normal call. 8254 /// The caller already checked that \p I calls the appropriate LibFunc with a 8255 /// correct prototype. 8256 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8257 unsigned Opcode) { 8258 // We already checked this call's prototype; verify it doesn't modify errno. 8259 if (!I.onlyReadsMemory()) 8260 return false; 8261 8262 SDNodeFlags Flags; 8263 Flags.copyFMF(cast<FPMathOperator>(I)); 8264 8265 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8266 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8267 EVT VT = Tmp0.getValueType(); 8268 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8269 return true; 8270 } 8271 8272 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8273 // Handle inline assembly differently. 8274 if (I.isInlineAsm()) { 8275 visitInlineAsm(I); 8276 return; 8277 } 8278 8279 if (Function *F = I.getCalledFunction()) { 8280 diagnoseDontCall(I); 8281 8282 if (F->isDeclaration()) { 8283 // Is this an LLVM intrinsic or a target-specific intrinsic? 8284 unsigned IID = F->getIntrinsicID(); 8285 if (!IID) 8286 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8287 IID = II->getIntrinsicID(F); 8288 8289 if (IID) { 8290 visitIntrinsicCall(I, IID); 8291 return; 8292 } 8293 } 8294 8295 // Check for well-known libc/libm calls. If the function is internal, it 8296 // can't be a library call. Don't do the check if marked as nobuiltin for 8297 // some reason or the call site requires strict floating point semantics. 8298 LibFunc Func; 8299 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8300 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8301 LibInfo->hasOptimizedCodeGen(Func)) { 8302 switch (Func) { 8303 default: break; 8304 case LibFunc_bcmp: 8305 if (visitMemCmpBCmpCall(I)) 8306 return; 8307 break; 8308 case LibFunc_copysign: 8309 case LibFunc_copysignf: 8310 case LibFunc_copysignl: 8311 // We already checked this call's prototype; verify it doesn't modify 8312 // errno. 8313 if (I.onlyReadsMemory()) { 8314 SDValue LHS = getValue(I.getArgOperand(0)); 8315 SDValue RHS = getValue(I.getArgOperand(1)); 8316 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8317 LHS.getValueType(), LHS, RHS)); 8318 return; 8319 } 8320 break; 8321 case LibFunc_fabs: 8322 case LibFunc_fabsf: 8323 case LibFunc_fabsl: 8324 if (visitUnaryFloatCall(I, ISD::FABS)) 8325 return; 8326 break; 8327 case LibFunc_fmin: 8328 case LibFunc_fminf: 8329 case LibFunc_fminl: 8330 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8331 return; 8332 break; 8333 case LibFunc_fmax: 8334 case LibFunc_fmaxf: 8335 case LibFunc_fmaxl: 8336 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8337 return; 8338 break; 8339 case LibFunc_sin: 8340 case LibFunc_sinf: 8341 case LibFunc_sinl: 8342 if (visitUnaryFloatCall(I, ISD::FSIN)) 8343 return; 8344 break; 8345 case LibFunc_cos: 8346 case LibFunc_cosf: 8347 case LibFunc_cosl: 8348 if (visitUnaryFloatCall(I, ISD::FCOS)) 8349 return; 8350 break; 8351 case LibFunc_sqrt: 8352 case LibFunc_sqrtf: 8353 case LibFunc_sqrtl: 8354 case LibFunc_sqrt_finite: 8355 case LibFunc_sqrtf_finite: 8356 case LibFunc_sqrtl_finite: 8357 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8358 return; 8359 break; 8360 case LibFunc_floor: 8361 case LibFunc_floorf: 8362 case LibFunc_floorl: 8363 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8364 return; 8365 break; 8366 case LibFunc_nearbyint: 8367 case LibFunc_nearbyintf: 8368 case LibFunc_nearbyintl: 8369 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8370 return; 8371 break; 8372 case LibFunc_ceil: 8373 case LibFunc_ceilf: 8374 case LibFunc_ceill: 8375 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8376 return; 8377 break; 8378 case LibFunc_rint: 8379 case LibFunc_rintf: 8380 case LibFunc_rintl: 8381 if (visitUnaryFloatCall(I, ISD::FRINT)) 8382 return; 8383 break; 8384 case LibFunc_round: 8385 case LibFunc_roundf: 8386 case LibFunc_roundl: 8387 if (visitUnaryFloatCall(I, ISD::FROUND)) 8388 return; 8389 break; 8390 case LibFunc_trunc: 8391 case LibFunc_truncf: 8392 case LibFunc_truncl: 8393 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8394 return; 8395 break; 8396 case LibFunc_log2: 8397 case LibFunc_log2f: 8398 case LibFunc_log2l: 8399 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8400 return; 8401 break; 8402 case LibFunc_exp2: 8403 case LibFunc_exp2f: 8404 case LibFunc_exp2l: 8405 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8406 return; 8407 break; 8408 case LibFunc_memcmp: 8409 if (visitMemCmpBCmpCall(I)) 8410 return; 8411 break; 8412 case LibFunc_mempcpy: 8413 if (visitMemPCpyCall(I)) 8414 return; 8415 break; 8416 case LibFunc_memchr: 8417 if (visitMemChrCall(I)) 8418 return; 8419 break; 8420 case LibFunc_strcpy: 8421 if (visitStrCpyCall(I, false)) 8422 return; 8423 break; 8424 case LibFunc_stpcpy: 8425 if (visitStrCpyCall(I, true)) 8426 return; 8427 break; 8428 case LibFunc_strcmp: 8429 if (visitStrCmpCall(I)) 8430 return; 8431 break; 8432 case LibFunc_strlen: 8433 if (visitStrLenCall(I)) 8434 return; 8435 break; 8436 case LibFunc_strnlen: 8437 if (visitStrNLenCall(I)) 8438 return; 8439 break; 8440 } 8441 } 8442 } 8443 8444 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8445 // have to do anything here to lower funclet bundles. 8446 // CFGuardTarget bundles are lowered in LowerCallTo. 8447 assert(!I.hasOperandBundlesOtherThan( 8448 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8449 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8450 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8451 "Cannot lower calls with arbitrary operand bundles!"); 8452 8453 SDValue Callee = getValue(I.getCalledOperand()); 8454 8455 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8456 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8457 else 8458 // Check if we can potentially perform a tail call. More detailed checking 8459 // is be done within LowerCallTo, after more information about the call is 8460 // known. 8461 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8462 } 8463 8464 namespace { 8465 8466 /// AsmOperandInfo - This contains information for each constraint that we are 8467 /// lowering. 8468 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8469 public: 8470 /// CallOperand - If this is the result output operand or a clobber 8471 /// this is null, otherwise it is the incoming operand to the CallInst. 8472 /// This gets modified as the asm is processed. 8473 SDValue CallOperand; 8474 8475 /// AssignedRegs - If this is a register or register class operand, this 8476 /// contains the set of register corresponding to the operand. 8477 RegsForValue AssignedRegs; 8478 8479 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8480 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8481 } 8482 8483 /// Whether or not this operand accesses memory 8484 bool hasMemory(const TargetLowering &TLI) const { 8485 // Indirect operand accesses access memory. 8486 if (isIndirect) 8487 return true; 8488 8489 for (const auto &Code : Codes) 8490 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8491 return true; 8492 8493 return false; 8494 } 8495 }; 8496 8497 8498 } // end anonymous namespace 8499 8500 /// Make sure that the output operand \p OpInfo and its corresponding input 8501 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8502 /// out). 8503 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8504 SDISelAsmOperandInfo &MatchingOpInfo, 8505 SelectionDAG &DAG) { 8506 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8507 return; 8508 8509 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8510 const auto &TLI = DAG.getTargetLoweringInfo(); 8511 8512 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8513 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8514 OpInfo.ConstraintVT); 8515 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8516 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8517 MatchingOpInfo.ConstraintVT); 8518 if ((OpInfo.ConstraintVT.isInteger() != 8519 MatchingOpInfo.ConstraintVT.isInteger()) || 8520 (MatchRC.second != InputRC.second)) { 8521 // FIXME: error out in a more elegant fashion 8522 report_fatal_error("Unsupported asm: input constraint" 8523 " with a matching output constraint of" 8524 " incompatible type!"); 8525 } 8526 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8527 } 8528 8529 /// Get a direct memory input to behave well as an indirect operand. 8530 /// This may introduce stores, hence the need for a \p Chain. 8531 /// \return The (possibly updated) chain. 8532 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8533 SDISelAsmOperandInfo &OpInfo, 8534 SelectionDAG &DAG) { 8535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8536 8537 // If we don't have an indirect input, put it in the constpool if we can, 8538 // otherwise spill it to a stack slot. 8539 // TODO: This isn't quite right. We need to handle these according to 8540 // the addressing mode that the constraint wants. Also, this may take 8541 // an additional register for the computation and we don't want that 8542 // either. 8543 8544 // If the operand is a float, integer, or vector constant, spill to a 8545 // constant pool entry to get its address. 8546 const Value *OpVal = OpInfo.CallOperandVal; 8547 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8548 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8549 OpInfo.CallOperand = DAG.getConstantPool( 8550 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8551 return Chain; 8552 } 8553 8554 // Otherwise, create a stack slot and emit a store to it before the asm. 8555 Type *Ty = OpVal->getType(); 8556 auto &DL = DAG.getDataLayout(); 8557 uint64_t TySize = DL.getTypeAllocSize(Ty); 8558 MachineFunction &MF = DAG.getMachineFunction(); 8559 int SSFI = MF.getFrameInfo().CreateStackObject( 8560 TySize, DL.getPrefTypeAlign(Ty), false); 8561 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8562 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8563 MachinePointerInfo::getFixedStack(MF, SSFI), 8564 TLI.getMemValueType(DL, Ty)); 8565 OpInfo.CallOperand = StackSlot; 8566 8567 return Chain; 8568 } 8569 8570 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8571 /// specified operand. We prefer to assign virtual registers, to allow the 8572 /// register allocator to handle the assignment process. However, if the asm 8573 /// uses features that we can't model on machineinstrs, we have SDISel do the 8574 /// allocation. This produces generally horrible, but correct, code. 8575 /// 8576 /// OpInfo describes the operand 8577 /// RefOpInfo describes the matching operand if any, the operand otherwise 8578 static llvm::Optional<unsigned> 8579 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8580 SDISelAsmOperandInfo &OpInfo, 8581 SDISelAsmOperandInfo &RefOpInfo) { 8582 LLVMContext &Context = *DAG.getContext(); 8583 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8584 8585 MachineFunction &MF = DAG.getMachineFunction(); 8586 SmallVector<unsigned, 4> Regs; 8587 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8588 8589 // No work to do for memory/address operands. 8590 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8591 OpInfo.ConstraintType == TargetLowering::C_Address) 8592 return None; 8593 8594 // If this is a constraint for a single physreg, or a constraint for a 8595 // register class, find it. 8596 unsigned AssignedReg; 8597 const TargetRegisterClass *RC; 8598 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8599 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8600 // RC is unset only on failure. Return immediately. 8601 if (!RC) 8602 return None; 8603 8604 // Get the actual register value type. This is important, because the user 8605 // may have asked for (e.g.) the AX register in i32 type. We need to 8606 // remember that AX is actually i16 to get the right extension. 8607 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8608 8609 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8610 // If this is an FP operand in an integer register (or visa versa), or more 8611 // generally if the operand value disagrees with the register class we plan 8612 // to stick it in, fix the operand type. 8613 // 8614 // If this is an input value, the bitcast to the new type is done now. 8615 // Bitcast for output value is done at the end of visitInlineAsm(). 8616 if ((OpInfo.Type == InlineAsm::isOutput || 8617 OpInfo.Type == InlineAsm::isInput) && 8618 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8619 // Try to convert to the first EVT that the reg class contains. If the 8620 // types are identical size, use a bitcast to convert (e.g. two differing 8621 // vector types). Note: output bitcast is done at the end of 8622 // visitInlineAsm(). 8623 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8624 // Exclude indirect inputs while they are unsupported because the code 8625 // to perform the load is missing and thus OpInfo.CallOperand still 8626 // refers to the input address rather than the pointed-to value. 8627 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8628 OpInfo.CallOperand = 8629 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8630 OpInfo.ConstraintVT = RegVT; 8631 // If the operand is an FP value and we want it in integer registers, 8632 // use the corresponding integer type. This turns an f64 value into 8633 // i64, which can be passed with two i32 values on a 32-bit machine. 8634 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8635 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8636 if (OpInfo.Type == InlineAsm::isInput) 8637 OpInfo.CallOperand = 8638 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8639 OpInfo.ConstraintVT = VT; 8640 } 8641 } 8642 } 8643 8644 // No need to allocate a matching input constraint since the constraint it's 8645 // matching to has already been allocated. 8646 if (OpInfo.isMatchingInputConstraint()) 8647 return None; 8648 8649 EVT ValueVT = OpInfo.ConstraintVT; 8650 if (OpInfo.ConstraintVT == MVT::Other) 8651 ValueVT = RegVT; 8652 8653 // Initialize NumRegs. 8654 unsigned NumRegs = 1; 8655 if (OpInfo.ConstraintVT != MVT::Other) 8656 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8657 8658 // If this is a constraint for a specific physical register, like {r17}, 8659 // assign it now. 8660 8661 // If this associated to a specific register, initialize iterator to correct 8662 // place. If virtual, make sure we have enough registers 8663 8664 // Initialize iterator if necessary 8665 TargetRegisterClass::iterator I = RC->begin(); 8666 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8667 8668 // Do not check for single registers. 8669 if (AssignedReg) { 8670 I = std::find(I, RC->end(), AssignedReg); 8671 if (I == RC->end()) { 8672 // RC does not contain the selected register, which indicates a 8673 // mismatch between the register and the required type/bitwidth. 8674 return {AssignedReg}; 8675 } 8676 } 8677 8678 for (; NumRegs; --NumRegs, ++I) { 8679 assert(I != RC->end() && "Ran out of registers to allocate!"); 8680 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8681 Regs.push_back(R); 8682 } 8683 8684 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8685 return None; 8686 } 8687 8688 static unsigned 8689 findMatchingInlineAsmOperand(unsigned OperandNo, 8690 const std::vector<SDValue> &AsmNodeOperands) { 8691 // Scan until we find the definition we already emitted of this operand. 8692 unsigned CurOp = InlineAsm::Op_FirstOperand; 8693 for (; OperandNo; --OperandNo) { 8694 // Advance to the next operand. 8695 unsigned OpFlag = 8696 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8697 assert((InlineAsm::isRegDefKind(OpFlag) || 8698 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8699 InlineAsm::isMemKind(OpFlag)) && 8700 "Skipped past definitions?"); 8701 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8702 } 8703 return CurOp; 8704 } 8705 8706 namespace { 8707 8708 class ExtraFlags { 8709 unsigned Flags = 0; 8710 8711 public: 8712 explicit ExtraFlags(const CallBase &Call) { 8713 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8714 if (IA->hasSideEffects()) 8715 Flags |= InlineAsm::Extra_HasSideEffects; 8716 if (IA->isAlignStack()) 8717 Flags |= InlineAsm::Extra_IsAlignStack; 8718 if (Call.isConvergent()) 8719 Flags |= InlineAsm::Extra_IsConvergent; 8720 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8721 } 8722 8723 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8724 // Ideally, we would only check against memory constraints. However, the 8725 // meaning of an Other constraint can be target-specific and we can't easily 8726 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8727 // for Other constraints as well. 8728 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8729 OpInfo.ConstraintType == TargetLowering::C_Other) { 8730 if (OpInfo.Type == InlineAsm::isInput) 8731 Flags |= InlineAsm::Extra_MayLoad; 8732 else if (OpInfo.Type == InlineAsm::isOutput) 8733 Flags |= InlineAsm::Extra_MayStore; 8734 else if (OpInfo.Type == InlineAsm::isClobber) 8735 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8736 } 8737 } 8738 8739 unsigned get() const { return Flags; } 8740 }; 8741 8742 } // end anonymous namespace 8743 8744 static bool isFunction(SDValue Op) { 8745 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 8746 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 8747 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 8748 8749 // In normal "call dllimport func" instruction (non-inlineasm) it force 8750 // indirect access by specifing call opcode. And usually specially print 8751 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 8752 // not do in this way now. (In fact, this is similar with "Data Access" 8753 // action). So here we ignore dllimport function. 8754 if (Fn && !Fn->hasDLLImportStorageClass()) 8755 return true; 8756 } 8757 } 8758 return false; 8759 } 8760 8761 /// visitInlineAsm - Handle a call to an InlineAsm object. 8762 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8763 const BasicBlock *EHPadBB) { 8764 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8765 8766 /// ConstraintOperands - Information about all of the constraints. 8767 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8768 8769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8770 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8771 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8772 8773 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8774 // AsmDialect, MayLoad, MayStore). 8775 bool HasSideEffect = IA->hasSideEffects(); 8776 ExtraFlags ExtraInfo(Call); 8777 8778 for (auto &T : TargetConstraints) { 8779 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8780 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8781 8782 if (OpInfo.CallOperandVal) 8783 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8784 8785 if (!HasSideEffect) 8786 HasSideEffect = OpInfo.hasMemory(TLI); 8787 8788 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8789 // FIXME: Could we compute this on OpInfo rather than T? 8790 8791 // Compute the constraint code and ConstraintType to use. 8792 TLI.ComputeConstraintToUse(T, SDValue()); 8793 8794 if (T.ConstraintType == TargetLowering::C_Immediate && 8795 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8796 // We've delayed emitting a diagnostic like the "n" constraint because 8797 // inlining could cause an integer showing up. 8798 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8799 "' expects an integer constant " 8800 "expression"); 8801 8802 ExtraInfo.update(T); 8803 } 8804 8805 // We won't need to flush pending loads if this asm doesn't touch 8806 // memory and is nonvolatile. 8807 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8808 8809 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8810 if (EmitEHLabels) { 8811 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8812 } 8813 bool IsCallBr = isa<CallBrInst>(Call); 8814 8815 if (IsCallBr || EmitEHLabels) { 8816 // If this is a callbr or invoke we need to flush pending exports since 8817 // inlineasm_br and invoke are terminators. 8818 // We need to do this before nodes are glued to the inlineasm_br node. 8819 Chain = getControlRoot(); 8820 } 8821 8822 MCSymbol *BeginLabel = nullptr; 8823 if (EmitEHLabels) { 8824 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8825 } 8826 8827 int OpNo = -1; 8828 SmallVector<StringRef> AsmStrs; 8829 IA->collectAsmStrs(AsmStrs); 8830 8831 // Second pass over the constraints: compute which constraint option to use. 8832 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8833 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 8834 OpNo++; 8835 8836 // If this is an output operand with a matching input operand, look up the 8837 // matching input. If their types mismatch, e.g. one is an integer, the 8838 // other is floating point, or their sizes are different, flag it as an 8839 // error. 8840 if (OpInfo.hasMatchingInput()) { 8841 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8842 patchMatchingInput(OpInfo, Input, DAG); 8843 } 8844 8845 // Compute the constraint code and ConstraintType to use. 8846 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8847 8848 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 8849 OpInfo.Type == InlineAsm::isClobber) || 8850 OpInfo.ConstraintType == TargetLowering::C_Address) 8851 continue; 8852 8853 // In Linux PIC model, there are 4 cases about value/label addressing: 8854 // 8855 // 1: Function call or Label jmp inside the module. 8856 // 2: Data access (such as global variable, static variable) inside module. 8857 // 3: Function call or Label jmp outside the module. 8858 // 4: Data access (such as global variable) outside the module. 8859 // 8860 // Due to current llvm inline asm architecture designed to not "recognize" 8861 // the asm code, there are quite troubles for us to treat mem addressing 8862 // differently for same value/adress used in different instuctions. 8863 // For example, in pic model, call a func may in plt way or direclty 8864 // pc-related, but lea/mov a function adress may use got. 8865 // 8866 // Here we try to "recognize" function call for the case 1 and case 3 in 8867 // inline asm. And try to adjust the constraint for them. 8868 // 8869 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 8870 // label, so here we don't handle jmp function label now, but we need to 8871 // enhance it (especilly in PIC model) if we meet meaningful requirements. 8872 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 8873 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 8874 TM.getCodeModel() != CodeModel::Large) { 8875 OpInfo.isIndirect = false; 8876 OpInfo.ConstraintType = TargetLowering::C_Address; 8877 } 8878 8879 // If this is a memory input, and if the operand is not indirect, do what we 8880 // need to provide an address for the memory input. 8881 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8882 !OpInfo.isIndirect) { 8883 assert((OpInfo.isMultipleAlternative || 8884 (OpInfo.Type == InlineAsm::isInput)) && 8885 "Can only indirectify direct input operands!"); 8886 8887 // Memory operands really want the address of the value. 8888 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8889 8890 // There is no longer a Value* corresponding to this operand. 8891 OpInfo.CallOperandVal = nullptr; 8892 8893 // It is now an indirect operand. 8894 OpInfo.isIndirect = true; 8895 } 8896 8897 } 8898 8899 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8900 std::vector<SDValue> AsmNodeOperands; 8901 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8902 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8903 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8904 8905 // If we have a !srcloc metadata node associated with it, we want to attach 8906 // this to the ultimately generated inline asm machineinstr. To do this, we 8907 // pass in the third operand as this (potentially null) inline asm MDNode. 8908 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8909 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8910 8911 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8912 // bits as operand 3. 8913 AsmNodeOperands.push_back(DAG.getTargetConstant( 8914 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8915 8916 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8917 // this, assign virtual and physical registers for inputs and otput. 8918 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8919 // Assign Registers. 8920 SDISelAsmOperandInfo &RefOpInfo = 8921 OpInfo.isMatchingInputConstraint() 8922 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8923 : OpInfo; 8924 const auto RegError = 8925 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8926 if (RegError) { 8927 const MachineFunction &MF = DAG.getMachineFunction(); 8928 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8929 const char *RegName = TRI.getName(RegError.value()); 8930 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8931 "' allocated for constraint '" + 8932 Twine(OpInfo.ConstraintCode) + 8933 "' does not match required type"); 8934 return; 8935 } 8936 8937 auto DetectWriteToReservedRegister = [&]() { 8938 const MachineFunction &MF = DAG.getMachineFunction(); 8939 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8940 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8941 if (Register::isPhysicalRegister(Reg) && 8942 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8943 const char *RegName = TRI.getName(Reg); 8944 emitInlineAsmError(Call, "write to reserved register '" + 8945 Twine(RegName) + "'"); 8946 return true; 8947 } 8948 } 8949 return false; 8950 }; 8951 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 8952 (OpInfo.Type == InlineAsm::isInput && 8953 !OpInfo.isMatchingInputConstraint())) && 8954 "Only address as input operand is allowed."); 8955 8956 switch (OpInfo.Type) { 8957 case InlineAsm::isOutput: 8958 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8959 unsigned ConstraintID = 8960 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8961 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8962 "Failed to convert memory constraint code to constraint id."); 8963 8964 // Add information to the INLINEASM node to know about this output. 8965 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8966 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8967 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8968 MVT::i32)); 8969 AsmNodeOperands.push_back(OpInfo.CallOperand); 8970 } else { 8971 // Otherwise, this outputs to a register (directly for C_Register / 8972 // C_RegisterClass, and a target-defined fashion for 8973 // C_Immediate/C_Other). Find a register that we can use. 8974 if (OpInfo.AssignedRegs.Regs.empty()) { 8975 emitInlineAsmError( 8976 Call, "couldn't allocate output register for constraint '" + 8977 Twine(OpInfo.ConstraintCode) + "'"); 8978 return; 8979 } 8980 8981 if (DetectWriteToReservedRegister()) 8982 return; 8983 8984 // Add information to the INLINEASM node to know that this register is 8985 // set. 8986 OpInfo.AssignedRegs.AddInlineAsmOperands( 8987 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8988 : InlineAsm::Kind_RegDef, 8989 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8990 } 8991 break; 8992 8993 case InlineAsm::isInput: 8994 case InlineAsm::isLabel: { 8995 SDValue InOperandVal = OpInfo.CallOperand; 8996 8997 if (OpInfo.isMatchingInputConstraint()) { 8998 // If this is required to match an output register we have already set, 8999 // just use its register. 9000 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9001 AsmNodeOperands); 9002 unsigned OpFlag = 9003 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 9004 if (InlineAsm::isRegDefKind(OpFlag) || 9005 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 9006 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 9007 if (OpInfo.isIndirect) { 9008 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9009 emitInlineAsmError(Call, "inline asm not supported yet: " 9010 "don't know how to handle tied " 9011 "indirect register inputs"); 9012 return; 9013 } 9014 9015 SmallVector<unsigned, 4> Regs; 9016 MachineFunction &MF = DAG.getMachineFunction(); 9017 MachineRegisterInfo &MRI = MF.getRegInfo(); 9018 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9019 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9020 Register TiedReg = R->getReg(); 9021 MVT RegVT = R->getSimpleValueType(0); 9022 const TargetRegisterClass *RC = 9023 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9024 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9025 : TRI.getMinimalPhysRegClass(TiedReg); 9026 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 9027 for (unsigned i = 0; i != NumRegs; ++i) 9028 Regs.push_back(MRI.createVirtualRegister(RC)); 9029 9030 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9031 9032 SDLoc dl = getCurSDLoc(); 9033 // Use the produced MatchedRegs object to 9034 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 9035 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 9036 true, OpInfo.getMatchedOperand(), dl, 9037 DAG, AsmNodeOperands); 9038 break; 9039 } 9040 9041 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 9042 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 9043 "Unexpected number of operands"); 9044 // Add information to the INLINEASM node to know about this input. 9045 // See InlineAsm.h isUseOperandTiedToDef. 9046 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 9047 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 9048 OpInfo.getMatchedOperand()); 9049 AsmNodeOperands.push_back(DAG.getTargetConstant( 9050 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9051 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9052 break; 9053 } 9054 9055 // Treat indirect 'X' constraint as memory. 9056 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9057 OpInfo.isIndirect) 9058 OpInfo.ConstraintType = TargetLowering::C_Memory; 9059 9060 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9061 OpInfo.ConstraintType == TargetLowering::C_Other) { 9062 std::vector<SDValue> Ops; 9063 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9064 Ops, DAG); 9065 if (Ops.empty()) { 9066 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9067 if (isa<ConstantSDNode>(InOperandVal)) { 9068 emitInlineAsmError(Call, "value out of range for constraint '" + 9069 Twine(OpInfo.ConstraintCode) + "'"); 9070 return; 9071 } 9072 9073 emitInlineAsmError(Call, 9074 "invalid operand for inline asm constraint '" + 9075 Twine(OpInfo.ConstraintCode) + "'"); 9076 return; 9077 } 9078 9079 // Add information to the INLINEASM node to know about this input. 9080 unsigned ResOpType = 9081 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 9082 AsmNodeOperands.push_back(DAG.getTargetConstant( 9083 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9084 llvm::append_range(AsmNodeOperands, Ops); 9085 break; 9086 } 9087 9088 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9089 assert((OpInfo.isIndirect || 9090 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9091 "Operand must be indirect to be a mem!"); 9092 assert(InOperandVal.getValueType() == 9093 TLI.getPointerTy(DAG.getDataLayout()) && 9094 "Memory operands expect pointer values"); 9095 9096 unsigned ConstraintID = 9097 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9098 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9099 "Failed to convert memory constraint code to constraint id."); 9100 9101 // Add information to the INLINEASM node to know about this input. 9102 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9103 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9104 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9105 getCurSDLoc(), 9106 MVT::i32)); 9107 AsmNodeOperands.push_back(InOperandVal); 9108 break; 9109 } 9110 9111 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9112 assert(InOperandVal.getValueType() == 9113 TLI.getPointerTy(DAG.getDataLayout()) && 9114 "Address operands expect pointer values"); 9115 9116 unsigned ConstraintID = 9117 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9118 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9119 "Failed to convert memory constraint code to constraint id."); 9120 9121 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9122 9123 SDValue AsmOp = InOperandVal; 9124 if (isFunction(InOperandVal)) { 9125 auto *GA = dyn_cast<GlobalAddressSDNode>(InOperandVal); 9126 ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1); 9127 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9128 InOperandVal.getValueType(), 9129 GA->getOffset()); 9130 } 9131 9132 // Add information to the INLINEASM node to know about this input. 9133 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9134 9135 AsmNodeOperands.push_back( 9136 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9137 9138 AsmNodeOperands.push_back(AsmOp); 9139 break; 9140 } 9141 9142 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9143 OpInfo.ConstraintType == TargetLowering::C_Register) && 9144 "Unknown constraint type!"); 9145 9146 // TODO: Support this. 9147 if (OpInfo.isIndirect) { 9148 emitInlineAsmError( 9149 Call, "Don't know how to handle indirect register inputs yet " 9150 "for constraint '" + 9151 Twine(OpInfo.ConstraintCode) + "'"); 9152 return; 9153 } 9154 9155 // Copy the input into the appropriate registers. 9156 if (OpInfo.AssignedRegs.Regs.empty()) { 9157 emitInlineAsmError(Call, 9158 "couldn't allocate input reg for constraint '" + 9159 Twine(OpInfo.ConstraintCode) + "'"); 9160 return; 9161 } 9162 9163 if (DetectWriteToReservedRegister()) 9164 return; 9165 9166 SDLoc dl = getCurSDLoc(); 9167 9168 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 9169 &Call); 9170 9171 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 9172 dl, DAG, AsmNodeOperands); 9173 break; 9174 } 9175 case InlineAsm::isClobber: 9176 // Add the clobbered value to the operand list, so that the register 9177 // allocator is aware that the physreg got clobbered. 9178 if (!OpInfo.AssignedRegs.Regs.empty()) 9179 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 9180 false, 0, getCurSDLoc(), DAG, 9181 AsmNodeOperands); 9182 break; 9183 } 9184 } 9185 9186 // Finish up input operands. Set the input chain and add the flag last. 9187 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9188 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 9189 9190 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9191 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9192 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9193 Flag = Chain.getValue(1); 9194 9195 // Do additional work to generate outputs. 9196 9197 SmallVector<EVT, 1> ResultVTs; 9198 SmallVector<SDValue, 1> ResultValues; 9199 SmallVector<SDValue, 8> OutChains; 9200 9201 llvm::Type *CallResultType = Call.getType(); 9202 ArrayRef<Type *> ResultTypes; 9203 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9204 ResultTypes = StructResult->elements(); 9205 else if (!CallResultType->isVoidTy()) 9206 ResultTypes = makeArrayRef(CallResultType); 9207 9208 auto CurResultType = ResultTypes.begin(); 9209 auto handleRegAssign = [&](SDValue V) { 9210 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9211 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9212 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9213 ++CurResultType; 9214 // If the type of the inline asm call site return value is different but has 9215 // same size as the type of the asm output bitcast it. One example of this 9216 // is for vectors with different width / number of elements. This can 9217 // happen for register classes that can contain multiple different value 9218 // types. The preg or vreg allocated may not have the same VT as was 9219 // expected. 9220 // 9221 // This can also happen for a return value that disagrees with the register 9222 // class it is put in, eg. a double in a general-purpose register on a 9223 // 32-bit machine. 9224 if (ResultVT != V.getValueType() && 9225 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9226 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9227 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9228 V.getValueType().isInteger()) { 9229 // If a result value was tied to an input value, the computed result 9230 // may have a wider width than the expected result. Extract the 9231 // relevant portion. 9232 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9233 } 9234 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9235 ResultVTs.push_back(ResultVT); 9236 ResultValues.push_back(V); 9237 }; 9238 9239 // Deal with output operands. 9240 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9241 if (OpInfo.Type == InlineAsm::isOutput) { 9242 SDValue Val; 9243 // Skip trivial output operands. 9244 if (OpInfo.AssignedRegs.Regs.empty()) 9245 continue; 9246 9247 switch (OpInfo.ConstraintType) { 9248 case TargetLowering::C_Register: 9249 case TargetLowering::C_RegisterClass: 9250 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9251 Chain, &Flag, &Call); 9252 break; 9253 case TargetLowering::C_Immediate: 9254 case TargetLowering::C_Other: 9255 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9256 OpInfo, DAG); 9257 break; 9258 case TargetLowering::C_Memory: 9259 break; // Already handled. 9260 case TargetLowering::C_Address: 9261 break; // Silence warning. 9262 case TargetLowering::C_Unknown: 9263 assert(false && "Unexpected unknown constraint"); 9264 } 9265 9266 // Indirect output manifest as stores. Record output chains. 9267 if (OpInfo.isIndirect) { 9268 const Value *Ptr = OpInfo.CallOperandVal; 9269 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9270 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9271 MachinePointerInfo(Ptr)); 9272 OutChains.push_back(Store); 9273 } else { 9274 // generate CopyFromRegs to associated registers. 9275 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9276 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9277 for (const SDValue &V : Val->op_values()) 9278 handleRegAssign(V); 9279 } else 9280 handleRegAssign(Val); 9281 } 9282 } 9283 } 9284 9285 // Set results. 9286 if (!ResultValues.empty()) { 9287 assert(CurResultType == ResultTypes.end() && 9288 "Mismatch in number of ResultTypes"); 9289 assert(ResultValues.size() == ResultTypes.size() && 9290 "Mismatch in number of output operands in asm result"); 9291 9292 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9293 DAG.getVTList(ResultVTs), ResultValues); 9294 setValue(&Call, V); 9295 } 9296 9297 // Collect store chains. 9298 if (!OutChains.empty()) 9299 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9300 9301 if (EmitEHLabels) { 9302 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9303 } 9304 9305 // Only Update Root if inline assembly has a memory effect. 9306 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9307 EmitEHLabels) 9308 DAG.setRoot(Chain); 9309 } 9310 9311 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9312 const Twine &Message) { 9313 LLVMContext &Ctx = *DAG.getContext(); 9314 Ctx.emitError(&Call, Message); 9315 9316 // Make sure we leave the DAG in a valid state 9317 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9318 SmallVector<EVT, 1> ValueVTs; 9319 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9320 9321 if (ValueVTs.empty()) 9322 return; 9323 9324 SmallVector<SDValue, 1> Ops; 9325 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9326 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9327 9328 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9329 } 9330 9331 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9332 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9333 MVT::Other, getRoot(), 9334 getValue(I.getArgOperand(0)), 9335 DAG.getSrcValue(I.getArgOperand(0)))); 9336 } 9337 9338 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9339 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9340 const DataLayout &DL = DAG.getDataLayout(); 9341 SDValue V = DAG.getVAArg( 9342 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9343 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9344 DL.getABITypeAlign(I.getType()).value()); 9345 DAG.setRoot(V.getValue(1)); 9346 9347 if (I.getType()->isPointerTy()) 9348 V = DAG.getPtrExtOrTrunc( 9349 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9350 setValue(&I, V); 9351 } 9352 9353 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9354 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9355 MVT::Other, getRoot(), 9356 getValue(I.getArgOperand(0)), 9357 DAG.getSrcValue(I.getArgOperand(0)))); 9358 } 9359 9360 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9361 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9362 MVT::Other, getRoot(), 9363 getValue(I.getArgOperand(0)), 9364 getValue(I.getArgOperand(1)), 9365 DAG.getSrcValue(I.getArgOperand(0)), 9366 DAG.getSrcValue(I.getArgOperand(1)))); 9367 } 9368 9369 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9370 const Instruction &I, 9371 SDValue Op) { 9372 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9373 if (!Range) 9374 return Op; 9375 9376 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9377 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9378 return Op; 9379 9380 APInt Lo = CR.getUnsignedMin(); 9381 if (!Lo.isMinValue()) 9382 return Op; 9383 9384 APInt Hi = CR.getUnsignedMax(); 9385 unsigned Bits = std::max(Hi.getActiveBits(), 9386 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9387 9388 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9389 9390 SDLoc SL = getCurSDLoc(); 9391 9392 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9393 DAG.getValueType(SmallVT)); 9394 unsigned NumVals = Op.getNode()->getNumValues(); 9395 if (NumVals == 1) 9396 return ZExt; 9397 9398 SmallVector<SDValue, 4> Ops; 9399 9400 Ops.push_back(ZExt); 9401 for (unsigned I = 1; I != NumVals; ++I) 9402 Ops.push_back(Op.getValue(I)); 9403 9404 return DAG.getMergeValues(Ops, SL); 9405 } 9406 9407 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9408 /// the call being lowered. 9409 /// 9410 /// This is a helper for lowering intrinsics that follow a target calling 9411 /// convention or require stack pointer adjustment. Only a subset of the 9412 /// intrinsic's operands need to participate in the calling convention. 9413 void SelectionDAGBuilder::populateCallLoweringInfo( 9414 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9415 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9416 bool IsPatchPoint) { 9417 TargetLowering::ArgListTy Args; 9418 Args.reserve(NumArgs); 9419 9420 // Populate the argument list. 9421 // Attributes for args start at offset 1, after the return attribute. 9422 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9423 ArgI != ArgE; ++ArgI) { 9424 const Value *V = Call->getOperand(ArgI); 9425 9426 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9427 9428 TargetLowering::ArgListEntry Entry; 9429 Entry.Node = getValue(V); 9430 Entry.Ty = V->getType(); 9431 Entry.setAttributes(Call, ArgI); 9432 Args.push_back(Entry); 9433 } 9434 9435 CLI.setDebugLoc(getCurSDLoc()) 9436 .setChain(getRoot()) 9437 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9438 .setDiscardResult(Call->use_empty()) 9439 .setIsPatchPoint(IsPatchPoint) 9440 .setIsPreallocated( 9441 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9442 } 9443 9444 /// Add a stack map intrinsic call's live variable operands to a stackmap 9445 /// or patchpoint target node's operand list. 9446 /// 9447 /// Constants are converted to TargetConstants purely as an optimization to 9448 /// avoid constant materialization and register allocation. 9449 /// 9450 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9451 /// generate addess computation nodes, and so FinalizeISel can convert the 9452 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9453 /// address materialization and register allocation, but may also be required 9454 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9455 /// alloca in the entry block, then the runtime may assume that the alloca's 9456 /// StackMap location can be read immediately after compilation and that the 9457 /// location is valid at any point during execution (this is similar to the 9458 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9459 /// only available in a register, then the runtime would need to trap when 9460 /// execution reaches the StackMap in order to read the alloca's location. 9461 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9462 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9463 SelectionDAGBuilder &Builder) { 9464 SelectionDAG &DAG = Builder.DAG; 9465 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9466 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9467 9468 // Things on the stack are pointer-typed, meaning that they are already 9469 // legal and can be emitted directly to target nodes. 9470 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9471 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9472 } else { 9473 // Otherwise emit a target independent node to be legalised. 9474 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9475 } 9476 } 9477 } 9478 9479 /// Lower llvm.experimental.stackmap. 9480 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9481 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9482 // [live variables...]) 9483 9484 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9485 9486 SDValue Chain, InFlag, Callee; 9487 SmallVector<SDValue, 32> Ops; 9488 9489 SDLoc DL = getCurSDLoc(); 9490 Callee = getValue(CI.getCalledOperand()); 9491 9492 // The stackmap intrinsic only records the live variables (the arguments 9493 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9494 // intrinsic, this won't be lowered to a function call. This means we don't 9495 // have to worry about calling conventions and target specific lowering code. 9496 // Instead we perform the call lowering right here. 9497 // 9498 // chain, flag = CALLSEQ_START(chain, 0, 0) 9499 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9500 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9501 // 9502 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9503 InFlag = Chain.getValue(1); 9504 9505 // Add the STACKMAP operands, starting with DAG house-keeping. 9506 Ops.push_back(Chain); 9507 Ops.push_back(InFlag); 9508 9509 // Add the <id>, <numShadowBytes> operands. 9510 // 9511 // These do not require legalisation, and can be emitted directly to target 9512 // constant nodes. 9513 SDValue ID = getValue(CI.getArgOperand(0)); 9514 assert(ID.getValueType() == MVT::i64); 9515 SDValue IDConst = DAG.getTargetConstant( 9516 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9517 Ops.push_back(IDConst); 9518 9519 SDValue Shad = getValue(CI.getArgOperand(1)); 9520 assert(Shad.getValueType() == MVT::i32); 9521 SDValue ShadConst = DAG.getTargetConstant( 9522 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9523 Ops.push_back(ShadConst); 9524 9525 // Add the live variables. 9526 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9527 9528 // Create the STACKMAP node. 9529 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9530 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9531 InFlag = Chain.getValue(1); 9532 9533 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL); 9534 9535 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9536 9537 // Set the root to the target-lowered call chain. 9538 DAG.setRoot(Chain); 9539 9540 // Inform the Frame Information that we have a stackmap in this function. 9541 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9542 } 9543 9544 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9545 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9546 const BasicBlock *EHPadBB) { 9547 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9548 // i32 <numBytes>, 9549 // i8* <target>, 9550 // i32 <numArgs>, 9551 // [Args...], 9552 // [live variables...]) 9553 9554 CallingConv::ID CC = CB.getCallingConv(); 9555 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9556 bool HasDef = !CB.getType()->isVoidTy(); 9557 SDLoc dl = getCurSDLoc(); 9558 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9559 9560 // Handle immediate and symbolic callees. 9561 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9562 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9563 /*isTarget=*/true); 9564 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9565 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9566 SDLoc(SymbolicCallee), 9567 SymbolicCallee->getValueType(0)); 9568 9569 // Get the real number of arguments participating in the call <numArgs> 9570 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9571 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9572 9573 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9574 // Intrinsics include all meta-operands up to but not including CC. 9575 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9576 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9577 "Not enough arguments provided to the patchpoint intrinsic"); 9578 9579 // For AnyRegCC the arguments are lowered later on manually. 9580 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9581 Type *ReturnTy = 9582 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9583 9584 TargetLowering::CallLoweringInfo CLI(DAG); 9585 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9586 ReturnTy, true); 9587 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9588 9589 SDNode *CallEnd = Result.second.getNode(); 9590 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9591 CallEnd = CallEnd->getOperand(0).getNode(); 9592 9593 /// Get a call instruction from the call sequence chain. 9594 /// Tail calls are not allowed. 9595 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9596 "Expected a callseq node."); 9597 SDNode *Call = CallEnd->getOperand(0).getNode(); 9598 bool HasGlue = Call->getGluedNode(); 9599 9600 // Replace the target specific call node with the patchable intrinsic. 9601 SmallVector<SDValue, 8> Ops; 9602 9603 // Push the chain. 9604 Ops.push_back(*(Call->op_begin())); 9605 9606 // Optionally, push the glue (if any). 9607 if (HasGlue) 9608 Ops.push_back(*(Call->op_end() - 1)); 9609 9610 // Push the register mask info. 9611 if (HasGlue) 9612 Ops.push_back(*(Call->op_end() - 2)); 9613 else 9614 Ops.push_back(*(Call->op_end() - 1)); 9615 9616 // Add the <id> and <numBytes> constants. 9617 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9618 Ops.push_back(DAG.getTargetConstant( 9619 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9620 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9621 Ops.push_back(DAG.getTargetConstant( 9622 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9623 MVT::i32)); 9624 9625 // Add the callee. 9626 Ops.push_back(Callee); 9627 9628 // Adjust <numArgs> to account for any arguments that have been passed on the 9629 // stack instead. 9630 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9631 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9632 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9633 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9634 9635 // Add the calling convention 9636 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9637 9638 // Add the arguments we omitted previously. The register allocator should 9639 // place these in any free register. 9640 if (IsAnyRegCC) 9641 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9642 Ops.push_back(getValue(CB.getArgOperand(i))); 9643 9644 // Push the arguments from the call instruction. 9645 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9646 Ops.append(Call->op_begin() + 2, e); 9647 9648 // Push live variables for the stack map. 9649 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9650 9651 SDVTList NodeTys; 9652 if (IsAnyRegCC && HasDef) { 9653 // Create the return types based on the intrinsic definition 9654 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9655 SmallVector<EVT, 3> ValueVTs; 9656 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9657 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9658 9659 // There is always a chain and a glue type at the end 9660 ValueVTs.push_back(MVT::Other); 9661 ValueVTs.push_back(MVT::Glue); 9662 NodeTys = DAG.getVTList(ValueVTs); 9663 } else 9664 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9665 9666 // Replace the target specific call node with a PATCHPOINT node. 9667 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 9668 9669 // Update the NodeMap. 9670 if (HasDef) { 9671 if (IsAnyRegCC) 9672 setValue(&CB, SDValue(PPV.getNode(), 0)); 9673 else 9674 setValue(&CB, Result.first); 9675 } 9676 9677 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9678 // call sequence. Furthermore the location of the chain and glue can change 9679 // when the AnyReg calling convention is used and the intrinsic returns a 9680 // value. 9681 if (IsAnyRegCC && HasDef) { 9682 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9683 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 9684 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9685 } else 9686 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 9687 DAG.DeleteNode(Call); 9688 9689 // Inform the Frame Information that we have a patchpoint in this function. 9690 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9691 } 9692 9693 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9694 unsigned Intrinsic) { 9695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9696 SDValue Op1 = getValue(I.getArgOperand(0)); 9697 SDValue Op2; 9698 if (I.arg_size() > 1) 9699 Op2 = getValue(I.getArgOperand(1)); 9700 SDLoc dl = getCurSDLoc(); 9701 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9702 SDValue Res; 9703 SDNodeFlags SDFlags; 9704 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9705 SDFlags.copyFMF(*FPMO); 9706 9707 switch (Intrinsic) { 9708 case Intrinsic::vector_reduce_fadd: 9709 if (SDFlags.hasAllowReassociation()) 9710 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9711 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9712 SDFlags); 9713 else 9714 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9715 break; 9716 case Intrinsic::vector_reduce_fmul: 9717 if (SDFlags.hasAllowReassociation()) 9718 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9719 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9720 SDFlags); 9721 else 9722 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9723 break; 9724 case Intrinsic::vector_reduce_add: 9725 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9726 break; 9727 case Intrinsic::vector_reduce_mul: 9728 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9729 break; 9730 case Intrinsic::vector_reduce_and: 9731 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9732 break; 9733 case Intrinsic::vector_reduce_or: 9734 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9735 break; 9736 case Intrinsic::vector_reduce_xor: 9737 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9738 break; 9739 case Intrinsic::vector_reduce_smax: 9740 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9741 break; 9742 case Intrinsic::vector_reduce_smin: 9743 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9744 break; 9745 case Intrinsic::vector_reduce_umax: 9746 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9747 break; 9748 case Intrinsic::vector_reduce_umin: 9749 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9750 break; 9751 case Intrinsic::vector_reduce_fmax: 9752 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9753 break; 9754 case Intrinsic::vector_reduce_fmin: 9755 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9756 break; 9757 default: 9758 llvm_unreachable("Unhandled vector reduce intrinsic"); 9759 } 9760 setValue(&I, Res); 9761 } 9762 9763 /// Returns an AttributeList representing the attributes applied to the return 9764 /// value of the given call. 9765 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9766 SmallVector<Attribute::AttrKind, 2> Attrs; 9767 if (CLI.RetSExt) 9768 Attrs.push_back(Attribute::SExt); 9769 if (CLI.RetZExt) 9770 Attrs.push_back(Attribute::ZExt); 9771 if (CLI.IsInReg) 9772 Attrs.push_back(Attribute::InReg); 9773 9774 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9775 Attrs); 9776 } 9777 9778 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9779 /// implementation, which just calls LowerCall. 9780 /// FIXME: When all targets are 9781 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9782 std::pair<SDValue, SDValue> 9783 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9784 // Handle the incoming return values from the call. 9785 CLI.Ins.clear(); 9786 Type *OrigRetTy = CLI.RetTy; 9787 SmallVector<EVT, 4> RetTys; 9788 SmallVector<uint64_t, 4> Offsets; 9789 auto &DL = CLI.DAG.getDataLayout(); 9790 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9791 9792 if (CLI.IsPostTypeLegalization) { 9793 // If we are lowering a libcall after legalization, split the return type. 9794 SmallVector<EVT, 4> OldRetTys; 9795 SmallVector<uint64_t, 4> OldOffsets; 9796 RetTys.swap(OldRetTys); 9797 Offsets.swap(OldOffsets); 9798 9799 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9800 EVT RetVT = OldRetTys[i]; 9801 uint64_t Offset = OldOffsets[i]; 9802 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9803 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9804 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9805 RetTys.append(NumRegs, RegisterVT); 9806 for (unsigned j = 0; j != NumRegs; ++j) 9807 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9808 } 9809 } 9810 9811 SmallVector<ISD::OutputArg, 4> Outs; 9812 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9813 9814 bool CanLowerReturn = 9815 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9816 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9817 9818 SDValue DemoteStackSlot; 9819 int DemoteStackIdx = -100; 9820 if (!CanLowerReturn) { 9821 // FIXME: equivalent assert? 9822 // assert(!CS.hasInAllocaArgument() && 9823 // "sret demotion is incompatible with inalloca"); 9824 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9825 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9826 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9827 DemoteStackIdx = 9828 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9829 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9830 DL.getAllocaAddrSpace()); 9831 9832 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9833 ArgListEntry Entry; 9834 Entry.Node = DemoteStackSlot; 9835 Entry.Ty = StackSlotPtrType; 9836 Entry.IsSExt = false; 9837 Entry.IsZExt = false; 9838 Entry.IsInReg = false; 9839 Entry.IsSRet = true; 9840 Entry.IsNest = false; 9841 Entry.IsByVal = false; 9842 Entry.IsByRef = false; 9843 Entry.IsReturned = false; 9844 Entry.IsSwiftSelf = false; 9845 Entry.IsSwiftAsync = false; 9846 Entry.IsSwiftError = false; 9847 Entry.IsCFGuardTarget = false; 9848 Entry.Alignment = Alignment; 9849 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9850 CLI.NumFixedArgs += 1; 9851 CLI.getArgs()[0].IndirectType = CLI.RetTy; 9852 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9853 9854 // sret demotion isn't compatible with tail-calls, since the sret argument 9855 // points into the callers stack frame. 9856 CLI.IsTailCall = false; 9857 } else { 9858 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9859 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9860 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9861 ISD::ArgFlagsTy Flags; 9862 if (NeedsRegBlock) { 9863 Flags.setInConsecutiveRegs(); 9864 if (I == RetTys.size() - 1) 9865 Flags.setInConsecutiveRegsLast(); 9866 } 9867 EVT VT = RetTys[I]; 9868 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9869 CLI.CallConv, VT); 9870 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9871 CLI.CallConv, VT); 9872 for (unsigned i = 0; i != NumRegs; ++i) { 9873 ISD::InputArg MyFlags; 9874 MyFlags.Flags = Flags; 9875 MyFlags.VT = RegisterVT; 9876 MyFlags.ArgVT = VT; 9877 MyFlags.Used = CLI.IsReturnValueUsed; 9878 if (CLI.RetTy->isPointerTy()) { 9879 MyFlags.Flags.setPointer(); 9880 MyFlags.Flags.setPointerAddrSpace( 9881 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9882 } 9883 if (CLI.RetSExt) 9884 MyFlags.Flags.setSExt(); 9885 if (CLI.RetZExt) 9886 MyFlags.Flags.setZExt(); 9887 if (CLI.IsInReg) 9888 MyFlags.Flags.setInReg(); 9889 CLI.Ins.push_back(MyFlags); 9890 } 9891 } 9892 } 9893 9894 // We push in swifterror return as the last element of CLI.Ins. 9895 ArgListTy &Args = CLI.getArgs(); 9896 if (supportSwiftError()) { 9897 for (const ArgListEntry &Arg : Args) { 9898 if (Arg.IsSwiftError) { 9899 ISD::InputArg MyFlags; 9900 MyFlags.VT = getPointerTy(DL); 9901 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9902 MyFlags.Flags.setSwiftError(); 9903 CLI.Ins.push_back(MyFlags); 9904 } 9905 } 9906 } 9907 9908 // Handle all of the outgoing arguments. 9909 CLI.Outs.clear(); 9910 CLI.OutVals.clear(); 9911 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9912 SmallVector<EVT, 4> ValueVTs; 9913 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9914 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9915 Type *FinalType = Args[i].Ty; 9916 if (Args[i].IsByVal) 9917 FinalType = Args[i].IndirectType; 9918 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9919 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9920 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9921 ++Value) { 9922 EVT VT = ValueVTs[Value]; 9923 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9924 SDValue Op = SDValue(Args[i].Node.getNode(), 9925 Args[i].Node.getResNo() + Value); 9926 ISD::ArgFlagsTy Flags; 9927 9928 // Certain targets (such as MIPS), may have a different ABI alignment 9929 // for a type depending on the context. Give the target a chance to 9930 // specify the alignment it wants. 9931 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9932 Flags.setOrigAlign(OriginalAlignment); 9933 9934 if (Args[i].Ty->isPointerTy()) { 9935 Flags.setPointer(); 9936 Flags.setPointerAddrSpace( 9937 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9938 } 9939 if (Args[i].IsZExt) 9940 Flags.setZExt(); 9941 if (Args[i].IsSExt) 9942 Flags.setSExt(); 9943 if (Args[i].IsInReg) { 9944 // If we are using vectorcall calling convention, a structure that is 9945 // passed InReg - is surely an HVA 9946 if (CLI.CallConv == CallingConv::X86_VectorCall && 9947 isa<StructType>(FinalType)) { 9948 // The first value of a structure is marked 9949 if (0 == Value) 9950 Flags.setHvaStart(); 9951 Flags.setHva(); 9952 } 9953 // Set InReg Flag 9954 Flags.setInReg(); 9955 } 9956 if (Args[i].IsSRet) 9957 Flags.setSRet(); 9958 if (Args[i].IsSwiftSelf) 9959 Flags.setSwiftSelf(); 9960 if (Args[i].IsSwiftAsync) 9961 Flags.setSwiftAsync(); 9962 if (Args[i].IsSwiftError) 9963 Flags.setSwiftError(); 9964 if (Args[i].IsCFGuardTarget) 9965 Flags.setCFGuardTarget(); 9966 if (Args[i].IsByVal) 9967 Flags.setByVal(); 9968 if (Args[i].IsByRef) 9969 Flags.setByRef(); 9970 if (Args[i].IsPreallocated) { 9971 Flags.setPreallocated(); 9972 // Set the byval flag for CCAssignFn callbacks that don't know about 9973 // preallocated. This way we can know how many bytes we should've 9974 // allocated and how many bytes a callee cleanup function will pop. If 9975 // we port preallocated to more targets, we'll have to add custom 9976 // preallocated handling in the various CC lowering callbacks. 9977 Flags.setByVal(); 9978 } 9979 if (Args[i].IsInAlloca) { 9980 Flags.setInAlloca(); 9981 // Set the byval flag for CCAssignFn callbacks that don't know about 9982 // inalloca. This way we can know how many bytes we should've allocated 9983 // and how many bytes a callee cleanup function will pop. If we port 9984 // inalloca to more targets, we'll have to add custom inalloca handling 9985 // in the various CC lowering callbacks. 9986 Flags.setByVal(); 9987 } 9988 Align MemAlign; 9989 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9990 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9991 Flags.setByValSize(FrameSize); 9992 9993 // info is not there but there are cases it cannot get right. 9994 if (auto MA = Args[i].Alignment) 9995 MemAlign = *MA; 9996 else 9997 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 9998 } else if (auto MA = Args[i].Alignment) { 9999 MemAlign = *MA; 10000 } else { 10001 MemAlign = OriginalAlignment; 10002 } 10003 Flags.setMemAlign(MemAlign); 10004 if (Args[i].IsNest) 10005 Flags.setNest(); 10006 if (NeedsRegBlock) 10007 Flags.setInConsecutiveRegs(); 10008 10009 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10010 CLI.CallConv, VT); 10011 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10012 CLI.CallConv, VT); 10013 SmallVector<SDValue, 4> Parts(NumParts); 10014 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10015 10016 if (Args[i].IsSExt) 10017 ExtendKind = ISD::SIGN_EXTEND; 10018 else if (Args[i].IsZExt) 10019 ExtendKind = ISD::ZERO_EXTEND; 10020 10021 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10022 // for now. 10023 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10024 CanLowerReturn) { 10025 assert((CLI.RetTy == Args[i].Ty || 10026 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10027 CLI.RetTy->getPointerAddressSpace() == 10028 Args[i].Ty->getPointerAddressSpace())) && 10029 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10030 // Before passing 'returned' to the target lowering code, ensure that 10031 // either the register MVT and the actual EVT are the same size or that 10032 // the return value and argument are extended in the same way; in these 10033 // cases it's safe to pass the argument register value unchanged as the 10034 // return register value (although it's at the target's option whether 10035 // to do so) 10036 // TODO: allow code generation to take advantage of partially preserved 10037 // registers rather than clobbering the entire register when the 10038 // parameter extension method is not compatible with the return 10039 // extension method 10040 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10041 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10042 CLI.RetZExt == Args[i].IsZExt)) 10043 Flags.setReturned(); 10044 } 10045 10046 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10047 CLI.CallConv, ExtendKind); 10048 10049 for (unsigned j = 0; j != NumParts; ++j) { 10050 // if it isn't first piece, alignment must be 1 10051 // For scalable vectors the scalable part is currently handled 10052 // by individual targets, so we just use the known minimum size here. 10053 ISD::OutputArg MyFlags( 10054 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10055 i < CLI.NumFixedArgs, i, 10056 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 10057 if (NumParts > 1 && j == 0) 10058 MyFlags.Flags.setSplit(); 10059 else if (j != 0) { 10060 MyFlags.Flags.setOrigAlign(Align(1)); 10061 if (j == NumParts - 1) 10062 MyFlags.Flags.setSplitEnd(); 10063 } 10064 10065 CLI.Outs.push_back(MyFlags); 10066 CLI.OutVals.push_back(Parts[j]); 10067 } 10068 10069 if (NeedsRegBlock && Value == NumValues - 1) 10070 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10071 } 10072 } 10073 10074 SmallVector<SDValue, 4> InVals; 10075 CLI.Chain = LowerCall(CLI, InVals); 10076 10077 // Update CLI.InVals to use outside of this function. 10078 CLI.InVals = InVals; 10079 10080 // Verify that the target's LowerCall behaved as expected. 10081 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10082 "LowerCall didn't return a valid chain!"); 10083 assert((!CLI.IsTailCall || InVals.empty()) && 10084 "LowerCall emitted a return value for a tail call!"); 10085 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10086 "LowerCall didn't emit the correct number of values!"); 10087 10088 // For a tail call, the return value is merely live-out and there aren't 10089 // any nodes in the DAG representing it. Return a special value to 10090 // indicate that a tail call has been emitted and no more Instructions 10091 // should be processed in the current block. 10092 if (CLI.IsTailCall) { 10093 CLI.DAG.setRoot(CLI.Chain); 10094 return std::make_pair(SDValue(), SDValue()); 10095 } 10096 10097 #ifndef NDEBUG 10098 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10099 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10100 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10101 "LowerCall emitted a value with the wrong type!"); 10102 } 10103 #endif 10104 10105 SmallVector<SDValue, 4> ReturnValues; 10106 if (!CanLowerReturn) { 10107 // The instruction result is the result of loading from the 10108 // hidden sret parameter. 10109 SmallVector<EVT, 1> PVTs; 10110 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 10111 10112 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10113 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10114 EVT PtrVT = PVTs[0]; 10115 10116 unsigned NumValues = RetTys.size(); 10117 ReturnValues.resize(NumValues); 10118 SmallVector<SDValue, 4> Chains(NumValues); 10119 10120 // An aggregate return value cannot wrap around the address space, so 10121 // offsets to its parts don't wrap either. 10122 SDNodeFlags Flags; 10123 Flags.setNoUnsignedWrap(true); 10124 10125 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10126 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10127 for (unsigned i = 0; i < NumValues; ++i) { 10128 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10129 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10130 PtrVT), Flags); 10131 SDValue L = CLI.DAG.getLoad( 10132 RetTys[i], CLI.DL, CLI.Chain, Add, 10133 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10134 DemoteStackIdx, Offsets[i]), 10135 HiddenSRetAlign); 10136 ReturnValues[i] = L; 10137 Chains[i] = L.getValue(1); 10138 } 10139 10140 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10141 } else { 10142 // Collect the legal value parts into potentially illegal values 10143 // that correspond to the original function's return values. 10144 Optional<ISD::NodeType> AssertOp; 10145 if (CLI.RetSExt) 10146 AssertOp = ISD::AssertSext; 10147 else if (CLI.RetZExt) 10148 AssertOp = ISD::AssertZext; 10149 unsigned CurReg = 0; 10150 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10151 EVT VT = RetTys[I]; 10152 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10153 CLI.CallConv, VT); 10154 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10155 CLI.CallConv, VT); 10156 10157 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10158 NumRegs, RegisterVT, VT, nullptr, 10159 CLI.CallConv, AssertOp)); 10160 CurReg += NumRegs; 10161 } 10162 10163 // For a function returning void, there is no return value. We can't create 10164 // such a node, so we just return a null return value in that case. In 10165 // that case, nothing will actually look at the value. 10166 if (ReturnValues.empty()) 10167 return std::make_pair(SDValue(), CLI.Chain); 10168 } 10169 10170 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10171 CLI.DAG.getVTList(RetTys), ReturnValues); 10172 return std::make_pair(Res, CLI.Chain); 10173 } 10174 10175 /// Places new result values for the node in Results (their number 10176 /// and types must exactly match those of the original return values of 10177 /// the node), or leaves Results empty, which indicates that the node is not 10178 /// to be custom lowered after all. 10179 void TargetLowering::LowerOperationWrapper(SDNode *N, 10180 SmallVectorImpl<SDValue> &Results, 10181 SelectionDAG &DAG) const { 10182 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10183 10184 if (!Res.getNode()) 10185 return; 10186 10187 // If the original node has one result, take the return value from 10188 // LowerOperation as is. It might not be result number 0. 10189 if (N->getNumValues() == 1) { 10190 Results.push_back(Res); 10191 return; 10192 } 10193 10194 // If the original node has multiple results, then the return node should 10195 // have the same number of results. 10196 assert((N->getNumValues() == Res->getNumValues()) && 10197 "Lowering returned the wrong number of results!"); 10198 10199 // Places new result values base on N result number. 10200 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10201 Results.push_back(Res.getValue(I)); 10202 } 10203 10204 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10205 llvm_unreachable("LowerOperation not implemented for this target!"); 10206 } 10207 10208 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10209 unsigned Reg, 10210 ISD::NodeType ExtendType) { 10211 SDValue Op = getNonRegisterValue(V); 10212 assert((Op.getOpcode() != ISD::CopyFromReg || 10213 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10214 "Copy from a reg to the same reg!"); 10215 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10216 10217 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10218 // If this is an InlineAsm we have to match the registers required, not the 10219 // notional registers required by the type. 10220 10221 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10222 None); // This is not an ABI copy. 10223 SDValue Chain = DAG.getEntryNode(); 10224 10225 if (ExtendType == ISD::ANY_EXTEND) { 10226 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10227 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10228 ExtendType = PreferredExtendIt->second; 10229 } 10230 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10231 PendingExports.push_back(Chain); 10232 } 10233 10234 #include "llvm/CodeGen/SelectionDAGISel.h" 10235 10236 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10237 /// entry block, return true. This includes arguments used by switches, since 10238 /// the switch may expand into multiple basic blocks. 10239 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10240 // With FastISel active, we may be splitting blocks, so force creation 10241 // of virtual registers for all non-dead arguments. 10242 if (FastISel) 10243 return A->use_empty(); 10244 10245 const BasicBlock &Entry = A->getParent()->front(); 10246 for (const User *U : A->users()) 10247 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10248 return false; // Use not in entry block. 10249 10250 return true; 10251 } 10252 10253 using ArgCopyElisionMapTy = 10254 DenseMap<const Argument *, 10255 std::pair<const AllocaInst *, const StoreInst *>>; 10256 10257 /// Scan the entry block of the function in FuncInfo for arguments that look 10258 /// like copies into a local alloca. Record any copied arguments in 10259 /// ArgCopyElisionCandidates. 10260 static void 10261 findArgumentCopyElisionCandidates(const DataLayout &DL, 10262 FunctionLoweringInfo *FuncInfo, 10263 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10264 // Record the state of every static alloca used in the entry block. Argument 10265 // allocas are all used in the entry block, so we need approximately as many 10266 // entries as we have arguments. 10267 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10268 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10269 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10270 StaticAllocas.reserve(NumArgs * 2); 10271 10272 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10273 if (!V) 10274 return nullptr; 10275 V = V->stripPointerCasts(); 10276 const auto *AI = dyn_cast<AllocaInst>(V); 10277 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10278 return nullptr; 10279 auto Iter = StaticAllocas.insert({AI, Unknown}); 10280 return &Iter.first->second; 10281 }; 10282 10283 // Look for stores of arguments to static allocas. Look through bitcasts and 10284 // GEPs to handle type coercions, as long as the alloca is fully initialized 10285 // by the store. Any non-store use of an alloca escapes it and any subsequent 10286 // unanalyzed store might write it. 10287 // FIXME: Handle structs initialized with multiple stores. 10288 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10289 // Look for stores, and handle non-store uses conservatively. 10290 const auto *SI = dyn_cast<StoreInst>(&I); 10291 if (!SI) { 10292 // We will look through cast uses, so ignore them completely. 10293 if (I.isCast()) 10294 continue; 10295 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10296 // to allocas. 10297 if (I.isDebugOrPseudoInst()) 10298 continue; 10299 // This is an unknown instruction. Assume it escapes or writes to all 10300 // static alloca operands. 10301 for (const Use &U : I.operands()) { 10302 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10303 *Info = StaticAllocaInfo::Clobbered; 10304 } 10305 continue; 10306 } 10307 10308 // If the stored value is a static alloca, mark it as escaped. 10309 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10310 *Info = StaticAllocaInfo::Clobbered; 10311 10312 // Check if the destination is a static alloca. 10313 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10314 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10315 if (!Info) 10316 continue; 10317 const AllocaInst *AI = cast<AllocaInst>(Dst); 10318 10319 // Skip allocas that have been initialized or clobbered. 10320 if (*Info != StaticAllocaInfo::Unknown) 10321 continue; 10322 10323 // Check if the stored value is an argument, and that this store fully 10324 // initializes the alloca. 10325 // If the argument type has padding bits we can't directly forward a pointer 10326 // as the upper bits may contain garbage. 10327 // Don't elide copies from the same argument twice. 10328 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10329 const auto *Arg = dyn_cast<Argument>(Val); 10330 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10331 Arg->getType()->isEmptyTy() || 10332 DL.getTypeStoreSize(Arg->getType()) != 10333 DL.getTypeAllocSize(AI->getAllocatedType()) || 10334 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10335 ArgCopyElisionCandidates.count(Arg)) { 10336 *Info = StaticAllocaInfo::Clobbered; 10337 continue; 10338 } 10339 10340 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10341 << '\n'); 10342 10343 // Mark this alloca and store for argument copy elision. 10344 *Info = StaticAllocaInfo::Elidable; 10345 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10346 10347 // Stop scanning if we've seen all arguments. This will happen early in -O0 10348 // builds, which is useful, because -O0 builds have large entry blocks and 10349 // many allocas. 10350 if (ArgCopyElisionCandidates.size() == NumArgs) 10351 break; 10352 } 10353 } 10354 10355 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10356 /// ArgVal is a load from a suitable fixed stack object. 10357 static void tryToElideArgumentCopy( 10358 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10359 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10360 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10361 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10362 SDValue ArgVal, bool &ArgHasUses) { 10363 // Check if this is a load from a fixed stack object. 10364 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10365 if (!LNode) 10366 return; 10367 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10368 if (!FINode) 10369 return; 10370 10371 // Check that the fixed stack object is the right size and alignment. 10372 // Look at the alignment that the user wrote on the alloca instead of looking 10373 // at the stack object. 10374 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10375 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10376 const AllocaInst *AI = ArgCopyIter->second.first; 10377 int FixedIndex = FINode->getIndex(); 10378 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10379 int OldIndex = AllocaIndex; 10380 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10381 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10382 LLVM_DEBUG( 10383 dbgs() << " argument copy elision failed due to bad fixed stack " 10384 "object size\n"); 10385 return; 10386 } 10387 Align RequiredAlignment = AI->getAlign(); 10388 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10389 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10390 "greater than stack argument alignment (" 10391 << DebugStr(RequiredAlignment) << " vs " 10392 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10393 return; 10394 } 10395 10396 // Perform the elision. Delete the old stack object and replace its only use 10397 // in the variable info map. Mark the stack object as mutable. 10398 LLVM_DEBUG({ 10399 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10400 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10401 << '\n'; 10402 }); 10403 MFI.RemoveStackObject(OldIndex); 10404 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10405 AllocaIndex = FixedIndex; 10406 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10407 Chains.push_back(ArgVal.getValue(1)); 10408 10409 // Avoid emitting code for the store implementing the copy. 10410 const StoreInst *SI = ArgCopyIter->second.second; 10411 ElidedArgCopyInstrs.insert(SI); 10412 10413 // Check for uses of the argument again so that we can avoid exporting ArgVal 10414 // if it is't used by anything other than the store. 10415 for (const Value *U : Arg.users()) { 10416 if (U != SI) { 10417 ArgHasUses = true; 10418 break; 10419 } 10420 } 10421 } 10422 10423 void SelectionDAGISel::LowerArguments(const Function &F) { 10424 SelectionDAG &DAG = SDB->DAG; 10425 SDLoc dl = SDB->getCurSDLoc(); 10426 const DataLayout &DL = DAG.getDataLayout(); 10427 SmallVector<ISD::InputArg, 16> Ins; 10428 10429 // In Naked functions we aren't going to save any registers. 10430 if (F.hasFnAttribute(Attribute::Naked)) 10431 return; 10432 10433 if (!FuncInfo->CanLowerReturn) { 10434 // Put in an sret pointer parameter before all the other parameters. 10435 SmallVector<EVT, 1> ValueVTs; 10436 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10437 F.getReturnType()->getPointerTo( 10438 DAG.getDataLayout().getAllocaAddrSpace()), 10439 ValueVTs); 10440 10441 // NOTE: Assuming that a pointer will never break down to more than one VT 10442 // or one register. 10443 ISD::ArgFlagsTy Flags; 10444 Flags.setSRet(); 10445 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10446 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10447 ISD::InputArg::NoArgIndex, 0); 10448 Ins.push_back(RetArg); 10449 } 10450 10451 // Look for stores of arguments to static allocas. Mark such arguments with a 10452 // flag to ask the target to give us the memory location of that argument if 10453 // available. 10454 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10455 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10456 ArgCopyElisionCandidates); 10457 10458 // Set up the incoming argument description vector. 10459 for (const Argument &Arg : F.args()) { 10460 unsigned ArgNo = Arg.getArgNo(); 10461 SmallVector<EVT, 4> ValueVTs; 10462 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10463 bool isArgValueUsed = !Arg.use_empty(); 10464 unsigned PartBase = 0; 10465 Type *FinalType = Arg.getType(); 10466 if (Arg.hasAttribute(Attribute::ByVal)) 10467 FinalType = Arg.getParamByValType(); 10468 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10469 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10470 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10471 Value != NumValues; ++Value) { 10472 EVT VT = ValueVTs[Value]; 10473 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10474 ISD::ArgFlagsTy Flags; 10475 10476 10477 if (Arg.getType()->isPointerTy()) { 10478 Flags.setPointer(); 10479 Flags.setPointerAddrSpace( 10480 cast<PointerType>(Arg.getType())->getAddressSpace()); 10481 } 10482 if (Arg.hasAttribute(Attribute::ZExt)) 10483 Flags.setZExt(); 10484 if (Arg.hasAttribute(Attribute::SExt)) 10485 Flags.setSExt(); 10486 if (Arg.hasAttribute(Attribute::InReg)) { 10487 // If we are using vectorcall calling convention, a structure that is 10488 // passed InReg - is surely an HVA 10489 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10490 isa<StructType>(Arg.getType())) { 10491 // The first value of a structure is marked 10492 if (0 == Value) 10493 Flags.setHvaStart(); 10494 Flags.setHva(); 10495 } 10496 // Set InReg Flag 10497 Flags.setInReg(); 10498 } 10499 if (Arg.hasAttribute(Attribute::StructRet)) 10500 Flags.setSRet(); 10501 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10502 Flags.setSwiftSelf(); 10503 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10504 Flags.setSwiftAsync(); 10505 if (Arg.hasAttribute(Attribute::SwiftError)) 10506 Flags.setSwiftError(); 10507 if (Arg.hasAttribute(Attribute::ByVal)) 10508 Flags.setByVal(); 10509 if (Arg.hasAttribute(Attribute::ByRef)) 10510 Flags.setByRef(); 10511 if (Arg.hasAttribute(Attribute::InAlloca)) { 10512 Flags.setInAlloca(); 10513 // Set the byval flag for CCAssignFn callbacks that don't know about 10514 // inalloca. This way we can know how many bytes we should've allocated 10515 // and how many bytes a callee cleanup function will pop. If we port 10516 // inalloca to more targets, we'll have to add custom inalloca handling 10517 // in the various CC lowering callbacks. 10518 Flags.setByVal(); 10519 } 10520 if (Arg.hasAttribute(Attribute::Preallocated)) { 10521 Flags.setPreallocated(); 10522 // Set the byval flag for CCAssignFn callbacks that don't know about 10523 // preallocated. This way we can know how many bytes we should've 10524 // allocated and how many bytes a callee cleanup function will pop. If 10525 // we port preallocated to more targets, we'll have to add custom 10526 // preallocated handling in the various CC lowering callbacks. 10527 Flags.setByVal(); 10528 } 10529 10530 // Certain targets (such as MIPS), may have a different ABI alignment 10531 // for a type depending on the context. Give the target a chance to 10532 // specify the alignment it wants. 10533 const Align OriginalAlignment( 10534 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10535 Flags.setOrigAlign(OriginalAlignment); 10536 10537 Align MemAlign; 10538 Type *ArgMemTy = nullptr; 10539 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10540 Flags.isByRef()) { 10541 if (!ArgMemTy) 10542 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10543 10544 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10545 10546 // For in-memory arguments, size and alignment should be passed from FE. 10547 // BE will guess if this info is not there but there are cases it cannot 10548 // get right. 10549 if (auto ParamAlign = Arg.getParamStackAlign()) 10550 MemAlign = *ParamAlign; 10551 else if ((ParamAlign = Arg.getParamAlign())) 10552 MemAlign = *ParamAlign; 10553 else 10554 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10555 if (Flags.isByRef()) 10556 Flags.setByRefSize(MemSize); 10557 else 10558 Flags.setByValSize(MemSize); 10559 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10560 MemAlign = *ParamAlign; 10561 } else { 10562 MemAlign = OriginalAlignment; 10563 } 10564 Flags.setMemAlign(MemAlign); 10565 10566 if (Arg.hasAttribute(Attribute::Nest)) 10567 Flags.setNest(); 10568 if (NeedsRegBlock) 10569 Flags.setInConsecutiveRegs(); 10570 if (ArgCopyElisionCandidates.count(&Arg)) 10571 Flags.setCopyElisionCandidate(); 10572 if (Arg.hasAttribute(Attribute::Returned)) 10573 Flags.setReturned(); 10574 10575 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10576 *CurDAG->getContext(), F.getCallingConv(), VT); 10577 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10578 *CurDAG->getContext(), F.getCallingConv(), VT); 10579 for (unsigned i = 0; i != NumRegs; ++i) { 10580 // For scalable vectors, use the minimum size; individual targets 10581 // are responsible for handling scalable vector arguments and 10582 // return values. 10583 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10584 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10585 if (NumRegs > 1 && i == 0) 10586 MyFlags.Flags.setSplit(); 10587 // if it isn't first piece, alignment must be 1 10588 else if (i > 0) { 10589 MyFlags.Flags.setOrigAlign(Align(1)); 10590 if (i == NumRegs - 1) 10591 MyFlags.Flags.setSplitEnd(); 10592 } 10593 Ins.push_back(MyFlags); 10594 } 10595 if (NeedsRegBlock && Value == NumValues - 1) 10596 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10597 PartBase += VT.getStoreSize().getKnownMinSize(); 10598 } 10599 } 10600 10601 // Call the target to set up the argument values. 10602 SmallVector<SDValue, 8> InVals; 10603 SDValue NewRoot = TLI->LowerFormalArguments( 10604 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10605 10606 // Verify that the target's LowerFormalArguments behaved as expected. 10607 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10608 "LowerFormalArguments didn't return a valid chain!"); 10609 assert(InVals.size() == Ins.size() && 10610 "LowerFormalArguments didn't emit the correct number of values!"); 10611 LLVM_DEBUG({ 10612 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10613 assert(InVals[i].getNode() && 10614 "LowerFormalArguments emitted a null value!"); 10615 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10616 "LowerFormalArguments emitted a value with the wrong type!"); 10617 } 10618 }); 10619 10620 // Update the DAG with the new chain value resulting from argument lowering. 10621 DAG.setRoot(NewRoot); 10622 10623 // Set up the argument values. 10624 unsigned i = 0; 10625 if (!FuncInfo->CanLowerReturn) { 10626 // Create a virtual register for the sret pointer, and put in a copy 10627 // from the sret argument into it. 10628 SmallVector<EVT, 1> ValueVTs; 10629 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10630 F.getReturnType()->getPointerTo( 10631 DAG.getDataLayout().getAllocaAddrSpace()), 10632 ValueVTs); 10633 MVT VT = ValueVTs[0].getSimpleVT(); 10634 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10635 Optional<ISD::NodeType> AssertOp; 10636 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10637 nullptr, F.getCallingConv(), AssertOp); 10638 10639 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10640 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10641 Register SRetReg = 10642 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10643 FuncInfo->DemoteRegister = SRetReg; 10644 NewRoot = 10645 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10646 DAG.setRoot(NewRoot); 10647 10648 // i indexes lowered arguments. Bump it past the hidden sret argument. 10649 ++i; 10650 } 10651 10652 SmallVector<SDValue, 4> Chains; 10653 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10654 for (const Argument &Arg : F.args()) { 10655 SmallVector<SDValue, 4> ArgValues; 10656 SmallVector<EVT, 4> ValueVTs; 10657 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10658 unsigned NumValues = ValueVTs.size(); 10659 if (NumValues == 0) 10660 continue; 10661 10662 bool ArgHasUses = !Arg.use_empty(); 10663 10664 // Elide the copying store if the target loaded this argument from a 10665 // suitable fixed stack object. 10666 if (Ins[i].Flags.isCopyElisionCandidate()) { 10667 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10668 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10669 InVals[i], ArgHasUses); 10670 } 10671 10672 // If this argument is unused then remember its value. It is used to generate 10673 // debugging information. 10674 bool isSwiftErrorArg = 10675 TLI->supportSwiftError() && 10676 Arg.hasAttribute(Attribute::SwiftError); 10677 if (!ArgHasUses && !isSwiftErrorArg) { 10678 SDB->setUnusedArgValue(&Arg, InVals[i]); 10679 10680 // Also remember any frame index for use in FastISel. 10681 if (FrameIndexSDNode *FI = 10682 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10683 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10684 } 10685 10686 for (unsigned Val = 0; Val != NumValues; ++Val) { 10687 EVT VT = ValueVTs[Val]; 10688 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10689 F.getCallingConv(), VT); 10690 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10691 *CurDAG->getContext(), F.getCallingConv(), VT); 10692 10693 // Even an apparent 'unused' swifterror argument needs to be returned. So 10694 // we do generate a copy for it that can be used on return from the 10695 // function. 10696 if (ArgHasUses || isSwiftErrorArg) { 10697 Optional<ISD::NodeType> AssertOp; 10698 if (Arg.hasAttribute(Attribute::SExt)) 10699 AssertOp = ISD::AssertSext; 10700 else if (Arg.hasAttribute(Attribute::ZExt)) 10701 AssertOp = ISD::AssertZext; 10702 10703 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10704 PartVT, VT, nullptr, 10705 F.getCallingConv(), AssertOp)); 10706 } 10707 10708 i += NumParts; 10709 } 10710 10711 // We don't need to do anything else for unused arguments. 10712 if (ArgValues.empty()) 10713 continue; 10714 10715 // Note down frame index. 10716 if (FrameIndexSDNode *FI = 10717 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10718 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10719 10720 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10721 SDB->getCurSDLoc()); 10722 10723 SDB->setValue(&Arg, Res); 10724 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10725 // We want to associate the argument with the frame index, among 10726 // involved operands, that correspond to the lowest address. The 10727 // getCopyFromParts function, called earlier, is swapping the order of 10728 // the operands to BUILD_PAIR depending on endianness. The result of 10729 // that swapping is that the least significant bits of the argument will 10730 // be in the first operand of the BUILD_PAIR node, and the most 10731 // significant bits will be in the second operand. 10732 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10733 if (LoadSDNode *LNode = 10734 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10735 if (FrameIndexSDNode *FI = 10736 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10737 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10738 } 10739 10740 // Analyses past this point are naive and don't expect an assertion. 10741 if (Res.getOpcode() == ISD::AssertZext) 10742 Res = Res.getOperand(0); 10743 10744 // Update the SwiftErrorVRegDefMap. 10745 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10746 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10747 if (Register::isVirtualRegister(Reg)) 10748 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10749 Reg); 10750 } 10751 10752 // If this argument is live outside of the entry block, insert a copy from 10753 // wherever we got it to the vreg that other BB's will reference it as. 10754 if (Res.getOpcode() == ISD::CopyFromReg) { 10755 // If we can, though, try to skip creating an unnecessary vreg. 10756 // FIXME: This isn't very clean... it would be nice to make this more 10757 // general. 10758 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10759 if (Register::isVirtualRegister(Reg)) { 10760 FuncInfo->ValueMap[&Arg] = Reg; 10761 continue; 10762 } 10763 } 10764 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10765 FuncInfo->InitializeRegForValue(&Arg); 10766 SDB->CopyToExportRegsIfNeeded(&Arg); 10767 } 10768 } 10769 10770 if (!Chains.empty()) { 10771 Chains.push_back(NewRoot); 10772 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10773 } 10774 10775 DAG.setRoot(NewRoot); 10776 10777 assert(i == InVals.size() && "Argument register count mismatch!"); 10778 10779 // If any argument copy elisions occurred and we have debug info, update the 10780 // stale frame indices used in the dbg.declare variable info table. 10781 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10782 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10783 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10784 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10785 if (I != ArgCopyElisionFrameIndexMap.end()) 10786 VI.Slot = I->second; 10787 } 10788 } 10789 10790 // Finally, if the target has anything special to do, allow it to do so. 10791 emitFunctionEntryCode(); 10792 } 10793 10794 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10795 /// ensure constants are generated when needed. Remember the virtual registers 10796 /// that need to be added to the Machine PHI nodes as input. We cannot just 10797 /// directly add them, because expansion might result in multiple MBB's for one 10798 /// BB. As such, the start of the BB might correspond to a different MBB than 10799 /// the end. 10800 void 10801 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10802 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10803 10804 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10805 10806 // Check PHI nodes in successors that expect a value to be available from this 10807 // block. 10808 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 10809 if (!isa<PHINode>(SuccBB->begin())) continue; 10810 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10811 10812 // If this terminator has multiple identical successors (common for 10813 // switches), only handle each succ once. 10814 if (!SuccsHandled.insert(SuccMBB).second) 10815 continue; 10816 10817 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10818 10819 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10820 // nodes and Machine PHI nodes, but the incoming operands have not been 10821 // emitted yet. 10822 for (const PHINode &PN : SuccBB->phis()) { 10823 // Ignore dead phi's. 10824 if (PN.use_empty()) 10825 continue; 10826 10827 // Skip empty types 10828 if (PN.getType()->isEmptyTy()) 10829 continue; 10830 10831 unsigned Reg; 10832 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10833 10834 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 10835 unsigned &RegOut = ConstantsOut[C]; 10836 if (RegOut == 0) { 10837 RegOut = FuncInfo.CreateRegs(C); 10838 // We need to zero/sign extend ConstantInt phi operands to match 10839 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 10840 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 10841 if (auto *CI = dyn_cast<ConstantInt>(C)) 10842 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 10843 : ISD::ZERO_EXTEND; 10844 CopyValueToVirtualRegister(C, RegOut, ExtendType); 10845 } 10846 Reg = RegOut; 10847 } else { 10848 DenseMap<const Value *, Register>::iterator I = 10849 FuncInfo.ValueMap.find(PHIOp); 10850 if (I != FuncInfo.ValueMap.end()) 10851 Reg = I->second; 10852 else { 10853 assert(isa<AllocaInst>(PHIOp) && 10854 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10855 "Didn't codegen value into a register!??"); 10856 Reg = FuncInfo.CreateRegs(PHIOp); 10857 CopyValueToVirtualRegister(PHIOp, Reg); 10858 } 10859 } 10860 10861 // Remember that this register needs to added to the machine PHI node as 10862 // the input for this MBB. 10863 SmallVector<EVT, 4> ValueVTs; 10864 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10865 for (EVT VT : ValueVTs) { 10866 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10867 for (unsigned i = 0; i != NumRegisters; ++i) 10868 FuncInfo.PHINodesToUpdate.push_back( 10869 std::make_pair(&*MBBI++, Reg + i)); 10870 Reg += NumRegisters; 10871 } 10872 } 10873 } 10874 10875 ConstantsOut.clear(); 10876 } 10877 10878 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10879 MachineFunction::iterator I(MBB); 10880 if (++I == FuncInfo.MF->end()) 10881 return nullptr; 10882 return &*I; 10883 } 10884 10885 /// During lowering new call nodes can be created (such as memset, etc.). 10886 /// Those will become new roots of the current DAG, but complications arise 10887 /// when they are tail calls. In such cases, the call lowering will update 10888 /// the root, but the builder still needs to know that a tail call has been 10889 /// lowered in order to avoid generating an additional return. 10890 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10891 // If the node is null, we do have a tail call. 10892 if (MaybeTC.getNode() != nullptr) 10893 DAG.setRoot(MaybeTC); 10894 else 10895 HasTailCall = true; 10896 } 10897 10898 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10899 MachineBasicBlock *SwitchMBB, 10900 MachineBasicBlock *DefaultMBB) { 10901 MachineFunction *CurMF = FuncInfo.MF; 10902 MachineBasicBlock *NextMBB = nullptr; 10903 MachineFunction::iterator BBI(W.MBB); 10904 if (++BBI != FuncInfo.MF->end()) 10905 NextMBB = &*BBI; 10906 10907 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10908 10909 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10910 10911 if (Size == 2 && W.MBB == SwitchMBB) { 10912 // If any two of the cases has the same destination, and if one value 10913 // is the same as the other, but has one bit unset that the other has set, 10914 // use bit manipulation to do two compares at once. For example: 10915 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10916 // TODO: This could be extended to merge any 2 cases in switches with 3 10917 // cases. 10918 // TODO: Handle cases where W.CaseBB != SwitchBB. 10919 CaseCluster &Small = *W.FirstCluster; 10920 CaseCluster &Big = *W.LastCluster; 10921 10922 if (Small.Low == Small.High && Big.Low == Big.High && 10923 Small.MBB == Big.MBB) { 10924 const APInt &SmallValue = Small.Low->getValue(); 10925 const APInt &BigValue = Big.Low->getValue(); 10926 10927 // Check that there is only one bit different. 10928 APInt CommonBit = BigValue ^ SmallValue; 10929 if (CommonBit.isPowerOf2()) { 10930 SDValue CondLHS = getValue(Cond); 10931 EVT VT = CondLHS.getValueType(); 10932 SDLoc DL = getCurSDLoc(); 10933 10934 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10935 DAG.getConstant(CommonBit, DL, VT)); 10936 SDValue Cond = DAG.getSetCC( 10937 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10938 ISD::SETEQ); 10939 10940 // Update successor info. 10941 // Both Small and Big will jump to Small.BB, so we sum up the 10942 // probabilities. 10943 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10944 if (BPI) 10945 addSuccessorWithProb( 10946 SwitchMBB, DefaultMBB, 10947 // The default destination is the first successor in IR. 10948 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10949 else 10950 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10951 10952 // Insert the true branch. 10953 SDValue BrCond = 10954 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10955 DAG.getBasicBlock(Small.MBB)); 10956 // Insert the false branch. 10957 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10958 DAG.getBasicBlock(DefaultMBB)); 10959 10960 DAG.setRoot(BrCond); 10961 return; 10962 } 10963 } 10964 } 10965 10966 if (TM.getOptLevel() != CodeGenOpt::None) { 10967 // Here, we order cases by probability so the most likely case will be 10968 // checked first. However, two clusters can have the same probability in 10969 // which case their relative ordering is non-deterministic. So we use Low 10970 // as a tie-breaker as clusters are guaranteed to never overlap. 10971 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10972 [](const CaseCluster &a, const CaseCluster &b) { 10973 return a.Prob != b.Prob ? 10974 a.Prob > b.Prob : 10975 a.Low->getValue().slt(b.Low->getValue()); 10976 }); 10977 10978 // Rearrange the case blocks so that the last one falls through if possible 10979 // without changing the order of probabilities. 10980 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10981 --I; 10982 if (I->Prob > W.LastCluster->Prob) 10983 break; 10984 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10985 std::swap(*I, *W.LastCluster); 10986 break; 10987 } 10988 } 10989 } 10990 10991 // Compute total probability. 10992 BranchProbability DefaultProb = W.DefaultProb; 10993 BranchProbability UnhandledProbs = DefaultProb; 10994 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10995 UnhandledProbs += I->Prob; 10996 10997 MachineBasicBlock *CurMBB = W.MBB; 10998 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10999 bool FallthroughUnreachable = false; 11000 MachineBasicBlock *Fallthrough; 11001 if (I == W.LastCluster) { 11002 // For the last cluster, fall through to the default destination. 11003 Fallthrough = DefaultMBB; 11004 FallthroughUnreachable = isa<UnreachableInst>( 11005 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11006 } else { 11007 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11008 CurMF->insert(BBI, Fallthrough); 11009 // Put Cond in a virtual register to make it available from the new blocks. 11010 ExportFromCurrentBlock(Cond); 11011 } 11012 UnhandledProbs -= I->Prob; 11013 11014 switch (I->Kind) { 11015 case CC_JumpTable: { 11016 // FIXME: Optimize away range check based on pivot comparisons. 11017 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11018 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11019 11020 // The jump block hasn't been inserted yet; insert it here. 11021 MachineBasicBlock *JumpMBB = JT->MBB; 11022 CurMF->insert(BBI, JumpMBB); 11023 11024 auto JumpProb = I->Prob; 11025 auto FallthroughProb = UnhandledProbs; 11026 11027 // If the default statement is a target of the jump table, we evenly 11028 // distribute the default probability to successors of CurMBB. Also 11029 // update the probability on the edge from JumpMBB to Fallthrough. 11030 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11031 SE = JumpMBB->succ_end(); 11032 SI != SE; ++SI) { 11033 if (*SI == DefaultMBB) { 11034 JumpProb += DefaultProb / 2; 11035 FallthroughProb -= DefaultProb / 2; 11036 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11037 JumpMBB->normalizeSuccProbs(); 11038 break; 11039 } 11040 } 11041 11042 if (FallthroughUnreachable) 11043 JTH->FallthroughUnreachable = true; 11044 11045 if (!JTH->FallthroughUnreachable) 11046 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11047 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11048 CurMBB->normalizeSuccProbs(); 11049 11050 // The jump table header will be inserted in our current block, do the 11051 // range check, and fall through to our fallthrough block. 11052 JTH->HeaderBB = CurMBB; 11053 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11054 11055 // If we're in the right place, emit the jump table header right now. 11056 if (CurMBB == SwitchMBB) { 11057 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11058 JTH->Emitted = true; 11059 } 11060 break; 11061 } 11062 case CC_BitTests: { 11063 // FIXME: Optimize away range check based on pivot comparisons. 11064 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11065 11066 // The bit test blocks haven't been inserted yet; insert them here. 11067 for (BitTestCase &BTC : BTB->Cases) 11068 CurMF->insert(BBI, BTC.ThisBB); 11069 11070 // Fill in fields of the BitTestBlock. 11071 BTB->Parent = CurMBB; 11072 BTB->Default = Fallthrough; 11073 11074 BTB->DefaultProb = UnhandledProbs; 11075 // If the cases in bit test don't form a contiguous range, we evenly 11076 // distribute the probability on the edge to Fallthrough to two 11077 // successors of CurMBB. 11078 if (!BTB->ContiguousRange) { 11079 BTB->Prob += DefaultProb / 2; 11080 BTB->DefaultProb -= DefaultProb / 2; 11081 } 11082 11083 if (FallthroughUnreachable) 11084 BTB->FallthroughUnreachable = true; 11085 11086 // If we're in the right place, emit the bit test header right now. 11087 if (CurMBB == SwitchMBB) { 11088 visitBitTestHeader(*BTB, SwitchMBB); 11089 BTB->Emitted = true; 11090 } 11091 break; 11092 } 11093 case CC_Range: { 11094 const Value *RHS, *LHS, *MHS; 11095 ISD::CondCode CC; 11096 if (I->Low == I->High) { 11097 // Check Cond == I->Low. 11098 CC = ISD::SETEQ; 11099 LHS = Cond; 11100 RHS=I->Low; 11101 MHS = nullptr; 11102 } else { 11103 // Check I->Low <= Cond <= I->High. 11104 CC = ISD::SETLE; 11105 LHS = I->Low; 11106 MHS = Cond; 11107 RHS = I->High; 11108 } 11109 11110 // If Fallthrough is unreachable, fold away the comparison. 11111 if (FallthroughUnreachable) 11112 CC = ISD::SETTRUE; 11113 11114 // The false probability is the sum of all unhandled cases. 11115 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11116 getCurSDLoc(), I->Prob, UnhandledProbs); 11117 11118 if (CurMBB == SwitchMBB) 11119 visitSwitchCase(CB, SwitchMBB); 11120 else 11121 SL->SwitchCases.push_back(CB); 11122 11123 break; 11124 } 11125 } 11126 CurMBB = Fallthrough; 11127 } 11128 } 11129 11130 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11131 CaseClusterIt First, 11132 CaseClusterIt Last) { 11133 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11134 if (X.Prob != CC.Prob) 11135 return X.Prob > CC.Prob; 11136 11137 // Ties are broken by comparing the case value. 11138 return X.Low->getValue().slt(CC.Low->getValue()); 11139 }); 11140 } 11141 11142 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11143 const SwitchWorkListItem &W, 11144 Value *Cond, 11145 MachineBasicBlock *SwitchMBB) { 11146 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11147 "Clusters not sorted?"); 11148 11149 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11150 11151 // Balance the tree based on branch probabilities to create a near-optimal (in 11152 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11153 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11154 CaseClusterIt LastLeft = W.FirstCluster; 11155 CaseClusterIt FirstRight = W.LastCluster; 11156 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11157 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11158 11159 // Move LastLeft and FirstRight towards each other from opposite directions to 11160 // find a partitioning of the clusters which balances the probability on both 11161 // sides. If LeftProb and RightProb are equal, alternate which side is 11162 // taken to ensure 0-probability nodes are distributed evenly. 11163 unsigned I = 0; 11164 while (LastLeft + 1 < FirstRight) { 11165 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11166 LeftProb += (++LastLeft)->Prob; 11167 else 11168 RightProb += (--FirstRight)->Prob; 11169 I++; 11170 } 11171 11172 while (true) { 11173 // Our binary search tree differs from a typical BST in that ours can have up 11174 // to three values in each leaf. The pivot selection above doesn't take that 11175 // into account, which means the tree might require more nodes and be less 11176 // efficient. We compensate for this here. 11177 11178 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11179 unsigned NumRight = W.LastCluster - FirstRight + 1; 11180 11181 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11182 // If one side has less than 3 clusters, and the other has more than 3, 11183 // consider taking a cluster from the other side. 11184 11185 if (NumLeft < NumRight) { 11186 // Consider moving the first cluster on the right to the left side. 11187 CaseCluster &CC = *FirstRight; 11188 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11189 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11190 if (LeftSideRank <= RightSideRank) { 11191 // Moving the cluster to the left does not demote it. 11192 ++LastLeft; 11193 ++FirstRight; 11194 continue; 11195 } 11196 } else { 11197 assert(NumRight < NumLeft); 11198 // Consider moving the last element on the left to the right side. 11199 CaseCluster &CC = *LastLeft; 11200 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11201 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11202 if (RightSideRank <= LeftSideRank) { 11203 // Moving the cluster to the right does not demot it. 11204 --LastLeft; 11205 --FirstRight; 11206 continue; 11207 } 11208 } 11209 } 11210 break; 11211 } 11212 11213 assert(LastLeft + 1 == FirstRight); 11214 assert(LastLeft >= W.FirstCluster); 11215 assert(FirstRight <= W.LastCluster); 11216 11217 // Use the first element on the right as pivot since we will make less-than 11218 // comparisons against it. 11219 CaseClusterIt PivotCluster = FirstRight; 11220 assert(PivotCluster > W.FirstCluster); 11221 assert(PivotCluster <= W.LastCluster); 11222 11223 CaseClusterIt FirstLeft = W.FirstCluster; 11224 CaseClusterIt LastRight = W.LastCluster; 11225 11226 const ConstantInt *Pivot = PivotCluster->Low; 11227 11228 // New blocks will be inserted immediately after the current one. 11229 MachineFunction::iterator BBI(W.MBB); 11230 ++BBI; 11231 11232 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11233 // we can branch to its destination directly if it's squeezed exactly in 11234 // between the known lower bound and Pivot - 1. 11235 MachineBasicBlock *LeftMBB; 11236 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11237 FirstLeft->Low == W.GE && 11238 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11239 LeftMBB = FirstLeft->MBB; 11240 } else { 11241 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11242 FuncInfo.MF->insert(BBI, LeftMBB); 11243 WorkList.push_back( 11244 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11245 // Put Cond in a virtual register to make it available from the new blocks. 11246 ExportFromCurrentBlock(Cond); 11247 } 11248 11249 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11250 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11251 // directly if RHS.High equals the current upper bound. 11252 MachineBasicBlock *RightMBB; 11253 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11254 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11255 RightMBB = FirstRight->MBB; 11256 } else { 11257 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11258 FuncInfo.MF->insert(BBI, RightMBB); 11259 WorkList.push_back( 11260 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11261 // Put Cond in a virtual register to make it available from the new blocks. 11262 ExportFromCurrentBlock(Cond); 11263 } 11264 11265 // Create the CaseBlock record that will be used to lower the branch. 11266 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11267 getCurSDLoc(), LeftProb, RightProb); 11268 11269 if (W.MBB == SwitchMBB) 11270 visitSwitchCase(CB, SwitchMBB); 11271 else 11272 SL->SwitchCases.push_back(CB); 11273 } 11274 11275 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11276 // from the swith statement. 11277 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11278 BranchProbability PeeledCaseProb) { 11279 if (PeeledCaseProb == BranchProbability::getOne()) 11280 return BranchProbability::getZero(); 11281 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11282 11283 uint32_t Numerator = CaseProb.getNumerator(); 11284 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11285 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11286 } 11287 11288 // Try to peel the top probability case if it exceeds the threshold. 11289 // Return current MachineBasicBlock for the switch statement if the peeling 11290 // does not occur. 11291 // If the peeling is performed, return the newly created MachineBasicBlock 11292 // for the peeled switch statement. Also update Clusters to remove the peeled 11293 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11294 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11295 const SwitchInst &SI, CaseClusterVector &Clusters, 11296 BranchProbability &PeeledCaseProb) { 11297 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11298 // Don't perform if there is only one cluster or optimizing for size. 11299 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11300 TM.getOptLevel() == CodeGenOpt::None || 11301 SwitchMBB->getParent()->getFunction().hasMinSize()) 11302 return SwitchMBB; 11303 11304 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11305 unsigned PeeledCaseIndex = 0; 11306 bool SwitchPeeled = false; 11307 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11308 CaseCluster &CC = Clusters[Index]; 11309 if (CC.Prob < TopCaseProb) 11310 continue; 11311 TopCaseProb = CC.Prob; 11312 PeeledCaseIndex = Index; 11313 SwitchPeeled = true; 11314 } 11315 if (!SwitchPeeled) 11316 return SwitchMBB; 11317 11318 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11319 << TopCaseProb << "\n"); 11320 11321 // Record the MBB for the peeled switch statement. 11322 MachineFunction::iterator BBI(SwitchMBB); 11323 ++BBI; 11324 MachineBasicBlock *PeeledSwitchMBB = 11325 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11326 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11327 11328 ExportFromCurrentBlock(SI.getCondition()); 11329 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11330 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11331 nullptr, nullptr, TopCaseProb.getCompl()}; 11332 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11333 11334 Clusters.erase(PeeledCaseIt); 11335 for (CaseCluster &CC : Clusters) { 11336 LLVM_DEBUG( 11337 dbgs() << "Scale the probablity for one cluster, before scaling: " 11338 << CC.Prob << "\n"); 11339 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11340 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11341 } 11342 PeeledCaseProb = TopCaseProb; 11343 return PeeledSwitchMBB; 11344 } 11345 11346 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11347 // Extract cases from the switch. 11348 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11349 CaseClusterVector Clusters; 11350 Clusters.reserve(SI.getNumCases()); 11351 for (auto I : SI.cases()) { 11352 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11353 const ConstantInt *CaseVal = I.getCaseValue(); 11354 BranchProbability Prob = 11355 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11356 : BranchProbability(1, SI.getNumCases() + 1); 11357 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11358 } 11359 11360 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11361 11362 // Cluster adjacent cases with the same destination. We do this at all 11363 // optimization levels because it's cheap to do and will make codegen faster 11364 // if there are many clusters. 11365 sortAndRangeify(Clusters); 11366 11367 // The branch probablity of the peeled case. 11368 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11369 MachineBasicBlock *PeeledSwitchMBB = 11370 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11371 11372 // If there is only the default destination, jump there directly. 11373 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11374 if (Clusters.empty()) { 11375 assert(PeeledSwitchMBB == SwitchMBB); 11376 SwitchMBB->addSuccessor(DefaultMBB); 11377 if (DefaultMBB != NextBlock(SwitchMBB)) { 11378 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11379 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11380 } 11381 return; 11382 } 11383 11384 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11385 SL->findBitTestClusters(Clusters, &SI); 11386 11387 LLVM_DEBUG({ 11388 dbgs() << "Case clusters: "; 11389 for (const CaseCluster &C : Clusters) { 11390 if (C.Kind == CC_JumpTable) 11391 dbgs() << "JT:"; 11392 if (C.Kind == CC_BitTests) 11393 dbgs() << "BT:"; 11394 11395 C.Low->getValue().print(dbgs(), true); 11396 if (C.Low != C.High) { 11397 dbgs() << '-'; 11398 C.High->getValue().print(dbgs(), true); 11399 } 11400 dbgs() << ' '; 11401 } 11402 dbgs() << '\n'; 11403 }); 11404 11405 assert(!Clusters.empty()); 11406 SwitchWorkList WorkList; 11407 CaseClusterIt First = Clusters.begin(); 11408 CaseClusterIt Last = Clusters.end() - 1; 11409 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11410 // Scale the branchprobability for DefaultMBB if the peel occurs and 11411 // DefaultMBB is not replaced. 11412 if (PeeledCaseProb != BranchProbability::getZero() && 11413 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11414 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11415 WorkList.push_back( 11416 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11417 11418 while (!WorkList.empty()) { 11419 SwitchWorkListItem W = WorkList.pop_back_val(); 11420 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11421 11422 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11423 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11424 // For optimized builds, lower large range as a balanced binary tree. 11425 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11426 continue; 11427 } 11428 11429 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11430 } 11431 } 11432 11433 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11434 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11435 auto DL = getCurSDLoc(); 11436 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11437 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11438 } 11439 11440 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11441 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11442 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11443 11444 SDLoc DL = getCurSDLoc(); 11445 SDValue V = getValue(I.getOperand(0)); 11446 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11447 11448 if (VT.isScalableVector()) { 11449 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11450 return; 11451 } 11452 11453 // Use VECTOR_SHUFFLE for the fixed-length vector 11454 // to maintain existing behavior. 11455 SmallVector<int, 8> Mask; 11456 unsigned NumElts = VT.getVectorMinNumElements(); 11457 for (unsigned i = 0; i != NumElts; ++i) 11458 Mask.push_back(NumElts - 1 - i); 11459 11460 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11461 } 11462 11463 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11464 SmallVector<EVT, 4> ValueVTs; 11465 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11466 ValueVTs); 11467 unsigned NumValues = ValueVTs.size(); 11468 if (NumValues == 0) return; 11469 11470 SmallVector<SDValue, 4> Values(NumValues); 11471 SDValue Op = getValue(I.getOperand(0)); 11472 11473 for (unsigned i = 0; i != NumValues; ++i) 11474 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11475 SDValue(Op.getNode(), Op.getResNo() + i)); 11476 11477 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11478 DAG.getVTList(ValueVTs), Values)); 11479 } 11480 11481 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11483 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11484 11485 SDLoc DL = getCurSDLoc(); 11486 SDValue V1 = getValue(I.getOperand(0)); 11487 SDValue V2 = getValue(I.getOperand(1)); 11488 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11489 11490 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11491 if (VT.isScalableVector()) { 11492 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11493 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11494 DAG.getConstant(Imm, DL, IdxVT))); 11495 return; 11496 } 11497 11498 unsigned NumElts = VT.getVectorNumElements(); 11499 11500 uint64_t Idx = (NumElts + Imm) % NumElts; 11501 11502 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11503 SmallVector<int, 8> Mask; 11504 for (unsigned i = 0; i < NumElts; ++i) 11505 Mask.push_back(Idx + i); 11506 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11507 } 11508